Contents

	Page
บทคัดย่อ	(3)
Abstract	(5)
Acknowledgement	(7)
Contents	(8)
List of Tables	(9)
Lists of Figures	(10)
Abbreviations and Symbols	(14)
Chapter	
1. Introduction	1
Introduction	1
Review of Literature	3
Aims of Study	56
2. Materials and Methods	57
Materials	57
Methods	61
3. Results	91
4. Discussion	133
5. Conclusions	144
Bibliography	146
Appendix	180

Contents (Continued)

	Page
Publications	210
Vitae	211

List of Tables

Ta	Γable	
1.	The world's five top-countries for natural rubber production.	7
2.	Sources of higher plant peroxidases, functional organs and their specific	
	substrates.	21
3.	Principle plant peroxidase genes, expression and function analysis.	27
4.	The sequences of the primers for first PCR, 5' RACE and 3' RACE.	60
5.	Purification of RBP from 100 g Hevea leaves.	92

List of Figures

Figure	
1. A plantation of cultivated rubber trees (Hevea brasiliensis).	5
2. Morphological characters of RRIM 600 clone.	7
3. Organic non-rubber constituents of latex with approximate concentration	
in g/100 g latex.	9
4. Three-dimensional structure of vanadium peroxidase from C. inaequalis.	13
5. The <i>b</i> -type heme of peroxidase.	14
6. Three-dimensional structure of HRP isoenzyme C.	19
7. Catalytic cycle of heme-containing peroxidases.	25
8. The principle of indirect ELISA.	48
9. A three-tiered sandwich ELISA.	50
10. The principle of colorimetric detection of DNA.	52
11. Map of pCR [®] 4 - TOPO vector (Invitrogen).	59
12. Maps of pGEM®-T Easy vector (Promega).	59
13. 3'and 5' Rapid Amplification cDNA Ends (RACE) diagram.	86
14. DEAE-Sephacel chromatography of the RBP.	93
15. Sephadex G-75 chromatography of the RBP.	94
16. Sephadex G-200 chromatography of RBP-anti-rabbit IgG conjugate	
prepared by using glutaraldehyde.	96
17. Sephadex G-200 chromatography of RBP-anti-rabbit IgG conjugate	
prepared by using sulfo-SMCC.	97

List of Figures (Continued)

Fig	igure J	
18.	Retained peroxidase activity and A ₂₈₀ of the RBP-anti-rabbit IgG	
	conjugate prepared by using 0.04, 0.06 and 0.08 M sodium periodate.	98
19.	Sephadex G-200 chromatography of RBP-anti-rabbit IgG conjugate	
	prepared by using sodium periodate.	100
20.	Sephadex G-200 chromatography of RBP-anti-human IgG conjugate	
	prepared by using sodium periodate.	101
21.	Sephadex G-200 chromatography of RBP-anti-rabbit IgG conjugate	
	prepared by modified periodate oxidation method.	102
22.	Molecular weight determination of RBP-anti-rabbit IgG conjugate, RBP	
	and anti-rabbit IgG.	104
23.	A standard curve (log MW vs K _{av}) for MW estimation of RBP-anti-	
	rabbit IgG conjugate, RBP and anti-rabbit IgG.	105
24.	Reaction of RBP-anti-rabbit IgG conjugate with rabbit serum.	106
25.	Determination of the RBP-anti-rabbit IgG conjugate titer.	106
26.	Peroxidase activity determination of the RBP-anti-rabbit IgG and	
	RBP-anti-human IgG conjugate kept for 8 months at -20 °C.	107
27.	Immunological stability of RBP-anti-rabbit IgG conjugate against rabbit	
	serum and RBP-anti-human IgG conjugate against human serum.	108
28.	Dot blot assay of HMG-CoA synthase in C-serum of rubber latex.	110
29.	Western blotting of HMG-CoA synthase and vitellogenin.	111

List of Figures (Continued)

Fig	ure	Page
30.	Detection of anti-leptospira in human serum using RBP-anti-human IgG	
	conjugate and HRP-anti-human IgG conjugate.	112
31.	Calibration curves for cholesterol determination using RBP and the	
	commercial HRP.	114
32.	Cholesterol in human serum samples using reagents prepared with RBP	
	compared with the commercial HRP.	115
33.	Con-A agarose chromatography of RBP.	117
34.	Non-denaturing polyacrylamide gel electrophoresis of RBP fractions from	
	a Con-A agarose column stained for peroxidase activity.	118
35.	Non-denaturing polyacrylamide gel electrophoresis of RBP fractions from	
	Con-A agarose column stained in 0.02% Coomassie Brilliant Blue R-250.	119
36.	Amino acid homology between RBP, Arabidopsis thaliana peroxidase,	
	and two related proteins, Concanavalin A and Manihot esculenta	
	β-glycosidase.	121
37.	Amino acid sequence alignment for RBP1_K24 and RBP1_K28 among	
	4 plant species.	124
38.	The first PCR product on the 1.5% agarose gel electrophoresis.	125
39.	Alignment of deduced nucleotide sequences for RBP among 4 plant species.	126
40.	rbp cDNA after 5', 3'RACE on 1.5% agarose gel electrophoresis.	128
41.	Deduced amino acid sequences of RBP1 and RBP2 after 3'RACE.	129

List of Figures (Continued)

Figure		Page
42.	Completed nucleotide and amino acid sequences of rbp1generated from	
	3' RACE rbp1 and 5'RACE rbp1.	130
43.	Alignment of deduced amino acid sequences for RBP1 among 8 plant	
	species.	131

Abbreviations and Symbols

A = absorbance

4-AP = 4-aminophenazone

ATP = adenosine triphosphate

BSA = bovine serum albumin

bp = base pair

°C = degree celcius

cDNA = complementary DNA

cm = centimeter

CNBr = cyanogen bromide

DEPC = diethyl pyrocarbonate

DHBS = 3,5-dichloro-2-hydroxybenzenesulphonate

DNA = deoxyribonucleic acid

dNTP = dATP, dCTP, dGTP, dTTP

E. coli = Escherichia coli

EDTA = ethylenediamine tetraacetic acid

EtBr = ethidium bromide

et al. = and others

g = gram

hr = hour

HMG-CoA = 3-hydroxy-3-methylglutaryl CoA

HRP = horseradish peroxidase

Abbreviations and Symbols (Continued)

IPTG = isopropylthiogalactoside

kb = kilobase

kDa = kilodalton

LB = Luria-Bertani (medium)

LEP = Lysyl endopeptidase

M = Molar

MW = molecular weight

mA = milliampere

mRNA = messenger ribonucleic acid

mg = milligram

min = minute

ml = milliliter

 $\mu g = microgram$

 $\mu l = microliter$

 $\mu M = micromolar$

nm = nanometer

nmole = nanomole

OD = optical density

ND-PAGE = non-denaturing polyacrylamide gel electrophoresis

RBP = rubber peroxidase

RNA = ribonucleic acid

Abbreviations and Symbols (Continued)

Rnase = ribonuclease

RT = room temperature

SDS = sodium dodesyl sulphate

sec = second

sulfo-SMCC = sulfosuccinimidyl 4-(n-maleimidomethyl) cyclohexane-1-

carboxylate

TAE = Tris-acetate EDTA

TEMED = N,N,N',N',-tetramethyl-ethylenediamine

Tris-HCl = Tris-(hydroxymethyl)-aminoethane hydrochloric acid

V = volt

v/v = volume/volume

w/v = weight/volume