CONTENT

	Page
Contents	viii
List of tables	ix
List of figures	X
List of abbreviations and symbols	xii
Chapter	
1 Introduction	1
Introduction	1
Review of literatures	2
Objectives	16
2 Materials and Methods	17
Materials	17
Methods	20
3 Results	35
4 Discussion	59
5 Conclusion	68
Bibliography	70
Appendix	77
Vitae	85

LIST OF TABLES

Table		Page
1	Specificity of amylase inhibitors from different plant	
	sources against α -amylases.	4
2	Different structural classes of α -amylase inhibitors	5
3	Specificity of nonproteinaceous amylase inhibitors	
	from different plant sources against α -amylases	8
4	Effect of salt on inhibitory activity of inhibitor	48
5	Potential application of α -amylase inhibitor on various enzymes	50
6	Effect of amylase inhibitors on the luminal enzymes in vitro	52
7	Comparative method between glucose oxidase kit and glucometer	53
8	Effect of amylase inhibitor on fasting blood glucose levels	
	and body weight in rats	55
9	Effect of amylase inhibitor on blood glucose concentration	
	after substrate loading in normal rats	58
A 1	Polyacrylamide gel electrophoresis (PAGE)	78
A2	C.P. Mice feed	80

LIST OF FIGURES

Figure		Page
1	Molecular structure of hibiscus acid: hibiscus acid $(R = H)$	
	; hibiscus acid 6-methyl ester ($R = CH_3$)	6
2	Molecular structure of acarbose	7
3	α-Glucosidase inhibitors isolated from hyssop	
	(Hyssopus officinalis)	7
4	DEAE-cellulose column chromatogram	36
5	Sephadex G-100 column chromatogram	36
6	Hydroxyapatite column chromatogram	37
7	Native-PAGE of the purified proteinaceous amylase	
	inhibitor on 14-17% gradient polyacrylamide slab gel	38
8	Calibration curve for molecular weight determination	
	of purified proteinaceous amylase inhibitor by	
	14-17% Native-PAGE	38
9	Calibration curve for molecular weight determination	
	of purified proteinaceous amylase inhibitor by	
	14-17% SDS-PAGE	39
10	Chromatogram of the molecular weight markers and	
	amylase inhibitor from Sephadex G-100 column	39
11	Calibration curve for molecular weight determination	
	of the purified proteinaceous amylase inhibitor by	
	a SephadexG-100 column chromatography.	40
12	Thin layer chromatrogram of nonproteinaceous inhibitor	42
13	Effect of temperature on the inhibitory activity	44
14	Effect of temperature on the stability of the inhibitor	45
15	Effect of pH on amylase activity of amylase with	
	or without inhibitor	46
16	Effect of pH on the stability of the inhibitor	47

LIST OF FIGURES (continued)

Figure		Page
17	Lineweaver-Burk plot (1/[S] vs 1/v) for human	
	salivary α -amylase inhibited by nonproteinaceous	
	and acarbose	49
18	Effect of amylase inhibitor on tolerance test in rat	57
A3	Percent inhibition and dilution for 50% inhibition of	
	salivary α -amylase by crude extract, proteinaceous	
	amylase inhibitor and nonproteinaceous amylase inhibitor.	82
A4	Percent inhibition and dilution for 50% inhibition of	
	pancreatic α -amylase by crude extract, proteinaceous	
	amylase inhibitor and nonproteinaceous amylase inhibitor.	83
A5	Percent inhibition and dilution for 50% inhibition	
	of yeast maltase by crude extract.	84

LIST OF ABBREVIATIONS AND SYMBOLS

 α = Alpha

AI = Amylase inhibitor

 β = Beta

°C = Degree Celsius

cm = Centimeter

dl = Deciliter

g = Gram

h = Hour

HPLC = High performance liquid chromatography

 K_{av} = Distribution coefficient

kDa = Kilodalton kg = Kilogram

LMW = Low molecular weight

mg = Milligram min = Minute ml = Milliliter ml = Molar

 M_r = Molecular weight

MPLC = Medium pressure liquid chromatography

nm = Nanometer
N = Normality

O.D. = Optical density

PAGE = Polyacrylamide gel electrophoresis

pH = -Log hydrogen ion concentration

 $\begin{array}{lll} \text{ppm} & = & \text{Part per million} \\ R_f & = & \text{Retention factor} \end{array}$

SDS = Sodium dodecyl sulphate

TEMED = N',N',N',N'-tetramethylethylenediamine

LIST OF ABBREVIATIONS AND SYMBOLS (continued)

TLC = Thin layer chromatography

Tris = Tris (hydroxymethyl) aminomethane

U = Unit

μmole = Micromole

v/v = Volume per volume

w/v = Weight per volume

% = Percent