CONTENT

	PAGE
CONTENT	viii
LIST OF TABLE	ix
LIST OF FIGURES	X
LIST OF ABBREVIATIONS AND SYMBOLS	xi
CHAPTER	
1. INTRODUCTION	1
BACKGROUND AND RATIONALE	1
REVIEW OF LITERATURE	2
OBJECTIVE	15
2. RESEARCH METHODOLOGY	16
MATERIAL	16
EQUIPMENT	18
METHOD	19
3. RESULT	25
4. DISCUSSION	57
5. CONCLUSION	65
BIBLIOGRAPHY	66
APPENDIX	76
VITAE	79

LIST OF TABLE

TABLE	PAGE
1. Typical protein distribution in the centrifuged latex fractions	4
2. Differences between the chitinases of glycoside hydrolase family 18 and 19	7
3. Comparison of endo- and exochitinase activity in BFM of four rubber clones	30
4. The purification protocol of endo- and exochitinase from BFM of <i>Hevea</i> latex	35
5. Physical and enzymic properties of endo- and exochitinase in BFM	42

LIST OF FIGURES

FIGURE	PAGE
1. Fraction of fresh Hevea latex by ultracentrifugation	3
2. Enzymatic reaction catalyzed by endo- and exochitinase	6
3. Crystalline structural molecule of α -chitin	13
4. Specific substrates for assaying endo- and exochitinase activity	15
5. Elution profile of endo- and exochitinase activity and	32
OD_{280} of the fraction from CM-Sepharose column chromatography	
6. The elution profile of endo- and exochitinase activity and	34
OD_{280} of the fraction from Sephadex G-75 column chromatography	
7. Analysis of <i>Hevea</i> latex endo- and exochitinase in BFM on	36
12% (w/v) SDS-PAGE	
8. SDS-PAGE and zymogram analysis (chitinase activity staining) in	38
12% (w/v) polyacrylamide gel.	
9. Isoelectric focusing gel electrophoresis of endo- and exochitinase	40
10. Analysis of <i>Hevea</i> latex endo- and exochitinase from IEF preparation	41
11. Effect of pH on endo- and exochitinase activity	43
12. pH stability of endo- and exochitinase	45
13. Effect of temperature on endo- and exochitinase activity	46
14. Thermal stability of endo- and exochitinase	47
15. Varying amount of the purified endochitinase obtained from IEF	49
16. Varying amount of the purified exochitinase obtained from IEF	50
17. Determination of Km and Vmax values of the purified endochitinase	52
obtained from IEF	
18. Determination of Km and Vmax values of the purified exochitinase	54
obtained from IEF	
19. Alignments of the N-terminal amino acid sequences of	56
endochitinase and exochitinase	

LIST OF ABBREVIATIONS AND SYMBOLS

BF Bottom fraction **BFM** Bottom fraction membrane BFM-X Bottom fraction membrane extracted with 0.2% Triton X-100 **BSA** Bovine serum albumin CMCarboxyl methyl **CBD** Chitin-binding domain °C Degree celsius **DEAE** Diethylaminoethyl **EDTA** Ethylenediaminetetra acetic acid GlcN Glucosamine Gram g **IEF** Isoelectric focusing pΙ Isoelectric point kDa kilodalton 4-MU 4-Methylumbelliferone 4-Methylumbelliferyl-N-acetyl- β -D-4-MU-β-GlcNAc glucosaminide $4-MU-\beta-(GlcNAc)_3$ 4-Methylumbelliferyl-N-N'-N''-acetyl- β -Dglucosaminide Milligram mg Milliliter ml Microgram μg Microliter μl μM micromolar min Minute (s) GlcNAc N-acetylglucosamine

Nanometer

nm

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

NRL = Natural rubber latex

O.D. = Optical density

pH = -Log hydrogen ion concentration

PR = Pathogenesis related

SDS = Sodium dodecyl sulphate

SDS-PAGE = Sodium dodecyl sulphate polyacrylamide gel

electrophoresis

SAR = Systemic acquired resistance

TEMED = N,N,N,N,-tetramethylenediamine

TCA = Trichloroacetic acid

Tris = Tris (hydroxymethyl) aminomethane

hydrochloride acid

U = Unit(s)

v/v = Volume per volume

w/v = Weight per volume

 α = Alpha

 β = Beta

 γ = Gamma

% = Percent