Contents

	Pages
Abstract (English)	(3)
Abstract (Thai)	(5)
Acknowledgement	(7)
Contents	(8)
List of Tables	(9)
List of Figures	(10)
List of abbreviations	(13)
Chapter	
1. Introduction	1
Introduction	1
Literature review	8
Aims of study	36
2. Materials and Methods	37
Materials	37
Methods	41
3. Results	71
4. Discussion	111
5. Conclusion	128
Bibliography	130
Appendix	145
Publications	149
Vitae	151

List of Tables

Table P	
1. Distribution of mevalonate and GAP-pyruvate pathway	
for IPP biosynthesis	11
2. Comparison of percent identity of amino acid HMG-CoA synthase	
among some vertebrate animals	17
3. Potential regulatory cis-elements in the mitochondrial HMG-CoA	
synthase gene	22
4. A typical fresh latex composition from natural rubber products	34
5. The sequences of the primers for 5' RACE, RT-PCR,	
and site-directed mutagenesis	39
6. Instruments used in this study	40
7. Composition of SDS-polyacrylamide gel	68
8. Comparison between H. brasiliensis hmgs1 and hmgs2 cDNA	76
9. Changes in amino acids sequences between HMG-CoA synthase 1 and	d 2 79
10. Percent identities of amino acid sequences in HMG-CoA synthase	
and ACP synthase III	92
11. Specific activities of recombinant HMG-CoA synthase 1	104
12. Nucleotide sequence difference between <i>H. brasiliensis hmgs1</i> and <i>h</i>	hmgs2 112

List of Figures

Figures	Pages
1. A plantation of rubber trees (Hevea brasiliensis)	2
2. The world natural rubber production-2001	3
3. The three reactions in the synthesis of HMG-CoA	5
4. The Ping Pong mechanism of enzyme HMG-CoA synthase	9
5. Organization of the mevalonate pathway	14
6. Cis-elements of the mitochondrial HMG-CoA synthase promoter	23
7. Biosynthesis of IPP via the mevalonate pathway and DXP pathway	28
8. Isoprenoid biosynthesis pathway in plant cells	29
9. A section of the isoprenoid pathway illustrating the position	
of natural rubber biosynthesis	32
10. The biosynthesis of natural rubber from iso-pentenyl pyrophosphate	32
11. Gene images-prime labeling and detection system	47
12. Rapid excision protocol	50
13. Map of pBluescript SK (+/-) vector	51
14. 5' Rapid Amplification cDNA Ends strategy	55
15. Map of pGEM-T Easy vector	56
16. Map of pQE-31 expression vector	65
17. Primary, secondary, and tertiary screening for hmgs2 from cDNA library	72
18. Digestion products analysis of five positive clones separated on 1%	
agarose gel electrophoresis	73

List of Figures (continued)

Fig	ures Pa	iges
19.	H. brasiliensis hmgs2 cDNA after 5' RACE on 1% agarose gel	
	electrophoresis	75
20.	Comparison of completed nucleotide and amino acid sequences of hmgs1 and	
	hmgs2 from H. brasiliensis	77
21.	Total RNA isolation from various tissues of H. brasiliensis	81
22.	Differential expression of hmgs2 m RNA in different H. brasiliensis	
	tissues	82
23.	Alignment of deduced amino acid sequences for HMG-CoA synthase	
	among 31 species	85
24.	Alignment of deduced amino acid sequences for HMG-CoA synthase	
	and ACP synthase III	94
25.	Phylogenetic relationship of HMG-CoA synthase and ACP synthase III	95
26.	PCR amplification products of hmgs1 ORF in expression vector transformed	
	into E. coli M15	98
27.	SDS-PAGE of E. coli lysate from recombinant wild type HMG-CoA	
	synthase 1 at different IPTG concentrations	100
28.	SDS-PAGE of E. coli lysate from recombinant wild type HMG-CoA	
	synthase 1 at different incubation times	101
29	SDS-PAGE of E. coli lysate from recombinant wild type and mutant	
	HMG-CoA synthase 1	102

List of Figures (continued)

Figures		Pages
30.	The activities of recombinant HMG-CoA synthase1 in crude extract at	
	various protein concentrations	103
31.	Ribbon diagram of M. tuberculosis ACP synthase III	106
32.	The secondary structural alignment of HMG-CoA synthase and	
	ACP synthase III	107
33.	Topology of possible secondary structure of H. brasiliensis HMGS	109
34.	Reaction catalyzed by ACP synthase III, Abbadi et al. (2000)	119
35.	Reaction catalyzed by HMG-CoA synthase, Chun et al. (2000)	119

List of Abbreviations

ACP = β -ketoacyl-acyl carrier protein

ATP = Adenosine triphosphate

Bq = Becquerel

BSA = Bovine serum albumin

bp = base pair (s)

°C = Degree celcius

cDNA = complementary DNA

Ci = Curie

cm = centimeter

cpm = counts per minute

dNTP = dATP, dCTP, dGTP, and dTTP

DEPC = Diethyl pyrocarbonate

DNA = Deoxyribonucleic acid

DTT = Dithiothreitol

dpm = disintegration per minute

E. coli = Escherichia coli

EDTA = Ethylenediamine tetraacetic acid

EtBr = Ethidium bromide

et al. = and others

g = gram

h = hour(s)

His tag = Histidine tag

List of Abbreviations (continued)

HMG-CoA = 3-hydroxy-3-methylglutaryl CoA

HMGR = 3-hydroxy-3-methylglutaryl CoA reductase

HMGS = 3-hydroxy-3-methylglutaryl CoA synthase

hmgs = 3-hydroxy-3-methylglutaryl CoA synthase gene

IPTG = Isopropylthiogalactoside

kb = kilobase (s)

kDa = kilodalton(s)

LB = Luria-Bertani (medium)

M = Molar

 $M_r = Molecular mass$

mA = milliampare(s)

mM = millimolar

mRNA = Messenger ribonucleic acid

mg = milligram(s)

 $\min = \min(s)$

ml = milliliter(s)

 $\mu g = microgram(s)$

 $\mu l = microliter(s)$

 $\mu M = micromolar$

Ni-NTA = Nickle-Nitrotriacetic acid

ng = nanogram(s)

nm = nanometer(s)

List of Abbreviations (continued)

nmole = nanomole

nt = nucleotide(s)

O.D. = optical density

ORF = open reading frame

PAGE = Polyacrylamide gel electrophoresis

PCR = Polymerase chain reaction

pfu = plaque forming unit

POPOP = 1,4-bis[2-(5phenyloxazolyl)] benzene 2,2-phenylene

bis (5-phenyloxazole)

PPO = 2,5-Diphenyloxazole

pmole = picomole

PMSF = Phenyl methyl sulfonyl fluoride

RNA = Ribonucleic acid

RNase = Ribonuclease

RT = Reverse transcriptase

rpm = revolution per minute

SDS = Sodium dodecyl sulfate

sec = second

SSC = Sodium saline citrate

TAE = Tris-acetate EDTA

TEMED = N,N,N',N',-tetramethyl-ethylenediamine

Tris-HCl = Tris-(hydroxymethyl)-aminoethane hydrochloric acid

List of Abbreviations (continued)

tRNA = transfer ribonucleic acid

U = unit(s)

V = volt(s)

v/v = volume per volume

w/v = weight per volume