CONTENT

	Page
CONTENT	(8)
LIST OF TABLES	(11)
LIST OF FIGURES	(12)
LIST OF ABBREVIATIONS AND SYMBOLS	(15)
CHAPTER	
1 INTRODUCTION	
1.1 General introduction	1
1.2 Literature review	
1.2.1 Free radicals and skin aging	3
1.2.2 Defense mechanism of skin against oxidative damage	5
1.2.3 Hibiscus sabdariffa Linn. (Roselle)	6
1.2.4 Antioxidant activites of Roselle extract	14
1.2.5 Toxicological studies of Roselle extract	16
1.2.6 Stability studies of Roselle extract	16
2 MATERIALS AND METHODS	
2.1 Materials	
2.1.1 Plant material	18
2.1.2 Chemicals and reagents	18
2.2 Instruments	21
2.3 Methods	21

CONTENT (Continued)

			Page
	2.3.1	Preparation of Hibiscus sabdariffa Linn. (Roselle)	21
		dried extract	
	2.3.2	Antioxidant assays	
		2.3.2.1 DPPH radical scavenging assay	21
		2.3.2.2 Lipid peroxidation (LPO) of liposome assay	23
	2.3.3	Total phenolic assay	27
	2.3.4	Total anthocyanin assay	28
	2.3.5	Preformulation studies	
		2.3.5.1 Stability of Roselle extract in aqueous solution	30
		2.3.5.2 Stability of Roselle extract in solid state	31
	2.3.6	Preliminary study for development of cream containing	
		Roselle extract	
		2.3.6.1 Formulation of cream bases	34
		2.3.6.2 Formulation of creams containing Roselle extract	36
		2.3.6.3 Stability evaluation	36
	2.3.7	7 Statistic analysis	37
3	RESUL	TS AND DISCUSSION	
	3.1 Pre	paration of Roselle Dried extract	38
	3.2 Ant	ioxidant activities of Roselle extract	38
	3.3 Tot	al phenolic contents of Roselle extract	41
	3.4 Qua	antitative determination of monomeric anthocyanins	43

LIST OF TABLES

Table		Page
1.1	Reactive oxygen species (ROS)	5
1.2	Chemical constituents of various parts of Roselle	7
2.1	Ingredients of the cream bases	35
3.1	Comparative antioxidant activities of Roselle extract,	39
	BHT, ascorbic acid and α -tocopherol	
3.2	Physical appearance of cream containing 5% of Roselle	60
	extract before and after heating and cooling cycle tests	
3.3	Antioxidant activity and monomeric anthocyanins of cream	62
	containing 5% of Roselle extract before and after heating	
	and cooling cycle tests	

LIST OF TABLES

Table		Page
1.1	Reactive oxygen species (ROS)	5
1.2	Chemical constituents of various parts of Roselle	7
2.1	Ingredients of the cream bases	35
3.1	Comparative antioxidant activities of Roselle extract,	39
	BHT, ascorbic acid and α -tocopherol	
3.2	Physical appearance of cream containing 5% of Roselle	60
	extract before and after heating and cooling cycle tests	
3.3	Antioxidant activity and monomeric anthocyanins of cream	62
	containing 5% of Roselle extract before and after heating	
	and cooling cycle tests	

LIST OF FIGURES (Continued)

Figure		Page
1.1	Calyxes of Hibiscus sabdariffa Linn.	7
1.2	Structure of compounds which were of interested in	11
	Table 1.2	
2.1	Reaction between TBA and MDA to produce a pink	24
	colored product	
2.2	Structural transformation of anthocyanin chromophores	28
	as function of pH	
3.1	Dried Roselle extract	38
3.2	A standard calibration curve of gallic acid solutions	42
3.3	Correlation between total phenolic compounds (mg/g)	42
	of Roselle extract determined by Folin-Ciocalteu assay	
	and its antioxidant activity determined by DPPH radical	
	scavenging assay	
3.4	Correlation between total monomeric anthocyanins (mg/g)	44
	determined by pH-differential method and its antioxidant	
	activity determined by DPPH radical scavenging assay.	
3.5	Color of Roselle extract at concentration of 1 mg/mL in	45
	aqueous solution with different pH values	
3.6	Predominant structural forms of anthocyanins presented at	45
	different pHs	

LIST OF FIGURES (Continued)

Fig	ure		Page
	3.7	UV-visible spectra of Roselle extract at concentration of	47
		1 mg/mL in aqueous solution with different pH values	
	3.8	Absorbance at 520 nm of Roselle extract solution at pH	48
		2.2, 4.7 and 6.8 under storage in refrigerator (8-10 °C)	
		for 5 weeks	
	3.9	% Color retention of Roselle extract solutions at pH 2.2,	48
		4.7 and 6.8 under storage in refrigerator (8-10 °C) for	
		5 weeks	
	3.10	Effect of pH on antioxidant activity of Roselle extract	51
		solutions at pH 2.2, 4.7 and 6.8 under storage in refrigerator	
		(8-10 °C) for 5 weeks	
	3.11	Effect of pH on total phenolic contents of Roselle extract	51
		solutions at pH 2.2, 4.7 and 6.8 under storage in refrigerator	
		(8-10 °C) for 5 weeks	
	3.12	Moisture sorption profile of dried Roselle extract at room	53
		temperature and 75% RH	
	3.13	Apparent first order plot for the degradation of monomeric	54
		anthocyanins of dried Roselle extract (45 °C, 75 %RH)	
		indicating the initial lag time	
	3.14	% Polymeric color occurred in dried Roselle extract	54
		(45 °C, 75% RH)	

LIST OF FIGURES (Continued)

Figure		Page
3.15	Inversely proportional correlation between % polymeric	56
	color and % monomeric anthocyanin contents in dried	
	Roselle extract (45 °C, 75% RH)	
3.16	Degradation index (DI) of dried powder of Roselle	56
	extract (45 °C, 75% RH)	
3.17	Antioxidant activity of dried powder of Roselle extract	57
	(45 °C, 75% RH)	
3.18	Total phenolic contents of dried powder of Roselle extract	57
	(45 °C, 75% RH)	
3.19	Formulation of cream containing Roselle extract (Rx1) at	60
	various concentrations: 5% (A), 10% (B) and 15% (C)	
3.20	Formulation of creams containing 5% of Roselle extract in	61
	cream base Rx1 (A) and Rx2 (B) before and after heating	
	and cooling cycle tests	

LIST OF ABBREVIATIONS AND SYMBOLS

A absorbance

AR analytical reagent

a water activity

α- alpha-

 β - beta-

BHT butylated hydroxytoluene

t-BHP tert-butyl hydroperoxide

°C degree Celsius

DI degradation index

DF dilution factor

DNA deoxyribonucleic acid

DPPH 1,1-diphenyl-2-picrylhydrazyl

EC₅₀ effective concentration of sample requires scavenging

free radical by 50%

UV ultraviolet

UVA ultraviolet A

UVB ultraviolet B

 λ_{max} wavelength at maximum absorption

GAE gallic acid equivalent

G-6-PD glucose-6-phosphate dehydrogenase

GSHP glutathione peroxidase

g gram

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

hr hour

kg kilogram

L liter

LPO lipid peroxidation

MDA malondialdehyde

μg microgram

μL microliter

mg milligram

mL milliliter

mM millimolar

M molar

ε molar absorptivity

MW molecular weight

nm nanometer

o- ortho-

p- para-

ppm part per million

PBS phosphate buffered saline

PCA protocatechuic acid

ROS reactive oxygen species

rpm round per minutes

SD standard deviation

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

SOD superoxide dismutases

TBA thiobarbituric acid

v volume

w weight