CONTENTS

	Page
Contents	viii
ist of tables	xv
ist of figures	xvii
Chapter	
1. Introduction	1
1.1. Background and rationale	1
1.2. General introduction	. 5
1.2.1. Molecularly imprinted polymers (MIPs)	5
1.2.2. Chlorinated disinfection by-product	. 10
1.2.3. Transducers	19
1.3. Objective	24
2. Trichloroacetic acid imprinted polymer and	•
piezoelectric quartz crystal microbalance transducer	26
2.1. Principle of piezoelectric quartz crystal microbalance transducer	26
2.2. Trichloroacetic Acid Imprinted Poly(Ethyleneglycoldimethacrylate-co-4-	•
vinylpyridine) Modified Quartz Crystal Microbalance Sensor	29
2.2.1. Objectives	. 29
2.2.2. Method	29.
2.2.2.1. Immobilisation of a polymer on a QCM electrode	29
2.2.2.2. Fabrication of the sensor device	30
2.2.3. Material and equipment	31
2.2.4. Results and discussion	34
2.2.4.1. The influence of the polymer composition on performance of the	
TCAA-MIP-QCM sensor	34
2.2.4.2. The effect of the coated polymer layer height on the frequency	
shift of the TCAA-MIP-QCM sensor	36

	Page
2.2.4.3. The effect of measurement background solution on frequency	
shift of TCAA-MIP-QCM sensor	39
2.2.4.4. The efficiency of TCAA-MIP coated QCM	41
2.3. Trichloroacetic acid imprinted polypyrrole modified	ŕ
quartz crystal microbalance sensor	51
2.3.1. Objective	51
2.3.2. Method	52
2.3.2.1. Immobilisation of TCAA-imprinted polypyrrole on the surface	
of the transducer	52
2.3.2.2. Piezoelectric quartz crystal microbalance-analytical	
detection of analyte	52
2.3.3. Material and Equipment	53
2.3.4. Results and discussion	56
2.3.4.1. The MIP-based electrode optimization of synthesis condition	
and polymer composition	- 56
2.3.4.2. The effect of polymer layer height on signal response	
of the sensor	59
2.3.4.3. The influence of ionic substances in solution background	
on signal response of the sensor	60
2.3.4.4. Concentration dependence of signal response	
of the sensor device	61
2.3.4.5. Analytical characteristics of the sensor to TCAA and analogs	64
2.3.4.6. Sample analysis	65
3. Trichloroacetic acid imprinted polymer and	•
inter-digitated conductometric transducer	68
3.1. Principle of inter-digitated conductometric transducer	68

	Pag
3.2. Trichloroacetic acid imprinted poly(ethyleneglycoldimethacrylate-co-4-	
vinylpyridine) modified Inter-digitated conductometric sensor	70
3.2.1. Objective	70
3.2.2. Method	70
3.2.2.1. Fabrication of the Sensor Device	70
3.2.2.2. Optimisation of Polymer Composition	72
3.2.2.3. Sensor fabrication	7,3
3.2.3. Material and equipment	74
3.2.4. Results and discussion	77
3.2.4.1. The MIP-based electrode-fabrication of the sensor device	77
3.4.4.2. The MIP-based electrode-optimisation of polymer composition	80
3.4.4.3. Conductometric sensor response	83
3.4.4.4. Effect of experimental parameters on the sensor signal	85
3.4.4.5. Concentration dependence on signal response of sensor	90
3.4.4.6. Analytical characteristics	91
3.4.4.7. Selectivity of the sensor	93
3.4.4.8. Sample analysis	95
.3. Trichloroacetic acid imprinted polypyrrole modified	-
inter-digitated conductometric sensor	97
3.3.1. Objectives	97
3.3.2. Method	98
3.3.2.1. Immobilisation of TCAA-imprinted polypyrrole on	
the surface of the transducer	98
3.3.2.2. Analytical detection of analyte	98
3.3.2.3 The USEPA (method 522.2)	99.
3.3.3. Material and equipment	99
3.3.4. Results and discussion	. 102

	Pag
3.3.4.1. Preparation of TCAA-imprinted polypyrrole films	102
3.3.4.2. The MIP-base electrode optimisation of preparation	
condition and polymer composition	103
3.3.4.3. Influence of technological parameters on resistance	
shift response of polymer coated sensor	106
3.3.4.4. Effect of ionic substances in solution background on the	·.
resistance shift response of polymer coated sensor	110
3.3.4.5. Concentration dependence of conductivity shift response	
of the polymer coated sensor	113
3.3.4.6. Selectivity and analytical characteristics of	
polymer coated sensor	114
3.3.4.7. Analysis of water samples	116
4. Trichloroacetic acid imprinted polypyrrole and voltammetric transducer	119
4.1. Principle of voltammetric transducer	119
4.2. Objective	120
4.3. Method	120
4.3.1. Immobilization of imprinted polypyrrole layer on the	
working electrode surface	120
4.3.2. Electroanalytical detection of analyte	121
4.4. Material and equipment	122
4.5. Results and discussion	123
4.5.1. Preparation of polpyrrole film onto voltammetric electrode surface	123
4.5.2. The influence of synthesis conditions and polymer composition	
on signal response of voltammetric sensor	125
4.5.3. Concentration dependence and analytical characteristics of	
voltammetric sensor	129
4.5.4. Analysis of drinking water samples	132

	Page
Trichloroacetic acid imprinted polypyrrole modified microfiltration	
regenerated cellulose (RC) membrane	135
5.1. Introduction	135
5.2. Objective	138
5.3. Method	138
5.3.1. Preparation	138
5.3.2. The characterization of the ready-made polypyrrole particles	139
5.3.3. Preparation of trichloroacetic acid imprinted polypyrrole modified-RC	
membrane	140
5.3.4. Template uptake of the modified membrane	141
5.3.5. The analysis of TCAA amount in the solution samples	
by LLE-GC-ECD	142
5.4. Material and equipment	142
5.5. Results and discussion	145
5.5.1. The evaluation for the use of polypyrrole particle	
as recognition material	145
5.5.1.1. The influence of concentration of ammonium persulfate	
and synthesis pH used in modification process on recognition	
ability of imprinted polypyrrole	145
5.5.1.2. The influence of concentration of ammonium persulfate	
and synthesis pH used in modification process on molecular	
adsorption and overoxidized degree of imprinted polypyrrole	149
5.5.1.3. The effect of washing solvent used in template removal	
process on bound amount of imprinted polypyrrole	151
5.5.1.4. The selectivity of the imprinted polymer synthesized at	• •
various synthesis pHs and concentrations of	-
ammonium persulfate	152

	Page
5.5.2. The effect of electrochemical modification process with imprinted	
polpyrrole on RC membrane characteristics	153
5.5.3. The effect of immersion time of RC membrane in ammonium	÷
persulfate solution on weight change of the membrane	156
5.5.4. The effect of NaCl concentration in binding solution on the	
recognition ability of modified membrane to the template	158
5.5.5. The effect of polymerization time on the amount of polypyrrole	
deposited into membrane and recognition ability of modified	
membrane to the template	160
5.5.6. The influence of pH of modification process and concentration	
of ammonium persulfate on the amount of polypyrrole deposited	
into membrane	162
5.5.7. The effect of concentration of ammonium persulfate on the swelling	
of the modified membrane preparing at various pH on	
modification process	163
5.5.8. The influence of pH used in preparation process and concentration	
of ammonium persulfate redox initiator on permeate flux of	
modified membrane	165
5.5.9. The influence of filtration pH on selectivity of the modified membrane	169
5.5.10. The cross-selectivity of the modified membrane toward	
TCAA analogs	172
5.5.11. The durability of the modified membrane	173
Discussion	177
6.1. Trichloroacetic acid imprinted polymer and piezoelectric quartz crystal	
microbalance transducer	177

	Page
6.2. Trichloroacetic acid imprinted polymer and inter-digitated	
conductometric transducer	178
6.3. Trichloroacetic acid imprinted polypyrrole and	
voltammetric transducer	180
6.4. Trichloroacetic acid imprinted polypyrrole modified	
6.2. Trichloroacetic acid imprinted polymer and inter-digitated conductometric transducer 6.3. Trichloroacetic acid imprinted polypyrrole and voltammetric transducer 6.4. Trichloroacetic acid imprinted polypyrrole modified microfiltration regenerated cellulose (RC) membrane . Conclusion deferences	181
. Conclusion	183
References	186
ppendix	205
Vitae	226

LIST OF TABLES

Table		Page
2.1	Binding constant (K_a) , site population (Q_{max}) and cross-reactivity related to	
	TCAA (CR) of the TCAA-MIP-QCM responding to TCAA and analogs	
	(n=3)	46
2.2	Analytical characteristics of the TCAA-MIP-QCM in the QCM-based assay	
	when the QCM-based assay is conducted for a HAA(s) concentration ranging	
	from 0.1 to 100 mg l^{-1} in de-ionized water ($n=3$)	47
2.3	Comparison of µg li detection limits obtained for the analysis of haloacetic	
	acids by the QCM and several other published methods	49
2.4	Analysis data for HAAs spiked in two brands of commercial bottled water and	
	a manicupal tap water with home filtration system by the QCM-based assay	50
2.5	Binding characteristics, IC ₅₀ and cross-selectivity (CR) for analyses of TCAA	
	and analogs on the TCAA-MIPpy coated IDC electrode	63
2.6	Calibration data of TCAA and five other analogs analysed by MIP sensor	65
2.7	Analysis data for HAAs spiked in two brands of commercial bottled water	
	and a municipal tap water with home filtration system by the QCM-based	• .
	assay	66
3.1	Calibration data obtained for the analysis of TCAA and	
	five other HAAs by the MIP sensor	92
3.2	Analysis of haloacetic acid in water samples by the sensor method	
	and the method 552.2 method	95
3.3	Recovery data from analysis of haloacetic acids in water samples after	
	spiking with TCAA at various concentrations by the sensor method	96
3.4	Calibration data obtained for the analysis of TCAA	
,	by the MIP sensor	116
3.5	Analysis of haloacetic acid in water samples by the sensor method	
	and the method 552.2.	117

LIST OF TABLES (CONTINUED)

Fable		Page
3.6	Recovery data from analysis of haloacetic acids in water samples after	
	spiking with TCAA at various concentrations by the sensor method	117
4.1	Parameter effects in the current density response of the MIP coated	
٠	electrode and the non-MIP coated electrode. (Each experiment was	
·* .	performed in triplicate with freshly prepared electrode)	126
4.2	Calibration data of sensor responded with TCAA and five other analogs	
	in the concentration range between 0.1 and 817 ppm	. 132
4.3	Analysis data for HAAs spiked in four brands of commercial bottled water	
	and a municipal tap water with home filtration system by	
	the votammetric-based assay	133
5.1	Order of mixing and content of ingredient used in polypyrrole synthesis.	138
5.2	Some functional group and IR wavenumber of polypyrrole and	
	trichloroacetic acid spectra	139
5.3	Interested functional group and its IR wavenumber from the spectrum	
	analyzed using FT-IR spectrometer	145
5.4	The amount bound of trichloroacetic acid and over-oxidized degree	•
•	of molecularly imprinted polypyrrole calculated from elemental analysis	150
5.5	Comparison of the membrane characteristics before and after modifying	
e ·	with imprinted polypyrrole utilizing electrodeposition process at pH 0.7	155
5.6	Effect of concentration of ammonium persulfate on swelling index of	
	modified membrane prepared at various pH of modification medium	164
5.7	The influence of filtration pH on selectivity of the modified membranes	
	prepared at different pH and concentration of ammonium persulfate	170

LIST OF FIGURES

Figure		Page
1.1	Trichloroacetic acid (TCAA) and its analogs	. 1
1.2	Scheme of the imprinting polymerization	3
2.1	A typical quartz crystal resonator used for mass measurements	27
2.2	Mass sensitivity related D_f and vibration amplitude related U distribution	
-	along one of the quartz resonator diameters	28
2.3	(a) QCM electrodes geometry, (b) QCM electrodes fabricated	-
	in measuring flow cell	30
2.4	Cross-linker and functional monomer used to prepare acrylate type polymer	31
2.5	2,2-Azobis-(isobutyronitrile) initiator used in the polymerization process	. 32
2.6	MCP-Process Series Ismatec peristaltic pump	32
2.7	8712ET RF network analyzer	33
2.8	Atomic force microscope (AFM)	33
2.9	Effect of the functional monomer-template mole ratio of the	
	copoly(VPD-EGDMA) on the frequency shift of the polymer-coated	
	QCM electrode prepared by using 85 % of the EDMA cross-linker	35
2.10	Effect of the cross-linker content of the copoly(VPD-EGDMA) on	
	the frequency shift of the polymer-coated QCM electrode prepared	
	by using 1:4 mole ratio of TCAA:VPD	36
2.11	(a) AFM 3D topography; (b) AFM of a cross-section of a scratch on	
	a 20 kHz-MIP layer, and the measured depth of the polymer layer of 870 nm	
	which is shown on (c) the plot of depth (z) vs. width (x) generated using	
•	the Nanotec Electrinica WSxM scanning probe microscopy software	
٠.,	version 3.0 Beta 8.1. Scan rate of 1000 Hz is used	37

Figure		Page
2.12	Effect of the imprinted layer height on the frequency shift of	
	the TCAA imprinted coated QCM exposed to the TCAA at	
v.	concentration level of 100 µg l ⁻¹	38
2.13	Effect of pH of solution on frequency shift of TCAA-imprinted	
	poly(EGDMA-co-vinylpyridine) modified QCM sensor	40
2.14	Signal response of the QCM sensor with (a) NIP- and (b) MIP-coated	
	electrode to TCAA at concentration level of 1 mg 1	42
2.15	Effect of different concentration of TCAA (0-200 mg l ⁻¹) on	
	the frequency shift response of the TCAA-MIP-QCM	43
2.16	Scatchard plot used to analyse binding parameters relative to	
	concentration dependence of the sensor	44
2.17	The calibration plot of frequency shift parameter $(-\Delta F)$ vs. added HAA(s)	•
	for the TCAA-MIP-QCM in the QCM-based assay of HAAs.	
	Each point represents the average of three independent measurements	48
2.18	The chemical structure of conducting monomer used	
	to prepare polypyrrole film	53
2.19	Atomic force microscope (AFM)	54
2.20	A MCP-Process Series Ismatec peristaltic pump	55
2.21	A 8712ET RF network analyzer	55
2.22	Effect of current density in deposition process of polypyrrole	
	on the frequency shift	57
2.23	Effect of monomer:template mole ratio on frequency shift responses	· .
	of the TCAA-MIPpy coated on QCM electrode to TCAA at	• •
	a concentration level of 100 mg 1 ⁻¹	- 58

Figure		Page
2.24	The effect of layer thickness on frequency shift responses of	
	the TCAA-MIPpy coated on QCM electrode to TCAA at	
	a concentration level of 100 mg 1 ⁻¹ .	59
2.25	Frequency shifts of the TCAA-imprinted polypyrrole coated QCM	
	at various background TCAA concentrations, there is a reversible signal	•
•	when washing the electrode with pure de-ionized water.	60
2.26	The frequency shift of (a) the TCAA-imprinted polypyrrole coated QCM	
	and (b) the control upon interaction with TCAA at various concentrations.	61
2.27	The frequency shift response of the TCAA-MIPpy coated QCM to	
	structurally related compounds at various concentrations.	62
.2.28	The dependency of frequency shift response of MIPpy-coated TCAA on	
	various concentration of TCAA, analogs (individually) and mixed 6 HAAs.	64
3.1	(A) Schematic top view, (B) schematic cross-section of the interdigitated	
	conductometric sensor device. (C) Schematic diagram of the analytical	
	micro-system. (1) Glass support; (2) silicone pad; (3) electrode contact;	
	(4) drilled-through hole.	71
3.2	The cross-linker and functional monomer used to prepare	
	acrylate type polymer	74
3.3	2,2-Azobis-(isobutyronitrile) initiator	74
3.4	Atomic force microscope (AFM)	76
3.5	A HP 4254A Precision LCR meter	76
3.6	A MCP-Process Series Ismatec peristaltic pump	77
3.7	Three-dimensional AFM images of: (a) MIP and (b) NIP thin-film prepared	
.*	with 2:1 monomer:template ratio and 65 mol% EDMA	-
	(after washing with water for 4 h).	80

Figure		Page
3.8	Effect of the amount of cross-linking monomer (EDMA) on the resistance	
	responses of the MIP and NIP thin-film after 4 h exposure in water.	
	Measurements were carried out at 1 kHz and at room temperature.	
	The functional monomer to template ratio of 2:1 was used.	81
3.9	Effect of the amount of functional monomer (VPD) on the resistance	
	responses of the MIP and NIP thin-film after 4 h exposure in water.	
	Measurements were carried out at 1 kHz and at room temperature.	
	The cross-linker content of 65 mol% was used.	82
3.10	Signal response of: (a) reference sensor and (b) MIP sensor to	
	subsequent additions of TCAA at 1 kHz.	85
3.11	Effect of the ac frequency on the resistance responses of the MIP sensor	
	at various concentrations of TCAA. Measurements were carried out	
	at room temperature.	86
3.12	Effect of temperature on the resistance response upon 200 µg l ⁻¹ of TCAA	
•	for: reference sensor (dashed lines) and MIP sensor (thick lines),	
	at various frequencies.	87
3.13	Arrhenius plot for the electrical conductivity of MIP electrode	88
3.14	Effect of NaCl on the resistance shift response of (a) MIP sensor and	
	(b) reference sensor at 3 kHz and at room temperature. Responses were	. •
	initiated by the addition of 200 µg 1 ⁻¹ TCAA	90
3.15	Concentration dependence of the sensor response to TCAA for: (a) MIP	
	sensor and (b) reference sensor. Each point represents the average of three	
	independent measurements. Measurements were carried out in distilled	
	water at 3 kHz and at room temperature.	91
3.16	Calibration curves for TCAA, DCAA, MCAA, TBAA, DBAA and MBAA	
	obtained in the steady state on-line system using the developed MIP sensor.	94

Figure		Page
3.17	The chemical structure of conducting monomer used to prepare	
	polypyrrole film	100
3.18	Atomic force microscope (AFM)	101
3.19	A HP 4254A Precision LCR meter	101
3.20	A MCP-Process Series Ismatec peristaltic pump	102
3.21	Effect of current density in polypyrrole deposition process on the capacity	
-	shift using 1:1 of monomer-template mole ratio and 25 s of deposition time	103
3.22	Effect of deposition time in polypyrrole deposition process on the capacity	
	shift using 2 x 10 ⁻² µeq sec ⁻¹ of current density and 1:1 of monomer-template	·
	mole ratio	104
3.23	Effect of monomer-template mole ratio used in polypyrrole deposition	
	process on the capacity shift using $2 \times 10^{-2} \mu \text{eq sec}^{-1}$ of current density	
	and 50 s of deposition time	105
3.24	Effect of applied frequency on resistance response of polypyrrole modified	
	IDC sensor incubated with 100 ppb TCAA	107
3.25	Effect of temperature on resistance response of TCAA-imprinted polypyrrole	
	incubated with 100 ppb TCAA	108
3.26	Effect of temperature on resistance response of non-imprinted polypyrrole	
	incubated with 100 ppb TCAA	109
3.27	Arrhenius plot for the electrical conductivity of TCAA-MIP sensor	110
3.28	Effect of solution background on the resistance changes of	
	polypyrrol modified IDC sensor.	111
3.29	Effect of NaCl concentration on resistance response of imprinted polypyrrole	
•	incubated with 100 ppb TCAA.	112

Figure		Page
3.30	Conductivity changes of (a) the TCAA-MIPpy coated IDC in comparison to	
	(b) the non-imprinted polymer coated electrode at various concentrations	
	of added TCAA.	113
3.31	Conductometric responses for TCAA-MIPpy coated IDC at various	e.
	concentrations of TCAA and analogs.	115
4.1	(a) Electrochemical coating imprinted polypyrrole onto the surface of	
	platinum working electrode in a glass cell. C, W and R represented counter	
	electrode, working electrode and reference electrode, respectively.	
	(b) Enlarged image of coated polypyrrole layer on platinum working	
	electrode.	121
4.2	The chemical structure of conducting monomer used to prepare	
•	polypyrrole film.	122
4.3	(a) μ-Autolab three-electrode system. (b) The arrangement of auxiliary,	. *
	working and reference electrode in glass cell.	123
4.4	SEM micrographs of (a) bare electrode and (b) imprinted polypyrrole	•
1.	coated platinum working electrode using 300 x resolution	124
4.5	The cyclic voltammogram for (a) TCAA-imprinted polypyrrole coated	•
	electrode prepared at 1:1 mole ratio of template and pyrrole, at a deposition	
• • • •	time of 5.4 x 10 ³ s, and at a current density of 0.1 mA cm ² in comparison	
	with that for (b) non-imprinted polymer when exposed to a solution	
.*	of TCAA template.	127
4.6	The differential pulse voltammogram for (a) TCAA-imprinted polypyrrole	
	coated electrode prepared at 1:1 mole ratio of template and pyrrole, at	
	a deposition time of 5.4 x 10 ³ s, and at a current density of 0.1 mA cm ⁻²	
	in comparison with that for (b) non-imprinted polymer when exposed	
	to a solution of TCAA template.	128

Figure		Page
4.7	Effect of increasing concentrations of TCAA on the electrochemical signal	
	response of (a) the TCAA-imprinted polypyrrole and (b) non-imprinted	1.
	polypyrrole coated voltammetric electrode, at a deposition time of 5.4×10^3 ,	
	and at a current density of 0.1 mA cm ²	130
4.8	Calibration curve of TCAA and analogs (individually) and the cross-reactivity	
• •	of the TCAA-MIPpy coated voltammetric electrode to the mixture of total	
	6 HAAs.	131
5.1	Reverse osmosis, ultrafiltration, microfiltration, and conventional filtration	•
	are related processes differing principally in the average pore diameter of the	
٠	membrane filter. Reverse osmosis membranes are so dense that discrete	
-	pores do not exist; transport occurs via statistically distributed free volume	
1	areas. The relative size of different solutes removed by each class of	
	membrane is illustrated in this schematic.	136
5.2	The chemical structure of conducting monomer used to prepare	
	polypyrrole film.	142
5.3	A Hewlett-Packard 6890 Series gas chromatography.	143
5.4	Scanning electron microscope.	144
5.5	A Fourier transform infrared spectrometer 2000 series	144
5.6	IR spectrum of polypyrrole synthesized in the buffer solution pH1 and	
	ammonium persulfate concentrations were varied at 0.1, 0.3, 0.5, and 0.9 M.	146
5.7	IR spectrum of polypyrrole synthesized using pH1, 4 and 7 and using	
	0.1 M ammonium persulfate.	147
5.8	The Effect of concentration of ammonium persulfate used in polypyrrole	÷
	synthesis on peak area at wavenumber 1669 cm ⁻¹ corresponded with	
	IR absorption of trichloroacetic acid carbonyl group. And the buffer pH1	
	was used as a medium solution in the synthesis.	147

Figure		Page
5.9	The Effect of pH of solution medium used in the molecularly imprinted	
	polypyrrole synthesis on amount of trichloroacetic acid absorption and	
	using 0.1 M ammonium persulfate as redox initiator.	148
5.10	The Effect of pH of solution medium used in molecularly imprinted	•
	polypyrrole synthesis on bound amount of trichloroacetic acid	•
	when using 0.3 M ammonium persulfate as redox initiator.	149
5.11	The Effect of pH of rebinding media and concentration of ammonium	
	persulfate on bound amount of trichloroacetic acid in polypyrrole.	150
5.12	Distribution of TCAA in polypyrrole particles; white spot indicated	
	lower density of TCAA and vice versa.	151
5.13	The effect of solvent type on trichloroacetic acid removal performance	
	from molecularly imprinted polypyrrole.	152
5.14	The Effect of ammonium persulfate concentration and pH used in	
	polypyrrole synthesis on bound amount of trichloroacetic acid,	
	oxidized degree and absorption selectivity of polypyrrole.	153
5.15	Micro-filtration RC membrane before (a) and after (b) modifying with	
	imprinted polypyrrole.	154
5.16	SEM pictures of surface and inside structure of RC, MIP and NIP	
	membrane using 10,000 X resolution.	156
5. 17	The influence of immersion time in ammonium persulate redox initiator	
	of RC membrane on the weight change of the membrane using various	• .
-	concentrations of ammonium persulfate.	158
5.18	The effect of NaCl concentration in binding solution on the recognition	
	ability of polypyrrole modified membrane.	159
5.19	The effect of polymerization time on amount of polymer	
	deposited in polypyrrole modified membrane $(n = 3)$.	161

igure		Page
5.20	The influence of polymerization time on template bound amount	
	of modified membrane $(n=3)$.	162
5.21	Influence of ammonium persulfate concentration on the amount of polymer	
. •	deposited in RC membrane at different pHs of modification process.	163
5.22	Effect of concentration of ammonium persulfate initiator on swelling index	
••	of MIP and NIP preparing with various pH media.	165
5.23	Effect of pH used in modification process of TCAA-MIPpy membrane	
	on permeate flux when 8.17 mg l ⁻¹ (0.05 mM) TCAA solution and	
	0.5 M ammonium persulfate was used in polymerization process.	166
5.24	Effect of pH used in modification process of TCAA-MIPpy membrane	
	on permeate flux when 8.17 mg 1 (0.05 mM) TCAA solution and	
	1.0 M ammonium persulfate was used in polymerization process.	167
5.25	Effect of pH used in modification process of TCAA-MIPpy membrane	
	on permeate flux when 8.17 mg 1 ⁻¹ (0.05 mM) TCAA solution and	
	1.5 M ammonium persulfate was used in polymerization process.	168
5.26	Influence of ammonium persulfate concentration on permeate flux	
	of modified membrane in the pressure range of 25-125 kPa when	
	the membrane used was prepared at pH 0.7	169
.27	Calibration curve of TCAA-imprinted polypyrrole modified RC membrane	.:
	responded with various concentrations of TCAA.	170

igure		Page
5.28	Selectivity of TCAA imprinted polypyrrole modified RC membrane at	
•.	various synthesis and binding conditions.	171
5.29	The selectivity to five TCAA analogs of imprinted polypyrrole modified	
	membrane preparing at various conditions.	172
5.30	The influence of membrane storage on permeate flux of fresh and	
	aged membrane.	174
5.31	The effect of increased storage time on the tensile strength of fresh	
	and aged membrane.	174
5.32	The effect of membrane storage on amount bound of TCAA.	175
5.33	The effect of preparing condition on change of bound amount	
	of TCAA on membrane	176