APPENDIX

Cyclic voltammetry experiments

1. Calculation of the concentration of supporting electrolyte

1.1 Preparation of 0.1 M TEAP

TEAP has molecular weigh = 229.71 g/mol.

In CH₃CN 50 ml, the number of gram of TEAP is

=
$$(229.71 \text{ g/mol}) (0.1 \text{ mol/l}) (50 \text{ x } 10^{-3} \text{ l})$$

$$= 1.140$$
 g

:. Weigh TEAP 1.140 g and dissolve in CH₃CN 50 ml.

1.2 Preparation of 0.1 M TBAP

TBAP has molecular weigh = 387.43 g/mol

In CH₃CN 50 ml, the number of gram of TBAP is

=
$$(387.43 \text{ g/mol}) (0.1 \text{ mol/l}) (50 \text{ x } 10^{-3} \text{ l})$$

$$= 1.9371 g$$

.. Weigh TEAP 1.9371 g and dissolve in CH₃CN 50 ml.

2. Calculation of the concentration of ketone and quinone compounds

2.1 Preparation of 1.0 x 10⁻³ M Cyclohexanone in 50 ml CH₃CN

Preparation of Cyclohexanone, the number of volume of Cyclohexanone in

CH₃CN 50 ml is =
$$(1 \times 10^{-3} \text{ mol/l})(50 \times 10^{-3} \text{ l})(98.15 \text{ g/mol})$$

0.947 g/ml

= 5.20 microlite.

2.2 Preparation of 1.0 x 10⁻³ M p-Benzoquinone 50 ml CH₃CN

p-Benzoquinone has molecular weigh = 108.1 g/mol Preparation of p-Benzoquinone 1.0 x 10⁻³ M, the number of gram of p-Benzoquinone in CH₂CN 50 ml = $(108.1 \text{ g/mol})(1.0 \times 10^{-3} \text{ mol/l})(50 \times 10^{-3} \text{ l})$ = 5.405 mg

... Weigh p-Benzoquinone 5.405 mg and dissolve in CH₃CN 50 ml which TBAP 1.931 g (0.1M).

2.3 Preparation of 1.0 x 10⁻³ M Tetrahydroxybenzoquinone in 50 ml CH₂CN

Tetrahydroxy-1,4-benzenequinone F.W = 208.13 g/mol Preparation of Tetrahydroxy-1,4-benzenequinone 1.0 x 10⁻³ M, the number of gram of Tetrahydroxy-1,4-benzenequinone in CH₃CN 50 ml is

=
$$(208.13 \text{ g/mol})(1.0 \times 10^{-3} \text{ mol/l})(50 \times 10^{-3} \text{ l})$$

= 10.4065 mg .

.. Weigh Tetrahydroxy-1,4-benzenequinone 10.4065 mg and dissolve in CH₂CN 50 ml with TBAP 1.9371 g.

2.4 Preparation of 1.0 x 10⁻³ M Benzophenone in 50 ml CH₄CN

Benzophenone F.W = 182.2 g/molPreparation of benzophenone 1.0 x 10⁻³ M, the number of gram of Benzo-

= $(182.2 \text{ g/mol})(1.0 \times 10^{-3} \text{ mol/l})(50 \times 10^{-3} \text{l})$ phenone in 50 ml CH₂CN

= 9.110 mg

.. Weigh Benzophenone 9.110 mg and dissolve in CH₃CN 50 ml with TBAP 1.9371 g (0.1 M).

2.5 Preparation of 1.0 x 10⁻³ M C-Tetralone in 50 ml CH₃CN

α-Tetralone F.W.

= 146.19 g/mol

Preparation of α -Tetralone 1.0 x 10⁻³ M, the number of gram of α -Tetralone in

50 ml CH₃CN

= $(146.19 \text{ g/mol})(1.0 \text{ x } 10^{-3} \text{ mol/l})(50 \text{ x } 10^{-3} \text{ l})$

 $= 7.3095 \, \text{mg}$

From D = m/V

The number of volume of α -Tetralone = (7.3095 mg)

1.096 g/ml

 $= 6.67 \times 10^{-3} \text{ ml}$

2.6 Preparation of 1.0 x 10⁻³ M 1,4-Naphthoquinone in 50 ml CH₃CN

1,4-Naphthoquinone F.W = 158.0 g/mol

Preparation of 1,4-Naphthoquinone $1.0 \times 10^{-3} M$, the number of gram of

1,4-Naphthoquinone in 50 ml CH₃CN is

=
$$(158.2 \text{ g/mol})(1.0 \times 10^{-3} \text{ mol/l})(50 \times 10^{-3} \text{ l})$$

$$= 7.908 \text{ mg}$$

: Weigh 1,4-Naphthoquinone 7.908 mg and dissolve in CH₃CN 50 ml with TBAP 1.931 g (0.1 M).

2.7 Preparation of 1.0 x 10⁻³ M Anthrone in 50 ml CH₂CN

Anthrone F.W = 194.23 g/mol

Preparation of Anthrone 1.0 x 10⁻³ M, the number of gram of Anthrone in 10 ml

CH₃CN is =
$$(194.23 \text{ g/mol})(1.0 \times 10^{-3} \text{ mol/l})(50 \times 10^{-3} \text{ l})$$

= 9.711 mg

... Weigh Anthrone 9.711 mg and dissolve in CH₃CN 50 ml with TEAP 0.229 g (0.1 M).

2.8 Preparation of 1.0 x 10⁻³ M 9-Xanthone in 50 ml CH₃CN

9-Xanthone F.W = 196.21 g/mol

Preparation of 9-Xanthone 1.0 x 10⁻³ M, the number of gram of 9-Xanthone

in 10 ml CH₃CN is = $(196.21 \text{ g/mol})(1.0 \text{ x } 10^{-3} \text{ mol/l})(50 \text{ x } 10^{-3} \text{ l})$

= 9.810 mg

... Weigh 9-Xanthone 9.810 mg and dissolve in CH₃CN 50 ml with TBAP 1.937 g (0.1 M)

2.9 Preparation of 1.0 x 10⁻³ M Anthraquinone in 50 ml CH₃CN

Anthraquinone F.W = 208.22 g/mol

Preparation of Anthraquinone 1.0 x 10⁻³ M, the number of gram of Anthraqui-

none in 50 ml CH₃CN = $(208.22 \text{ g/mol})(1.0 \times 10^{-3} \text{ mol/l})(50 \times 10^{-3} \text{ l})$

= 10.411 mg

... Weigh Anthraquinone 10.411 mg and dissolve in CH₃CN 50 ml with TBAP 1.937 g (0.1 M).

2.10 Preparation of 1.0 x 10⁻³ M 1,2-Dihydroxyanthraquinone in 50 ml CH₃CN

1,2-Dihydroxyanthraquinone F.W = 240.21 g/mol

Preparation of 1,2-Dihydroxyanthraquinone 1.0 x 10⁻³ M, the number of gram of 1,2-Dihydroxyanthraquinone in 50 ml CH₂CN is

= $(240.21 \text{ g/mol})(1.0 \times 10^{-3} \text{ mol/l})(50 \times 10^{-3} \text{ l})$

= 12.010 mg

.. Weigh 1,2--Dihydroxyanthraquinone 12.010 mg and dissolve in CH₃CN 50 ml with TBAP 1.937 g (0.1 M).

2.11 Preparation of 1.0 x 10⁻³ M 1,4-Dihydroxyanthraquinone in 50 ml CH₃CN

1,4-Dihydroxyanthraquinone F.W = 240.21 g/mol

Preparation of 1,4-Dihydroxyanthraquinone 1.0 x 10⁻³ M, the number of gram of 1,4-Dihydroxyanthraquinone in 10 ml CH₃CN is

=
$$(240.21 \text{ g/mol})(1.0 \text{ x } 10^{-3} \text{ mol/l})(50 \text{ x } 10^{-3} \text{ l})$$

= 12.010 mg

.. Weigh 1,4-Dihydroxyanthraquinone 12.010 mg and dissolve in CH₃CN 50 ml with TBAP 1.937 g (0.1 M).

2.12 Preparation of 1.0 x 10⁻³ M 1,8-Dihydroxyanthraquinone in CH₃CN 50 ml

1,8-Dihydroxyanthraquinone F.W = 240.21 g/mol

Preparation of 1,8-Dihydroxyanthraquinone 1.0 x 10⁻³ M, the number of gram of 1,8-Dihydroxyanthraquinone in 50 ml CH₃CN is

=
$$(240.21 \text{ g/mol})(1.0 \times 10^{-3} \text{ mol/l})(50 \times 10^{-3} \text{ l})$$

= 12.010 mg

.. Weigh 1,8-Dihydroxyanthraquinone 12.010 mg and dissolve in CH₃CN 50 ml with TBAP 1.937 g (0.1 M).

2.13 Preparation of 1.0 x 10⁻³ M Dammacanthal in 10 ml CH₃CN

Dammacanthal F.W = 294.0 g/mol

Preparation of Dammacanthal 1.0 x 10⁻³ M, the number of gram of

Dammacanthal in 10 ml CH₃CN is = $(294.0 \text{ g/mol})(1.0 \text{ x } 10^{-3} \text{ mol/l})(10 \text{ x } 10^{-3} \text{ l})$

= 2.940 mg

... Weigh Dammacanthal 2.940 mg and dissolve in CH₃CN 10 ml with TEAP 0.229 g (0.1 M).

3. Calculation of the concentration of Silver

AgNO, F.W = 169.87 g/mol.

3.1 Preparation of silver 1.0 x 10⁻² M in acetonitrile 50 ml with 0.1 M TEAP

The number of gram of AgNO, in 50 ml CH₃CN is

=
$$(169.87 \text{ g/mol})(1.0 \text{ x } 10^{-2} \text{ mol/l})(50 \text{ x } 10^{-3} \text{ l})$$

= 0.0849 g

... Weigh AgNO₃ 0.0849 g and dissolve in CH₃CN 50 ml with TEAP 1.140 g (0.1 M).

3.2 Preparation of silver 0.1 M in acetonitrile 50 ml

The number of gram of AgNO₃ in 50 ml CH₃CN is

=
$$(169.87 \text{ g/mol})(0.1 \text{ mol/l})(50 \text{ x } 10^{-3} \text{l}).$$

$$= 0.8494 g$$

... Weigh AgNO₃ 0.8494 g and dissolve in CH₃CN 50 ml.

3.3 Preparation of silver 1.0×10^{-4} M in acetonitrile 100 ml

The number of gram of AgNO₃ in 100 ml CH₃CN is

=
$$(169.87 \text{ g/mol})(1.0 \times 10^{-4} \text{ mol/l})(100 \times 10^{-3} \text{ l})$$

$$= 1.699 \, \text{mg}$$

: Weigh AgNO₃ 1.699 mg and dissolve in CH₃CN 100 ml.

4. UV-Visible experiments

4.1 Calculation of the concentration of ketones

- 4.1.1 Cyclohexanone 1.0 x 10⁻² M in CH₃CN 100 ml

 Preparation of Cyclohexanone, the number of volume of Cyclohexanone in CH₃CN 100 ml is
 - $= (1 \times 10^{-2} \text{ mol/l})(100 \times 10^{-3} \text{ l})(98.15 \text{ g/mol})$ 0.947 g/ml
 - = 103.64 microlite
- 4.1.2 p-Benzoquinone $1.0 \times 10^{-2} \text{ M CH}_3\text{CN } 100 \text{ ml}$ p-Benzoquinone F.W = 108.1 g/molPreparation of p-Benzoquinone $1.0 \times 10^{-2} \text{ M}$, the number of gram of p-Benzoquinone in CH₃CN 100 ml is = $(108.1 \text{ g/mol})(1.0 \times 10^{-2} \text{ mol/l})(100 \times 10^{-3} \text{ l})$ = 0.1081 g
 - ... Weigh p-Benzoquinone 0.1081 g and dissolve in CH₃CN 100 ml.
- 4.1.3 Tetrahydroxy-1,4-benzenequinone (7.0 x 10⁻⁵ M) in CH₃CN 100 ml

 Tetrahydroxy-1,4-benzenequinone F.W = 208.13 g/mol

 Preparation of Tetrahydroxy-1,4-benzenequinone 7.0 x 10⁻⁵ M, the number of gram of Tetrahydroxy-1,4-benzenequinone in CH₃CN 100 ml is
 - = $(208.13 \text{ g/mol})(7.0 \times 10^{-5} \text{mol/l})(100 \times 10^{-3} \text{l})$
 - = 1.456 mg
 - : Weigh Tetrahydroxy-1,4-benzoquinone 1.456 mg and dissolve in CH₃CN 100 ml.

4.1.4 Benzophenone (2.0 x 10⁻⁵ M) in CH₃CN 100 ml.

Benzophenone F.W = 182.2 g/mol

Preparation of Benzophenone 2.0 x 10⁻⁵ M, the number of gram of Benzophe-

none in 100 ml CH₃CN is =
$$(182.2 \text{ g/mol})(2.0 \text{ x } 10^{-5} \text{ mol/l})(100 \text{ x } 10^{-3} \text{ l})$$

= 0.3644 mg

- ... Weigh benzophenone 0.3644 mg and dissolve in CH₃CN 100 ml.
- 4.1.5 **A**-Tetralone (3.0 x 10⁻⁵ M) in CH₃CN 100 ml

Ct-Tetralone F.W. = 146.19 g/mol

Preparation of α -Tetralone 3.0 x 10⁻⁵ M, the number of gram of

α-Tetralone in 100 ml CH₃CN is

=
$$(146.19 \text{ g/mol})(3.0 \text{ x } 10^{-5} \text{ mol/l})(100 \text{ x } 10^{-3} \text{ l})$$

= 0.4386 mg

From D = m/V

The number of volume of α -Tetralone = (0.4386 mg)

1.096 g/ml

= 400.18 microlite.

- 4.1.6 1,4-Naphthoquinone (5.0 x 10⁻⁵ M) in CH₃CN 100 ml
 - 1,4-Naphthoquinone F.W = 158.2 g/mol

Preparation of 1,4-Naphthoquinone5.0 x 10⁻⁵ M, the number of gram of

1,4-Naphthoquinone in 100 ml CH₃CN is

=
$$(158.2 \text{ g/mol})(5.0 \times 10^{-5} \text{ mol/l})(100 \times 10^{-3} \text{ l})$$

= 0.791 mg

... Weigh 1,4-Naphthoquinone 0.791 mg and dissolve in CH₃CN 100 ml.

4.1.7 Anthrone (1.0 x 10⁻⁵ M) in CH₂CN 100 ml

Anthrone F.W = 194.23 g/mol

Preparation of Anthrone 1.0 x 10⁻⁵ M, the number of gram of Anthrone in 100

ml CH₃CN is =
$$(194.23 \text{ g/mol})(1.0 \times 10^{-5} \text{ mol/l})(100 \times 10^{-3} \text{ l})$$

- = 0.1942 mg
- :. Weigh Anthrone 0.1942 mg and dissolve in CH₃CN 100 ml.
- 4.1.8 Xanthone (2.0 x 10⁻⁵ M) in CH₃CN 100 ml

Xanthone F.W = 196.21 g/mol

Preparation of 9-Xanthone 2.0 x 10⁻⁵ M, the number of gram of 9-Xanthone

in 100 ml CH₃CN is =
$$(196.21 \text{ g/mol})(2.0 \text{ x } 10^{-5} \text{ mol/l})(100 \text{ x } 10^{-3} \text{ l})$$

- = 0.3924 mg
- :. Weigh 9-Xanthone 0.3924 mg and dissolve in CH₃CN 100 ml.
- 1.4.9 Anthraquinone (9.0 x 10⁻⁶ M) in CH₃CN 100 ml

Anthraquinone F.W = 208.22 g/mol

Preparation of Anthraquinone 9.0 x 10^{-6} M, the number of gram of Anthraquinone in 100 ml CH₃CN is = (208.22 g/mol)(9.0 x 10^{-6} mol/l)(100 x 10^{-3} l).

- : Weigh Anthraquinone 0.1874 mg and dissolve in CH₃CN 100 ml.
- 1.4.10 1,2-Dihydroxyanthraquinone (4.0 x 10⁻⁵M) in CH₃CN 100 ml

1,2-Dihydroxyanthraquinone F.W = 240.21 g/mol

Preparation of 1,2-Dihydroxyanthraquinone 4.0 x 10⁻⁵ M, the number of gram of 1,2-Dihydroxyanthraquinone in 100 ml CH₃CN is

=
$$(240.21 \text{ g/mol})(4.0 \times 10^{-5} \text{ mol/l})(100 \times 10^{-3} \text{ l})$$

= 0.9608 mg.

- ... Weigh 1,2-Dihydroxyanthraquinone 0.9608 mg and dissolve in CH₃CN 100 ml.
- 4.1.11 1,4-Dihydroxyanthraquinone (1.0 x 10⁻⁵ M) in CH₃CN 100 ml

 1,4-Dihydroxyanthraquinone F.W = 240.21 g/mol

 Preparation of 1,4-Dihydroxyanthraquinone 1.0 x 10⁻⁵ M, the number of gram of 1,4-Dihydroxyanthraquinone in 100 ml CH₃CN is

= $(240.21 \text{ g/mol})(1.0 \text{ x } 10^{-5} \text{ mol/l})(100 \text{ x } 10^{-3} \text{ l})$

= 0.2402 mg

- .. Weigh 1,4-Dihydroxyanthraquinone 0.2402 mg and dissolve in CH₃CN 100 ml.
- 4.1.12 1,8-Dihydroxyanthraquinone (1.0 x 10⁻⁵M) in CH₃CN 100 ml

 1,8-Dihydroxyanthraquinone F.W = 240.21 g/mol

 Preparation of 1,8-Dihydroxyanthraquinone 1.0 x 10⁻⁵ M, the number of gram of 1,8-Dihydroxyanthraquinone in 100 ml CH₃CN is

= $(240.21 \text{ g/mol})(1.0 \times 10^{-5} \text{ mol/l})(100 \times 10^{-3} \text{ l})$

= 0.2402 mg.

- ... Weigh 1,8-Dihydroxyanthraquinone 0.2402 mg and dissolve in CH₃CN 100 ml.
- 4.1.13 Dammacanthal (2.0 x 10^{-5} M) in CH₃CN 100 ml

Dammacanthal F.W = 294.0 g/mol

Preparation of Dammacanthal 2.0 x 10⁻⁵ M, the number of gram of Dammacanthal in 25 ml CH₃CN

= $(294.0 \text{ g/mol})(2.0 \text{ x } 10^{-5} \text{ mol/l})(100 \text{ x } 10^{-3} \text{ l})$

= 0.5880 mg

... Weigh Dammacanthal 0.5880 mg and dissolve in CH₃CN 100 ml

5. The chemically modified carbon paste electrode experiments

5.1 Preparation of HNO, 0.2 M

M.W. of HNO₃ is equal to 63.01 g/mol

Preparation of HNO₃ 0.2 M in distill water 500 ml, the number of gram of

 HNO_3 in 500 ml distill water is = $(63.01 \text{ g/mol})(0.2 \text{ mol/l})(500 \text{ x } 10^{-3} \text{ l})$

$$= 6.301 g$$

But it was prepared from HNO, 65% w/w

Calculation of HNO₃ 65% w/w is

HNO₃ 65 g in solution 100 g

 $HNO_3 6.301 g$ in solution = $(100 g \times 6.301 g)/(65 g)$

$$= 9.693 g$$

From D = m/V

V = (9.693 g)/(1.42 g/ml)

= 6.83 ml

So HNO₃ 0.2 M was prepared by pipett 6.83 ml of HNO₃ 65% w/w mixed with distill water 500 ml.

5.2 Preparation of 1.0 x 10⁻³ M silver ion in HNO₃ 0.2 M

Preparation of Silver 1.0 x 10⁻³ M in 500 ml of 0.2 M HNO₃, the number of gram of AgNO₃ in 500 ml of 0.2 M HNO₃ is

=
$$(169.87 \text{ g/mol})(1.0 \times 10^{-3} \text{ mol/l})(500 \times 10^{-3} \text{l})$$

= 0.0849 g

... Weigh AgNO₃ 0.0849 g and dissolve in 500 ml of 0.2 M HNO₃.

PRESENTATION OF THIS THESIS

- 1. This research was poster presented by Mr. Chanwit Photicunapat. In the topic of the electrochemical behavior of some ketone and quinone compounds in 55th Annual Meeting of the International Society of Electrochemistry, 19-24 September 2004, THESSALONIKI, GREECE.
- This work was orally presented by Mr. Chanwit Photicunapat in The
 Postgrduate Education and Research Program in Chemistry Congress III, 9-12 May
 Jomtien Palm Beach Resort Pattaya, Chonburi, Thailand.
- 3. It was orally presented in The 2nd PSU Symposium on Graduate Research Conference, 12 March 2004, Graduate School, Prince of Songkla University, Thailand which presented by Mr. Chanwit Photicunapat.
- 4. The presentation about electrochemistry of 29th Congress on Science and Technology of Thailand, 20-22 October 2003, Golden Jubilee ConventionHall, Khon Kean University, Thailand which was poster presented by Mr. Chanwit Photicunapat. In the topic of the electrochemical behavior of some aromatic ketone compounds and their application to silver ion analysis.
- 5. The poster presentation of 30th Congress on Science and Technology of Thailand during 19-21 October 2004 at Impact Exhibition and Convention Center, Muang Thong Thani, Bangkok, Thailand which was poster presented by Mr. Chanwit Photicunapat. In the topic of the electrochemical behavior of some ketone and quinone compounds and their application to silver analysis.