### **CONTENTS**

|                                                    | Page |
|----------------------------------------------------|------|
| Contents                                           | vi   |
| List of Tables                                     | хi   |
| List of Figures                                    | xiii |
| Chapter                                            |      |
| 1. Introduction                                    | 1    |
| 1.1 Background and Rationale                       | 1    |
| 1.2 Review of Literature                           | 2    |
| 1.2.1 Chlorophenols                                | 2    |
| 1.2.2 Determination methods                        | 6    |
| 1.2.2.1 Gas chromatography                         | 6    |
| 1.2.2.2 Liquid chromatography                      | 8    |
| 1.2.2.3 Capillary electrophoresis                  | 9    |
| 1.2.3 Biosensor                                    | 10   |
| 1.2.3.1 Enzymatic biosensor for phenolic compounds | 11   |
| Tyrosinase                                         | 11   |
| Laccase                                            | 14   |
| Peroxidase                                         | 16   |
| 1.2.4 Cell-based biosensor for phenolic compounds  | 19   |
| 1.2.4.1 Bioluminescent detection                   | 19   |
| 1.2.4.2 Respiration activity detection             | 20   |
| 1.2.5 Biodegradation of chlorophenols              | 22   |
| 1.2.5.1 Pure culture                               | 23   |
| 1.2.5.2 Mixed culture                              | 23   |
| 1.2.6 Microbial growth kinetics                    | 25   |
| 1.2.7 Immobilization                               | 27   |
| 1.3 Objectives                                     | 28   |
| 1.4 Benefits                                       | 28   |
| 1.5 Outline of the research                        | 29   |

## **CONTENTS (CONTINUED)**

|    |            |                                                                | Pag |
|----|------------|----------------------------------------------------------------|-----|
| 2. | Research   | Methodology                                                    | 30  |
|    | 2.1 Mater  | ials                                                           | 30  |
|    | 2.1.1      | Culture medium                                                 | 30  |
|    | 2.1.2      | Biosensor                                                      | 31  |
|    | 2.1.3      | Gas chromatography/ mass spectrometry                          | 31  |
|    | 2.2 Equip  | ments                                                          | 32  |
|    | 2.2.1      | Biosensor                                                      | 32  |
|    | 2.2.2      | Gas chromatography/ mass spectrometry                          | 32  |
|    | 2.3 Princi | ple of cell-based biosensor for 2,4-dichlorophenol             | 32  |
|    | 2.4 Swedi  | sh mixed culture bacteria                                      | 33  |
|    | 2.4.1      | Culture medium                                                 | 33  |
|    | 2.4.2      | Biodegradation of 2,4-dichlorophenol                           | 35  |
|    | 2.4        | 4.2.1 Culture conditions                                       | 35  |
|    | 2.4        | 1.2.2 Preparation of mixed culture bacteria for immobilization | 36  |
|    | 2.4.3      | Immobilization of mixed culture bacteria on a Clark type       | 36  |
|    |            | oxygen electrode                                               |     |
|    | 2.4.4      | Instrumentations                                               | 40  |
|    | 2.4.5      | Data analysis                                                  | 42  |
|    | 2.4.6      | Optimization of operational conditions                         | 42  |
|    | 2.4        | \$.6.1 Flow rate                                               | 42  |
|    | 2.4        | 4.6.2 Sample volume                                            | 44  |
|    | 2.4        | 4.6.3 Buffer pH                                                | 44  |
|    | 2.4        | 4.6.4 Buffer concentration                                     | 44  |
|    | 2.4.7      | Linearity                                                      | 45  |
|    | 2.4.8      | Stability                                                      | 45  |
|    | 2.4.9      | Response characteristic for other compounds                    | 46  |
|    | 2.5 Thai n | nixed culture microbes                                         | 47  |
|    | 2.5.1      | Biodegradation of 2,4-dichlorophenol                           | 47  |
|    | 2.5        | 5.1.1 Culture conditions                                       | 47  |

## **CONTENTS (CONTINUED)**

|    |                                                                  | Page |
|----|------------------------------------------------------------------|------|
|    | 2.5.1.2 Preparation of mixed culture microbes for immobilization | 48   |
|    | 2.5.2 Immobilization of mixed culture microbes by entrapment     | 48   |
|    | 2.5.3 Instrumentation                                            | 50   |
|    | 2.5.4 Data analysis                                              | 52   |
|    | 2.5.5 Optimization of operational conditions                     | 52   |
|    | 2.5.5.1 Flow rate                                                | 54   |
|    | 2.5.5.2 Sample volume                                            | 54   |
|    | 2.5.5.3 Buffer pH                                                | 54   |
|    | 2.5.5.4 Buffer concentration                                     | 55   |
|    | 2.5.6 Linearity                                                  | 55   |
|    | 2.5.7 Stability                                                  | 56   |
|    | 2.5.8 Response characteristic for other compounds                | 56   |
|    | 2.5.9 Repeatability                                              | 56   |
|    | 2.5.10 Reproducibility                                           | 56   |
|    | 2.5.11 Determination of chlorophenols in wastewater              | 57   |
|    | 2.5.11.1 Cell-based biosensor system                             | 57   |
|    | 2.5.11.2 Gas chromatography/ mass spectrometry                   | 57   |
| 3. | Results and discussion                                           | 59   |
|    | 3.1 Characteristics of biosensor responses                       | 59   |
|    | 3.2 Swedish mixed culture bacteria                               | 60   |
|    | 3.2.1 Optimization of culture condition                          | 60   |
|    | 3.2.2 Optimization of operational conditions                     | 63   |
|    | 3.2.2.1 Flow rate                                                | 63   |
|    | 3.2.2.2 Sample volume                                            | 65   |
|    | 3.2.2.3 Buffer pH                                                | 67   |
|    | 3.2.2.4 Buffer concentration                                     | 69   |
|    | 3.2.3 Linearity                                                  | 70   |
|    |                                                                  |      |

# **CONTENTS (CONTINUED)**

|                                                    | Page |
|----------------------------------------------------|------|
| 3.2.4 Stability                                    | 72   |
| 3.2.5 Response characteristic for other compounds  | 74   |
| 3.3 Thai mixed culture microbes                    | 77   |
| 3.3.1 Optimization of culture conditions           | 77   |
| 3.3.2 Optimization of operational conditions       | 81   |
| 3.3.2.1 Flow rate                                  | 81   |
| 3.3.2.2 Sample volume                              | 83   |
| 3.3.2.3 Buffer pH                                  | 85   |
| 3.3.2.4 Buffer concentration                       | 87   |
| 3.3.3 Linearity                                    | 88   |
| 3.3.4 Stability                                    | 91   |
| 3.3.5 Response characteristics for other compounds | 92   |
| 3.3.6 Repeatability                                | 94   |
| 3.3.7 Reproducibility                              | 96   |
| 3.3.8 Determination of chlorophenols in wastewater | 98   |
| 4. Conclusions                                     | 99   |
| References                                         | 103  |
| Appendix                                           | 114  |
| Vitae                                              | 128  |

#### LIST OF TABLES

| T  | Γable Γable                                                            |    |
|----|------------------------------------------------------------------------|----|
| 1  | Assayed and optimized values of the operational conditions             |    |
|    | of microbial biosensor (Swedish mixed culture bacteria)                | 45 |
| 2  | Assayed and optimized values of the operational conditions             |    |
|    | of microbial biosensor (Thai mixed culture microbes)                   | 46 |
| 3  | Residual amount of oxygen (%) from culture flask headspace             |    |
|    | at different concentration of 2,4-dichlorophenol                       | 62 |
| 4  | Responses of microbial biosensor at different flow rates               | 64 |
| 5  | Responses of microbial biosensor at different samples volume           | 66 |
| 6  | Responses of microbial biosensor at different buffer pH                | 68 |
| 7  | Responses of microbial biosensor at different buffer concentrations    | 69 |
| 8  | Responses of microbial biosensor system to different concentrations of |    |
|    | standard 2,4-dichlorophenol at optimum conditions                      | 71 |
| 9  | Operational stability of microbial biosensor system                    | 73 |
| 10 | Responses of microbial biosensor to other compounds at 0.10 mM target  |    |
|    | substances and 0.10 mM 2,4-dichlorophenol                              | 75 |
| 1  | Residual concentration of 2,4-dichlorophenol detected by UV            |    |
|    | spectrophotometry at 285 nm                                            | 78 |
| 12 | Residual concentration of 2,4-dichlorophenol detected by UV            |    |
|    | spectrophotometry at 285 nm of controlled experiment                   | 80 |
| 13 | Responses of microbial biosensor at different flow rates               | 82 |
| 14 | Responses of microbial biosensor at different sample volumes           | 84 |
| 15 | Responses of microbial biosensor at different buffer pH                | 86 |
| 16 | Responses of microbial biosensor at different buffer concentrations    | 88 |
| 17 | Responses of microbial biosensor at different concentrations of        |    |
|    | standard 2,4-dichlorophenol at optimum conditions                      | 89 |
| 18 | 3 Operational stability of microbial biosensor system                  | 91 |

### LIST OF TABLES (CONTINUED)

| Table                                                                                          |     |
|------------------------------------------------------------------------------------------------|-----|
| 19 Responses characteristics of microbial biosensor to other compounds                         |     |
| (9.0 mg l <sup>-1</sup> of target substrates and 9.0 mg l <sup>-1</sup> of 2,4-dichlorophenol) | 93  |
| 20 Responses of microbial biosensor system at different injections                             |     |
| 7.0 mg l <sup>-1</sup> 2,4-dichlorophenol                                                      | 95  |
| 21 Responses of microbial biosensor system by using different packed                           |     |
| reactor column injected 7.0 mg l <sup>-1</sup> 2,4-dichlorophenol                              | 97  |
| 22 Performances of biosensors                                                                  | 100 |

### LIST OF FIGURES

| Figure                                                             |              |
|--------------------------------------------------------------------|--------------|
| 1 Structure of chlorophenols used in industry                      | 4            |
| 2 Degradative pathway of 2,4-D and 2,4-dichlorophenol              | 5            |
| 3 Schematic layout of biosensor                                    | 11           |
| 4 Principle of bioelectrocatalytic signal amplification for an amp | erometric    |
| biosensor based on enzyme tyrosinase                               | 12           |
| 5 Mediated signal amplification system for phenolic compounds      | using a      |
| reducing mediator RH <sub>2</sub>                                  | 13           |
| 6 Schematic representation of laccase catalyzed redox cycle for    | substrates   |
| oxidation in the presence of mediators                             | 15           |
| 7 Mediated amperometric biosensor for phenol with immobilize       | d            |
| peroxidase (POD)                                                   | 17           |
| 8 Schematic representation of phenolic compounds detection us      | ing          |
| tyrosinase electrode                                               | 18           |
| 9 Microbial growth curve                                           | 26           |
| 10 Immobilization method for biological components                 | 28           |
| 11 Schematic diagram of microbial sensor of the respiration-acti   | vity         |
| measurement type                                                   | 34           |
| 12 An immobilization mixed culture bacteria in combination wit     | h a          |
| Clark type oxygen electrode                                        | 37           |
| 13 Schematic diagram of the wall-jet flow cell                     | 39           |
| 14 Schematic diagram showing the microbial biosensor by entra      | pment        |
| of mixed culture bacteria on a Clark type oxygen electrode         | 41           |
| 15 Flow injection signal                                           | 43           |
| 16 Picture showing the sampling site from wastewater treatment     | ponds        |
| of Songklanagarind Hospital, Prince of Songkla University          | 47           |
| 17 Schematic diagram showing the equipment set up for immob        | ilization 49 |
| 18 Schematic diagram of the reactor column                         | 51           |
| 19 Picture showing the YSI oxygen monitor                          | 51           |

# LIST OF FIGURES (CONTINUED)

| Figure                                                                               | Page |
|--------------------------------------------------------------------------------------|------|
| 20 Schematic diagram showing the flow injection microbial biosensor                  |      |
| system. The entrapped mixed culture microbes in alginate beads were                  |      |
| packed in a plastic reaction column                                                  | 53   |
| 21 Schematic diagram of the microbial biosensor detection unit                       | 54   |
| 22 Responses of cell-based biosensor for monitoring 2,4-dichlorophenol               |      |
| using Swedish mixed culture bacteria, 100 µl of 2,4-dichlorophenol,                  |      |
| 100 mM potassium phosphate buffer, pH 7.50 at flow rate of 0.10 ml min <sup>-1</sup> | 59   |
| 23 Responses of cell-based biosensor for monitoring 2,4-dichlorophenol               |      |
| using Thai mixed culture bacteria, 500 µl of 2,4-dichlorophenol,                     |      |
| 100 mM tris-HCl buffer containing 10 mM CaCl <sub>2</sub> , pH 650 at                |      |
| flow rate of 0.10 ml min <sup>-1</sup>                                               | 60   |
| 24 Percentage residual of oxygen from culture flask headspace at                     |      |
| different concentrations of 2,4-dichlorophenol                                       | 63   |
| 25 Responses of microbial biosensor at different flow rates                          | 65   |
| 26 Responses of microbial biosensor at different sample volumes                      | 67   |
| 27 Responses of microbial biosensor at different buffer pH in potassium              |      |
| phosphate buffer                                                                     | 68   |
| 28 Responses of microbial biosensor at different buffer concentrations               | 70   |
| 29 Responses of microbial biosensor system to different concentrations               |      |
| of standard 2,4-dichlorophenol at optimum conditions                                 | 72   |
| 30 Operational stability of microbial biosensor system                               | 74   |
| 31 Responses of microbial biosensor to other compounds at 0.10 mM                    |      |
| target substances and 0.10 mM 2,4-dichlorophenol                                     | 76   |
| 32 Absorption spectrum of 2,4-dichlorophenol showing an absorption                   |      |
| peak at 285 nm in the presence of 2,4-dichlorophenol (a) and no observed             |      |
| peak in the absence of 2,4-dichlorophenol (b)                                        | 77   |
| 33 Residual concentration of 2,4-dichlorophenol detected by UV                       |      |
| spectrophotometry (285 nm)                                                           | 79   |

## **LIST OF FIGURES (CONTINUED)**

| Figure                                                                     | Page   |
|----------------------------------------------------------------------------|--------|
| 34 Residual concentration of 2,4-dichlorophenol detected by UV             |        |
| spectrophotometry at 285 nm of controlled experiment                       | 81     |
| 35 Responses of microbial biosensor system at different flow rates         | 83     |
| 36 Responses of microbial biosensor system at different sample volumes     | 85     |
| 37 Responses of microbial biosensor system at different buffer pH          | 87     |
| 38 Responses of microbial biosensor system at different buffer concentrati | ons 88 |
| 39 Responses of microbial biosensor system to different concentrations of  |        |
| standard 2,4-dichlorophenol                                                | 90     |
| 40 Operational stability of microbial biosensor system                     | 92     |
| 41 Responses characteristics of microbial biosensor to other compounds     | 94     |
| 42 Responses of microbial biosensor system at different injections of      |        |
| 7.0 mg l <sup>-1</sup> 2,4-dichlorophenol                                  | 96     |
| 43 Responses of microbial biosensor system from different reactor          |        |
| columns injected 7.0 mg l <sup>-1</sup> 2,4-dichlorophenol                 | 97     |