CONTENTS

	Page
CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xiv
CHAPTER	
1 INTRODUCTION	1
1.1 Background and Rationale	1
1.2 Review of Literatures	2
1.2.1 β-agonists	2
1.2.2 Salbutamol	5
1.2.3 Measurement of salbutamol residue	8
1.2.4 Sample pretreatment	9
1.2.5 Sample extraction and clean-up	9
1.2.6 Detection of salbutamol	12
1.3 Objectives	22
2 EXPERIMENTAL	23
2.1 Chemicals and materials	23
2.1.1 Standard chemicals	23
2.1.2 Ion pair reagent	23
2.1.3 Other chemicals	23
2.1.4 Solid Phase Extraction (SPE)	24
2.2 Instruments and apparatus	24
2.2.1 Spectrofluorometer	24
2.2.2 High Performance Liquid Chromatograph- Fluorescence	24
Detector (HPLC-FLD)	
2.2.3 Apparatus	24
2.3 Analysis system	25
2.4 Preparation of salbutamol standard solutions	27
2.5 Determination of salbutamol by spectrofluorometer	27
	vii

CONTENTS (CONTINUED)

	Page
2.5.1 Diluting solution, 8% (v/v) acetonitrile, pH 2.5	27
2.5.2 Salbutamol standard working solution	27
2.5.3 Excitation (λ_{ex}) and emission (λ_{em}) wavelengths	28
2.5.4 Limit of detection (LOD)	28
2.5.5 Linear range	28
2.6 Determination of salbutamol by ion-pair chromatography	29
with fluorescence detection (IPC-FLD)	
2.6.1 Bamethan internal standard (IS) stock solution	29
2.6.2 Salbutamol standard working solution	29
2.6.3 Degassing of mobile phase	29
2.6.4 Optimization of IPC-FLD conditions	30
2.6.5 System performance of IPC-FLD	35
2.7 Sample preparation	36
2.7.1 Preparation of salbutamol standard fortification solution	36
2.7.2 Fortified sample	36
2.7.3 Pretreatment of octadecyl (C ₁₈) packing material	36
2.7.4 Optimization of matrix solid-phase dispersion (MSPD) extraction	37
2.7.5 Optimization of Solid phase extraction (SPE), clean up	. 39
2.7.6 Matrices interferences	41
2.8 Method validation	43
2.8.1 Selectivity	43
2.8.2 Accuracy, Precision and Recovery	43
2.8.3 Calibration curve (Matrix-based calibration curve)	44
2.8.4 Limit of Quantification (LOQ)	44
2.9 Qualitative and quantitative analysis of lean meat sample	44
2.9.1 Qualitative analysis of IPC-FLD technique for salbutamol analysis	44
2.9.2 Quantitative analysis	45
2.9.3 Standard addition	45
	viii

CONTENTS (CONTINUED)

	Page
3 RESULTS AND DISCUSSION	46
3.1 Determination of salbutamol by spectrofluorometer	46
3.1.1 Excitation and emission wavelength	46
3.1.2 Limit of detection	47
3.1.3 Linear range	48
3.2 Determination of salbutamol by HPLC-FLD	51
3.2.1 Excitation and emission wavelengths	52
3.2.2 Percentage of acetic acid (pH effect)	55
3.2.3 Concentration of ion-pair reagent	57
3.2.4 Percentage of methanol (Solvent-strength effect)	59
3.2.5 Temperature	63
3.2.6 Flow rate	65
3.3 System performance of IPC-FLD	71
3.3.1 Repeatability	71
3.3.2 Limit of detection (LOD)	72
3.3.3 Linear range	72
3.3.4 Internal standard curve	74
3.4 Sample preparation	77
3.4.1 Matrix solid phase dispersion (MSPD)	77
3.4.2 Solid phase extraction (SPE), clean up	87
3.4.3 Matrices interferences	94
3.5 Method validation	98
3.5.1 Selectivity	98
3.5.2 Accuracy, precision and recovery	100
3.5.3 Calibration/Standard curve	100
3.5.4 Limit of Quantification (LOQ)	105
3.6 Qualitative and quantitative analysis of lean meat sample	105
3.6.1 Qualitative analysis	106

CONTENTS (CONTINUED)

	Page
3.6.2 Quantitative analysis	106
4 CONCLUSIONS	120
REFERENCES	123
VITAE	135

LIST OF TABLES

able		Page
1	Food poisoning from β-agonist compound.	5
2	The physical properties of salbutamol and bamethan (IS).	7
3	Summary of determination of salbutamol by HPLC-FLD.	19
4	Response of salbutamol by spectrofluorometer at various	49
	concentrations.	
5	Response of salbutamol and bamethan (IS) at different	56
	percentage of acetic acid.	
6	Response, retention factor and analysis time of salbutamol	58
	and bamethan (IS) at various concentration of hexanesulfonate.	
7	Response, capacity factor (k) , separation factor (α) and analysis time	60
	of salbutamol and bamethan (IS) at various percentage of methanol.	
8	Response, capacity factor (k) , separation factor (α) and analysis time	64
	of salbutamol and bamethan (IS) at various column temperature.	
9	Contribution of different band-broadening processes to column	66
	plate height H.	
10	Plate counts (N) and plate height (HETP) of salbutamol and	69
	bamethan (IS) at various mobile phase flow rate.	
11	Optimum conditions of chromatographic conditions.	70
12	%RSD of retention time and peak area of five repetition injections	72
	of mixed solution 20 ng mL ⁻¹ of salbutamol and bamethan (IS).	
13	Response at various concentrations of salbutamol.	73
14	Relationship between the concentration of salbutamol and	76
	the ratio of peak area of salbutamol to bamethan (IS).	
15	Response of salbutamol at each type of sorbent.	78
16	Response of salbutamol at various type of washing solvent.	80
17	Response of salbutamol at each washing solvent volume.	81
18	The response of salbutamol at each type of eluting solvent.	83

LIST OF TABLES (CONTINUED)

lable		Page
19	Response of salbutamol at each various eluent flow rate.	84
20	Response of salbutamol at various volume of eluting solvent.	86
21	Response of salbutamol at various flow rate of sample solution.	87
22	Response of salbutamol at various type of eluting solvent.	89
23	Response of salbutamol at various flow rate of eluting solvent.	90
24	Response of salbutamol at each collected fractions.	92
25	Optimum conditions of sample preparation procedure.	93
26	Response of standard salbutamol and fortified porcine lean	95
	meat samples at various salbutamol concentrations.	
27	Response of standard salbutamol and fortified bovine lean	96
	meat samples at various salbutamol concentrations.	
28	Statistical test result by two-way ANOVA in R program.	97
29	The recovery of salbutamol at three concentrations.	100
30	Relationship between the fortified concentrations	102
	of salbutamol in porcine lean meat and the ratio of peak	
	area of salbutamol to bamethan (IS).	
31	Relationship between the fortified concentrations	103
	of salbutamol in bovine lean meat and the ratio of peak	
	area of salbutamol to bamethan (IS).	
32	Standard addition calibration curve of salbutamol in	107
	porcine sample 1.	
33	Standard addition calibration curve of salbutamol in	108
	porcine sample 2.	
34	Standard addition calibration curve of salbutamol in	109
	porcine sample 3.	
35	Standard addition calibration curve of salbutamol in	110
	porcine sample 4.	

LIST OF TABLES (CONTINUED)

Table		Page
36	Standard addition calibration curve of salbutamol in	111
	porcine sample 5.	
37	Standard addition calibration curve of salbutamol in	112
	porcine sample 6.	
38	Standard addition calibration curve of salbutamol in	113
	bovine sample 1.	
39	Standard addition calibration curve of salbutamol in	114
	bovine sample 2.	
40	Standard addition calibration curve of salbutamol in	115
	bovine sample 3.	
41	Standard addition calibration curve of salbutamol in	116
	bovine sample 4.	
42	Standard addition calibration curve of salbutamol in	117
	bovine sample 5.	
43	Standard addition calibration curve of salbutamol in	118
	bovine sample 6.	
44	The salbutamol concentrations in porcine and bovine	119
	samples by standard addition.	

LIST OF FIGURES

Figure		Page
1	General structure of β-agonists.	3
2	Structure of salbutamol.	6
3	Structure of bamethan.	7
4	Structure of the bis-MBA derivative.	15
5	Block diagram showing the components of IPC-FLD.	26
6	Retention of protonated salbutamol during IPC.	26
7	Illustration of HPLC parameters.	31
8	Sample extraction by matrix solid phase dispersion.	38
9	Summary of the sample preparation procedure.	42
10	Spectrum of salbutamol standard 0.5 µg mL ⁻¹ from	47
	spectrofluorometer.	
11	Detector response curve.	48
12	Response of salbutamol by spectrofluorometry.	50
13	Spectrum of mixed standard salbutamol and bamethan	53
	(IS) 20 ng mL ⁻¹ by IPC-FLD system.	
14	3D plot of mixed standard salbutamol and bamethan (IS) 20	54
	ng mL ⁻¹ by HP Chemstation program in IPC-FLD system.	
15	Chemical structures of salbutamol and cationic	55
	salbutamol under acidic condition.	
16	Response of salbutamol and bamethan (IS) at	56
	different percentage of acetic acid.	
17	Retention factor of salbutamol and bamethan (IS) at various	58
	concentration of ion-pair reagent.	
18	Response of salbutamol and bamethan (IS) at various concentration	59
	of ion-pair reagent.	
19	Retention factor of salbutamol and bamethan (IS) at various	61
	percentage of methanol.	

LIST OF FIGURES (CONTINUED)

Figure	Pag
20 Separation factor (or selectivity) of salbutamol and	61
bamethan (IS) at various percentage of methanol.	
21 Response of salbutamol and bamethan (IS) at various	62
percentage of methanol.	
22 Chromatogram of sample extractant at 33% and	62
30% methanol.	
23 Capacity factor of salbutamol and bamethan (IS)	65
at various column temperatures.	
24 Effect of mobile-phase flow rate on plate height for liquid	68
chromatography and gas chromatography.	
25 van Deemter plot of salbuamol and bamethan (IS).	70
26 Chromatogram of mixed standard salbutamol and bamethan (IS)	71
at 20 ng mL ⁻¹ under optimum IPC-FLD conditions.	
27 Linear range of salbutamol by IPC-FLD system.	74
28 Internal standard curve: salbutamol/bamethan (IS) peak	76
area ratio versus salbutamol concentrations.	
29 Response of salbutamol at each type of sorbent.	79
30 Response of salbutamol at various type of washing solvent.	- 80
31 Response of salbutamol at each volume of	82
hexane:diethyl ether (60:40).	
32 Response of salbutamol at each type of eluting solvent.	83
33 Response of salbutamol at various eluent flow rate.	. 85
34 Response of salbutamol at various volume of eluting solvent.	86
35 Response of salbutamol at various flow rate of sample solution.	88
36 Response of salbutamol at various type of eluting solvent.	89
37 Response of salbutamol at various flow rate of eluting solvent.	91
38 Eluting profile of salbutamol from Strata X SPE cartridge.	92
39 Matrix (porcine) curve compare with standard curve.	95

χv

LIST OF FIGURES (CONTINUED)

igur	e e	Page
40	Matrix (bovine) curve compare with standard curve.	96
41	HPLC chromatogram of six blank porcine lean meat.	99
42	Matrix-based calibration from fortified porcine lean meat.	102
43	Matrix-based calibration from fortified bovine lean meat.	103
44	The HPLC chromatogram of mixed standard solution,	104
	blank porcine sample and fortified porcine sample.	
45	The HPLC chromatogram of mixed standard solution,	105
	blank porcine sample and fortified bovine sample.	
46	Standard addition calibration curve of salbutamol in	107
	porcine sample 1.	
47	Standard addition calibration curve of salbutamol in	108
	porcine sample 2.	
48	Standard addition calibration curve of salbutamol in	109
	porcine sample 3.	
49	Standard addition calibration curve of salbutamol in	110
	porcine sample 4.	
50	Standard addition calibration curve of salbutamol in	111
	porcine sample 5.	
51	Standard addition calibration curve of salbutamol in	112
	porcine sample 6.	
52	Standard addition calibration curve of salbutamol in	113
	bovine sample 1.	
53	Standard addition calibration curve of salbutamol in	114
	bovine sample 2.	
54	Standard addition calibration curve of salbutamol in	115
	bovine sample 3.	
55	Standard addition calibration curve of salbutamol in	116
	bovine sample 4.	

LIST OF FIGURES (CONTINUED)

Figure	Page
56 Standard addition calibration curve of salbutamol in	117
bovine sample 5.	
57 Standard addition calibration curve of salbutamol in	118
bovine sample 6.	