CONTENTS

CONTENTS	vii
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS AND SYMBOLS	xviii
CHAPTER	
1 INTRODUCTION	
1.1 Introduction	1
1.2 Review of literatures	12
1.2.1 Physical and chemical properties of lead	12
1.2.2 Uses of lead	13
1.2.3 Toxicity and Health Effect of lead	13
1.2.4 Anodic stripping voltammetry using chemically modified carbon paste	14
electrodes	
1.2.5 Adsorptive cathodic stripping voltammetry	16
1.2.6 Sample digestion method	18
1.3 Objectives	22
2 EXPERIMENTAL	
2.1 Chemicals and materials	23
2.1.1 Standard chemicals	23
2.1.2 General chemicals and solvents	23
2.1.3 Samples	24
2.2 Instruments and apparatus	24
2.2.1 AUTOLAB PGSTAT 100 (Metrohm, Switzerland)	24
2.2.2 Electrochemical cell and electrodes	24
2.2.3 Apparatus	24
2.2.4 Carbon paste electrode (CPE)	25

Page

2.3 Methodology	
2.3.1 Preparation of stock standard solution	26
2.3.2 Cleaning of glassware and plastic ware	26
2.3.3 Preparation of chemically modified carbon electrode	27
2.3.4 Cyclic voltammetry procedures	28
2.3.4.1 Blank cyclic voltammetry experiments	28
2.3.4.2 Cyclic voltammetry of metal ion in acetonitrile	28
2.3.4.3 Cyclic voltammetry of group of xanthone compounds	29
2.3.5 Stripping voltammetry of Cd(II), Cu(II), Hg(II) and Pb(II) by carbon paste	29
electrode procedures	
2.3.5.1 Effect of electrolyte for determination Cd(II), Cu(II), Hg(II) and	29
Pb(II) by unmodified electrode	
2.3.5.2 Stripping voltammetry of Cd(II), Cu(II), Hg(II) and Pb(II) by	30
carbon paste electrode modified with group of xanthone	
compounds	
2.3.6 Optimization condition for determination Pb(II) by adsorptive stripping	30
voltammetry	
2.3.6.1 Adsorptive characteristics of the Pb-8-hydroxyquinoline complex	30
2.3.6.2 Comparison of square wave versus differential pulse	31
2.3.6.3 Comparison of peak height versus peak area	31
2.3.6.4 Effect of supporting electrolyte	31
2.3.6.5 Effect of supporting electrolyte concentration	32
2.3.6.6 Effect of pH	32
2.3.6.7 Effect of 8-hydroxyquinoline concentration	32
2.3.6.8 Effect of accumulation potential	32
2.3.6.9 Effect of accumulation time	32
2.3.6.10 Effect of scan rate and pulse amplitude	33

Page

2.4 Analytical performances	
2.4.1 Linear range	33
2.4.2 The limit of detection (LOD) and the limit of quantification (LOQ)	33
2.4.3 Accuracy and precision	34
2.5 Sample preparation and digestion	35
2.6 The comparison of the calibration and standard addition method for	35
determination of Pb(II) in canned fish samples	
2.7 Interference studies	35
2.8 Determination of Pb(II) in canned fish samples	36

3 RESULTS AND DISCUSSION

3.1 Electroche	emical behavior of metals	37
3.1.1 Cyc	lic voltammetry of blank solution at glassy carbon electrode	37
3.1.2 Cyc	lic voltammetry of Pb(II) solution at glassy carbon electrode	38
3.1.3 Cyc	lic voltammetry of Cd(II) solution at glassy carbon electrode	39
3.1.4 Cyc	lic voltammetry of Hg(II) solution at glassy carbon electrode	40
3.1.4 Cyc	lic voltammetry of Cu(II) solution at glassy carbon electrode	41
3.2 Electroche	3.2 Electrochemical behavior of group of xanthone	
3.2.1 Cyc	lic voltammetry of xanthone at glassy carbon electrode	42
3.2.2 Cyc	lic voltammetry of thioxanthone at glassy carbon electrode	43
3.2.3 Cyc	lic voltammetry of xanthene at glassy carbon electrode	44
3.2.4 Cyc	lic voltammetry of acridone at glassy carbon electrode	45
3.3 Stripping	voltammetry of Cd(II), Cu(II), Hg(II) and Pb(II) by carbon paste	47
electrode		
3.3.1 Effe	ect of electrolyte for determination of Cd(II), Cu(II), Hg(II) and	47
Pb(II) by unmodified electrode	

Page

	Page
3.3.2 Stripping voltammetry of Cd(II), Cu(II), Hg(II) and Pb(II) by carbon paste	51
electrode modified with group of xanthone compounds	
3.4 Optimization condition for determination Pb(II) by adsorptive stripping	59
voltammetry	
3.4.1 Adsorptive characteristics of the Pb-8-hydroxyquinoline complex	59
3.4.2 Comparison of square wave versus differential pulse	61
3.4.3 Comparison of peak height versus peak area	62
3.4.4 Effect of supporting electrolyte	63
3.4.5 Effect of supporting electrolyte concentration	65
3.4.6 Effect of pH	66
3.4.7 Effect of 8-hydroxyquinoline concentration	67
3.4.8 Effect of accumulation potential	69
3.4.9 Effect of accumulation time	70
3.4.10 Effect of scan rate and pulse amplitude	72
3.5 Analytical performances	76
3.5.1 Linear range	76
3.5.2 The limit of detection (LOD) and the limit of quantification (LOQ)	77
3.5.3 Accuracy and precision	79
3.6 The comparision of the calibration and standard addition method for	81
determination of Pb(II) in canned fish samples	
3.7 Interference studies	82
3.8 Determination of Pb(II) in canned fish samples	83
4 CONCLUSION	85

REFERENCES

87

	Page
APPENDIX	97
А	98
В	102
С	109
VITAE	112

LIST OF TABLES

Table	Table	
1-1	Lead, tin and iron in canned ravioli. Effect of can type (10 samples of each type	3
	of can analyzed)	
1-2	Detection limits of modern analytical methods	5
3-1	The peak potentials and the peak currents of metal in CH ₃ CN	46
3-2	The peak potentials and the peak currents of group of xanthone compounds in	46
	CH ₃ CN	
3-3	Effects of electrolyte on the peak current of $10 \text{ mg L}^{-1} \text{ Cd(II)}$ at unmodified	47
	electrode	
3-4	Effects of electrolyte on the peak current of 10 mg L^{-1} Cu(II) at unmodified	48
	electrode	
3-5	Effects of electrolyte on the peak current of $10 \text{ mg L}^{-1} \text{ Hg(II)}$ at unmodified	49
	electrode	
3-6	Effects of electrolyte on the peak current of 10 mg L ⁻¹ Pb(II) at unmodified	50
	electrode	
3-7	The current from stripping voltammogram of 5 mg L^{-1} Cd(II) in 0.3 M	53
	CH ₃ COONH ₄ at various group of xanthone compounds	
3-8	The current from stripping voltammogram of 5 mg L^{-1} Cu(II) in 0.2 M acetate	54
	buffer at various group of xanthone compounds	
3-9	The current from stripping voltammogram of 10 mg L^{-1} Hg(II) in 0.2 M acetate	56
	buffer at various group of xanthone compounds	
3-10	The current from stripping voltammogram of 5 mg L^{-1} Pb(II) in 0.2 M HNO ₃ at	57
	various group of xanthone compounds	
3-11	The comparison of peak current between square wave and differential pulse of	61
	Pb(II) in 0.01 M ammonium acetate containing 10 μ M 8-hydroxyquinoline at	
	pH = 8.0	
3-12	The comparison of peak height and peak area of Pb(II) in 0.01 M ammonium	62
	acetate containing 10 μ M 8-hydroxyquinoline at pH = 8.0	

LIST OF TABLES (CONTINUED)

Table	e	Page
3-13	Effects of supporting electrolyte on the peak current of 20 μ g L ⁻¹ Pb(II) in the	64
	presence of 10 μ M 8-hydroxyquinoline at pH = 8.0	
3-14	Effects of supporting electrolyte concentration on the peak current of 20 $\mu g \ L^{^{-1}}$	65
	Pb(II) in the presence of 10 μ M 8-hydroxyquinoline at pH = 8.0	
3-15	Effects pH on the peak current of 20 μ g L ⁻¹ Pb(II) in 0.1 M ammonium acetate	66
	containing 10 µM 8-hydroxyquinoline	
3-16	Effects of 8-hydroxyquinoline concentration on the peak current of 20 μ g L ⁻¹	68
	Pb(II) in 0.1 M ammonium acetate at $pH = 7.5$	
3-17	Effects of accumulation potential on the peak current of 20 μ g L ⁻¹ Pb(II) in 0.1 M	69
	ammonium acetate containing 15 μ M 8-hydroxyquinoline at pH = 7.5	
3-18	Effects of accumulation time on the peak current of 20 μ g L ⁻¹ Pb(II) in 0.1 M	71
	ammonium acetate containing 15 μ M 8-hydroxyquinoline at pH = 7.5	
3-19	Effects of scan rate on the peak current of 20 μ g L ⁻¹ Pb(II) in 0.1 M ammonium	72
	acetate containing 15 μ M 8-hydroxyquinoline at pH = 7.5	
3-20	Effects of pulse amplitude on the peak current of 20 μ g L ⁻¹ Pb(II) in 0.1 M	74
	ammonium acetate containing 15 μ M 8-hydroxyquinoline at pH = 7.5	
3-21	The current of Pb(II) at the different concentration	76
3-22	The peak current of $Pb(II)$ in reagent blank (n = 10)	78
3-23	The percent recovery of Pb(II) at concentration of 10, 20 and 30 μ g L ⁻¹ in	79
	canned fish	
3-24	The current of Pb(II) for evaluating the precision	80
3-25	The comparison of current using calibration and standard addition method for	81
	Pb(II) determination in canned fish sample	
3-26	Result of statistical test using two-way ANOVA by R software	82
3-27	Change in peak current of $20 \ \mu g \ L^{-1}$ Pb(II) in the presence of other ions	83
3-28	The Pb(II) concentration in canned fish samples by standard addition method	84

LIST OF FIGURES

Figu	re	Page
1-1	The structures of group of xanthone compounds	8
1-2	Accumulation and stripping stripping in adsorptive stripping measurement of	9
	a metal ion (M^{n+}) in presence of an appropriate chelating agent (L)	
1-3	The structure of 8-hydroxyquinoline (a) and metal oxinate complex (b)	10
2-1	AUTOLAB PGSTAT 100 (Metrohm, Switzerland)	25
2-2	The cell with three electrode system	26
2-3	Show the complete chemically modified carbon paste electrode	28
3-1	Cyclic voltammogram of blank solution at glassy carbon electrode in 50 mL	37
	CH_3CN containing 0.1 M TBAP with scan rate of 100 mV s ⁻¹	
3-2	Cyclic voltammogram of 207.20 mg L^{-1} Pb(II) at glassy carbon electrode in	38
	50 mL CH ₃ CN containing 0.1 M TBAP with scan rate of 100 mV s ⁻¹	
3-3	Cyclic voltammogram of 112.40 mg L^{-1} Cd(II) at glassy carbon electrode in	39
	50 mL CH ₃ CN containing 0.1 M TBAP with scan rate of 100 mV s ⁻¹	
3-4	Cyclic voltammogram of 200.59 mg L^{-1} Hg(II) at glassy carbon electrode in	40
	50 mL CH ₃ CN containing 0.1 M TBAP with scan rate of 100 mV s ⁻¹	
3-5	Cyclic voltammogram of 63.55 mg L^{-1} Cu(II) at glassy carbon electrode in	41
	50 mL CH ₃ CN containing 0.1 M TBAP with scan rate of 100 mV s ⁻¹	
3-6	Cyclic voltammogram of 1 mM xanthone at glassy carbon electrode in	42
	50 mL CH ₃ CN containing 0.1 M TBAP with scan rate of 100 mV s ⁻¹ and	
	resting potential is -0.021 V	
3-7	Cyclic voltammogram of 1 mM thioxanthone at glassy carbon electrode in	44
	50 mL CH ₃ CN containing 0.1 M TBAP with scan rate of 100 mV s ⁻¹ and	
	resting potential is -0.357 V	
3-8	Cyclic voltammogram of 1 mM xanthene at glassy carbon electrode in	44
	50 mL CH ₃ CN containing 0.1 M TBAP with scan rate of 100 mV s ⁻¹ and	
	resting potential is -0.374 V	

LIST OF FIGURES (CONTINUED)

Figur	Figure	
3-9	Cyclic voltammogram of 1 mM acridone at glassy carbon electrode in 50 mL	45
	CH_3CN containing 0.1 M TBAP with scan rate of 100 mVs ⁻¹ and resting	
	potential is -0.350 V	
3-10	Effects of electrolyte on the peak current of $10 \text{ mg L}^{-1} \text{ Cd(II)}$ at unmodified	47
	electrode	
3-11	Effects of electrolyte on the peak current of 10 mg L^{-1} Cu(II) at unmodified	48
	electrode	
3-12	Effects of electrolyte on the peak current of $10 \text{ mg L}^{-1} \text{ Hg(II)}$ at unmodified	49
	electrode	
3-13	Effects of electrolyte on the peak current of 10 mg L^{-1} Pb(II) at unmodified	50
	electrode	
3-14	The current from stripping voltammogram of 5 mg L^{-1} Cd(II) in 0.3 M	53
	CH ₃ COONH ₄ at various group of xanthone compounds	
3-15	Stripping voltammogram of 5 mg L^{-1} Cd(II) in 0.3 M CH ₃ COONH ₄ at	54
	unmodified and modified electrode with xanthone compound	
3-16	The current from stripping voltammogram of 5 mg L^{-1} Cu(II) in 0.2 M acetate	55
	buffer at various group of xanthone compounds	
3-17	Stripping voltammogram of 5 mg L^{-1} Cu(II) in 0.2 M acetate buffer at	55
	unmodified and modified electrode with xanthone compound	
3-18	The current from stripping voltammogram of 10 mg L^{-1} Hg(II) in 0.2 M acetate	56
	buffer at various group of xanthone compounds	
3-19	Stripping voltammogram of 10 mg L^{-1} Hg(II) in 0.2 M acetate buffer at	57
	unmodified and modified electrode with xanthone compound	
3-20	The current from stripping voltammogram of 5 mg L^{-1} Pb(II) in 0.2 M HNO ₃ at	58
	various group of xanthone compounds	
3-21	Stripping voltammogram of 5 mg L^{-1} Pb(II) in 0.2 M HNO ₃ at unmodified and	58
	modified electrode with xanthone compound	

LIST OF FIGURES (CONTINUED)

Figur	Figure	
3-22	Stripping voltammogram of the 0.1 mM 8-hydroxyquinoline in 0.01 M ammonium	59
	acetate at pH = 8.0 after 1 min accumulation at -0.4 V and scan rate of 50 mV s ^{-1}	
3-23	Stripping voltammogram of the 1 mg L^{-1} Pb(II) in 0.01 M ammonium acetate at	60
	pH = 8.0 after 1 min accumulation at -0.4 V and scan rate of 50 mV s ⁻¹	
3-24	Stripping voltammogram of mixture of 0.1 mM 8-hydroxyquinoline and 1 mg L^{-1}	60
	Pb(II) in 0.01 M ammonium acetate at $pH = 8.0$ after 1 min accumulation at -0.4 V	
	and scan rate of 50 mV s ^{-1}	
3-25	The comparison of peak current between square wave and differential pulse of	62
	Pb(II) in 0.01 M ammonium acetate containing 10 μ M 8-hydroxyquinoline at	
	pH = 8.0	
3-26	The comparison of peak height and peak area of Pb(II) in 0.01 M ammonium	63
	acetate containing 10 μ M 8-hydroxyquinoline at pH = 8.0	
3-27	Effects of supporting electrolyte on the peak current of 20 μ g L ⁻¹ Pb(II) in the	64
	presence of 10 μ M 8-hydroxyquinoline at pH = 8.0	
3-28	Effects of supporting electrolyte concentration on the peak current of 20 μ g L ⁻¹	65
	Pb(II) in the presence of 10 μ M 8-hydroxyquinoline at pH = 8.0	
3-29	Effects pH on the peak current of 20 μ g L ⁻¹ Pb(II) in 0.1 M ammonium acetate	67
	containing 10 µM 8-hydroxyquinoline	
3-30	Effects of 8-hydroxyquinoline concentration on the peak current of 20 μ g L ⁻¹ Pb(II)	68
	in 0.1 M ammonium acetate at $pH = 7.5$	
3-31	Effects of accumulation potential on the peak current of 20 μ g L ⁻¹ Pb(II) in 0.1 M	70
	ammonium acetate containing 15 μ M 8-hydroxyquinoline at pH = 7.5	
3-32	Effects of accumulation time on the peak current of 20 μ g L ⁻¹ Pb(II) in 0.1 M	71
	ammonium acetate containing 15 μ M 8-hydroxyquinoline at pH = 7.5	
3-33	Effects of scan rate on the peak current of 20 μ g L ⁻¹ Pb(II) in 0.1 M ammonium	73
	acetate containing 15 μ M 8-hydroxyquinoline at pH = 7.5	

LIST OF FIGURES (CONTINUED)

Figur	Figure	
3-34	Voltammograms of varied scan rates on the peak current of 20 μ g L ⁻¹ Pb(II) in 0.1	73
	M ammonium acetate containing 15 μ M 8-hydroxyquinoline at pH=7.5	
3-35	Effects of pulse amplitude on the peak current of 20 μ g L ⁻¹ Pb(II) in 0.1 M	74
	ammonium acetate containing 15 μ M 8-hydroxyquinoline at pH = 7.5	
3-36	Voltammograms of varied pulse amplitude on the peak current of 20 μ g L ⁻¹ Pb(II)	75
	in 0.1 M ammonium acetate containing 15 μ M 8-hydroxyquinoline at pH = 7.5	
3-37	The calibration graph of Pb(II) at the different concentration; (a) 0.5 -120.0 μ g L ⁻¹ ,	77
	(b) 0.5-90.0 μ g L ⁻¹	
3-38	The calibration curve of Pb(II)	79
3-39	The comparison of current using calibration and standard addition method for	81
	Pb(II) determination in canned fish sample	

LIST OF ABBREVIATIONS AND SYMBOLS

А	=	Ampere
AAS	=	Atomic absorption spectrometry
AdCSV	=	Adsorptive cathodic stripping voltammetry
Ag/AgCl	=	Silver/Silver chloride
ASV	=	Anodic stripping voltammetry
Cd	=	Cadmium
CH ₃ CN	=	Acetonitrile
CH ₃ COONa	=	Sodium acetate
CH ₃ COONH ₄	=	Ammonium acetate
CPE	=	Carbon paste electrode
CMCPEs	=	Chemically modified carbon paste electrodes
Conc.	=	Concentration
Cu	=	Copper
CV	=	Cyclic voltammogram
DPV	=	Differential pulse voltammetry
E	=	Potential
Epa	=	Oxidation peak potential
Epc	=	Reduction peak potential
GFAAS	=	Graphite furnace atomic absorption spectrometry
HCl	=	Hydrochloric acid
HClO ₄	=	Perchloric acid
Hg	=	Mercury
HMDE	=	Hanging mercury drop electrode
HNO ₃	=	Nitric acid
H_2SO_4	=	Sulfuric acid
Іра	=	Anodic peak current
Ipc	=	Cathodic peak current
KNO ₃	=	Potassium nitrate

LIST OF ABBREVIATIONS AND SYMBOLS (CONTINUED)

М	=	Molar
$mg L^{-1}$	=	Milligram per littre
mL	=	Millilitre
mV	=	Millivolt
mV s ⁻¹	=	Millivolt per Second
NaNO ₃	=	Sodium nitrate
Pb	=	Lead
S	=	Second
SWV	=	Square wave voltammetry
TBAP	=	Tetrabutylammoniumhexafluorophosphate
Tris	=	Tris(hydroxymethyl)aminomethane
V	=	Volt
V/s	=	Volt per Second
$\mu g g^{-1}$	=	Microgram per gram
$\mu g L^{-1}$	=	Microgram per litter
μΜ	=	Micromolar