CONTENTS

				Page
CONTENTS		vi		
LIST OF TABLES		viii		
LIST	OF FIC	JURES		xi
CHA	PTER			
1	INTR	ODUCT	TION	1
	1.1	Introdu	uction	1
	1.2	Backg	round	3
	1.3	Literat	ture reviews	29
	1.4	Object	tives	33
2	EXPI	ERIMEN	TAL	34
_	2.1	Chemi	icals and materials	34
	2.2	Instrur	nents and apparatus	34
	2.3	Metho	dology	36
	2.4	Sampl	e preparation using solid phase extraction	39
	2.5	Detern	nination of Cu, Cd and Pb in rainwater samples	42
3	RESI	и тs ан	ND DISCUSSION	47
5	3.1		ization of graphite furnace atomic absorption	т, Л7
	5.1	spectro	ometer (GFAAS)	/
		3.1.1	Pyrolysis temperature	47
		3.1.2	Atomization temperature	50
		3.1.3	The effect of utilizing a matrix modifier and without	55
			a matrix modifier for determination of Cu, Cd and Pb	
		3.1.4	Type of matrix modifiers	58
		3.1.5	Linear range	60
		3.1.6	Detection limit	63
		3.1.7	Accuracy and precision	66

CONTENTS (CONTINUED)

Page

67
67
68
70
71
72
74
77
78
79
84
85
90
102

LIST OF TABLES

Ροπο	
Page	

Table		Page
1-1	Summary of some relevant physicochemical properties of copper	3
1-2	Some physical properties of cadmium	5
1-3	Some physical properties of lead	6
1-4	The Maximum Contaminant Level (MCLs) of Cu, Cd and Pb	6
	in drinking waters	
1-5	Trace elements released into the atmosphere from human activities	11
1-6	Primary Associations in Rain	15
1-7	Techniques for determination of heavy metals in rainwater samples	16
1-8	Location of big emission sources in Songkhla Province	25
2-1	Data of rainwater samples	44
3-1	The absorbance of 40.0 μ g L ⁻¹ Cu standard working solution	47
	at various pyrolysis temperatures	
3-2	The absorbance of 4.0 μ g L ⁻¹ Cd standard working solution	48
	at various pyrolysis temperatures	
3-3	The absorbance of 80.0 μ g L ⁻¹ Pb standard working solution at	49
	various pyrolysis temperatures	
3-4	The absorbance of 40.0 μ g L ⁻¹ Cu standard working solution	51
	at various atomization temperatures	
3-5	The absorbance of 4.0 μ g L ⁻¹ Cd standard working solution at	51
	various atomization temperatures	
3-6	The absorbance of 80.0 μ g L ⁻¹ Pb standard working solution at	52
	various atomization temperatures	
3-7	The optimum conditions of GFAAS for determination of Cu, Cd	55
	and Pb	
3-8	The comparison of the absorbance with and without matrix modifier	55
3-9	The absorbance of 40.0 μ g L ⁻¹ Cu standard working solution at	58
	various types of matrix modifiers	

LIST OF TABLES (CONTINUED)

Table		Page
3-10	The absorbance of 4.0 μ g L ⁻¹ Cd standard working solution	59
	at various types of matrix modifiers	
3-11	The absorbance of 80.0 μ g L ⁻¹ Pb standard working solution	59
	at various types of matrix modifiers	
3-12	The relation between the peak area and the various Cu standard	60
	concentrations (µg L ⁻¹)	
3-13	The relation between the peak area and the various Cd standard	61
	concentrations (µg L ⁻¹)	
3-14	The relation between the peak area and the various Pb standard	62
	concentrations ($\mu g L^{-1}$)	
3-15	The data of the blank measurements of Cu, $n = 10$	63
3-16	The data of the blank measurements of Cd, $n = 10$	64
3-17	The data of the blank measurements of Pb, $n = 10$	65
3-18	The detection limit for Cu, Cd and Pb standard solution with optimum	66
	conditions of GFAAS	
3-19	The percent recovery of Cu, Cd and Pb at concentration of	66
	40.00, 8.00 and 80.00 $\mu g \ L^{\text{-1}}$, respectively in 1 % (v/v) nitric acid	
3-20	Effect of eluent concentration on desorption of Cu, Cd and Pb	67
	on Amberlite IRC-748 resin	
3-21	Effect of pH of sample solution on adsorption of Cu, Cd and Pb	69
	on Amberlite IRC-748 resin	
3-22	The percent recovery of Cu, Cd and Pb on Amberlite IRC-748	70
	resin at different column volume	
3-23	The percent recovery of Cu, Cd and Pb on Amberlit IRC-748 resin	71
	at various flow rates	
3-24	Effect of eluent volume on desorption of Cu, Cd and Pb on	73
	Amberlite IRC-748 resin	
3-25	The comparison of peak area using calibration and standard	74

LIST OF TABLES (CONTINUED)

Table		Page
	addition method for Cu determination in rainwater	
3-26	The comparison of peak area using calibration and standard	75
	addition method for Cd determination in rainwater	
3-27	The comparison of peak area using calibration and standard	76
	addition method for Pb determination in rainwater	
3-28	Analytical recovery of Cu, Cd and Pb added to some water samples	78
3-29	The concentration of Cu in nine rainwater samples	79
3-30	The concentration of Cd in nine rainwater samples	81
3-31	The concentration of Pb in nine rainwater samples	82

LIST OF FIGURES

Figu	re	Page
1-1	Illustration of atmospheric depositional processes	2
1-2	Adapted from illustration of atmospheric depositional processes	13
1-3	HGA and THGA graphite tubes with integrated	18
	L'vov platform for larger sample volumes	
1-4	The transversely heated graphite tube provides	19
1-5	Iminodiacetic acid immobilised on styrene matrix	23
1-6	Solid phase extraction operation steps	24
1-7	Map of Songkhla Province	27
1-8	Total amount of rainfall in 1969-2004	28
1-9	Amount of day with rainfall in 1969-2004	28
2-1	Preparation of Amberlite IRC-748 resin column	39
2-2	Sampling sites in Hat Yai City Municipality	43
2-3	Sample collections at the Fountain Circus of Hat Yai City Municipality	43
2-4	Conductivity measurements (EC, μ S cm ⁻¹)	45
2-5	pH measurements	45
2-6	Sample filtration 1) Syringe 2) Filters and 3) Polyethylene bottle	46
3-1	The absorbance of 40.0 μ g L ⁻¹ Cu standard working solution	48
	at various pyrolysis temperatures	
3-2	The absorbance of 4.0 μ g L ⁻¹ Cd standard working solution	49
	at various pyrolysis temperatures	
3-3	The absorbance of 80.0 μ g L ⁻¹ Pb standard working solution	50
	at various pyrolysis temperatures	
3-4	The absorbance of 40.0 μ g L ⁻¹ Cu standard working solution	51
	at various atomization temperatures	
3-5	The absorbance of 4.0 μ g L ⁻¹ Cd standard	52
	working solution at various atomization temperatures	
3-6	The absorbance of 80.0 μ g L ⁻¹ Pb standard	53
	working solution at various atomization temperatures	
	-	

LIST OF FIGURES (CONTINUED)

Figu	re	Page
3-7	Peak shape of 40.0 μ g L ⁻¹ Cu standard working solution	53
	at optimum temperature	
3-8	Peak shape of 4.0 μ g L ⁻¹ Cd standard working solution	54
	at optimum temperature	
3-9	Peak shape of 80.0 μ g L ⁻¹ Pb standard working solution	54
	at optimum temperature	
3-10	Peak shape of 40.0 μ g L ⁻¹ Cu standard working solution	56
	with modifiers	
3-11	Peak shape of 40.0 μ g L ⁻¹ Cu standard working solution	56
	without modifiers	
3-12	Peak shape of 4.0 μ g L ⁻¹ Cd standard working solution	56
	with modifier	
3-13	Peak shape of 4.0 μ g L ⁻¹ Cd standard working solution	57
	without modifiers	
3-14	Peak shape of 80.0 μ g L ⁻¹ Pb standard working solution	57
	with modifier	
3-15	Peak shape of 80.0 μ g L ⁻¹ Pb standard working solution	57
	without modifier	
3-16	Peak shape of 40.0 μ g L ⁻¹ Cu standard working solution at	58
	optimum temperature and types of matrix modifiers	
3-17	Peak shape of 4.0 μ g L ⁻¹ Cd standard working solution at	59
	optimum temperature and types of matrix modifiers	
3-18	Peak shape of 80.0 μ g L ⁻¹ Pb standard working solution at	60
	optimum temperature and types of matrix modifier	
3-19	The linear dynamic range of Cu standard concentration ($\mu g L^{-1}$)	61
3-20	The linear dynamic range of Cd standard concentration ($\mu g L^{-1}$)	61
3-21	The linear dynamic range of Pb standard concentration ($\mu g L^{-1}$)	62
3-22	The calibration curve of Cu	64

LIST OF FIGURES (CONTINUED)

Figu	re	Page
3-23	The calibration curve of Cd	65
3-24	The calibration curve of Pb	66
3-25	Effect of eluent concentration on desorption of Cu, Cd and Pb	68
	on Amberlite IRC-748 resin	
3-26	Effect of pH of sample solution on adsorption of Cu, Cd and Pb	69
	on Amberlite IRC-748 resin	
3-27	The percent recovery of Cu, Cd and Pb on Amberlite IRC-748	70
	at different column volume	
3-28	The percent recovery of Cu, Cd and Pb on Amberlit IRC-748	72
	resin at various flow rates	
3-29	Effect of eluent volume on desorption of Cu, Cd and Pb on	73
	Amberlite IRC-748 resin	
3-30	The comparison of calibration and standard addition graph	75
	for Cu determination in rainwater	
3-31	The comparison of calibration and standard addition graph	76
	for Cd determination in rainwater	
3-32	The comparison of calibration and standard addition graph	77
	for Pb determination in rainwater	
3-33	The concentration of Cu in nine rainwater samples	80
	(preconcentration factor = 10, n=3)	
3-34	The concentration of Cd in nine rainwater samples	81
	(preconcentration factor = 10, n=3)	
3-35	The concentration of Pb in nine rainwater samples	82
	(preconcentration factor = 10, n=3)	
3-36	The concentration of Cu, Cd and Pb in nine rainwater samples	83
	(preconcentration factor = 10, n=3)	