Contents

	Page
บทกัดย่อ	(3)
Abstract	(5)
Acknowledgement	(7)
Contents	(8)
List of Table	(13)
List of Figure	(15)
Chapter 1 Introduction	(,
1.1 Introduction	1
1.1.1 Polyethylene Terephthalate	1
1.1.2 Acetaldehyde	4
1.1.3 Background	6
1.2 Literature reviews	8
1.3 Objective	
Chapter 2 Experiment	12
2.1 Chemicals and materials	13
2.1.1 Standard chemical	13
2.1.2 General chemicals and solvents	13
2.2 Instruments and Apparatus	13
2.2.1 Gas Chromatography-Flame ionization Detector	13
2.2.2 Apparatus for inject standard solution and standard gas	13
2.2.3 Apparatus for airspace technique	14
2.2.4 Apparatus for purge and trap technique	14
2.3 Analysis system	14
2.4 Preparation of standard	17
2.4.1 Acetaldehyde standard solution	17
2.4.2 Acetaldehyde standard gas	17

	Page
2.5 Optimization of GC-FID conditions	
2.5.1 Carrier gas flow rate	18
2.5.2 Column temperature	18
2.5.3 Detector temperature	18
2.5.4 Valve temperature	18
2.5.5 Fuel gas flow rate	18
2.5.6 Oxidant gas flow rate	19
2.5.7 Make up gas flow rate	19
2.5.8 Valve heating time	19
2.6 Optimization of airspace technique	19
2.6.1 Equilibration temperature	19
2.6.2 Equilibration time	19
2.7 Limit of detection	
2.8 Linear dynamic range	
2.9 Sample preparation	20
2.9.1 Conventional method	20
2.9.2 Developed method	21
2.10 Lab- built heating box	21
2.10.1 Temperature calibration	23
2.10.2 Temperature at each position	23
2.11 Optimization of incubation conditions	24
2.11.1 Incubation temperature	24
2.11.2 Incubation time	24
2.12 Purge and trap technique	25
2.12.1 Adsorbent conditioning	25
2.12.2 Preparation of adsorbent tube	26
2.12.3 Quantity of adsorbent	27

	Page
2.13 Optimization of adsorption conditions	28
2.13.1 Adsorption flow rate	28
2.13.2 Adsorption time	28
2.13.3 Storage lifetime of the adsorbent tube	28
2.14 Thermal desorption	29
2.14.1 Temperature calibration	30
2.15 Optimization of desorption conditions	30
2.15.1 Desorption flow rate	31
2.15.2 Desorption time	31
2.15.3 Desorption temperature	31
2.16 Calibration curve	31
2.16.1 For conventional and developed methods	31
2.16.2 For purge and trap technique	32
2.17 Qualitative and quantitative analysis of real samples	
2.17.1 Sampling	32
2.17.2 Qualitative analysis	32
2.17.3 Quantitative analysis	32
2.17.4 Quality assurance and quality control	33
Chapter 3 Results and discussion	
3.1 Optimization of GC-FID conditions	34
3.1.1 Carrier gas flow rate	34
3.1.2 Column temperature	40
3.1.3 Detector temperature	40
3.1.4 Valve temperature	44
3.1.5 Fuel gas flow rate	45
3.1.6 Oxidant gas flow rate	47
3.1.7 Make up gas flow rate	48
3.1.8 Valve heating time	49
3.1.9 Summarized GC-FID condition	52

	Page
3.2 Optimization of the airspace conditions	53
3.2.1 Equilibration time	54
3.3 Linear dynamic range	
3.4 Limit of detection	57
3.5 Lab- built heating box	61
3.5.1 Temperature calibration	61
3.5.2 Temperature of each position	64
3.6 Optimization of developed technique conditions	66
3.6.1 Incubation temperature	66
3.6.2 Incubation time	68
3.7 Purge and trap technique	69
3.7.1 Adsorbent conditioning	69
3.7.2 Adsorbent tube preparation	71
3.8 Optimization of adsorption conditions	71
3.8.1 Amount of adsorbent	71
3.8.2 Adsorption flow rate	72
3.8.3 Adsorption time	74
3.8.4 Storage lifetime of the adsorbent tube	75
3.9 Lab- built thermal desorption unit	76
3.9.1 Temperature calibration	76
3.10 Optimization of desorption conditions	78
3.10.1 Desorption flow rate	78
3.10.2 Desorption time	79
3.10.3 Desorption temperature	81
3.11 Calibration curve of acetaldehyde	83
3.12 Qualitative and quantitative analysis	84
3.12.1 Comparison between conventional	
and proposed method	87
3.12.2 Purge and trap technique results	93
Chapter 4 Conclusions	95

	Page
References	97
Vitae	102

List of Tables

7 39 41 43 44 46 47 48
41 43 44 46 47 48
43 44 46 47 48
43 44 46 47 48
44 46 47 48
46 47 48
47 48
48
51
52
54
56
59
60
61
63
65
66
67
68
71
73
74
75
77
78
80

List of Tables (Continued)

Table			Page
	28	Response at various desorption temperature	82
	29	Response at various concentration	83
	30	The conventional and proposed method	
		results comparison	88
	31	The proposed and purge and trap technique	
		results comparison	90
32	32	Acetaldehyde concentration at various spike volume	
		of acetaldehyde standard solution	91

List of Figures

Figure		Page
1	Polyethylene Terephthalate monomer	1
2	Chemistry of PET formation	2
3	Stretch blow moulding of PET bottle	3
4	Acetaldehyde formation	4
5	Instrumentation of acetaldehyde analysis	15
6	Gas sampling valve system	16
7	Modified lid I	22
8	Modified lid II	22
9	Lab- built heating box	23
10	Conditioning of adsorbent	26
11	Porapak Q adsorbent tube	26
12	System used to optimize the amount of adsorbent	27
13	Lab- built thermal desorption unit	29
14	The van Deemter plot	37
15	Characteristic data of elution peak	38
16	The van Deemter plot of acetaldehyde	39
17	Response versus column temperature	42
18	Response versus detector temperature	43
19	Response versus valve temperature	45
20	Response versus hydrogen flow rate	46
21	Response versus air flow rate	47
22	Response versus nitrogen flow rate	49
23	The gas sampling valve system	50
24	Response versus valve heating time	51
25	The chromatogram of acetaldehyde	53
26	Response versus equilibration time	55
27	Response of acetaldehyde at various concentrations	56
28	Analytical calibration curve of signals	58
29	The calibration curve of acetaldehyde	60

List of Figures (Continued)

Figure		Page
30	Correct versus set temperature of Modified lid I	62
31	Correct versus set temperature of Modified lid II	63
32	Response versus incubation temperature	67
33	Response versus incubation time	69
34	The chromatogram of conditioned Parapak Q	70
35	Response versus amount of adsorbent	72
36	Response versus adsorption flow rate	73
37	Response versus adsorption time	74
38	Response versus storage time	76
39	Calibration curve of the set and correct temperature	77
40	Response versus desorption flow rate	79
41	Response versus desorption time	80
42	Response versus desorption temperature	82
43	Calibration curve of acetaldehyde	84
44	Newly blown PET bottles from	
	Haad Thip Public Co., Ltd.	85
45	Newly blown Coke bottle 1.25 and 2 L	85
46	The chromatogram of acetaldehyde from real sample	86
47	Histogram of proposed and conventional methods	92