CONTENTS

			Page
CONTEN	TS		vi
LIST OF	TABLES	k	X
LIST OF	ILLUAT	RATIONS	xiii
LIST OF	ABBREV	VIATIONS AND SYMBOLS	xvi
CHAPTE	R		
1	INTR	RODUCTION	1
	1.1	Background and Rationale	1
	1.2	Literature Review	2
	1.3	Objectives of this Present Work	6
	1.4	Expected Result	7
	1.5	Scopes	7
2	THE	ORIES	8
	2.1	History of Biodiesel	8
	2.2	Esterification	9
	2.3	Transesterification	9
	2.4	Saponification	10
	2.5	Rate Law of Reversible Reaction	10
	2.6	Kinetics of Esterification	12
	2.7	Kinetics of Transesterification	13
	2.8	Activation Energy	14
	2.9	Raw Materials	15
		2.9.1 Oils and Fats	15
		2.9.2 Alcohol	16

CONTENTS (Cont')

	2.10	Effect of Par	ameter in Biodie	sel Proced	ure		18
		2.10.1 Ca	ıtalyst				18
		2.10.2 M	olar Ratio of Met	hanol to O	pil		18
		2.10.3 Mi	ixing Intensity				19
		2.10.4 Re	action Temperatu	ire			19
		2.10.5 M	oisture and FFA	Content			19
	2.11	Specification	s and Properties	of Biodies	el		19
	2.12	Method of H	ligh Free Fatty A	cid Oils ar	nd Fats		21
	2.13	Runge-Kutta	a Method for	Solving	Ordinary	Differential	
		Equation (O	.D.E)				22
3	RESE	ARCH METH	ODOLOGY				24
	3.1	Materials					25
	3.2	Apparatus					25
	3.3	Two-Stage]	Process				26
		3.3.1 Th	e Experiment of	Two-Stag	e Process		26
		3.3.2 Re	action Condition	5			27
		3.3.3 Sa	mpling				27
		3.3.4 Me	onitoring Analysi	S			27
	3.4	Kinetics of 7	Two-Stage Proce	SS			28
	3.5	Two-Stage 1	Process Modeling	;			28
4	RESU	LTS AND DIS	SCUSSION				32
	4.1	Pre-Experim	nent for Two-Sta	ge Process	of Biodiese	el	32
		Production f	rom MCPO				
		4.1.1 Th	e Amount of Me	thanol (Me	eOH)		32
		4.1.2 Th	e Speed of Stirre	r			33

CONTENTS (Cont')

		4.1.3	The Amount of Catalyst	34
			4.1.3.1 The Amount of H_2SO_4	34
			4.1.3.2 The Amount of NaOH	35
		4.1.4	Water and H ₂ SO ₄ Separation	36
		4.1.5	Purification Methods	37
		4.1.6	Reaction Time	38
	4.2	Two-S	tage Process of Biodiesel Production from MCPO	39
		4.2.1	Esterification	39
		4.2.2	Transesterification	40
		4.2.3	Effect of Methanol Ratio on Two-Stage Process	41
		4.2.4	Effect of Temperature on Two-Stage Process	42
		4.2.5	The Properties of Methyl Ester from MCPO	44
	4.3	Kinetic	s of Two-Stage Process	45
		4.3.1	Rate Coefficients and Reaction Rates of Two-Stage	
			Process	45
		4.3.2	Activation Energies (E_a) of Two-Stage Process	47
	4.4	Two-S	tage Process Modeling	49
5	CON	CLUSION	IS	58
	5.1	Two-S	tage Process	58
	5.2	Two-S	tage Process Modeling	59
	5.3	Recom	nendations	59
REFEREN	CES			60
APPENDIX	KA CA	ALCULA	FION OF THE MOLECULAR WEIGHT OF MCPO	66
APPENDIX	KB KA	ARL FISC	CHER ANALYSIS	69

CONTENTS (Cont')

APPENDIX C	COMPARISON OF ANALYTICAL INSTRUMENT	71
APPENDIX D	RAW DATA FOR THE TWO-STAGE PROCESS	74
APPENDIX E	ANALYTICAL DATA FOR THE TWO-STAGE PROCESS	81
APPENDIX F	% DATA ERROR MEAN AND STANDARD DEVIATION IN	
	CATEGORIES OF THE TWO-STAGE PROCESS FROM	
	MATLAB7 CURVE FITTING TOOL	95
VITAE		99

LIST OF TABLES

TABLE		Page
2.1	Fatty acid structure	16
2.2	The percentage of common fatty acids in oils and fats	17
2.3	The requirement of commercial biodiesel qualities and quantities in	20
	Thailand	
2.4	The requirement of biodiesel qualities and quantities for agricultural	
	engines in Thailand	21
3.1	Pre-experiment conditions for the two-stage process production	29
4.1	Comparison between properties of methyl ester from MCPO and some	
	requirements of biodiesel qualities and quantities in Thailand	44
4.2	Rate coefficients and reaction orders for esterification reaction	46
4.3	Rate coefficients for transesterification reaction	46
4.4	Activation energies (cal/mol) of the two-stage process at different	49
	molar ratios of methanol to oil	
A.1	The concentration of compounds in MCPO from analysis using	
	standard methods	68
D.1	FFA conversion in MCPO by using a 1:1 molar ratio of methanol to	
	oil at a temperature of 55 degree Celsius	75
D.2	FFA conversion in MCPO by using a 1:1 molar ratio of methanol to	
	oil at a temperature of 60 degree Celsius	75
D.3	FFA conversion in MCPO by using a 1:1 molar ratio of methanol to	
	oil at a temperature of 65 degree Celsius	75
D.4	FFA conversion in MCPO by using a 2.5:1 molar ratio of methanol to	
	oil at a temperature of 55 degree Celsius	76
D.5	FFA conversion in MCPO by using a 2.5:1 molar ratio of methanol to	
	oil at a temperature of 60 degree Celsius	76

LIST OF TABLES

TABLE		Page
D.6	FFA conversion in MCPO by using a 2.5:1 molar ratio of methanol to	
	oil at a temperature of 65 degree Celsius	76
D.7	FFA conversion in MCPO by using a 3.5:1 molar ratio of methanol to	
	oil at a temperature of 55 degree Celsius	77
D.8	FFA conversion in MCPO by using a 3.5:1 molar ratio of methanol to	
	oil at a temperature of 60 degree Celsius	77
D.9	FFA conversion in MCPO by using a 3.5:1 molar ratio of methanol to	
	oil at a temperature of 65 degree Celsius	77
D.10	ME conversion in MCPO by using a 2.5:1 molar ratio of methanol to	
	oil at a temperature of 55 degree Celsius	78
D.11	ME conversion in MCPO by using a 2.5:1 molar ratio of methanol to	
	oil at a temperature of 60 degree Celsius	78
D.12	ME conversion in MCPO by using a 2.5:1 molar ratio of methanol to	
	oil at a temperature of 65 degree Celsius	78
D.13	ME conversion in MCPO by using a 5:1 molar ratio of methanol to oil	
	at a temperature of 55 degree Celsius	79
D.14	ME conversion in MCPO by using a 5:1 molar ratio of methanol to oil	
	at a temperature of 60 degree Celsius	79
D.15	ME conversion in MCPO by using a 5:1 molar ratio of methanol to oil	
	at a temperature of 65 degree Celsius	79
D.16	ME conversion in MCPO by using a 7.5:1 molar ratio of methanol to	
	oil at a temperature of 55 degree Celsius	80
D.17	ME conversion in MCPO by using a 7.5:1 molar ratio of methanol to	
	oil at a temperature of 60 degree Celsius	80

LIST OF TABLES

TABLE		Page
D.18	ME conversion in MCPO by using a 7.5:1 molar ratio of methanol to	
	oil at a temperature of 65 degree Celsius	80
F.1	Rate coefficients and reaction orders of esterification from MATLAB7	96
F.2	Rate coefficients of transesterification from MATLAB7	96
F.3	Comparison between the % data error mean and the standard	
	deviation in categories of the two-stage process between raw data	
	and MATLAB7	98

LIST OF ILLUSTRATIONS

FIGURE		Page
3.1	Diagram of research methodology	24
3.2	Equipment used in this study	26
3.3	Two-stage process	30
3.4	Diagram of the two-stage process modeling	31
4.1	Effect of stirring speed on FFA conversion in MCPO by using a 20:1	
	molar ratio of methanol to FFA, at a temperature of 60 degree	
	Celsius, catalyzed by 10 % wt H_2SO_4 of FFA	33
4.2	Effect of the amount of H_2SO_4 on FFA conversion in MCPO by using	
	a 10:1 molar ratio of methanol to FFA, at temperature of 60 degree	
	Celsius, and a speed of stirrer of 300 rpm	35
4.3	Effect of the amount of NaOH on ME conversion in MCPO by using	
	a 6:1 molar ratio of methanol to TG, at temperature of 60 degree	
	Celsius, and a speed of stirrer of 300 rpm	36
4.4	Standing time for water and H_2SO_4 separation of first stage process	36
4.5	Effect of purification method on FFA conversion in MCPO under a	
	10:1 molar ratio of methanol to FFA, at temperature of 60 degree	
	Celsius, a speed of stirrer of 300 rpm, and catalyzed by 5 %wt	
	H ₂ SO ₄ of FFA	37
4.6	Variations of the reaction mixture composition during esterification of	
	MCPO by using a 10 %wt H_2SO_4 of FFA and a 10:1 molar ratio of	
	methanol to FFA at 60 degree Celsius	49
4.7	Variations of the reaction mixture composition during	
	transesterification of MCPO by using a 0.6 %wt NaOH of TG and a	
	6:1 molar ratio of methanol to TG at 60 degree Celsius	40

xiii

LIST OF ILLUSTRATIONS (Cont')

FIGURE		Page
4.8	Effect of molar ratio of methanol to oil on FFA concentration in	
	MCPO using 10 %wt H_2SO_4 of FFA and a stirring rate of 300 rpm at	
	55 (A), 60 (B), 65 (C) degree Celsius, respectively	42
4.9	Effect of molar ratio of methanol to oil on FFA in MCPO using 0.6	
	%wt NaOH of TG and a stirring rate of 300 rpm at 55 (A), 60 (B),	
	65 (C) degree Celsius, respectively	43
4.10	The temperature dependency of reaction rate coefficients of	
	esterification at a 10:1 molar ratio of methanol to FFA	47
4.11	The temperature dependency of the reaction rate coefficients of	
	transesterification at a 6:1 molar ratio of methanol to TG	48
4.12	The procedure used in the two-stage process part	51
4.13	Inputting initial concentrations of substances (FFA, ME, and WT) in	
	%wt	51
4.14	Unit conversions for concentration in the esterification reaction (%wt	
	to mol/L)	52
4.15	Conditions for reducing FFA concentration in MCPO	52
4.16	The table and curves of the component concentrations (FFA, ME, and	
	WT) in mol/L	53
4.17	Unit conversions for concentration in the esterification reaction	
	(mol/L to %wt)	53
4.18	The table and curves of FFA, ME, and WT concentrations the optimal	
	condition in mol/L	54
4.19	Unit conversions for concentration in the esterification reaction	
	(mol/L to %wt) of the optimal condition	54
4.20	Inputting initial concentrations of TG, DG, MG, and GL in %wt	55

LIST OF ILLUSTRATIONS (Cont')

FIGURE		Page
4.21	Unit conversions for concentrations in the transesterification reaction	
	(%wt to mol/L)	55
4.22	Conditions for producing ME from MCPO	56
4.23	The table and curves of TG, DG, MG, ME, and GL concentrations in	
	mol/L	56
4.24	Unit conversions for concentratios in the transesterification reaction	
	(mol/L to %wt)	57
C.1	Comparison of FFA determination between TLC/FID and Titration	72
C.2	Comparison of ME determination between TLC/FID and GC/FID	72
C.3	Comparison of GL determination between Titration and GC/FID	73
E.1	Remained methanol content in the first stage solution	82
E.2	Ester content of first-stage process at different times	83
E.3	Free fatty acid value of MCPO	84
E.4	MG, DG and TG content in MCPO	85
E.5	The % ester content of biodiesel produce from MCPO	86
E.6	Density of biodiesel prepared from MCPO	87
E.7	Flash point and viscosity of biodiesel from MCPO	88
E.8	Sulphur content of biodiesel made from MCPO	89
E.9	Sulphur ash content of biodiesel made from MCPO	90
E.10.1	Water and sediment in biodiesel obtained from MCPO	91
E.10.2	Water and sediment in biodiesel obtained from MCPO	92
E.11	Acid number of biodiesel made from MCPO	93
E.12	Free GL, MG, DG, TG, and total GL in biodiesel produced from	
	МСРО	94

LIST OF ABBREVIATIONS AND SYMBOLS

А	Pre-exponential factor or frequency factor
А	The initial reactant
ACE	The acid-catalyzed esterification
AL	Alcohol
ASTM	American standard test method
[AL]	The molar concentration of alcohol
[A]	The molar concentration of alcohol
[A]	The molar concentration of reagent A
a	Order of free fatty acid in reaction sequence
a	Order of reagent A
a	The coefficient of reagent A
[a, b]	Interval
В	The initial reactant
BCM	The base-catalyzed methanolysis
[B]	The molar concentration of reagent B
b	Order of alcohol in reaction sequence
b	Order of reagent B
b	The coefficient of reagent B
С	The product
$C_{12}H_{24}O_2$	Lauric
$C_{14}H_{28}O_2$	Myristic
$C_{16}H_{32}O_{2}$	Palmitic
$C_{18}H_{30}O_2$	Linolenic
$C_{18}H_{32}O_{2}$	Linoleic
$C_{18}H_{34}O_2$	Oleic
$C_{18}H_{36}O_{2}$	Stearic

$C_{20}H_{40}O_{2}$	Arachidic
$C_{22}H_{42}O_{2}$	Erucic
$C_{22}H_{44}O_{2}$	Behenic
$C_{24}H_{48}O_2$	Lignoceric
CPOME	Mixed crude palm oil methyl Ester
[C]	The molar concentration of product C
c	Order of ester in reaction sequence
c	Order of product C
c	The coefficient of product C
cal	Calorie
cm ³	Cubic millimeter
cSt	Centistokes
D	The product
DG	Diglyceride
[D]	The molar concentration of product D
[DG]	The molar concentration of diglyceride
d	Order of product D
d	Order of water in reaction sequence
d	The coefficient of product D
E	Activation energy, J/mol or cal/mol
E	Ester
E _a	Activation Energies
EN	European test method
[E]	The molar concentration of ester
FAME	Fatty acid methyl ester
FFA	Free fatty acid

[FFA]	The molar concentration of free fatty acid
f(x,y)	Function (x,y)
GC/FID	Gas chromatography/ flame ionization detector
GL	Glycerol
[GL]	The molar concentration of glycerol
g	Gram
H_2SO_4	Sulfuric acid
h	Width
I.V.P.	The initial value problem
i	Order
J	Joule
К	Kelvin
КОН	Potassium hydroxide
k _A	The rate coefficient
k _a	The rate coefficient of the forward reaction
k_{-a}	The rate coefficient of the reverse reaction
k ₁	The rate coefficient of free fatty acid (forward reaction)
k ₂	The rate coefficient of free fatty acid (reverse reaction)
k ₃	The rate coefficient of TG (forward reaction)
k ₄	The rate coefficient of TG (reverse reaction)
k ₅	The rate coefficient of DG (forward reaction)
k ₆	The rate coefficient of DG (reverse reaction)
k ₇	The rate coefficient of MG (forward reaction)
k ₈	The rate coefficient of MG (reverse reaction)
kg/m ³	Kilogram/ cubic metre
k1	The first step of the Runge-Kutta Method calculation

k2	The second step of the Runge-Kutta Method calculation
k3	The third step of the Runge-Kutta Method calculation
k4	The fourth step of the Runge-Kutta Method calculation
L	Liter
ln	Natural logarithm
М	Subinterval
МСРО	Mixed crude palm oil
ME	Methyl ester
ME1	Methyl ester from the first-stage process
MeOH	Methanol
MG	Monoglycerides
[MG]	The concentration of monoglyceride
m	The number of categories
mg/kg	Milligram/ kilogram
mg KOH/g	Milligram potassium hydroxide/ gram
0 0	Milligram potassium hydroxide/ gram Minute
mg KOH/g	
mg KOH/g min	Minute
mg KOH/g min ml.	Minute Milliliter
mg KOH/g min ml. NaOH	Minute Milliliter Sodium hydroxide
mg KOH/g min ml. NaOH N _{RE}	Minute Milliliter Sodium hydroxide Reynolds Number
mg KOH/g min ml. NaOH N _{RE} n	Minute Milliliter Sodium hydroxide Reynolds Number Number of population
mg KOH/g min ml. NaOH N _{RE} n n n _i	Minute Milliliter Sodium hydroxide Reynolds Number Number of population Sizes of categories
mg KOH/g min ml. NaOH N _{RE} n n n _i O.D.E	Minute Milliliter Sodium hydroxide Reynolds Number Number of population Sizes of categories Ordinary Differential Equation
mg KOH/g min ml. NaOH N _{RE} n n _i O.D.E ode23	Minute Milliliter Sodium hydroxide Reynolds Number Number of population Sizes of categories Ordinary Differential Equation Runge-Kutta Method order 2-3

R	Gas constant = 8.314 J/mol K or 1.987 cal/mol K
R	Short chain alkyl groups
RK4	The fourth-order Runge-Kutta Method
RPO	Refined palm oil
R^2	The determination coefficient
R′	Alkyl group
R′	Long chain alkyl groups
R''	Alkyl group
R''	Long chain alkyl groups
R''O	Hydrocarbon group
R'''	Long chain alkyl groups
rpm	Revolutions per minute
Т	Absolute temperature, K
Т	Temperature
T TLC/FID	Temperature Thin layer chromatography/ flame ionization detector
	-
TLC/FID	Thin layer chromatography/ flame ionization detector
TLC/FID TG	Thin layer chromatography/ flame ionization detector Triglycerides
TLC/FID TG TSO	Thin layer chromatography/ flame ionization detector Triglycerides Tobacco seed oil
TLC/FID TG TSO [TG]	Thin layer chromatography/ flame ionization detector Triglycerides Tobacco seed oil The molar concentration of triglyceride
TLC/FID TG TSO [TG] t	Thin layer chromatography/ flame ionization detector Triglycerides Tobacco seed oil The molar concentration of triglyceride Time
TLC/FID TG TSO [TG] t WT	Thin layer chromatography/ flame ionization detector Triglycerides Tobacco seed oil The molar concentration of triglyceride Time Water
TLC/FID TG TSO [TG] t WT [WT]	Thin layer chromatography/ flame ionization detector Triglycerides Tobacco seed oil The molar concentration of triglyceride Time Water The molar concentration of water
TLC/FID TG TSO [TG] t WT [WT] xi	Thin layer chromatography/ flame ionization detector Triglycerides Tobacco seed oil The molar concentration of triglyceride Time Water The molar concentration of water Population x
TLC/FID TG TSO [TG] t WT [WT] xi Xi,j	Thin layer chromatography/ flame ionization detector Triglycerides Tobacco seed oil The molar concentration of triglyceride Time Water The molar concentration of water Population x Data measurements

μ Mean Mean μ_{i} σ The standard deviation σ_{i} Standard deviation %v %volume by volume %v/v %volume by volume %vol %volume by volume %weight by weight %wt %weight by volume %wt/v %weight by weight %wt/wt