

Selection and Enzyme Assays of Pyrethroid Resistance in Anopheles minimus Colony

Piyanoot Juntarumporn

Master of Science Thesis in Entomology Prince of Songkla University 2003

T	
เลขหมู OL536 P59	2003
Bib Key 23727	4
2 4 S.A.	2546/

Thesis Title Selection and Enzyme Assays of Pyrethroid Resistance in Anopheles

minimus Colony

Author Miss Piyanoot Juntarumporn

Major Program Entomology

Academic Year 2003

Abstract

This study was conducted to test susceptibilities of *Anopheles minimus* species A mosquitoes following exposures to deltamethrin, during each of 19 generations. The LD $_{50}$ and LD $_{90}$ (or LT $_{50}$ and LT $_{90}$) values were determined for populations from each subsequent generation by probit analysis and significant increases occuring from one generation to the next. They were analyzed by chi-square test (P<0.01). Selection for resistance via the World Health Organization test protocol (was by exposing), sequential generations of *An. minimus* females to LD $_{50}$ and LT $_{50}$ values of deltamethrin. There was approximately a 26-fold increase in the LD $_{50}$ and a 23-fold increase in LD $_{90}$ when the F $_{10}$ generation was compared to the parent colony (F $_{1}$). Similarly, the LT $_{50}$ and LT $_{90}$ values were also increased during selection experiments from generations 14-19. There was roughly a 3-fold increase in LT50 and LT90 values of F19 females compared to F $_{14}$ females.

In addition, enzyme-based mechanisms of insecticide resistance were performed on susceptible and resistant colonies of An. minimus to deltamethrin using biochemical assay. Three enzyme assays, esterase, monooxygenases and glutatione S-transferases, were performed on 4 test populations (F_0 , F_8 , F_{12} and F_{18}). F_0 was found completely susceptible to deltamethrin, whereas F_8 , F_{12} and F_{18} demonstrated levels of tolerance/resistance to deltamethrin. Monooxygenases (MFOs) activity was continuously elevated in resistant test populations (F_8 , F_{12} and F_{18}) than those from the parent colony (F_0). There was a 5-fold increase in specific activity of MFOs in F_{18} compared to the control colony (F_0). Specific activities of alpha and beta-esterases as measured by the

hydrolysis of alpha and beta-naphthyl propionate to naphthol showed it was unclear whether it is responsible for pyrethroid resistance. Glutathione S-transferases (GSTs) were not elevated in the 4 resistant test populations. Based on our results, it is more likely that the development of physiological resistance to deltamethrin may be related to elevated MFOs activity.