ชื่อวิทยานิพนธ์ การคัดเลือกยุง Anopheles minimus ที่มีความต้านทานต่อสารไพรีทรอยด์และ

การสอบวิเคราะห์เอนไซม์

ผู้เขียน นางสาวปิยนุข จันทรัมพร

สาขาวิชา กีฏวิทยา

ปีการศึกษา 2546

บทศัสย่อ

งานวิจัยนี้ได้ทำการทดสอบความไวของยุงกันปล่องมินิมัส เอ (Anopheles minimus species A)ที่มีต่อสารเดสตามิทริน ตามวิธีขององค์การอนามัยโลก (WHO) โดยทำการทดสอบ กับยุงทั้งหมด 19 รุ่นด้วยกัน ซึ่งในแต่ละรุ่นนั้นทำการหาค่า LD₅₀ และ LD₉₀ (F_0 - F_{10}) หรือ LT₅₀ และ LT₉₀ (F_{14} - F_{19}) ด้วยวิธีการวิเคราะห์แบบโพรบิท และทดสอบความแตกต่างทางสถิติโดยใช้โค-สแควร์ จากนั้นนำค่า LD₅₀ หรือ LT₅₀ ที่ได้ไปใช้ในการคัดเลือกยุงที่มีความต้านทานในแต่ละรุ่น พบ ว่าใน ประชากรของยุงรุ่นที่ 10 (F_{10}) มีค่า LD₅₀ เพิ่มขึ้น 26 เท่า และค่า LD₉₀ เพิ่มขึ้น 23 เท่า เมื่อ เทียบกับรุ่นพ่อแม่ (F_0) ส่วนในประชากรรุ่นที่ 19 (F_{19}) นั้นพบว่าค่า LT₅₀ และ LT₉₀ เพิ่มขึ้น 3 เท่า เมื่อเทียบกับประชากรรุ่นที่ 14 (F_{14})

นอกจากนั้นยังได้ทำการศึกษากลไกการต้านทานทางชีวเคมีของยุงที่ผ่านการทดสอบต่อ สารเดลตามิทริน โดยทำการศึกษาการเปลี่ยนแปลงของระดับเอนไซม์ 3 ชนิดคือ เอสเทอเรส (esterase) โมโนออกซีจีเนส (monooxygenases) และกลูทาไธโอน เอส-ทรานเพ่อเรส (glutathione S-tranferases) ในยุงทั้งหมด 4 รุ่นด้วยกัน คือ รุ่นที่ 8, 12, 18 และรุ่นพ่อแม่ (F₈, F₁₂, F₁₈ และ F₀) โดยที่ยุงรุ่น F₀ นั้นมีความไวต่อสารเดลตามิทริน ในขณะที่ยุงรุ่นอื่น ๆ นั้นมีความทน ทานและ/หรือความต้านทานต่อสารเดลตามิทรินในระดับที่ต่างกันไปในแต่ละรุ่น ซึ่งจากการ ทดสอบพบว่ายุงแต่ละรุ่นจะมีปริมาณของเอนไซม์โมโนออกซีจีเนลเพิ่มขึ้นอย่างต่อเนื่องเมื่อเทียบ กับยุงรุ่นพ่อแม่ และมีปริมาณเพิ่มขึ้น 5 เท่าในรุ่นที่ 18 และพบการเพิ่มขึ้นของเอลฟาและเบต้าเอส เทอเรส (aipha and betaa esterases)อย่างไม่เป็นอันดับในยุงแต่ละรุ่นเมื่อเทียบกับรุ่นพ่อแม่ ส่วนในกลูทาไธโอน เอส-ทรานเพ่อเรสนั้นไม่เพิ่มขึ้น ดังนั้นจึงสามารถสรุปได้ว่าการพัฒนาความ ด้านทานทางสรีรวิทยา (physiological resistance) ของยุงกันปล่องมินิมัล เอ ต่อสารเดลต้ามิทริน ขึ้นอยู่กับการเพิ่มปริมาณของเอนไซม์โมโนออกซีจีเนล

Thesis Title Selection and Enzyme Assays of Pyrethroid Resistance in Anopheles

minimus Colony

Author Miss Piyanoot Juntarumporn

Major Program Entomology

Academic Year 2003

Abstract

This study was conducted to test susceptibilities of *Anopheles minimus* species A mosquitoes following exposures to deltamethrin, during each of 19 generations. The LD₅₀ and LD₉₀ (or LT₅₀ and LT₉₀) values were determined for populations from each subsequent generation by probit analysis and significant increases occuring from one generation to the next. They were analyzed by chi-square test (P<0.01). Selection for resistance via the World Health Organization test protocol (was by exposing), sequential generations of *An. minimus* females to LD₅₀ and LT₅₀ values of deltamethrin. There was approximately a 26-fold increase in the LD₅₀ and a 23-fold increase in LD₉₀ when the F₁₀ generation was compared to the parent colony (F₁). Similarly, the LT₅₀ and LT₉₀ values were also increased during selection experiments from generations 14-19. There was roughly a 3-fold increase in LT50 and LT90 values of F19 females compared to F₁₄ females.

In addition, enzyme-based mechanisms of insecticide resistance were performed on susceptible and resistant colonies of *An. minimus* to deltamethrin using biochemical assay. Three enzyme assays, esterase, monooxygenases and glutatione S-transferases, were performed on 4 test populations (F_0 , F_8 , F_{12} and F_{18}). F_0 was found completely susceptible to deltamethrin, whereas F_8 , F_{12} and F_{18} demonstrated levels of tolerance/resistance to deltamethrin. Monooxygenases (MFOs) activity was continuously elevated in resistant test populations (F_8 , F_{12} and F_{18}) than those from the parent colony (F_0). There was a 5-fold increase in specific activity of MFOs in F_{18} compared to the control colony (F_0). Specific activities of alpha and beta-esterases as measured by the

hydrolysis of alpha and beta-naphthyl propionate to naphthol showed it was unclear whether it is responsible for pyrethroid resistance. Glutathione S-transferases (GSTs) were not elevated in the 4 resistant test populations. Based on our results, it is more likely that the development of physiological resistance to deltamethrin may be related to elevated MFOs activity.