Contents

		Page
Abstract (Thai)		(3)
Abstract (English)		(5)
Acknowledgement	!	(7)
Contents		(9)
List of Tables		(13)
List of Figures		(15)
List of Abbreviation	ons	(17)
Chapter		
1. Introduction		1
Literature review	w	3
1. Schizophyllu	um commune	3
1.1 General	characteristic	3
1.2 The utili	zation of S. commune	4
1.2.1 As	a food source	4
1.2.2 As	a source of useful metabolites	4
2. Fibrinolytic	enzyme	6
2.1 Conversi	ion of fibrinogen to fibrin and fibrinolysis	6
2.2 Sources	of fibrinolytic enzymes	9
2.3 Factors a	affecting on fibrinolytic enzyme production	12
2.3.1 C	ultural conditions .	12
2.3.2 N	utrient compositions	12
2.3.3 Te	emperature	13
2.3.4 M	oisture content	14
2.3.5 Ci	ulture time	14
3. Purification	of fibrinolytic enzymes	14

Contents (continue)

	Page
4. Characterization of fibrinolytic enzymes	17
4.1 Serine proteases	18
4.2 Metalloproteases	20
Objectives	23
2. Materials and Methods	24
Materials	24
1. Microorganism	24
2. Media	24
3. Chemicals	24
Instruments	25
Analytical methods	25
Methods	27
1. Effect of cultural medium and environmental conditions on	27
growth and fibrinolytic enzyme production	
1.1 Effect of cultural medium	28
1.2 Effect of incubation periods	29
1.3 Effect of pHs	29
1.4 Effect of temperatures	29
1.5 Effect of shaking speed	29
1.6 Time course of growth and fibrinolytic enzyme productio	n 29
under optimal conditions	
2. Purification of fibrinolytic enzyme	29
2.1 Ammonium sulfate precipitation	29
2.2 Dialysis	30
2.3 Anion-exchange column chromatography	30
2.4 Gel electrophoresis	31

Contents (continue)

	rage
3. Characterization of the partially purified fibrinolytic enzyme	31
3.1 Effect of temperature on enzyme activity	31
3.2 Effect of pH on enzyme stability	32
3.3 Effect of temperature on enzyme stability	32
3.4 Effect of metal ions and chemical reagents on enzyme	32
activity	
3.5 Enzyme stability after prolonged incubation	33
3. Results and Discussion	34
1. Effect of cultural medium and environmental conditions on	34
growth and fibrinolytic enzyme production	
1.1 Effect of cultural medium	34
1.2 Effect of incubation periods	36
1.3 Effect of pHs	36
1.4 Effect of temperatures	39
1.5 Effect of shaking speed	41
1.6 Time course of growth and fibrinolytic enzyme production	41
under optimal conditions	
2. Purification of fibrinolytic enzyme	45
2.1 Ammonium sulfate precipitation	45
2.2 Dialysis	45
2.3 Anion-exchange column chromatography	46
2.4 Gel electrophoresis	50
3. Characterization of the partially purified fibrinolytic enzyme	52
3.1 Effect of temperature on enzyme activity	52
3.2 Effect of pH on enzyme stability	54
3.3 Effect of temperature on enzyme stability	56

Contents (continue)

		Page
3.4 Effect of n	netal ions and chemical reagents on	58
enzyme act	tivity	
3.5 Enzyme st	ability after prolonged incubation	60
4. Conclusion		62
References		64
Appendices		72
Appendix 1	Medium preparation	72
Appendix 2	Buffer preparation	75
Appendix 3	Analytical methods and (NH ₄) ₂ SO ₄ fractionation	79
Appendix 4	Data analysis	87
Publications		90
Vitae		91

List of Tables

Table		Page
1	Fibrinolytic enzymes producing microorganisms	10
2	Composition of medium for cultivation of S. commune BL 23	28
3	Ammonium sulfate precipitation of fibrinolytic activity	47
	at various salt saturation	
4	Effect of ammonium salts and sulfate salts on fibrinolytic	47
	activity	
5	Summary of fibrinolytic enzyme purification steps	48
6	Effect of pH on enzyme stability, the partially	55
	purified enzyme of S. commune BL 23 was incubated	
	at room temperature (28°C) for 20 min and 48 h	
7	Effect of metal ions and chemical reagents on fibrinolytic	59
	activity from S. commune BL 23	
Appen	dix	
3.1	Experimental set up for the Bradford's method	80
3.2	Final concentrations of ammonium sulfate: percentage	86
	saturation	
4.1	Effect of cultural medium (initial pH = 6) on fibrinolytic	87
	enzyme production of S. commune BL 23 cultivated	
	at 30°C, 150 rpm for 7 days	
4.2	Effect of incubation period on growth and fibrinolytic	87
	enzyme production of S. commune BL 23 cultivated in	
	PYGM medium (initial pH = 6.0) at 30°C and 150 rpm	
4.3	Effect of initial pH of PYGM medium on growth and	88
	fibrinolytic enzyme production of S. commune BL 23	
	cultivated at 30°C, 150 rpm for 7 days	

List of Tables (continue)

Appendix		Page
4.4	Effect of temperature on growth and fibrinolytic enzyme	88
	production of S. commune BL 23 cultivated in PYGM	
	with initial pH of 6.0 at 150 rpm for 7 days	
4.5	Effect of shaking speed on growth and fibrinolytic	88
	enzyme production of S. commune BL 23 cultivated	
	in PYGM with initial pH of 6.0 at 35°C for 7 days	
4.6	Time course of growth and fibrinolytic enzyme	89
	production of S. commune BL 23 cultivated in PYGM	
	medium with initial pH of 6.0 at 35°C and 150 rpm	

List of Figures

Figure		Page
1	The fruiting body of Schizophyllum commune	3
2	Diagrammatic representation of the fibrinogen molecule	7
	and its conversion to the soft clot of fibrin	
3	Reactions involved in the dissolution of the clot	8
4	Fibrinolytic activity on fibrin plate	27
5	Effect of cultural medium (initial pH = 6) on fibrinolytic	35
	enzyme production of S. commune BL 23 cultivated at	
	30°C, 150 rpm for 7 days	
6	Effect of incubation time on growth and fibrinolytic	37
	enzyme production of S. commune BL 23 cultivated	
	in PYGM medium (initial pH = 6) at 30°C and 150 rpm	
7	Effect of initial pH of PYGM medium on growth and	38
	fibrinolytic enzyme production of S. commune BL 23	
	cultivated at 30°C, 150 rpm for 7 days	
8	Effect of temperature on growth and fibrinolytic enzyme	40
	production of S. commune BL 23 cultivated in PYGM	
	with initial pH of 6.0 at 150 rpm for 7 days	
9	Effect of shaking speed on growth and fibrinolytic	42
•	enzyme production of S. commune BL 23 cultivated in	
	PYGM with initial pH of 6.0 at 35°C for 7 days	
10	Time course of growth and fibrinolytic enzyme	44
	production of S. commune BL 23 cultivated in PYGM	
	medium with initial pH of 6.0 at 35°C and 150 rpm	
11	Anion exchange column chromatography on DEAE	49
	-Sephacel of fibrinolytic enzyme of S. commune	
ý V	BL 23 using linear gradient 0-0.5 M NaCl	

List of Figures (continue)

Figure		Page
12	Native polyacrylamide gel electrophoresis of protein fractions	51
	obtained during purification of fibrinolyticenzyme of	
	S. commune BL 23. Lane 1 standard; 2 crude enzyme;	
	3, dialysis; 4, DEAE-Sephacel	
13	Partially purified fibrinolytic enzyme activity on fibrin	51
	plate after running native polyacrylamide gel electrophoresis	
14	Effect of temperature on enzyme activity, the	53
	partially purified enzyme of S. commune BL 23	
	was incubated at various temperature for 18 h	
15	Effect of temperature on enzyme stability, the partially	57
	purified enzyme of S. commune BL 23 in the buffer solution	
	(pH 7.0) was incubated at 40, 50 and 60°C for 48 h.	
16	The enzyme stability from S. commune BL 23 after prolonged	61
	incubation time in the buffer solution (pH 7.0) at 30°C for 60	
	days.	
•		
Appen	dix	Page
3.1	Standard curve of BSA at the absorbance of 750 nm.	81

3.2 Standard curve of BSA at the absorbance of 595 nm.

81

List of Abbreviation

°C = Degree celsius

 ρ CMB = ρ -chloromercuribenzoate

 $\mu l = Microliter$

BSA = Bovine serum albumin

conc = concentration

DEAE = Diethylaminoethyl

DFP = Diisopropylfluorophosphate

EDTA = Ethylenediamine tetraacetic acid

EGTA = Ethylene glycol-o-o'-bis [2-amino-ethyl]-N-N-

N'-N'-tetraacetic acid

h = hours

ICH₂COOH = Iodoacetic acid

kDa = Kilodaltons

1 = Liter

mg = Milligram

min = Minute

ml = Milliliter

MW = Molecular weight

NPGB = ρ -nitrophenyl- ρ -guanidobenzoate-HCl

O.D. = Optical density

PAGE = Polyacrylamide gel electrophoresis

PMSF = Phenylmethyl sulfonylfluoride

rpm = Revolutions per minute

sat. = Saturation

SBTI = Soybean trypsin inhibitor

SDS = Sodium dodecyl sulfate

TEMED = N,N,N',N',-tetramethyl ethylenediamine

List of Abbreviation (continue)

TLCK = N-toluenesulfonyl-L-lysine chloromethyl ketone

TPCK = N-toluenesulfonyl-L-phenylalanine chloromethyl

ketone

U = Units

v/v = Volumn/volumn