CONTENTS

	PAGE
บทกัดย่อ	(3)
ABSTRACT	(5)
ACKNOWLEDGEMENT	(7)
CONTENTS	(8)
IST OF TABLES	(11)
LIST OF FIGURES	(12)
CHAPTER	
1 INTRODUCTION	1
1.1 Background and Rationale	1
1.2 Objectives of the Research	3
1.3 Hypothesis	4
1.4 Scope and Limitation of the Research	4
1.5 Expecting Outcomes	5
2 LITERATURE REVIEW	6
2.1 n-3 Polyunsaturated Fatty Acids (n-3 PUFAs)	6
2.1.1 Source of n-3 PUFAs	6
2.1.2 Health Benefits of n-3 PUFAs	8
2.1.3 Intake of n-3 PUFAs	10
2.2 Transesterification	11
2.2.1 Distinction of Enzymatic and Chemical Transesterification	12
2.2.2 Chemistry of Chemical Transesterification	13
2.2.3 Mechanism of Chemical Transesterification	13
2.2.4 Applications of Chemical Transesterification in Food Lipids	15
2.3 Microencapsulation	16
2.3.1 Corn Syrup Solids as Encapsulant	17
2.3.2 Emulsification	19
2.3.3 Spray Drying	23
2.4 Changes in physicochemical properties of spray dried powder	25
2.4.1 Structural Collapse and Crystallization	25
2.4.2 Maillard Reaction	27

CONTENTS (Continued)

		PAGE
	2.5 Lipid Oxidation	30
	2.5.1 Lipid Oxidation in Liquid Emulsion	30
	2.5.2 Lipid Oxidation in Dried Emulsion	33
3	RESEARCH BRIEFING	36
4	CHEMICAL TRANSESTERIFICATION OF TUNA OIL TO	
	ENRICH n-3 POLYUNSATURATED FATTY ACIDS	38
	4.1 Abstract	38
	4.2 Introduction	38
	4.3 Materials and Methods	39
	4.4 Results and Discussion	42
	4.5 Conclusion	51
	4.6 Concision of Further Study	51
5	EMULSIFICATION OF TUNA OIL IN TWO-LAYERED	
	INTERFACIAL MEMBRANES	52
	5.1 Abstract	52
	5.2 Introduction	52
	5.3 Materials and Methods	54
	5.4 Results and Discussion	58
	5.5 Conclusion	71
	5.6 Concision of Further Study	71
6	INCREASING THE OXIDATIVE STABILITY OF LIQUID AND	
	DRIED TUNA OIL-IN WATER EMULSIONS	72
	6.1 Abstract	72
	6.2 Introduction	72
	6.3 Materials and Methods	74
	6.4 Results and Discussion	77
	6.5 Conclusion	86
	6.6 Concision of Further Study	86

CONTENTS (Continued)

		PAGE
7	CHARACTERIZATION OF SPRAY-DRIED TUNA OIL	
	EMULSIFIED IN TWO- LAYERED INTERFACIAL MEMBRANES	87
	7.1 Abstract	87
	7.2 Introduction	87
	7.3 Materials and Methods	88
	7.4 Results and Discussion	93
	7.5 Conclusion	102
	7.6 Concision of Further Study	102
8	EFFECT OF STORAGE ENVIRONMENTS ON STABILITY OF	
	SPRAY-DRIED TUNA OIL EMULSION	103
	8.1 Abstract	103
	8.2 Introduction	103
	8.3 Materials and Methods	105
	8.4 Results and Discussion	109
	8.5 Conclusion	121
9	RESEARCH SUMMARY	122
	9.1 Summary of Research Investigation	122
	9.2 Suggestion for Future Research	125
REF	ERENCES	127
VIT	AE	144

LIST OF TABLES

TABLI	E PA	AGE
1	Amount of EPA and DHA in fish, crustacean and fish oils.	7
2	Reaction conditions for transesterification of sodium methoxide (NaOCH ₃).	14
3	Glass transition temperature of maltodextrins/corn syrup solids as a function	
	of water activity.	27
4	Lipid composition (% peak area) of refined tuna oil, n-3 fatty acids methyl	
	ester (n-3 FAME) and transesterified tuna oil.	44
5	Fatty acid composition (mg/g oil) in refined tuna oil, n-3 fatty acids methyl	
	ester (n-3 FAME) and transesterified tuna oil.	46
6	Linear regression coefficient of full factorial design-effects for response	
	variables (TG recovery, EPA and DHA) on tranesterification of tuna oil.	48
7	Influence of corn syrup solids concentration on electrical charge (ζ -potential),	
	apparent viscosity (η_{APP}) and relative viscosity (η_{REL}) of secondary emulsions	
	consisting of 5 wt% tuna oil, 1 wt% lecithin, 0.2 wt% chitosan, 100 mM	
	acetate buffer (pH 3.0).	58
8	Influence of NaCl (0 or 200 mM) and corn syrup solids, CSS (0 or 20 wt%)	
	on mean particle diameter and electrical charge (ζ -potential) of emulsions	
	consisting of 5 wt% tuna oil, 1 wt% lecithin, 100 mM acetate buffer (pH 3.0)	,
	and either 0 wt% chitosan (primary emulsion) or 0.2 wt% chitosan	
	(secondary emulsion).	61
9	Dependence of mean particle diameter (µm) of primary and secondary	
	emulsions on number of freeze-thaw cycles (-18°C for 22 h/30°C for 2 h)	
	in the absence and presence of 20 wt% corn syrup solids (CSS).	67
10	Effect of inlet temperature on properties of spray dried tuna oil emulsion.	95
11	Effect of inlet temperature on color of spray dried tuna oil emulsion.	98

LIST OF FIGURES

FIGURE	PA	GE
1	Proposed reaction mechanisms for chemical transesterification: a), carbonyl	
	addition and b), Claisen condensation.	15
2	Instability of emulsion.	19
3	Molecular structural of major phospholipids; R = fatty acid residue.	20
4	A schematic picture of the structure and the conformation of cationic starch/	
	anionic surfactant complexes in dilute aqueous solutions.	21
5	Structures of chitin and chitosan.	23
6	Spray drying system.	24
7	Schematic presentation of a droplet during drying in the crust formation	
	period; Q = heat, b = crust thickness, r-b = radius of the liquid droplet,	
	dm/dt = mass transfer.	25
8	Interactions between Maillard reaction and lipid oxidation pathways in	
	nonenzymatic browning development.	29
9	Generalized scheme for autoxidation of lipids.	31
10	Interfacial phenomena to explain the action of antioxidants in bulk oil	
	and oil-in-water emulsion systems.	33
11	Relative rate of reaction as a function of water activity: a), nonenzymatic	
	browning. b), lipid oxidation.	34
12	Effect of reaction time on remaining of TG. Transesterification was carried	
	out at 80°C for 24 h, the mole ratio of tuna oil to n-3 FAME was 1:4	
	and NaOCH ₃ amount was 1.0% wt% of reactants.	43
13	Effect of reaction time on incorporation of EPA and DHA into tuna oil with	
	transesterification. Transesterification was carried out at 80°C for 24 h, the	
	mole ratio of tuna oil to n-3 FAME was 1:4 and NaOCH ₃ amount was 1.0%	
	wt% of reactants.	45
14	Effect of reaction conditions on TG remaining of tuna oil after transesterificati	on
	with the mole ratios of tuna oil to n-3 FAME were 1:2 (a), 1:3 (b) and	
	1:4(c) at 60, 70 and 80°C.	47

LIST OF FIGURES (Continued)

FIGURE	PA	GE
15	Effect of reaction condition on incorporation of EPA into TG of tuna oil	
	after transesterification. The mole ratios of tuna oil to n-3 FAME were	
	1:2 (a), 1:3 (b) and 1:4(c) at 60, 70 and 80°C.	49
16	Effect of reaction condition on incorporation of DHA into TG of tuna oil	
	after transesterification. The mole ratios of tuna oil to n-3 FAME were	
	1:2 (a), 1:3 (b) and 1:4(c) at 60, 70 and 80° C.	50
17	Influence of pH on electrical charge (ζ -potential) of emulsion droplets in	
	primary (5 wt% tuna oil, 1 wt% lecithin, 100 mM acetate buffer, pH 3.0)	
	and secondary emulsions (5 wt% tuna oil, 1 wt% lecithin, 0.2 wt% chitosan,	
	100 mM acetate, pH 3.0) in the absence and presence of 20 wt% corn syrup	
	solids (CSS).	62
18	Influence of pH on mean diameter of emulsion droplets in primary	
	(5 wt% tuna oil, 1 wt% lecithin, 100 mM acetate, pH 3.0) and secondary	
	emulsions (5 wt% tuna oil, 1 wt% lecithin, 0.2 wt% chitosan, 100 mM	
	acetate, pH 3.0) in the absence and presence of 20 wt% corn syrup solids	
	(CSS).	63
19	Dependence of microstructure on isothermal treatment temperature	
	(30 and 90°C for 30 min) for: a) primary emulsion; b) primary emulsion	
	in the presence of 20 wt% corn syrup solids; and c) secondary emulsions.	66
20	Microstructure of reconstituted emulsions for: a) primary emulsion; b)	
	and c) for secondary emulsions in the absence and presence of 20 wt%	
	corn syrup solids, respectively.	69
21	Time dependence of the mean particle diameter and obscuration of powdered	
	secondary emulsions containing 20 wt% corn syrup solids that were	
	dispersed into an aqueous solution in the measurement cell of a light	
	scattering instrument.	70