CONTENTS

	Page
บทกัดย่อ	(3)
Abstract	(6)
Acknowledgement	(9)
The relevance of the research work to Thailand	(10)
Contents	(11)
Lists of tables	(14)
Lists of illustration	(19)
Abbriviations and symbols	(24)
Chapter	
1 Introduction	
1.1 Introduction	1
1.2 Review of Literatures	3
1.3 Biosynthetic pathways of cyclohexene oxides	48
1.4 Synthesis of Pipoxide Derivatives	56
1.5 Objectives	56
2 Experimental	
2.1 Instruments and chemicals	57
2.2 Plant material	58
2.3 Extraction	58

CONTENTS (Continued)

	Page
2.4 Isolation and chemical investigation	
2.4.1 Investigation of the crude hexane extract from	58
the leaves of U. purpurea Blume.	
2.4.2 Investigation of the crude methylene chloride	67
extract from the leaves of U. purpurea Blume.	
2.4.3 Investigation of the crude methanol extract from	70
the leaves of U. purpurea Blume.	
2.5 Synthesis of pipoxide derivatives	73
2.5.1 Acetylation of compound SAH1 (pipoxide)	73
2.5.2 Hydrobromination of compound SAH1	75
2.5.3 Hydrolysis of compound SAH1	77
2.5.4 Epoxidation of compound SAH1	78
2.5.5 Acetylation of compound SAH2	80
2.6 The synthetic confirmed of compound SAH2	82
Results and discussion	
3.1 Structural elucidation of compounds from the leaves	92
of <i>U. purpurea</i> Blume	
3.1.1 Compound SAH1	93
3.1.2 Compound SAH2	100
3.1.3 Compound SAH3	109
3.1.4 Compound SAC1	120
3.1.5 Compound SAM1	129

3

(12)

CONTENTS (Continued)

	Page
3.2 Structural elucidation of compounds synthesized	130
from pipoxide, compound SAH1, and compound SAH2	
3.2.1 Compound ST1	130
3.2.2 Compound ST2	140
3.2.3 Compound ST3	149
3.2.4 Compound ST4	161
3.2.5 Compound ST5	173
3.3 Biological activities of the crude extract and pure	182
compounds from U. purpurea Blume and synthetic pipoxide	
derivatives	

Bibliography

282

LISTS OF TABLES

Table		Page
1	Compounds from plants of Uvaria genus	4
2	¹³ C and DEPT spectral data of compound SAH1	95
3	500 MHz COSY correlation of some protons of compound SAH1	96
4	Major HMBC correlation of compound SAH1	97
5	¹ H and ¹³ C NMR spectral data of compound SAH1	98
6	Comparison of ¹ H NMR spectral data between compound SAH1 and	99
	(+)-pipoxide	
7	¹³ C and DEPT spectral data of compound SAH2	103
8	300 MHz COSY correlation of some protons of compound SAH2	104
9	Major HMBC correlation of compound SAH2	104
10	¹ H and ¹³ C NMR spectral data of compound SAH2	106
11	Comparison of ¹ H NMR spectral data between compound SAH2	107
	and SAH1	
12	Comparison of ¹³ C NMR spectral data between compound	108
	SAH2 and SAH1	
13	¹³ C and DEPT spectral data of compound SAH3	112
14	500 MHz COSY correlation of some protons of SAH3	113
15	Major HMBC correlation of compound SAH3	113
16	¹ H and ¹³ C NMR spectral data of compound SAH3	115
17	Comparison of ¹ H NMR spectral data between compound SAH3	116
	and SAH1	

(14)

Table]	Page
18	Comparison of ¹³ C NMR spectral data between compound SAH3	117
	and SAH1	
19	Comparison of ¹ H NMR spectral data between compound SAH3	118
	and (-)-zeylenol	
20	Comparison of ¹³ C NMR spectral data between compound	119
	SAH3 and (-)-zeylenol	
21	¹³ C and DEPT spectral data of compound SAC1	123
22	300 MHz COSY correlation of some protons of compound SAC1	124
23	Major HMBC correlation of compound SAC1	125
24	¹ H and ¹³ C NMR spectra data of compound SAC1	126
25	Comparison of ¹ H NMR spectral data between compound SAC1 and	127
	SAH3	
26	Comparison of ¹³ C NMR spectral data between compound SAC1 and	128
	SAH3	
27	¹³ C and DEPT spectral data of compound ST1	133
28	300 MHz COSY correlation of some protons of compound ST1	134
29	Major HMBC correlation of compound ST1	134
30	¹ H and ¹³ C NMR spectral data of compound ST1	136
31	Comparison of ¹ H NMR spectral data between compound ST1 and SAH1	137
32	Comparison of ¹³ C spectral data between compound ST1 and SAH1	138

Tabl	e	Page
33	Comparison of ¹ H NMR spectral data between compound ST1 and	139
	pipoxide acetate	
34	¹³ C and DEPT spectral data of compound ST2	142
35	300 MHz COSY correlation of some protons of ST2	143
36	Major HMBC correlation of compound ST2	143
37	¹ H and ¹³ C NMR spectral data of compound ST2	145
38	Comparison of ¹ H NMR spectral data between compound ST2	146
	and SAH1	
39	Comparison of ¹³ C NMR spectral data between compound ST2	147
	and SAH1	
40	Comparison of ¹ H NMR spectral data between compound ST2	148
	and pipoxide bromohydrin	
41	¹³ C and DEPT spectral data of compound ST3	152
42	300 MHz COSY correlation of some protons of ST3	153
43	Major HMBC correlation of compound ST3	153
44	¹ H and ¹³ C NMR spectral data of compound ST3	155
45	Comparison of ¹ H NMR spectral data between compound ST3	156
	and SAH1	
46	Comparison of ¹ H NMR spectral data between compound ST3	157
	and SAH3	

Table		Page
47	Comparison of ¹³ C NMR spectral data between compound ST3	158
	and SAH3	
48	Comparison of ¹ H NMR spectral data between compound ST3	159
	and (-)-zeylenol	
49	Comparison of ¹³ C NMR spectral data between compound ST3	160
	and (-)-zeylenol	
50	¹³ C and DEPT spectral data of compound ST4	164
51	300 MHz COSY correlation of some protons of ST4	165
52	Major HMBC correlation of compound ST4	165
53	¹ H and ¹³ C NMR spectral data of compound ST4	167
54	Comparison of ¹ H NMR spectral data between ST4 and SAH1	168
55	Comparison of ¹³ C NMR spectral data between ST4 and SAH1	169
56	Comparison of ¹ H NMR spectral data between compound	170
	ST4 and diepoxide	
57	Comparison of ¹³ C NMR spectral data between ST4 and diepoxide	171
58	¹³ C and DEPT spectral data of compound ST5	176
59	500 MHz COSY correlation of some protons of compound ST5	177
60	Major HMBC correlation of compound ST5	177
61	¹ H and ¹³ C NMR spectral data of compound ST5	179
62	Comparison of ¹ H NMR spectral data between compound ST5	180
	and SAH2	

(17)

Tabl	e	Page
63	Comparison of ¹³ C NMR spectral data between compound ST5	181
	and SAH2	
64	Biological activities of the crude extract, pure compounds from	183
	U. purpurea Blume and synthetic pipoxide derivatives	

LISTS OF ILLUSTRATIONS

Figu	re	Page
2	X-ray ORTEP diagram of compound SAC1	122
3	UV (MeOH) spectrum of compound SAH1	185
4	IR (KBr) spectrum of compound SAH1	186
5	¹ H NMR (500 MHz, CDCl ₃) spectrum of compound SAH1	187
6	¹³ C NMR (125 MHz, CDCl ₃) spectrum of compound SAH1	188
7	DEPT (CDCl ₃) spectrum of compound SAH1	189
8	2D COSY spectrum of compound SAH1	190
9	2D HMQC spectrum of compound SAH1	191
10	2D HMBC spectrum of compound SAH1	192
11	NOE spectrum of compound SAH1 after irradiation at $\delta_{_{ m H}}$ 4.33	193
12	NOE spectrum of compound SAH1 after irradiation at $\delta_{_{ m H}}$ 3.60	194
13	Mass spectrum of compound SAH1	195
14	UV (MeOH) spectrum of compound SAH2	196
15	IR (Neat) spectrum of compound SAH2	197
16	¹ H NMR (300 MHz, CDCl ₃) spectrum of compound SAH2	198
17	13 C NMR (75 MHz, CDCl ₃) spectrum of compound SAH2	199
18	DEPT (CDCl ₃) spectrum of compound SAH2	200
19	2D COSY spectrum of compound SAH2	201
20	2D HMQC spectrum of compound SAH2	202
21	2D HMBC spectrum of compound SAH2	203
22	NOE spectrum of compound SAH2 after irradiation at $\delta_{_{ m H}}$ 4.25	204
23	NOE spectrum of compound SAH2 after irradiation at $\delta_{ m H}$ 3.59	205

(19)

Figu	re	Page
24	Mass spectrum of compound SAH2	206
25	UV (MeOH) spectrum of compound SAH3	207
26	IR (Neat) spectrum of compound SAH3	208
27	¹ H NMR (500 MHz, CDCl ₃) spectrum of compound SAH3	209
28	¹³ C NMR (125 MHz, CDCl ₃) spectrum of compound SAH3	210
29	DEPT (CDCl ₃) spectrum of compound SAH3	211
30	2D COSY spectrum of compound SAH3	212
31	2D HMQC spectrum of compound SAH3	213
32	2D HMBC spectrum of compound SAH3	214
33	NOE spectrum of compound SAH3 after irradiation at $\delta_{_{ m H}}$ 4.24	215
34	NOE spectrum of compound SAH3 after irradiation at $\delta_{_{ m H}}$ 4.34	216
35	Mass spectrum of compound SAH3	217
36	UV (MeOH) spectrum of compound SAC1	218
37	IR (Neat) spectrum of compound SAC1	219
38	¹ H NMR (300 MHz, CDCl ₃) spectrum of compound SAC1	220
39	13 C NMR (75 MHz, CDCl ₃) spectrum of compound SAC1	221
40	DEPT (CDCl ₃) spectrum of compound SAC1	222
41	2D COSY spectrum of compound SAC1	223
42	2D HMQC spectrum of compound SAC1	224
43	2D HMBC spectrum of compound SAC1	225
44	NOESY spectrum of compound SAC1	226
45	Mass spectrum of compound SAC1	227

(20)

Figu	Figure	
46	UV (MeOH) spectrum of compound SAM1	228
47	IR (KBr) spectrum of compound SAM1	229
48	¹ H NMR (300 MHz, CDCl ₃) spectrum of compound SAM1	230
49	UV (MeOH) spectrum of compound ST1	231
50	IR (Neat) spectrum of compound ST1	232
51	¹ H NMR (300 MHz, CDCl ₃) spectrum of compound ST1	233
52	¹³ C NMR (75 MHz, CDCl ₃) spectrum of compound ST1	234
53	DEPT (CDCl ₃) spectrum of compound ST1	235
54	2D COSY spectrum of compound ST1	236
55	2D HMQC spectrum of compound ST1	237
56	2D HMBC spectrum of compound ST1	238
57	NOE spectrum of compound ST1 after irradiation at $\delta_{\rm H}$ 5.8 9	229
58	NOE spectrum of compound ST1 after irradiation at $\delta_{\rm H}$ 3.6 3	240
59	Mass spectrum of compound ST1	241
60	UV (MeOH) spectrum of compound ST2	242
61	IR (KBr) spectrum of compound ST2	243
62	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_{δ}) spectrum of compound ST2	244
63	¹³ C NMR (75 MHz, $CDCl_3 + DMSO-d_6$) spectrum of compound ST2	245
64	DEPT (CDCl ₃ + DMSO- d_6) spectrum of compound ST2	246
65	2D COSY spectrum of compound ST2	247

Figure		Page
66	2D HMQC spectrum of compound ST2	248
67	2D HMBC spectrum of compound ST2	249
68	Mass spectrum of compound ST2	250
69	UV (MeOH) spectrum of compound ST3	251
70	IR (Neat) spectrum of compound ST3	252
71	¹ H NMR (300 MHz, $CDCl_3$) spectrum of compound ST3	253
72	¹³ C NMR (125 MHz, CDCl ₃) spectrum of compound ST3	254
73	DEPT (CDCl ₃) spectrum of compound ST3	255
74	2D COSY spectrum of compound ST3	256
75	2D HMQC spectrum of compound ST3	257
76	2D HMBC spectrum of compound ST3	258
77	NOE spectrum of compound ST3 after irradiation at $\delta_{ m H}$ 4.2 4	259
78	NOE spectrum of compound ST3 after irradiation at $\delta_{ m H}$ 4.3 3	260
79	Mass spectrum of compound ST3	261
80	UV (MeOH) spectrum of compound ST4	262
81	IR (Neat) spectrum of compound ST4	263
82	¹ H NMR (300 MHz, $CDCl_3$) spectrum of compound ST4	264

(22)

Figure		
83	13 C NMR (75 MHz, CDCl ₃) spectrum of compound ST4	265
84	DEPT (CDCl ₃) spectrum of compound ST4	266
85	2D COSY spectrum of compound ST4	267
86	2D HMQC spectrum of compound ST4	268
87	2D HMBC spectrum of compound ST4	269
88	NOE spectrum of compound ST4 after irradiation at $\delta_{_{ m H}}$ 4.4 2	270
89	NOE spectrum of compound ST4 after irradiation at $\delta_{\rm H}$ 3.7 8	271
90	UV (MeOH) spectrum of compound ST5	272
91	IR (Neat) spectrum of compound ST5	273
92	¹ H NMR (500 MHz, CDCl ₃) spectrum of compound ST5	274
93	¹³ C NMR (125 MHz, CDCl ₃) spectrum of compound ST5	275
94	DEPT (CDCl ₃) spectrum of compound ST5	276
95	2D COSY spectrum of compound ST5	277
96	2D HMQC spectrum of compound ST5	278
97	2D HMBC spectrum of compound ST5	279
98	NOE spectrum of compound ST5 after irradiation at $\delta_{ m H}$ 5.7 8	280
99	NOE spectrum of compound ST5 after irradiation at $\delta_{\rm H}$ 3.6 1	281

ABBREVIATIONS AND SYMBOLS

S	=	singlet
d	=	doublet
t	=	triplet
q	=	quartet
т	=	multiplet
dd	=	doublet of doublet
dt	=	doublet of triplet
br s	=	broad singlet
br m	=	broad multiplet
g	=	gram
nm	=	nanometer
mp.	=	melting point
cm^{-1}	=	reciprocol centimeter (wave number)
δ	=	chemical shift relative to TMS
J	=	coupling constant
$[\alpha]_{D}$	=	specific rotation
λ_{max}	=	maximum wavelength
V	=	absorption frequencies
Е	=	molar extinction coefficient
Fig.	=	Figure
m/z	=	a value of mass divided by charge
°C	=	degree celcius
MHz	=	Megahertz
ppm	=	part per million

ABBREVIATIONS AND SYMOLS (continued)

С	=	concentration
IR	=	Infrared
UV	=	Ultraviolet-Visible
MS	=	Mass Spectroscopy
NMR	=	Nuclear Magnetic Resonance
2D NMR	=	Two Dimensional Nuclear Magnetic Resonance
COSY	=	Correlation Spectroscopy
DEPT	=	Distortionless Enhancement by Polarization Transfer
HMBC	=	Heteronuclear Multiple Bond Correlation
HMQC	=	Heteronuclear Multiple Quantum Coherence
NOE	=	Nuclear Overhauser Effect Spectroscopy
CC	=	Column Chromatography
QCC	=	Quick Column Chromatography
FCC	=	Flash Column Chromatography
PLC	=	Preparative Thin Layer Chromatography
TMS	=	tetramethylsilane
CDCl ₃	=	deuterochloroform