CONTENTS

	Page
CONTENTS	(12)
LIST OF TABLES	(17)
LIST OF ILLUSTRATIONS	(19)
LIST OF ABBREVIATIONS AND SYMBOLS	(25)
1. INTRODUCTION	1
1.1 Nonlinear optics	1
1.1.1 Theory of nonlinear optics	2
1.1.2 Second-order nonlinear optical properties	3
1.1.3 Structural requirements	5
1.2 Nonlinear optic materials	7
1.3 Review of literatures	9
1.4 Objective and outline of this study	16
2. EXPERIMENT	18
2.1 Instruments and chemicals	18
2.1.1 Instruments	18
2.1.2 Chemicals	19
2.2 Synthesis of starting materials	20
2.2.1 1,4-dimethylpyridinium iodide (B2A)	20
2.2.2 1,2-dimethylquinolinium iodide (B2B)	20
2.3 Synthesis of cationic parts	21
2.3.1 $4-[(E)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-$	
methylpyridinium iodide (B3A)	21
2.3.2 $4-[(E)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-$	
methylpyridinium iodide (B4A)	22
2.3.3 2-[(<i>E</i>)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-	
methylquinolinium iodide (B3B)	22
2.3.4 $2-[(E)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-$	
methylquinolinium iodide (B4B)	23

CONTENTS (Continued)

		Page
2.4 Synthes	is of anions counter part	24
2.4.1 Si	ilver (I) 4-methylbenzenesulfonate (B2C)	24
2.4.2 S	Silver (I) 4-methoxybenzenesulfonate (B4C)	
24		
2.4.3 Si	ilver (I) 4-chlorobenzenesulfonate (B6C)	25
2.4.4 Si	ilver (I) 4-bromobenzenesulfonate (B8C)	26
2.5 Salt form	mations	27
2.5.1 4-	-[(<i>E</i>)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-	
m	nethylpyridinium 4-methoxybenzenesulfonate (B1D)	27
2.5.2 4-	-[(<i>E</i>)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-	
m	nethylpyridinium 4-chlorobenzenesulfonate (B2D)	28
2.5.3 4-	-[(<i>E</i>)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-	
m	nethylpyridinium 4-bromobenzenesulfonate (B3D)	29
2.5.4 4-	-[(<i>E</i>)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-	
m	nethylpyridinium 4-methylbenzenesulfonate (B1E)	30
2.5.5 4-	-[(<i>E</i>)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-	
m	nethylpyridinium 4-methoxybenzenesulfonate (B2E)	31
2.5.6 4-	-[(<i>E</i>)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-	
m	nethylpyridinium 4-chlorobenzenesulfonate (B3E)	32
2.5.7 4-	-[(<i>E</i>)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-	
m	nethylpyridinium 4-bromobenzenesulfonate (B4E)	33
2.5.8 2-	-[(<i>E</i>)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-	
m	nethylquinolinium 4-methylbenzenesulfonate (B1F)	34
2.5.9 2-	-[(<i>E</i>)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-	

methylquinolinium 4-methoxybenzenesulfonate (**B2F**) 34

CONTENTS (Continued)

	2.5.10 2-[(<i>E</i>)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-	
	methylquinolinium 4-chlorobenzenesulfonate (B3F)	35
	2.5.11 2-[(<i>E</i>)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-	
	methylquinolinium 4-bromobenzenesulfonate (B4F)	36
	2.5.12 2-[(<i>E</i>)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-	
	methylquinolinium 4-methylbenzenesulfonate (B1G)	37
	2.5.13 2-[(<i>E</i>)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-	
	methylquinolinium 4-methoxybenzenesulfonate (B2G)	37
	2.5.14 2-[(<i>E</i>)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-	
	methylquinolinium 4-chlorobenzenesulfonate (B3G)	38
	2.5.15 2-[(<i>E</i>)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-	
	methylquinolinium 4-bromobenzenesulfonate (B4G)	39
3. RE	SULTS AND DISCUSSION	40
3.1	Structural elucidation of the starting materials	40
	3.1.1 1,4-Dimethylpyridinium iodide (B2A)	40
	3.1.2 1,2-Dimethylquinolinium iodide (B2B)	41
3.2	Structural elucidation of the cations	42
	3.2.1 4-[(<i>E</i>)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-	
	methylpyridinium iodide (B3A)	42
	3.2.2 4-[(<i>E</i>)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-	
	methylpyridinium iodide (B4A)	44
	3.2.3 2-[(<i>E</i>)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-	
	methylquinolinium iodide (B3B)	46
	3.2.4 2-[(<i>E</i>)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-	
	methylquinolinium iodide (B4B)	48

CONTENTS (Continued)

		Page
3.3	Structural elucidation of the anions	50
	3.3.1 Silver (I) 4-methylbenzenesulfonate (B2C)	50
	3.3.2 Silver (I) 4-methoxybenzenesulfonate (B4C)	50
	3.3.3 Silver (I) 4-chlorobenzenesulfonate (B6C)	51
	3.3.4 Silver (I) 4-bromobenzenesulfonate (B8C)	51
3.4	Structural elucidation of the salt formation	52
	3.4.1 4-[(<i>E</i>)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-	
	methylpyridinium 4-methoxybenzenesulfonate (B1D)	52
	3.4.2 4-[(<i>E</i>)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-	
	methylpyridinium 4-chlorobenzenesulfonate (B2D)	54
	3.4.3 4-[(<i>E</i>)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-	
	methylpyridinium 4-bromobenzenesulfonate (B3D)	60
	3.4.4 4-[(<i>E</i>)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-	
	methylpyridinium 4-methylbenzenesulfonate (B1E)	66
	3.4.5 4-[(<i>E</i>)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-	
	methylpyridinium 4-methoxybenzenesulfonate (B2E)	68
	3.4.6 4-[(<i>E</i>)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-	
	methylpyridinium 4-chlorobenzenesulfonate (B3E)	70
	3.4.7 4-[(<i>E</i>)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-	
	methylpyridinium 4-bromobenzenesulfonate (B4E)	72
	3.4.8 2-[(<i>E</i>)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-	
	methylquinolinium 4-methylbenzenesulfonate (B1F)	78
	3.4.9 2-[(<i>E</i>)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-	

methylquinolinium 4-methoxybenzenesulfonate (B2F) 85 **CONTENTS** (Continued)

Page

3.4.10	2-[(<i>E</i>)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-	
	methylquinolinium 4-chlorobenzenesulfonate (B3F)	91
3.4.11	2-[(<i>E</i>)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-	
	methylquinolinium 4-bromobenzenesulfonate (B4F)	97
3.4.12	2-[(<i>E</i>)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-	
	methylquinolinium 4-methylbenzenesulfonate (B1G)	103
3.4.13	2-[(<i>E</i>)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-	
	methylquinolinium 4-methoxybenzenesulfonate (B2G)	109
3.4.14	2-[(<i>E</i>)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-	
	methylquinolinium 4-chlorobenzenesulfonate (B3G)	111
3.4.15	2-[(<i>E</i>)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-	
	methylquinolinium 4-bromobenzenesulfonate (B4G)	117
4. CONCLUS	SION	119
REFERENC	ES	122
APPENDIX		127
VITAE		191

LIST OF TABLES

Ta	ble	Page
1	¹ H, ¹³ C NMR and HMBC of compound B3A	43
2	¹ H, ¹³ C NMR and HMBC of compound B4A	45
3	¹ H, ¹³ C NMR and HMBC of compound B3B	47
4	¹ H, ¹³ C NMR and HMBC of compound B4B	49
5	¹ H, ¹³ C NMR and HMBC of compound B1D	53
6	¹ H, ¹³ C NMR and HMBC of compound B2D	55
7	Crystal data of B2D	56
8	Bond lengths [Å] and angles [°] for B2D	57
9	¹ H, ¹³ C NMR and HMBC of compound B3D	61
10	Crystal data of B3D	62
11	Bond lengths [Å] and angles [°] for B3D	63
12	¹ H, ¹³ C NMR and HMBC of compound B1E	67
13	¹ H, ¹³ C NMR and HMBC of compound B2E	69
14	¹ H, ¹³ C NMR and HMBC of compound B3E	71
15	¹ H, ¹³ C NMR and HMBC of compound B4E	73
16	Crystal data of B4E	74
17	Bond lengths [Å] and angles [°] for B4E	75
18	¹ H, ¹³ C NMR and HMBC of compound B1F	80
19	Crystal data of B1F	81
20	Bond lengths [Å] and angles [°] for B1F	82
21	¹ H, ¹³ C NMR and HMBC of compound B2F	86
22	Crystal data of B2F	87
23	Bond lengths [Å] and angles [°] for B2F	88
24	¹ H, ¹³ C NMR and HMBC of compound B3F	92
25	Crystal data of B3F	93
26	Bond lengths [Å] and angles [°] for B3F	94

LIST OF TABLES (Continued)

Table		Page
28	Crystal data of B4F	99
29	Bond lengths [Å] and angles [°] for B4F	100
30	¹ H, ¹³ C NMR and HMBC of compound B1G	104
31	Crystal data of B1G	105
32	Bond lengths [Å] and angles [°] for B1G	106
33	¹ H, ¹³ C NMR and HMBC of compound B2G	110
34	¹ H, ¹³ C NMR and HMBC of compound B3 G	112
35	Crystal data of B3G	113
36	Bond lengths [Å] and angles [°] for B3G	114
37	¹ H, ¹³ C NMR and HMBC of compound B4G	118

LIST OF ILLUSTRATIONS

Figu	ire	Page
1	1a Second Harmonic Generation (SHG)	3
	1b Energy-level diagram describing second-harmonic generation	3
2	Scheme of a push-pull chromophore	5
3	Prototypical examples of nonlinear optical molecules	6
4	Ground-state and lowest energy polar resonance forms for para- and orth	0-
	substitution. Resonance is forbidden in the case of meta-substitution	6
5	An ionic organic molecule with high SHG efficiency	7
6	Derivatives of aryl ethenyl-N-methylpyridinium benzenesulfonate and ary	yl
	ethenyl-N-methylquinolinium benzenesulfonate	17
7	Structure of B2D , showing 50% probability displacement ellipsoids	
	and the atom-numbering scheme	59
8	Packing diagram of compound B2D	59
9	Structure of B3D , showing 50% probability displacement ellipsoids	
	and the atom-numbering scheme	65
10	Packing diagram of compound B3D	65
11	Structure of B4E , showing 50% probability displacement ellipsoids	
	and the atom-numbering scheme	7 7
12	Packing diagram of compound B4E	77
13	Structure of B1F , showing 50% probability displacement ellipsoids	
	and the atom-numbering scheme	84
14	Packing diagram of compound B1F	84
15	Structure of B2F , showing 50% probability displacement ellipsoids	
	and the atom-numbering scheme	90
16	Packing diagram of compound B2F	90
17	Structure of B3F , showing 50% probability displacement ellipsoids	
	and the atom-numbering scheme	96
18	Packing diagram of compound B3F	96

Figu	ire	Page
19	Structure of B4F , showing 50% probability displacement ellipsoids	
	and the atom-numbering scheme	102
20	Packing diagram of compound B4F	102
21	Structure of B1G, showing 50% probability displacement ellipsoids	
	and the atom-numbering scheme	108
22	Packing diagram of compound B1G	108
23	Structure of B3G , showing 50% probability displacement ellipsoids	
	and the atom-numbering scheme	116
24	Packing diagram of compound B3G	116
25	UV-Vis (CH ₃ OH) spectrum of compound B2A	128
26	FT-IR (KBr) spectrum of compound B2A	128
27	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B2A	129
28	UV-Vis (CH ₃ OH) spectrum of compound B2B	130
29	FT-IR (KBr) spectrum of compound B2B	130
30	¹ H NMR (300 MHz, $CDCl_3 + DMSO-d_6$) spectrum of compound B2B	131
31	UV-Vis (CH ₃ OH) spectrum of compound B3A	132
32	FT-IR (KBr) spectrum of compound B3A	132
33	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B3A	133
34	¹³ C NMR (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B3A	133
35	DEPT 135 °C (75 MHz, CDCl ₃ + DMSO- <i>d</i> ₆) spectrum of compound B3A	134
36	2D HMBC spectrum of compound B3A	134
37	UV-Vis (CH ₃ OH) spectrum of compound B4A	135
38	FT-IR (KBr) spectrum of compound B4A	135
39	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B4A	136
40	¹³ C NMR (75 MHz, $CDCl_3 + DMSO-d_6$) spectrum of compound B4A	136
41	DEPT 135 °C (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B4A	137
42	2D HMBC spectrum of compound B4A	137

Figu	re	Page
44	FT-IR (KBr) spectrum of compound B3B	138
45	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B3B	139
46	¹³ C NMR (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B3B	139
47	DEPT 135 °C (75 MHz, CDCl ₃ + DMSO- <i>d</i> ₆) spectrum of compound B3B	140
48	2D HMBC spectrum of compound B3B	140
49	UV-Vis (CH ₃ OH) spectrum of compound B4B	141
50	FT-IR (KBr) spectrum of compound B4B	141
51	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B4B	142
52	¹³ C NMR (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B4B	142
53	DEPT 135 °C (75 MHz, CDCl ₃ + DMSO- <i>d</i> ₆) spectrum of compound B4B	143
54	2D HMBC spectrum of compound B4B	143
55	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B2C	144
56	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B4C	144
57	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B6C	145
58	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B8C	145
59	UV-Vis (CH ₃ OH) spectrum of compound B1D	146
60	FT-IR (KBr) spectrum of compound B1D	146
61	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B1D	147
62	¹³ C NMR (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B1D	147
63	DEPT 135 °C (75 MHz, CDCl ₃ + DMSO- <i>d</i> ₆) spectrum of compound B1D	148
64	2D HMBC spectrum of compound B1D	148
65	UV-Vis (CH ₃ OH) spectrum of compound B2D	149
66	FT-IR (KBr) spectrum of compound B2D	149
67	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B2D	150
68	¹³ C NMR (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B2D	150
69	DEPT 135 °C (75 MHz, CDCl ₃ + DMSO- <i>d</i> ₆) spectrum of compound B2D	151

Fig	<u>jure</u>	Page
71	UV-Vis (CH ₃ OH) spectrum of compound B3D	152
72	FT-IR (KBr) spectrum of compound B3D	152
73	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B3D	153
74	¹³ C NMR (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B3D	153
75	DEPT 135 °C (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B3D	154
76	2D HMBC spectrum of compound B3D	154
77	UV-Vis (CH ₃ OH) spectrum of compound B1E	155
78	FT-IR (KBr) spectrum of compound B1E	155
79	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B1E	156
80	¹³ C NMR (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B1E	156
81	DEPT 135 °C (75 MHz, $CDCl_3 + DMSO-d_6$) spectrum of compound B1E	157
82	2D HMBC spectrum of compound B1E	157
83	UV-Vis (CH ₃ OH) spectrum of compound B2E	158
84	FT-IR (KBr) spectrum of compound B2E	158
85	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B2E	159
86	¹³ C NMR (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B2E	159
87	DEPT 135 °C (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B2E	160
88	2D HMBC spectrum of compound B2E	160
89	UV-Vis (CH ₃ OH) spectrum of compound B3E	161
90	FT-IR (KBr) spectrum of compound B3E	161
91	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B3E	162
92	¹³ C NMR (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B3E	162
93	DEPT 135 °C (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B3E	163
94	2D HMBC spectrum of compound B3E	163
95	UV-Vis (CH ₃ OH) spectrum of compound B4E	164
96	FT-IR (KBr) spectrum of compound B4E	164

97 ¹H NMR (300 MHz, $CDCl_3 + DMSO-d_6$) spectrum of compound **B4E** 165 LIST OF ILLUSTRATIONS (Continued)

Figu	re	Page
98	¹³ C NMR (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B4E	165
99	DEPT 135 °C (75 MHz, CDCl ₃ + DMSO- <i>d</i> ₆) spectrum of compound B4E	166
100	2D HMBC spectrum of compound B4E	166
101	UV-Vis (CH ₃ OH) spectrum of compound B1F	167
102	FT-IR (KBr) spectrum of compound B1F	167
103	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B1F	168
104	¹³ C NMR (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B1F	168
105	DEPT 135 °C (75 MHz, CDCl ₃ + DMSO- <i>d</i> ₆) spectrum of compound B1F	169
106	2D HMBC spectrum of compound B1F	169
107	UV-Vis (CH ₃ OH) spectrum of compound B2F	170
108	FT-IR (KBr) spectrum of compound B2F	170
109	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B2F	171
110	¹³ C NMR (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B2F	171
111	DEPT 135 °C (75 MHz, CDCl ₃ + DMSO- <i>d</i> ₆) spectrum of compound B2F	172
112	2D HMBC spectrum of compound B2F	172
113	UV-Vis (CH ₃ OH) spectrum of compound B3F	173
114	FT-IR (KBr) spectrum of compound B3F	173
115	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B3F	174
116	¹³ C NMR (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B3F	174
117	DEPT 135 °C (75 MHz, CDCl ₃ + DMSO- <i>d</i> ₆) spectrum of compound B3F	175
118	2D HMBC spectrum of compound B3F	175
119	UV-Vis (CH ₃ OH) spectrum of compound B4F	176
120	FT-IR (KBr) spectrum of compound B4F	176
121	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B4F	177
122	¹³ C NMR (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B4F	177
123	DEPT 135 °C (75 MHz, CDCl ₃ + DMSO- <i>d</i> ₆) spectrum of compound B4F	178

Figure		
125	UV-Vis (CH ₃ OH) spectrum of compound B1G	179
126	FT-IR (KBr) spectrum of compound B1G	179
127	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B1G	180
128	¹³ C NMR (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B1G	180
129	DEPT 135 °C (75 MHz, CDCl ₃ + DMSO- <i>d</i> ₆) spectrum of compound B1G	181
130	2D HMBC spectrum of compound B1G	181
131	UV-Vis (CH ₃ OH) spectrum of compound B2G	182
132	FT-IR (KBr) spectrum of compound B2G	182
133	¹ H NMR (300 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B2G	183
134	¹³ C NMR (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B2G	183
135	DEPT 135 °C (75 MHz, CDCl ₃ + DMSO- <i>d</i> ₆) spectrum of compound B2G	184
136	2D HMBC spectrum of compound B2G	184
137	UV-Vis (CH ₃ OH) spectrum of compound B3G	185
138	FT-IR (KBr) spectrum of compound B3G	185
139	¹ H NMR (300 MHz, $CDCl_3 + DMSO-d_6$) spectrum of compound B3G	186
140	¹³ C NMR (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B3G	186
141	DEPT 135 °C (75 MHz, CDCl ₃ + DMSO- <i>d</i> ₆) spectrum of compound B3G	187
142	2D HMBC spectrum of compound B3G	187
143	UV-Vis (CH ₃ OH) spectrum of compound B4G	188
144	FT-IR (KBr) spectrum of compound B4G	188
145	¹ H NMR (300 MHz, $CDCl_3 + DMSO-d_6$) spectrum of compound B4G	189
146	¹³ C NMR (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B4G	189
147	DEPT 135 °C (75 MHz, CDCl ₃ + DMSO- d_6) spectrum of compound B4G	190
148	2D HMBC spectrum of compound B4G	190

LIST OF ABBREVIATIONS AND SYMBOLS

S	=	singlet
d	=	doublet
t	=	triplet
т	=	multiplet
dd	=	doublet of doublet
dt	=	doublet of triplet
br s	=	broad singlet
g	=	gram
nm	=	nanometer
mp.	=	melting point
cm ⁻¹	=	reciprocal centimeter (wave number)
δ	=	chemical shift relative to TMS
J	=	coupling constant
$\lambda_{ m max}$	=	maximum absorption wavelength
V	=	absorption frequency
Е	=	molar extinction coefficient
°C	=	degree celcius
MHz	=	Megahertz
Hz	=	hertz
ppm	=	part per million
NLO	=	Nonlinear optics
SHG	=	Second Harmonic Generation
EO	=	Electro Optic
ICT	=	intramolecular charge-transfer
Å	=	angstrom
hr	=	hour

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

pNA	=	<i>p</i> -nitroaniline
KDP	=	potassium dihydrogenphosphate
POM	=	3-methyl 4-nitropyridine 1-oxide
DAST	=	1-methyl-4-(2-(4-(dimethylamino)phenyl)ethenyl)
		pyridinium <i>p</i> -toluenesulfonate
MBST	=	4-methoxybenzaldehyde-N-methyl-4-stilbazolium
		tosylate
HBST	=	4-hydroxybenzaldehyde-N-methyl-4-stilbazolium
		tosylate
HOST	=	(N-(4-hydroxyphenyl)ethenyl)pyridinium
		<i>p</i> -toluenesulfonate
DANS	=	4-(N,N-dimethylamino)-4'-nitrostilbene
DMAEPI	=	4-(dimethylamino)-1-ethylpyridinium iodide
EFISHG	=	Electric Field Induced Second Harmonic Generation
XRD	=	X-ray diffraction
Fig.	=	Figure
IR	=	Infrared
UV	=	Ultraviolet-Visible
NMR	=	Nuclear magnetic resonance
2D NMR	=	Two Dimensional Nuclear magnetic resonance
DEPT	=	Distortionless Enhancement by Polarization Transfer
HMBC	=	Heteronuclear Multiple Bond Correlation
TMS	=	tetramethylsilane
CDCl ₃	=	deuterochloroform
DMSO- d_6	=	hexadeutero-dimethyl sulphoxide