CONTENTS

	o/ I			(3)	
บทกัดย่อ					
ABSTRACT					
ACKNOWLEDMENTS					
CONTENTS					
LIST OF TABLES					
LI	ST O	F FIGUI	RES	(10)	
AI	BBRE	VIATIO	ONS AND SYMBOLS	(12)	
1	INT	INTRODUCTION			
	1.1	Genera	al Background	1	
	1.2	Literat	ure Review	1	
	1.3	Scopes	s and Research objectives	5	
2	THEORY			7	
	2.1	Electro	ostatic Precipitator	7	
	2.2	Types	of Electrostatic Precipitators	7	
	2.3	Princip	ples of Electrostatic Precipitation and Corona discharge	12	
	2.4	Fractic	onal Collection Efficiency	16	
	2.5	Particl	e Migration Velocity	18	
	2.6	Particl	e Charging Mechanisms	19	
	2.7	.7 Particle Collection		22	
3	EXPERIMENTAL			24	
	3.1	The De	esigned ESP	24	
	3.2	The La	aboratory Experiment	27	
		3.2.1	Experimental Setup	27	
		3.2.2	Experimental Parameters	30	
	3.3	The O	n Site Experiment	30	
		3.3.1	Experimental Setup	30	
		3.3.2	Dust-Loading Experiment	33	
4	RESULTS AND DISCUSSION			34	
	4.1	Collec	tion Performance under Laboratory Experiment	34	

CONTENTS (Continued)

	Page		
4.1.1 Effect of applied voltage and air velocity	36		
4.1.2 Effect of particle size	39		
4.1.2.1 Low electric field strength	39		
4.1.2.2 High electric field strength	41		
4.1.2.3 Pressure drop	44		
4.2 Collection Efficiency under Working Condition	45		
5 CONCLUSIONS 49			
REFFERENCES			
Appendix A Drawing of ESP 5			
Appendix B Input-output data			
Appendix C Discharge current at various supply voltages			
Appendix D Collection efficiency data			
Appendix E Theoretical calculations for collection efficiency			
Appendix F Pressure drop data			
Appendix G Dust-loading data			
Appendix H Laboratory collection efficiency for dust-loaded ESP 1			
VITAE			

LIST OF FIGURES

Figure	Page
1 A tubular precipitator	8
2 A plate precipitator	9
3 A single-stage wire-plate precipitator	10
4 A two-stage wire-plate precipitator	10
5 A circular-plate wet ESP	11
6 A wire-cylinder dry ESP	12
7 Top view of a one-half of flow channel of a wire-plate precipitator	17
8 Field charging mechanism for a particle in an electric field	20
9 Particle collection at collection electrode	23
10 Model of an ESP design	24
11 Photograph of the experimental devices for measuring the ESP efficiency	25
12 The direct current high-voltage circuit used in experiment	26
13 The schematic representation of the experimental setup for measuring the	28
ESP efficiency in laboratory	
14 Photograph of the experimental setup for measuring the ESP efficiency in	29
laboratory	
15 The schematic representation of the experimental setup for measuring the	32
ESP efficiency on site test	
16 Photograph of the experimental setup for measuring the ESP efficiency on site	32
17 Characteristic of DC output signal	34
18 Input-output voltage relation	35
19 Current-voltage characteristic in the designed ESP	36
20 Effect of applied voltage on the collection efficiency for 0.3- μ m particles	37
21 Effect of applied voltage on the collection efficiency for 0.5- μ m particles	38
22 Effect of applied voltage on the collection efficiency for 1.0- μ m particles	38
23 The effect of particle size on the collection efficiency at 1.04 cm/s	40
24 The effect of particle size on the collection efficiency at 7.36 cm/s	40
25 The effect of particle size on the collection efficiency at 14.68 cm/s	41

LIST OF FIGURES (Continued)

Figure	
26 The effect of particle size on the collection efficiency at 1.04 cm/s	42
27 The effect of particle size on the collection efficiency at 7.36 cm/s	43
28 The effect of particle size on the collection efficiency at 14.68 cm/s	43
29 Measured pressure drop as a function of velocity	44
30 The relationship between the loading of dust and operation times	45
31 The influence of dust-loading on the collection efficiency on site test	46
32 The influence of dust-loading on the collection efficiency in laboratory	47

LIST OF TABLES

Table	
1 Characteristic parameters of glow discharges	13
2 Characteristic parameters of corona discharges	15
3 Characteristic parameters of silent discharges	15
4 The measured operation parameters	30
5 The experimental results for measuring the pressure drop of the ESP	44
6 The measured data of input-output voltage	61
7 The measured data of discharge current at various supply voltages	64
8 Collection efficiency data for 0.3 micrometer at 220 VAC	66
9 Collection efficiency data for 0.3 micrometer at 180 VAC	68
10 Collection efficiency data for 0.3 micrometer at 140 VAC	70
11 Collection efficiency data for 0.3 micrometer at 100 VAC	72
12 Collection efficiency data for 0.5 micrometer at 220 VAC	74
13 Collection efficiency data for 0.5 micrometer at 180 VAC	76
14 Collection efficiency data for 0.5 micrometer at 140 VAC	78
15 Collection efficiency data for 0.5 micrometer at 100 VAC	80
16 Collection efficiency data for 1.0 micrometer at 220 VAC	82
17 Collection efficiency data for 1.0 micrometer at 180 VAC	84
18 Collection efficiency data for 1.0 micrometer at 140 VAC	86
19 Collection efficiency data for 1.0 micrometer at 100 VAC	88
20 Theoretical calculation data for 0.3 μ m at 220 VAC	93
21 Theoretical calculation data for 0.3 μ m at 180 VAC	96
22 Theoretical calculation data for 0.5 μ m at 220 VAC	99
23 Theoretical calculation data for 0.5 μ m at 180 VAC	102
24 Theoretical calculation data for 1.0 μ m at 220 VAC	105
25 Theoretical calculation data for 1.0 μ m at 180 VAC	108
26 Pressure drop data	110
27 Dust-loading data	112
28 Cvt data	113

29 Collection efficiency data for 1.0 micrometer with dust-loading 115 for 30 minutes at 220 VAC

ABBREVIATIONS AND SYMBOLS

$\overline{C_i}$	= mean thermal speed of ions
d_p	= diameter of particle
d_w	= diameter of wire
d_t	= diameter of tube
е	= charge of electron
n	= number of charge
$n_F(t)$	= number of charges during time by field charging
$n_D(t)$	= number of charges during time by diffusion charging
n_t	= total number of charges
t	= time
W	= particle migration velocity
A_c	= area of cylinder or collection area
AC C _{in}	 Alternative current concentrations of particles at the inlet
C_{in}	= concentrations of particles at the exit
C_{ext}	= Cunningham correction factor
C_c	= dust-loading parameter
DC	= Direct current
E	= field strength inside a cylinder tube
ESP	= Electrostatic precipitator
ESPs	= Electrostatic precipitators
E_b	= Electric field required to initiate corona discharge
HV	= High voltage
HEPA	= High efficiency particle accumulate
Ι	= corona current
K_E	= electrostatic constant
Κ	= Boltzmann constant
LPC	= Laser particle counter
MMAD	= Mass median aerodynamic diameter
MMADs	= Mass median aerodynamic diameters

ABBREVIATIONS AND SYMBOLS (Continued)

N_i	= concentration of ions
PVC	= Polyvinylchloride
PSL	= Polystyrene latex
Q	= volumetric gas flow
R_w	= radius of wire
R_c	= radius of cylinder
SCA	= Specific collection area
Т	= absolute temperature
U	= velocity
V_{TE}	= electric terminal setting velocity
V_w	= the applied voltage on wire
V_i	= initial voltage of corona discharge
VAC	= alternative current voltage
Z_i	= mobility of the ions
η	= collection efficiency
ε	= dielectric constant of particle
ΔP	= pressure drop
ΔW	= the algebraic difference in voltage between the wire and the
tube	