Contents

			Page
บา	ทคัดย่อ		(3)
Αl	ostract (E	English)	(4)
Αd	cknowled	dgements	(5)
Tł	The Relevance of The Research Work		(6)
Contents		(7)	
List of Tables		(9)	
List of Figures		(11)	
Cł	napter		
1.	INTRO	DUCTION	
	1.1	Introduction	1
	1.2	Preliminary knowledge and	3
		Theoretical sections	
	1.3	Review of Literatures	12
	1.4	Objectives	22
2.	METHO	OD OF STUDY	
	2.1	Chemical and materials	23
	2.2	Instruments	23
	2.3	Methods	25
		2.3.1 Preparation of activated carbons	25
		2.3.2 Characterization of activated carbons	28
		surfaces	
		2.3.3 Adsorption studies	30

Contents (continued)

			Page
3.	RESU	LTS AND DISCUSSION	
	3.1	Characterization of activated carbons	33
		surfaces	
		3.1.1 Scanning electron microscopy (SEM)	33
		3.1.2 Surface area and pore size analysis	35
		(physical or porous texture characterization)	
		3.1.3 Fourier-transform infrared spectroscopy	40
		(FT-IR)	
		3.1.4 Point of zero charge measurement	51
		(pH _{pzc})	
	3.2	Adsorption studies	54
		3.2.1 Adsorbate metal ion solution	54
		3.2.2 pH effect on adsorption of cadmium	
		and lead ions on activated carbons	56
		3.2.3 Adsorption isotherm studies of cadmium	58
		and lead ions on activated carbons	
4.	CONC	LUSION	86
BIE	BLIOGRA	A PHY	89
APPENDIX		95	
VITAE		104	

List of Tables

able		Page
Α	Criteria for distinguishing between chemisorption and	8
	Physisorption.	
1	Sample codes of obtained activated carbons.	26
2	BET and micropore surface areas of activated carbons	37
	prepared from bagasse and pericarp of rubber fruit.	
3	Parameter values of the Langmuir and Freundlich	60
	equations fitted to the experiment of Pb2+ adsorption	
	on B-70-600 at different temperatures.	
4	Parameter values of the Langmuir and Freundlich	62
	equations fitted to the experiment of Pb2+ adsorption	
	on B-325-800 at different temperatures.	
5	Parameter values of the Langmuir and Freundlich	64
	equations fitted to the experiment of Pb2+ adsorption	
	on Pr-70-600 at different temperatures.	
6	Parameter values of the Langmuir and Freundlich	65
	equations fitted to the experiment of Pb2+ adsorption	
	on Pr-325-800 at temp = 40 °C.	
7	Parameter values of the Langmuir and Freundlich	67
	equations fitted to the experiment of Cd2+ adsorption	
	on B-70-600 at different temperatures.	
8	Parameter values of the Langmuir and Freundlich	69
	equations fitted to the experiment of Cd2+ adsorption	
	on B-325-800 at different temperatures.	

List of Tables (continued)

lable lable		Page
9	Parameter values of the Langmuir and Freundlich	71
	equations fitted to the experiment of Cd2+ adsorption	
	on Pr-70-600 at different temperatures.	
10	arameter values of the Langmuir and Freundlich	72
	equations fitted to the experiment of Cd2+ adsorption	
	on Pr-325-800 at temp = 40 $^{\circ}$ C.	
A 1	Data of adsorption isotherm of Pb ²⁺ on B-70-600.	96
A2	Data of adsorption isotherm of Pb ²⁺ on B-325-800.	97
А3	Data of adsorption isotherm of Pb ²⁺ on Pr-70-600.	98
A4	Data of adsorption isotherm of Pb ²⁺ on Pr-325-800.	99
A 5	Data of adsorption isotherm of Cd ²⁺ on B-70-600.	100
A 6	Data of adsorption isotherm of Cd ²⁺ on B-325-800.	101
A 7	Data of adsorption isotherm of Cd ²⁺ on Pr-70-600.	102
A8	Data of adsorption isotherm of Cd ²⁺ on Pr-325-800.	103

List of Figures

Figure		Page
1	Schematic representation of the activation procedure.	27
2	SEM micrographs of (a) B-70-600 (×150),	34
	(b) B-70-600 (×1000), (c) Pr-70-600 (×150),	
	(d) Pr-70-600 (×1000) activated carbons.	
3	Adsorption isotherms of N ₂ at 77 K on the carbons	35
	prepared from two agricultural wastes.	
4	BJH pore size distribution of all activated carbons	38
	prepare from two agricultural wastes.	
5	FT-IR spectrum of raw bagasse.	41
6	FT-IR spectrum of raw pericarp of rubber fruit.	42
7	Chemical structures of cellulose, hemicellulose and lignin.	43
8	FT-IR spectrum of carbonized char of bagasse.	44
9	FT-IR spectrum of carbonized char of pericarp of rubber fru	it. 45
10	FT-IR spectrum of B-70-600.	46
11	FT-IR spectrum of B-325-800.	47
12	FT-IR spectrum of Pr-70-600.	48
13	FT-IR spectrum of Pr-325-800.	49
14	Graph of final pH versus initial pH initial obtained by using	52
	the pH drift method.	
15	peciation diagram of surface functional groups on	54
	activated carbons.	

List of Figures (continued)

Figure		
16	dsorption of Cd2+ (a) and Pb2+ (b) by the obtained	57
	activated carbon samples as a function of initial	
	pH of solution: (concentration = 80 ppm).	
17	Adsorption isotherm of Pb^{2+} on B-70-600 at temp = 40° C.	59
18	Adsorption isotherm of Pb^{2+} on B-70-600 at temp = 60° C.	59
19	Adsorption isotherm of Pb^{2+} on B-70-600 at temp = 80° C.	60
20	Adsorption isotherm of Pb^{2+} on B-325-800 at temp = 40° C.	61
21	Adsorption isotherm of Pb^{2+} on B-325-800 at temp = 60° C.	61
22	Adsorption isotherm of Pb^{2+} on B-325-800 at temp = $80^{\circ}C$.	62
23	Adsorption isotherm of Pb^{2+} on Pr-70-600 at temp = 40° C.	63
24	Adsorption isotherm of Pb^{2+} on Pr-70-600 at temp = 60° C.	63
25	Adsorption isotherm of Pb^{2+} on Pr-70-600 at temp = 80° C.	64
26	Adsorption isotherm of Pb^{2+} on Pr-325-800 at temp = 40° C.	65
27	Adsorption isotherm of Cd ²⁺ on B-70-600 at temp = 40°C.	66
28	Adsorption isotherm of Cd ²⁺ on B-70-600 at temp = 60°C.	66
29	Adsorption isotherm of Cd ²⁺ on B-70-600 at temp = 80°C.	67
30	Adsorption isotherm of Cd^{2+} on B-325-800 at temp = $40^{\circ}C$.	68
31	Adsorption isotherm of Cd^{2+} on B-325-800 at temp = $60^{\circ}C$.	68
32	Adsorption isotherm of Cd^{2+} on B-325-800 at temp = $80^{\circ}C$.	69
33	Adsorption isotherm of Cd ²⁺ on Pr-70-600 at temp = 40°C.	70
34	Adsorption isotherm of Cd ²⁺ on Pr-70-600 at temp = 60°C.	70

List of Figures (continued)

Figure		Page
35	Adsorption isotherm of Cd^{2+} on Pr-70-600 at temp = $80^{\circ}C$.	71
36	Adsorption isotherm of Cd^{2+} on Pr-325-800 at temp = 40° C.	72
37	EDA spectrometry of B-70-600 (a), B-70-600/Cd2+ (b)	81
	and B-70-600/Pb2+ (c).	
38	EDA spectrometry of B-325-800 (a), B-325-800/Cd2+ (b)	82
	and B-325-800/Pb2+ (c).	
39	EDA spectrometry of Pr-70-600 (a), Pr-70-600/Cd2+ (b)	83
	and Pr-70-600/Pb2+ (c).	
40	EDA spectrometry of Pr-325-800 (a), Pr-325-800/Cd2+ (b)	84
	and Pr-325-800/Pb2+ (c).	