Contents

	Pages
Abstract	(3)
Acknowledgment	(7)
Contents	(8)
List of Tables	(16)
List of Figures	(17)
List of Abbreviations	(22)
Chapter	
1. Introduction	1
An overview	1
1. Introduction	1
2. Concepts of the study	2
Literature review	4
1. Mesenchymal stem cells in bone marrow and osteogenic	4
differentiation	
1.1. Pluriopotential stem cells in bone marrow	4
1.2. Osteogenic differentiation of bone marrow in vitro	6
1.2.1. Dexamethasone and osteogenic differentiation	6
1.2.2. 1α,25 dihydroxychlorecalciferol (VD3) and	7
osteogenic differentiation	
1.2.3. BMP-2 and osteogenic differentiation of bone	8
marrow in vivo	
1.3. Osteogenic differentiation of bone marrow in vivo	9
1.3.1. Bone marrow cell on a three-dimensional scaffold	9
1.3.2. Bone marrow cells in skeletal defect	10
1.3.3. Identifying the source of bone forming cells	11

				Pages
2.	Mod	lels of the	e bone regeneration process	12
	2.1.	An over	rview	12
	2.2.	Bone re	generation process	12
		2.2.1.	Fracture healing	14
		2.2.2.	Osteogenic induction of demineralized bone matrix	16
			(DBM) and bone morphogentic protein-2 (BMP-2)	
		2.2.3.	Scaffold and osteogenic differentiation	19
3.	Plate	elet-rich j	plasma (PRP)	22
	3.1.	PRP and	d bone repair in oral and maxillofacial surgery	22
	3.2.	Clincial	application of PRP	24
		3.2.1.	Comments on the clinical application of PRP in	26
			bone regeneration	
	3.3.	PRP pre	eparation methods and properties of PRP	26
4.	Gro	wth facto	ors released from platelets	28
	4.1.	Platelet	derived growth factor (PDGF)	28
	4.2.	Insulin	like growth factor (IGF)	32
	4.3.	Transfo	rming growth factor-beta1 (TFG-β1)	33
		4.3.1.	TFG-β1 in rat calvaria organ culture	34
		4.3.2.	TFG-β1 and bone marrow cells	34
		4.3.3.	TFG-β1 and rat calvarial cells or pre-osteoblasts	36
		4.3.4.	TFG-β1 in vivo	37
	4.4.	Multi-g	rowth factor interactions	38
Aiı	ms of	f the stud	у	40
1.	Obje	ectives		40
2.	Нур	othesis		40
3.	An o	overview	of the study	41
Ma	ateria	ls and me	ehods	43
Ma	ateria	ls		43
1.	Mat	erials		43
2.	Che	micals		45

2.

			Pages
3.	Equipment a	nd instrument	49
4.	Software		51
M	ethods		51
1.	Scope of the	study	51
	1.1. Osteog	enic induction of rat bone marrow cells	51
	1.1.1.	Effects VD3 and rhBMP-2 in rat bone marrow cell culture	51
	1.1.2.	An implantation of rat bone marrow in athymic mice	51
	1.2. Effects	of platelet-rich plasma (PRP) on growth and	51
	osteoge	enic differentiation of rat bone marrow	
	1.2.1.	Effects of PRP in three-dimensional cell culture, in	51
		vitro study	
	1.2.2.	An implantation of bone marrow and PRP in	51
		immunodificient mice, in vivo study	
	1.2.3.	Measurement of TGF-β1 content in PRP	51
2.	Study design	ı	53
	2.1. Osteog	enic induction of rat bone marrow cells	53
	2.1.1.	Effects of 1α,25 hydroxychlolecalciferol (VD3)	53
		and rhBMP-2 in rat bone marrow cell culture	
	2.1.2.	An implantation of differentiated bone marrow	54
		cells and fresh bone marrow in immunodeficient	
		mice	
	2.2. Effects	of PRP on growth and osteogenic differentiation of	56
	rat bon	e marrow	
	2.2.1.	Effects of PRP in three-dimensional cell culture, an	56
		in vitro study	
	2.2.2.	An implantation of bone marrow in nude mice, an	62
		in vivo study	
	2.2.3.	Measurement of TGF-β1 content	69

				Page
3.	Proc	edures		70
	3.1.	Primary	cell culture of rat bone marrow	70
		3.1.1.	Osteogenic cell culture	70
	3.2.	Cell see	ding	72
		3.2.1.	Two dimensional cell seeding	72
		3.2.2.	Three-dimensional cell seeding	72
	3.3.	Characte	erizing types and growth of differentiated cells	75
		3.3.1.	Histochemical staining	75
		3.3.2.	Immunohistochemical stainings of collagen type I	75
			and osteocalcin	
		3.3.3.	Morphological stainings	76
		3.3.4.	Biossays	77
		3.3.5.	Procedures in molecular biology	80
	3.4.	Procedu	res related to platelet-rich plasma (PRP)	86
		3.4.1.	PRP preparation	86
		3.4.2.	PRP characterization	86
		3.4.3.	Platelet activation	87
		3.4.4.	Implantation of ICBM scaffolds in nude mice,	88
			subcutaneous and intramuscular implantations	
	3.5.	Evaluati	ion of new bone formation	91
		3.5.1.	Radiography	91
		3.5.2.	Histology	92
	3.6.	Insolubl	e collagenous bone matrix (ICBM) preparation	94
	3.7.	Lyophil	ization	94
		3.7.1.	Lyophilization of ICBM scaffold	94
		3.7.2.	Lyophilization of growth factors on ICBM	94
	3.8.	Neutrali	zation of ICBM scaffold	95
4.	Stati	stics		97
	4.1.	Reliabil	ity control	97
	4.2.	Paramet	ric data	97

		Pages
	4.3. Nonparametric data	97
3.	Results	98
	Study Part I: Osteogenic induction of rat bone marrow	98
	1. Bone marrow cell culture	98
	1.1. Attachment and growth of bone marrow	98
	1.2. Factors influencing attachment and growth of bone marrow	99
	cells during 72 hours after seeding of bone marrow	
	2. Identifying adipocytic and chondroblastic differentiations	103
	2.1. Adipocytes	103
	2.2. Chondroblasts	103
	3. Identifying osteoblast-like cells	105
	3.1. ALP staining	105
	3.2. Immunohistochemical stainings of collagen type I and	105
	osteocalcin	
	3.3. In vitro mineralization, von Kossa staining	106
	4. Expressions of mRNAs of bone marrow cells of fully mature rats,	109
	11 month-old, cultivated in 10 nM VD3 and 50 ng/ml rhBMP-2	
	4.1. Reliability control	109
	4.2. Expression of ALP, BMP-2, Type I collagen and	109
	osteocalcin mRNAs	
	5. An implantation of fresh bone marrow and differentiated bone	113
	marrow cells in nude mice	
	5.1. Implanted cells	113
	5.2. Radiographs	113
	5.3. Histology	117
	5.3.1. At implantation-day 6	117
	5.3.2. At implantation-day 18	117
	5.3.3. At implantation-day 28	118
	5.3.4. At implantation-day 45	119

			Pages
Part II:	Effects o	of PRP on growth and differentiation of premature	130
osteobl	asts and r	mesenchymal stem cells in rat bone marrow	
1. Plat	elet-rich	plasma (PRP) preparation	130
1.1	. Concen	stration of platelets in PRP	130
1.2	. Prepara	tion efficacy	130
2. Cor	ncentratio	on of TGF-β1 in PRP	130
3. Effe	ects of PF	RP in three-dimensional cell culture, an in vitro study	136
3.1	. Express	sion of osteoblastic maker mRNAs of bone marrow	136
	cells		
3.2	. Cell pro	oliferation	136
3.3	. ALP ac	etivity	138
3.4	. Calciur	n contents	140
3.5	. Morpho	ology of cells on scaffolds, attachment and	141
	prolifer	ration of cells on surface of scaffolds	
	3.5.1.	Neutral red staining	141
	3.5.2.	ALP staining	141
4. An	implanta	tion of bone marrow in nude mice, an in vivo study	149
4.1	. Radiog	raphs	149
	4.1.1.	Conventional radiographs	149
4.2	. Histolo	gy of implantation of bone marrow in nude mice, an	153
	in vivo	study	
	4.2.1.	Control group: ICBM scaffold only	153
	4.2.2.	Experimental group I: Bone marrow and blood	153
		products	
	4.2.3.	Experimental group II: ICBM, bone marrow and	154
		BMP-2 1 µg (Group D)	
	4.2.4.	Experimental group II: ICBM and BMP-2 (1-10	154
		μg)	

			Pages
4.	Discussion		166
	Part I: Osteogen	ic induction of bone marrow of fully mature rats	166
	1. Osteogenic p	potential of bone marrow	166
	1.1. Osteog	enic cell culture of rat bone marrow	166
	1.2. Express	sion of differentiation markers and cell culture	167
	condition	on	
	1.2.1.	Expression of ALP and adipocytes	168
	1.2.2.	Expression of type I collagen and BMP-2 mRNAs	168
	1.2.3.	Expression of osteocalcin and in vitro	169
		mineralization	
	1.2.4.	Supplementations in culture medium	170
	1.3. Part I: 1	Implantation of bone marrow cells, in vivo study	170
	1.3.1.	Implanted cells	171
	1.3.2.	New bone formation processes	172
	1.3.3.	ICBM scaffold	173
	Part II: Effects of	of PRP on growth and osteogenic differentiation of	174
	rat bone marrow	•	
	1. Overview		174
	1.1. PRP pr	eparation	175
	1.2. PRP pr	eparation efficiency and released growth factors	176
	1.3. In vitro	and in vivo concepts of study design	177
	1.3.1.	Target cells	177
	1.3.2.	Concepts of experimental design	178
	1.4. Three-o	limensional scaffold	179
	1.5. PRP an	d osteogenesis	180
	2. Effects of PI	RP in three-dimensional cell culture, in vitro study	181
	3. An implanta	tion in nude mice, in vivo study	184
	4. New bone for	ormation and mineralization process	187
	4.1. Bone for	ormation	187
	4.2. Minera	lization of bone matrix	187

		Pages
	5. A proposed scenario of osteogenesis process in bone grafting	188
	supplemented with PRP	
5.	Conclusion	191
	Conclusion	191
	Part I: Osteogenic induction of bone marrow of fully mature rats	191
	Part II: Platelet-rich plasma and osteogenic differentiation	192
	General conclusion	192
Bi	bliography	194
Αŗ	pendix	224
Vi	tae	234

List of Tables

Table		Pages
2-1	Effects of VD3 and rhBMP-2 in rat bone marrow cell culture	54
2-2	An implantation of bone marrow cells in nude mice	55
2-3	Groups of study in the study of effects of PRP in vitro	59
2-4	Investigated parameters and numbers of ICBM scaffolds with cells in each group	59
2-5	Groups of study in PRP in vivo implantation	67
2-6	Samples and dilution factors used in TGF-β1 assay	70
2-7	List of cells seeding densities on different cell culture containers	73
2-8	Components of mRNA extraction kit (MicroPoly(A) Pure	82
	(Ambion))	
2-9	Components of Titan one tube RT-PCR system (Roche)	84
2-10	Sequences of bases of upstream and downstream primers	85
2-11	Methods to characterize types and growth of differentiated cells	87
2-12	A summary of methods to evaluate new bone formation	97
2-13	List of concentration of rhBMP-2 solution lyophilized on ICBM	98
3-1	Concentration of TGF-β1 (ng/ml) in PRP (ng/ml)	134
3-2	Efficacy of PRP preparation and ratios of numbers of platelets in	134
	PRP to numbers of platelets in whole blood	
3-3	Amount and concentration of TGF-β1 applied on each scaffold	135
3-4	Mineralization areas of each implantation group	150
4-1	Demonstrating effects of PRP applied in this study in relation to	190
	bone healing cascade	

List of Figures

Figure		Pages
2-1	Scope of the study	52
2-2	Study design of the study of effects of PRP in vitro	60
2-3	An overview of an addition of PRP in three-dimensional cell culture	61
2-4	Demonstrating blood clotting on 3x5 mm ICBM scaffold	62
2-5	Study design of an in vivo implantation	67
2-6	An overview of implantation of bone marrow and PRP in vivo	68
2-7	Femur harvesting and bone marrow procurement procedures	71
2-8	Inactive insoluble collagenous bovine bone scaffold (ICBM)	74
2-9	Bone marrow cell seeding on 5x10 mm ICBM scaffolds for implantaion	74
2-10	Bone marrow and cloted blood within structure of 5x10 mm scaffold	74
2-11	Solubilization of calcium content in mineralized extracellular scaffold	80
2-12	Centrifugation of blood and plasma for PRP preparation	87
2-13	Intramuscular implantation in nude mice	90
2-14	Explantation of intramuscular implanted specimen	91
2-15	Specimens prepared for radiographing in 'Faxitron' radiographic machine	91
2-16	Preparation of lyophilized ICBM	96
3-1	Bone marrow cell culture supplemented with 20 nM dexamethasone in primary passage	100
3-2	Adipocytes with Oil red O staining of lipid droplets within cytoplasm	104
3-3	Alcian blue staining of extracellular matrix	104

Figure		Pages
3-4	Double staining of ALP and Oil red O stainings of bone marrow	107
	cells cultivated in 20 nM dexamethasone	
3-5	Immunohistochemical staining of type I collagen and osteocalcin	108
	of bone marrow cell culture at the 14 culture-day in the first	
	passage	
3-6	Von Kossa staining of bone marrow cells cultivated in 50 ng/ml	108
	rhBMP-2 at the 21st culture-day in the first passage	
3-7	Gel electrophoresis of RT-PCR products of bone marrow cells in	110
	first passage at the 13th culture-day cultivated in 20 nM	
	Dexamethasone (Group A)	
3-8	Gel electrophoresis of bone marrow cells in first passage at the	110
	14th culture-day cultivated in VD3 (Group B) (a) and BMP-2	
	(Group C) (b)	
3-9	Group A:Dexamethasone bone marrow cell culture in primary	111
	and first passages	
3-10	Group B:VD3 bone marrow cell culture in primary and first	111
	passages	
3-11	Group C:BMP-2, bone marrow cell culture in primary and first	112
	passages	
3-12	Alkaline phosphatase and Oil red O stainings of implanted cells	114
	in nude mice	
3-13	Radiographs of cultivated bone marrow on ICBM scaffold at 6	114
	implantation-day	
3-14	Radiographs of Group B: Cultivated bone marrow on ICBM	115
	scaffold at implantation-day 18	
3-15	Radiographs of Group B: cultivated bone marrow on ICBM	115
	scaffold at implantation-day 28	
3-16	Radiographs of Group B: Cultivated bone marrow on ICBM	116
	scaffold at implantation-day 45	

Figure		Pages
3-17	Radiographs of Group A: Fresh bone marrow on ICBM scaffold	116
	at implantation-day 45	
3-18	Implantation of cultivated cells on ICBM scaffold at	120
	implantation-day 6	
3-19	Implantation of cultivated cells on the ICBM scaffold at	121
	implantation-day 18	
3-20	Implantation of cultivated cells on the ICBM scaffold at	122
	implantation-day 18	
3-21	Cartilage formation in implantation of cultivated cells on the	123
	ICBM scaffold at culture-day 18	
3-22	Implantation of fresh bone marrow on the ICBM scaffold at	124
	implantation-day 18	
3-23	Implantation of cultivated cells on the ICBM scaffold at	125
	implantation-day 28	
3-24	Implantation of cultivated cells on the ICBM scaffold at	126
	implantation-day 45	
3-25	Implantation of fresh bone marrow on the ICBM scaffold at	128
	implantation-day 45	
3-26	Concentrations of platelets in whole blood and PRP	131
3-27	Blood smear of whole blood and PRP	131
3-28	Average concentrations of red blood cells (1x106 cells/µl) and	132
	white blood cells (1x103 cells/µl) in whole blood and PRP	
3-29	Concentration of TGF- β1 (ng/ml) in PRP	133
3-30	Estimated average amount TGF-β1 applied on each scaffold and	133
	concentrations of TGF- $\beta1$ in culture medium in each well of 24	
	well plate	
3-31	mRNA expressions of bone marrow cells at 8 day after cell	136
	seeding	
3-32	Proliferation of cells in three-dimensional cell culture	137

Figure		Pages
3-33	ALP acitivity in three-dimensional cell culture	139
3-34	Calcium contents in three-dimensional cell culture at culture-	140
	days 18 and 21	
3-35	Neutral red staining of cells growing on an ICBM scaffold and	142
	on a fibrin network of Group A: 100% PRP at 15th culture-day	
3-36	Neutral red staining of cells on an ICBM scaffold and on a fibrin	142
	network of Group D: PPP at culture-day 15	
3-37	Alkaline phosphatase staining of cells Group A: 100%PRP	143
	during culture-days 15 – 21	
3-38	Alkaline phosphatase staining of cells Group B: PRP 25%	144
	during culture-days 15 – 21	
3-39	Alkaline phosphatase staining of cells Group C: PRP 6.25%	145
	during culture-days 15 – 21	
3-40	Alkaline phosphatase staining of cells Group D: PPP during	146
	culture-days 15 - 21	
3-41	Alkaline phosphatase staining of cells Group E: 300 ng rhBMP-	147
	2 during culture-days 15 – 21	
3-42	Alkaline phosphatase staining of cells Group F: Cells without	148
	growth factor during culture-days $15-21$.	
3-43	Demonstrating mean and standard error of mean of	150
	mineralization area of each implantation (mean \pm SE)	
3-44	Radiograph of Control group (an implantation of ICBM scaffold	151
	only)	
3-45	Radiographs of Experimental group I: Bone marrow and blood	151
	products	
3-46	Radiographs of Experimental group II: Bone marrow and	152
	rhBMP-2 1 μg	
3-47	Radiographs of Experimental group III: rhBMP-2	152
3-48	Implantation of an ICBM scaffold without cells in the control	156
	group	

Figure		Pages
3-49	Group A: An implantation of ICBM, bone marrow and whole	157
	blood	
3-50	Group C: An implantation of ICBM, bone marrow and PPP	159
3-51	Group B: An implantation of ICBM, bone marrow and PRP	161
	100%	
3-52	Group D: An implantation of ICBM, bone marrow and BMP-2 1	163
	μg	
3-53	Group F: An implantation of ICBM and BMP-2.10 ug	165

List of Abbreviations

μg	=	Microgram
μl	=	Microlitre
μM	=	Micromolar
μm	=	Micrometer
°C	=	Degree celcius
3-D		Three dimensional
ALP	=	Alkaline phosphatase
AP	=	Apheresis platelets
BCPB	=	Buffy coat-derived platelets
bFGF	=	Basic fibroblast growth factor
BM	=	Bone marrow
BMP	=	Bone morphogenetic protein
bp	=	Base pair
BPBM	=	Bovine porous bone mineral
BSP	=	Bone sialoprotein
Ca ²⁺	=	Calcium ion
Cat.No.	=	Catalog number
c-DNA	=	Cloned-deoxyribonucleic acid
CFU-F	=	Colony forming unit-fibroblast
cm	=	Centimeter
cm ²	=	Square centimeter
CO_2	=	Carbondioxide
Col I	=	Type I collagen
cont	=	Control
d	=	Culture-day
DBM	=	Demineralized bone matrix
DCFD-AS	=	Denatured atelocollagen sponge
dex	=	Dexamethasone
DFDBA	=	Demineralized freeze-dried bone allograft
DNA	=	Deoxyribonucleic acid
DOPC	=	Determine osteoprogenitor cells
DPBS	=	Phosphate buffer saline
ECM	=	Extracellular matrix
EDTA	=	Ethylenediaminetetra-acetic acid
EGF	=	Epidermal growth factor
e-PTFE	=	Expanded-polytetrafluoroethylene membrane
FBS	=	Fetal bovine serum
FDBA	=	Freeze- dried bone allograft
G	=	Gauge
g	=	Gram
g	=	Gravitational force
GBR	=	Guide bone tissue regeneration
00 4 4		O

Gaunine and cytocine content

GC content

List of Abbreviations (Continue)

GDPH = Gaunine dinosine triphosphate
GTR = Guid tissue regeneration
GuHCL = Gaunidine hydrochloric acid
H₂O₂ = Hydrogen peroxide

 H_2O_2 = Hydrogen peroxid HA = Hydroxyapatite HCL = Hydrochloric acid

hMSCs = Human mesenchymal stem cells hOB = Human trabecular bone osteoblast ICBM = Inert cancellous bovine bone matrix

IGF = Insulin-like growth factor

IGFBP = Insulin-like growth factor binding protein

IL = Interleukin

IOPC = Inducible osteoprogenitor cells

kDa = Kilodalton kg = Kilogram kV = Kilovolt L = Liter

Ladder = Base pair ladder

M = Molar
mg = Milligram
min = Minute
ml = Milliliter
mm = Millimeter
mM = Millimolar

mRNA = Massenger ribonucleic acid

NAD⁺ = Reduced-Nicotinamide adenine dinucleotide

NADH = Nicotinamide adenine dinucleotide

NIH = National institute of health

nm = nanometer
OC = Osteocalcin
P0 = Primary passage
P1 = First passage
PEC = Palvethylene else

PEG = Polyethylene glycol PGA = Polyglycolic acid Pi = Phosphate ion

PDGF = Platelet-derived growth factors PLGA = DL-lactide-co-glycolic acid

PPP = Platelet poor plasma
PRP = Platelet-rich plasma
PTH = Parathyroid hormone

PTHrP = Parathyroid hormone related protein

RBC = Red blood cell

List of Abbreviations (Continue)

RF Nr = Reference number

rhBMP = Recombinant human bone morphogenetic protein

rhOP-I = Recombinant human osteogenic protein-I

rhPDGF = Recombinant human platelet-derived growth factor

rpm = Round per minute RT = Room temperature

RT-PCR = Reverse transcriptase polymerase chain reaction

SPHA = Sintered porous hydroxyapatite

TCP = Tricalcium phosphate

 $TGF-\beta$ = Transforming growth factors - beta

TP = Tube method

U = unit

v/v = Volume / volume

VD3 = 1α, 25 dihydroxy cholecalciferol VEGF = Vascular endothelial growth factor VEGF = Vascular endothelium growth factor

w/v = Weight per volume WBC = White blood cell