Contents

	Page
บทคัดย่อ	(3)
Abstract	(5)
Acknowledgement	(7)
Contents	(9)
List of Tables	(15)
List of Figures	(17)
Abbreviations and Symbols	(20)
Chapter	
1. Introduction	1
1.1 Introduction	1
1.2 Objectives	6
2. Literature review	7
2.1 Original and geographic distribution	7
2.2 Description of Elaeis guineensis Jacq.	8
2.3 Botanical information	10
2.4 Genetic resources	12
2.5 Palm oil	14
2.6 Economic and production data	15
2.7 Imbibition	21

		Page
2.8 Flow cytometry		22
2.8.1 Principles of	flow cytometry	23
2.8.2 The use of re	ference plant	24
2.8.3 Cell cycle an	alysis	24
2.8.4 Genomic DN	A alterations	25
2.9 Fundamental of pl	ant cell culture	26
2.9.1 Plasticity and	l totipotency	26
2.9.2 The culture e	environment	27
2.9.3 Plant cell cul	ture media	28
2.9.4 Carbon source	ces	28
2.9.5 Gelling agen	ts	28
2.9.6 Plant growth	regulators	29
2.10 Review of oil pali	m in vitro culture works	31
2.10.1 Protoplast	isolation and culture	32
2.10.2. Early exp	eriments	33
2.10.3 Importance	e and use of oil palm protoplast	33
2.10.4 Backgroun	nd of genetic transformation	34
2.10.5 Protoplast	culture	35

	Page
3. Materials and methods	38
3.1 Seedling and callus induction	38
3.1.1 Plant materials	38
3.1.2 Seedling and callus initiation	38
3.1.3 Culture media and conditions	39
3.2 Flow cytometric analysis	39
3.2.1 Plant materials	39
3.2.2 Reference plants testing	40
3.2.3 Genomic DNA alteration	40
3.2.4 Cell cycle activity analysis	40
3.2.5 Data analysis	41
3.3 Protoplast isolation and culture	41
3.3.1 Plant materials	41
3.3.2 Protoplast isolation	42
3.3.3 Protoplast purification	43
3.3.4 Yield and viability measurements	43
3.3.5 Protoplast culture methods and protoplast sources investigation	44
3.3.6 Gelling agents and carbon sources investigation	44
3.3.7 Cell division induction	44

	Page
3.3.8 Cell colony formation	45
3.3.9 Data analysis	45
4. Results	46
4.1 Seedling and callus induction	46
4.1.1 Seedling induction	46
4.1.2 Callus formation	49
4.2 Flow cytometric analysis	51
4.2.1 Reference plants testing	51
4.2.2 Genomic DNA alteration	54
4.2.3 Cell cycle activity analysis	57
4.3 Protoplast isolation and culture	60
4.3.1 Protoplast isolation	60
4.3.2 Effect of protoplast culture methods and protoplast sources on	
cell division	65
4.3.3 Effect of gelling agents and carbon sources on cell division of	
protoplasts	66
4.3.4 Cell division induction	67
4.3.5 Cell colony formation	69
5. Discussion	72

	Page
5.1 Effect of physical conditions and growth regulators on embryo culture and	
cell cycle activity	72
5.1.1 Effect of imbibition on seedling and callus induction	72
5.1.2 Effect of imbibition on cell cycle activity	74
5.1.3 Effect of growth regulators on callus induction	76
5.2 Flow cytometry in oil palm	78
5.3 Protoplast isolation and culture	80
5.3.1 Protoplast isolation	81
5.3.2 Protoplast culture	83
5.3.3 Protoplast division and cell colony formation	85
. Conclusion	87
Leferences	90
appendix	103
1 Composition of Murashige and Skoog (MS) medium (1962).	104
2 Composition of Eeuwens (Y ₃) medium (1976).	106
3 Composition of CPW salts solution (Power et al., 1984)	
in 1000 ml.	108
4 Protocol for determination of protoplast viability (FDA stain)	
(Widholm, 1972).	109
5 Protocol for preparation of oil palm embryo protoplasts.	110

() (2)		Page
	6 Protocol for flow cytometric analysis (Pfosser et al., 1998).	111
	7 Lipid grains and storage proteins in oil palm embryos after imbibed	
	for 24-72 h.	113
· W	8 Embryogenic calli of oil palm cultured on MS medium	
	supplemented with 4.5 μ M 2,4-D and 0.1% activated charcoal.	114
	9 The results of flow cytometric analysis of oil palm using reference	
	plant as an external standard.	115
ublicat	ions	119
/itae		120

List of Tables

Table	Page
1 Output values of various oilseed crops.	16
2 World production of palm oil by major countries (1000t).	17
3 The 20 highest producing countries of palm oil for the year 2003 (by FAO).	18
4 World mature areas of oil palm (1000 ha).	19
5 The 20 highest exporter countries of palm kernel oil for the year 2002	
(by FAO).	20
6 Genome size (2C nuclear DNA content in pg) of E. guineensis Jacq.	
estimated by comparing with various reference plants. The means are	
based on 10 replicates per experiment.	52
7 Genome size (2C nuclear DNA content in pg) of oil palm embryos,	
one-year-old shoot meristem of seedlings and of calli at the 3 rd in vitro	
subculture. The means are obtained from experiments with 5 replicates.	55
8 Yield (10 ⁵ protoplasts gram ⁻¹ FW) of oil palm protoplasts isolated from	
seedlings and calli with different enzyme mixture after 3h of incubation.	60
9 Yield of oil palm protoplasts isolated from friable callus cultured in	
liquid media with enzyme mixture of 1% Cellulase+0.5%	
Driselase+1% Macerozyme.	61
10 Yield (10 ⁶ protoplasts gram ⁻¹ FW) and viability (%) of oil palm protoplasts	
isolated from 48h-imbibed embryos with different enzyme mixtures.	63

List of Tables (Continued)

Table	Page
11 Percentage of cell division of embryo-derived oil palm protoplasts cultured	
on MS medium supplemented with 13.6 μ M 2,4-D, 4.4 μ M BA and 9.3 μ M	
kinetin using bead technique containing different gelling agents and	
carbon sources.	67
12 Percentage of cell division of embryo-derived oil palm protoplasts cultured	
in agarose bead medium containing various types and concentrations of	
growth regulators (μ M).	69
13 Plating efficiency of embryo-derived oil palm protoplasts cultured in	
different mixtures of growth regulators (µM), after 3 weeks of culture.	71

List of Figures

Figure	Page
1 Oil palm plantation at Horticultural Research Center, Suratthani	
Province.	9
2 Mature oil palm fruit bunch, Tenera cultivar.	10
3 Young oil palm seed cultivars Pisifera 116 (A); Dura 64 (B) and	
Tenera 23 (C), 3 months after anthesis.	11
4 Mature oil palm seed cultivar Tenera, 6 months after anthesis.	12
5 Pattern of cell cycle activity from flow cytometric histogram.	25
6 Germination oil palm seedlings from imbibed (a and c) and non-imbibed	
(b and d) embryos cultured in liquid (a and b) or on solid (c and d)	
Y3 media without plant growth regulators after culture for 28 days.	47
7 Germination oil palm seedlings from embryos imbibed for 24 48 and	
72 h and non-imbibed (control) prior to cultured in liquid Y3 media	
without plant growth regulators after culture for 56 days.	48
B Effect of imbibition times on fresh weight, shoot and root length of	
oil palm seedlings derived from imbibed and non-imbibed embryos cultured	
in Y3 liquid medium after culture for 56 days. Error bars represent ±SE.	49

List of Figures (Continued)

Figure	Pa	age
9 Callus formation from embryos imbibed for 0, 24, 48 and 7	⁷ 2 hours prior to	
culture in liquid Y3 media supplemented with the following	g growth regulators,	
4.1 μ M picloram and 9.0 μ M 2,4-D (media 1); 8.3 μ M piclo	oram and 4.5 μ M	
2,4-D (media 2) and 13.6 μ M 2,4-D (media 3) after culture	for 56 days.	50
10 Fresh weight of calli derived from embryos imbibed for 0	, 24, 48 or 72 hours	
after culture in Y3 liquid media supplemented with 4.1 μ 1	M picloram and	
9.0 μ M 2, 4-D (media 1); 8.3 μ M picloram and 4.5 μ M 2.	, 4-D (media 2) and	
13.6 μ M 2, 4-D (media 3) after culture for 56 days. Error	bars represent ±SE.	51
11 Histogram of fluorescence intensity of nuclei isolated from	n oil palm using	
Glycine max cv. Polanka (A), Lycopersicon esculentum c	v. Stupicke (B) and	
Zea mays line CE-777 (C) as internal reference plants.	5	54
12 Comparison of fluorescence intensity in nuclei of oil palm	among embryos	
(A), long-term in vitro cultured tissues of shoot meristem	(B) and calli (C)	
using Glycine max cv. Polanka as an internal reference.	4	57
13 Histogram of propidium iodide fluorescence intensity of o	oil palm nuclei	
isolated from embryos imbibed for 24, 48 and 72 hour and	d non-imbibed	
embryos. The fluorescence histograms were resolved into	2C (G0/G1) and	
4C (G2/M) cell cycle compartments with a peak-reflect a	lgorithm using	
WinMDI version 2.8. X-axis represents DNA content; Y-	axis represents	
event of cell counts.	4	58

List of Figures (Continued)

Figure	Page
14 Histogram of propidium iodide fluorescence intensity of oil palm nuclei	
isolated from embryos imbibed for 48 hour (a), calli (b), shoots (c) and	
roots (d). The fluorescence histograms were resolved into 2C (G0/G1) and	
4C (G2/M) cell cycle compartments with a peak-reflect algorithm using	
WinMDI version 2.8. X-axis represents DNA content; Y-axis represents	
event of cell counts.	59
15 Freshly isolated protoplast from basal leaf (A) and callus (B).	61
16 (A) Freshly isolated protoplasts from embryos of oil palm and	
(B) the same protoplasts when stained with FDA.	64
17 Percentage of cell division of oil palm protoplasts from different sources of	
explants cultured on MS medium using agarose as gelling agent supplemente	ed
with 8.3 μ M picloram, 4.5 μ M 2,4-D, 8.8 μ M BA and 4.6 μ M kinetin	
after culture for 7 days. Error bars represent ±SE.	65
18 Dividing oil palm protoplasts cultured on MS medium containing 8.3 μ M	
picloram, 4.5 μ M 2,4-D, 9.3 μ M kinetin and 4.4 μ M BA, after 2 days of	
culture. Bar=10 μm.	68
19 Cell colony formation of oil palm protoplasts cultured in Agarose bead	
MS medium containing 4.5 μ M 2,4-D, 4.5 μ M dicamba, 9.3 μ M kinetin,	
4.4 μ M BA and 3.8 μ M ABA, after 3 weeks of culture. Bar=20 μ m.	70

Abbreviations and Symbols

2,4-D 2,4-dichlorophenoxyacetic acid ABA abscisic acid AC Activated charcoal **ANOVA** Analysis of variance BA N⁶- benzyladenine base pair (s) bp Cel Cellulase Onozuka R-10 **CFW** Calcofluor white cm centimetre **CPW** Cell protoplast wash cultivar CV. Dicamba 3,6-dichloro-o-anisic acid Deoxyribonucleic acid DNA Dri Driselase **FAO** Food and Agricultural Organization **FDA** Fluorescein diacetate g (unit of acceleration)= gravity g (unit of weight) gram gram-1 FW per gram fresh weight h hour

Abbreviations and Symbols (Continued)

Kinetin = 6-furfurylaminopurine

M = molar

Mac = Macerozyme R-10

MES = 2-N-morpholinoethanesulphonic acid

mg = milligram

mg/l = milligram per litre

min = minute

ml = millilitre

mm = millimetre

mM = millimolar

MS = Murashige and Skoog (MS), 1962

NAA = 1-napthaleneacetic acid

nm = nanometre

p = probability level

PE = Plating efficiency

PEG = Polyethylene glycol

PI = propidium iodide

Picloram = 4-amino-3,5,6-trichloropicolinic acid

pg = picogram

pp = protoplast

Abbreviations and Symbols (Continued)

PVP = polyvinylpyrrolidone

rpm = revolution per minute

SD = standard deviation

SE = standard error

sh = shell (endocarp)

v/v = volume by volume

w/v = weight by volume

 Y_3 = Eeuwens (Y_3) , 1976

°C = degree of Celsius

 μ m = micrometre

 μ l = microlitre

 μ mol m⁻² s⁻¹ = micromole per metre square per second

% = percentage