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Abstract 

 

 This thesis presents the reinforced concrete (RC)  frame element for 

the analysis of the RC columns characterized by light and insufficiently detailed 

transverse reinforcement.  This type of column is defined as the “ non-ductile”  RC 

column and also found in the existing RC frame buildings designed and constructed 

before the introduction of modern seismic codes. The frame element in this study is 

derived based on the displacement-based formulation and the Timoshenko beam 

kinematics assumption is used to describe the variation of strains along the RC cross-

section at the fiber section level.  As a result, the axial-flexure interaction is 

automatically taken into the element stiffness matrix while shear action uncouples 

with those actions. The shear-flexure interaction is taken into account via the shear 

hysteretic curve.  The presented shear force and shear strain relation in the shear 

hysteretic curve is adopted and modified from the research work of Mergos and 

Kappos (2008 and 2012). The degradation of shear strength due to the influence of 

inelastic flexural deformations is accounted in this modified shear hysteretic curve 

within the framework of the so-called “ UCSD Shear-Strength Model” .  Linked 

displacement interpolation functions are used to solve the problematic 

phenomenon known as “ shear locking”  in the Timoshenko frame element. Finally, 

the importance of including shear response and shear-flexure interaction in the 

evaluation of the non-ductile RC columns are presented and discussed through the 

three numerical examples.  Furthermore, the numerical examples are employed to 

verify the model accuracy and its capability to predict rather complex responses of 

the non-ductile RC columns. 
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CHAPTER 1 

Introduction 

 

 

1.1 Background and Rationale 

 

 Nowadays, the reinforced concrete structures (RC-Structures) have 

been extensively used in the structural engineering works, such as building, highway, 

pavement and bridge structures etc. The older RC frame buildings with the poor 

performance, especially the RC buildings designed and constructed prior to the 

introduction of modern seismic codes, have still existed in the most countries. During 

the past and recent devastating earthquakes (e.g. the 1967-Caracas earthquake, the 

1968-Tokachi-Oki earthquake, the 1971-San Fernando earthquake, the 1989-Loma 

Prieta earthquake, the 1994-Northridge earthquake, 1995-the great Hanshin 

earthquake or Kobe earthquake, the 1999-Kocaeli earthquake, the 1999-Taiwan 

earthquake, the 2008-Wenchuan earthquake, and the 2009-Honduras earthquake), it 

has been observed that those frame buildings are severely damaged or even 

completely collapsed as shown in Figure 1-1 and 1-2. To examine the cause of the 

resulting damages and collapses of those frame structures, several researchers (e.g. 

Wight and Sozen; 1975; Ghee et al., 1989; Li et al., 1995; Yalcin 1997; Lynn et al., 

2001; Hamilton et al., 2002; and Sezen, 2002) conducted the experiments on RC 

columns to investigate the behavior of those columns under seismic load. From the 

study results of some research works [Lynn et al., 2001; and Sezen, 2002], it can 

indicate that those columns are characterized by the lightly and insufficiently 

detailed transverse reinforcement that corresponds to the study results in the 

several research works (e.g. Lynn et al., 1996; and Kim et al., 2013). Moreover, it is 

found that the most damaged mechanism of those columns is related to shear that 

is the main cause of column damages and collapses [Moehle et al., 2001; Sezen et 

al., 2003; and Dogangun, 2004]. However, although those columns have initially been 

designed to withstand shear force associated with the flexural yielding, it may fail in 

shear because of the increase of inelastic flexural deformations (Plastic-hinge 
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formation) which affect on the shear capacity [Ghee et al., 1989; Watanabe and 

Ichinose, 1991; Priestley et al., 1993; Biskinis et al., 2004; Sezen and Moehle, 2004]. It 

relies on the fact that when the width of the cracks associated with the inelastic 

flexural deformations increase, the capability of the concrete shear transfer between 

the aggregate interlock is also reduced and leads to the degradation of the shear 

capacity.  

 

 

Figure 1-1 Damaged columns from 1971 San Fernando earthquake [Alim, 2014] 

 

Figure 1-2 Damaged bridge piers from 1995 Kobe earthquake [Ghasemi et al., 1996] 
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 According to the failure types of the RC columns under seismic load, 

the research work of Ceresa et al. (2008) divides the failure types into three 

categories detected by the shear span ratio a
L

h
, that is the ratio between the shear 

span 
a

L  and section depth h . The first failure type is the shear failure mode that is 

dominated when the value of shear span ratio is lesser than 2.5 ( 2.5
a

L

h
 ) while the 

second failure mode is the members with the value of shear span ratio between 2.5 

and 5 ( 2.5 5
a

L

h
  ). This type of member is classified as the flexural-shear critical 

member. The shear-flexural interaction is also observed in this type of members. 

Finally, the last failure type is the flexural failure mode which is found in the 

members with the value of shear span ratio over 5 ( 5
a

L

h
 ). In addition to the most 

damages and collapses of the columns as above discussed in the first paragraph, the 

most failures can be classified in the shear failure and flexural-shear failure, 

especially the flexural-shear failure. The behavior of shear-flexural interaction effects 

within the flexural-shear critical member (Leading to the degradation of shear 

strength capacity) corresponds to the results of experiments on RC columns as 

above discussed. Thus, the shear-flexural interaction effects may be the main cause 

of column damages and may lead to the failure in shear. 

 To evaluation of those existing building’s performance as above 

discussed in the first and second paragraphs, the development of efficient and 

reliable RC frame models for the maintainable preparation, minimum levels of the 

economic investment, and reduction of the damaged risk on those columns to 

withstand the future earthquakes are still required in the earthquake engineering. 

Although there are many RC frame models which are accepted and used in the 

engineering practice, the development of RC frame model capable of the effects of 

flexure-shear interaction, including inelastic shear response, and the failure prediction 

in shear is still a challenging and open-ended problem.   
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1.2 Objectives 

 

 This research focuses on the development of frame element model 

which accounts the shear-flexural interaction effects for seismic analysis of the non-

ductile RC columns.  The developmental approach needs to be the simple but 

accurate model and the input properties parameters on the proposed model are 

closely based on the engineering properties in the practice. 

 The main objectives of this research are: 

1.2.1 To propose the new method to predict the shear stiffness with shear-flexural 

interaction effects after plastic hinge forming for non-ductile RC column analysis. 

1.2.2 To discuss the importance of considering the shear response and shear-flexure 

interaction effects in the non-ductile RC column analysis.   

1.2.3 To prove the performances of the proposed RC frame element when compared 

to the previous models ( e. g.  Mergos and Koppos model ( 2008) ; and the frame 

element based on Euler-Bernoulli beam theory). 

 

1.3 Scope 

 

 Limitations of this study can be expressed as: 

1.3.1 The frame element is based on Timoshenko beam theory. 

1.3.2 The frame element model is based on the small-deformation hypothesis. 

1.3.3 Effective of Poisson's ratio is neglected in this study. 

1.3.4 The range of the used parameters is based on the criteria of each equation. 
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1.4 Advantages 

 

 The benefits of this research can be explained as follow: 

1. 4. 1 The analytical responses from this research model can use to investigate, 

evaluate, and design R/C frame buildings under cyclic loading. 

1.4. 2 The model in this research can be applied with the engineering application 

software. 

1. 4. 3 The model in this research is the basic model of the RC frame element 

subjected to the cyclic loading which can develop into a real simulation in the 

future. 

1. 4. 4 The proposed model is convenient and straightforward for use in practical 
engineering because of the input parameters within the proposed model based on 
the reinforced concrete properties that are commonly found in the practice. 
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CHAPTER 2 
Literature Review 

 

 

2.1 Introduction 
 

 In this chapter presents the brief summary of the shear mechanism of 

reinforced concrete, the shear strength models, the classical beam theories and the 

overview of the element formulation strategies with including shear responses and 

the reflection of shear-flexure interaction effects. It can be divided into the four 

major parts. The first part mentions the behavior of reinforced concrete for resisting 

of the shear mechanism. The second part refers to the prediction models of the 

shear capacity of reinforced concrete. The third part talks about the used classical 

beam theories in this study while the last part shows the summary of element 

formulation strategies with accounting the shear effect into the response analysis and 

discusses to the overview of state-of-the-art to include the shear-flexure interaction 

in the response analysis. 

  

2.2 Shear Mechanism of Reinforced Concrete 

 

 The shear resisting mechanism of the reinforced concrete can 

describe through the principal stress analysis in Figure 2-1 (a). Shear force and 

bending moment always combine in the multi-axial stress state. During the applied 

load, the diagonal crack of concrete occurs at which the principal tensile stress 

reaches to the tensile capacity of concrete. The crack pattern is approximated 

inclination of 45 degrees ( 45   ) and is always found in the diagonal line shown in 

Figure 2-1 (b). While the crack width increases, the ability of the concrete to transfer 

principle tensile stresses is also reduced.  

 Figure 2-1 (b) shows the relation between the internal forces and 

external forces from the free body diagram of RC beam, which is cleaved across the 

inclined crack. It can be observed that the external shear force V  is resisted by the 
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shear stresses which transmitted in the uncracked compression zone, shear stresses 

which transmitted along the crack plan by aggregate interlock, dowel forces due to 

the flexural steel bar, and residual tensile stresses that transmitted across the crack 

plane [Ceresa et al., 2008]. 
 

 

Figure 2-1 Mechanism of concrete shear resistance: (a) principal stress; and  

(b) external and internal actions in beam [Ceresa et al., 2008] 

 

2.2.1 Equilibrium in the shear span  

 The equilibrium of the shear span can define by considering a part of 

the simply supported beam with the constant of shear force as shown in Figure 2-2 

(a). The total external shear force 
t

V  is resisted by the combination of shear force 

across the compressive zone
cz

V , a dowel force transferred across the crack by the 

flexural steel reinforcement 
d

V , and shear stress transferred across the crack by the 
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Residual Tension 
Aggregate Interlock 

C  

T  
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  



8 

average of the aggregate interlocking 
A

  . Thus, the total external shear force t
V  can 

be written as: 

 t cz A d
V V V V    (2-1) 

 To simplify for the consideration of the equilibrium equation of Eq. (2-

1), the shear stresses transmitted across the crack by aggregate interlocking 
A

  can 

be lumped into a single force 
A

G , which is defined by the line of action across two 

distinct points as shown in Figure 2-2 (b). After that, the equilibrium of the free body 

can be represented through the force polygon as shown in Figure 2-2 (c). 

 The resisting moment of beam M  can be written as: 

  cota t dM x V jd T V     (2-2) 

where 
a

x  is a distance from the left support; jd  is the distance between line of 

thrust and tensile force of the flexural reinforcement; and T  is the tensile force. For 

beam without the transverse reinforcement, the dowel force transferred across the 

crack by the flexural steel reinforcement 
d

V  cannot be developed because this force 

reacts directly on the concrete cover at which the dowel force 
d

V  is low. Thus, the 

resisting moment is simplified by neglecting the term of the dowel force ( 0
d

V  ) and 

can be simply expressed by 

 M Tjd  (2-3) 

  It needs to note that the bending moment and tension force, 

correspond to each other in Figure 2.2 (b) and Eq. (2-3), don’t occur in the same 

section of the beam. The tensile force in the longitudinal reinforcement bar at a 

distance cotax jd   from the left support depending on the bending moment at a 

distance 
ax  from the left support. Thus, it is clear that the increase in the steel 

stresses is governed by the slope of idealized diagonal crack. When the angle   is 

less than 45°, the moment arm cotjd   can be approximated by the section depth 

d  [Park and Paulay, 1975].  
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Figure 2-2 Equilibrium of beam in the shear span: (a) resisting forces;  

(b) lumped force 
A

G ; and (c) force polygon [Park and Paulay, 1975] 

 

2.2.2 The mechanism of shear resistance 

 

 The mechanism of shear resistance can be described through the 

equilibrium equations. The relationship between the internal shear force V  and 

bending moment M  are obtained from the combining of the external resisting 

moment and the internal resisting moment of Eq. (2-3) into the transverse 
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equilibrium of beam system, the internal shear force equation can be rewritten as 

shown in Eq. (2-4).  

    d jddM d dT
V Tjd jd T

dx dx dx dx
     (2-4) 

 From the Eq. (2-4), the internal shear force V  is expressed in the two 

terms. The first term presents the behavior of the true prismatic flexural member by 

the variation of the internal tension force dT

dx
 with the constant lever arm jd  while 

the second term shows the variation of the lever arm  d jd

dx
 with the constant 

tension force T . In the elastic beam theory, the bond between concrete and steel 

reinforcement is assumed to be perfect (Non-slip). From this assumption, the lever 

arm of the second term in Eq. (2-4) is assumed as a constant term. In other words, 

the variation of the lever arm is equal to zero (  
0

d jd

dx
 ). Thus, the Eq. (2-4) can be 

reduced into Eq. (2-5).  

 
dT

V jd
dx

  (2-5) 

 According to Eq. (2-5), this equation is referred to as “beam action” in 

the shear span and is accepted in the analysis of prismatic flexural members [Park 

and Paulay, 1975]. The beam action can consider from the simply supported beam in 

Figure 2-2 (a). Each block may be considered into the cantilever action as shown in 

the Figure 2-3.  Under perfect beam assumption as above described, the external 

forces ( N , M , and V ) are resisted by the internal forces, such as a bond force due 

to the increase of the tensile force in the flexural reinforcement between adjacent 

cracks 
1 2T T T   , shear stresses at the two faces of the crack 

1a  and 2a , and the 

dowel forces across the flexural reinforcement 
1dV  and 

2dV . It can be observed that 

the external moment is resisted by the bond force T .  Moreover, the flexural of 

concrete resistance depends on the tensile strength of concrete and the critical 

section depth 
c

s . 
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Figure 2-3 Beam actions on the concrete cantilever in the shear span 

[Park and Paulay, 1975] 

 

 In case of only second term of Eq. (2-4), it refers to the case of the 

bond between concrete and steel reinforcement is destroyed along the entire of 

shear span (Complete loss of bond transfer). From this reason, the tensile force T  

cannot change ( 0
dT

dx
 ) and the external force is resisted only by the inclined 

internal compression as shown in Eq. (2-6). This case is referred to as “arch action” 

in the shear span [Park and Paulay, 1975]. The strength of arch action depends on 

the inclination of the line of thrust in Figure 2-4. 

 
 d jd

V T
dx

  (2-6) 
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Figure 2-4 Arch action in idealised beam due to slip effect [Park and Paulay, 1975] 

 

 According to above explanation on the beam action, the cantilever 

system in Figure 2-3 does not consider the resisting force from web reinforcement, 

such as stirrups or transverse reinforcement. However, when the system includes the 

resisting force by the web reinforcement, the bond force T  is also resisted by the 

combination of aggregate interlock, flexural, and dowel action of cantilever system. 

Another bond force 'T  can define in term of “truss action” as shown in Figure 2-5.  

 

Figure 2-5 Concrete cantilevers acting as struts [Park and Paulay, 1975] 
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 The behavior of the truss action is similar to the perfect beam action 

(The lever arm of the second term is the constant), but it includes another bond 

force 'T  as shown in Figure 2-5. The force in truss can be determined from the 

considerations of equilibrium only. From the analogous truss in the Figure 2-6, the 

external shear force (truss mechanism) 
s

V  is resisted by the diagonal compression 

struts 
d

C  which incline at an angle of the concrete strut   to the horizontal axis, 

and the resultant of all stirrup force across the diagonal crack 
s

T  which incline at an 

angle t
  to the horizontal axis. The relation between the external shear force and 

internal shear force can be written as: 

 sin sin
s d s t

V C T    (2-7) 

 From the geometry of the analogous truss, the spacing of stirrups s  

can be defined as: 

  cot cot ts jd     (2-8) 

 From the Eq. (2-7) and Eq. (2-8), the external shear force 
s

V  can be 

written as: 

 
  sin cot cotv v t t s

s

A f jd T
V

s s

  
   (2-9) 

where 
v

A  is the web reinforcement area with the spacing s ; and 
v

f  is the stirrup 

stress.  It is crucial to point out that the advantages of the stirrups or transverse 

reinforcement in beam action are the resisting shear force that attempts to extend 

the crack of concrete, suppressing flexural tensile stresses in the cantilever blocks by 

the average of the diagonal compression force 
d

C , limiting the crack opening, 

preventing the loss of bond, and providing the confinement [Park and Paulay, 1975]. 

Thus, the resisting shear force by the truss mechanism is an important component 

which plays an essential role on the shear capacity of the reinforced concrete 

members.  



14 

 

Figure 2-6 Truss analogy [Minelli, 2005] 

 

2.3 Shear Strength Models 

 

 During the last several decades, the several researchers (e.g. Wight and 

Sozen, 1973; Nagasaka, 1982; Umehara and Jirsa, 1982; Bett et al., 1985; Ohue et al., 

1985; Imai and Yamamoto, 1986; Zhou et al., 1987; Ang et al., 1989; Arakawa et al., 

1989; Amitsu et al., 1991; Lynn et al., 1996; Priestley and Benzoni, 1996; Xiao and 

Martirossyan, 1998; Aboutaha et al., 1999; Sezen, 2002; Sezen and Moehle, 2004) 

conducted a set of experiments on columns for the study of the reinforced concrete 

column behaviors under the constant axial load and cyclic lateral load. The 

specimens of their experiments were varied with the different the column properties, 

such as the longitudinal and transverse reinforcement ratio, shear span ratio and 

axial load ratio etc. Among these experiments, the several shear strength models for 

reinforced concrete have been proposed in the research community [Ghee et al. 

1989; Watanabe and Ichinose 1991; Priestley et al., 1993; Sezen, 2002] and applied in 

the several building codes [Cai and Degree, 2017]. The shear strength equations were 

developed and established by the different approaches from those experiments in 

terms of the property parameters of the reinforced concrete column. 

 From most of the shear strength models, the shear strength of 

reinforced concrete column 
u

V  is considered to be the summation of the 
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contributions of concrete 
c

V  and reinforcement 
s

V  for resisting shear force as shown 

in Eq. (2-10).  

 u c s
V V V   (2-10) 

Some shear strength models proposed in literatures can be 

summarized and expressed in the following: 

2.3.1 ACI 318-14 (2014) 

 The shear strength model proposed by ACI 318-14 is the criteria for 

design of RC column under axial load. The shear strength equation 
u

V  is the 

contributions of shear resisting force from the concrete 
c

V  and transverse 

reinforcement 
s

V  as shown in Eq. (2-10). The concrete contribution of shear strength 

equation is given by 

 2 1
2000

c aci c

g

N
V f bd

A


 
   

 
 (2-11) 

 The contribution of the transverse reinforcement can calculate by 

 v yv

s

A f d
V

s
  (2-12) 

where N  is the compressive axial force; gA  is the gross cross sectional area; 
c

f   is 

the concrete compressive cylinder strength; b  is the section width; d  is the section 

depth; 
aci
  is the modified factor to reduce the concrete strength; 

v
A  is the 

transverse reinforcement area with a spacing s ; and yvf  is the yield strength of 

transverse reinforcement. 

2.3.2 ASCE-ACI Committee 426 Proposal (1973, 1977) 

 In 1973, a report on the shear strength of reinforced concrete 

members was published by the ASCE-ACI Joint Committee 46. The report discussed 

the cause of shear failure of RC members that observed from the damaged response 
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after the 1971-San Fernando earthquake. Later, a revised version of this report was 

published in 1977. 

 The shear strength model of ASCE-ACI Committee 426 is similar to the 

ACI 318-02 code that the shear strength equation is the contributions of concrete 

and transverse reinforcement as shown in Eq. (2-10) . The transverse reinforcement 

contributions 
s

V  can calculate from Eq. (2-12) while the concrete contributions 
c

V  

for the rectangular column can calculate by 

 
3

1 0.8
c b g

c g

N
V v A

f A

 
    

 (2-13) 

 The basic shear stress 
b

v  can calculate by 

  0.067 10 0.2
b v c c

v p f f     (2-14) 

where 
v

p  is the volumetric ratio of transverse reinforcement. 

2.3.3 Ang et al. (1989) and Wong et al. (1993) 

 The shear strength model of Ang et al. (1989) and Wong et al. (1993) is 

established from a set of the circular cantilever column experimental tests under 

uniaxial [Ang et al., 1989] and multidirectional cyclic lateral displacement [Wong et 

al., 1993]. This model accounts the strength degradation suggested by ATC-6 

relationship as shown in Figure 2-7. Moreover, the contribution of shear strength 

model is similar to ACI 318-02 that can calculate from Eq. (2-10).  

 The initial concrete mechanism of shear resisting is given by 

 
3

0.37 1 0.8
c c c g

c g

N
V f A

f A


 
    

 (2-15) 

 The truss mechanism of shear resisting for circular column can 

calculate by 
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2

v yv c

s

A f D
V

s

 
  (2-16) 

where 
c

D  is the core diameter measured to the centerline of transverse hoop for 

circular section; and 
c

  is the modification factor for the concrete shear strength and 

can determine from bending moment M , shear force  V , and the column diameter 

for circular section 
c

D  as shown in Eq. (2-17). 

  
2

1.0
/

c

cM VD
    (2-17) 

 

 

Figure 2-7 Shear force versus displacement ductility of Ang and Wong model 

 [Ang et al., 1989] 

 

2.3.4 Watanabe and Ichinose (1991) 

 The shear strength model of Watanabe and Ichinose (1991) is 

established based on the superposition of arch and truss actions for rectangular 

column design. The reduced of stress due to the plastic rotation is presented by the 

concrete compression diagonals in the truss and arch mechanisms. Furthermore, this 

approach has been applied in the recommendation of Architectural Institute of 
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Japan. The total initial shear strength is the contributions of the truss mechanism 
s

V  

and shear force which is carried by the arch action 
a

V . 

 u s a
V V V   (2-18) 

 Figure 2-8 (a) shows the Watanabe and Ichinose’s assumptions relating 

to the truss mechanism. The contribution of truss mechanism to shear force is given 

by 

 
( )

cot
v yv

s

A f jt
V

s
  (2-19) 

where  

 0
cot 2.0

c v yv

v yv

v f bs A f

A f


 
   (2-20) 

 0 0.7
200

cfv


 

 
(2-21) 

 Under assumptions compression zone depth of a half the member 

depth in Figure 2-8 (b), shear force, carried by arch action can be written as: 

  0 tan
2

a c ct

bh
V v f f    (2-22) 

where jt  is the distance between upper and lower chords of the analogous truss as 

shown in Figure 2-8 (a); h  is the section height; and 
ct

f  is the corresponding diagonal 

compression stress due to truss action and can be written as: 

  21 cot
v yv

ct

A f
f

bs
   (2-23) 

 It needs to note that the angle   is defined in Figure 2-8 (b)  and 

cot  is the minimum of 2.0 [Watanabe and Ichinose, 1991]. 
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Figure 2-8 Watanabe and Ichinose approach model: (a) truss analogous model and 

(b) arch mechanism model [Watanabe and Ichinose, 1991] 

 

2.3.5 Priestley et al. (1993) 

 To develop above shear strength equations, Priestley et al. (1993) 

modified the shear strength equation by considering the influence of ductility and 

accounting the axial load component effect. Thus, the shear strength model of 

Priestley et al. (1993) is able to include the degradation of shear strength due to the 

influence of increasing curvature ductility demand. The explicit form of the shear 

strength 
u

V  can be expressed in terms of the summation of contributions from the 
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concrete mechanism 
c

V , truss mechanism (Transverse reinforcement) 
s

V  and an arch 

mechanism associated with axial force 
a

V  as: 

 u c s a
V V V V    (2-24) 

 The concrete shear resisting mechanism 
c

V  is defined in Eq. (2-25). It 

can be observed that the concrete shear strength 
c

V  depends on a parameter k  
associated with the increasing curvature ductility demand  . According to the 

relation between k  and   as shown in Figure 2-9, the concrete shear strength 
c

V  

becomes lower when the value of curvature ductility demand   exceeds 3 [Mergos 

and Kappos, 2012]. 

  0.80
c c g

V k f A   (2-25) 

 The shear strength contributed by the transverse reinforcement 
s

V  is 

derived by the truss mechanism [Park and Paulay, 1975]. For rectangular section, the 

transverse reinforcement shear resisting mechanism can be written as: 

'
cot 30

v yv

s

A f D
V

s
 

 
(2-26)

 

where 'D  is the distance measured parallel to the applied shear between the 

centres of transverse reinforcement as shows in Figure 2-10. 

 The arch mechanism contribution is caused by the inclined strut in 

beam when considers the axial force of column as shown in Figure 2-11. Figure 2-11 

(a) shows the inclination of strut for the specimen with double bending while Figure 

2-11 (b) presents the inclination of strut for the specimen with single bending. It is 

important to note that axial-load component 
a

V  is not degraded with increasing 

ductility [Priestley et al., 1993] and can calculate from Eq. (2-27). 

tan
2

a

a

d c
V N N

L



 

 
(2-27)
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where c  is the neutral axis depth; 
a

L  is the shear span; and   is the angle between 

the column axis and the line joining the centres of the flexural compression zones at 

the top and bottom of the column ends as shown in Figure 2-11 (a) and (b).  

 

 
Figure 2-9 Strength of concrete shear resistant versus curvature ductility demand  

[Mergos and Kappos, 2012] 

 

 

Figure 2-10 Definition of 'D  for transverse reinforcement contribution [Sezen, 2002] 
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Figure 2-11 Axial load component of shear strength: (a) Double bending and  

(b) Single bending [Sezen, 2002] 

 

2.3.6 FEMA-273 Seismic Rehabilitation Guidelines (1997) 

 The shear strength model introduced by FEMA-273 is established 

based on a review of the available experimental data of the existing column tests 

under the constant axial load and cyclic lateral displacement. The concrete shear 

resisting mechanism 
c

V  of the FEMA-273 model can be calculated from Eq. (2-28) 

while the truss mechanism of shear resisting 
s

V  for FEMA-273 model is similar to the 

ACI 318-02 code and can calculate from Eq. (2-12). 
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where 
FEMA

k  is a ductile factor for FEMA-273 model; and 
FEMA
  is a coefficient of the 

concrete shear resisting mechanism for FEMA-273 model. NEHRP Guidelines for the 

Seismic Rehabilitation of Buildings (1997) suggested that 
FEMA

k  is equal to 1.0 for low 

ductility demand and 0.0 for moderate and high ductility demand while 
FEMA
  is 

equal to 1.0 for normal weight concrete. The low ductility demand is defined by a 

demand-to-capacity ratio of 2.0 for the linear analysis or a displacement ductility of 

less than 2.0. 

2.3.7 Sezen and Moehle (2004) 

 Sezen and Moehle (2004) proposed the maximum shear strength 

equation with the influence of many factors such as axial load ratio, shear span ratio, 

and displacement ductility. It can be observed from Eqs. (2-29) and (2-30) that both 

concrete and transverse reinforcement contributions for shear resisting force are 

depended on the factor depending on the influence of displacement ductility 

demand 
d

k  although the shear strength equation is similar approaches in the above 

equation as shown in Eq. (2-10). The concrete and transverse reinforcement 

contributions are given as: 

 
0.5

1 0.8
/ 0.5

c

c d g

a c g

f N
V k A

L d f A

 
  
  

 (2-29) 

 v yv

s d

A f d
V k

s
  (2-30) 

 In addition to all above shear strength models, the shear strength 

equations of Priestley et al. (1993) is very attractive and suited to the development 

of RC frame element including the shear-flexure interaction effects in this study 

because this model is able to include the degradation of shear strength due to the 

influence of increasing curvature ductility demand. Therefore, the author uses the 

Priestley et al. model (1993) to predict the ultimate shear force of the non-ductile RC 

columns. Furthermore, the author calls the shear strength model proposed by 

Priestley et al. (1993) as the “UCSD Shear-Strength Model”. This name comes from 
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the University of California, San Diego (UCSD), where is used to develop this shear 

strength model. 

 

2.4 Beam Theories 

 

 The classical beam theories, which have been widely using in 

engineering, are Timoshenko and Euler-Bernoulli beam theory. A difference between 

both beam theories is the deformation hypothesis. The Timoshenko beam theory 

considers the shear deformation effect as shown in Figure 2-12 while the Euler-

Bernoulli beam theory neglects it (See in appendix A). For the RC frame structure 

analysis, the frame element considers among the axial, flexure, and shear actions 

under the complex distributed loads. Thus, the Timoshenko beam theory is also 

more reasonable than the Euler-Bernoulli beam theory in this study. 

 Timoshenko beam theory has the fundamental hypothesis that “Plane 

sections remain plan but lose normality to the longitudinal beam axis due to the 

shear deformation”  [ Limkatanyu, 2008] .  From this deformation hypothesis, the 

displacement fields depend on the sectional displacements as shown in Eq. (2-31) 

and Eq. (2-32). The variation of strain distributions are shown in Figure 2-13. It needs 

to note that the variation of the shear strain along the frame cross-section is 

assumed to be constant, according to the research work of Marini and Spacone 

( 2006)  because the effect of variation of the shear strain along the frame cross-

section can be replaced with a constant value that more detail will be discussed in 

the material constitutive laws in Chapter 5. 

 The displacement fields at any point along beam axis are expressed 

as: 

      0u x u x y x   (2-31) 

    0v x v x  (2-32) 
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where  u x  and  v x  are the displacements of any point along beam axis in x and y 

directions, respectively;  0u x  and  0v x  are the displacements of beam section 

along the x and y directions, respectively; y  is the distance from the reference axis x; 

and  x  is the beam rotation around the z axis.  

 The axial strain ( )
xx

x  and shear strain  xy
x  at any fiber section can 

be written as [Onate, 2013]: 

      0

0( ) ( ) ( )
xx

du x du x d x
x y x y x

dx dx dx


        (2-33) 

            0

xy

du x dv x dv x
x x x

dy dx dx
        (2-34) 

where 0 ( )x  is the sectional axial strain at reference axis; ( )x  is the sectional 

bending curvature; and  x  is the sectional shear strain. 

 

 

Figure 2-12 Kinematics description of the Timoshenko beam element before 

deformation and after deformation [Limkatanyu, 2008] 
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Figure 2-13 Strain distributions of Timoshenko element [Marini and Spacone, 2006] 

 

2.5 General Finite Element Formulation of Reinforced Concrete Frame 

Element Including Shear Responses and Shear-Flexure Interaction 

Effects 

  

 Nowadays, several research works for the reinforced concrete 

structure analysis (e.g. Giberson, 1967; Chan, 1982; Cervenka, 1985; Vecchio and 

Collins, 1986; Bazant and Prat, 1988; Hsu, 1988; Mander et al., 1988; Issa, 1989; 

Saatcioglu and Ozcebe, 1989; Moehle and Mahin, 1991; Garstka et al., 1993; Spacone 

et al., 1996; Ranzo and Petrangeli, 1998; Ricles et al., 1998; Petrangeli et al., 1999; 

Pincheira et al., 1999; Palermo and Vecchio, 2003; Bairan, 2005; Kotronis et al., 2005; 

Recupero et al., 2005; Marini and Spacone, 2006; Ceresa et al., 2007; Mullapudi and 

Ayoub, 2013; Feng et al., 2016; Feng and Xu, 2018a; Feng et al. 2018b) have been 

proposed. Among those numerical models, the fiber-section model is the most 

favorite one for the seismic analysis of RC structures under cyclic load. This approach 

has been developed in the past forty years [Chan, 1982; Scordelis, 1984; Zeris and 

Mahin, 1991;  Spacone et al., 1996; Limkatanyu, 2002; Barbato, 2009; Ceresa et al., 

2009; Ning et al., 2013; Li et al., 2016; Panto et al., 2017]. The fiber model is based 

on the discretization of the cross-section into the layers (in the 2D model) or fibers 

(in the 3D model). The axial-flexure relation is coupled in the section level as well as 
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the interaction between concrete and reinforcing steel in the section. According to 

the original fiber-section model, the shear deformation is neglected due to the 

element based on the Euler-Bernoulli beam theory resulting in the failed prediction 

of the dissipated hysteretic energy and the initial/unloading stiffness in the short 

columns, coupling beams, and beam-column connections etc. [Feng and Xu, 2018a]. 

Later, the fiber-section model is modified by taking into of the shear deformation 

following the Timoshenko beam theory. There are many assumptions on the shear 

strain variation along the fiber-section depth. For example, some research group (e.g. 

Ranzo and Petrangeli, 1998; Marini and Spacone, 2006; Ceresa et al. 2009; Ning et al., 

2013; Feng and Xu, 2018a) assumed shear strain uniformly distributed along the 

cross-section while some research group (e.g. Vecchio and Collins, 1988; Petrangeli et 

al., 1999; Kagermanov and Ceresa, 2017) assumed shear strain vary following the 

shear strain profile. In this research, the shear strain distribution is based on the 

uniform distribution along the cross-section because this approach is simple and 

gives similar performance when comparing with the variation of shear strain profile 

approach.  

 The benefits of the fiber-section model are mentioned in the several 

research works (e.g. Spacone et al., 1996; Spacone and Limkatanyu, 2000; 

Limkatanyu, 2002; Li et al., 2016; Feng and Xu, 2018a) that fiber-section approach can 

present the accuracy responses, consider with the uni-axial material models, and 

shows smaller computational cost comparing with 2D and 3D material models. Thus, 

this study uses this approach to apply with the RC column analysis.  

 In addition to the state-of-the-art review on the frame element 

models with accounting the shear responses and considering the shear-flexure 

interaction effects, this study focuses on the review of a series of fiber frame element 

models based on Timoshenko beam theory as well as the discussion in the research 

works of Ceresa et al. (2007) and Ceresa et al. (2008). Based on the different 

modeling strategies for accounting the shear responses, this study categorizes those 

models into the two general groups. The first group represents a series of models 

using the concept of truss analogy with uniaxial material constitutive models [e.g. 

Guedes et al., 1994; Martinelli, 1988; Ranzo and Petrangeli, 1998; Marini and Spacone, 
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2006; Mergos and Kappos, 2008 and 2012] while the second group presents the 

models based on the 2D or 3D suitable constitutive models [e.g. Vecchio and Collins, 

1988; Petrangeli et al., 1999; Bentz, 2000; Kotronis, 2000; Remino, 2004; Bairan, 2005; 

Saritas, 2006; Kagermanov and Ceresa, 2017]. Both groups can be summarized and 

expressed as follow: 

2.5.1 Models based on the concept of truss analogy with uniaxial material 

constitutive models 

 In the approach of the first group, the shear responses are introduced 

with an equivalent truss model. As the result, the relation between shear and axial 

stresses is only partial interacted. The material constitutive models of this group are 

based on uniaxial behavior for concrete and reinforcing steel.  Some modeling 

approaches in this group are summarized and expressed as:  

2.5.1.1 Guedes’s Modelling Approach  

 The formulation of Guedes’s model [Guedes et al., 1994; Guedes and 

Pinto 1997]  is derived through principal stress analysis under displacement-based 

method and the shear responses can determine from a strut-and-tie model (Figure 2-

14). The force system is composed of two diagonal concrete struts and steel ties in 

longitudinal and transversal directions.  These systems are enforced following the 

compatibility and equilibrium conditions as shown in Figure 2-15.  Moreover, the 

interaction between the fiber and truss model are presented by the average axial 

strain 
i
  which can calculate from Eq. (2-35). 

 
2 2 tan

(cos ) (sin ) (sin 2 ) ( 1,2)
/ (cos ) 2

i

i oe wy
i

l


     




      (2-35) 

where /
oe oe

l l   and   are derived from Timoshenko beam kinematics and the 

strain of stirrups /wy wy h    is computed form cross-section equilibrium by iterative 

method. 

 The concrete strut forces 
ci

F  and the transversal steel tie forces wyF  

are described in the equilibrium equation terms and given by 
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  ( ) ( ) 1 cot ( 1,2)ci c i strut c i iF f A D bh i        (2-36) 

  / tan
( ) 2

wy sw wy w

h
F f A

s




 
(2-37) 

where 
strut

A bh  is the truss area; ,max /i i ultD    is a damage parameter; and 
ult
  is 

the ultimate strain of the concrete.  The more details are fully discussed in the 

research works of Guedes and Pinto (1997). 

 

Figure 2-14 Truss analogy of Guedes and Pinto model [Guedes and Pinto, 1997] 

 Although this method can account shear components into the 

formulation, this model cannot present the physical basis of responses (Not fully 

coupling between shear and flexural responses), the crack-closing phenomenon of 

reinforced concrete under loading, and the pinching effect. 
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Figure 2-15 Compatibility and Equilibrium of structure system 

[Guedes and Pinto, 1997]  

2.5.1.2 Martinelli’s Modelling Approach 

 Martinelli (1998) proposed the displacement-based fiber column 

element based on the Garstka et al. model [Garstka et al., 1993]. In this model, the 

axial and flexure are coupled through a 3D multifiber model based on the uniaxial 

constitutive relationship for the material models. The truss model is established from 

transverse reinforcement and the concrete properties in the tensile and compressive 

zones. The resisting shear force is derived from the different resisting mechanisms, 

such as the truss mechanism, arch action, aggregate interlock, and the compression 

concrete over the neutral axis. The arch action mechanism is similar the concept of 

Watanabe and Ichinose (1991) and Priestley et al. (1993) as above discussed while 

truss mechanism is derived from the x-y plane structure as shown in Figure 2-16. The 

truss deformation determines from the shear deformation based on the Timoshenko 

kinematic assumptions. Then, the Mohr’s circle is applied to determine the principal 

stress and strain by enforcing the equilibrium in y-direction ( 0yy  ). It can observe 

that the shear contribution depends on 
xx
  that governs on the flexural response of 

the element. In other words, the shear responses are coupled with the flexural 

responses through the strut mechanism even if it does not exist in the stiffness 

matrix terms. 
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 However, although the Martinelli’s approach is able to capture the 

different shear resisting mechanics, such as truss mechanism, arch action, aggregate 

interlock, and the compression concrete, this approach cannot full couple the axial, 

flexure and shear forces in the element. Moreover, the numerical model as derived 

from this approach lacks the detection of specimen collapse [Ceresa et al., 2008].  

 

 Figure 2-16 Planer structural assemblage for truss mechanism [Martinelli, 1998]  

2.5.1.3 Ranzo and Petrangeli’s Modelling Approach 

 Ranzo and Petrangeli (1998) presented a 2-node force-based beam 

element for seismic analysis of RC structures. The uniaxial constitutive laws for 

concrete and steel are employed in their work. Based on the fiber model and 

Timoshenko kinematic assumption, the axial and flexure responses are coupled at 

the section level while the shear responses uncouple with axial and flexure 

responses directly as well as the previous approaches. The interaction between 

flexure and shear is different from the previous approaches that the coupling 

between flexure and shear is presented by a damage of shear force-shear strain 

curve V   by using the shear strength prediction introduced by Priestly et al. 

(1994). The shear constitutive relationship depends on the sectional shear strain   

and the discrete variable max  (Maximum value of tensile axial deformation during 

each cycle) as shown in Figure 2-17. 
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Figure 2-17 Hysteretic shear force-shear strain response of  

Ranzo and Petrangeli model [Ranzo and Petrangeli, 1998] 

 From the Ranzo and Petrangeli’s approach, the modeling strategy is 

similar the previous models based on strut-and-tie analogies that the shear 

responses interact with the flexural one but without full coupling among axial, 

flexure, and shear forces directly. Moreover, the shear constitutive relationship of 

Ranzo and Petrangeli’s approach is limited for the employment in the general 

applications because the primary curve of the shear hysteretic model is required to 

calibrate for each analysis cases [Ceresa et al., 2007].  

2.5.1.4 Marini and Spacone’s Modelling Approach 

 Marini and Spacone (2006) proposed a forced-based two-dimensional 

( 2D)  element based on the Timoshenko beam theory for analysis of reinforced 

concrete. In this approach, the interaction between axial and flexural are represented 

through the fiber section model based on Timoshenko beam theory while the shear 

response is independent of the axial and flexural responses.  However, the 

equilibrium equations must be satisfied point-wise along the element based on the 

force-based formulation so the interaction among axial-flexural and shear responses 

are enforced at the element level. The material models for concrete and reinforcing 

steel are based on the uniaxial relationship proposed by Filippou et al. (1983a). 
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 The shear responses are modeled by the hysteretic law and the shear 

resisting force and tangent shear stiffness can determine in this law.  The possible 

primary curves are defined as a function of the shear capacity 
Rd

V , suggested by 

Eurocode 2 (1991) and contributed of the force of steel stirrups 
Rds

V , the force of the 

concrete member under zero axial load *
Rdc

V , and the contribution of the concrete 

member capacity enhancement ( )V N  that is induced by the axial compression N  

as shown in Figure 2-18 (a). Under cyclic loading, the shear response must follow by 

the hysteretic rule in Figure 2-18 (b). 

 

Figure 2-18 Section shear law of Marini and Spacone: (a) possible primary curves and  

(b) hysteretic of shear law [Marini and Spacone, 2006] 

(a) 

(b) 
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 From the analysis results of Marini and Spacone model ( 2006) , the 

shear capacity 
Rd

V  model suggested by Eurocode 2 (1991)  underestimates for the 

shear strength prediction because this model does not account for the aspect ratio. 

For this reason, the model needs improvement of shear strength capacity prediction 

that accounts for the aspect ratio and shear span ratio [Ceresa et al. 2008]. 

2.5.1.5 Mergos and Kappos’s Modelling Approach 

 Mergos and Kappos ( 2008 and 2012)  proposed the beam-column 

element with the gradual spread inelastic sub-elements based on the concept of 

Soleimani (1978), which represented the flexural and shear responses at the end of a 

member. The bond slip effect was presented through the fixed-end rotational spring 

as shown in Figure 2-19. Moreover, Mergos and Kappos (2008 and 2012) proposed 

the shear hysteretic model of reinforced concrete. Shear hysteresis was adapted and 

improved from the proposals by Ozcebe and Saatcioglu (1989). The hysteretic model 

was verified with experimental results. 

 

Figure 2-19 Mergos and Kappos element model [Mergos and Kappos, 2012] 

 The relation between shear force and shear strain starts from the 

primary curve without shear-flexural interaction as shown in Figure 2-20. The curve 
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consists of four branches but has only three different slopes.  The first branches 

present the uncracked concrete interval.  The second and third branches illustrate 

the pre-flexural yielding and post-flexural yielding, respectively, while the last 

branches present the post-transverse yielding.  

 The concept of the interaction between shear and flexural responses 

of Mergos and Kappos’s approach (2008 and 2012) is rather similar to the Ranzo and 

Petrangeli’ s approach (1998) as above discussed. The coupling between shear and 

flexure occurs after the plastic hinge rotation has formed (After the second branches 

in Figure 2-20) .  The influence of the inelastic flexure deformation leads to the 

degradation of the shear strength in the concrete contribution deg

cV  that can 

estimate from the shear strength models (e.g.  Priestley et al. ’ s model, 1993; and 

Sezen and Moehle’s model, 2004) 

 

Figure 2-20 The initial shear force-shear strain primary curve without  

shear-flexural interaction [Mergos and Kappos, 2012] 

 The procedure for the sectional shear stiffness approximation after 

plastic hinge rotation forming effGA  is proposed by Mergos and Kappos (2012). This 

procedure includes the shear-flexural interaction effects and can estimate from the 
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relationship between incremental shear force V  and shear strain   as shown in 

Figure 2-21 and Eq. (2-38).  

deg

1

c

eff

V VV

GA GA


  
  

 
(2-38)

 

where 1GA  is the cracked shear stiffness.  The sectional shear stiffness after plastic 

hinge rotation forming can calculate by solving the Eq. (2-38). The following equation 

is obtained. 

1degeff

c

V
GA GA

V V



    

(2-39)
 

 However, although the idea for the coupling between shear and 

flexural responses of Mergos and Kappos’s approach (2008 and 2012) is attractive for 

the development of RC element with considering the shear-flexure interaction 

effects, this models require the formation of an ad-hoc curve of moment-curvature 

law that doesn’t naturally take into account the axial-flexural interaction. Moreover, 

the procedure for the sectional shear stiffness approximation of Mergos and Kappos 

(2012) is derived based on the constant stiffness as shown in Eq. (2-39) that doesn’t 

cover all the possible events of the shear strength degradation. The clear detail will 

discuss in Chapter 5. 

 

Figure 2-21 Definition of effGA  [Mergos and Kappos, 2012] 

V  

  

1GA  
effGA  

1/V GA  deg
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2.5.2 Models based on the 2D or 3D suitable constitutive model  

 The second group for accounting the shear responses and coupling 

interaction between axial force, shear force, and bending moment is the modeling 

strategies to attempt capture the mechanics of reinforced concrete members by 

using a family of the 2D and 3D suitable constitutive models, such as Microplane 

model [Bazant and Prat, 1988; Brocca and Bazant, 2001; Park and Kim, 2003; Ismail et 

al. , 2016] , smeared crack model [ Vecchio and Collins, 1986; Bentz, 2000; Remino, 

2004; Bairan, 2006a and 2006b; Ceresa et al., 2009; Stramandinoli and Rovere, 2012; 

Biscaia et al., 2013; Mullapudi and Ayoub, 2013; Li et al., 2016], and damage models 

[ Ju, 1989; Faria et al. , 1998; Lee and Fenves, 1998; Kotronis, 2000; Kotronis et al. 

2005; Saritas, 2006; Wu et al. , 2006; Long et al. , 2014; Wu 2017 and 2018] .  Some 

modeling strategies to account interaction between axial, flexure, and shear in this 

group are summarized and expressed as: 

2.5.2.1 Petrangeli’s Modelling Approach 

  Petrangeli et al.  ( 1996 and 1999)  proposed the 2D fiber beam 

element based on flexibility-based formulation for RC beam and column analysis. A 

biaxial constitutive law is employed to represent the behavior of concrete based on 

the Microplane approach (Ozbolt and Bazent, 1992) while the stress-strain relation of 

reinforcing steel is described by Menegotto and Pinto model (1977). The variation of 

sectional stresses along the cross-section in the research works of Petrangeli et al. 

(1996 and 1999) is shown in Figure 2-22. The shear strain variation is assumed with 

the constant value or a parabolic distribution. The interaction among axial, flexure, 

and shear are presented through the concrete model directly at each fiber as shown 

in Eq. (2-40). 

m mm m
xx xxa as

m mm m
xy xysa s

d dK K

d dK K

 
 

       
    

         
(2-40)

 

where m

aK  and m

sK  are the axial and shear stiffness coefficients of the m th  fiber 

respectively, m

asK  and m

saK  are the coupling axial-shear components. All the value of 
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m

aK , m

sK , m

asK , and m

saK  can determine from the coefficients of the material matrix of 

the m th  fiber m

abD  and transversal reinforcement ratio m  as shown in Eq. (2-41). 

   
   
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,

,
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a s
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as sa

K D D D K D D D

K D D D K D D D

 

 

   

     
(2-41)

 

 

Figure 2-22 Fiber section mechanics [Petrangeli et al., 1999] 

 Although the model of Petrangeli et al. (1999) is able to capture well 

the behavior of RC members due to the use of a biaxial constitutive law for concrete 

model, the considering and accounting of the different mechanisms ( e. g.  the 

contribution of shear resistance forces)  in this model are slightly more difficult as 

noted by Ceresa et al. 2008. As the result, the underestimation of the shear capacity 

may occur at the significant portion, especially the plastic-hinge portion, when the 

shear responses are considered. 

2.5.2.2 Vecchio and Collins’s Modelling Approach 

 Vecchio and Collins (1988) proposed the method for the estimation of 

RC beam under shear action and shear deformation. This method is the so-called as 

“Dual-section” approach. Under this method, the shear stress  xy
x  can determine 

from the normal stress value on each side of a finite-length layer through the finite 

difference method as shown in Figure 2-23 and Eq. (2-42).  

 
 

 1
y

xx
xy

y

x b y dy
b y x







 

  
(2-42)
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where b  is the section width; y  is the distance from the bottom layer; and xx

x




 is 

the difference of the normal stress value and can approximate from Eq. (2-43). 

   2 1xx xxxx
x x

x S

  


  
(2-43)

 

where  1xx x  and  2xx x  are the normal stresses at both side of analysed fiber 

section; and S  is the distance that can estimate about 1/6 of the section depth.  

 

 

Figure 2-23 Dual-section approach of Vecchio and Collins [Vecchio and Collins, 1988] 

 The Modified Compression Field Theory ( MCFT)  is applied in the 

constitutive laws of the research work of Vecchio and Collins ( 1988) .  The MCFT 

method, was developed from the Disturbed Stress Field model ( DSFM)  at the 

University of Toronto, describes the behavior of the cracked reinforced concrete. The 

interaction between the concrete and steel are represented through the principal 

stress analysis at the section level as shown in Figure 2-24. The constitutive law of 

the cracked concrete is proved by the experimental data and represented in terms 

of the average stresses and strains (Principal axis 1, 2). This first MCFT method was 

used to analyze only the monotonic loading proposed by Vecchio and Collins (1986). 

Later, this method was adopted in the cyclic loading by Vecchio (1999) and Palermo 

and Vecchio (2002).  

 According to the dual-section approach, this method may lead to the 

unstable responses because this method requires the information from the two 

section sides to evaluate the shear strain value as shown in Eq. (2-42). Moreover, the 

node 

i
node 

j

1 2 32a 2b
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discontinuities of shear strain profile could be happened in the different depth of the 

cracking of the two analyzed cross-section because of the different moments. 

 

Figure 2-24 The Modified Compression Field Theory of smeared cracks: (a) stress and 

(b) strain [Vecchio and Collins, 1988] 

2.5.2.3 Bentz’s Modelling Approach 

 To overcome the limitations of the dual-section approach of Vecchio 

and Collins ( 1988)  as described above, Bentz ( 2000)  presented the so-called as 

“ Longitudinal Stiffness Method” .  This method can overcome the inaccuracy and 

numerical instabilities in the dual-section approach. The gradient of the normal stress 

in this method is determined from the derivative of stress with respect to the axis of 

the element based on the chain rule. The fundamental assumption of the Bentz’s 

model follows the classical beam theory that the plane sections remain plane but 

the variation of the shear stress across the section is governed by the flexural stress. 

An initial shear strain profile is assumed as a function of the mean sectional shear 

deformation and the iteration is employed until the assumed and calculated shear 

strain profile are matchable within an acceptable tolerance.  The MCFT is used to 

couple the interaction of axial force, shear force, and bending moment in the 

constitutive model each fiber layer.  
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 Although the Bentz’ s approach is interesting in that each inter-fiber 

equilibriums is satisfied and the model can capture the forces and deformations of 

the RC element subjected to axial, shear, and bending loads, the local effects exist 

along the element. For example, the concrete and reinforcing steel forces must be in 

equilibrium at each integration point along the length of the element but both 

forces in some distance from the support and the load positions are not in 

equilibrium as noted by Ceresa et al. (2008). 

2.5.2.4 Remino’s Modelling Approach 

 Remino (2004) proposed the 2D force-based beam-column element 

based on Timoshenko beam theory following the research work of Spacone et al. 

(1996). The fiber-section model is used to discrete the RC cross-section as shown in 

Figure 2-25. The section stiffness matrix is calculated based on the finite difference 

formula. The Rose-Shing model [Rose, 2001] is used to represent the fiber 

constitutive laws. The Rose-Shing model is adapted from the framework of the 

Modified Compression Field Theory (MCFT) but it differs in terms of material 

constitutive laws, the kinematic of crack, and the relation of aggregate-interlock. 

 

Figure 2-25 The fiber stress and strain conditions of Rose-Shing model  

[Remino, 2004] 
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 Although Remino’s model (2004) is able to account for the interaction 

of axial force, shear force, and bending moment in the element formulation through 

a smeared crack approach as similar the Vecchio and Collins’s approach, the 

numerical responses of this model are not always satisfactory, especially in the cyclic 

analysis, when compared with the experimental data. Moreover, the strain 

localization effects exist in this method observed from a parametric study as noted 

by Ceresa et al. (2008). 

2.5.2.5 Bairan’s Modelling Approach 

 Bairan (2006a and 2006b) proposed a 3D nonlinear fiber sectional 

model for the reinforced concrete analysis under axial, shear, bending, and torsion 

forces. This model is capable of simulating the total interaction among axial, shear, 

bending, and torsion forces. The equilibrium along entirely element at the structural 

and sectional levels are still maintained by the superposition of the plane section 

displacement field based on Euler Bernoulli beam theory  ps
u x  and the imposing 

distortion-warping displacement field  wu x  as shown in Figure 2-26. Thus, the 

displacement field  u x  can be written as 

     ps w
u x u x u x= +

 
(2-44)

 

  The rotating smeared-crack approach is employed to couple the 

axial, shear, bending, and torsion forces though constitutive relation for concrete. In 

the research works of Bairan (2006a and 2006b), the concrete model in compression 

is based on the concrete model introduced by Vecchio and Selby (1991) while the 

concrete model in tension follows the research work of Cervenka (1985). For the 

reinforcing steel model, the elastoplastic uniaxial stress-strain is employed for 

simulating the behavior of reinforcing steel.  

 Although Bairan’s model (2006a and 2006b) success to couple the 

total interaction among axial, shear, bending, and torsion forces with arbitrarily 

shaped cross-section, this model still requires the improved approximation of the 
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distortion displacement field, its variation along the element, and material behavior 

at section level to develop this model as discussed by Ceresa et al. (2008). 

 

 

Figure 2-26 The equilibrium conditions of Bairen’s model [Bairan, 2005] 

2.5.2.6 Kagermanov and Ceresa’s Modelling Approach 

 Kagermanov and Cereasa ( 2017)  proposed the force-based frame 

element model for nonlinear analysis of shear-critical reinforced concrete frames. 

This model consolidates a procedure for the computation of an exact shear strain 

profile and corresponding shear stress distribution over cross-section ( Satisfy the 

internal fiber equilibrium conditions in Figure 2-27 ( a) )  at the section level.  The 

interaction between axial and shear response in this model is presented at the fiber 

level that based on a smeared-crack orthotropic constitutive model, presented in 

Kagermanov and Cereasa (2016). 

 Moreover, this model approximates the shear strain xy  at the section 

level by linear shape functions as shown in figure 2-27 ( b) .  To receive the 

convergence responses under force-based formulation, the iterative state 
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determination procedure is invoked at the element level to find the corresponding 

section strains at each integration point that proposed by Spacone et al. (1996).    

 

Figure 2-27 State of art of Kagermanov and Ceresa model: (a) internalfiber 

equilibrium and (b) shear strain profile [Kagermanov and Ceresa, 2017] 

 From the concept interaction between axial, shear, and flexure of 

Vecchio and Collins ( 1988) , Bentz ( 2000) , Remino ( 2004) , Bairan ( 2006) , and 

Kagermanov and Cereasa (2017) , all those approaches can be categorized into the 

same group as the fiber beam-column element using the smeared crack models as 

well as the research works of Ceresa et al. (2007 and 2008). 

(a) 

(b) 
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2.5.2.7 Kotronis’s Modelling Approach 

 Kotronis et al.  ( 2000 and 2005)  presented a 3D multifiber beam 

element including shear response based on Timoshenko beam theory. Their element 

is based on the displacement-based formulation and the displacement interpolation 

functions depend on the material properties ( e. g.  Young’ s modulus and shear 

modulus) .  The concrete constitutive law of this model considers the shear effect 

(Shear is considered in the linear behavior) , damage due to crack in concrete and 

permanent effect under cyclic loading as shown in Figure 2-28. Although this model 

is capable of simulating quite well the global behavior of experimental test, the 

linear shear assumption does not seem to allow the accurate of an anisotropic 

response of reinforced concrete section when the crack occurs at the section 

introduced by shear [Ceresa et al., 2008].   

 

Figure 2-28 La Bordiere damage model of concrete [Kotronic et al., 2005] 

2.5.2.8 Saritas’s Modelling Approach 

 Saritas ( 2006)  proposed a 2D Timoshenko beam-column element 

based on mixed formulation, introduced the axial-shear-bending interaction.  At 

section level, the shear profile was distributed by the sectional interpolation function 

 y . The deformation at any point along the cross-section ε  is given by 
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where  xx x  is the axial strain at any cross-section;  xy
x  is the shear strain at any 

cross-section;  0 x  is the sectional axial strain;  x  is the sectional curvature; 

 x  is the sectional shear strain; b  is the width of the flange; ft  is the thickness of 

the flange; 
w

t  is the thickness of the web; and d  is the depth of the cross-section. 

Moreover, the section forces D  are obtained from the summation of the stresses 

which satisfy the material constitutive laws and written as: 
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where  N x  is the sectional axial force;  V x  is the sectional shear force;  M x  is 

the sectional bending moment; ( )
m

y  is the modified shear strain profile;   is a 

parameter; m  represents the generic fiber and nfib  represents the number of fibers 

in the section. 
m

y , 
m

 , 
m

  and 
m

A  represent the distance from the reference axis x, 

the normal stress, the shear stress, and the cross-section area, respectively.  

 Saritas’s modeling strategy assumed the perfect bond between 

concrete and steel, neglecting the buckling of longitudinal steel, neglecting dowel 

action of steel bar at the cracks, and neglecting the tension stiffening effect in the 
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concrete material model. From this limitation of Saritas’s modeling strategy, the 

model needs improvement as suggested by Ceresa et al. (2007). 

 According to Kotronis et al. (2000 and 2005) and Saritas (2006) 

approach as discussed above, the shear responses in both approaches are 

considered through the damaged constitutive model for concrete (e.g. Armstrong and 

Frederick, 1966; Lee and Fenves, 1998). In the recent year, this concept has been 

developed and used in the several research works (e.g. Wu et al., 2006; 

Hafezolghorani et al., 2017; Wu 2017 and 2018).   

 All of the state-of-the-art reviews on the frame element models with 

accounting the shear responses and considering the shear-flexure interaction as 

above discussed, this thesis is aimed at the development of finite frame element 

with including shear-flexure interaction based on the concept of Ranzo and 

Petrangeli (1998) and the shear-flexure interaction procedure is adopted and 

modified from the Mergos and Kappos (2008 and 2012) within the framework of the 

UCSD shear-strength model proposed by Priestley et al. (1993). This concept 

corresponds well with the convenience of using in the engineering practice that the 

input parameters in the proposed model are closely related to the engineering 

properties. Moreover, the developed frame element is simple but accurate for using 

in the non-ductile RC column analysis under cyclic loading. 
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CHAPTER 3 

Element Formulation 
 

 

3.1 Introduction 
 

  This chapter presents the frame element formulation for seismic 

analysis of non-ductile RC column with shear-flexure interaction. The element is 

derived from the principle of virtual displacement under the small-deformation 

hypothesis. A set of governing differential equations of the frame element (strong 

form) are first derived. Then, the displacement-based frame element based on 

Timoshenko beam theory is formulated following the virtual displacement principle. 

Linked displacement interpolation functions are used to remedy the shear-locking 

problematic phenomenon that is discussed here. Next, the fiber-section model is 

employed to derive the nonlinear relations between forces and deformations of the 

uniaxial stress-strain of material constitutive laws. Among the compatibility, 

constitutive and equilibrium equations of the element formulation, the Tonti’s 

diagram is used to conveniently represent both the strong and weak forms of the 

frame element formulations.  

 

3.2 A Set of Governing Equations of Timoshenko Frame Element 

(Strong Form) 

 

3.2.1 Equilibrium  

  The free body diagram of an infinitesimal segment dx  of a frame 

member subjected to the transverse distributed load  yP x  is shown in Figure 3-1. 

Based on the small-deformation hypothesis, all equilibrium equations are considered 

in the undeformed configuration. Axial, moment, and vertical equilibriums of the 

infinitesimal segment dx  of a frame member can be written as follow: 
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  
0
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dx
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   (3-2) 
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dV x
P x
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where  N x  is the frame sectional axial force;  V x  is the frame sectional shear 

force; and  M x  is the frame sectional bending moment. Eqs. (3-1), (3-2), and (3-3) 

establish a set of governing equilibrium equations of a Timoshenko frame element 

and can be written in the matrix form as follow: 

    T

TB x x L D p 0  (3-4) 

where         T

x N x M x V xD  represents the element sectional force vector; 

    0 0
T

yx P xp  represents the element distributed load vector; and TBL  

denotes the Timoshenko frame differential operator and can define as: 
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Figure 3-1 A differential segment of frame element 

 

3.2.2 Compatibility 

 The element deformations at any section are related to the element 

sectional displacement fields through compatibility conditions. The element 

sectional deformation vector  xd  work conjugate of the element sectional force 

vector  xD  can be defined as: 

         0

T

x x x x  d  (3-6) 

where  0
x  is the sectional axial strain at reference axis;  x  is the sectional 

curvature; and  x  is the sectional shear strain. The sectional displacement fields of 

frame element can be expressed in the following matrix form: 

         0 0

T

x u x x v xu  (3-7) 

where  0
u x  is the sectional axial displacement at reference axis;  x  is the 

sectional rotation; and  0
v x  is the sectional transverse displacement. Based on the 

Timoshenko kinematic assumptions as shown in Figure 2-12 and the small-

deformation hypothesis, the element sectional deformations can be expressed in 

terms of the element sectional displacement fields through the compatibility 

conditions [Onate, 2013] as follow: 

   M x dM x

   V x dV x V x

 M x

Reference Axis

 yP x

dx

 N x    N x dN x
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x

dx
   (3-8) 

    d x
x

dx


   (3-9) 

      0
dv x

x x
dx

     (3-10) 

 Eqs. (3-8), (3-9), and (3-10) represent a set of governing compatibility 

equations of a Timoshenko frame element. For the convenience of finite element 

model implementation, a set of governing compatibility equations can be expressed 

in the following matrix form as: 

    TBx xd L u  (3-11) 

 It is noteworthy to emphasize that a set of governing compatibility 

equations in Eqs. (3-8), (3-9), and (3-10) are associated with a set of governing 

equilibrium equations in Eqs. (3-1), (3-2), and (3-3). It is clear that the statical and 

kinematical transformations are contragradient [Limkatanyu et al., 2014]. 

3.2.3 Section Force-Deformation Relations 

 The nonlinear nature of RC frame element in this study is presented 

through the nonlinear displacement-based constitutive model that can be defined 

as: 

    x x   D Ψ d  (3-12) 

 In order to perform the nonlinear analysis of RC frame element, the 

incremental-step solution requires the linear incremental forms of the force-

deformation relation. Thus, the nonlinear relation of Eq. (3-12) can be written in 

consistent linearized forms as: 

        0 0
x x x x  D D k d  (3-13) 
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where  0
xD  and  0

xk  are the sectional force vector and stiffness matrix at the 

initial point, respectively. It needs to notice that the superscript 0 denotes to the 

value of a vector or matrix at the initial point of the incremental-iterative solution 

procedure. 

 In order to compute the nonlinear force-deformation of Eq. (3-13), the 

fiber-section model with nonlinear uniaxial laws for RC sections [Spacone and 

Limkatanyu, 2000] is used to derive in this study. The fiber-section model is a 

common technique to subdivide the frame cross-section into the fibers (layers) as 

shown in Figure 3-2, moreover, this technique can automatically take into account 

the coupling between axial and bending responses. Thus, the sectional axial force 

 N x  and sectional bending moment  M x  are defined as: 

    
1 1

and
nfib nfib

m m m m m

m m

N x A M x y A 
 

    (3-14) 

where m  represents the generic fiber and nfib  represents the number of fibers in 

the section. 
m

y , 
m

 , and 
m

A  represent the distance from the reference axis x (in 

Figure 3-2), the normal stress, and the cross-section area, respectively, of the th
m  

fiber in the section. Based on Eq. (3-14), the element sectional force vector  xD  

can be rewritten as: 

    
1 1

T
nfib nfib

m m m m m

m m

x A y A V x 
 

 
  
 
 D  (3-15) 

 It is interesting to observe from Eq. (3-15) that the axial and bending 

actions need the number of fibers in the section nfib  to represent the variation of 

the normal stress 
m

  along the section depth while shear actions doesn’t require 

the fiber-section discretization because of the constant shear stress along the section 

depth based on the Timoshenko beam theory [Onate, 2013]. In other words, the 

fiber-section discretization for shear action is analogous to the one-fiber 

discretization.  
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 The sectional stiffness matrix  xk  can be expressed via the fiber-

section model as:  

  

 

1 1

2

1 1

0

0

0 0

nfib nfib

m m m m m

m m

nfib nfib

m m m m m m

m m

s

E A y E A

x y E A y E A

GA x

 

 

 
 

 
 

   
 
 
 
 

 

 k  (3-16) 

where 
m

E  is the modulus of the th
m  fiber in the section and  sGA x  is the sectional 

shear stiffness. It can be observed that there is no coupling between shear and 

flexure actions through fiber-section model for Timoshenko frame element as shown 

in Eq. (3-16). However, the interaction between shear and flexure can be accounted 

for via shear strength model proposed by Priestley et al. (1993) and will be cleared 

later in the Chapter 5. 

 

 
Figure 3-2 Fiber discretization of RC frame cross-section 
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 In this study, the uniaxial cyclic constitutive laws of concrete, steel, 

and shear are schematically shown in Figure 3-3. Concrete model follows by the 

Kent and Park (1971) law; the reinforcing steel follows by the Menegotto and Pinto 

(1973); and the tri-linear envelope curve proposed by Mergos and Kappos (2012) is 

used for the shear response. The more detail of those used constitutive laws are 

discussed in the Chapter 5. 

 According to the equilibrium, compatibility, and sectional constitutive 

laws discussed above for the RC frame element, it can be conveniently presented in 

the classical Tonti’s diagram of Figure 3-4 [Tonti, 1977]. This diagram will be modified 

subsequently to demonstrate the displacement-based formulation of the proposed 

RC frame element. 

 

 
Figure 3-3 Uniaxial cyclic constitutive laws of concrete, steel, and shear  
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Figure 3-4 Tonti’s diagram for Timoshenko frame element: differential equations 

(Strong form) [Tonti, 1977] 

 

3.3 Displacement-Based Formulation of Timoshenko Frame Element 

(Weak Form) 

 

3.3.1 Formulation 

 In the present work, the proposed RC frame element is derived based 

on the displacement-based finite element formulation. The element nodal 

displacements U  are treated as the primary variables of the element. The sectional 

displacement fields  0u x ,  x , and  0v x  are expressed in terms of the element 

nodal displacements U  through the displacement interpolation functions. The 

element deformations  xd  are determined by enforcing the compatibility 

conditions of Eqs. (3-8), (3-9), and (3-10). Based on this reason, the compatibility 

conditions are satisfied point-wise along the element (Strong sense). On the other 

hand, the section equilibrium conditions are only enforced to satisfy in the weighted 

integral form (Weak sense) through the virtual displacement principle. The general 

framework of the proposed frame element model can be summarized in the 

modified Tonti’s diagram of Figure 3-5. 

 

 xD

 y xp

Compatibility

   T

TB x x L D p 0

Equilibrium

   TBx xd L u

Sectional constitutive law

   x x   D ψ d
 xd

 xu
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 Figure 3-5 The modified Tonti’s diagram for Timoshenko frame element: 

displacement-based formulation (Weak form) 

 

 The weighted residual form of a set of governing equilibrium 

equations in Eq. (3-4) can be written as: 

       0
T T

TB

L

x x x dx     u L D p  (3-17) 

where  xu  is a vector collecting compatible virtual displacement fields. 

Substituting Eqs. (3-13) into (3-17) and enforcing compatibility of Eq. (3-11) lead to: 

            0 0
0

T T

TB TB

L

x x x x x dx       u L D k L u p  (3-18) 

 Integration by parts is applied to move order the differential operator 

TBL  from the section force vector  xD  to the virtual displacement vector  xu , 

thus leading to: 

 
       

        

0

0

T

TB TB

L

T
T T

TB

L L

x x x dx

x x dx x x dx



  



  



 

L u k L u

U P u p L u D

 (3-19) 

where TU P  represents the boundary terms that can be obtained during the 

integration by parts, moreover, TU P  refers to the external virtual work done by 

 xD

 y xp

Compatibility

     T T

TB

L

x x x dx     u L D p 0

Equilibrium

   TB
x xd L u

Sectional constitutive law

   x x   D ψ d
 xd

 xu
Strong Form

Weak Form



57 

TU  (The virtual element nodal displacements) on the element nodal forces P . It 

needs to note that Eq. (3-19) demonstrates the fundamental equation for the 

displacement-based finite element formulation of the RC frame element proposed in 

this study. 

 The element sectional displacements  xu  are related to the 

element nodal displacement U  through the displacement interpolation function 

matrix  TB xN . 

    TBx xu N U  (3-20) 

 According to the selection of displacement interpolation functions for 

the Timoshenko frame element, it must be made with care and is to be discussed in 

the subsequent section. Substituting Eq. (3-20) into (3-19) and accounting for the 

arbitrariness of U  lead to: 

              0 0T T T

TB TB TB TB

L L L

dxx x x x x x xdx dx
 

   
 
  B k B U P + N p B D  (3-21) 

where    TB TB TBx xB L N  is the sectional deformation-displacement matrix. Eq. (3-

21) can be expressed in the compact form as: 

  0 0

P   K U P P Q  (3-22) 

where 

   0 0T

TB TB

L

dxx x K B k B  is the frame element stiffness matrix; 

   T

P TB

L

x dx x P N p  is the equivalent load vector due to the distributed load  xp ; 

   0 0T

TB

L

x x dx Q B D  is the element resisting force vector. 

 It is noteworthy to point out that the right-hand side vector 

  0

P P P Q  of the discrete form of the stiffness equation in Eq. (3-22) refers to the 

residual force vector associated with the weak statement of equilibrium equations of 
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Eqs. (3-1), (3-2), and (3-3). It becomes vanish when the equilibrium configuration is 

reached during the incremental-iterative solution procedure. 

3.3.2 Linked displacement interpolation functions 

 Based on the Timoshenko beam theory, the sectional rotation field 

 x  is independent of the sectional transverse displacement field  0
v x . It can be 

observed that the sectional rotation field  x  is not subjected to a kinematic 

constraint of being equal to the first derivative of the sectional transverse 

displacement field  0
v x  as in case of Euler-Bernoulli beam theory. Therefore, the 

sectional rotation  x  and sectional transverse displacement  0
v x  can be 

interpolated independently to their nodal values in the displacement-based 

formulation of Timoshenko frame model. Although the Timoshenko frame element 

belongs to the class of C0-continutity elements and is simple than the class of C1-

continutity as Euler-Bernoulli frame element, the selection of independent 

interpolation functions for the sectional transverse displacement  0
v x  and sectional 

rotation  x  must be careful due to leading to the problematic phenomenon 

known as “shear-locking”. Shear-locking phenomenon causes the resulting 

Timoshenko frame model to suffer the unrealistic displacement solution for slender 

beam analysis. More details on the diagnosis of the shear-locking phenomenon are 

discussed in Onate (2013). To overcome the shear-locking problem, several 

approaches have been proposed such as, the reduced integration method [Prathap 

and Bhashyam, 1982], the consistent interpolation method [Reddy, 1997], mixed and 

force-based formulations [Erguven and Gediki, 2003; and Marini and Spacone, 2006]. 

 In the present study, the consistent interpolation approach is used to 

remedy the shear-locking problem. The consistent interpolation approach requires 

that the choice of interpolation functions for the sectional transverse displacement 

 0
v x  and sectional rotation  x  fields has to be such that  0

/dv x dx  and  x  

are polynomials of the same order. In other words, the interpolation function for the 

sectional transverse displacement field  0
v x  must be one-degree higher than that 

for the sectional rotation field  x . Therefore, a standard linear Timoshenko frame 
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element shown in Figure 3-6 is to be improved with a quadratic (Bubble) term for the 

sectional transverse displacement field  0
v x . The resulting interpolation functions 

are:  

  0 1 41
x x

U U
L

xu
L

    
 

 (3-23) 

    0 2 51 b

Enhanced Bubble Function

x x
v U U x x L

L L
x       

  �����

 (3-24) 

   3 61
x x

U U
L L

x     
 

 (3-25) 

where  1 2 3 4 5 6

T
U U U U U UU =  is a vector containing element nodal 

displacements and 
b

  represents a parameter to be determined from the limit 

Euler-Bernoulli condition of vanishing shear strain   0x   for slender beams. 

 Following Eqs. (3-10), (3-24), and (3-25), the sectional shear strain can 

be expressed as: 

   2 5 6 3

3 2b b

U U U U
U L x

L L
x  

    
       
   

 (3-26) 

 To satisfy the limit Euler-Bernoulli condition of vanishing shear strain 

  0x   for slender beams, Eq. (3-26) should be independent of the coordinate x, 

thus the parameter 
b

  can be written as: 

 6 3

2
b

U U

L


 
  
 

 (3-27) 

 Substituting Eq. (3-27) into (3-24), the sectional transverse 

displacement field  0
v x  can be expressed as: 

  
2 2

0 2 5 3 61
2 2 2 2

x x x x x x
v U U U U

L L L L
x

               
     

 (3-28) 
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 Eq. (3-28) is clear that the sectional transverse displacement field ( )v x  

is interpolated not only in terms of nodal displacements associated the transverse 

degrees of freedom (
2

U  and 
5

U ) but also in terms of displacements associated the 

rotation degrees of freedom (
3

U  and 
6

U ). Consequently, the authors refer to this 

displacement interpolation functions as the so-called “linked” displacement 

interpolation functions. This concept to remedy the shear-locking problem in the 

beam analysis as discussed above is perhaps from the research work of de Veubeke 

(1965) and extends in the several research works [Tessler and Dong, 1981; Reddy, 

1997]. 

 Following the displacement fields of Eqs. (3-23), (3-25), and (3-28), the 

displacement interpolation function matrix  TB xN  can be written as: 

  
2 2

1 0 0 0 0

0 0 1 0 0

0 1 0
2 2 2 2

TB

x x

L L

x x

L L

x x x x x x

L L L L

x

 
 

 
   
 
    
  

N  (3-29) 

 The sectional deformation-displacement matrix  TB xB  is: 

    

1 1
0 0 0 0

1 1
0 0 0 0

1 1 1 1
0 0

2 2

TB TB TB

L L

L L

L

x

L

x

  
 
    
 
 
  

B L N  (3-30) 

 All symbolic calculations of this thesis are performed by using the 

computer software Mathematica (Wolfram, 1992). 
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Figure 3-6 A standard linear Timoshenko frame element 
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CHAPTER 4 
Element State Determination 

 

 

4.1 Introduction 
 

 This chapter presents the structural state determination and the 

element state determination for the RC frame element based on the displacement-

based formulation of Chapter 3. The structural state determination is the iterative 

step to compute the structural resisting forces and the structural stiffness matrix 

corresponding to the given structural nodal displacements while the element state 

determination is the procedure to determine the element resisting forces and the 

element stiffness matrix corresponding to the given element nodal displacements. 

This chapter focuses on the element state determination that is the essential 

procedure to determine the structural responses. Next, the brief discussion of the 

used convergent criterion is presented herein. The element convergence follows the 

same rules of the general-purpose finite element program, i.e. FEAP (Taylor, 2000). 

Finally, the numerical integration scheme is discussed here. 

 

4.2 Structure State Determination 

 

 The nonlinear material properties in the finite element discretization 

of the structural system may lead to the nonlinear algebraic equations. To find those 

converged solutions, the iterative Newton-Raphson method is applied. The structural 

stiffness matrix is treated as a predictor while the structure resisting forces are 

selected as a convergent checker. The converged solutions are obtained when the 

difference between the externally applied nodal forces and the structural resisting 

forces are smaller than an acceptable tolerance. The process to compute the 

stiffness matrix and resisting forces by the given nodal displacements is often called 

as “state determination”. The state determination can be divided into two phases. 

The first phase is the structure state determination which is the process to assemble 
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the stiffness matrix and the resisting forces at the structural level by the given 

structural nodal displacements. The second phase is the element state 

determination which is the process to find the stiffness matrix and the resisting forces 

at element level by the given element nodal displacements. The rule of both the 

stiffness matrix and the resisting forces assembling at the structural and element 

levels bases on the direct stiffness method. 

 

 

Figure 4-1 Structure state determination by Newton-Raphson solution at load step k  

[Limkatanyu, 2002] 

 

 Figure 4-1 shows the Newton-Raphson solution scheme for load step 

k . Based on the applied structural load vector kP  and the current tangent stiffness 

matrix, points B’, C’, D’, and E’ represent the predictor points while point B, C, D, 

and E represent the convergent points. Moreover, the nodal forces at point B, C, D, 

and E must equilibrium with the structural resisting forces which correspond to the 

current structural nodal displacements. Finally, the solution converges at the 

displacement vector kU  when the superscripted index k  denotes the incremental 

load step at the structural level and the subscripted index i  denotes the Newton-
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Raphson iterative step at the structural level. The details of the structure state 

determination as described above are a part of the total state determination 

procedures which are commonly found in the nonlinear analysis programs. The more 

details of the structure state determination are discussed by Limkatanyu (2002). 

 

4.3 Element State Determination 

 

 In the element state determination, this process is performed to 

determine the resisting forces Q  and element stiffness matrix K  corresponding with 

the element nodal displacements U  which are extracted from the imposed 

structure nodal displacements. Following the displacement-based finite element 

method, the element formulation both linear and nonlinear algorithms is based on 

the displacements of the structural degrees of freedom or the element nodal 

displacements. Therefore, the displacement-based formulation is also simple and as 

straightforward for the implement of finite element analysis. In addition, the 

summarized the steps in the implementation of the RC frame based on 

displacement-based formulation are presented in Table 4.1.  

 Figure 4-2 presents the general scheme for the procedures in the 

element state determination. It can be observed that point B, C, D, and E in Figure 4-

2 correspond to those points in Figure 4-1. The current sectional deformations  xd  
are first computed from the current nodal displacements U  through the sectional 

deformation-displacement matrix  TB xB  (Step a in Table 4.1). Then, the sectional 

resisting forces  R
xD  and the sectional stiffness matrix  xk  are determined from 

the sectional state determination based on the current sectional deformations  xd

(Step b in Table 4.1). Next, the element stiffness K  is computed from the sectional 

stiffness matrix  xk  (Step c in Table 4.1). Finally, the element resisting force Q  is 

obtained from the sectional resisting forces  R
xD  (Step d in Table 4.1). The step-

by-step algorithm for element state determination procedure as above described is 

presented as follows: 

1. Compute the element nodal displacement increments U  form Eq. (3-21). 
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2. Determine the sectional deformation increments  xd  from the element nodal 

displacement increments U  through the sectional deformation-displacement 

matrix  TB xB  from Eq. (3-30).  

( ) ( )TBx x  d B U
 

(4-1)
 

3. Update the sectional deformations  xd . 

0
( ) ( ) ( )x x x  d d d

 
(4-2)

 

4. Determine the sectional resisting forces  R
xD  and the sectional stiffness matrix 

 xk  with corresponding of the sectional deformations  xd  in step 3 from the 

section state determination as described in the next chapter. 

5. Compute the element stiffness K . 

   T

TB TB

L

x dxx K B k B
 (4-3)

 

6. Calculate the element resisting force Q . 

   T

TB R

L

xx x d Q B D
 (4-4)

 
 

Table 4-1 Step in element state determination for RC frame element analysis based 

on displacement-based formulation 

Step Displacement-Based Algorithm 
a) Sectional Deformations TBd B U  

b) Sectional State Determination    , R R d Dk Dk d  

c) Element Stiffness 
T

TB TB

L

dx K B k B  

d) Element Forces 
T

TB R

L

dx Q B D  
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Figure 4-2 Element state determination at load step k   

[Limkatanyu, 2002] 

 

 It is noteworthy that the characteristic of the convergence in the 

section state determination of the axial and bending actions as shown in Figure 4-3 

(a) is very similar in the structure and element state determinations. However, it can 

be observed that characteristic of the convergence in the section state determination 

of the shear action as shown in Figure 4-3 (b) differs from the section state 

determination of the axial and bending actions and there is the iterative procedure 

within the th
i  Newton-Raphson iterative step especially. The more detail and the 

iterative procedure are not discussed here and will be described in the next chapter. 
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Figure 4-3 Section state determination at load step k : (a) axial and bending actions 

and (b) shear action 
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repeatedly applied until the convergence is reached. In other words, this procedure 

is repeatedly applied until the element residual forces corresponding to the element 

residual deformations are identically zero. In practice, the perfect balance between 

the applied forces and the occurred forces is either impossible or too expensive to 

attain. In nonlinear analysis, it is normally accepted that convergence is achieved 

when some control parameters, such as the residual forces, are smaller than an 

acceptable tolerance. The control parameters selection has been studied up to date 

and have been discussed. There are many choices to select the control parameters, 

such as norms or absolute values of these variables etc. 

 In this study, the finite element formulation is implemented in the 

general-purpose finite element platform FEAP (Taylor, 2000). Fortunately, the 

convergence criterion selected for the element iterations in the state determination 

is very similar in FEAP to check the convergence at the global level. For the 

convergence criterion in FEAP, the work (Energy) increment at the global level is 

selected as the control parameter. The convergent condition of the Newton-Raphson 

iteration algorithm is achieved when the value of the ratio between the current work 

increment and the initial work increment is lesser than an acceptable tolerance. The 

work (Energy) at the th
i  Newton-Raphson iterative step i

str
W  can be expressed as: 

T
i i i

str str str
W     U P

 
(4-5)

 

 It needs to note that the subscript str  indicates the values at the 

structural level. The convergence of Newton-Raphson iterative step is reached upon 

the following expression: 

1

i

str

i

str

W
Tolerance

W



 
(4-6)

 

 The convergence scheme as shown above is part of FEAP and can 

adopt with the other iterative scheme. The more discussion detail is presented by 

Zienkiewicz and Taylor (1991). 
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4.5 Numerical Integration 

 

 According to the assessment of the integral terms in the implement of 

the finite element formulation, the classical Gauss integration scheme has been 

extensively used in the research works (e.g. Monegato, 1994; Pelekasis and 

Tsamopoulos, 1995; and Xucheng and Xiaoning, 1995). However, the first and last 

integration points of the classical Gauss integration scheme are not evaluated at the 

end-sections. Thus, the classical Gauss integration scheme cannot be used to present 

the behaviors of the model in the end-sections even though the number of 

integration points is increased. In the distributed plasticity model, the end sectional 

responses of the model are essential especially when the element experiences with 

the maximum responses at the end-section. To overcome this limitation, this study is 

performed based on the Gauss-Labatto integration scheme. The Gauss-Labatto 

integration scheme is extended the classical Gauss integration scheme domain to 

evaluate at the end-sections as shown in Eq. (4-7). 

     
1

1 1

2

1 1
G

G G

N

i N N

i

I w g w g w g  




     
 

(4-7)
 

where the index i  denotes the monitored section; iw  represents the corresponding 

weight factor [Stroud and Secrest, 1966];   is the natural coordinate. Gauss-Lobatto 

integration scheme with GN  integration points provides that the exact integration of 

polynomial of degree up to ( 2 3GN  ).  

 The classical Gauss integration scheme with GN  integration points 

provides that the exact integration of polynomial of degree up to ( 2 1GN  ) and is 

based on the following equation: 

 
1

GN

i

i

I w g 



 

(4-8)
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CHAPTER 5 
Material Constitutive Laws 

 

 

5.1 Introduction 
 

 This chapter presents the constitutive models for concrete, reinforcing 

steel, and shear. All of the material constitutive models are based on uniaxial 

behaviors. The nonlinear behaviors between stress and strain of material models 

under monotonic or cyclic loading are expressed in term of the strain (Deformation). 

This procedure in the implement of finite element analysis to determine the 

sectional stress (Forces) and sectional stiffness is called as “section state 

determination” and is discussed herein. In the first material constitutive models of 

this research, the used concrete model was proposed by Kent and Park (1971). Then, 

Scott et al. (1982) modified the Kent and Park concrete model to account the 

confinement and Yassin (1994) modified the Kent and Park concrete model to 

include tensile strength and tensile damage. As for the plain reinforcing steel model, 

Menegotto and Pinto (1973) were proposed the stress-strain relation of reinforcing 

steel. Then, the reinforcing steel model was modified by Filippou (1983b) to include 

the isotropic hardening effects. Finally, the used shear model follows the envelope 

curve originally proposed by Mergos and Kappos (2008 and 2012) and is modified in 

this study.   

  

5.2 Concrete Constitutive Model 
 

 The concrete constitutive model in this research is based on the 

modified Kent-Park model. In 1971, Kent and Park proposed the original concrete 

model. The model was simple but accurate. However, Kent and Park model didn’t 

include the confinement and tensile effect. Then, the concrete model was modified 

by Scott et al. (1982) to accounts the confinement effect and by Yassin (1994) to 

include the tensile stiffening and tensile damage. It was the so-called as “modified 

Kent-Park concrete model”. Due to the computationally efficient and well 
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prediction, this model has been extensively employed to model the concrete 

behavior in the several research works (e.g. Spacone et al. 1996; Spacone and 

Limkatanyu, 2000; Limkatanyu, 2002; Limkatanyu and Spacone, 2002; Marini and 

Spacone, 2006). It needs the note that the tensile effects of the concrete are 

neglected in this research for the reinforced concrete structure analysis. In other 

words, only the concrete in the compressive zone is considered. However, the 

tensile effects of concrete are great essential in the analysis of the reinforced 

concrete structure, especially the prediction of the monotonic responses.  

 The main features of the modified Kent-Park concrete model can be 

divided as following: 

 - The concrete stress-strain relation in the compressive zone 

 - The hysteretic response of concrete model under cyclic loading 

5.2.1 Stress-strain relation for concrete in compressive zone 

 The stress-strain relation for concrete in compressive zone is shown in 

Figure 5-1. This model is a simplicity and accuracy under cyclic loading. Moreover, 

the previous research works (e.g. Sinha et al., 1964 and Karsan et al., 1969) indicated 

that the envelope curve under cyclic loading is very close to the envelope curve 

under monotonic loading. Therefore, the cyclic damage of concrete model in the 

compressive zone is not taken into account in this study. From Figure 5-1, Kent and 

Park model (1971) can describe into the three regions based on the monotonic 

envelope curve. The monotonic concrete stress-strain relation 
c c

   and the 

corresponding tangent stiffness 
t

E  during each region are given by the following 

expressions: 

Region OA: 0c c
   

2

0 0

2 c c

c c

c c

Kf
 


 

    
     
       

(5-1)
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0 0

1c c

t

c c

Kf
E


 

   
   

     
(5-2) 

Region AB: 0c c cu
     

 01c c c cKf Z         
(5-3)

 

t c
E ZKf  

 
(5-4) 

Region BC: 
cu c
   

0.2
c c

Kf 
 

(5-5)
 

0
t

E 
 

(5-6) 

where 

0 0.002
c

K 
 

(5-7)
 

1
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where 
c

f   is the concrete compressive cylinder strength (MPa); 
0c  is the concrete 

strain at maximum stress in compression; K  is a parameter which accounts the 

strength increase because of the confinement; Z  is the slope of the softening 

branch; yvf  is yield strength of the stirrups (MPa); 
v  is the volumetric ratio of the 

hoop reinforcement; 'h  is the width of concrete core; and 
hs  is the center to center 

spacing of stirrups or hoop set. The parameter K  and Z  as above equations are 

obtained from the empirical data which are given by Scott et al. (1982). 

 The strain at concrete crushing 
cu , accounts the reducing of the 

strength in concrete to 0.2
c

f  , is suggested by Scott et al. (1982) and can be written 

as:  
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Figure 5-1 Constitutive model of concrete under cyclic loading in compression 

[Limkatanyu, 2002] 

 

5.2.2 The hysteretic response of concrete model under cyclic loading 

 The hysteretic behavior of the concrete stress-strain relation under 

cyclic loading is shown in Figure 5-1. The rules of the concrete model in the 

compressive zone during cyclic loading can be expressed as following: 

1. The unload state on the envelope curve occurs along a straight line between the 

point 
r

  at which unloading starts and the point p  on the strain axis. These 

relations can be given by the following equations: 

2

0 0 0 0

2: 0.145 0.13
pr r r

c c c c

  
   

   
     

     
(5-11)

 

O

C

C
o

n
cr

et
e 

S
tr

es
s

Concrete Strain

Monotonic Envelop Curve

B

Confined

Unconfined

c

A

ccu
r0c p



Z

cKf 



74 

0 0 0

2: 0.707 2 0.834
pr r

c c c

 
  

 
    

   
(5-12) 

 Eq. (5-11) corresponds to the normalized strain on the envelop curve 

with the strains at the completion of unloading through a quadratic formula 

proposed by Karsan and Jirsa (1969). However, this equation demonstrates the 

unrealistic prediction of behavior of concrete in case of the high compressive strain 

conditions. Thus, Eq. (5-12) is introduced to the concrete model so that the 

unloading modulus of elasticity remains positive under high compressive strains.   

2. Due to the neglect of the tensile resistance of concrete model, the concrete stress 

is equal to zero for the concrete strain smaller than the concrete strain at complete 

unloading (Crack opening) as shown in Figure 5-1. 

3. In the reloading state in the compressive zone, the concrete behavior is in tension 

as long as the strain is smaller than the concrete strain at complete unloading (Crack 

opening). If the concrete strain exceeds that value, the reloading path follows the 

previous unloading path.  

 It is worth to note that the unloading and reloading path in the reality 

follow the nonlinear paths. However, both paths are considered in the linear straight 

line for the sake of simplicity. 

 

5.3 Reinforcing Steel Constitutive Model 
 

 The relation between stress-strain of reinforcing steel was modeled by 

Menegotto and Pinto (1973) as shown in Figure 5-2. Although the original reinforcing 

steel model of Menegotto and Pinto (1973) was simple and computationally 

efficient, the model didn’t account taking into the isotropic hardening effects. Later, 

Filippou et al. (1983b) modified the Menegotto and Pinto model to include the 

isotropic hardening effects. From their research work of Filippou et al. (1983b), the 

modified reinforcing steel model is computationally efficient and can closely 

represent experimental results from cyclic tests on reinforcing bars. 
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5.3.1 Stress-strain relation for reinforcing steel 

 From the original reinforcing steel model of Menegotto and Pinto 

(1973), the stress-strain relation is defined by the following nonlinear equation: 

 

  
*

* *

1/
*

1

1
R

R

b
b


 




 

  (5-13)
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(5-15) 

 

 
Figure 5-2 Menegotto and Pinto steel hysteretic model [Menegotto and Pinto, 1973] 

 

 The stress-strain relation of reinforcing steel model in Figure 5-2 can 

describe here. Firstly, the model starts from the origin point with initial slope 
0E  to 

the yield point  0 0,  . After the response reaches the yield point, the straight-line 
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is towards the reversal point with the slope 
1E . The tangent modulus 

tE  of this 

transition curve can be obtained by differentiating Eqs. (5-13), (5-14), and (5.15) and 

can be written by 
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 
 
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(5-16) 

where 
r

  and 
r

  define the stress and strain at the point of strain reversal (Point A 

in Figure 5-2), that is also the origin of the asymptote with slope 
0E  (Line (a) in Figure 

5-2). 0  and 0  define the stress and strain at the point of intersection of the two 

asymptotes (Point B in Figure 5-2). The parameter b  is the strain-hardening ratio. In 

other words, b  is the ratio between slope 
1E  and 

0E . The parameter R  is 

introduced to control the shape of the transition curve between the asymptotes and 

permit a good representation of the Bauschinger effect. Finally,  ,r r   and  0 0,   

are updated after each strain reversal as shown in Figure 5-2. 

 The parameter for controlling shape of the transition curve R  is 

governed by the absolute strain difference between the current asymptote 

intersection point (Point B in Figure 5-3) and the previous maximum or minimum 

strain reversal point (Point C in Figure 5-3) depending on whether the current strain 

increases or decreases, respectively. The parameter for controlling shape of the 

transition curve R  introduced by Menegotto and Pinto (1973) can express as: 

  1
0

2

a
R R

a





 

  
(5-17)

 
where 

0R  is the value of the parameter R  during first loading and 
1a  and 

2a  are 

parameters which determine from the experimental test. 

5.3.2 The hysteretic response of reinforcing steel model under cyclic loading 

 The rules for the hysteretic stress-strain relation of reinforcing steel, 

which are implied by using Eq. (5-13) to (5-17), can be briefly described as follows: 
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 The section is loaded first along the monotonic and then is unloaded 

with the tangent modulus 
tE  until it reaches the abscissa point. An unloading is 

changed into the reloading state. The reloading continues in the opposite direction 

until it reaches the monotonic envelope on the opposite side and continues loading 

until it encounters with the unloading state. After unloading is changed into the 

reloading state, the reloading continues in the opposite direction with the pinching 

response. More details on the hysteresis law of reinforcing steel model can be found 

in Filippou et al. (1983b). 

 

 

Figure 5-3 Definition of curvature parameter R  in Menegotto-Pinto  

reinforcing steel model [Limkatanyu, 2002] 

 

 Due to the drawback of the isotropic hardening effect in the capable 

of reproducing experimental results, Filippou et al. (1983b) suggested a stress shift in 

the linear yield asymptote st  as follows: 
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

 


 
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   
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where max  is the absolute strain at the maximum/minimum strain reversal point 

which corresponds to the direction of applied stress. y  and y  are the strain and 

stress at yield point, respectively, and 3a  and 4a  are the experimental determined 

parameters. Although the reinforcing steel model in this study accounts the isotropic 

hardening effect, this feature isn’t used in the model implement because the study 

of Filippou et al. (1983b) discussed the effect of isotropic hardening that the steel 

model with and without isotropic hardening yield almost identical results. Therefore, 

the used parameter are: 0 20R  , 1 18.5a  , 2 0.15a  , and 3 4 0.0a a  . It can be 

observed that parameter 3a  and 4a  are equal to zero based on the original model 

of Menegotto and Pinto (1973). 

 

5.4 Shear Constitutive Model 
 

 Based on the concrete and reinforcing steel constitutive models at 

above demonstration, both models don’t include the shear effect in those models 

so this study introduces the shear constitutive law which is adapted and modified 

from Mergos and Kappos model [Mergos and Kappos, 2008 and 2012] for the 

explanation of shear force-shear strain relation of reinforced concrete. Furthermore, 

the model accounts the shear-flexure interaction effects that lead to the degradation 

of shear strength and shear stiffness at the plastic hinge regions. The main features of 

the shear constitutive model in this study are as follows: 

 - The undamaged primary curve 

 - The modified Mergos and Kappos shear-flexure interaction procedure 

 - The hysteretic shear force-shear strain responses 
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5.4.1 The Undamaged Primary Curve 

 The shear model starts from the undamaged primary curve to define 

the monotonically increasing deformation response for the shear hysteretic model. 

The undamaged primary curve is first derived without the degradation of shear 

strength and shear stiffness due to the shear-flexure interaction effects as shown in 

Figure 5-4. The original envelope curve of the shear model was proposed by Mergos 

and Kappos (2008) and subsequently modified by Mergos and Kappos (2012). As 

shown in Figure 5-4, the undamaged primary curve is composed of four branches but 

has only three different slopes. 

 The first linear portion oa with uncracked slope  
0

GA  represents the 

elastic behavior of the uncracked section in shear. As shown in Figure 5-4, the origin 

point o links to the cracking point a ( crV , cr ). The cracking shear force crV  is defined 

as the point at which the nominal tensile stress exceeds the tensile strength of 

concrete [Mergos and Kappos, 2008]. As suggested by Sezen and Moehle (2004), the 

cracking shear force crV  can be expressed as: 

1 0.80
/

t

cr g

a t g

f N
V A

L h f A


 

  
(5-19)

 

where tf   is the nominal tensile strength of concrete; /aL h  is the shear span ratio; 

N  is the compressive axial force; and gA  is the gross cross section. The uncracked 

slope  
0

GA  is defined in Eq. (5-20), accounted a parabolic shear stress distribution 

along the cross-section depth. 

 
0

0.80 gGA GA
 

(5-20)
 

 From the cracking shear force in Eq. (5-19) and the uncracked slope in 

Eq. (5-20), the cracking shear strain cr  is simple determined as following: 
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 
0

cr

cr

V

GA
 

 
(5-21)

 

 According to the second linear ab and third linear bc portions, both 

linear portions have the same slope of  
1

GA . The second linear portion ab connects 

the cracking point a ( crV , cr ) to the flexure-yielding point b ( yV , y ) at which the 

longitudinal reinforced steel reaches to a yielding state for the first time. The yielding 

information of the longitudinal reinforced steel is provided by the fiber-section 

model. The third linear portions bc attaches the flexure-yielding point b ( yV , y ) to 

the shear-yielding point c ( 0uV , st ). This study defines the shear-yielding point c ( 0uV ,

st ) at which the shear strain reaches to the shear strain at the onset of transverse 

reinforcement yielding st  while the shear force reaches to its ultimate value 0uV . 

 The shear strain at the onset of transverse reinforcement yielding truss  

can simply approximated by using the truss analogy approach [Park and Paulay, 

1975]. Although their approach was based on a rational approach and calibration 

studies, but it was not accurately due to the axial load and aspect ratio effects. 

Later, Mergos and Kappos (2012) used the regression analyses to improve the shear 

strain at the onset of transverse reinforcement yielding equation by two modification 

factors when one accounts the axial load effect   and other includes aspect ratio 

effect  . Therefore, the shear strain at the onset of transverse reinforcement yielding 

with modification factors st  is given by the following equation. 

st truss 
 

(5-22)
 

where 1 1.07
'c g

N

f A


 
    

 
 is the modification factor accounting for the axial load 

effect; 5.37 1.59 2.5, aL
min

h
  
   

 
 is the modification factor accounting for the aspect 

ratio effect; and truss  is the shear strain associated with the yielding of transverse 

reinforcement based on the truss analogy approach [Park and Paulay, 1975] and can 

be written as following: 
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(5-23)
 

where vA  is the transverse reinforcement area with a spacing s ; b  is the section 

width; 
s

E  is the elastic modulus of steel; 
c

E  is the elastic modulus of concrete; and 

  represents the angle characterized by the member axis and the direction of 

diagonal struts. In the research work of Mergos and Kappos (2012), an optimal value 

of angle   was obtained from the regression analyses between experimental and 

analytical results. Mergos and Kappos (2012) suggested the optimal value of angle   

was 45 degree. Moreover, the cracked slope  
1

GA  can simply determine from the 

geometric of the undamaged primary as: 

  0

1

u cr

st cr

V V
GA

 



  

(5-24) 

where 0u
V  is the non-degraded sectional shear force at initial state and can simply 

calculate based on the UCSD shear-strength model in Eq. (2-24) by setting the 

curvature ductility value 3 . 

 The last linear portion cd represents the plastic behavior of shear 

response and links the shear-yielding point c ( 0uV , st ) to the shear-ultimate point d (

0uV , u ) at which the shear strain reaches to its ultimate u  while the shear force 

reaches to its ultimate value 0uV  as well as the shear-yielding point c. Moreover, the 

last linear portion cd is defined from the experimental observation that shear-critical 

members can experience additional shear deformation under sustained shear force 

before the onset of shear failure [Ma et al., 1976; and Aboutaha et al., 1999]. 

Therefore, the shear strain at ultimate state u  may be considerably larger than the 

shear strain at the onset of transverse reinforcement yielding st  observed from 

several research works [Gerin and Adebar, 2004; Sezen, 2008; and Mergos and 

Kappos, 2012]. Based on the regression analysis in research work of Mergos and 

Kappos (2012), the shear strain at ultimate point u  was approximated among the 

experimental results for 25 RC members eventually failing in shear with three 



82 

modification factors ( 1  to 3 ). The shear strain at ultimate u  can be written by the 

following equation: 

1 2 3u st st      
 

(5-25)
 

where 1
1.0 2.5min(0.40, )
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 is the parameter accounting for the amount of 

transverse reinforcement. It is important to note that the Mergos and Kappos formula 
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Figure 5-4 The undamaged primary curve of shear constitutive model  

[Mergos and Kappos, 2012] 
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5.4.2 Modified Mergos-Kappos Shear-Flexure Interaction Proceduce 

 The interaction between shear and flexural action has long been 

recognized in the research community. From the previous research works (e.g. Ghee 

et al., 1989; Watanabe and Ichinose, 1991; Priestley et al., 1993; and Sezen, 2002), 

they demonstrated that the inelastic flexural deformation influences on the shear 

resistance. In other words, the shear strength of a RC section in the plastic hinge 

region decreases with increasing inelastic flexural deformation. The degradation of 

shear strength is caused by the concrete damage associated with the inelastic 

flexural deformation (Plastic-hinge formation). Moreover, the several experimental 

results (e.g. Lynn, 2001; and Sezen, 2002) were observed that the sectional shear 

strain in the plastic hinge region increases drastically following the inelastic flexural 

deformation while shear force is constant. Both phenomena results as above 

discussion are caused by the influences of the shear-flexure interaction effects. To 

include these two phenomena results due the shear-flexure interaction in the 

implement of finite element analysis, Mergos and Kappos (2008 and 2012) 

introduced the interaction procedure that consider together by combining the UCSD 

shear-strength model [Priestley et al., 1993] and the truss analogy approach [Park 

and Pauley, 1975] for the analysis of the RC members with the shear-flexure 

interaction. 

 In this research, the interaction method introduced by Mergos and 

Kappos (2008 and 2012) is adopted and modified to include the sectional shear 

force-bending moment interaction as discussed here. Figure 5-5 presents the general 

scheme for the interaction between shear and flexural procedure and the 

development of the degraded shear envelope curve with increasing curvature 

ductility demand  . The reduced shear strength is associated with the degradation 

of the concrete shear-strength component cV  as defined by the UCSD shear-strength 

model (In Chapter 2) and is influenced to the ordinate of the undamaged shear 

envelope curve. In other word, the sectional shear response starts to deviate from 

the undamaged envelope curve when there is the shear strength degradation. The 

damaged (Reduced) envelope curve is kept updating with the evolution of the 
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degraded shear strength and the resulting envelope curve is along the path 
g g

o a b e f g c d         as shown in Figure 5-5. Due to the degraded shear 

strength, there are three possible cases to be encountered when the shear strain is 

larger than the shear strain at the flexure-yielding point y  at point b. It can be 

expressed as: 

 The first case (Case I) defines the non-degradation of shear strength 

case. In other words, the sectional curvature ductility is lesser than 3 ( 3  ). Based 

on the UCSD shear-strength model, there is no the shear strength degradation. In this 

case, It can be observed that the sectional shear response points at the start and 

end of load increment step both locate on the undamaged shear envelope curve 

with the cracked sectional shear stiffness  
1

GA  as shown in Figure 5-5 and 5-6. 

 The second case (Case II) presents the initial degradation of shear 

strength case. In this presented case can simply describe that after the curvature 

ductility exceeds 3 ( 3  ) for the first time, there is the degradation of shear 

strength based on the UCSD shear-strength model. The sectional shear response 

point at the start of load increment step locates on the undamaged primary curve 

while the end of load increment step lies on the damaged (Reduced) shear envelope 

curve with the effective sectional shear stiffness  
eff

GA . 

 The last case (Case III) represents the post-degradation of shear 

strength case. After the curvature ductility exceeds 3 ( 3  ) for the first time (Case 

II), the sectional shear response points at the start and end of load increment step 

both locate on the damaged (Reduced) shear envelope curve with the effective 

sectional shear stiffness  
eff

GA . 
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Figure 5-5 The damaged primary curve of shear constitutive model 
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  0,

k k
k i

ref ki
i

V V
GA






  
(5-26)

 

where 0,

k

iV  is the non-degraded sectional shear force corresponding to the sectional 

shear strain 1k k k

i i       and can be determined as follows: 

   1

0, 1

k k

i cr i crV V GA    
 

(5-27)
 

 It needs to note that the reference shear stiffness  k

ref i
GA  in case I 

and II is also equal to the cracked sectional shear stiffness  
1

GA  as shown in Figure 

5-6. The general representing of the shear-flexure interaction procedure is derived 

from the relation between incremental shear force V  and shear strain   of the 

three cases as shown in Figure 5-6. Form the geometric of Figure 5-6, the relation 

between incremental shear force V  and shear strain   can be expressed as: 

 
 

 

deg
k

kk
i ck i i

i k k

eff refi i

V VV

GA GA


  
  

 
(5-28)

 

where k

iV  is the incremental shear force; and  deg
k

c i
V  is the degradation of the 

shear strength associated with the concrete shear strength degradation based on the 

UCSD shear-strength model and can be determined as following: 

   deg
k k

k k
k kui

c ref i ikii
st

V V
V GA  

 
 

     
   

(5-29)
 

where k

uiV  is the degraded shear strength dictated by the variation of the concrete 

contribution coefficient k  with the sectional curvature ductility   in Figure 2-9. 

Based on Eq. (5-28), the effective sectional shear stiffness  k

eff i
GA

 
can be rewritten 

by solving the Eq. (5-28). The new relation can be expressed as: 
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 
 

 
deg

k
k k

i

eff refki ik

i c
i

V
GA GA

V V



    (5-30)

 

 

 
Figure 5-6 Three cases of the incremental shear force-shear strain relation 
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and the incremental shear force k
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unknown variables and mutually dependent. To determine these two values, the 
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and the incremental shear force ( k
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the shear-flexure interaction procedure. 
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 Based on Eqs. (5-28) and (5-30), the residual function   ,

k

eff i j
GA  can 

be defined as following: 

    
   
   

deg

,

, ,

,

kk

eff ck k i j ik

eff eff i k ki j i j

ref effi i j

GA V
GA GA

GA GA



   

  
(5-31)

 

 The Newton-Raphson method [Chapra and Canale, 2002] is used to 

solve the solution of Eq. (5-31). Therefore, the derivative of Eq. (5-31) with respect to 

the sectional effective shear stiffness  
,

k

eff i j
GA  can be written as: 

  
 

 
   

   

    
degdeg

, ,

2

, ,
,

k kkk

eff eff cci j i j ik i

ik k k
k k

eff ref effi j i i j ref effi i j

d GA GA VV

d GA GA GA GA GA


 

   
   

(5-32)
 

 The algorithm of iterative analytical process for the value 

determinations of the incremental shear force ,

k

i jV  and the sectional effective shear 

stiffness  
,

k

eff i j
GA

 
within the element iterative step i  of the load increment k  is 

shown in Figure 5-7 and implemented in the following steps: 

1. Determine the reference shear stiffness  k

ref i
GA  form Eq. (5-26) and the 

degradation of the shear strength associated with the concrete shear strength 

degradation  deg
k

c i
V  form Eq. (5-29). 

2. Assume the initial the sectional effective shear stiffness value  
, 1

k

eff i j
GA


. In the 

presented research, the initial value of  
, 1

k

eff i j
GA

  
is suggested to set 

   
, 1 1

k k

eff effi j i
GA GA

 
 . 

3. Start the iterative procedure ( 1j  ) for the shear-flexure interaction within the 

element iterative step i  of the load increment k . 

 (a) Calculate the residual function   ,

k

eff i j
GA  based on Eq. (5-31): 
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    
   
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deg

,

, ,
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kk

eff ck k i j ik

eff eff i k ki j i j

ref effi i j

GA V
GA GA

GA GA



   

  
 

 (b) Determine the slope of residual function     
, ,

/
k k

eff effi j i j
d GA d GA based 

on Eq. (5-32): 

  
 

 
   

   

    
degdeg

, ,
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, ,
,

k kkk

eff eff cci j i j ik i

ik k k
k k

eff ref effi j i i j ref effi i j

d GA GA VV

d GA GA GA GA GA


 

   
   

 

 (c) Update the effective sectional shear stiffness  
, 1

k

eff i j
GA


: 

   
  

    
,

, 1 ,

, ,
/

k

effk k i j

eff eff k ki j i j

eff effi j i j

GA
GA GA

d GA d GA


  
   

 
 

 

 ( d)  Compute the update residual function   , 1

k

eff i j
GA


  based on the 

effective sectional shear stiffness  
, 1

k

eff i j
GA


 in step 3 (c). 

4.  Check if the update residual value in step 3 ( d)  is lesser than the specified 

tolerance (
tol ): 

 (i) If no, set 1j j   and go to step 3 (a). 

  ( ii)  If yes, return the current sectional shear force  1

,

k
k k k

i i eff ii j
V V GA      

and the current effective sectional shear stiffness  
,

k

eff i j
GA  
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Figure 5-7 The step-by-step algorithm for iterative procedure within the shear-flexure 

interaction procedure 
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5.4.3 The Hysteretic Shear Force-Shear Strain Responses 

 In this study, the sectional shear response under cyclic loading can 

determine from a hysteretic of shear law as shown in Figure 5-8. The hysteretic of 

shear force-shear strain relation is based on the uniaxial behaviors and is expressed 

in term of shear strain. The rule of presented hysteretic model is adopted and 

modified from the rule of hysteretic moment–rotation relation with pinching and 

damage proposed by Filippou et al. (1992) and subsequently improved by Martino 

(1999). Moreover, the presented hysteretic model is attractive since it can represent 

both damages and pinching effect and cover all the behavior of RC member prior 

and post-concrete cracking, the flexure-yielding, the transverse reinforcement 

yielding, and the shear failure. The general shape of the modified hysteretic shear as 

shown in Figure 5-8 is separated into the four parts as following: 

 - The monotonic shear force–shear strain relation 

 - The behavior during unloading state 

 - The behavior during reloading state 

 - The reduced shear force-shear strain envelope due to the crack  

                      opening 

5.4.3.1 The Monotonic Shear Force–Shear Strain Relation 

 The monotonic envelop curve follows the undamaged envelope 

curve and the damaged (Reduced) envelope curve due to the shear-flexure 

interaction effect as above described. The monotonic envelop curve composed of 

two envelop curves, one in the positive direction and another in the negative 

direction. During each cycle, the reversal points are updated and used to predict the 

characteristic shear strain values with damage in the next cycle. The relation 

between shear force and shear strain can express as: 

1. An initial branch (Path O A  and O B ) 
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 1 1

0

k k
V GA  

 
for   1k

cr
  

 
(5-33)

 

2. An post-concrete cracking branch (Path A C ) 

 1 1

1
( )k k

cr crV V GA     
 

for   1k

cr y   
 

(5-34)
 

3. An post-flexural yielding branch (Path C D , F G , and J K ) 

 1
k

k k k

eff i
V V GA    

 
for   1k

y st   
 

(5-35)
 

4. An ultimate branch (Path K L ) 

1k k

ui
V V

 
 

for   1k

st u   
 

(5-36)
 

where the subscribed number index i  denotes to the element iterative step of the 

load increment k . 

 

 

Figure 5-8 The hysteretic of shear model 
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5.4.3.2 The Behavior During Unloading State 

 When load reversal occurs, unloading takes place along a straight line 

with the uncracked slope  
0

GA  until the reloading state is reached. The sectional 

shear response during the unloading state can calculate from Eq. (5-37) for the 

positive shear strain increment and Eq. (5-38) for the negative shear strain increment, 

respectively. 

1. Unloading state at the positive shear strain increment (Path G H ) 

 1

0

k k k

iV V GA    
 

for    1k

nu l
  

 
(5-37)

 

2. Unloading state at the negative shear strain increment (Path D E ) 

 1

0

k k k

iV V GA    
 

for    1k

pu l
  

 
(5-38)

 

where  nu l
  and  pu l

  are the last shear strain for complete negative and positive 

unloading at cycle l , respectively. 

5.4.3.3 The Behavior During Reloading State 

 The reloading curve is separated into two phases, one in the elastic 

phase and another one in the post-concrete cracking phase. The reloading in the 

elastic phase exhibits the elastic behavior of uncracked section in shear. As the 

result, the sectional shear response can reverse into the original point without 

damage due to the crack opening on the reinforced concrete section as shown at 

the path O B  and O A  in Figure 5-8. In the post-concrete cracking phase, the 

reloading state is composed of two paths. The initial reloading path is directed 

towards to the so-called as “breakpoint” (Point I ) which is a function of the 

maximum/minimum sectional shear force and shear strain. The breakpoint is defined 

by the pinching parameters ( x  and y ) which use to modify the 

maximum/minimum shear force and shear strain (Point J ). While the initial reloading 

path reaches to the breakpoint, the opening crack in the opposite reloading direction 
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must be closed. Finally, the second reloading path is directed towards to the 

maximum/minimum deformation with damage (Point J ) of earlier cycles in the same 

direction of loading. The sectional shear force at reloading state can calculate 

following as: 

1. Reloading state at the positive shear strain increment ( 1 0k

i
   ) 

1.1. Elastic reloading branch (Path O A ) 

 1 1

0

k k
V GA  

 
for   1k

cr  
 

(5-39)
 

1.2. First reloading branch (Path H I ) 
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(5-40)
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1.3. Second reloading branch (Path I J ) 
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where  1rel l
GA

  and  2rel l
GA

  are the reloading sectional shear stiffness of the first 

and second reloading path in the positive shear strain increment, respectively;  x  

and y  are the pinching parameters in x and y direction, respectively; and  ch
l

   is 

the shear strain in the positive shear strain increment at the break point of cycle l  

and can calculate as following: 

        1 maxmp nu y nu
l l l l

       
 

for   0k

i 
 

(5-44)
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 (5-46) 

2. Reloading state at the negative shear strain increment ( 0k

i
  ) 

2.1. Elastic reloading branch (Path O B ) 

 1 1
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2.2. First reloading branch  
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2.3. Second reloading branch  
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where  1rel l
GA

  and  2rel l
GA

  are the reloading sectional shear stiffness of the first 

and second reloading path in the negative shear strain increment, respectively; and 
 ch

l
   is the shear strain in the negative shear strain increment at the break point of 

cycle l  and can calculate as following: 

        1 minmp pu y pu
l l l l

       
 

for   0k
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(5-52)
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(5-54) 

5. 4. 3. 4 The Reduced Shear Force-Shear Strain Envelope Due to the Crack 

Opening 

 In addition to the damages on the envelope curve due to the shear-

flexure interaction effects, the presented shear model includes the damages due to 

the crack opening in the reinforced concrete section. The crack opening leads to lose 

the ability to achieve the nominal strength (Loss of bond between concrete and 

reinforcing steel) and the ability of the concrete to dissipate energy in each the shear 

hysteresis loop. The brief discussion of those damages can be express as follows. 

First, when the sectional shear response reaches to the reverse points (point D  and 

G ), the unloading will take place and the maximum/minimum shear strain is 

updated with the damage parameters ( 1d  and 2d ). It can see in Figure 5-8 that the 

maximum points (point J ) or the minimum points in the considering steps aren’t 

higher than the maximum points (point D ) or the minimum points of the previous 

cycles due to the hysteretic energy dissipation and the damage of 

maximum/minimum responses. The reduced characteristic of maximum and 

minimum shear strain values are defined as: 
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where 1d  is the damage factor which accounts for the loss of section strength; 2d  is 

the damage factor which accounts for the loss the ability of section to dissipate 
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energy; dissipatedE  is the energy absorption (Area under path H I J   of Figure 5-8); 

elasticE  is the energy absorption at yield (Area under path O A C   of Figure 5-8); and 

the superscribed plus and minus symbols refer to the positive and negative 

considering quadrants, respectively.  
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CHAPTER 6 
Numerical Verification of Model 

 

 

6.1 Introduction 
 

 This chapter presents the analytical results obtained from the 

presented numerical examples which are performed to assess accuracy and 

efficiency of the proposed RC frame element under cyclic loading. Furthermore, the 

importance of including shear-flexure interaction effects is discussed herein. The 

results from the experimental tests are used to represent the benchmark and to 

compare with the analytical results obtained from the proposed frame model. The 

numerical examples are divided into two sets. The first set presents two RC columns 

which eventually failed in shear following flexural yielding. This type of member is 

referred to as a “flexure-shear” critical member. Furthermore, these numerical 

examples are used to discuss the effects of interaction between flexure and shear on 

both global and local responses. Finally, the last set demonstrates the cyclic 

responses of the RC member which failed in shear before reaching its flexural 

capacity. This type of member is referred to as a “shear” critical member.  

 

6.2 Flexure-Shear critical R/C members 
 

 The first and second numerical examples represent the flexure-shear 

critical members and the characteristic of older existing columns with insufficient 

transverse reinforcement and poor seismic details (Non-ductile RC columns). Both 

columns in the first and second numerical examples are selected from the full-scale 

experimental tests on RC square columns tested by Sezen (2002) and Lynn (2001), 

respectively. The detail of the numerical analysis results can describe as follows: 
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6.2.1 Example I: Column 2CLD12 [Sezen, 2002] 

 The first example used to verify the accuracy and efficiency of the 

proposed frame element and show the essence of accounting for shear-flexure 

interaction effects on shear responses is the column 2CLD12 which was one of the 

experiments on RC square columns representing older existing column with 

insufficient transverse reinforcement details tested by Sezen (2002). The column was 

subjected to a constant axial load and cyclic lateral displacements in double 

bending. According to the recent research work, Mergos and Kappos (2008) used the 

same column to validate their distributed flexibility frame element with shear-flexure 

interaction.  

 The column 2CLD12 geometry is shown in Figure 6-1. The cross 

section specimen is 457.2 x 457.2 mm2 with eight #9 deformed longitudinal 

reinforcement bars (28.7 mm diameter). Concrete strength is 21 MPa and longitudinal 

reinforcement yielding strength and transverse reinforcement yielding strength are 

434 MPa and 476 MPa, respectively. The transverse reinforcement of this specimen 

represents by the square hoops of #3 deformed bars (9.5 mm diameter) with 0
90  

hooks and has a spacing of 305 mm. The volumetric ratio of transverse 

reinforcement is 0.0017 based on the transverse reinforcement details. The clear 

height of specimen is 2,946 mm and is subjected to lateral load cycles in double 

bending under a constant axial load of 667 kN (Corresponding to approximately 

0.15% c gf A ). The above properties of the column 2CLD12 were provided by Sezen 

(2002). Base on the numerical model, the column is discretized into 16 elements 

with 7 Gauss-Lobatto integration points and the frame cross-section is discretized into 

40 fibers to represent the nonlinear responses of this numerical example. The initial 

shear strength 
0u

V  can predict based on the UCSD shear-strength model [Priestley et 

al., 1993] in Eq. (2-24) about 515.56 kN. 
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Figure 6-1 The specimen geometry of column 2CLD12 [Sezen, 2002] 

 

 Figure 6-2 (a) shows the tip load-displacement response as derived by 

Mergos and Koppos model (2008) and proposed model while Figure 6-2 (b) 

demonstrates the tip load-displacement response obtained from the flexural model 

proposed by Spacone et al. (1996). The benchmark response is obtained from the 

experimental data tested by Sezen (2002). To compare with the experimental result 

as shown in Figure 6-2 (a), it can be seen that the proposed model is able to 

represent the complex behavior of the experimental result very well, though the 

initial stiffness is lower estimation because the tensile strength of concrete is not 

included in the numerical model as discussed in Chapter 5. According to the results, 

the proposed model can capture the member capacity, stiffness degradation with 

increasing displacement amplitude, amount of dissipated hysteretic energy, and 

general shape of hysteretic response. Moreover, the proposed model can represent a 

smoother load-displacement response when compared to the Mergos and Kappos 

model (2008). This benefit is because of the fiber-section model used to represent 

the characteristic of the column cross-section responses while the Mergos and 

Kappos model used the bilinear yield-oriented moment-curvature curve to represent 

the characteristic of the column responses. As the result, the Mergos and Kappos 
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model (2008 and 2012) failed to represent the smooth yielding process of column 

cross-section in flexure. From the numerical analysis result, the proposed model can 

predict the first plastic-hinge formation at the lateral displacement 
y

  about 13.80 

mm and shear strain 
y

  about 1.58x10-3. Based on the experimental observation 

[Sezen, 2002], the lateral displacement 
u  associated with the onset of rapid shear 

strength degradation is equal to 28.00 mm while the proposed model can predict 

the column failure in shear at the lateral displacement 
u  about 28.21 mm. This 

value is in good agreement for the numerical prediction.  

 Figure 6-2 (b) presents the importance of considering the shear-flexure 

interaction effects from the numerical responses obtained with the flexural model 

[Spacone et al., 1996] when compared to the experimental result. It can observe 

that the flexural model can predict well the column strength but the shear failure 

due to the shear-flexure interaction at the plastic-hinge formation cannot be 

predicted by the flexural model. Therefore, the frame element with inclusion of the 

shear-flexure interaction effects is necessary and essential in the simulating the 

response of RC columns that fails in shear following the flexure yielding (Ductile 

shear failure). 
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(b) 

Figure 6-2 The lateral load-displacement response of the end column 2CLD12 

obtained from: (a) the Mergos and Kappos model and the proposed model and  

(b) the flexure model 

 

 Figure 6-3 presents the hysteretic shear responses at various 

monitoring sections (Section I, II, III, and IV) along the column length. Based on the 

restrained conditions at column ends, the plastic hinges only form at the end of the 

columns (Section I). Therefore, the hysteretic shear response within the plastic-hinge 

regions (Section I) as shown in Figure 6-3 (a) is different from the hysteretic shear 

responses outside the plastic-hinge regions (Section II, III, and IV) due to the shear-

flexure interaction effects as shown in Figure 6-3 (b) to (d).  From the numerical result 

in Figure 6-3 (a), the sectional shear response starts to deviate from the undamaged 

envelope curve to the damaged envelope curve due to the shear-flexural interaction 

as predicted by the UCSD shear-strength model [Priestley et al., 1993] when the 

sectional curvature ductility reaches its threshold value of 3. On the other hand, the 

numerical results in Figure 6-3 (b) to (d) are almost identical. This relies on the fact 
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that the sectional shear responses outside the plastic-hinge regions (Section II, III, and 

IV) are not experienced with the shear-flexure interaction. As the result, it is observed 

from the hysteretic shear responses at all sections (Figure 6-3 (a) to (d)) that while 

the magnitude of shear force is the same value along the column length as governed 

by the equilibrium, the sectional shear strain at section I is much larger than the 

sectional shear strain at section II, III, and IV. Finally, the shear failure is detected at 

the hysteretic shear response within the plastic-hinge regions (Section I) when the 

sectional shear strain reaches its ultimate value of 3
1.2 10u x  . This value is 

obtained from Eq. (5-25) as suggested by Mergos and Kappos (2012). It is worth noting 

that this value is in good agreement with the experimental result of 1.00x10-3 as 

proposed in the research work of Mergos and Kappos (2012). 
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(d) 

Figure 6-3 The hysteretic shear responses of column 2CLD12 at various monitoring 

sections: (a) section I ( / 2x L ); (b) section II ( / 3x L ); (c) section III ( / 6x L ) and 

(d) section IV ( 0x  ) 

 

 Figure 6-4 illustrates the variations of shear force (Demand) and shear 

strength (Capacity) with the curvature ductility at the end of a column (Section I). 

From Figure 6-4, the shear failure envelope is constructed based on the UCSD shear-

strength model [Priestly et al., 1993]. It is observed that the shear-flexure interaction 

results in the degradation of shear strength with increasing curvature ductility ( 3 

). As the result, the initial shear strength 0
515.6uV   kN calculated from Eq. (2-24) is 

higher than the peak shear force max
316.1V   kN. Finally, the shear failure in this 

column occurs when the shear demand meets the shear failure envelope with 

associated value of the curvature ductility 14.83  . However, it is crucial to point 

out that the shear failure would not have occurred in the column 2CLD12 if the 

flexural and shear actions had been independent.  
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Figure 6-4 Shear force vs curvature ductility at the end of column 2CLD12 (Section I) 

 

6.2.2 Example II: Column 2CMH18 [Lynn, 2001] 

 The second numerical example is selected from a series of eight RC 

square columns contained a variety of reinforcement details and subjected to two 

different levels of axial loading conducted by Lynn (2001). The column, labeled 

column 2CMH18, is one of those columns which are constructed to represent the 

existing RC columns built before the 1970’s and is used to verify the accuracy and 

efficiency of the proposed RC frame element and to show the importance of 

including for the shear-flexure interaction effects in this study.     

 Figure 6-5 illustrates the column 2CMH18 geometry. The column is 

the square cross-section with dimension of 457.2 x 457.2 mm2. Eight #8 deformed 

longitudinal bars (25.4 mm diameter) are placed uniformly along the column 

perimeter. The transverse reinforcement of this column represents by the square 

hoops of #3 deformed bars (9.5 mm diameter) with 0
90  hooks and has a spacing of 

457.2 mm. The volumetric ratio of transverse reinforcement is 0.0007 based on the 

transverse reinforcement details. It is worth mentioning that the transverse 
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reinforcement details and amount as above are indicated for the characteristic of the 

substandard seismic reinforcement details used before the 1970’s. The column was 

design the concrete ultimate compressive strength of 25.5 MPa and the yield 

strengths of longitudinal and transverse reinforcing bars of 331 and 400 MPa, 

respectively. The column clear height was 2,946 mm. Moreover, the column was 

subject to a constant axial compressive load of 1,512 kN (Corresponding to 

approximately 0.28% c gf A ) and cyclic lateral displacement inducing flexure about the 

y  axis. The above data of the column 2CMH18 is based on the information available 

in the research work of Lynn (2001). From numerical model, the column is 

discretized into 16 elements with 7 Gauss-Lobatto integration points and the frame 

cross-section is discretized into 40 fibers to represent the nonlinear responses of this 

numerical example. The initial shear strength 0uV  can predict based on the UCSD 

shear-strength model [Priestley et al., 1993] in Eq. (2-24) about 477.2 kN. 

 
Figure 6-5 The specimen geometry of column 2CMH18 [Lynn, 2001] 

 

 Figure 6-6 (a) presents the relationship between the tip lateral load 

and total displacement obtained from the analysis result of the proposed model 

while Figure 6-6 (a) shows the tip load-displacement response obtained from the 

flexural model proposed by Spacone et al. (1996). The experimental data tested by 
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Lynn (2001) is defined as the benchmark response and used to compare with the 

numerical results. From the responses as shown in Figure 6-6 (a) and (b), both 

models succeed in the behavior capture of the characterizing experimental load-

displacement response, such as the member capacity, amount of dissipated 

hysteretic energy, and general shape of hysteretic response. From the numerical 

result in Figure 6-6 (a), the proposed model can predict the first plastic-hinge 

formation at the lateral displacement 
y

  about 8.30 mm and shear strain 
y

  about 

1.21x10-3. Finally, the proposed model can predict the lateral displacement 
u  

associated with the ultimate shear strain 
u  is equal to 15.30 mm. This value 

corresponds well with the experimental observation [Lynn, 2001] that the lateral 

displacement associated with the onset of rapid shear strength degradation occurs at 

about 15.30 mm. Furthermore, the experimental keynote of Lynn (2001) indicated 

that the column 2CMH18 collapse because the axial load loss it’s carry capacity.   
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(b) 

Figure 6-6 The lateral load-displacement response of the end column 2CLD12M 

obtained from: (a) the proposed model and (b) the flexure model 

 

 Figure 6-6 (b) illustrates the essence of including the shear-flexure 

interaction effect from the numerical responses obtained with the flexural model 

[Spacone et al., 1996] when compared to the experimental result. Although the 

flexural model can predict reasonably well the experimental result, the flexural 

model cannot predict the shear failure following the plastic-hinge formation. 

Therefore, the frame element with inclusion of the shear-flexure interaction effects is 

necessary and essential in the simulating the response of RC columns that fail in 

shear due to the shear-flexural interaction (Ductile shear failure). 

 Figure 6-7 represents the hysteretic shear responses at various 

monitoring sections (Section I, II, III, and IV) along the column length. The hysteretic 

shear response at section I locates on the plastic-hinge region due to their restrained 

conditions while The hysteretic shear response at section II, III, and IV rest outside the 

plastic-hinge region. Therefore, the hysteretic shear response at section I is different 
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from the hysteretic shear responses outside the plastic-hinge regions (Section II, III, 

and IV). Based on the UCSD shear-strength model [Priestley et al., 1993], the 

sectional shear response begins to deviate from the undamaged envelope curve to 

the damaged envelope curve due to the shear-flexural interaction when the 

sectional curvature ductility reaches its threshold value of 3 as shown in Figure 6-3 

(a). On the other hand, it is observed that the hysteretic shear responses at section II, 

III, and IV are almost identical. This relies on the fact that the sectional shear 

responses outside the plastic-hinge regions (Section II, III, and IV) are not experienced 

with the shear-flexure interaction. To compare the sectional shear response in Figure 

6-3 (a) and 6-3 (b)-(d), it is observed that although all sections experience with the 

same magnitude of shear force as governed by the equilibrium, the sectional shear 

strain at section I is much higher than the sectional shear strain at section II, III, and 

IV. Finally, the column failure in shear can be detected by the proposed model 

when the sectional shear strain reaches its ultimate value of 3
4.6 10u x   at section 

I. It is worth noting that the shear strain at onset of stirrup yielding st  is equal to 

shear strain at onset of shear failure u  based on the undamaged primary curve 

proposed by Mergos and Kappos (2012). 
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(d) 

Figure 6-7 The hysteretic shear responses of column 2CMH18 at various monitoring 

sections: (a) section I ( / 2x L ); (b) section II ( / 3x L ); (c) section III ( / 6x L ) and 

(d) section IV ( 0x  ) 

 

 Figure 6-8 presents the variations of shear force (Demand) and shear 

strength (Capacity) with the curvature ductility at the end of a column (Section I). 

The shear-strength capacity envelope in Figure 6-8 based on the UCSD shear-strength 

model [Priestly et al., 1993] is used to consider as the failure envelope. From the 

analytical response, the initial shear strength 0uV  calculated from Eq. (2-24) is 477.2 

kN while the peak shear force max
V  can predict approximately 316.0 kN. It is observed 

that the column 2CMH18 would not have failed in shear if the shear-flexure relation 

had not interacted. The shear failure in this column occurs when the shear demand 

meets the shear failure envelope with associated value of the curvature ductility 

5.86  . Compare to the previous numerical example I (Column 2CLD12), the 

curvature ductility of column 2CLD12 at the shear failure ( 14.83  ) is much larger 
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than the curvature ductility of column 2CMH18 ( 5.86  ). It relies on the fact that 

the column 2CMH18 experiences the higher axial loading while the column 2CLD12 is 

the more ductile sectional shear envelope. 

 

 

Figure 6-8 Shear force vs curvature ductility at the end of column 2CMH18 (Section I) 

 

6.3 Shear critical RC member 
 

 A shear critical RC member refers to the RC column that fails in shear 

before the flexural yielding. The hysteretic shear response follows the undamaged 

primary curve as shown in Figure 5-4. 

6.3.1 Example III: Column Specimen No. 1-1 [Batt et al., 1985] 

 The specimen No. 1-1 was one of the RC columns with a square cross-

section under a constant axial load and cyclic lateral displacement tested by Bett et 

al. (1985). This specimen was approximated by 2/3 scale test in double bending and 

designed to fail in shear. The main objective of this experimental test was to 
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evaluate the efficiency of the strengthening and repairing techniques for short 

column designed in seismic regions of the U.S. in the 1950’s and 1960’s. The 

specimen geometry is given by Batt et al. (1985). The dimension of cross section 

specimen was 304.8 x 304.8 mm2 with eight #6 deformed longitudinal reinforcement 

bars (19 mm diameter). Square hoops of 6-mm deformed bars and spacing of 203 

mm were used for the transverse reinforcement. The specimen was designed with 

the concrete strength of 29.9 MPa, longitudinal reinforcement yielding strength of 

462 MPa and transverse reinforcement yielding strength of 414 MPa. The clear height 

of the specimen was 920 mm and was subjected to lateral load cycles under a 

constant axial load of 288 kN (Corresponding to approximately 0.10% c gf A  ) as 

shown in Figure 6-9. In this numerical example, the column is discretized into 16 

elements with seven Gauss-Lobatto integration points. Forty fibers (Layers) are used 

to discretize the column cross section.  

 

Figure 6-9 The specimen geometry of column No. 1-1 [Bett et al., 1985] 

 

 Figure 6-10 (a) present the lateral load-displacement response 

obtained from the experimental test and the numerical result analyzed with the 

proposed model while Figure 6-10 (b) shows the result comparison between the 

experimental result and the numerical result obtained with the flexural model 

proposed by Spacone et al. (1996). The analytical result in Figure 6-10 (a) proves the 
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performance of the proposed element that the proposed element can capture 

reasonably well the salient features of the experimental load-displacement result, 

such as the member capacity, the stiffness degradation with increasing displacement 

amplitude, amount of dissipated hysteretic energy, and general shape of hysteretic 

response. As expected, the pinching of hysteretic loop can be clearly noticed in the 

load-displacement response of this example. Thus, the column No. 1-1 is considered 

as a shear-dominated member. Furthermore, the proposed model predicts that the 

shear failure occur when the shear strain reaches its ultimate value of 3
7.10 10u x   

and the lateral displacement value of 7.6u  mm. It can observe that there is no 

plastic hinge formation in the column No. 1-1. On the other hand, the load-

displacement response obtained with the flexure model in Figure 6-10 (b) shows that 

the flexure model fails to simulate the load-displacement response of the shear-

dominated member like the column No. 1-1. From Figure 6-10 (b), the member 

strength and amount of dissipated hysteretic energy are drastically overestimated. As 

the result, it can be discussed that the frame element with inclusion of section shear 

response is necessary and essential in assessing the seismic performance of shear-

dominated RC member. 
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(b) 

Figure 6-10 The lateral load-displacement response of the end column No. 1-1 

obtained from: (a) the proposed model and (b) the flexure model 

 

 Figure 6-11 demonstrates the hysteretic shear responses at various 

monitoring sections (Section I, II, III, and IV) along the column length. The analytical 

results of this example show that the hysteretic shear responses at all monitoring 

sections along the column length are similar. It is different from the sectional shear 

responses of the previous examples (Column 2CLD12 and 2CMH18). This relies on 

the fact that all column sections of specimen No. 1-1 have not experienced yielding 

in flexure. Therefore, the hysteretic shear responses follow the undamaged primary 

curve and the sectional shear-flexure interaction does not occur in the column No. 

1-1. Furthermore, the pinching characteristic is noticeable in the sectional shear 

responses. Finally, the column shear failure occurs when the sectional shear strain 

reaches its ultimate value of 3
7.10 10u x  . 

 

-500

-250

0

250

500

-10 -5 0 5 10

L
a

te
ra

l F
o

rc
e 

(k
N

)

Lateral Displacement (mm) 

Experiment

Flexure Model



117 

 

Figure 6-11 The hysteretic shear responses of column No. 1-1 at various monitoring 

sections  

-500

-250

0

250

500

-8 -4 0 4 8

S
h

ea
r 

F
o

rc
e 

(k
N

)

x
-3Shear Strain 10

x

( 0)IV x 
Undamaged Primary Curve

Undamaged Primary Curve

Shear failure is detected

u 

( / 6)III x L 

( / 6)III x L

( / 3)II x L

( / 3)II x L 

( / 2)I x L

( / 2)I x L 



118 

CHAPTER 7 
Conclusions 

 

 

7.1 Summary 
 

 This study presents a fiber frame element for cyclic analysis of 

reinforced concrete (RC) members prone to the flexure-shear failure as well as shear 

failure. The proposed frame element formulates from the displacement-based 

method and is based on the classical Timoshenko beam theory. Under Timoshenko 

beam kinematics assumption, the choice of displacement interpolation functions is 

selected with care to obtain the locking-free Timoshenko frame element. To 

overcome the shear-locking problem, the consistent interpolation approach is used 

to derive the displacement interpolation functions of two nodes Timoshenko frame 

element, thus resulting in the so-called “linked” displacement interpolation 

functions. Moreover, the nonlinear behaviors of material models are considered in 

the uniaxial hysteretic laws for concrete, reinforcing steel and sectional shear.  

 According to the influences of shear-flexure interaction on the shear 

responses, these effects lead to the degradation of shear capacity and sectional 

shear stiffness due to the increase of inelastic flexural deformation (Plastic-hinge 

formation). To include these effects into the shear hysteretic law, the presented 

framework of the shear-flexure interaction procedure within the implement 

displacement-based formulation is adapted and modified from the Mergos and 

Koppos procedure combined with the UCSD shear-strength model. This procedure is 

based on the general input properties of RC member. Therefore, the proposed 

model is simple but accuracy and computationally efficient which are confirmed by 

the numerical simulations. 

 From the numerical simulation analysis, the results of the flexure-

shear critical columns confirm that the proposed model can reasonably well predict 

the salient features of the experimental data, such as the member capacity, stiffness 
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degradation with increasing displacement amplitude, amount of dissipated hysteretic 

energy, the general shape of hysteretic response, and failure mode. Moreover, the 

proposed model can accurately represent the degradation of shear strength and the 

drastic increase of shear deformations following the increase of inelastic flexural 

deformation (Plastic-hinge formation). The importance of accounting the shear-

flexure interaction is proved when compared with the flexural model that the 

flexural model cannot predict the shear failure due to the shear-flexure interaction 

effects. 

 In case of the shear critical column, the proposed model can 

represent reasonably well the characteristic of the experimental data, such as the 

member capacity, stiffness degradation with increasing displacement amplitude, 

amount of dissipated hysteretic energy, the general pinched shape of hysteretic 

response, and failure mode. The importance of accounting the shear response is 

clearly discussed when compared to the flexural model that the model without 

considering the shear response (e.g. the flexural model) fails to simulate the 

responses of the shear critical column. 

 

7.2 The Development and Future Work 

 

 The development and future work of the proposed frame element 

including the shear-flexure interaction effects for analysis of non-ductile reinforced 

concrete column is a step forward in establishing a computational framework that 

includes the anchorage bond-slip effect. From the previous research works (e.g. 

Sezen, 2002; Moehle and Sezen, 2006; Mergos and Kappos, 2008 and 2012; 

Schoettler et al., 2012; Terzic et al., 2015; and Feng and Xu, 2018a), the bond slip is 

found to play an important role in the responses. Therefore, it should be carefully 

considered in the next steps. Furthermore, the future studies will concentrate on the 

accurate formulas for the prediction of the response after plastic hinge rotation 

forming and extend for using in the force-based and two fields mixed formulations. 
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APPENDIX A: Euler-Bernoulli beam theory 
 
 
 Euler-Bernoulli beam theory has the fundamental hypothesis that 

“Plane sections remain plan and normal to the longitudinal beam axis” 

[Limkatanyu, 2008]. Thus, the kinematics and deformation of cross sections points a 

and b for Euler- Bernoulli beam can present in Figure a-1. It can be observed that the 

point a’ and b’ in deformed configuration remain plane and is normal to the 

longitudinal axis of beam. 

 

 

Figure A-1 Kinematics description of the Euler-Bernoulli beam element before 

deformation and after deformation [Limkatanyu, 2008] 

 From the kinematics assumption of Euler-Bernoulli beam, the axial 

strain ( )xx x  and shear strain  xy x  can be written as: 

 
     0

0
( ) ( ) ( )xx

du x du x d x
x y x y x

dx dx dx


        (A-1) 

Direction deformed of section

x

normal deformed to beam axis

, ( , )y v x y

Undeformed
, ( , )x u x y

a

b

0
( )v x

a

b

0
( )u x

Euler-Bernoulli beam theory:

plane section remains plane

and normal to beam axis 

0
( )dv x

dx

0
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