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ABSTRACT

In the first part of this dissertation, let D be an integral domain. For
sequences @ = (a1, 0as,...,a,) and I = (iy,42,...,4,) in D™ with distinct i;, call
a a (D", I)-polynomial sequence if there exists f(x) € D[z] such that f(i;) = a;
foe all 1 < j < n. Criteria for a sequence to be a (D™, I)-polynomial sequence are
established, and explicit structures of D"/ P, ; are determined.

In the second part of this dissertation, let f(x) € Z[z], call Apf(z) =
f(x +1) — f(x) a difference polynomial of f(z). Letc = (c1,co, ..., Cp1) in Z" 1.
If there exists f(z) € Z[z] such that Apf(i) = ¢; forall 1 <1i < n — 1, then we call
¢, a difference polynomial sequence of length n — 1. Denote by AP, the set of all
difference polynomial sequences. Criteria for a difference polynomial sequences are
established, and explicit structures of Z"~' /AP, and P,_, /AP, are determined.

In the third part of this dissertation, let D be an integral domain,

I = (il,ig,...,in> eDnWIch]#Zklfj#kand

_ 0 1 r1 0 1 2 0 1 Tn
o = ((al,al,...,al ) , (az,CLQ,...,a2 ,)...,(an,an,...,an"))
where a?. a! at. al, al ah? al al a™ are elements in D. If there
1’ 1’ L] 1 ) 27 2,- ey 2 900 ey n’ n’ ] n .

exists f(z) in D[z] such that fm) (i;) = ai* forall 1 < j <nand 0 < m < r; where
f™(i;) = a denotes the m™") derivative of f(z) evaluated at the point i;, call &
a differential polynomial sequence of length n and order (ry, ro, ..., r,) with respect
to /. Criteria for a sequence to be a differential polynomial sequence of length n and
order (71,72, ...,r,) with respect to /. We also investigate the case where r; = k for

all jand (n, k) = (1,k),(2,1),(3,1) and (2, 2).
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CHAPTER 1

Introduction

This chapter consists of five sections: background and motivation, objectives of re-

search, outcomes, plan of study, and outline of the dissertation.

1.1 Background and motivation

Let a = (ay,as,...,a,) be a sequence of integers of length n. Is there a polyno-
mial f(z) € Z[x] such that (f(1), f(2),..., f(n)) equals the given sequence? This
interesting question has been studied by [1] in 2008. They used the Lagrange inter-
polation polynomial and the Newton interpolation polynomial to show the necessary
and sufficient conditions for which integral sequence of length n is the polynomial
sequence and show that if @ € Z" then (n — 1)!a is a polynomial sequence of length

n. Moreover, they study the structure of Z™/P,, and show that

Z)P =27, 72 /P, 27 and 2" /P, 2 Z/2' 2D L3 7@ --- B Z)(n — 1)Z
for n > 3 where

P, = {a € Z"| there exists f(x) € Z|[x] such that f(i) = a; forall 1 <i < n}.

In this thesis, we extend the result above from the set of integer to an integral domain.
Let D be an integral domain. Given a sequence [ = (iy, 42, ...,4,) € D" where i;’s
are all distinct forall 1 < j < nand (a4, as, . . ., a,) of length n, is there a polynomial
f(x) € D[x] such that f(i;) = a; forall j = 1,2,...,n? By using the same method
in [1], we obtain theorems on sequences generated by polynomial on a finite set I of
integral domains. General criteria for a polynomial sequence is provided. Denote the
set of all polynomials sequences with respective to [ = (i1, ia,...,i,) by P, ;. We

ki
study the structure of D" /P, ; and finally we show that if a;; = M Ggea mim). g

% ; ;
Hm:l (Zk+1 _lm)



1<j<n-—1land1 <k < j+ 1lisanelementin D then
D"/P,; = D/(ia—i1)D®D/(iz—i1)(is—i2) DD - - @D/ (i,—11) - -+ (in—ln-1)D.

In the second part of this dissertation, we consider the difference of the poly-
nomial and the difference of the sequence over the set of integers. For polynomial
f(z) € Z[z],call Ap f(z) = f(x+1)— f(x) a difference polynomial of f(z). For se-
quence a = (a1, ay,...,a,) € Z", call Aa = (ay—ay,a3—as, ... ,ay—a,_1) € Z"*
a difference sequence of a. Criteria for a difference polynomial sequences are estab-

lished, and explicit structures of Z" ! /AP, and P,_;/AP, are determined where
AP, ={¢=(c1,¢2,...,Cn1) € Z" *|there exists f(x) € Z[x] such that
AFf<’LJ) =Cj forall 1 S ] S n — ]_}

We call the element in AP, a difference polynomial sequence.

In the last part of this dissertation, let D be an integral domain, [ = (iy, s, ..., %,)
in D" and
_ 0 1 r1 0 1 ro 0 1 Tn
o = ((al,al,...,a1 ) , (az,a2,...,a2 ,)...,(an,an,...,an ))
h 0o ,1 T1 0o ,1 r2 0 1 Tn 1 : D W
where ai,ay,...,a1",a5,a5,...,a5°,...,a,,a,,...,a" are elements in D. We an-

swer the following question:

Is there a polynomial f(x) € D]z] such that

f(in) = af, fli2)=a3, ..., [f(in) =ay,
flli) =ay,  flliz)=ay ..., fl(in) =ap,
Frt) =ity FE) = oy SOV =
If the sequence .o satisfies the question above, we call <7 a differential polynomial
sequence of length n and order (74, . ..,r,) with respect to /. Denote by pﬁ ; where
R = (ry,79,...,1,) is the set of all the differential polynomial sequence of length
n and order (ry,rs,...,r,) with respect to I. By using the generalization of Her-

mite’s formula and the Newton form of generalization of Hermite’s formula, we will
study the differential polynomial sequence of length n and order (71,79, . .., 7,) With

respect to /.



1.2 Objectives
1. To extend the results of E. F. Cornelius Jr. and P. Schultz [1].
2. To find a necessary and sufficient condition for a sequence in the set of integer
to be a difference polynomial sequence, AP,.
3. To find a structure of Z" /AP, and P,_1/AP,.
4. To characterize the differential polynomial sequence of length n and order
(ri,72,...,7r,) with respect to I.
1.3 Outcomes
1. The criteria for a sequence to be a (D", I)-polynomial sequence are estab-
lished, and explicit structures of D"/ P, ; are determined.
2. A necessary and sufficient condition for a sequence in the set of integer to be a
difference polynomial sequence, AP,.
3. A structure of Z" /AP, and P,_1/AP,.
4. The properties of differential polynomial sequence of length n and order (11,72, ...,7,)
with respect to .
1.4 Plan of study
Task 2018 2019
S| 6| 78910 1112|123 4]5
Study literatures x| %
Write up the thesis proposal x| ok
Present the thesis proposal *
Work on the problems * ¥ | ok |k | x| ok |
Present the thesis *




1.5 Outline of the dissertation

This dissertation is organized as follows.

In Chapter 2, we review definitions and basis results that will be used throughout
our study.

In Chapter 3, there are three sections. In the first section, let D be an integral
domain, I = (iy,49,...,4,) € D™ where ¢;’s are all distinct and @ = (a1, ag, . . ., ay,)

in D". Let
P, ={a e D" | there exists f(x) € D[z] such that f(i;) = a;, foralll <j<n}

be the set of all (D", I')-polynomial sequences. In this part we show that (P, r, +) is
an abelian group. In the second section we extend the results of E. F. Cornelius Jr.
and P. Schultz from Z to be an integral domain D. In the third section we determine
the structure of D"/ P, ;.

In Chapter 4, let n be a positive integer and
AP, ={¢=(c1,¢3,...,Cn_1) € Z" ' | there exists f(z) € Z[x]
such that Apf(i) = ¢;, foralll <i<n—1}.
Then we characterize AP, and find the structure of Z"~1 /AP, and P,_,/AP,.

In Chapter 5, let D be an integral domain, [ = (i1, 2, ...,1,) € D™ where i; # i,

ifj £#m, R= (r,ra,...,1r,) and

o 0o 1 1 0 1 9 0 1 Tn
o = ((al,al,...,a1 ) , (a2,a2,...,a2 ,)...,(an,an,...,an ))
where a?, a! a’™, a9, al al? al, al a’™ are elements in D. Let
19 IR 1 9 Wo, PRI 2 gy Up, my o Uy .
R _ 0 1 - 0 1 ra 0 1 T 0 1
pn’l—{((al,al,...,al),(az,aQ,...,a2 ,)...,(an,an,...,an )) where a5, aj,
Layt,ad,ay, ... ah, ... ab al, .. a € D | there exists f(z) € D[]
such that f(m)(ij) =aj', forall1 < j <n,0<m <}
. k
Incase r; = k forall jand I = (1,2,...,n), we get pﬁ} = pﬁl. Then we charac-

terize pglz @1} pg} and pg} for D = Z.

In Chapter 6, we summarize the results of this dissertation.



CHAPTER 2

Preliminaries

In this chapter, we will recall some definitions, theorems and examples that will be

used throughout our study.

2.1 Lagrange interpolation polynomials

Leta = (a,az,...,a,) € R"and I = (iy,i9,...,1,) € R" where i; # i, for
all 1 < 5 < n —1 and R is the set of real numbers. By [2, page 33], the Lagrange

interpolation polynomial L, ;(x),

—~
&
|
-~
—
~—
T~
|
o~ .
w
| w

" i — i1) (in, — i) (1 — i3) *++ (in — ip—1)’
is the unique polynomial of degree < n — 1 that passes through n points (i;, a;) for
all 1 < j <n.Thatis, L, ;(i;) = a; forall 1 < j <n.
In addition, if I = (1,2,3,...,n), then we write L,(x) for L, ; where

ZCLJH.T—Z

11‘7_2
i#]

Example 1. Leta = (26,37,65) and I = (5,6,8). Then

—" (iy = 5,1y = 6,3 = 8)

~
Q
~
8
~—
Il
=
Q
<.
—
Sl
-~

N P R ~ 56
~ G658  (6-56-8  “R’—5)@E—06



L (@—6) -8 . (z-5)—8) . (z—5)x—6
G e6-8) " 6-506-95  PE-5(6-0
=22+ 1.

We can see that L, ;(5) = 26, L, ;(6) = 37 and L, ;(8) = 65.

Example 2. Let b = (2 44,4 — 5i,10 — 2i) and [ = (2 + i, 3,3 + 4i). Then

3 3 .
T — . . .
Ly(x) = E b; Il — (17 = 5,y = 6,13 = 8)
j=1 m=1 J m

(x — 3)(z — 3 — 44)
2+i—3)(2+i—3— 4i)
(x —2—1)(z —3)
(B3+di—2—i)(3—4i—3)
_ (_7;)4”)172‘?' (590 ;0139i)x_ (67;53i)-

(x —2—1i)(z — 3 — 4i)
(3—2—14)(3—3— 4i)

= (2+1) + (4 — 5i)

(10 — 2i)

Example 3. Leta = (7,10,13) and I = (1,2, 3). Then

=g
@2y wmDE-3) o @-De-2)
(1-2)(1-3) 2-1)(2-3) B-1DB-2)
:(%—2)2(56—3).7+(QZ—12(1Q3—3)‘10+($—1)2(x—2).13
=3x+4

2.2 Newton’s interpolation polynomials

Leta = (a1,a9,...,a,) € R"and I = (iy,42,...,4,) € R™ where i; # i;,, for all
1 < j < n— 1. We define Newton basis polynomials p;, (z) for 0 > j > n with

respect to [ as follows

pi()(x) =1
pir () = (x — 1)

Pip(z) = (z —i1)(x — 42)



Pin (%) = (v —iy)(x —dg)(x —d3) - (¥ — dp—1).

Thus
J

pi,(@) = [[(@—in) = (@—i)(@—ix)(w—is) ... (x—i;), j=12....n-L

m=1

The Newton’s interpolation polynomial is defined by
Na,[(x) = bo’[—i‘bl’[(l’—il>+b27[(37—l'1)($—2'2)+' : '—|—bn71,[(l’—i1)<l’—i2) cee (l’—’infl),

where
k

aj+1
bM:Z k1 = ; 0<k<n-1).
j=0 Hm:l,m;«éj+1(zj+l — i)

The elements

Lipy, = (x—i1),ps, :=(x —i1)(x — i), ....,pi,_, = (v —i1)(x —d9) - (¥ —iy)

are referred to as the corresponding Newton basis polynomials [2, page 39-40]. So
N,,1(x) is the polynomial of degree < n — 1 that passes through n points (i;, a;) for

1 < j < nand we can see that N, ;(i;) = a; for 1 <i < n.

Example 4. Leta = (2,8,12) and [ = (5,6, 8). Then

2
No(7) = Z bj,]pij(x)a
j=0

where

0

a .
Jj+1
bo,r = E 1 =a1 =4
j=0 . .
H (441 — im)
m=1
m#j

1

a/.
bir = Z 2 =
7= H (ij-i-l - Zm)

o
aq [¢5) 2 8
= pummy :6
2'1—2'2+i2—i1 5—6+6—5 ’




2

a.
bor =3 55
= H (ij-i-l - Zm)
m=1

m#j
. aq 4 a9 as
(11 —i2)(ir —i3) ~ (i2 —i1)(ia —d3) (i3 —i1)(i3 — i2)
2 8 12

QO | W~

T B-6)(5-8)  (6-5)(6-8)  (5-53-6)

Since  piy(7) = 1, pi, (¥) = (x — 41), pi, (¥) = (¥ — i) (2 —da),

we have N, j(z) =2+ 6(z — 5) — 3(z — 5)(z — 6) = —32% + L — 68.

Example 5. Leta = (—2+i,2—4i,8+4,12—3i) and [ = (—2—4,3 41,4, 7+ 2i)

3
Then N, ;(x) = Z bj 1pi; (), where
=0

0
bo,IZZ I G+ =a = —2+1,
=0 H (ij+1 _im)
1
1 . . .
Qi1 ai as —241 2—4¢ 10— 33¢
b = It = = =
L Z; 2 =i i —5-2 5+% 29
” H(ij—l-l Zm)
e
2
a
bor=) ——
= H (441 — im)
mm:jll
. ay a9 as
T (o i)~ i) (i )i — ) (i — i2)(ia — o)
. —2 +Z 4 (05} 4
(=2—=49) - B+)(-2-4) —4) (B+7)—(=2-9)(3+14) —(4))
a—+3 439+ 23014
((4) = (=2=1)) ((4) — (3+1)) 2146
3
a.
bs.r = Z 4 =
B | EUREAS
g1
(431 s

T T — i) (i —ia) (i1 —ia) | (s — 1) a2 —ia)(ia —da)




(is — i) (i3 — 2)(is — ia) (s — i) (ia — 12)(ia — is)
24 .
(2= ) -G (2= - @) (2= — (T+20)
2 — 47
(Gri)— (2= (GB+i) = @) (B —(T+20))
8 +1
(W= (2= ) ()= B+0) (4 - (7T+20))
12 — 32
(7T4+2i) — (2+14) ((7T+20) — (34+14)) ((T+2i) — (4))
B 1116553 5918231
7113990 B 2371330

and p;, (v) = 1,p;, () = (2 + 2+ 1), pi, () = (x + 2+ 3)(x — 3 — 1),
Pi, = (v +2+14)(x — 3 —i)(z — 4). We have

, 10 — 33¢ .
Na,l(gg):—2+z+< 59 Z)(:U+2+z)+<

2146
( 1116553  591823¢

7113990 2371330>(”“"+ +i)(r =3 —1)(zr —4)
(1116553 591823i)x3 - <412748 5501722) ,

7113990 2371330 711399 237133 /)%
(8996083 19530341z'>x (8747654 6521719@')

7113990 7113990 711399 711399
In addition, if I = (1,2,3,...,n), then we write N,(z) for N, 1, p;(x) for p;, ()

+

439 + 23014

>(:E+2+i)($—3—z')+

and b; for b; 7, forall j = 0,1,...,n — 1 where
n—1
Na(ZL') = Zb]p](l') = bo + bl(CC - 1) + bg(l‘ — 1)(ZL‘ — 2) +
j=0

bp—1(x —1)(z—=2)(x —3) - (x — (n—1)).

Example 6. Leta = (2,8,12,16) and [ = (1,2, 3,4). Then

b0:27

1

Aigq a1 a2

by = Ehs - - _ — _918-6
1202. 1_2+2_1 CL1+CL2 + y
I GH1-m)

i

2
=Y

(1-2)1-3) (2-1)(2-3) (B-1)B3-2)

<

I

o
—=

(j+1—m)

3

S
+ =

m#j+1
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NS RGeSy e .

= (1—2)(1—13><1—4> MRS CRE Ry
j=0 H G+1—m

+ = + U _L

B-1)3-2)3—-4)  (“4-1)(4-2)(4-3) 3

Hence
3
= bipi(x) = bopo(x) + bipi (z) + bapa(x) + bsps(x)

=by+bi(r—1)+ bz —1)(z —2)+ b3(z — 1)(x — 2)(x — 3)
—2+6(x—1)—(x—l)(x—Q)—i—%(x—1)(x—2)(:c—3)
38

1
:§x3—3:p2—|—€x—8.

2.3 Hermite’s interpolation formula

Let D be an integral domain and D¢ be the quotient field of D. Let

- (s an)) € (D7)

and I = (iy,i9,...,4,) € D™ where i; # i,, if j # hforall 1 < j,m < n. We define

o = ((af,a1) , (a3, a3) .

polynomials p;, () and I;,(x) for 1 < j < n with respect to I as follows

pi(z) = (x — i) (7 —iz) - (¥ — 1),
L (2) = pi(x) (i) (@ —ii)(@ =) - (2 — i)
N (x —iyp;, (G5) (i =) (35 — 4-1) (G5 — dja) -+ - (45 — in)

By [5], the unique Hermite’s formula H,(x) € Dglx] of degree < 2n such that

HQ%(ZI) = CL?, H%(ZQ) = aga H(ff(li’)) = aga SR H;Zf(%t) = agv
1 1 1
1 2 3

where Dy is the quotient field of D is defined as

= hy()a + Y hy (x)a)
j=1 j=1



11

where

and
hi; (@) = (z — i) (I;; (2))*.
Example 7. Let &7 = ((a?,a}), (a3,a3)) € (Z*)? and I = (i1,i2) € Z*. Then we get
@) = (e — i)l — i),

Piy () = (7 — 1) + (z — ia),

Py () = 2,
T —1
lll(x) = - -2’
11 — 12
l’—il

i (10 ) o - (1 o) (222)

(i1)
hi,(x) = (1 Ay >( i2)> (lir (2))?

i, (i2)

2

I
VR
[
|

o~

[\]

| | Do
=

0
|

~.
N
~~_
N
S 8
||
gl oy
~_

hoy (2) = (2 — i1) (I, (2))% = (2 — 1) (TT - “)2,

11— 1o

&xm=4x—mﬂ%uw2=u~wa($‘“)é

g — 11

So the unique Hermite’s formula H;(x) of degree less than 4 such that

is given by
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(1,2) then we get

In factif

ad(1+2(x — 1)) (z —2)* + a3(z — 2)*(z — 1)+

(x —2)(z — 1)

(1—2(x—2)(z—1)*+aj

1
1

a

((

Example 8. Let .«

), (ad,ad), (a3,ad)) € (Z*). Then we get

» 1

0o .1
1

(x —ir)(z —iz)(z — i3),

Dig (:E)

(x —ig)(z —i3) + (x — 1) (z —i3) + (z — i1)(x — i),
v (1) =2(x — i) + 2(x — 1) + 2(x — i3),

Pl (2)

(i3 — i1) (i3 — i2)

(x —ig)(z — 13)

(x —iy)(x — ia)
(i3 — 1) (i3 — 42)

(& —iy) (Liy ()"

his (x)
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So the unique Hermite’s formula H ., (x) of degree less than 6 such that

=
]
—
~.
:/
I
S
S

(1)7 Hﬂ@'?) =
1
1

o (i2) =

(2)7 H%(i3> ag
1
2

&
I
o
oy
S

(o) (e,

(11 — d2) (i1 — i3)
(1 - 2(.@; —Z);%—Q ;;3) - >> (( - ; )
(- ) (ke o
(@ — 1) ( (z — ia)(x — i) > al + (z — i2) ( o = ia)(w — ia) >2a;+

(Zl — 12)(11 — Zg) (ZQ — 21)(22 — Zg)

I
(& — i) ( G “;Ex —iz) ) al.

(i3 — 1) (i3 — i2)

1—

In factif I = (1,2, 3) then we get

Ho(2) = o (}1 + o 1)) (¢ =8 — 27 + Uz — 3~ 2(a — )

+ad(r —3)*(x — 1)* + ay(x — 3)*(z — 2)(x — 1)?
ofl 3 2 2 03 2 2
+ aj Z—Z(x—i%) (x —2)*(x —1) +Z($—3)(a:—2) (x —1)
= (—18a% + 9ay + 10a3 — 9a; — 18ay — 3ay)
+ (57a) — 24a$ — 33a3 + 24a} + 57aj + 10a3)z
12749 83ay  97a; 63! — 51a§)

2 4 4
99ad  47al 31(13
4 4

+

131a?
4

<
< |
<
<

+ 2249 +
8ay

- =24

+

a

11 9
+ ( —8al + ad + 7a} — 4@1 — 10a; — —3) x

+

4 4 4 '
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2.4 A generalization of Hermite’s formula

Let D be any integral domains and D¢, be the quotient of D. Let

_ 0 1 r1 0 1 2 0 1 r
o = ((al,al,...,al ) , (az,a2,...,a2 ,)...,(an,an,...,an”))
where !, o} a’. a9, al ah? al. al a™ are elements in D. Let there
1, 17 ] 1 9 2’ 27- s ey 2 9 e 00y n, n, o e ey n .

be given ij,rj,Hi;n)(ij) forallj =1,2,...,n, m =0,1,2,...,7;. Let L;/(v) and
g, () be defined by

Lij(x) = (z—in)" Hz—ig) "o (@ —jmn) " (= dg) P (=)

15 )

0o = (140 = 5

Then the unique polynomial /() of degree < n + )7, r; such that

HYV(i;) = a forall j =1,...,n;m =0,1,...,7j,0r
Hy (i) =af, Hy(is) =a3, Hy(is) = aj, . Hy(in) =dd,
Hf@i(“) = a’%a H;%(”) = a’%7 H;{(’lg) = a’il’w ) Hiz{(zn) = a71w
H,/Q/{@l) = CL%, HZV(ZQ) = a%? Hgf(%) = ai237 ) HZ{@“) = a%w

HG (i) = ait, HyY(io) = ayt, HY(is) = a3, ..., HyV(in) = apr
is given by
Hoy(w) =YY" Ajm(@)HS (i),
7=1 m=0
where
(z—i)" 1 @,
Ay () = L (@) =207 3 ) i) =)'

is called the generalization of Hermite’s formula [6].
Let us see how this applies in the specific case covered by Hermite’s formula.

Here we have r; = 1 for j = 1,2,...,n. We find

Li(z) = (x —i1)*(z — i2)* ... (x — ij1)*(x — ij41)° - (2 — 1)
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Then for m = 1 we have A;(z) = L;,(x)(z —1;)g;, (i;). Since g, (i;) = [Ls, (;)] ",
we get

Aja(z) = (z —iy)

= (@ — i) (I, (@)} = B (@),

For m = 0 we have
Aiola) = Ly (@i i) + g, (i) (o — )
=) (z R m)
_ (1 - %) {1, @)

i (1 - L) ) {1, (@) = i (0),

So

n n

He(w) =Y hij(x)Ho (i) + Y b, (@) HL, (i),

j=1 j=1
Hence Hermite’s formula is seen to be a special case of the generalization of

Hermite’s formula.

If r; = 0forj = 0,1,...,n, then the generalization of Hermite’s formula
is given by the Lagrange interpolation polynomial L(z) or the Newton interpola-
tion polynomial N(x) where L(i1) = N(iy) = a? L(is) = N(iy) = a3,...,
L(i,) = N(i,) = a2.

If 7 = 1, then the generalization of Hermite’s formula is given by the Taylor
interpolation polynomial T'(x) where T'(i1) = a9, T'(i1) = a}, T"(i1) = a3 . . .,

T(Tl) (21) = a’{l .

Example 9. Let

H{%(Z'l) = a(l) Hﬂ(lg) = ag HW(Z:J,) = ag
H,(iy) = a; Hl,(iz) = a3 H.,(i3) = ag
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Since r; = 1for j = 1,2, 3, we get

Liy(z) = (z —is)*(z — i3)?,
Liy(2) = (x —i1)*(z — i3)?,
L

is(1) = (2 —i1)*(z — ip)?,

[\

1 1

Al S Bl PN TR

() = — 2 B 2
Jin (@ — 023 (@ —i3)?  (x —i2)2(z — ig)’

(@) = 1 1
T L) (i) —ig)?

/() = — 2 B 2
Jiz (@ — 1)z —i3)?  (x—01)2(z —ig)®

(@) = 1 1
Il T L)~ (=i (@ — i2)?

' () = 2 2
Jis - (e~ i2)? T @)%z — i)
Avole) = Ly (o) g () 4 g ) — ) = (o),
(@) = Lo (@) (g, ) = B (0),
Anofa) = L) T g, 0) 4 g1, (0) (2 12)) = (o),
Ana() = L) E 2 g 1) = o)
Aso(x) = Ly, (x>(l‘a—!23)(9i3 (i3) + gi, (i3) (@ — i3)) = hiy(z),
Apa@) = L) (g1 1) = B (o).

Then the Hermite’s formula is

Hy(z) = Alyo(x)a(l) + A270(x)ag + A3’0($)ag + A1,1(I)ai + AQ,l(m)a% + A371(x)a:1,)
. . . . . . 2
_ (1_ 2(@1—22)+2(21—23)(x_i1)) ((?—22) l‘—lg)) e

(i1 — i2) (i1 — 13) (41 — 12) (71 — i3)

(-2 ) (=)
=i

(1 _ Mg i)+ Ais — o) ¢3)> ( (z =i p—

(23 - 21)(23 - ’62) (23 -

—

| |
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o (=) e (i)
=i ({2 ZSEZ_—ZD %

Example 10. Let 7 = ((a}, al,a?), (a3, al,a2)) € (Z*)? and I = (i1, i) in Z*. We

will find the unique polynomial H ., (z) of degree less than 6 such that

Hy(i1) = aY, Hy(is) = a3,
H{;{@l) = ai, H{:af@?) = a%,
HY,(i1) = af, HJ(iy) = a3

by using the generalization of Hermite’s formula. Since r; = 2 for j = 1,2, we get

Lil (l’) = (Jj - i2)37 L’Lz(I) - (l’ - il)gv

11 Co 3 P
gu(x) - Lu(x) - ($—i2)3’ g“(l') - (x_i2)47 g“(l') - (iL'—Z'Q)E)’
1 1 3 ) 12

gi,(x) = @  @—in)® gzl‘z (z) = (z —iy)* 9iy (z) (x —ip)®’
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= (. —0)3(z — ia) ((z’2 _12-1)3 e —32'1)4(96 N iZ)) ’

Ags(z) = Lm(f)% ; %gg) (i2) (7 — i2)t
SR (x —ig)? 1
=iy ((2'2 - il)g) '

Thus

Ho(w) =323 Ajm(@) HJ (i)

= Z:—m@; ((il _1i2)3 e _32,2)4(:;; —i1) + @ 1_22,2)(1 — m?) al+
(x—ir)® (@2 —17;1>3 - _?’il)4(x i)+ (7;21—2@'1) (2 z2)2> oS+
(¢ —is)*(x — i) <<i1 _12_2)3 ke _3Z.2>4(x - 2'1)) ar+
(= i)} (@ — ia) ((iQ _12,1)3 - _?’Z,1>4(:c - 2'2)) abt

(2 — i _2@'1)2 ((il _12,2)3) @+ (2 — i) _2i2>2 (Qz —1¢1)3> &

In factif I = (1, 2), then we get

Hy(z) =a] (-1 -3(-1+z) - 6(-1+2)%) (-2 +2)
(1-3(-2+z)+6(-2+2)%) (-1 +a)°
(=1 =3(=1+2))(=2+2)*(~1+2)
5 (1—=3(=242) (-2+2)(-1+2)°
aj(=2+2)* (=1 +x)?
+ 5ag(—z + ) (=14 2)*
= (324} — 31a3 + 16a; + 14a} + 4a? — 2a3)

+ (—120a + 120a3 — 64a] — 55a; — 14a] + 8a3)x

25a2
+ (180a? — 18043 + 96a! + 84al + 1942 — 2a2> 22

25a? n 19a3 =
2 2

+ (—130a$ + 130ay — 68a; — 62a3 —



19

7 2
+ (45a§’ — 4503 + 23a} + 22} + 4a? — %) ot

+ (—6@0—1—6@0 —3a} — 3al — a_% + a_%) x°
1 2 1 2 2 2 N

2.5 Newton form of generalization of Hermite’s formula

Let D be an integral domain and D¢ be the quotient field of D. Let

_ 0 1 r1 0 1 2 0 1 r
o = ((al,al,...,al),(CLQ,CL2,...,(12 ,)...,(an,an,...,an"))
0 ,1 rn ,0 .1 T2 0o ,1 T :
where aj,a;,...,a',ay,05,...,05°,...,a,,4a,,...,a™ are elements in D and

I = (i1,i2,...,4,) € D" such thati; # i, if j # h. We define polynomials p;, (z)

for0 < j <mand0 < g < r; with respect to I as follows

pi0<x> =1

piy(z) = (z — 1)

pi (x) = (z — 1)

piQ(:U) = (x — 1

Thus
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The Newton form of generalization Hermite’s formula [6] corresponding to the points

(ij,a') (j=1,...,n,m=0,1,...,r;) is defined as

Ny (@) = [i] + [i, ia)pi, () + -+ i, . dn, do]pf T () +
—_——

rr+1
i1, i1, do, do]piy () 4o A [in, o 01, Gyl ey T D ()
ri+1 ri+1 ro+1 rn+1
where
i
TR STy PV PYRE PRU FIE — 1Y%, (ix)ay
N e N e’ N—_—— k—lm:Om.(Tk_m)'
ri+1 ra+1 rj+1 -
for1 < j <nand
1

Giy, (I’) = (

€T — il)Tl‘i’l e (:B — ik_l)rk—l"‘l(a'; i ik+1)7’k+1+1 P (l' — ij)'l"j+1
for 1 < k < j. The elements

n—1

17pz'1 (ZE) = (ZL‘ - Z.l)angl (l’) = (17 - il)Qa s ,p::(l‘) = H(‘/E - ij)rﬁ_l(x - in)rn

are the basis polynomials of the Newton form of the generalization of Hermite’s for-

mula. So .47, (z) is the polynomial of degree < n + > 7, r; such that

Aiy) = af

foralll <j <nand0<m <r;. /V;m) (i;) denotes the m'™ derivative of .47, (x)
at a point ;.
Ifr; =0forj = 0,1,...,n, then the generalization of Hermite’s formula is given

by the Newton interpolation polynomial
N(;U) = b() + bl(l' — 21) + -+ bn,l(az — 21)(37 — Z2> e (SL’ — Z'nfl)

where
k

0
bt =) o (0<k<n—1)
j=0 Hm:l,m;ﬁjJrl(Z]'Jrl — im)

such that N (i) = af, N(is) = a3, ..., N(i,) = ai.

n
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If j = 1 and r; = k, then the generalization of Hermite’s formula is given by the

Taylor interpolation polynomial
T(ZL’) =my + ml(af — 11) + mg(:v — i1)2 + 4 mk(x — Zl)k

where '
J

mj = a—:

VE

such that T(iy) = a¥, T'(iy) = al, T"(i1) = a?..., T®(i}) = a.

(0<j<k)

Example 11. Let & = ((a%,al), (a3, ad), (a3,ad)) € (D?)3 and I = (iy,19,43) in

D3. Then the Newton form of Hermite’s formula .#,,(x) such that

<
Il

(1(1), </I/Qi (22)
1
1

a’g7 </V52f (7’3>
Ny (iz) = ag

Aoy (i3)

0
ag,

1

3

:.
S~—
I
]

a b
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JVJZ{CC) = [21] + [il,il](x - 21) + [il, il,ig]($ - i1)2 + [il,il, ig, ZQ](SL’ — i1)2($ - Z2>+
[i1, 1, 12, 49, i3] (2 — 11)*(z — i2)? + [i1, i1, d2, 92, 43, i3] (¥ — i1)? (z — i2)*(x — 43).

All the coefficients can be obtained as follows.

[i1] = Aoy (i) = .

[il,il] = N;Z{(h) = CL%.

i1, i1, z] = zj L o o "”(z'j)am where g, (1) = L.
0

Yia (I) - W Thus [21’21’22] - _(11 Z2)2 + (11 12) + (12—11)%"

v,z da] = 350 Y sy, (iy)a where giy (2) = Gy,
g742( ) W Thus [2172171277'2]

2a1

 (i1—i2)? + (i1— 22)2  (i2—i1)3 - (i2—i1)?"

i1, 01,42, 02, 13] = Z] S m. ),gZ(J )(zj)aj where g;, (z) = m,
92(7) = Gy 9 (1) = ﬁ Thus

ORI A 2a? al N aj
11,11, 12,122,13] = — — . . — — . . ; ; . . ——
b T (21—22)3(11—13) (11—12)2(11—13)2 (11—22)2(21—23)
2a9 ad al
— 2 2 42 4
(12 —11)%(i2 —d3) (G2 —i1)*(iz — i3) (12 — 11)*(i2 — i3)
0
as

(i3 — i1)2(i3 — i2)?
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e 3 ; - .
(01,41, 90, 02, 13, 48] = D5, > =0 ﬁ(rj_lm)!gg’ m)(zj)a}n where g;, (z) = m’

9i2(*) = Gy 9is (¥) = Grnypgap- Thus

[0, i, i, iz, i3, 3] = 2a 2a?
R R A B s o
B al 2a9 B 2a3 n
(11 = i2)?(ix — i3)* (i2 — 11)%(12 — i3)* (12 — i1)*(i2 — i3)°
aj B 2a3 B 2ad N
(12 —i1)?(i2 —i3)* (5 —@1)%(is —42)® (i3 —11)%(i3 — i2)?

[1] = ag,
[17 1] = a’%?
al al ad
119 =__% 1 2 _ _ 0_ 1. 0
[ ) ] (_1)2 + (_1) + (1)2 ay ay +a2’
2a? al 2a9 as
1129 = __“4 1 20 2 _ 9.0 14l — 940 4 gl
1,1,2,2] (—1)3 T (=12 (1)3 T (1) ay +ay — 2a; + as,
2a? a’ al
[1,1,2,2,3] = — - L + L —
(=13(=2)  (=1)*(=2)*  (=1)*(=2)
2a3 a9 al al
— - -
(1?(=1)  (1)2(=1)2  (1)2(=1)  (2)*(1)?
5a) a} a3
-G
2a9 2a? aj 2a9
1,1,2,2 = — L __ 1 ! — 2 _
e K e e L ey e A O
2a) N ay  2a3  2a3 N al
(D=0 (1)2(=1)* (29212 (2)2(1)°  (2)2(1)?
3a) aj L 3aY  aj
T Tty

2.6 Background in Algebra

In this section, we will review definitions and theorem about group that we will use

later.
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Definition 2.1. [4, page 16-21] A group is an ordered pair (G, x) where G is a set

and * is a binary operation on G satisfying the following axioms:
1. (axb)*xc=ax*(bxc), forall a,b,c € G, i.e., «is associative,

2. there exists an element e in G, called an identity of (G, such that for all a« € G

we have axe = exa = a,

3. for each a € @G there is an element ¢! of G, called an inverse of a, such that

Note: The group G is called abelian (or commutative) if a x b = b x a for all

a,beq.

Definition 2.2. [4](Subgroup)
Let G be a group. The subset H of G is a subgroup of G if H is nonempty and H is
closed under products and inverses (i.e., z,y € H implies ! € H and xy € H). If

H is a subgroup of G we shall write H < G.

Definition 2.3. [4](Normal Subgroup)
Let N be subgroup of the group G. Then N is called a normal subgroup of G if
gNg~!' = N forall g € G and we write N < G.

Now we review the Fundamental Theorem of Finite Generated Abelian Group

and example of it as follow:
Definition 2.4. [4, page 158] Let A = {ay, as, ..., a,}. Define

(4) = {afag? - a

a; € A, € Z}.
Then we have
1. A group G is finitely generated if there is a finite set A of G such that G = (A).

2. Foreachr € Z withr < 0,letZ" = Z X Z x - - - X Z be the direct product of
r copies of the group Z, where Z° = 1. The group Z" is called the free abelian

group of rank r.
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Note that any finite group G is, a fortiori, finitely generated: simply take A = G
as a set of generators. Also, Z" is finitely generated by ey, es, ..., e., where ¢; is
the n- tuple with 1 in position ¢ and zeros elsewhere. We can state the fundamental

classification theorem for (finitely generated) abelian groups.

Example 12. Let G = {(m,n)|m,n € Z}. Then A = {(1,0),(0,1)} is a basis
of G. Denote e; = (1,0),e; = (0,1). Then all (m,n) € G, we can write as
(m,n) = me; + ney. Thus G is a free abelian group.

If G is a finite generated, then the cardinal of G is finite |G| = n and G = Z".

Theorem 2.1. [4, page 158] (Fundamental Theorem of Finitely Generated Free
Abelian Groups) Let G be a finitely generated abelian group. Then

(1) G = Z" X Ly, X Liny X ... 2Ly, for some integers r,ni, Ny, ...,Ns satisfying

the following conditions:
(a) r > 0andn; < 2 forall j, and
(b) nigqn;forl <i<s—1
(2) the expression in (1) is unique: if G = 7' X Ly X Lipy X =+ X L, where

t and my,my, ..., my satisfy (a) and (b) (i.e, t > 0,m; > 2 for all j and

miy1|m; for 1 <i <wu—1), thent =r,u = s and m; = n,.

We now give a definition of a Z-basis [7].
If GG is finitely generated as a Z—module, so that there exist g1, ¢2,93,-..,9, € G

such that every g € GG is a sum
g=migi + -+ Mugn, (M; € Z)

then G is called a finitely generated abelian group.

Generalizing the notation of linear independence in a vector space, we say that
elements ¢y, ..., g, in an abelian group G are linearly independent over Z if any
equation

migy+ -+ Mugn =0
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withmy, ..., m, € Zimpliesm; = --- = m, = 0. A linearly independent set which
generates G is called a Z—basis. If {g1,...,g,} is a basis, then every g € G has a

unique representation:
g=mig1+ -+ mugn (m; =7Z)
because an alternative expression
g=kigr+ -+ kngn (ki € Z)

implies
(m1 —ki)gr + -+ (my, — kn)gn =0

and linearly independence implies m; = k;, (1 < i < n).

Definition 2.5. [7](Unimodular) A square matrix over Z with determinant +1 is said

to be unimodular.

Theorem 2.2. [7] Let G be a free abelian group of rank n with basis {1, ..., x,}.

Suppose (a;;) is an n x n matrix with integer entries. Then the elements
Yi = Z AijTj
J

form a basis of G if and only if (a;;) is unimodular.

Theorem 2.3. [4](Fundamental Theorem of Finitely Generated Abelian Groups)
Every finitely generated abelian group G is isomorphic to a direct product of cyclic

groups in the form

1). Zpgl X Zpgz X+ X Lrn X 1L X ... L, where the p; are primes, not necessarily

distinct, and also in the form

2). Lpy X Ly X =+ + X Lay,, X L X L X - -+ X 1, where m; divides m; .
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In both cases the direct product is unique up to order of the factors, i.e., the number
(betti number of G) of factors of Z is unique, the torsion coefficients m; of G are
unique, and the prime powers (p;)" are unique.

By [1], this expression is called the Smith Normal Form of G. The sequence (my, ma,
...,m,) is called the Smith Invariant of the group G and the order of G is |G| =
myms - - - m,.. Moreover, my is the exponent of G; that is , the least positive integer n

which na = 0 for all a € G.

Theorem 2.4. [4](The first fundamental homomorphism theorem)
Let ¢ be a homomorphism of a group G into a group G’ with kernel K. Then ¢(G) is

a group, and there is a canonical (natural) isomorphism of ¢(G) with G/ K.

Theorem 2.5. [4]
Let By be a normal subgroup of the group of the group A and let By be a normal

subgroup of the group of the group As. Then (B X Bs) < (A; x As) and

A1 XAy ~v A1 X As
BixBs ~— B By

It is not hard to see that if B; is a normal subgroup of A; for all 1 < ¢ < n then

A1><A2><-~-><Angé é A,

= X X oo X .
B1XBQ><"'XBTL B1 BQ Bn

We next recall the division algorithm which we use in many parts of our work.

Theorem 2.6. [4](Division Algorithm) Let F' be a field and F|x] be ring of polyno-

mials with coefficients in I'. Let

f(x) = ant” + an_q2" ' 4 4 ag
and

G(z) = bua™ + by @™ 4+ by

be two elements of F'[x], with a,, and b,, both nonzero elements of F' and m > 0. Then
there are unique polynomial q(x) and r(x) in F|x] such that f(x) = g(z)q(x)+r(x),

with the degree of r(x) less than m =degree g(x).
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CHAPTER 3

Polynomial Sequences over Integral Domain

Let D be an integral domain. For sequences a = (ay, as, . .., a,) and I = (iy,d9,...,1,)
in D" with distinct 4;, call @ a (D", I)-polynomial sequence if there exists f(z) in
Dlz] such that f(i;) = a; (j = 1,...,n). Criteria for a sequence to be a (D", I)-
polynomial sequence are established, and explicit structures of D"/P, ; are deter-

mined.

3.1 Introduction

For a fixed n € N, by a polynomial sequence (of length n), we mean a sequence
a:= (ay, as,....,a,) € Z" for which there exists f(z) € Z[x] such that f(i) = a; for
alli = 1,2,...,n; we refer to f(z) as a polynomial which generates the sequence a.
Denote by P, the set of all polynomial sequences. E. F. Cornelius Jr. and P. Schultz

[1] characterized P, using Lagrange and (implicitly) Newton interpolation polyno-

mials, and determined the structure of Z"/P,.

The main objectives in this chapter are first to extend the characterization of E. F.
Cornelius Jr. and P. Schultz from Z to an integral domain D, and second, to determine

their corresponding structure.

Definition 3.1. Let / = (i1, 49, ...,4,) € D™ where ;s are all distinct and

a=(ay,aq,...,a,) € D" Let
P, ={a e D" | there exists f(x) € D[z] such that f(i;) = a;, forall1 < j <n}

be the set of all (D™, I)-polynomial sequences. We call @ an element in P, ;, a

polynomial sequence over D with respect to [ or a (D", I)-polynomial sequence.
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If I = (1,2,3,...,n), then we write P, for P, and call an element in P,, a

polynomial sequence.

The set P, ; is a group under addition. We will show this as follows:

Forany @ = (a1, as, . ..,a,),b= (b1, by,...,b,) € D" we define

E—FB: ((Il+b1,&2+bg,...,an—|—bn).

(=l

It is easy to see that @ + b = b + a.
Theorem 3.1. P, ; is a group under addition.
Proof. Leta,b,c € P, r where
a=(ay,a9,...,a,),
b= (by,ba,...,by),
c=(c1,¢9y. .., Cn)
such that there exist f(x), g(z), h(z) € D[x] such that
f(i;) = az,9(i;) = bj, h(ij) = ¢
forall 1 < 7 < n. We next show that P, ; is a group under addition.

1. Foralla,b e P, 1, we get

ai,ag, ..., a,) + (by,be,...,b,)

a 4=
= (a1 + b1, a2 + by, ... 4y + by)
= (f(ir) + g(in), f(i2) + g(i2), -, f(in) + g(in))
= ((f +9)(ir), (f +9)ia), ..., (f + 9)(in))

Since f(x), g(x) € Dlzl. (f + 9)(z) € Dlal.
Hencea + b € P, 1. Thus (P, 1, +) is closed under addition.

2. Since 0 = (0,0,...,0) = (f(i1), f(42),- -, f(in)), there exists f(x) = 0 in
Dlx] such that f(i;) =0 forall1 < j <n.so 0 € P, . Moreover

a+0=(ay,as,...,a,)+(0,0,...,0)
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= (a1 +0,a2+0,...,a, +0) = (ay,a9,...,a,)

=(0+a;,0+ay,...,0+a,) =0+a.
So 0 is the identity.
3. Foralla € P, , there exists —a = (—ay, —as, ..., —a,) € P, s, a polynomial
sequence generated by — f () such that
a+(—a)=0=-a+a
Thus —a is the inverse of a.
4. It is easy to see that the associative law holds.
Therefore P, ; is a group under addition. ]

Lemma 3.2. Ifa € P, ; then ca € P, 1 forany c € D.

Proof. Leta = (a1, as,...,a,) € P,;. Then there exists f(x) € D[z] such that
f(ij) = a; forall 1 < j < n. Then

c-a=(c-ay,c-as,...,c-ay)

(c- flin),c- f(ia), ... c- f(in))

So g(x) = c¢- f(x) € D[z] generates ¢ - a. Thusc-a € P, ;. O
Now define a multiplication on a set P, ; as follows:
@-b = (aby, ashy, asbs, ..., a,by,).
Lemma 3.3. [fa,b € P, thena-b € P, .

Proof. Leta,b € P, ;and write @ = (a1, as, ...,a,), b= (b1, by, ..., by).
Then there exist f(z),g(z) € D[z] such that f(i;) = a; and g(i;) = b; for all
1 <75 <n.Then

E-l_):(al-bl,aQ-bQ,...,an-bn)
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= (f(@r) - g(in), f(i2) - g(ia), -, f(in) - g(in)).
So h(z) = f(z) - g(z) € D[] generates @ - b.
Thus@-b € P, ;. O

Theorem 3.4. (P, ;,+,) is a commutative ring with identity 1.
Proof. We will show that (P, ;,+, -) is a commutative ring with identity 1.

1. By Theorem 3.1 and the fact that @ + b = b + a for any a@,b € P, ;, we obtain

that (P, s, +) is an abelian group.

2. Let@, b, € P, ;. Then

Hence the associative law for multiplication holds.

3. Leta,b,c € P, 1. Then
(@+b)-c=(ay +by,as+ba,...,an+by)-(c1,c2,...,Cn)
= ((a1 +b1) - c1, (ag + b2) - cay ooy (an + bn) - )
=(a1-c1+by-cr,a9-ca4+by ooy Cptby-cy)
=(ay-c1,a9- oy oyay-Cy)+ (by -1y b coyni by )
=a-c+b-c

a-(b+7¢) = (ay,az,...,a,) (b +ci,by+coy. .. by +cp)
=(ay-(by+c1),az-(ba+ca)ynoyan - (by+cn))
=(ay-by+ay-cr,ag-ba+ag-coy... an by +ay,-cp)
= (a1 - bi,as - by, ... a,by)+ (a1 -cr,a9 - Coy ..y - )

—a-b+a-c.
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4. Leta,b € P, ;. Then

a-b=

a1,as, .- ay) - (b b, by)

al'b17a/2'b27"‘)a/n'bn>

bl CLl,bQ CLQ,...,bn'CLn)

(

(

=

= (b1,ba,...,by) - (a1, a2,...,ay,)
=b-a.

Thus commutative law for multiplication holds.

5. Leta € P, ;. Then there exists 1=(1,1,...,1) ¢ P, 1 such that

= (ay,as,...,a,) - (1,1,...,1)

= (a1, a9,...,a,) =7

=(1,1,...,1) - (a1,aq,...,a,)
=1-a.

Thus 1 is an identity of (P, s, ).

Therefore (P, s, +, ) is a commutative ring with identity. O

Note that for n > 2, we see that for all @ in D™ with respect to I = (i1, ia, .. ., ,)
n

in D" where i;’s are all distinct. Choose a; = ( H (11 — i), 0,0, .. ,O> and

m=2
n

ay = (O, H (ig — i), 0, ... ,0) be the integral sequences of length n. Then there

m=1
m#2

exist the polynomials

flz)=(x—is)(x —i3) - (x —in)and g(x) = (x —i1)(x —i3) -~ - (x — iy)

in D[z] that generate the sequences a; and a, respectively. So ay,a, € P, and

ap - as = 0. Hence (P, s, +, -) has zero divisors for all n and I.
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3.2 Properties of the polynomial sequences

For a fixed sequence [ as above, and a sequence a := (aq,...,a,) € D", the La-
grange interpolation polynomial, [2, page 33], which interpolates the points (i;, a;)

for all 1 < 57 < n, is defined by

Z a H T m ¢ pola]  (Dg the quotient field of D)

1 —1
= mlm;éjj m

and satisfies

La(i;) = a; (1<j<n).

Lemma 3.5. Let r(x), s(x) € Dg|z],, where r(x) and s(x) agree at n distinct points.
Then r(z) = s(z).

Proof. Let g(x) = r(x) — s(x). Let iy,1is,...,1, be all n distinct points such that

r(ij) = s(i;) for1 < j <n. Thenforany 1 < j <n
g(ij) = r(i;) — s(i;) = 0.

Hence

n—1

[T =i g().

j=1
Since g(z) is a polynomial of degree less that n, g(x) = 0.
Therefore r(z) = s(z). O

Theorem 3.6. Let [ = (iy,12,...,1,) € D" where i;’s are all distinct and

a = (ay,aq,...,a,) € D" Then a is a (D", I)-polynomial sequence if and only if
L, (x) € Dlx],, the set of all polynomials in D[z] of degree < n.

Furthermore, L, 1(x) is the unique polynomial of degree < n in D¢ |x] that generates

a.

Proof. If a € P, 1, then there is f(z) € D[z| such that f(i;) = a; (1 < j < n).
Let p(x) := (x —41) -+ (x — i,) € Dlz|, degp(x) = n. Since p(x) is monic, by
the division algorithm, f(z) = ¢(z)p(x) + r(x), where ¢,r € Dlz| with degr < n.

Evaluating at the points i; (1 < j < n), we see that r(x) generates the sequence
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a which shows that both r(z) and L, ;(x) are polynomials in Dg[x] of degree less
than n which agree at n distinct points, and so both must be identical. The remaining

assertions are trivial. OJ

Taking I = (1,2,...,n), D = Z in Theorem 3.6 , We recover [1, Theorem 2.1].

Corollary 3.7. [1, Theorem 2.1] Let a = (a3, as, ..., a,) € Z". Thena € P, if and
only if L,(z) € Z[x],. Furthermore, L,(x) is the unique polynomial of degree < n

with real coefficients that generates a.
Proof. Let D = Z and take [ = (1,2,3,...,n). Then the corollary follows immedi-

ately from Theorem 3.6. ]

Given a set of n points (i, ar) (k = 1,...,n), with distinct i;, and a;, being in
D, the Newton interpolation polynomial corresponding to the points (i, ay) for all

k=1,...,nis defined as
Nop(x) =bo s+ by r(x —i1) + bop(x —i1)(x —dg) + -+ -+
bo—1,1(x —i1)(x —ia) -+ (x —in_1) € Dglx],

where

k
aj+1
beg =Y €Dy (0<k<n-—1).
7=0

H (ijJrl - Zm)

m=1

mAj+1
The elements

Lipi, = (x—i1),pi, = (x —i1)(x —d2),...,pi,_, = (& —i1)(x —ig) - (x —iy)
are referred to as the corresponding Newton basis polynomials [2, page 39-40].
Theorem 3.8. Leta = (ay,as,...,a,) € D™ Let

Na,1(z) = bo,rpio () + b1piy () + -+ + bp1,1P4,_, (x) € Dglx]

where

k
Aj+1
ka:Z ] ! € Dg, (k=0,1,...,n—1).
=0

H (ij-&-l - Zm)

m=1

me£j+1
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Then N, 1(x) = Lo ().

Proof. By Theorem 3.6, L, ;(x) is the unique polynomial with coefficients in D, of
degree < n generating a. Since N, ;(i;) = a; = L,(i;) for 1 < j < n —1and

N, () is the polynomial of degree < n, they are identical. O

Taking D = Z,I = (1,2,...,n) in Theorem 3.8, then we have the following

result.

Corollary 3.9. [1, Lemma 2.2] Let a = (a1, as, . .. ,a,) € Z™. Let
Nao(z) = bopo() + bip1(z) + bapa(w) + -+ + bp_1pp-1(7)

where

fork=0,...,n—1. Then N,(x) = Ly(x).

Proof. Take D = Z,1 = (1,2,...,n). Then the result follows from Theorem 3.8.
O

Remark Let L, ;(7) = ¢,_1 12" ' +¢po 2" 2+ - ~+c1 12+0¢o 1 € D]x],. Then
by Theorem 3.8, L, ;(z) = N, ;(z). Since N, ;(2) = by—1.1pi, 1 () +bn—21pi, ,(x)+
<o+ + bypi, (T) + bo.s, by_11 is the coefficient of 2. So b, 17 = ¢,_1.;. We see
that b,,_» 1, is the coefficient of 2”2 in N, ;(x) — b,_1 rpi,_, (x) which is an element
in integral domain D. So b;; € D forall < = 0,1,...,n — 1, by the same reasoning.

Therefore L, ;(x) € D|x] if and only if N, ;(z) € D|x].

Corollary 3.10. Let f(x) € D|x],. Then there are unique elementin D by 1, b1 1,. .., by_1 1
such that f(x) = bo 1pi,(x) + b11piy () + -+ + bp—1.104, , ().

Proof. Let @ be the sequence (f(41), f(i2), ..., f(in))in D™ Then f(x) and N, r(z)
are both polynomials of degree less than n which agree at n points. Hence they are

identical. L]
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Taking D = Z, I = (i1, 12, . . ., i,,) from the above corollary we get the following

result.

Corollary 3.11. [1, Corollary 2.3] Let f(x) € Z[z],. Then there are unique integers
bo, b1, ..., bn_1 such that f(x) = bopo(z) + bip1(z) + - - - + bp_1pn—1(2).

Proof. Take D =7,1 = (1,2,3,...,n)and letb; = b; ; forall 0 < i < n — 1. Then
the corollary follows by Corollary 3.10. ]

Corollary 3.12. Let a € D". Then a € P, 1 if and only if

@j+1
Z = (k=0,1,...,n—1)

H (4j+1 = im)

m=1
m#j+1

is an element in D.

Proof. The result follows immediately from Theorem 3.6 and Theorem 3.8. So

N,.1(z) has coefficients in D if and only if L, ;(z) does. O

Taking D = Z,1 = (1,2,...,n) in Corollary 3.12, then we have the following

result.

Corollary 3.13. [1, Corollary 2.4] Let a € Z". Then a is a polynomial sequence if
and only if forallk =0,1,...,n — 1 then

is an integer.

Proof. Take D = 7,1 = (1,2,...,n). Then the result follows from Corollary 3.12.
O

It is of interest to investigate the above results for small values of n, which we do

now.

Lemma 3.14. For any I = (iy) € Z, we have P, | = Z.
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Proof. For any a € Z there exists f(z) = a such that f(i;) = a. Thus P, ; = Z as
desired. [

Lemma 3.15. For any a = (ay,as), I = (iy,12) € Z* where iy < iy, we have
a € Pyrifandonlyifa; = ay mod (iy — is).

Infact if I = (1,2) then P, = Z2.

Proof. Leta = (a1, ay) € Z*. By Corollary 3.12 @ € P, if and only if

boy[ = a and

a1 a2 a1 — a2 .
by = —— 4+ ——— = —— are integers.
11 — 12 12— 11 — 12

Hence @ € P, if and only if a; = a2 mod (i; — i2).

In fact if I = (1,2), then i; — iy = 1. Thus P, = Z*. O

Lemma 3.16. For any a = (a1, as,a3), I = (iy,14,13) € Z3 where iy, < iy < i3, we
have

((13‘—612)+m(22—7/3> and m — ql—qg

(Zl — 25)(22 — 23) 11 — 12

a € Py ifand only if are integers.
Infact if I = (1,2, 3) then P3 = {(a1,as,a3) € Z* | a; = a3 mod 2}.

Proof. Leta = (ay,as,a3) € Z3 then

bO,I = ap,
b= —t 2 T
g —dy  dg— iy iy — g
aq (05} as

b = (11 = 12)(i1 — i3) i (12 — 11)(i2 — i3) " (13 — 11) (i3 — i2)

_ag(ip — i3) — ag(iy — i3) as

o (in— o) (iy —d3)(ia —d3) (i3 — i1) (i3 — i2)

_dgay — i3a1 — 102 + (3G9 as

(in —d2) (i —i3) (i —i3) (i3 — i1)(i3 — 4a)

_ —ig(a1 — ag) + (izay — i1a) as

(i — o) (i — is) (i — 13) (i3 — i1) (i3 — 12)

—ism ia(a1 — ag) — ag(iy — iz) as

(in —i3)(ig —d3)  (in — i) (i1 —d3)(i2 —d3) (i3 —i1)(iz — 4a)
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_ (Zl ik;;(zzni 23) (Zl iz?;b)(—:i 13) (m _ap — a2>
(ag — ag) + m(iy — i3)
(i1 — i3)(12 — 13)

By Corollary 3.12, a € Ps if and only if m = 4=%2 ¢ Z and ‘“ az)tmliz—is) o 7

i1—12 11 13)(12 23)

i1 — 12

as desired.
In fact if I = (1,2,3), then m = “=2 = ay — a; is an integer. Hence
(a?’(_l‘f?z)’é"_(;)_g) = (%_”H(grm)(_l) = 428 —q, is an integer if and only if 2|az —a;.

Thus, @ € Z3 is a polynomial sequence of length 3 if and only if a; and a3 are of the

same parity. O]

Example 13. By the lemma above, it is easy to see that the sequences (2, 5, 12) and
(3,9,17) are in P; while the sequences (0, 1, 3) and (3, 8, 12) are not.

The next result shows how to turn a sequence into a (D", I')-polynomial sequence.

Theorem 3.17. Let I = (iy, s, ... ,4,) € D™ with distinct i;, let a = (a1, ag, - . ., ay)

in D" and let
M=1[M; where M;= [] (ijx1—in)forallj =012 .. n—1
= oy 41

Then Ma = (Mal,Mag,...,Man) S Pn,[.

Moreover, if the integral domain D is a unique factorization domain, then
M'a= (M'ay,M'ay, ..., M'a,) € P, where M' = lem{M;}—]

and M’ is the minimal element in D for which this is true for every sequence of length

n.

n

n—1
Proof. Let M = [[M; where M; = [] (ijr1—im)j=01,2,....n— 1L

]:0 m=1
m#j+1
Since
a; k a
Z k+1 —E M, forall0 < k <n-—1,
7=0 n
H (4j41 — Pm) (i1 — i)
m#j+1 7+1 m
m=1 m=k-+2
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we see that Mby ; is an integer. Therefore Ma is a (D™, I)-polynomial sequence.

In fact if the integral domain D is a unique factorization domain, then letting
n

M; = H (ij41 — i) and M’ = lem{ M}~ for j = 0,1,2,...,n — 1. Thus

m=1
m#j+1
u a k a
_ j+1 o Z J+ < < .
be.r = g e = i forall0 < k <n-—1.
L | U
m#Aj+1 J+l m
m=1 m=k+2

mj+1

It is easy to see that M'by, ; is an integer.

To see that M’ is the minimal element with the stated property, consider the se-

quences:
Sequence @ bor | bir by 1 . bn_1.1
— 1 1 1
a = (1,0,0,....0) | 1 | 7= | Gea—m | (1—i2) (i1 —i3) (i1 —in)
— 1 1 1
ay=(0,1,0,...,0) | 0 o | ey | Ty Ty o
- 1 1
as = (0,0,1,...,0) | O 0 [Ty B IR I ooy ropery Y ey o g
_ 1
a, =(0,0,0,...,1)| 0 0 0 . ) D

For each @;, (1 < i < n), we can see that M; ;a, € P, and for any element
L € D such that La; € P, , we have M,;_4|L for all 1 < i < n. Therefore by the
definition of M’, we have M’|L, showing that M’ is the minimal element such that

M'ae P,;. 0

Before proceeding, let us work out some examples.

Example 14. Let D = Z, I = (5,6,8) and @ = (2, 8, 12). From Example 4, we see

that
No(z) = —%xQ + @x — 68 ¢ Zlx].
' 3 3
Soa ¢ Ps 1. Since
3
Mo = TT (i1 —im) = (i1 — i2) (i1 — i) = (5 — 6)(5 — 8) = 3,
m=1
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My = [] (i = im) = (2 — i1)(ia — i5) = (6 — 5)(6 — 8) = -2,

My = [ (i — im) = (is — i1)(is — i2) = (8 = 5)(8 — 6) = 6,

M'" = lem(My, My, My) = lem(3,—2,6) = 6. So M'a = (12,48, 72). It is now easy

to see that M'a = (12,48, 72) is a polynomial sequence generated by
—8z% + 24z — 408
with respect to [ = (5, 6,8) in Z.

Example 15. Let D = Z, [ = (5,6,8) and @; = (1,0,0). We get by ; = 1,

bl’[ = —1,[)27[ = % So

1 14
N, 1(z) = —gq:Z -3 16 ¢ Z|x].

By Example 14, we have M’ = lem(My, My, Ms) = lem(3,—2,6) = 6 and
M'a; = (6,0,0). It is easy to see that M'a; = (6,0,0) is a polynomial sequence
generated by 222 — 28z + 96 with respect to I = (5,6, 8) in Z.

Example 16. Let D = 7Z, I = (5,6,8) and @, = (0, 1,0). Similarly to Example 15,
we see that Ny, 7(z) = 322 — 52 —10 ¢ Z[z] and M’ = 6. Then M’'a, = (0,6, 0) and
Nisray.1(x) = =322 + 392 — 120 € Z[z]. Thus 6ay is a (Z3, I)-polynomial sequence.

Example 17. Let D = Z, I = (5,6,8) and a3 = (0,0, 1). Similarly to Example 15,
we see that Ny, r(2) = g2° — Go + 5 ¢ Z[z] and M’" = 6. Then M'az = (0,0,6)

and Nyyrq, 1(x) = 22 — 1124 30 € Z|z]. Thus 6as is a (Z*, I)-polynomial sequence.

Therefore, for D = Z and I = (5, 6, 8) we can multiply the sequences in Example
15, 16 and 17 with 3,2 and 6 respectively to make the sequences in these examples
the (Z3, I)-polynomial sequences. By Theorem 3.17 the best integer M’ that is true
for all the sequences of length 3 with respect to I = (5,6, 8) in Z3 is M’ = 6.
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Example 18. Let D = Z[i], I = (i,3i,2 4 i,4) € Z[i]* and @ = (2i,8i,4 + 2i, 10)

in Z[i]*. we see that

—1—1 1914

Na(e) = 20 +3(x — i) + (2 — i) (2 — 3) + %@c )= 3i) (-2 — i)
- 33+199 5 116 —243¢ , 1641 + 627¢ 9 417

oo Ty C Tt T 1m0ttt ss B

Since

4

M,y = H(@l—im) = (i —3i)(i — 2 —1)(i — 4) = —4 — 161,

m#1
4

My = [] (i = im) = (3i — ) (3i — 2 — i) (3i — 4) = 28 + 4,

m=1
m#2

4

My =[] (s —im) = 2+i—i)(2+i—3i)2+i—4) =—4+12,

m=1
m#3

My = [](ia = im) = (4= i)(4 = 3i)(4 — 2 — i) = 10 — 454,

m=1
m#4

M/ = lcm(Ml, MQ, Mg, M4)
= lem(—4 — 164,28 + 47, —4 + 124,10 — 457) = —140 — 220i.
So M'a = (—140 — 2201) - (24, 87,4 + 27, 10) = (440 — 280i, 1760 — 11204, —120 —
11607, —1400 — 2200:). Hence
Nyra(x) = (440 — 280i) + (—420 — 660i)(x — )+
(=120 + 90i)(x — i) (z — 3i) + (22 — 204)(z — @) (z — 3i)(x — 2 — 1)

= (22 — 20i)2® — (164 — 204)2* — (54 + 264i)z + (32 — 184i) € Z[i][z].

Thus M'a is a (Z[i]*, I)-polynomial sequence.

To see M’ = —140—220i is the best number that M'a € P, ; for all the sequences

of length 4 in Z[i]* for I = (1,3¢,2 + 1, 4), let see some these examples:
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Example 19. Let D = Z[i], I = (i,3i,2 +4,4) € Z[i]* and a@; = (4,0,0,0). We see

that
1 N : N 4= : ‘ :
Nal,f(:p):z—é(:ﬁ—z)nLZ(x—z)(x—i’n)—l— 58 (x —i)(z — 3i)(x — 2 —1)
—4—4 5 10+11¢ , 2931 18 + 21z
= — - Zla).
68 v 34 e 68 z 17 ¢ [x]

By Example 18, we have M’ = lem(My, My, My, M — 3) = lem(—4 — 167,28 +
41, —4+4 124,10 — 457) = —140 — 2207 and M'a; = (220 — 140, 0,0, 0). It is easy to
see that M'a; = (220 — 1404, 0,0, 0) is a (Z[i]?, I)-polynomial sequence generated
by

(5+ 150)2° + (30 — 1104)a2 — (305 — 185i)z + (420 + 607) € Z[i][]
with respect to I = (4, 31,2 + 1,4) in Z[i]*.

Example 20. Let D = Z[i], I = (i,3i,2 +4,4) € Z[i]* and @ = (0,4,0,0). We see

that

1 4 —1—1 . . L+7i
Nusa (&) = 5@ =) + —— (o = i)z = 30) + —
1+7 o 2-112 , 63 —59% 3+1

7.
200 © 50 0 *t 1o # 2l

(x —i)(z —3i)(x — 2 — 1)

By Example 18, we have M’ = lem(M,, My, My, M3) = lem(—4—16i, 28444, —4+
124,10 — 45i) = —140 — 220i and M'as = (0,220 — 1404, 0, 0). It is easy to see that
M'ay = (0,220 — 1404, 0, 0) is a (Z[i]*, I)-polynomial sequence generated by

(7 — 6i)2® — (54 — 22i)z* 4 (309 4 284)x — (20 + 80i) € Z[i][z]
with respect to I = (7, 37,2 + i,4) in Z[i].

Example 21. Let D = Z[i], I = (i,3i,2+14,4) € Z[i]* and @3 = (0,0,4,0). We see
that

—1+i, 3 —i , ,
Nog1(z) = 3 (x —1)(x —3i) + 10 (x —i)(x —3i)(x — 2 —1)
3—1 4 2—1, T+5l 9—3

S S T T L L
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By Example 18, we have M’ = lem(My, My, My, M3) = lem(—4—167, 28444, —4+
12i,10 — 457) = —140 — 2207 and M'a3 = (0,0, 220 — 1404, 0). It is easy to see that
M'a; = (0,0,220 — 1404, 0) is a (Z[i]*, I)-polynomial sequence generated by

(=16 — 13d)2® + (12 + 116i)x* + (256 — 217i)x — (192 + 156i) € Z[i][]
with respect to I = (7, 37,2 + i,4) in Z[i]*.

Example 22. Let D = Z[i], I = (i,3i,2+14,4) € Z[i]* and @y = (0,0,0,7). We see

that
—9+2, , ,
Ny 1(z) = 108 (x —i)(x —3i)(z — 2 —1)
-9+2 5 284411 , 47— 86¢ —12 -3
= Z\|x|.
25 C ot T Tt g Tt #Zl

By Example 18, we have M’ = lem(M,, My, My, M3) = lem(—4—16¢, 28444, —4+
124,10 — 457) = —140 — 220i and M'a4 = (0,0, 0,220 — 1407). It is easy to see that
M'a, = (0,0,04,220 — 140:) is a (Z[i]*, I)-polynomial sequence generated by
(4 +44)2® + (12 — 28i)2® — (60 + 4i)x + (12 + 36i) € Z[i][z]

with respect to I = (4, 31,2 + 1,4) in Z[i]*.

Therefore, for D = Z[i] and I = (¢, 37,2 + ¢, 4) we can multiply the sequences in
Example 19, 20,21 and 22 with —4 — 163, 28 + 47, —4 + 127 and 10 — 457 respectively
to make the sequences in these examples the (Z[i]?, I')-polynomial sequences. By

Theorem 3.17 the best integer M’ that is true for all the sequences of length 4 with
respect to I = (i,31,2 + i, 4) in Z[i]* is M' = —140 — 220i.

If D=Zand I = (1,2,...,n), then we have the following result which is [1,
Theorem 2.5].

Corollary 3.18. Let a = (ay, as,...,a,) € Z". Then
(n—1Dla= ((n—1Dlay, (n—Dlag,...,(n—1)la,) € P

Moreover, (n — 1)! is the least positive integer for which is true every sequence of

length n.
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Proof. Take I = (1,2,3,...,n). Using the same notation as in Theorem 3.17, we

first compute M; for 0 < j < n — 1, we have M; = Hzlz]_’m#]q»]_(j + 1 —m). Thus

we can see that

M(]:

M1:

Mn—l =

1-m)=(1-2)1-3)---(1—n)=(-1)""11-1!n-1)

m=1

n

[[e-m)=@-D2-3)--2-n)=(-1)"?2-1)(n-2)

=[[B-m)=B-1D)B-2)--B-n)=(-1)"?B-1)(n-23)

Then M; is the divisor of (n — 1)! forall 0 < j <n —1land M,,_; = (n — 1)L

Hence M =

lem(My, M, ..., M,) = (n— 1)L O

Example 23. Let D = 7Z, I = (1,2,3,4) and @ = (2,8,12,16). From Example 6,

we see that

Since

1 38
Ny(x) = gx?’ — 32 + 3 8 ¢ Z|z].

My=T[—m)=(1-2)1-3)(1-4) =6
=Tl m=@ ne-5e-1-2

4

My=J[B-m)=(B-1)(3-2)@3-4)=-2,
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M; = ﬁ(él—m):(4—1)(4—2)(4—3):6,

M’ = lem(My, My, My, My) = lem(—6,2,—2,6) = 6 = (4 — 1)L.
So M'a = 6(2,8,12,16) = (12,48, 72, 96).

Hence Ngga(l’) = b() + blpl(l‘) + bgpg(I)
=12436(x —1)—6(x —1)(z —2) +2(z — 1)(z — 2)(x — 3)
= 2% — 182” + 76z — 48 € Z[z].

Thus 3@ is a polynomial sequence.

Example 24. Let D = Z, I = (1,2,3,4) and a; = (1,0,0,0). We see that b; for
i = 0,1,2,3 with respect to a; and I are by = 1,b; = —1,b, = 3,b5 = —%. Then
Na () = —ga® + 32° — 2o+ 4 ¢ Zz]. Since I = (1,2,3,4), M’ = (4 —1)! = 3!

and M'a; = (6,0,0,0). So The Newton’s polynomial that generate M'a, is
Nayo, (z) = =2 + 92 — 262 + 24 € Z[x].
Hence 3!a, is a polynomial sequence.

Example 25. Let D =7, [ = (1,2,3,4) and ay = (0, 1,0, 0). Similarly to Example
24, we see that the Newton’s polynomial that generate as is N,,(z) = %x:” — 4z% +
D — 6 ¢ Zz] and M’ = 31. So M'as = (0,6,0,0) and the Newton’s polynomial
that generate M'dy is N3, (7) = 32° — 2422 + 572 — 36 € Z[z]. Thus 3lay is a

polynomial sequence.

Example 26. Let D =7, [ = (1,2,3,4) and a3 = (0,0, 1,0). Similarly to Example

24, we see that the Newton’s polynomial that generate as is Ny, (x) = —%m?’ — %x2 —

Tr +4 ¢ Zlz] and M’ = 3l. So M'az = (0,0,6,0) and the Newton’s polynomial
that generate M’y is Ny, (z) = —a® + 212% — 420 — 24 € Z[z]. Thus 3las is a

polynomial sequence.

Example 27. Let D =7, I = (1,2,3,4) and a4 = (0, 0,0, 1). Similarly to Example

24, we see that the Newton’s polynomial that generate a4 is N,, () = —%m?’ -+
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Gr—1¢ Zlz) and M’ = 3l. So M'a, = (0,0,0,6) and the Newton’s polynomial
that generate M’y is N3yq, (r) = 234622 —112—6 € Z[z]. Thus 3!a, is a polynomial

sequence.

Therefore, for D = Z and I = (1,2,3,4) we can multiply the sequences in
Example 24, 25, 26 and 27 by 6, 2,2 and 6 respectively to make the sequences in
these examples the polynomial sequences. By Theorem 3.18 the best integer M’
that is true for all the sequences of length 4 with respect to [ = (1,2,3,4) in Z* is
M =(4-1)L

3.3 Structure of P, ;

In this section, we will show that P, ; is a rank n subgroup of the free abelian group
D",

We first show that for any / € D", we have P, ; = D]z, as a group where D[z,
is the set of polynomial in D[z] of degree less than n.
Let v : D[x] — D" be defined by v(f(x)) = (f(i1), f(i2),..., f(in)). It easy to

see that v is an additive homomorphism with image P, ;.
Theorem 3.19. The group P,  is isomorphic to D|x],,.

Proof. We will show that D|x],, = P, ;.

Define v : D[z], — P, by v(f(z)) = (f(ir), f(i2),. .., f(in))-
Let f1, fo € D[x],. Then

o((fr 4 f2)(2) = (A + f2) (i), (fr + f2) (i2), - (fr 4 f2) (i)
= (fi(i1) + folin), fr(iz) + faliz), .-, f1(in) + f2(in))
= v(fi(x)) + v(fa(x)).
Thus v is an additive homomorphism.

We next show that v restricted to D[z],, is an isomorphism from D[z}, to P, ;.

Leta = (ay,as,...,a,) € P, . Then there exists f(z) € D[xz] such that
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f(i1) = ay, f(i2) = as, ..., f(in) = a,. Again as in Theorem 3.6,

f(@) = q(x)p(x) + r(2)

where p(z) = (x —41) -+ - (x — in),q, 7 € D[x] with r = 0 or degr < n. Evaluating
at the points i; (1 < j < n), we see that 7(x) generates the sequence a. So v is onto.
Let f, g € D[z],. Suppose v(f(x)) = v(g(x)).

Then (f(i1), f(i2), .-, [(in)) = (9(i1), 9(i2), .., 9(tn)). So f(ix) = g(ix) for all
1 < k < n. Since both deg(f) and deg(g) are less than n, and the polynomials f, g
agree at n distinct points, they are identical, i.e., v is one-to-one.

Therefore v is an isomorphism of D]x],, onto P, ;. O

We next consider the structure of Z"/FP, ;. For [ = (1,2,...,n) € Z", it was

shown in [1, Theorem 3.2] that
ZV/P,=7)228Z/32&---DZ/(n—1)Z.

Forn = 1,2, Z"/ P, isomorphic to Z/0!Z and Z/1!Z respectively. We use the tech-

nique similar to that in [1] to generalize the above result to D"/ P, ;.

Theorem 3.20. Forn > 2, let I = (iy,is,...,1,) € D". If

k—1 k—1
[16G —im)/ [[ Gk —im)eD (1<k<j<n),

then
D" /P, = D/(ig—i1)D® D/ (i3—i1)(is—is) D& - -®D/(in—11) - - - (in—in_1)D.

Proof. For j, k € {1,2,...,n},let A, = (a;;) be the matrix n x n where

(

T2 Gy — i) T G — ) i > k> 1

ik = § 1 ifk=1

0 if j <k,

\



so that
1 0 0 0 0
1 1 0 0 0
1 L= 1 0 0
A — ia—iy
" ia—i (14—11)(fa—1i2)

1 i;l—ii (i3—i1)(iz—i2) 1 0

in—11 (in*il)(i’ﬂfﬁ) (in*il)(in*iQ)(in*iS) 1
| & d2—i1 (d3—i1)(is—d2)  (fa—d1)(da—i2)(da—d3) T T

Let e;(j — 1) be the j** column of A, (j =1,2,...,n). Since det A,, = 1 and

k—1 k—1
aj = [[ G —im)/ [[Ge—im) €D (1 <k<j),
m=1 m=1

the matrix A,, is an unimodular [7, Lemma 1.15]. In this case, we see that
{er(j —1),5=1,2,...,n} forms a D-basis for D".

Now let C,, = (cj;) where

(
(ij — Zl)(Z] — Zg) s (ZJ — ik—l) if1 <k S]
Cik =191 ifk=1
0 if <k, ie,
\
1 0 0 0
1 i9—14 0 0
Cn: 1 ’ig—il (ig—il)(ig—ig) 0

Next, let D,, be the diagonal matrix whose j* diagonal entries are

dir= (i —i1)(i; —d2) -~ (45, —4j-1) (J=1,2,...,n)ie,
1 0 0 0
0 29— 0 0
Dn =10 0 (23 — Zl)(23 — 22) 0
0 0 0 (in — 1) (i — 12) (4n — 1)

47
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It is easy to see that C,, = A, D,, i.e.,

1 0 0 0
1 i9—1 0 0
1 s —iy (g —i1)(is —d2) ... 0
1 ip— i (1, — 11) (ip — 12) (tn —41) -+ (In — in—1)_
1 0 Ol r .
1 0 0
1 1 0
o 0 i9—1 0
= |1 b= 0
. 0 0 N (A (R ey
1oz=t 1) - -

Since {1, p;, (x), ..., pi,_,(x)} forms a D-basis for D[z],,, by Theorem 3.19, the map

v : D[z],, — P, is an isomorphism. So the images

{U(pio(x))7 U(ph (CL’)), ce 7/U(pin71(x))}

forms a D—basis for P, ;. From

pio(h) _1_

pio(iQ) 1
v(pin (7)) = | iy (i3) | = |
_1_

v(piy () = | py, (i3
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piz(il)_ 0
Pis (i2) 0
v(pi () = | piy(ia) | = | (i3 — i) (i3 — ia)
palin)| [ =106 — 1)
p n—l(il) 0
p nfl(i2> 0
V(pi,_(T) = | pi,_,(i3) | = 0
i ()| | 00) (0 — 2) o (i — ) |
we see that v(p;,_, (z)) is the j" column of C,, (j =1,2,..., n). Since C,, = A,,D,,
1.e.,
[U(pio(x)) v(Pir(z) - U(pin_l(x))} -
-1 0 0
0 29—11 ... 0
ler(0) er(1) oo etn-1)| |
0 0 o (=) (g — i)
= [1-er(0) (i —in)er(L) o [in— 1) . (i — in)ler(n — 1))
we have
oy () = (=) -+ (=g )er(G—1) = [[ Gy=imbes(G=1) (G = 1,2, ).
Thus,
Dby = @)@ ()@ (o) @ @ {erln — 1)
(er(0)y ® ] (12 = im){es(1)) ® -+ & [ [ (i — im){es(n — 1))

_ {er(0))

(er(1)) (er(n—1))
= <6[(O)> SZRRRE

I (o = im)(es (1)) [ Gn = im){er(n = 1))

m=1

D
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(er(1)) {er(n—1))

-1 DB
[ (o = im){es(1)) [ Gin = im)(er(n = 1))
m=1 m=1
2
>~ D/(iy— i) D@D/ [] (is — im)D @D/H n—im)D
m=1
:D/(ZQ—21>D@D/(23—21>(Z3—22 @D/H —Zm
O
k—1 k—1
By Theorem 3.20, for 1 < j < n, if aje = [ [ (4 = im)/ [ [ (& — im) € D for
m=1 m=1
all 1 < k < j,choosing k = j — 1, we get
j—2 j—2
ajj1 = |G —im)/ ] G2 — D (j=0,1,....,n—1).
m=1 m=1
Thus,
j—1
dip =[G —im) = a1 (G5 — ;1) - dj v,
m=1

i.e., d;_yis the factorof d;; (j =1,2,...,n), yielding

Corollary 3.21. With the set up above, D"/ P, 1 is a finite abelian group of the form

D/dy 1D ®---®D/dy ;DD DJdy ;D

wheredy 1 | day |- | due11.

If wetake D = Z and I = (1,2, ...,n), we deduce the following

Corollary 3.22. [1, Corollary 331 If I = (1,2,...,n) (n > 3), then Z"/ P, is a
finite abelian group with Smith normal form

Z/n—-1)Z& - @ Z/3LSL/2Z

and Smith invariant (n — 1)!,...,3!,2!). Moreover, |27/ P,| = [/} i!.

We pause to look at one simple example.
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Example 28. Let D = Z[i] and I = (2 + 4,3 + 44,2 + 114). Since

is—1 (24 11i) — (241) . :
azo = - — = : —~ =341 € Zli|,
2T =i (344 — (2+19) 7]

all the elements a;;, of the matrix Aj are in Z[i]. By Theorem 3.20 we get

Zi] Z[i] ZUN. Zi]

(1+30)Z[i] ~ (10d)(=1+7i)Z[s] (1 +30)Z[i] ~ (=70 — 104)Z[:]

The quotient condition in Theorem 3.20 simplifies for some particular sets I as

Z[i)* | Py =

witnessed in the next corollary.

Corollary 3.23. Let a, q be elements in D and n > 2. If i, = aq® (1 < k < n), then

n—1
D"/P,; 2 D/ag(¢—1)D&D/a*q"(¢*~1)(q—1) D&+ @D /" == " [ [ (4'~1)D.
i=1
Proof. Since iy = aq’, iy —ix = aq®(g—1) (1 <k <n-—1),
we have i; — i, = a¢’ — aq® = ag*(¢"~* — 1) (j > k). By the proof of
Theorem 3.20, we get A,, = (a;;) Where
( k—1
[T —im)
7/?,:11— = Hi;:ll(q]_m —1)/ Hﬁz:1(qm —1) ifj>k>1
jk = Hl(lk = im)
1 ifk=1
0 if j < k.

For 1 < k < j < n, since Hi:l(qj_m -1)/ an_:ll(qm — 1) is a g-binomial coeffi-

cient, it is in D, and by Theorem 3.20 we have
n—1

n—1 . .
D"/P,1 & D/ag(q—1)D&D/a’¢**! (¢’~1)(¢=1)D&---@D/a" == " [ [(¢'=1)D.

i=1

O

Corollary 3.24. Forn > 2,, if i1 —ix isa constant c € D forall 1 < k <n —1,

then

D"/P,; =2 DJc-D®D/2\*D® D/3\*D@---@®D/(n—1)c"'D.
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Proof. Since i1 — i = c (1 <k <n—1), we have
i —ip = (i —j-1) + (Gj1 — Gj—2) + -+ + (g1 — i) = (J — k)e (> k).

By the proof of Theorem 3.20, we get

T Gy — i)/ TIE A G — i) = (I70) i > k> 1

A, = (ajk)a air =41 ifk=1

0 if j < k.

\

Thus, aj;, € D, and by Theorem 3.20, it is easy to see that
D"/P,; = D/cD®D/2*D&---®D/(n—1)"'D.
O

Taking D = 7Z, I = (1,2,...,n), ¢ = 1 in Corollary 3.24 yields the following

result.

Corollary 3.25. [1, Theorem 3.2] Forn > 3,and I = {1,2,...,n} then
" |P, 2227 Z/3Z&---DZL/(n—1)Z.

Proof. Since I = (1,2,...,n), i, —ix_1 = Lforall k = 2,3,... n. By Lemma 3.24

we get
Z' P 2Z/1-ZS L2 L S /3L - © L/ (n — 1)1"'Z

=Z/Z®ZL)2Z DL/ D DL/(n—1)Z

~ Z)AL S L)AL G - & L) (n—1)IZ.
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CHAPTER 4

Difference Polynomial Sequences

In this chapter, we study the difference of the polynomial and the difference of the
sequence over Z. For sequence ¢ = (c1,¢o,...,Ch 1) € 71, call ¢ a difference
polynomial sequence of length n if there exists f(z) € Z[x] such that A f(i) = ¢;
forall 1 <7 <n — 1. Denote by AP, the set of all difference polynomial sequences
of length n — 1. Criteria for a difference polynomial sequences are established and

explicit structures of Z"~!' /AP, and P,,_, /AP, are determined.

4.1 Introduction

In this section, we first introduce definitions that we will use throughout this chapter.
Definition 4.1. Let f(z) € Z[x]. Then we define
Apf(z) = flz+1) = f(z).

We next find Ap(p;(x)) where po(x) = 1 and p;(z) = (x — 1)(x — 2) -+ (& — 1)

forany ¢ > 1.

Lemma 4.1. With the above notation, for any f(x), g(x) € Z[x]
1. Ap(po(z)) = 0and Ap(pi(x)) = ipi_1(x) fori > 1.
2. Ap(cf(z)) = cApf(x) for any constant c.
3. Ap(f+9) =Arf + Apg.

Proof. 1. We first compute Ar (po(x)) where po(x) = 1.
Thus Ap(po(z)) = po(x + 1) —po(x) =1 —1=0.

For i > 1, we have

Ap(pi(e)) = (@)(z = 1) - (z+1=0) = (= D)(x = 2) - (r —0)
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=(x—1D(z—2)(x+1—i)(x—(z—1)
=il —1)- (x+1—1i) =ipi_i(2).
2. Forany ¢ € Z, Apcf(x) = cf(x+1)—cf(z) = c(f(x+1)—f(z)) = cApf(z).
3. Let f(z),g(x) € Z[z]. Then
Ap(f+9)=(f+9)=+1) = (f+9)()

= [+ 1) +g(@+1) - f(z) - g(x)

= flz+1) = f(x) +g(z+1) = g(x)

=Apf+ Arg.
[l
Lemma 4.2. For any a € P, and Ng( Z bipi(x), then
n—2
AFN[I(QZ') = ('L -+ 1)b1+1pl($)
i=0
Proof. Let Ng( Z b;p;(x). Then
n—1
ApNg(r) = Ap < Z biPz‘@))
i=0
n—1
=Y Ap(bipi(z)) (ByLemma4.1)
i=0

F(bopo(z)) + Z Ap(bipi(z
= Z biipi—1(z) (By Lemmad4.1)

= Z(Z + 1)big1pi(x)
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We next define a difference sequence. For any a = (ay,as,...,a,) € Z", we

define Aa = (ay — ay,a3 — ag, ..., a, — a,_1) € Z"1.

Example 29. Leta = (3,7,4,8,15) € Z°. Then
Aa=(7—3,4—7,8—4,15—8) = (4,-3,4,7) € Z*.

Lemma 4.3. Ifa € P, then Aa € P,_;.

n—1
Proof. Leta € P,. Then N;(z) = Z bip;(x) for some b; € Z and py(z) = 1. Thus
=0

n—1

ApN;(x) = Zibipi_l(:v).

=1

Since ib; € Z and ApN;(x) generates Aa, Aa € P,_1. O
Remark: The converse is not true as we can see from the following example:

Example 30. Let Aa = (1,2). Thus a = (n,n + 1,n + 3) for some n. It is easy to
see that Aa € P, but by Lemma 3.16, a ¢ Ps.

Definition 4.2. Let n be a positive integer. Let ¢ = (c1,¢o,...,¢, 1) € Z" 1. We

define

AP, = {¢ € Z'"! | there exists f(z) € Z[x] such that Arf(i) = ¢;,

forall 1 <i<n-—1}.

Example 31. Let ¢ = (14,40, 78) € Z>. Since there exists f(z) = 223+ 2> — 3z +7r
in Z[z] where r € Z such that Apf(z) = 62> + 8z € Z|[x| generates ¢, we get
ce AP,.

Example 32. Leta = (1,0,0) € Z.

Suppose there exists f(z) € Z[z]| such that Apf(1) = 1,Arf(2) = 0,Arf(3) = 0.
So Apf(z) = (x — 2)(x — 3)g(z) where g(z) € Z[z].

Then Apf(1) = 2¢(1). This is a contradiction because A f(1) is always even. Thus

a is not a sequence in AP;.
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Let f(2) = ama™ + @ 18™ 1 + Q0™ 2 + -+ + apx® + a1 + a9 € Z[x].
Then

Apf(z) = flz+1) - f(z)
= am(z+ 1)+ ama(z+ )" oz + 1) 2+ ag(z 4+ 1)+
ar(z + 1) + ag — (ama™ + @p12™ "+ Qoo™ 2 + -+ a1z + ag)
= a, i (m) 2N 4 mz_l (m B 1) 2T i (2) 2
i—0 \' i=0 ! im0 \'

1 9
ao — (am@™ + a1 2™ 4 Qo™ P+ a1+ ag)

:gaz<z—rz—l—l> " 1+i:m;1ai(z—7:l+2> T
;az(li2>x2+;ai ijl)x—kzzlaz(l) € Z|x]

Thus if f(x) € Z[x]pmi1 then Apf(x) € Z[x]m.
Definition 4.3. For any positive integer n, let
AZ[z), = {f(x) € Z]x],,—1] there exists g(x) € Z[z], such that A (g(x)) = f(z)}.

Example 33. Let g(x) = 2z + 1 be a polynomial in Z[z],.
Choose f(z) = 2? + m € Z|z]3 where m € Z.

So Apf(z) = fx+1)— f(z) =22+ 1 = g(x).

Hence g(z) € AZ[x]s.

Example 34. Let f(x) = 3z + 1 be a polynomial in Z[z],.
Suppose there exists g(z) = ax? + bx + ¢ € Z[x]3 such that Ap(g(z)) = 3z + 1.
Then

Ap(gx)) =gz +1)—gx)=alz+1)* + bz +1) +c—ar* — bz —c
=2ar+a+b=3x+1.
So2a = 3and a + b = 1. Hence a = 3/2 which is not an integer. This is a

contradiction.

Thus f(x) ¢ AZ[z]s.



4.2 Structure of AP,

Theorem 4.4. AZ[x|, is an abelian group under addition.
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Proof. Let f(x),g(x),h(z) € AZ,. Then there exist F'(z),G(x), H(x) € Z[z],

such that
ApF(z) = F(z +1) — F(z) = f(2),

ApG(z) = Glz +1) - Glx) = gla),
ApH(z)=H(z+1) — H(z) = h(x).
We next show that AZ[z],, is an abelian group under addition.

1. Forall f(z), g(x) € AZ[x],, we get

(f+9)(z) = f(z) + g(z)
—F(z+1)— F(a)+ Gz +1) — G(z)
= (F+G)(z+1)— (F+G)(x)
= Ap(F+G) ().

Since (Z[x]n, +) is a group and F(x), G(z) € Z[x],, (F + G)(z) € Z]x],.

Hence (f + g)(z) € AZ[zx],,. Thus AZ]x],, is closed under addition.

2. Since there exists p(z) = m € Z[z],, such that

App(z) =p(z+1) —p(x) =m—m = 0forallm € Z, 0 € Z[z],. Moreover

f(@)+0=f(z) =0+ f(z).

So 0 is the identity.

3. For all f(x) € AZ[z], there exists F'(z) € Z[z], such that f(z) = ApF(z).

Thus — f(z) € AZ[z], and
f@) +(=f(z)) = 0= (=f(2)) + f(2).

Therefore — f(x) is the inverse of f(x).
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4. Tt is easy to see that f(x) + g(z) = g(x) + f(z) forall f, g € AZ[x], and the
associative law holds.
Therefore AZ[z],, is an abelian group under addition. O
Theorem 4.5. AP, is an abelian group under addition.
Proof. Leta,b,¢ € AP, where
a = (al, as, . .. ,an,l),
l_) = (bl, bg, ceey bn—1)7

c=(c1,02,...,Cn1)
such that there exist f(x), g(z), h(x) € AZ[z], such that
fli) = ai, g(i) = by, h(i) =
for 1 <1¢ < n — 1. We next show that AP, is a group under addition.

1. Foralla,b € AP,, we get

= (ay,a2,...,ap-1) + (b1,b2, ..., byp_1)

= (a1 +b,a0+bg, ..., 0p—1+by_1)

= () +9(1), f2) +9(2),..., f(n=1) +g(n - 1))
=((f+9)), (f +9)2),....(f +9)(n = 1))

Since f(2),g(x) € AZ[al,, (f + g)(x) € AZz],.
Hence @ + b € AP,. Thus (AP, +) is closed under addition.

2. Since 0 = (0,0,...,0) = (f(1), f(2),..., f(n — 1)), there exists f(z) = 01in
AZ[x], such that f(i) =0forall 1 <i<n—1.So0 € AP,. Moreover

_—|—O:(al,ag,...,an,l)—1—(0,0,...,0)
:(a1+0,a2+0,...,an_1—|—0 (al,ag,...,an_l)

)=
:(0+a1,0+a2,...,0+an 1)

So 0 is the identity.
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3. Leta € AP,. There exists f(z) € AZ[x], such that f(i) = a; for all
1 <i < n — 1. Thus there exists —a = (—ay, —as,...,—a,_1) € AP, such

that
a+(—a)=0=—-a+a

Therefore —a is the inverse of @.

4. Tt is easy to see that @ + b = b + a for all @, b € APy and the associative law

holds.
Therefore AP, is an abelian group under addition. ]
Theorem 4.6. The group AZ[x], is isomorphic to AP,,.

Proof. We will show that AZ[z],, =2 AP,.
Define a map v : AZ[z]|, — AP, by v(f(x)) = (f(1), f(2),..., f(n—1)).
Let f,g € AZ|x],. Then

o(f+g) = (f+g ). (f+9)2),....(f+9)(n—1))
= (f(1 L fn=1)) + (9(1),9(2),...,9(n—-1))
=v(f) +v(g).

Thus v is an additive homomorphism.

We next show that v restricted to AZ[x],, is an isomorphism from AZ[z], to AP,.
Let ¢ = (¢y,¢o,...,¢n1) € AP,. Then there exists f(z) € Z[z] such that
Apf(i)=ciforalll <i<n-—1.

Letp,(z) := (x—1)(z—2)--- (x —n) € Z|x], deg p,(z) = n. Since p,(x) is monic,
by division algorithm, f(z) = q(x)p,(z) + r(z), where ¢, r € Z[x] with degr < n.

Then we get
Apf(x)=flz+1)— f(x) =qlx + D)pp(x+ 1) +r(z+ 1) — q(x)pn(z) — r(x).
Since p,(x 4+ 1) = xp,_1(x),

Apf(x) = poa(2) [rq(z + 1) — (z — n)q(2)] + Apr(z)
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with deg Apr(x) < n — 1. Thus Apr(z) € AZlx],.

Evaluating at the points ¢ for all 1 < ¢ < n — 1, we see that Agr(x) generates the
sequence ¢. Hence there exists r(x) € Z|x],, such that A pr(z) generates ¢. Therefore
v 1s onto.

Let f, g € AZ[z],,. Suppose v(f(z)) = v(g(z)). Then (f(1), f(2),...,

fln—=1)) = (9(1),9(2),...,9(n—1)). So f(i) = g(i) forall 1 <i < n — 1. Since
deg(f) and deg(g) are less than n — 1, and the polynomials f, g agree at n — 1 distinct
points, they are identical, i.e., v is one-to-one.

Therefore v is an isomorphism. ]

Theorem 4.7. For any positive integer n > 2,
Z" VAP, 272N L2 TS L/3T & - &L/ (n—1)Z.

Proof. We first observe that {1, 2p; (), 3p2(x), ..., (n — 1)pp_o(z)} is a Z-basis for
AZ[z),. Since the map v : AZ[z],, — AP, is an isomorphism,

{v((j+ Dp;(z)) | j =0,1,...,n — 2} is a Z-basis for AP,.

Fori,j € {1,2,...,n—1},let C;_, = (¢ ;) where

(

Ji= 1 =i = 1) —2) - (i—j) f2<j<i<n—1

Gi =191 ifj=1
0 ifi < j, ie.,
\
1! 0 0 0 0
1 2 0 0 0
1 2-(2 3! 0 0
Cioy = 2
1 2-3) 3-(3); 4l 0
1 2-(n—2); 3-(n—2)2 4-(n—2)5 ... (n—1)!

We see that v((j)p,—1(z)) is the jth column of C};_, for j =1,2,...,n— L.
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Now let A}, = (a; ;) where

(7)) if2<j<i<n-1

Jj—1
a; ;=141 ifj=1
0 ifi < j.
\
Thus
0 0 o0 0]
1 1 0 0 0
1 (¢ 1 0 0
AZ—l = (;) 3
I R O 0
(M) (Y () 1]

Let e(j — 1) be the j'* column of A* | forall j =1,2,...,n — 1. Since
. 1 —1 o
ai,j:<j_1)€Z (2<j<9),
and det A, = 1, A7 is an unimodular by Theorem 2.2. In this case, we see that
{e(j —1),7=1,2,...,n— 1} forms a Z—basis for Z"'.
Next, let D¥ | be the diagonal matrix whose ;" diagonal entry is j! for all

7=12,...,n—1,1e,

11 0 0 0
0 2! 0 0
D =10 0 3 ... 0
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Itisnothard tosee that C_, = A* _,D¥ | ie.,

1! 0 0 0

0
1 21 0 0 0
1 2-(2) 3| 0 0
1 2-(3) 3-(3)s Al 0
1 2-n—2)1 3-(n—2)y 4-(n—2) (n—1)
1 0 o0 o 0]
o0 0 0
1 1 0 0 0
0 20 0 0
1 (3 1 0 .0
= : \ 0 0 3 0
| ) I ¢4 B . 0 .
: n:_ n_ n_ o o0 o (n—1)!
1) () (5 1)t

We have v(jp;_1(z)) = jle(j — 1) forall j =1,2,..., n—1.
So{jle(—1):j=1,2..., n — 1} forms a basis for AP,. Then it is easy to see

that
AP — (€(0)) @ (e(1))  (e(2)) B --- @ (e(n —2))
2z Ak = 11{e(0)) @ 2!(e(1)) ®31e(2)) & -+ @ (n— 1)/ (e(n —2))
_(e0) o Ce) K@) o (en—2)
T ) T ale) T ate@) T i Di{eln—2))
~7/LSLALSL/BLSL/NLS - S L[ (n— 1)L

0
Theorem 4.8. Forn > 2, Py_1/AP, 2 Z/Z® L)2Z B L/3%.& --- B L/ (n — 1)Z.

Proof. Since {(j — V)le( —1) | j =1,..., n — 1} forms a Z-basis for P, ; and
{jle(j —=1)|j=1,2,..., n — 1} forms a Z-basis for AP,, we have

Poi 0Ne(0) ®1l{e(1)) @21 (e(2)) ® - @ (n—2)!(e(n — 2))

AP, 1{e(0)) @ 2!(e(1)) ®3e(2)) - @ (n—1){e(n —2))

el
_ () o (e@) o {e) (e(n —2))
<e(0)> 2<e ) 3<e ) (n—1){e(n —2))

D -
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2 Z)LSLRLSL/3LBLIALG --- S L[ (n — 1)L

O
We next find a necessary and sufficient condition to have ¢ € AP,.
Theorem 4.9. Let ¢ = (¢, ¢y,...,ch 1) € Z" ! with Ng(x Z d;p;(x) for some
d; € Q. Then ¢ € AP, ifand only if (i + 1)|d; forall 0 < i <n — 2
Proof. (=) Let E € AP,. There exists a € P, such that Aa = ¢.
Let N, ( Z bipi(x). Since ApNy (i) = Na(i 4+ 1) — Na(i) = aiy1 — a; = ¢; for

all1 <i<n-— 1 ANz (z) generates ¢. Since Nz (z) and ArN;(z) are polynomials
whose degree less than n — 1 and they agree on n — 1 points, Nz(z) = ApNz(z). So

n—2 n—1
Z dipi(z) = Z biipi—1(x)
i=0 i=1
n—2
= Z bis1 (i + 1)pi(x).
=0
Since {po(z),p1(z), ..., pn_2(x)} is linearly independent,

Thus b;11 = ifl € Zforall: =0,1,...,n — 2 because a € F,.
Therefore (i + 1)|d; forall 0 <i <n — 2.

(<) Leta; = 1and alH =¢;+a; forall 1 <i < n— 1. Similarly as in the other

direction, let Ng( Z bipi(x). We have d; = b;1(i + 1). Thus b = ; ng c 7.

Therefore a € P,.
s.ce AP,. O

Theorem 4.10. Suppose ¢, € Z" L. Let ¢, = Ac,, 3 = Acy, = A%¢y,. ..,
Gr = A1 = A6 for 1 < k < n — 2. There exists a € P, such that Na = Cj

for1 < j < kifand only if
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L (i4+1)G+2) (i + k)b where

1

=S W a)

=0

n

forall0 <i<n—k—1and
2. j!\agj) where Ala = (agj),aé ). ,a,(fzj)foralll <j<k
Proof. (=) Leta € P, such that

Aa = (al”, g),...,a(l) ) = ¢y,

n—1
A%a = ( 9,@52), . ,a7(1272) = Gy,
A37 = ( 53),6153), s 7a7(13—3> = C3,

AFg = (ag), (),...,a;k_)k)zék.

We will prove by induction. The statement is true for k£ = 1 by Theorem 4.9.
Assume the statement holds for ¥ — 1. We must show that it is true for k.

Suppose AVa = ¢; for 1 < j < k.

n—k
Consider N, _, (z) = Z bgk_l)pi(x)

By assumption, (i +1)(i+2)--- (i + k — 1)\() andj‘\agj forall0 <i<n—k,
n—k—1 n—k—1
1 <j<k-1Since AN, (x) = > (i+1)b5;pi(x) = No, () = b (),
=0 =0

0 = (i + )b

forall0<¢<n-—k—1.
Since (i +1)(i +2)--- (i + k — 1)]b§k71) forall 0 < ¢ <n — k, we have
(i+2)(i+3)-- (z+k)\bfi11 forall0 <7 <n—k— 1. Hence

(i + 1>(i+2)"'(i+k)|bl(.k)

for0<:<n-—-k-—1.

We next consider a, ™) Since agk) = bék), k!]agk) as desired.
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(<) We will show by induction on k. If k = 1, then the statement holds by
Theorem 4.9.
Assume that the statement holds for all £ — 1. Suppose (i + 1)(¢ +2)--- (i + k) |b§k)
for0<i<n-—k-— 1andj!|agj) foralll < j <k.
Let Nz, _,(z) = S bgk_l)pi(x). Since AN, _,(x) = Nz (x), (i + 1)651:1) = bgk) for
| <i<n—k-1
Thus 7" = % By assumption (i+2)(i+3) - - - (i+k)[0"* 7" for0 < i < n—k—1.
Hence (i +1)(i +2)--- (1 + k — 1)\b§k_1) for 0 <i <n — k. Now fori = 0,
b = oY Since (k — 1)!al* Y, (k — )15 Y.
Then by an inductive hypotheses, there exists a € P, such that A'a = ¢; for all
1<i<k—-1. [
Example 35. Let a = (2,17,82,257,626) € Z°. Since Ny(z) = 2+ 15(z — 1) +
28(x—1)(x—2)+10(z—1)(z—2)(z—3)+(z—1)(z—2)(z—3) (z—4) = z'+1 € Z|z],
G € P5. Then Aa = (15,65,175,369) € Py, A% = (50,110,194) € P;. We
see that Naz;(z) = 50 + 60(x — 1) + 12(x — 1)(z — 2) generates the sequence
A% = (50,110, 194) € Py and 2|50, 660, 12[12. So (i + 1)(i + 2)|b; for i = 0,1,2
where by = 50,b; = 60 and by = 12.
Example 36. Let a = (3,66, 731,4098, 15627, 46658, 117651). Since the polyno-
mial Nz(z) =3+ 63(x — 1) +301(z — 1)(x — 2) + 350(x — 1)(x — 2)(z — 3) +
140(z — 1)(z —2)(z = 3)(z —4) + 21(z — 1)(z — 2)(z — 3)(z — 4)(x — ) + (x —
1)(x —2)(z — 3)(z — 4)(z — 5)(x — 6) = 2% + 2 generates a, a € P;. Then
Aa = (63,665, 3367, 11529, 31031, 70993) € Py since
ApNz(z) =63+ 602(x — 1) + 1050(x — 1)(x — 2) + 560(x — 1)(z — 2)(z — 3)+

105(x — 1)(z — 2)(x — 3)(x —4) + 6(x — 1)(z — 2)(x — 3)(x — 4)(z — b),
A?a = (602,2702,8162,19502, 39962) € Ps since
ApNaa(z) = 602+ 2100(z — 1) + 1680(z — 1)(x — 2) + 420(z — 1)(z — 2)(z — 3)+
30(x — 1)(x — 2)(z — 3)(z — 4),

A3a = (2100, 5460, 11340, 20460) € P, since
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ApNaza(z) = 2100 + 3360(z — 1) + 1260(z — 1)(z — 2)+
120(z — 1)(z — 2)(x — 3),
A'a = (3360, 5880, 9120) € P since

ApNasa(x) = 3360 4 2520(z — 1) + 360(z — 1)(z — 2).

2
We see that Naiz(x) = Y bipi(x) = 3360 + 2520(x — 1) + 360(z — 1)(z — 2)
=0

generates A%G where (i + 1) (i +2) (i +3)(i +4)|b; forall i = 0, 1,2 and 5!|a\”’ where
agj) is the first term of AJq for all j = 1,2, 3, 4.

Example 37. Let ¢ = (2,3,10) € Z3. Since Na(z) =2+ (v — 1) + 3(x — 1)(xz — 2)

in Z[z], ¢ € Ps. Assume that ¢ € AP,. Then there exists
N(z)=ag+ai(x — 1)+ as(x — 1)(x —2) + az(x — 1)(z — 2)(z — 3) € Zz]4

such that Ap N (z) = Nz(x).
Thus

ApN(z) =a; +2a2(x — 1)+ 3az(x — 1)(z —2) =2+ (z — 1)+ 3(z — 1)(x — 2).

So as = 5 ¢ Z. This is a contradiction.
Therefore ¢ ¢ AP;.

In fact, if we let
Nz(z) = Nz(x) =bg+bi(z—1)+be(x—1)(x—2) =24+ (z—1)+3(z—1)(z—2).

Then by = 2,b; = 1 and b, = 3. By Theorem 4.10 it is easy to see that ¢ ¢ AP,

because 2 1 b;.
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CHAPTER 5

Differential Polynomial Sequences

Let D be an integral domain. For [ = (iy, s, ...,4,) € D™ with i; # i), if j # k and

_ 0 1 r1 0 1 o 0 1 r
o = ((al,al,...,al ) , (aQ,QQ,...,aQ ,)...,(an,an,...,an”))
where a!, al ai', ad, al ay? al, al a’ are elements in D. We call
Ly Qps ey QY A5, Ayy oo A5 Ay s O .
o/ a differential polynomial sequence of length n and order (71,79, ..., 7,) with re-

spect to [ if there exists f(x) € D[z] such that

f(ll) = a’(l)v f(h) = agv R f(Zn) = a?w
flli)=a,  fliz)=a; ..., [f'(in) = ag,
fr@) =ar', fUP) = a2, o fU(in) = ajr

Criteria for a sequence to be a differential polynomial sequence of length n and order

(r1,72,...,7r,) With respect to [ is established.

5.1 Introduction

For a fixed n € N, let D be an integral domain, I = (i1, 42, ...,4,) € D",

R=(ry,re,...,r,) and
_ 0 1 r1 0 1 ro 0 1 r
o = ((al,al,...,al),(az,a2,...,a2 ,)...,(an,an,...,an"))
where a2, a! a’t. al al al? al. al a’ are elements in D for which
1y Wy ooy Uy y Uy oy ooy tg ooy Wy Wyy ..oy Uy

there exists f(z) € Dlxz] such that f(™(i;) = aj* for all j = 1,2,...,n and
m = 0,1,...,r;; where f™(i;) = ay* denotes the m™ derivative of f(x) eval-
uated at the point 7;, be a differential polynomial sequence of length n and order

(ri,72,...,7r,) with respect to /. Denote by pﬁ ; the set of all differential polynomial



68

sequences of length n and order (ry, ..., r,) with respect to I.

In this chapter we will first characterize pf’ ; over D using the generalization of

Hermite’s interpolation formula.

Definition 5.1. Let D be an integral domain, R = (r1,79,...,7,), L = (i1,92,...,1,)

in D" where i; # i, if j # m and

o = ((a?,ai,...,a?),(ag,aé,...,a?,)...,(ag,a}b,...,a;’l))
where a¥,al, ... a*,ad,ad, ... a2, ... a% al, ... a’ are elements in D. Let
pfilz{%: ((a?,a%,...,a?),(ag,aé,...,ag"’,)...,(ag,ai,...,a;"))
where ¥, ay,...,a", ay,ay,...,a%, ... ad,ar,...,a" € D | there exists

f(x) € D[] such that f™ (i) = aj', forall1 < j <n,0 <m <7}

be the set of all differential polynomial sequences of length n and order (71,7, ...,7,)
with respect to /. We call o/ an element in pﬁ’ ;» a differential polynomial sequence
of length n and order (11,79, ..., r,) with respect to I.

If r; = kforall j =1,2,...,n, then we let pff} = pf ;. We call &/ an element

in pff), a differential polynomial sequence of length n and order £ with respect to /.
We next define some definition as follows:
. fD=Zand I = (1,2,...,n), then we let p%k) = pflk} We call o7 an element

in @S“), a differential polynomial sequence of length n and order k.
2. If I = (c) where ¢ € D, then we let pgkc) = pff} We call &7 an element in pgkc),

a differential polynomial sequence of length 1 and order k& with respect to c.

Example 38. Let D = Z, I = (1,4,5) and o = ((4, 8), (1036, 1283), (3140, 3128)).

We see that there exists f(r) = 2° + 62° € Z[z] such that

f(1) =4, f(4) = 1036, f(5) = 3140,
F(1) =8, f'(4) = 1283, f'(5) = 3128.

So o € pi(,,l}



69

Example 39. Let D = Z, I = (1,2,3) and o = ((4,8), (38,83), (252, 408)). We

see that there exists f(z) = x° 4+ 62* € Z[z] such that

f(1) =4, f(2) = 38, f(3) = 252,
F(1) =8, f'(2) = 83, f'(3) = 408.

So o/ € pgl).

Example 40. Let D = Z, ¢ = 2 and 7 = ((38, 83, 160, 240, 240, 120)). We see that

there exists f(x) = x5 + 62° such that
£(2) =38, f'(2) = 83, f"(2) = 160, f®(2) = 240, f¥(2) = 240, f®(2) = 120.
So o/ € pg

Throughout let D be an integral domain, D be a quotient field of D,
I = (iy,i9,...,4,) in D™, R = (ry,r9,...,7,) and n be a positive integer. The set

pf; ; 1s a group under addition. We will show this as follows:

For any
(0 1 r 0 1 T2 0 1 -
ssz((al,al,...,al),(aQ,aQ,...,aQ),...,(an,an,...,an))
and
. 0 11 1 0 1.1 9 0 1 7
@—((bl,bl,...,bl),(b2,b2,...,b2),...,(bn,bn,...,bn"))
where @y, ... ap',...,ab, ... am b0, D, L B0, L. bl are elements in D. we
define

A+ B=(a]+0],....a7 +b1),....(a) + by, ...,a" + b))

where @i +09, ... al + 07, ... al + 80, ... a’" + b" are elements in D. It is easy

to see that &7 + X = B + .
Theorem 5.1. pﬁ ; is an abelian group under addition.

Proof. Let o/, B, € € pf’ ; where

_ 0 1 1 0 1 9 0 1 T
M—((al,al,...,al),(az,aQ,...7a2),...,(a a ...,a”)),
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B =((b0,by,...,07"), (b9, by, ..., 05), ..., (by,by,....00m)
C = ((cg,ci,...,cql),(cg,cé,...,cgz),...,(c%,c;,...,cg")).
Then there exist f(z), g(x), h(x) € D[z] such that

FUG5) = al, g"™ (i) = b R (i) = &
for1 < j <mnand0 <m < r;. We next show that pﬁ ; 1s a group under addition.
1. Forall o/, % € pf ;, we have
A+ B=(a)+),....al +07) ..., (a)+0b0,....a" + b))

= (((F+9) @), (F+9)"@0)) s (f+9)n)s oo (f +9)T(n))) -

Since f(x),g(x) € D[z, (f +g)(x) € Dlx].
Hence o/ + % € pf .

Thus (pf 1, 1) is closed under addition.

2. Let 0 = ((0,0,...,0),(0,0,...,0),...,(0,0,...,0)). There exists f(z) = 0
in D[z] such that f™(i;) = Oforall1 < j <nand0 <m <r;.So 0 € pf,.

Moreover

So 0 is the identity.
3. Forall & € pff;, there exists
—o = ((-d},—ay,...,—al") ..., (—a), —ay,...,—a)"))

a differential polynomial sequence of length n and order (ry, 75, ..., r,) gener-

ated by — f(z) such that
A+ (—d)=0=—o + .

Thus —.«7 is the inverse of 7.
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4. It is easy to see that the associative law holds.
Therefore pf’ ; 1s an abelian group under addition. ]

Lemma 5.2. If o/ € p" then ¢ - o € | for any c € D.

Proof. Let
_ 0 1 r1 0 1 ro 0 1 r
o = ((al,al,...,al),(az,a2,...,a2),...,(an,an,...,an"))
where a¥,al, ... al',a,al, ..., ak?, ... a8, al, ... a’ are elements in D. Then

there exists f(z) € D[z] such that f(™)(i;) = a” forall 1 < j <nand 0 < m < ;.

Then

c-;zf:o((a?,...,a?),(ag,...,a’;),...,(ag,...,a;"))

_ 0 1 0 9 0 T
—((c-al,...,c-al),(c-aQ,...,c-%),..., c-an,...,c-an"))

- ((cf(il), o ,cf(”)(z'l)), (cf(ig),. .. ,cf(”)(Q) e (ef(in), ... ,cf(“‘)(in)))

So g(xz) = c¢- f(x) € D[z] generates ¢ - <7 .
Thus ¢ - .o € pf;. O

5.2 Properties of the differential polynomial sequences

For a fixed sequence [ as above and a sequence

_ 0 1 r1 0 1 ro 0 1 r
sz—((al,al,...,al),(az,a2,...,a2,)...,(an,an,...,an"))
h 0o ,1 1 o ,1 T2 0 1 Tn l : D h :
where aj, aj,...,a", a3, a5,...,a5%, ... a,,a,,...,a" are elements in D, there is

the generalization of Hermite’s formula H ., (x) such that
Hy)(ij) =a (1<j<n,0<m<ry).

Lemma 5.3. Let I = (iy,is,...,1,) € D" and

with degree n + 37| ;. Then p™ (i) =0forall1 <j<nand0<m<r,
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Proof. Let I = (iy,i9,...,0,) € D™,
p(x) = (x — i)z —ip)™* o (2 —4n) ! € Dla],

and B](I> = (.CL’ — i1>r1+1 s (LU — ’ij,1>rj_1+1($ — ij+1)r-7+1+1 s (I — in>r"+1 for all

1<j<n.Sop(xz)=(xr—1i;)""'B;(x)forall 1 < j <n.By Leibniz’s Lemma we

have
p(m)(m) _ Z (T) ((m _ Z’j)Tj+1)(t) B](m—t) (x)
= (z — i) B () + t_zl (T:) (rj + D — i) B (a),

It is easy to see that p™(i;) = 0 forall 1 < j <nand0 < m < r;.

Thus p™(i;) = 0forall1 < j <nand0<m <r;. O
Theorem 5.4. Let [ = (iy,is,...,1,) € D™ where i;’s are all distinct and
0 1 0 1 0 1 n
o = ((al,al,...,a’{l) , (az,a2,...,a;2,) ce (an,an,...,a; ))
where al,ai, ... a}*,aS,ad, ... ak2, ... a8 al, ... a’ are elements in D. Then o/
is a differential polynomial sequence of length n and order (11,79, ...,ry,) With re-

spectto I ifand only if H () is a polynomial in D[] of degree less thann+) 7, 7.
Furthermore, H./(x) is the unique polynomial of degree < n + 2?21 r; in Dg|x]

where D, is the quotient of D, such that

HY (i) =a) (1<j<n0<m<ry).

Proof. If o/ € pff;, then there exists f(x) in D[x] such that f m)(3,) = ay* for all
1 <j<n0<m<ru. Letp(x) == (x — i) Ha —ig)2t - (x — i) be
a polynomial in D[z]. Thus degp(z) = n + >_7_, ;. Since p(x) is monic, by the
division algorithm, f(z) = q(x)p(z) + r(x), where ¢, r € D|x] with

degr <mn+ 377, r;. Then

f'(@) = ¢ (z)p(x) + q(x)p'(x) + r'(x)

f(@) = ¢"(2)p(z) + 24 (x)p'(x) + q(2)p" (z) + r"(2)
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1) = 3 (10)p @)+ o),
m=0

From Lemma 5.3, we have p(m)(ij) =0foralll < j <nand0 < m < ry.
Evaluating at the points i; (1 < j < n), we see that 7™ (i;) = a7 forall 1 < j <n
and 0 < m < r;. Since H,(x) is the unique polynomial in Dg[z] of degree less
than n + Z?:l r; such that Hy)(ij) =afforalll < j <mnand0 < m < 1y,

r(z) = H.(x). The remaining assertions are trivial. O

Given a set of n + Y7, r; points (i;,a}") (j = 1,...,n,m = 0,1,...,7)),

with distinct 7;, and aj' being in D, the Newton form of generalization of Hermite’s
formula corresponding to the points (i;,a}') (j = 1,...,n,m = 0,1,...,7;) is

defined as

i1

Nog () = [in] + lin, ia)ps, (%) + -+ + [i, i, do] P} (2)+

rr+1
[il,...7i1,i2,i2]pi2(l’>+"'+[il,...,il,ig,...,ig,...,in,...,in]pgs(ﬂf)
ry+1 ri+1 rog+1 rn+1
where
j—1
pl(z) =[] —in)"Me—i), 1<j<nl<qg<r+1
h=1
and
Jj Tk
. .. . . . 1 1 —m),.
TR STy PV PYRIE PRI M %mgfzk m)(zk)agZ
1 ra+1 i+ 1 k=t m=0 " UH '
for 1 < j5 <nand
1

Gi (‘T) = (

xr — ?:1)7‘14’1 e (:C . ?:k‘71>7’k—1+1<x _ ik+1)rk+1+l L. ([If _ ?:j)TjJ'_l
for 1 < k < j. Theelements 1, p; (z),..., i (x) are referred to as the basis polyno-

mial of the corresponding the Newton form of generalization of Hermite’s formula.



74

Theorem 5.5. Let

_ 0 1 1 0 1 ro 0 1 r
o = ((al,al,...,al ) , (a2,a2,...,a2 ,)...,(an,an,...,&n”))
where al,al, ... a}',aS,as, ... ak?, ... a8, ak, ... a’" are elementsin D. Let

Ny (@) = [i] + [i, ia)pi, () + -+ [in, . dn, do]pf T () +
—_——

r1+1
[il, e ,il,ig,ig]piQ(I) 4+ -+ [il, e ,il,ig, e ,ig, C.e ,in, e ,Zn]p::(l')
ry+1 ry+1 ro + 1 ™+ 1
be a polynomial in Dg|x] where
j—1
ple)=[[@—in @ =i, 1<j<nl<q¢<rj+1
' h=1
and
i Tk
) .. ) ) ) 1 1 —m) .
[21,...,117227...,22,...72]',...,Zj] = ﬂ?mgfzk m)(2k>a7]zl - DQ
r+1 ro+1 i+ 1 k=1 m=0 "

for1 < j <nand

Giy, ($) = (

€T — 2‘1)7‘14’1 e (:L‘ — Z‘k;f]_>rk_l+1<x i ik+1)rk+1+1 e (x _ ij)'f'j+1

for1 <k <j. Then Ny (x) = Hy(x).

Proof. The generalization of Hermite’s formula H ., (x)of <7 is the unique polyno-
mial with coefficients in D of degree < n + 37, r, such that Hf?;n) (i) = a
foralll < j < mnand0 < m < r;. Since A" (i;) = al" = HU (i) for all
1<j<n,0<m<r;and Ny(v)is the polynomial of degree < n+ »_"_, r;, they

are identical. OJ

Remark Let H,,(z) = cpra™ +cppo12™ 1+ -4+ cjz+co where M = n— 1+

>_j—1 7 be the polynomial in D[z] with degree < n + >_"_, ;. Since

Ny(x) = Hy(x) and [iy, ... 01, ., in,...,1,] is the coefficient of xM,
S—— S——
r1+1 rn+1
[’il,...,il,...,in,...,in] =cCy € D.
—_——

r1+1 ™+ 1



We see that [iy,...,%1,...,0n,...,1,] is the coefficient of z*/~! in polynomial
——— ——
ri+1 Tn
. . . . . 1 . "
N () = ity oyt yiny ey (m— i) T (2 — )"
—— ——
7’1“1’1 rn +1

which is an element in D. Similarly by the same reasoning,

R P S5 P [ S PP S PP MU
\—— N—_——
ry+1 rm — 1

are elements in D. Therefore H,,(z) € D[z] if and only if A, (z) € D[z].

Example 41. Let D = Z and ¢ € Z. We now compute . and pgl).

1. Forany ¢ € Z, p. = Z since f(z) = aj and f(c) = a;.

(1)

2. p¢’ =7 x Zfor any ¢ € Z since f(z) = alz + (af — aic) gives f(c) =

and f'(c) = al for any %, al € Z.

Example 42. Let D = Z, o = ((18,16,6)) € Z* and ¢ = 2.
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0
ap

Let f(x) = 3z* + 4z — 2. Then we see that f(2) = 18, f’(2) = 16 and f"(2) = 6.

So the sequence .7 is a difference polynomial sequence of length 1 and order 2 with

respect to 2.

Example 43. Let D = Z and ¢ € D. The sequence ((0,0,0,1)) ¢ o for any inte-

(3)

ger c. Suppose that the sequence ((0,0,0,1)) € pc . Then there exists a polynomial

f(z) € Z[z] and a constant ¢ € Z such that f(c) =0, f'(c) =0, f"(c) =0
f®(c) = 1. Since f(c) =0, f'(c) =0, f"(c) = 0, we get that (x — c)?| f(x).
Let f(x) = (z — ¢)3g(z) where g(z) € Z[z]. Then

f'(@) =3z — 0)*g(2) + (v — ¢)’d/(2),
["(z) = 6(z — c)g(x) + 6(z — )’g'(2) + (v — )’ (2),

() = 6g(x) + 18(x — )¢ (x) + Iz — 0)*¢"(x) + (x — ¢)’g¥ (x).

We see that f¥)(c) = 6g(c) = 1. So g(c¢) = & ¢ Z. This is a contradiction.
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Theorem 5.6. Let

(A0 1 " 0 1 ro 0 1 r
42%—((al,al,...,al),(aQ,QQ,...,aQ,)...,(an,an,...,an”))
where a9, al,... a*,ad,al,. .. a2, ... a2 al, ... a"™ are elements in D. Then

o € ple if and only if

[i], [E1, 1], ooy [i1y ooy Bty ey e e ey )
—_——
r1+1 rn +1

are elements in D.

Proof. The result follows immediately from Theorem 5.4 and Theorem 5.5. So

N (x) has coefficients in D if and only if H,,(z) does. O

Next we will characterize the differential polynomial sequence of length 1 and

order k with respect to ¢ for any constant ¢ € D.
Corollary 5.7. Let o« = ((a°,a',...,a%)) € D*' and c € D. Then there exists
T () = by +bi(x —¢) +by(x — c)* + -+ bp(x — ¢)* € Dglr]ps

where

forall j =0,1,2,...,k suchthat 7Y (c) = o’ forall j = 0,1,2,... k.
Furthermore o/ € p((;k) ifand only if b; € D forall j = 0,1, ... k.

Proof. The result follows immediately from Theorem 5.6. ]

Example 44. Let & = ((1,3,5,7)) € Z* and ¢ € Z. Then we get

b0:1—30+5762—%63
7c?
b1=?;—57c+7
c
b2:g—?
b3:6.

So the polynomial f(x) such that f(c) = 1, f'(c) = 3, f"(¢) = 5and f®(c) = T is
fla) =32 + (5 = §)a? + (3 = Be + ) + (1= 3e + % — I0).
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(k)

l,c*

Next we will show how to turn a sequence .7 € (D**1) to be a sequence in p

Corollary 5.8. If o/ = ((a°,a',...,a")) € D¥*! then klof € o).
Moreover, k! is the least positive integer for which this is true for every sequence of

length 1 and order k with respect to c.

Proof. Denote the sequence k! by ((c%,c',...,c")) and let b, b}, ..., b}, be the
corresponding sequence of coefficients defined in Corollary 5.7.

Note that j!|k! for all 0 < j < k. Hence each b;. is an element in D. So kl.&/ € pgk)

To see that this result is the best possible, consider <7 = ((0,0,...,0,1)). Then for
allj =0,1,...,k,b; = ‘;—J, and in particular, b, = %

Hence the least positive integer m such that m.e7 is a differential polynomial sequence

of length 1 and order k is m = k!. [

Example 45. Let D = Z[i], & = ((2i,3i,17+14,1)) € Z[i]* and ¢ = T+ € Z[i]. By
Corollary 5.7, &7 ¢ pf}’g We see that the sequence 3l.e/ = ((12i, 36i, 204 + 124, 12))
in (Z%). There exists g(r) = 12i+36i(z—7—1)+(102+6i)(x—7—i)*+(z—7—1)3 €
Zl[i][x]4 such that g(7 + i) = 124, ¢’ (7 + ©) = 364,

g"(7+1i) = 204 + 124, ¢® (7 + i) = 12. Hence 31/ € p\”.

Example 46. Let D = Z, o = ((2,3,17,21)) € Z* and ¢ = 7 € Z. By Corollary
5.7, o ¢ pﬁz We see that the sequence 2.7 = ((4,6,34,42)) € (Z*). There exists
g(z) = —1606 + 797z — 1302* + T2* € Z|x]4 such that g(7) = 4, ¢'(7) = 6,

g"(7) = 34,¢®)(7) = 42. Hence 247 € "),

Example 47. Let D = Z, o/ = ((1,0,0,0)) € Z* and ¢ € Z. We see that there exists
f(x) = 1such that f(c) = 1, f/(c) = 0, f"(c) = 0 and f®(c) = 0. So . € pi”.

Example 48. Let D = Z, o = ((0,1,0,0)) € Z* and ¢ € Z. We see that there
exists f(x) = —c + x such that f(c) = 0, f'(c) = 1, f’(c) = 0 and f®(c) = 0. So
o € p?)

Example 49. Let D = Z, o/ = ((0,0,1,0)) € Z* and ¢ € Z. There exists f(z) =
¢ —cx+ 2 such that f(c) = 0, f'(c) = 1, f"(c) = 0, f®(c) = 0. So o ¢ .

2
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We see that g(z) = 2f(z) € Z[z] and g(c) = 0,¢'(c) = 0, ¢"(c) = 2 and ¢} (c) = 0.

So g(x) generates 2.o7. Hence 297 € pﬁz

To see that 3! is the best integer such that 3lo/' € pg?’g, we can see from the

following example.

Example 50. Let D = Z and &/ = ((0,0,0,1)) € Z* and ¢ € Z. Then there exists
f(x) = =< + Sa— S+ 2 such that f(c) = 0, f(c) = 0, f"(c) = 0, fP(c) = 1.
Since f(z) ¢ Z[z], o ¢ pf"g We see that g(z) = 3!f(x) = —c® + 3c*x — 3ca? + 23
and g(c) = 0,4¢'(c) = 0,g"(c) = 0,9®)(¢) = 6. Hence 3.7 € pf)’z

For ¢ € Z and k = 3 we can multiply the sequences in Example 47, 48 and 49 by
1,1 and 2 respectively to make the sequences in these examples to be the differential
polynomial sequences of length 1 and order 3 with respect to c. By Corollary 5.8 the
best integer m that is true for all the sequences in Z* with respect to ¢ € Zis m = 3!
which we can see by Example 50 that we need 3! to make the sequence in Example
50 to be the differential polynomial sequence of length 1 and order 3 with respect to

c.
Corollary 5.9. Let D =7, [ = (1,2) and o = ((a},al), ((a3,ad)) € (Z*)2. Then
o € pgl).
Proof. By Theorem 5.6, A € pél) if and only if

] =a"[1,1] =a1,[1,1,2] = a3 — a} — a' and [1,1,2,2] = 2a? + a] — 2a3 + a;
are integers. [

Example 51. Let «/ = ((3,13),(22,9)) € (Z*)?. By Corollary 5.9 we see that
g € pg). In fact, the unique Hermite’s polynomial formula of o7 with degree less
than 4 such that

Hy(1) =3, Hy(2)=22

H.,(1) =13, H.,(2) =9,

18

H,(z) = =53 + 101z — 562% + 112° € Z[x].
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Corollary 5.10. Let D = Z, I = (1,2,3) and & = ((a, a}), (a3, a}), (a3, a3)) in
(Z?)3. Then o € p lf and only if either one of these holds:
I. al =a}=1,3 mod 4andal =a} +2 mod 4 or
2. al =at=0,2 mod 4and a? = al mod 4.
Proof. By Theorem 5.6, A € pg) if and only if
[1] =al,[1,1] = a,[1,1,2] = —a) — a7 + a3,
[1,1,2,2] = 2a) + a; — 2a3 + a3,

5 1 0
[1,1,2,2,3] = (— @ ai 2—a2+%>,

4 2 4
300  al 3a3 al
1,1,2,23 3] = =2+ 2+ +at — =2+ 3
[ ] ( g T TR Ty
are integers. Those rational numbers are integers if and only if n, = —ﬁ — ai +
and ny, = % + azl — 3%8 + % are integers. So ny —ny = a(l) + ?% — a3 + 3 is integer.

This implies that a} = @i mod 4. If al = 0,2 mod 4 then a{ = aJ mod 4 and if
al =1,3 mod 4 then af = a3 + 2 mod 4.

For the converse it is easy to verify that if a9, al, a3, a} satisfy the conditions

in the theorem then [1],[1,1],[1,1,2],[1,1,2,2],[1,1,2,2,3] and [1,1,2,2, 3, 3] are

integers. O]
Example 52. Let &7 = ((4,4), (3,3),(12,12)) € (Z?*)*. Since
4=12=0 mod 4,

we have &7 € pél) by Corollary 5.10.

In fact, the generalization of Hermite’s formula for <7 such that

Hy(1) =4,Hy(2) =3, Hy(3) = 12,

HL(1) = 4, H.,(2) = 3, HL,(3) = 12,
18

H,(z) = =51 + 147z — 1442* + 642” — 132" + 2° € Z][x].



Example 53. Let o7 = ((4, 2),(3,3), (12, 10)) € (Z*)3. Since
4=12=0 mod4and2=10=2 mod 4,

we have o7 € " by Corollary 5.10.

In fact, the generalization of Hermite’s formula for .27 such that

Hy(1) =4, Hy(2) =3, Hy(3) = 12,

H!,(1) =2, H.,(2) = 3, H/,(3) = 10,
is
H,/(x) = —27 + 79z — 702* + 252° — 32* € Z[x].
Example 54. Let o7 = ((5,4), (3,3), (9,12)) € (Z*)*. Since
5=9=1 mod4and4=12=0 mod 4,

we have &7 € pgl) by Corollary 5.10.

In fact, the generalization of Hermite’s formula for .27 such that

Hy(1) =5,Hy(2) =3,Hy(3) =9,

H,(1) =4, H,,(2) =3, H,(3) = 12,
is
H,(z) = —99 + 303z — 3322° + 1712° — 422" + 42° € Z[z].
Example 55. Let o7 = ((5,2), (3,3), (9,10)) € (Z?*)*. Since
5=9=1 mod4and2=10=2 mod 4,

we have &7 € pg) by Corollary 5.10.

In fact, the generalization of Hermite’s formula for .7 such that

Hy(1) =5,Hy,(2) =3,H,(3) =09,

H;,(1) =2, H,(2) =3, H,,(3) = 10,
is

H,(z) = =75 + 2351 — 2582% + 1322° — 322 + 32° € Z[z].

80
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Example 56. Let o7 = ((6,4), (3,3), (14,12)) € (Z?)*. Since
6=14=2 mod4and4=12=0 mod 4,

we have &7 € pgl) by Corollary 5.10.

In fact, the generalization of Hermite’s formula for .7 such that

Hy (1) =6, Hy(2) = 3, Hy(3) = 14,

H,(1) =4, H,(2) =3, f'(3) =12,
is
H(x) = —67 + 195z — 1882° + 802° — 152" + 2° € Z[z].
Example 57. Let &7 = ((6,2), (3,3), (14,10)) € (Z*)3. Since
6=14=2 mod4and2=10=2 mod 4,

we have &7 € @él) by Corollary 5.10.

In fact, the generalization of Hermite’s formula for .7 such that

H,(1)=6,H,(2) =3,H,(3) = 14,

Hy,(1) =2, H,(2) =3, H,,(3) = 10,
is
H,(z) = —43 + 1272 — 1142” + 412 — 52* € Z[].
Example 58. Let o7 = ((7,4), (3,3), (11,12)) € (Z*)3. Since
7=11=3 mod4and4=12=0 mod 4,

we have &7 € pél) by Corollary 5.10.

In fact, the generalization of Hermite’s formula for .7 such that

T

Hy(1) =17 Hy(2)=3, Hy(3)=11,
H,(1) =4, H,(2)=3, H,(3)=12,
is

H,(z) = —115 4 351z — 3762% + 1872% — 442" + 42° € Z[x].
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Example 59. Let o7 = ((7, 2),(3,3), (11, 10)) € (Z*)3. Since
7=11=3 mod4and2=10=2 mod 4,

we have o7 € " by Corollary 5.10.

In fact, the generalization of Hermite’s formula for .7 such that
3,
3,
is

H, () = =91 + 283z — 3022° + 1487* — 34" + 32° € Z|x].

Corollary 5.11. Let o = ((af,ai,a}), (a3, a3, a3)) € (Z*)2

Then o € o) if and only if a* and a2 are even.

Proof. Since A € ) if and only if

1
a
1] =a% [1,1] = al,[1,1,1] = 31

[1,1,1,2] = af — a) — a7 — a2,
[1,1,1,2,2] = 3a} + 2a} — 243 + a} + a?,
2
[1?1717272a2] = —60?—3ai+a%+ag—3ai+%
are integers. The result follows. O]

Example 60. Let & = ((3,7,10),(4,5,6)) € (Z*)%. Since 10 and 6 are even, by
Corollary 5.11 o7 € pg).

In fact, the generalization of Hermite’s formula for .7 such that

is

H,(z) = 182 — 695z + 10272% — 7242° + 2452 — 322° € Z[z].
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Example 61. Let & = ((3,7,103), (4,5,11)) € (Z?*)*. Since 103 and 11 are not
even, by Corollary 5.11 we obtain that .o/ ¢ pg).

In fact, the generalization of Hermite’s formula for .7 such that

Hy(1) =3,  H,(2) =4
H,(1)=7 H,2)=5,
H”(1)=103, H/(2)=1
is

1929 1353 455 59
H(v) = 172 — 655z + 2:#— 5 ﬁ+~5ﬂ#—§w5¢mﬂ.
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CHAPTER 6

Conclusion

In this chapter we will summarize all of the results in Chapter 3, 4 and 5.

1. Polynomial sequences over integral domain

Let I = (iy,1s,...,4,) € D™ where i;’s are all distinct and

a=(ay,a,...,a,) € D" Let
P, ={a e D" | there exists f(x) € D[z] such that f(i;) = a;, forall1 < j <n}

be the set of all (D™, I)-polynomial sequences. We call @ an element in P, , a
polynomial sequence over D with respect to I or a (D", I')-polynomial sequence.
If I = (1,2,3,...,n), then we write P, for P, ; and call an element in P,, a

polynomial sequence. Then we have the results as follows.

1. P, is a group under addition.

2. Ifae P,;thenca € P, forany c € D.

3. Ifa,be P,rthena-b € B, .

4. (P,1,+,-) is a commutative ring with identity 1.

5. Let r(z), s(z) € Dg|x],, where r(x) and s(z) agree at n distinct points. Then
r(z) = s(z).

6. Let I = (1,42, ...,1,) € D" where i;’s are all distinct and

a = (ay,as,...,a,) € D™ Then a is a (D", I)-polynomial sequence if and
only if L, ;(z) € D[z],, the set of all polynomials in D[z| of degree < n.
Furthermore, L, ;(x) is the unique polynomial of degree < n in Dg[z] that

generates a.
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. Leta = (a1, aq,...,a,) € Z". Thena € P, if and only if L,(x) € Z[z],. Fur-

thermore, L, (z) is the unique polynomial of degree < n with real coefficients

that generates a.

. Leta = (al,ag,...,an) € D" Let

N (x) = bo,1pi, () + by pi, () + -+ by_1,1pi, , (z) € Do ]

where

Aj41
bk]—z = fAs € Dg, (k=0,1,...,n—1).

H (4541 — im)

m=1

m£j+1

Then Na,[(x) = La’[(l’).

. Leta = (ay,as,...,a,) € Z". Let

Nao(z) = bopo() + bip1(z) + bapa(x) + -+ + bp_1pp—1(7)

where
k+j

k
§ a]+1

=0 J
fork=0,...,n— 1. Then N,(z) = L,(x).

Let f(x) € Dlxz],. Then there are unique elements in D by 1, b1 7,...,0p—11
such that f(x) = bo 1pi, (x) + b1 iy () + -+ - + bu1.10i,_, ().

Let f(z) € Z[z],. Then there are unique integers by, by, ..., b,_1 such that
f(I) = bopo(l’) + blpl(x) + et bnflpnfl('r)-

Leta € D". Then a € P, if and only if

Qj41
b“_z o It (k=0,1,...,n—1)

H (4j+1 — Pm)

m=1

m##j+1

is an element in D.
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Leta € Z". Then a is a polynomial sequence if and only if for all

k=0,1,...,n — 1then

1s an integer.

For any I = (i) € Z, we have P, ; = Z.

For any @ = (ay, as), I = (i1,12) € Z* where iy < iy, we have
a € Pyrifandonlyif a; = ay mod (iy — i2).

In fact if I = (1,2) then P, = Z*.

For any @ = (ay, as,as), I = (i1,149,13) € Z3 where i; < iy < i3, we have

a; —a

(as _ a2). * m(” ,_ is) and m = — ,2 are integers.
(41 — 13) (12 — i3) 11 — 12

In factif 7 = (1,2, 3) then Py = {(ay,as,a3) € Z* | a; = ag mod 2}.

a € Psif and only if

Let I = (iy,%2,...,4,) € D" with distinct i;, let a = (ay,as,...,a,) in D"

and let
n—1 n

M=][M; where M;= ][ (ijr1—in)forallj=0,1,2,...,n—1
§=0

m=1,

m#£j+1
Then Ma = (May, Mas, ..., May,) € P, .

Moreover, if the integral domain D is a unique factorization domain, then
M'a = (M'ay, M'ay, ..., M'a,) € P, where M' = lem{M;}—]

and M’ is the minimal element in D for which this is true for every sequence

of length n.
Leta = (a1, aq,...,a,) € Z™. Then
(n—1la= ((n—1lar, (n—1las,...,(n—1)la,) € P

Moreover, (n — 1)! is the least positive integer for which is true every sequence

of length n.
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The group P, ; is isomorphic to D[z],,.

20. Forn > 2, let I = (iy, i, ..., i,) € D" If

21.

22.

23.

24.

25.

k—1 k—1

16 —im)/ [ Gir—im) €D (1<k<j<n),
then
D" /P, 1 = D/(ia—i1)D®D/ (ig—i1)(is—i2) D®- - - ®D/ (in—11) - - - (in—in-1)D.
D"/ P, ; is a finite abelian group of the form
D/dy1 /D& - & D/do D& DJdy D

where dy ;| doy |-+ | dp11.

If I =(1,2,...,n) (n > 3), then Z"/P, is a finite abelian group with Smith
normal form

Z/in—-1)Z& - - ©L/3L DL/
and Smith invariant ((n — 1)!,..., 3!, 2!). Moreover, |Z"/P,| =[]/ i..

Let a, ¢ be elements in D and n > 2. If i), = aq¢® (1 < k < n), then

n—1
n—1 . .
D"/P,; = D/aq(q—1)D&D/a’q""*(¢*~1)(¢—1)D®- - -©D/a" ' ¢>== " [ [ (¢'~1) D.

=1

Forn > 2,if iy, —ix isaconstant c € D forall 1 < k < n — 1, then
D"/P,; 2 DJc-D®D/2'¢*D® D/3\*D @ ---@® D/(n— 1)l 'D.
Forn > 3,and I = {1,2,...,n} then

7" /P, 2 T)ALS LTS - DL/ (n— 1)Z.
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2. Difference polynomial sequences

For a fixed n € N, we consider a sequence ¢ = (c1,¢,...,¢,-1) € 71, call €
a difference polynomial sequence of length n if there exists f(x) € Z[x| such that
Apf(i) = ¢; forall 1 < i < n — 1. Denote by AP, the set of all difference
polynomial sequences of length n — 1. We will characterize AP, using difference
of Lagrange and (implicitly) Newton interpolation polynomials, and determine the
structure of Z"~1 /AP, and P,_,/AP,.

Definition: Let f(x) € Z[z|. Then we define

Apf(z) = fle+1) = f(2).
1. With the above notation, for any f(z), g(z) € Z[z]

a) AFQ?()(I')) = ( and AF(pl(l')) = Zpl_l(fﬁ) for ¢ 2 1.
b) Ap(cf(z)) = cApf(z) for any constant c.

c) Ap(f+9)=Arf+ Apg.

n—1
2. Forany a € P, and N;(z) = Z b;p;(x), then
=0

[\

n—

ApNo(a) = (i + Dbiapi(a).

s
Il
=)

3. Ifae P,then Aa € P,_;.

Definition: Let n be a positive integer. Let ¢ = (cy,¢a,...,¢,1) € Z" 1. We

define

AP, = {¢c € Z'" ! | there exists f(z) € Z[x] such that Arf(i) = ¢,

forall1 <i:<n-—1}.
Definition: For any positive integer n, let
AZ[z), = {f(x) € Z]x],—1] there exists g(x) € Z[z], such that Ar (g(x)) = f(z)}.

Then we have the results as follows.
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1. AZ[x], is an abelian group under addition.
2. AP, is an abelian group under addition.

3. The group AZ|[z], is isomorphic to AF,.
4. For any positive integer n > 2,

Z" VAP, 2 ZNZ LT L3S - &L/ (n—1)Z.
5. Forn>2,P, /AP, 2 Z)7.SL)27. S L)37 & --- B Z)(n — 1)Z.

6. Letc = (c1,¢oy...,Cn 1) € Z"* with Ng(z ZdeZ ) for some d; € Q.

Then ¢ € AP, if and only if (i + 1)|d; for all 0 S i S n—2.

7. Suppose ¢; € Z" L. Let &, = Ay, ¢35 = AGy = A%6y, ...,
¢ = AG,_y = AF1¢ for 1 < k < n — 2. There exists @ € P, such that

Aag = ¢; for 1 < j < k if and only if

a) (t+1)(i+2)---(i+ /{:)]bl(k) where

1

i b pi(x)

n

=0
forall0 <:<n—k—1and
b) j']al where Ala = (ag ),agj),..., a,’ j) forall1 < j <k.
3. Differential polynomial sequences
Let D be an integral domain, R = (ry,re,...,7,), I = (i1,42,...,1i,) in D™ where
tj 7 im if j # m and
o = ((a?,ai,...,a?) , (ag,aé,...,a?,)...,(a%,ai,...,aﬁ"))
where a?,al, ... a* ad,ad, ... a2, ..., a® al, ... a’ are elements in D. Let

1 r1 0 1 T2 0 1 T
o ={o = ((al,ay,...,a"), (a3, a3,...,a%?,) ..., (ad,a, ..., a"))
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where i, ay,...,a", ay,ay,...,a%2, ... ad,a,...,a" € D | there exists

bl n’ n’

f(x) € D|x] such that f(m)(ij) =aj', forall1 <j<n,0<m<r;}

be the set of all differential polynomial sequences of length n and order (11,72, ...,7,)
with respect to I. We call </ an element in pﬁ ;» a differential polynomial sequence

of length n and order (11,79, ..., r,) with respect to I.
(k

n,

If rj = kforall j =1,2,...,n, then we let p ) = ggﬁl. We call .« an element

in pgf), a differential polynomial sequence of length n and order £ with respect to /.

We next define some definition as follows:

. fD=Zand I = (1,2,...,n), then we let pgﬁ) = pff} We call o7 an element

in pq(f), a differential polynomial sequence of length n and order k.

2. If I = (c) where ¢ € D, then we let pgkg = pff} We call .o/ an element in pgkg

a differential polynomial sequence of length 1 and order k£ with respect to c.

Then we get the results as following:

1. pf; ;18 an abelian group under addition.
2. If o/ € pfthenc- o/ € pff  forany c € D.
3. Let] = (il,ig, . ,Zn) € D" and

p(x) = (-T - i1)T1+1(1’ — 2'2)r2+1 .. (l’ _ in)T"+1

with degree n+"_, 7. Then p™(i;) = Oforall 1 < j <nand0 < m <r;.

4. Let I = (iy,149,...,4,) € D™ where ¢,’s are all distinct and
of = ((a?,a},...,aql) , (ag,aé,...,a?,)...,(a%,a}l,...,a;’b))
where a?, a! a, a9, al ay? al, al a’ are elements in D. Then
1o %1y e oo ™1 » M2y M2y e v ey M2 9 ey My Uy ooy Y .
</ is a differential polynomial sequence of length n and order (71,72, ...,7,)

with respect to [ if and only if H,(x) is a polynomial in D|x] of degree less

thann + >0 7).
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Furthermore, H, (z) is the unique polynomial of degree < n + Z?Zl rj in

Dg|z] where Dy, is the quotient of D, such that

HY (i) =a (1<j<n0<m<r).

j
. Let
o = ((a?,ai,...,a?),(ag,aé,...,a?,)...,(a%,a}l,...,a;"))
where ad,al, ... a', a9, ad,. .. a2, ... a8, al, ... a" areelementsin D. Let

Ny () = [i] + [in, ia]pi, (@) + - 4 [ix, ..., i1, 50)p] T (2)+

1
rt+1
. S . o . ‘ .
i1,y in, do, do]piy () + - A [in, oo i, Gyl iy T D ()
—— ——— ——— —_——
rp+1 ri+1 ro+1 rn + 1
be a polynomial in Dg|z] where
j—1

pi@) = [T =i @ =iy, 1<i<nl<q<n+1
h=1

and
. . . . . . Te—m .
[7/17"'7217227'~-7227"'77fj7-"77/j]: E _—'gzkk (Zk’)azlEDQ

—— —— ~—
r+1 ra+1 rj+1

for 1 < j <nand

Giy, (ZE) = (

T — il)T1+l e (Zl') — ik_l)rk—l-‘rl(:p _ ik+1)7”k+1+1 ... ([If _ i].)rj+1

for 1 <k < j. Then A/ (z) = Hy(x).

. Let
_ 0 1 r1 0 1 ro 0 1 r
o = ((al,al,...,a1 ) , (az,aQ,...,a2 ,)...,(an,an,...,an"))
where ad,al, ... ai*, a9, ad, ... a2, ... a8, al, ... a’™ areelementsin D. Then

o/ € pff; if and only if

[i], [E1, 1], ooy [i1y ooy Bty ey iy e e ey )
——

are elements in D.
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10.

11.
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Let & = ((a°,a',...,a")) € D¥ and ¢ € D. Then there exists
T (1) = by +bi(z —¢) + ba(x — )* + -+ + bp(x — ¢)F € Dglz]pn
where

forall j =0,1,2,...,ksuchthat 7U)(c) = o forall j = 0,1,2,..., k.
Furthermore o/ € pﬁk) ifandonly if b; € D forall j =0,1,... k.

o = ((a°a',...,a")) € D" then ko € pﬁ"ﬁ

Moreover, k! is the least positive integer for which this is true for every se-

quence of length 1 and order k with respect to c.

.LetD=7,1=(1,2)and o = ((d%,a}), ((a3,al)) € (Z*)2. Then o € p\".

Let D =7,1 = (1,2,3) and & = ((a},a}), (a3, a}), (a3, a})) € (Z*)*. Then
A € pél) if and only if either one of these holds:

a) a; =a3=1,3 mod 4anda) =ad+2 mod 4 or

b) a} = a3 =0,2 mod 4 and af = a mod 4.

Let"@{ ((CLI,CLLCL%) (agva%7a2)) (ZS)

Then 7 € o if and only if a2 and a2 are even.
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