

การปรับปรุงประสิทธิภาพการระเบิดหินแข็ง สำหรับหมู่เหมืองเฟลด์สปาร์ จังหวัดนครศรีธรรมราช Improvement of Hard Rock Blasting Efficiency for Feldspar Mine in Nakhon Si Thammarat Province

ทวีศักดิ์ ถิ่นปากพนัง Thawisak Thinpakphanang

วิทยานิพนธ์นี้สำหรับการศึกษาตามหลักสูตรปริญญา วิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเหมืองแร่และวัสดุ มหาวิทยาลัยสงขลานครินทร์ A Thesis Submitted in Fulfillment of the Requirements for the Degree of Master of Engineering in Mining and Materials Engineering Prince of Songkla University 2566 ลิขสิทธิ์ของมหาวิทยาลัยสงขลานครินทร์

การปรับปรุงประสิทธิภาพการระเบิดหินแข็ง สำหรับหมู่เหมืองเฟลด์สปาร์ จังหวัดนครศรีธรรมราช Improvement of Hard Rock Blasting Efficiency for Feldspar Mine in Nakhon Si Thammarat Province

ทวีศักดิ์ ถิ่นปากพนัง Thawisak Thinpakphanang

วิทยานิพนธ์นี้สำหรับการศึกษาตามหลักสูตรปริญญา วิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเหมืองแร่และวัสดุ มหาวิทยาลัยสงขลานครินทร์ A Thesis Submitted in Fulfillment of the Requirements for the Degree of Master of Engineering in Mining and Materials Engineering Prince of Songkla University 2566 ลิขสิทธิ์ของมหาวิทยาลัยสงขลานครินทร์

ชื่อวิทยานิพนธ์	การปรับปรุงประสิทธิภาพการระเบิดหินแข็ง สำหรับหมู่เหมืองเฟลด์สปาร์
	จังหวัดนครศรีธรรมราช
ผู้เขียน	นายทวีศักดิ์ ถิ่นปากพนัง
สาขาวิชา	วิศวกรรมเหมืองแร่และวัสดุ

อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	คณะกรรมการสอบ
 (ผู้ช่วยศาสตราจารย์ ดร.พงศ์พัฒน์ สนทะมิโน)	ประธานกรรมการ (รองศาสตราจารย์ ดร.พิษณุ บุญนวล)
อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม	กรรมการ (ผู้ช่วยศาสตราจารย์ ดร.มนูญ มาศนิยม)
	กรรมการ (ผู้ช่วยศาสตราจารย์ ดร.พงศ์พัฒน์ สนทะมิโน)
	กรรมการ

(ผู้ช่วยศาสตราจารย์ ดร.วิษณุ ราชเพ็ชร)

บัณฑิตวิทยาลัย มหาวิทยาลัยสงขลานครินทร์ อนุมัติให้นับวิทยานิพนธ์ฉบับนี้ สำหรับการศึกษา ตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเหมืองแร่ และวัสดุ

ขอรับรองว่า ผลงานวิจัยนี้มาจากการศึกษาวิจัยของนักศึกษาเอง และได้แสดงความขอบคุณบุคคลที่มี ส่วนช่วยเหลือแล้ว

> ลงชื่อ..... (ผู้ช่วยศาสตราจารย์ ดร.พงศ์พัฒน์ สนทะมิโน) อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก

ลงชื่อ..... (ผู้ช่วยศาสตราจารย์ ดร.วิษณุ ราชเพ็ชร) อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม

ลงชื่อ
(นายทวีศักดิ์ ถิ่นปากพนัง)
นักศึกษา

ข้าพเจ้าขอรับรองว่า ผลงานวิจัยนี้ไม่เคยเป็นส่วนหนึ่งในการอนุมัติปริญญาในระดับใดมาก่อน และ ไม่ได้ถูกใช้ในการยื่นขออนุมัติปริญญาในขณะนี้

> ลงชื่อ..... (นายทวีศักดิ์ ถิ่นปากพนัง) นักศึกษา

ชื่อวิทยานิพนธ์	การปรับปรุงประสิทธิภาพการระเบิดหินแข็ง สำหรับหมู่เหมืองเฟลด์สปาร์
	จังหวัดนครศรีธรรมราช
ผู้เขียน	นายทวีศักดิ์ ถิ่นปากพนัง
สาขาวิชา	วิศวกรรมเหมืองแร่และวัสดุ
ปีการศึกษา	2565

บทคัดย่อ

วัตถุประสงค์ของงานวิจัยเป็นการเพิ่มประสิทธิภาพการระเบิดหินแข็ง โดยแบ่ง การศึกษาเป็น 2 กรณี คือ กรณีที่ 1 เป็นการศึกษาเกี่ยวกับค่า Powder Factor (PF) ที่เหมาะสมที่ให้ สัดส่วนหินก้อนโตลดลงและต้นทุนการระเบิดต่ำที่สุด และกรณีที่ 2 เป็นการเพิ่มประสิทธิภาพการ ระเบิดโดยการอุดรูระเบิดด้วย ปลั๊กยางธรรมชาติและปลั๊กน้ำยางพาราสด โดยทุกรูปแบบจะวิเคราะห์ การกระจายขนาดของหินด้วยภาพถ่ายทางอากาศโดยใช้ซอฟต์แวร์ Rock Image และคำนวณหา ต้นทุนรวมการระเบิด โดยใช้พื้นที่ศึกษาที่เหมืองแร่เฟลด์สปาร์ บริษัท สินหลวง จำกัด อำเภอนบพิตำ จังหวัดนครศรีธรรมราช

กรณีที่ 1 การศึกษาผลการระเบิดโดยปรับค่า Powder Factor ระหว่าง 0.6 – 1.0 kg/m³ แล้วทำการวิเคราะห์ขนาดหินจากการะเบิด การตัดสินใจจะพิจารณาจากค่าใช้จ่าย ประกอบด้วย ค่าเจาะและระเบิดหิน ค่าย่อยหินก้อนโต ค่าเจาะและระเบิดลำดับที่ 2 จากการศึกษา พบว่า การระเบิดที่ค่า Powder Factor เท่ากับ 0.7 kg/m³ เป็นรูปแบบที่มีต้นทุนรวมการเจาะและ ระเบิดต่อตันต่ำที่สุด ที่ 39.51 บาท/ตัน ซึ่งลดลง 10.71 บาท/ตัน เมื่อเปรียบเทียบกับรูปแบบการ ระเบิดปัจจุบัน (ต้นทุน 50.22 บาท/ตัน) มีขนาด d20, d50และ d80 ลดลงประมาณ 10.81%, 19.63% และ 31.31% ตามลำดับ และปริมาณหินขนาดใหญ่ลดลงประมาณ 51.60%

กรณีที่ 2 เป็นการศึกษาการใช้ปลั๊กอุดรูระเบิดเพิ่มประสิทธิภาพการระเบิด 2 ชนิด คือ ปลั๊กยางธรรมชาติ และ ปลั๊กน้ำยางพาราสด โดยเลือกใช้ค่า Powder Factor เท่ากับ 0.7 kg/m³ ในการทดลอง จากการศึกษาสรุปได้ว่า ปลั๊กยางธรรมชาติ ให้ขนาด d20, d50 และ d80 เฉลี่ย คือ 2.20, 5.74 และ 12.43 นิ้ว มีขนาดหินก้อนโตเฉลี่ยเท่ากับ 4.98% โดยมีต้นทุนเฉลี่ยการระเบิด เท่ากับ 40.27 บาท/ตัน และเมื่อเปรียบเทียบกับรูปแบบการระเบิดปัจจุบัน จะมีขนาด d20, d50 และ d80 ลดลงประมาณ 25.68%, 29.14% และ 35.36% หินก้อนโตลดลง ประมาณ 61.98% ต้นทุนรวมการระเบิดลดลงประมาณ 9.95 บาท/ตัน และเมื่อใช้ปลั๊กน้ำยางพาราสด พบว่าหินที่ได้จาก การระเบิดมีขนาด d20, d50 และ d80 เฉลี่ย คือ 2.25, 5.91 และ 12.76 นิ้ว มีขนาดหินก้อนโต เฉลี่ยเท่ากับ 5.38 % ต้นทุนเฉลี่ยการระเบิดเท่ากับ 38.93 บาท/ตัน เมื่อเปรียบเทียบกับรูปแบบการ ระเบิดปัจจุบันจะมีขนาด d20, d50 และ d80 ลดลงประมาณ 23.99%, 27.04% และ 33.65% หิน ก้อนโตลดลงประมาณ 58.93 % ต้นทุนการระเบิดลดลงประมาณ 11.44 บาท/ตัน อย่างไรก็ตาม งานวิจัยนี้คำนวณเฉพาะต้นทุนรวมจากการเจาะและระเบิดเท่านั้น การศึกษาค่าใช้จ่ายรวมทั้งหมดที่ รวมค่าบดย่อยหินในโรงโม่หินจึงควรมีการศึกษาต่อไปในแต่ละรูปแบบการระเบิด Thesis Title Improvement of Hard Rock Blasting Efficiency for Feldspar Mine in Nakhon Si Thammarat Province.
 Author Mr.Thawisak Thinpakphanang
 Major Program Mining and Materials Engineering
 Academic Year 2022

ABSTRACT

This study involved how to increase hard rock blasting efficiency. It was divided into 2 phases: First phase was study on the appropriate powder factor (PF) and second phase was continue from the first phase to increase the explosion efficiency by stemming method with a natural rubber stem plug and a fresh latex plug. Then the blasted rock size distribution was analyzed by Rock Image program. The study was at feldspar mine, Sinluang Co., Ltd., Nopphitam District, Nakhon Si Thammarat Province.

Phase 1: The effect of powder factor on rock fragmentation ranged from 0.6 to 1.0 kg/m³. The total blasting cost was calculated, including drilling and blasting cost, oversize breaking cost, and secondary blasting cost. The result shows that the powder factor of 0.7 kg/m³ is the lowest blasting cost at 39.51 baht/ton, which is a savings of 10.71 baht/ton over the current pattern (cost 50.22 baht/ton). The sizes d20, d50, and d80, all decreased by about 10.81%, 19.63%, and 31.31% respectively. Additionally, the oversize decreased by about 51.60%.

Phase 2: The rock fragmentation improvement by using stemming plug; natural rubber stem plug and flesh latex plug. For the experiment, a powder factor of 0.7 kg/m³ was selected. With natural rubber stem plug, the blasted rock has d20, d50, and d80, of 2.20, 5.74, and 12.43 inches respectively. The oversize is 4.98%. The total blasting cost is 40.27 baht/ton. When compared to the current pattern, the d20, d50, and d80 decreased about 25.68%, 29.14%, and 35.36% respectively and the oversize decreased about 61.98% and the blasting cost decreased by about 9.95 baht/ton. While with fresh latex plug blasting, the blasted rocks had d20, d50, and d80 of 2.25, 5.91, and 12.76 inches respectively with oversize of 5.38%. The total blasting cost was 38.93 baht/ton. In comparison to the current pattern, the d20, d50, and d80 were reduced by about 23.99%, 27.04%, and 33.65% respectively with oversize reduction about 58.93%. The total blasting cost was reduced about 11.44 baht/ton. However this research was taken in account only the total blasting cost, the overall cost might be investigated further for actual cost of each pattern.

กิตติกรรมประกาศ

วิทยานิพนธ์เล่มนี้สำเร็จลุล่วงไปได้ด้วยดี ข้าพเจ้าขอขอบพระคุณผู้เกี่ยวข้องทุกท่านเป็น อย่างสูง ที่คอยช่วยเหลือไม่ว่าจะทางตรงหรือทางอ้อมทั้งได้กล่าวถึงและไม่ได้กล่าวถึงในที่นี้

ขอขอบพระคุณ ผู้ช่วยศาสตราจารย์ ดร.พงศ์พัฒน์ สนทะมิโน อาจารย์ที่ปรึกษาวิทยานิพนธ์ และผู้ช่วยศาสตราจารย์ ดร.วิษณุ ราชเพ็ชร อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วมที่คอยให้คำปรึกษา แนะนำ รวมทั้งดูแลช่วยเหลือในการแก้ปัญหาในการทำวิทยานิพนธ์ ซึ่งเป็นส่วนที่สำคัญเป็นอย่างยิ่ง ต่องานวิจัยเล่มนี้ วิทยานิพนธ์เล่มนี้ไม่สามารถสำเร็จได้ถ้าขาดความกรุณาในส่วนนี้

ขอขอบพระคุณ รองศาสตราจารย์ ดร.พิษณุ บุญนวล ประธานกรรมการสอบ และผู้ช่วย ศาสตราจารย์ ดร.มนูญ มาศนิยม กรรมการสอบ ที่ให้เกียรติมาเป็นกรรมการสอบวิทยานิพนธ์ในครั้งนี้ ขอขอบคุณสำหรับคำแนะนำ และข้อเสนอแนะต่างๆ ที่ทำให้วิทยานิพนธ์สมบูรณ์ขึ้นและเป็น ประโยชน์ต่อผู้วิจัยให้มีความรู้ความเข้าใจในงานของตนเองมากขึ้น

ขอขอบพระคุณ บัณฑิตวิทยาลัยมหาวิทยาลัยสงขลานครินทร์ และทุนศิษย์ก้นกุฏิคณะ วิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์ สำหรับทุนสนับสนุนส่งเสริมตลอดการทำงานวิจัย

ขอขอบพระคุณ คณะอาจารย์และบุคลากรภาควิชาวิศวกรรมเหมืองแร่และวัสดุ ที่คอยให้ คำแนะนำด้วยความเมตตาเสมอมา

ขอขอบพระคุณ รองศาสตราจารย์ ดร.ไพรัช จรูญพัฒนพงศ์ สำหรับซอฟต์แวร์วิเคราะห์การ กระจายขนาด ของภาควิชาวิศวกรรมเหมืองแร่และปิโตรเลียม มหาวิทยาลัยเชียงใหม่

ขอขอบพระคุณ บริษัท สินหลวง จำกัด ที่อนุญาตให้ใช้สถานที่ทำวิทยานิพนธ์ และอำนวย ความสะดวกในการทำวิทยานิพนธ์

ขอขอบพระคุณ นายช่างปริญญา พัฒนเดช และนายช่างวรุณ ไชยฤกษ์ วิศวกรเหมืองแร่ ประจำบริษัท สินหลวง จำกัด ที่คอยให้คำปรึกษาการทำวิทยานิพนธ์

ขอขอบพระคุณ คุณต่วนฟุรกอน เจะมะ และคุณเสกสันต์ ชูเสือหึง ที่คอยช่วยเหลือให้ ข้อมูล จัดทำข้อมูล รวมทั้งร่วมเก็บข้อมูลภาคสนาม

ขอขอบพระคุณ คุณลัดดาวัลย์ ถิ่นปากพนัง (ภรรยา) ที่ช่วยพิมพ์ จัดทำข้อมูลและให้ กำลังใจตลอดการทำวิทยานิพนธ์

ท้ายสุดขอขอบพระคุณ บิดา มารดา ญาติพี่น้อง และครอบครัว ที่ให้ความรัก ความอบอุ่น และคอยสนับสนุน ที่มีผลอย่างยิ่งตลอดการศึกษาวิจัย

ทวีศักดิ์ ถิ่นปากพนัง

สารบัญ

	หน้า
บทคัดย่อ	(5)
กิตติกรรมประกาศ	(7)
สารบัญ	(8)
สารบัญรูป	(12)
สารบัญตาราง	(17)
บทที่ 1 บทนำ	1
1.1 ความสำคัญและที่มาของหัวข้อวิจัย	1
1.2 วัตถุประสงค์ของโครงการ	4
1.3 ประโยชน์ที่คาดว่าจะได้รับ	4
1.4 ขอบเขตของการวิจัย	4
1.5 สถานที่ดำเนินงานวิจัย	4
บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง	5
2.1 ทฤษฎี หลักการ และกรอบแนวคิด	5
2.1.1 ธรณีวิทยาทั่วไป	5
2.2 ธรณีวิทยาแหล่งแร่เฟลด์สปาร์จากหินอะแลสไกต์	6
2.2.1 หินแกรนิต	6
2.2.2 หินอะแลสไกต์	6
2.2.3 หินเพกมาไทต์	6
2.2.4 สายแร่ควอซต์	6
2.3 ทฤษฎีเกี่ยวกับแร่เฟลด์สปาร์	6
2.4 สารระเบิด	8
2.5 ขั้นตอนการวางแผนการเจาะระเบิดในงานวิศวกรรม	9
2.6 การออกแบบการระเบิด	10
2.7 ตัวแปรในการออกแบบการระเบิด	11
2.7.1 ระยะระหว่างหน้าผาถึงรูระเบิดที่จุดระเบิดแรกสุดหรือระยะห่างระหว่าง	13
แก่ง 2.7.2 ระยะห่างระหว่างหลุมเจาะในแถว	14
2.7.3 ระยะในการปิดปากรูระเบิด	14
2.7.4 ระยะเจาะลึกใต้ระดับพื้นเหมือง	14
2.7.5 การเจาะระเบิดรูเอียง	15
2.7.6 การเลือกขนาดเส้นผ่านศูนย์กลางหลุมเจาะระเบิด	15
2.7.7 การอัดระเบิดแบบเว้นช่วงการอัด	16

(8)

สารบัญ (ต่อ)

	หน้า
2.7.8 ปริมาณการใช้วัตถุระเบิดต่อหน่วยปริมาตร (หรือน้ำหนัก) ของหิน	16
2.7.9 การจุดระเบิดที่มีการถ่วงเวลาระหว่างรูระเบิด	18
2.7.10 ความสูงของหน้าเหมือง	18
2.8 การออกแบบรูปแบบการระเบิด	19
2.8.1 แบบอย่างหรือรูปแบบของหลุมเจาะระเบิด	19
2.8.2 การออกแบบทั่วไปสำหรับงานระเบิดหินแบบขั้นบันได	20
2.8.3 การกระตุ้นวัตถุระเบิด	22
2.8.4 ปัญหาการมีน้ำในหลุมระเบิด	22
2.8.5 โครงสร้างของชั้นหิน	22
2.9 การจำแนกประเภทของหินจากทดสอบแบบ UCS	23
2.10 ซอฟต์แวร์ทดลองหาการกระจายขนาดของหิน	24
2.11 ยางธรรมชาติ	25
2.12 น้ำยางพารา	25
2.13 คุณสมบัติของยางธรรมชาติ	25
2.14 ทบทวนวรรณกรรม สารสนเทศ ที่เกี่ยวข้อง	26
บทที่ 3 ขั้นตอนการดำเนินการวิจัย วัสดุ และอุปกรณ์	52
3.1 ขั้นตอนการดำเนินการวิจัย	52
3.1.1 กิจกรรมที่ 1 : ศึกษาเอกสาร ตำรา งานวิจัยที่เกี่ยวข้อง และวิเคราะห์ ตัวอย่างหินรวมทั้งเก็บข้อมูลหน้างานการระเบิดเบื้องต้น	52
3.1.2 กิจกรรมที่ 2 : ทดลองการระเบิดจากรูปแบบปัจจุบันเปรียบเทียบกับ รูปแบบการระเบิดปรับค่า Powder Factor รวมถึงสรุปต้นทุนที่ใช้จาก การระเบิด	53
3.1.3 กิจกรรมที่ 3 : ศึกษาและทดลองการระเบิดด้วยการอุดรูระเบิดด้วยปลั๊ก ยางธรรมชาติและปลั๊กน้ำยางพาราสดผสมแอมโมเนีย รวมถึงสรุป ต้นทุนที่ใช้จากการระเบิด	53
3.1.4 กิจกรรมที่ 4 : สรุปผลการทดลองการระเบิดแต่ละรูปแบบการทดลอง และเขียนรายงาน	53
3.2 ขั้นตอนกระบวนการระเบิดเพื่อการผลิตครั้งที่ 1	55
3.2.1 เตรียมหน้างานสำหรับการระเบิด	55
3.2.2 กำหนดทิศทางการระเบิดและตำแหน่งรูเจาะระเบิด	55
3.2.3 เจาะรูระเบิดและเก็บตัวอย่างฝุ่นเจาะส ^{ู้} งวิเคราะห์	57
3.2.4 กรณีที่ 1 การบรรจุวัตถุระเบิดแบบปัจจุบัน อุดรูด้วย cutting	58

(9)

สารบัญ (ต่อ)

	หน้า
3.2.5 กรณีที่ 2 การบรรจุวัตถุระเบิดแบบอุดรูด้วยปลั๊กยางธรรมชาติ	59
3.2.6 กรณีที่ 3 การบรรจุวัตถุระเบิดแบบอุดรูด้วยปลั๊กน้ำยางพาราสด	60
ผสมแอมโมเนีย	
3.2.7 ภาพถ่ายกองหินวิเคราะห์ขนาดหินด้วยซอฟต์แวร์ Rock Image	62
3.3 ขั้นตอนกระบวนการระเบิดหินครั้งที่ 2	66
3.4 การกระแทกหิน	67
3.5 คำนวณต้นทุนกระบวนการระเบิด	68
3.5.1 ต้นทุนรูปแบบการระเบิดครั้งที่ 1	68
3.5.2 ต้นทุนรูปแบบการระเบิดครั้งที่ 2	69
3.5.3 ต้นทุนกระแทกหิน	70
3.6 อุปกรณ์ที่ใช้ในงานระเบิด	71
3.6.1 ปุ๋ยแอมโมเนียมไนเตรต และน้ำมันเชื้อเพลิง	71
3.6.2 วัตถุระเบิดแรงสูง	72
3.6.3 สายไฟต่อระเบิด	72
3.6.4 แก็ปไฟฟ้า	73
3.6.5 เครื่องตรวจสอบวงจร	73
3.6.6 หม้อจุดระเบิด	74
3.6.7 ไม้สำหรับการอัดระเบิด	74
3.7 ปลั๊กอุดรูระเบิด	75
3.7.1 ปลั๊กอุดรูระเบิดแบบสำเร็จรูป	75
3.7.2 ปลั๊กอุดรูระเบิดแบบกึ่งสำเร็จรูป	75
3.8 อุปกรณ์ที่ใช้ในการเก็บข้อมูล	76
3.8.1 โดรน	76
3.8.2 GPG-Garmin (DT-200)	76
3.8.3 เข็มทิศธรณี	77
3.8.4 ลูกบอลเปรียบเทียบขนาด	77
3.9 ซอฟต์แวร์ที่ใช้ในการวิเคราะห์ข้อมูล	78
3.9.1 Rock Image	78
3.9.2 GstarCAD	78
บทที่ 4 ผลการทดลองและอภิปราย	79
4.1 ข้อมูลเบื้องต้นของสถานที่ดำเนินการวิจัย	79
4.2 ผลวิเคราะห์สมบัติของตัวอย่างหินในพื้นที่งานวิจัย	79

สารบัญ (ต่อ)

	หน้า
4.3 ผลการออกแบบรูปแบบการระเบิด	83
4.4 การออกแบบรูปแบบการระเบิดโดยการปรับเปลี่ยนค่า Powder Factor	83
4.4.1 ผลการทดลองรูปแบบการระเบิดแบบปัจจุบัน	87
4.4.2 ผลการทดลองรูปแบบการระเบิดแบบค่า PF1.0	90
4.4.3 ผลการทดลองรูปแบบการระเบิดแบบค่า PF0.9	93
4.4.4 ผลการทดลองรูปแบบการระเบิดแบบค่า PF0.8	96
4.4.5 ผลการทดลองรูปแบบการระเบิดแบบค่า PF0.7	99
4.4.6 ผลการทดลองรูปแบบการระเบิดแบบค่า PF0.6	102
4.5 ผลการออกแบบการระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ	105
และปลั๊กน้ำยางพาราสดผสมแอมโมเนีย	
4.5.1 ผลการทดลองการอุดรูด้วยปลั๊กยางธรรมชาติ	106
4.5.2 ผลการทดลองการอุดรูระเบิดด้วยปลั๊กน้ำยางพาราสดผสมแอมโมเนีย	109
บทที่ 5 สรุปผลการวิจัยและข้อเสนอแนะ	119
5.1 สรุปผลการวิจัย	119
5.1.1 การปรับเปลี่ยนค่า Powder Factor	119
5.1.2 การระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ และปลั๊กน้ำยางพาราสด	121
5.1.3 สรุปโดยภาพรวม	124
5.2 ข้อเสนอแนะ	124
บรรณานุกรม	125
ภาคผนวก ก ผลวิเคราะห์สมบัติของหิน	128
ภาคผนวก ข ภาพแสดงรูปแบบการระเบิด	133
ภาคผนวก ค การประมว [ั] ลผลภาพถ่ายทางอากาศด้วยซอฟต์แวร์ Rock Image	142
ภาคผนวก ง ความแตกต่างระหว่างการใช้น้ำยางพาราสดแบบใส่แอมโมเนียและไม่ใส่	155
แอมโมเนีย	
ภาคผนวก จ ภาพถ่ายการจับตัวน้ำยางพาราสดกับกรดอะซิติก	160
ภาคผนวก ฉ ต้นทุนการระเบิด	164
ภาคผนวก ช บทความวิจัยที่ได้นำเสนอและได้รับการตีพิมพ์	173
ประวัติผู้เขียน	184

สารบัญรูป

^y
หนา

รูปที่ 1.1 แหล่งแร่เฟลด์สปาร์	1
รูปที่ 1.2 หินก้อนโตหลังจากการระเบิด	2
รูปที่ 1.3 กระแทกหินก้อนโตหลังจากการระเบิด	3
รูปที่ 1.4 เจาะระเบิดครั้งที่ 2 หินก้อนโตหลังจากการระเบิด	3
รูปที่ 2.1 แผนที่ธรณีวิทยาบริเวณหมู่เหมืองเฟลด์สปาร์ อำเภอนบพิตำ	5
รูปที่ 2.2 พลังงานของ ANFO ที่แสดงการเติมปริมาณน้ำมันเชื้อเพลิงที่แตกต่างกัน	8
รูปที่ 2.3 ขั้นตอนการวางแผนการเจาะระเบิดให้ได้ประสิทธิภาพสูงสุด	9
รูปที่ 2.4 ปัจจัยที่สำคัญที่สุดในการเจาะระเบิดให้มีประสิทธิภาพ	10
รูปที่ 2.5 แสดงมิติต่างๆ ของการเจาะและการอัดระเบิด	12
รูปที่ 2.6 ระยะระหว่างแถว	13
รูปที่ 2.7 ขนาดเฉลี่ยของหินหลังจากการระเบิดตามระยะ Burden และค่า Powder	16
Factor	
รูปที่ 2.8 ค่า Powder Factor กับ อัตราส่วนของ H/B	18
รูปที่ 2.9 แบบอย่างสี่เหลี่ยมจัตุรัส	19
รูปที่ 2.10 แบบอย่างสี่เหลี่ยมผืนผ้า	19
รูปที่ 2.11 แบบอย่างสลับฟันปลา	20
รูปที่ 2.12 ผังภาพของการออกแบบการระเบิดหลายรูปแบบแนวหัวลูกศร	21
เป็นทิศทางของการเคลื่อนที่ของมวลหินภายหลังการระเบิด	
รูปที่ 2.13 รอยแตกแยกตามธรรมชาติในหินที่มีผลต่อเสถียรภาพหน้าเหมือง	23
ออกแบบรูปแบบการระเบิด	
รูปที่ 2.14 แผนภาพการทำงานของซอฟต์แวร์ทดลอง	24
รูปที่ 2.15 การศึกษาขนาดชิ้นส่วนของหินที่แตกหัก บริษัท ปูนซิเมนต์ไทย (ทุ่งสง) จำกัด	26
(มหาชน)	
รูปที่ 2.16 ภาพถ่ายทางอากาศของ เหมือง DG Khan Cement	27
รูปที่ 2.17 Stemming Plug ครั้งที่ 1	27
รูปที่ 2.18 Stemming Plug ครั้งที่ 2	28
รูปที่ 2.19 Stemming Plug ครั้งที่ 3	28
รูปที่ 2.20 Stemming Plug	30
รูปที่ 2.21 ลักษณะของกรวยพลาสติก	31
รูปที่ 2.22 การบรรจุกรวยพลาสติกกลับด้านลงหลุมเจาะระเบิด	31
รูปที่ 2.23 พลังงานที่เกิดภายในหลุมเจาะ	31
รูปที่ 2.24 แสดงรูปแบบการระเบิด ที่เหมืองถ่านหินที่โบกาโรตะวันตก	32

(12)

	หน้า
รูปที่ 2.25 ภาพการระเบิด ที่เหมืองถ่านหินที่โบกาโรตะวันตก	32
รูปที่ 2.26 ผลลัพธ์ค่า VOD ในหลุมเจาะระเบิด	33
รูปที่ 2.27 กรวยยางธรรมชาติขนาดเส้นผ่านศูนย์กลาง 3.5 นิ้ว	33
รูปที่ 2.28 รูปแบบการวางระเบิดแบบสลับฟันปลาและการวางแก้ปเบอร์ดีเลย์	34
รูปที่ 2.29 ลักษณะภายในรูระเบิด	34
รูปที่ 2.30 ลักษณะภายในรูระเบิด	35
รูปที่ 2.31 ภาพถ่ายจากหน้างานเพื่อคำนวณการกระจายตัว	36
รูปที่ 2.32 ภาพถ่ายปกติเปรียบเทียบระหว่างภาพไบนารี	37
รูปที่ 2.33 ผลวิเคราะห์การกระจายขนาด	38
รูปที่ 2.34 จุดที่ตั้งเหมืองทองแดง Tschudi Mine	40
รูปที่ 2.35 ตัวอย่างภาพใช้วิเคราะห์กับซอฟต์แวร์ Split Desktop	40
รูปที่ 2.36 การวิเคราะห์กับซอฟต์แวร์ Split Desktop	41
รูปที่ 2.37 ผลวิเคราะห์การกระจายขนาดกับซอฟต์แวร์ Split Desktop	41
รูปที่ 2.38 ลักษณะของหน้างานแสดงลักษณะธรณีวิทยา	42
รูปที่ 2.39 การจำลองขนาดของอนุภาคของหินจากการระเบิด	43
รูปที่ 2.40 การแสดงขอบเขตตามขนาดของหินเปรียบเทียบขนาดสัดส่วนของวัตถุอ้างอิง	44
รูปที่ 2.41 กราฟทั่วไปของการวิเคราะห์ขนาดหินด้วยภาพ	44
รูปที่ 2.42 แบบจำลองอัจฉริยะเป็นอัลกอริธึม	45
รูปที่ 2.43 ภาพการนำเสนอกรอบเทคนิคแบบ Hybrid Al	45
รูปที่ 2.44 การวิเคราะห์ขนาดหินด้วยซอฟต์แวร์ Split Desktop	46
รูปที่ 2.45 ผลวิเคราะห์การกระจายขนาดด้วยซอฟต์แวร์ Split Desktop	46
รูปที่ 2.46 รูปแบบรูระเบิดแบบปัจจุบัน	47
รูปที่ 2.47 รูปแบบรูระเบิดแบบใส่น้ำยางพาราสด	48
รูปที่ 2.48 วิธีการทดลองการระเบิดจริง	48
รูปที่ 2.49 ตัวอย่างผลการกระจายขนาดของหิน ด้วยซอฟต์แวร์ Rock Image	49
รูปที่ 2.50 กรวยอุดรูระเบิด	50
รูปที่ 2.51 รูปแบบการระเบิด	50
รูปที่ 2.52 ตัวอย่างภาพถ่ายและการวิเคราะห์ ด้วยซอฟต์แวร์ Split Desktop	51
รูปที่ 3.1 แผนภาพแสดงขั้นตอนการดำเนินงานวิจัย	54
รูปที่ 3.2 สภาพหน้างานที่ใช้ทดลองการระเบิด	55
รูปที่ 3.3 กำหนดทิศทางการระเบิดและตำแหน่งรูเจาะระเบิด	56
รูปที่ 3.4 เจาะรูระเบิดและส่งวิเคราะห์ฝุ่นเจาะ	57

	หน้า
รูปที่ 3.5 ขั้นตอนการบรรจุวัตถุระเบิดแบบปัจจุบันด้วย cutting	58
รูปที่ 3.6 ขั้นตอนการบรรจุวัตถุระเบิดแบบอุดด้วยปลั๊กยางธรรมชาติ	59
รูปที่ 3.7 ขั้นตอนการบรรจุวัตถุระเบิด แบบอุดด้วยปลั๊กยางพาราสดผสมแอมโมเนีย	60
รูปที่ 3.8 ถ่ายภาพมุมสูงด้วยอากาศยานไร้คนขับ	62
รูปที่ 3.9 วางลูกบอลกระจายให้ทั่วกองหินหลังจากการระเบิด	62
รูปที่ 3.10 ภาพถ่ายการกระจายตัวกองหินด้วยอากาศยานไร้คนขับ	63
รูปที่ 3.11 ภาพถ่ายใช้ประมวลผลการกระจายตัว	63
รูปที่ 3.12 ส่วนต่างๆ ของซอฟต์แวร์ Rock Image	64
รูปที่ 3.13 การทำเครื่องหมายตำแหน่งของลูกบอล	64
รูปที่ 3.14 ภาพไบนารีจากการประมวลผลด้วยซอฟต์แวร์ Rock Image	65
รูปที่ 3.15 ผลลัพธ์ที่ได้จากซอฟต์แวร์วิเคราะห์การกระจายขนาด	65
รูปที่ 3.16 ขั้นตอนกระบวนการระเบิดครั้งที่ 2	66
รูปที่ 3.17 กระแทกหินก้อนโต	67
รูปที่ 3.18 ปุ๋ยแอมโมเนียมไนเตรต และ น้ำมันดีเซล	71
รูปที่ 3.19 วัตถุระเบิดแรงสูง	72
รูปที่ 3.20 สายไฟต่อระเบิด	72
รูปที่ 3.21 แก็ปไฟฟ้า	73
รูปที่ 3.22 เครื่องตรวจสอบวงจร	73
รูปที่ 3.23 หม้อจุดระเบิด	74
รูปที่ 3.24 ไม้สำหรับการอัดระเบิด	74
รูปที่ 3.25 ปลั๊กยางธรรมชาติอุดรูระเบิด	75
รูปที่ 3.26 ปลั๊กน้ำยางพาราสดอุดรูระเบิด	75
รูปที่ 3.27 โดรน	76
รูปที่ 3.28 เครื่องมือที่ใช้ระบุตำแหน่ง	76
รูปที่ 3.29 เข็มทิศธรณี	77
รูปที่ 3.30 ลูกบอลขนาด 24 นิ้ว	77
รูปที่ 3.31 ซอฟต์แวร์วิเคราะห์การกระจายตัวขนาด	78
รูปที่ 3.32 GstarCAD Software	78
รูปที่ 4.1 แผนที่แสดงลักษณะภูมิประเทศ	80
รูปที่ 4.2 สถานที่ดำเนินการวิจัย ประทานบัตรที่ 33142/16229	81
รูปที่ 4.3 สภาพพื้นที่ปัจจุบันของหน้าเหมือง	81
รูปที่ 4.4 แผนที่แสดงตำแหน่งเก็บตัวอย่างหินเพื่อตรวจวิเคราะห์คุณภาพ	82

(14)

	หน้า
รูปที่ 4.5 รูปแบบการวางระเบิดแบบสลับฟันปลาและการวางแก็ปเบอร์ดีเลย์	84
รูปที่ 4.6 รูปแบบการระเบิดแบบปัจจุบันและแบบการปรับเปลี่ยน ค่า Powder Factor	85
รูปที่ 4.7 รูปแบบการอุดรูระเบิด	86
รูปที่ 4.8 กราฟแสดงการกระจายตัวของหินหลังการระเบิดแบบปัจจุบัน	88
รูปที่ 4.9 แผนภูมิแสดงขนาดของอนุภาคการระเบิดแบบปัจจุบัน	88
รูปที่ 4.10 แผนภูมิแสดงขนาดหินก้อนโตจากการระเบิดแบบปัจจุบัน	88
รูปที่ 4.11 แผนภูมิแสดงต้นทุนจากการระเบิดแบบปัจจุบัน	89
รูปที่ 4.12 กราฟแสดงการกระจายตัวของหินหลังการระเบิดแบบ PF1.0	91
รูปที่ 4.13 แผนภูมิแสดงขนาดของอนุภาคการระเบิดแบบ PF1.0	91
รูปที่ 4.14 แผนภูมิแสดงขนาดหินก้อนโตจากการระเบิดแบบ PF1.0	91
รูปที่ 4.15 แผนภูมิแสดงต้นทุนจากการระเบิดแบบ PF1.0	92
รูปที่ 4.16 กราฟแสดงการกระจายตัวของหินหลังการระเบิดแบบ PF0.9	94
รูปที่ 4.17 แผนภูมิแสดงขนาดของอนุภาคการระเบิดแบบ PF0.9	94
รูปที่ 4.18 แผนภูมิแสดงขนาดหินก้อนโตจากการระเบิดแบบ PF0.9	94
รูปที่ 4.19 แผนภูมิแสดงต้นทุนจากการระเบิดแบบ PF0.9	95
รูปที่ 4.20 กราฟแสดงการกระจายตัวของหินหลังการระเบิดแบบ PF0.8	97
รูปที่ 4.21 แผนภูมิแสดงขนาดของอนุภาคการระเบิดแบบ PF0.8	97
รูปที่ 4.22 แผนภูมิแสดงขนาดหินก้อนโตจากการระเบิดแบบ PF0.8	97
รูปที่ 4.23 แผนภูมิแสดงต้นทุนจากการระเบิดแบบ PF0.8	98
รูปที่ 4.24 กราฟแสดงการกระจายตัวของหินหลังการระเบิดแบบ PF0.7	100
รูปที่ 4.25 แผนภูมิแสดงขนาดของอนุภาคการระเบิดแบบ PF0.7	100
รูปที่ 4.26 แผนภูมิแสดงขนาดหินก้อนโตจากการระเบิดแบบ PF0.7	100
รูปที่ 4.27 แผนภูมิแสดงต้นทุนจากการระเบิดแบบ PF0.7	101
รูปที่ 4.28 กราฟแสดงการกระจายตัวของหินหลังการระเบิดแบบ PF0.6	103
รูปที่ 4.29 แผนภูมิแสดงขนาดของอนุภาคการระเบิดแบบ PF0.6	103
รูปที่ 4.30 แผนภูมิแสดงขนาดหินก้อนโตจากการระเบิดแบบ PF0.6	103
รูปที่ 4.31 แผนภูมิแสดงต้นทุนจากการระเบิดแบบ PF0.6	104
รูปที่ 4.32 รูปแบบการอุดรูระเบิด	105
รูปที่ 4.33 กราฟแสดงการกระจายตัวของหินหลังการระเบิดแบบอุดรูระเบิดด้วย	107
- ปลั๊กยางธรรมชาติ	
รูปที่ 4.34 แผนภูมิแสดงขนาดของอนุภาคการระเบิดแบบอุดรูระเบิดด้วยปลั๊ก	107

			หน้า
รูปที่	4.35	แผนภูมิแสดงขนาดหินก้อนโตจากการระเบิดแบบอุดรูระเบิดด้วยปลั๊ก	107
		ยางธรรมชาติ	
รูปที่	4.36	แผนภูมิแสดงต้นทุนจากการระเบิดแบบอุดรูระเบิดด้วยปลั้กยางธรรมชาติ	108
รูปที่	4.37	กราฟแสดงการเปรียบเทียบราคาการระเบิดต่อรูในแต่ละสูตร กับความเข้มข้น กรดอะซิติก	110
รูปที่	4.38	การทดสอบหาค่าระยะน้ำที่น้ำยางคายตัวออกมา	111
รูปที่	4.39	กราฟแสดงการเปรียบเทียบค่าเฉลี่ยน้ำในกระบอกอะคริลิค (เซนติเมตร) กับ เวลา (นาที)	113
รูปที่	4.40	การทดลองการแข็งตัวของน้ำยางพาราสด	114
รูปที่	4.41	กราฟแสดงการเปรียบเทียบการแข็งตัวของน้ำยางพาราสดในกระบอกอะคริลิค ในอัตราส่วนน้ำยางต่อกรดอะซิติก 3%	115
รูปที่	4.42	กราฟแสดงการกระจายตัวของหินหลังการระเบิดแบบอุดรูระเบิดด้วย	117
		ปลักนำยางพาราสดผสมแอมโมเนีย	
รูปที	4.43	แผนภูมิแสดงขนาดของอนุภาคการระเบิดแบบอุดรูระเบิดด้วย	117
		ปลักนำยางพาราสดผสมแอมโมเนีย	
รูปที	4.44	แผนภูมิแสดงขนาดหินก้อนโตจากการระเบิดแบบอุดรูระเบิดด้วย	117
		ปลักนำยางพาราสดผสมแอมโมเนีย 	
รูปที	4.45	แผนภูมิแสดงต้นทุนจากการระเบิดแบบอุดรูระเบิดด้วย	118
		ปลักนำยางพาราสดผสมแอมโมเนีย	
รูปที่	5.1 í	าราฟแสดงการกระจายตัวของหินหลังการระเบิด	119
รูปที่	5.2 I	เผนภูมิแสดงขนาดของอนุภาคการระเบิด	120
รูปที่	5.3 I	เผนภูมิแสดงขนาดหินก้อนโตจากการระเบิด	120
รูปที่	5.4 l	เผนภูมิแสดงต้นทุนจากการระเบิด	121
รูปที่	5.5 f	าราฟแสดงการกระจายตัวของหินหลังการระเบิด	122
รูปที่	5.6 I	เผนภูมิแสดงขนาดของอนุภาคการระเบิด	122
รูปที่	5.7 เ	เผนภูมิแสดงขนาดหินก้อนโตจากการระเบิด	123
รูปที่	5.8 I	เผนภูมิแสดงต้นทุนจากการระเบิด	123

สารบัญตาราง

		หน้า
ตารางที่	2.1 สัดส่วนของปริมาณแอลไบต์และอะนอร์ไทต์ในแพลจิโอเคลสเฟลด์สปาร์	7
ตารางที่	2.2 ค่าตัวแปรต่างๆ ในการเจาะระเบิด	11
ตารางที่	2.3 ข้อดีและข้อเสียของการเจาะระเบิดรูเอียงเปรียบเทียบกับการเจาะระเบิดโดย	15
	ใช้รูดิ่ง	
ตารางที่	2.4 ค่า Powder Factor โดยทั่วไป จำแนกตามความแข็งแรงของหิน	17
ตารางที่	2.5 ค่า Powder Factor ในหินประเภทต่างๆ (กิโลกรัมต่อลูกบาศก์เมตรแน่น)	17
ตารางที่	2.6 อัตราส่วน H/B ที่มีต่อการแตกหักของหินและผลกระทบสิ่งแวดล้อม	18
ตารางที่	2.7 การจำแนกประเภทหินจากการทดสอบแบบ UCS	23
ตารางที่	2.8 ผลที่ได้รับจากการใช้ Plug ลงในหลุมเจาะระเบิด	29
ตารางที่	2.9 ค่าใช้จ่ายของแต่ละ Plug	29
ตารางที่	2.10 ประสิทธิภาพของ Shovel และ Crusher	30
ตารางที่	2.11 พารามิเตอร์การระเบิด	36
ตารางที่	2.12 เปอร์เซ็นสะสมของขนาดที่ผ่านตะแกรง	38
ตารางที่	2.13 ลักษณะขนาดของหิน	39
ตารางที่	2.14 การจำแนกประเภทของหินที่เหมือง Herval Quarry	42
ตารางที่	2.15 การแสดงรูปแบบการระเบิดที่เหมือง Herval Quarry	43
ตารางที่	2.16 รูปแบบการระเบิดที่ใช้ในการทดลอง	47
ตารางที่	4.1 ผลการวิเคราะห์สมบัติทางกลศาสตร์ของตัวอย่างหินจากพื้นที่งานวิจัย	79
ตารางที่	4.2 ค่า Powder Factor โดยทั่วไป จำแนกตามความแข็งแรงของหิน	83
ตารางที่	4.3 รูปแบบการระเบิดแบบปัจจุบันและแบบการปรับเปลี่ยน ค่า Powder Factor	84
ตารางที่	4.4 ผลการวิเคราะห์การกระจายตัวของหินจากการระเบิดแบบปัจจุบัน	87
ตารางที่	4.5 ผลจากการคำนวณต้นทุนการระเบิดแบบปัจจุบัน	89
ตารางที่	4.6 ผลการวิเคราะห์การกระจายตัวของหินจากการระเบิดแบบ PF1.0	90
ตารางที่	4.7 ผลจากการคำนวณต้นทุนการระเบิดแบบ PF1.0	92
ตารางที่	4.8 ผลการวิเคราะห์การกระจายตัวของหินจากการระเบิดแบบ PF0.9	93
ตารางที่	4.9 ผลจากการคำนวณต้นทุนการระเบิดแบบ PF0.9	95
ตารางที่	4.10 ผลการวิเคราะห์การกระจายตัวของหินจากการระเบิดแบบ PF0.8	96
ตารางที่	4.11 ผลจากการคำนวณต้นทุนการระเบิดแบบ PF0.8	98
ตารางที่	4.12 ผลการวิเคราะห์การกระจายตัวของหินจากการระเบิดแบบ PF0.7	99
ตารางที่	4.13 ผลจากการคำนวณต้นทุนการระเบิดแบบ PF0.7	101
ตารางที่	4.14 ผลการวิเคราะห์การกระจายตัวของหินจากการระเบิดแบบ PF0.6	102
ตารางที่	4.15 ผลจากการคำนวณต้นทุนการระเบิดแบบ PF0.6	104

สารบัญตาราง (ต่อ)

	หน้า
ตารางที่ 4.16 ผลการวิเคราะห์การกระจายตัวของหินจากการระเบิด	106
แบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ	
ตารางที่ 4.17 ผลจากการคำนวณต้นทุนการระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ	108
ตารางที่ 4.18 อัตราส่วนน้ำยางพาราสดต่อกรดอะซิติก 2:1	109
ตารางที่ 4.19 อัตราส่วนน้ำยางพาราสดต่อกรดอะซิติก 6:1	109
ตารางที่ 4.20 อัตราส่วนน้ำยางพาราสดต่อกรดอะซิติก 10:1	109
ตารางที่ 4.21 ความเข้มข้นของอัตราส่วนน้ำยางพาราสดต่อกรดอะซิติก 2:1	110
ตารางที่ 4.22 ความเข้มข้นของอัตราส่วนน้ำยางพาราสดต่อกรดอะซิติก 6:1	110
ตารางที่ 4.23 ความเข้มข้นของอัตราส่วนน้ำยางพาราสดต่อกรดอะซิติก 10:1	110
ตารางที่ 4.24 ระยะการระคายน้ำของน้ำยางในอัตราส่วนที่ 2:1	112
ที่ความเข้มข้นของกรดอะซิกติก 3%	
ตารางที่ 4.25 ระยะการระคายน้ำของน้ำยางในอัตราส่วนที่ 6:1	112
ที่ความเข้มข้นของกรดอะซิกติก 3%	
ตารางที่ 4.26 ระยะการระคายน้ำของน้ำยางในอัตราส่วนที่ 10:1	112
ที่ความเข้มข้นของกรดอะซิกติก 3%	
ตารางที่ 4.27 ข้อมูลน้ำยางพาราสดผสมแอมโมเนีย	113
ตารางที่ 4.28 การ [์] ทดลองการแข็งตัวของน้ำยางพาราสดต่อกรดอะซิติก	114
ในอัตราส่วน 50 มิลลิลิตร : 5 มิลลิลิตร ที่ความเข้มข้นของกรดอะซิติก 3%	
ตารางที่ 4.29 การทดลองการแข็งตัวของน้ำยางพาราสดต่อกรดอะซิติก	115
ในอัตราส่วน 50 มิลลิลิตร : ที่ความเข้มข้นของกรดอะซิติก 3%	
โดยใส่แอมโมเนียปริมาณน้อย 2 มิลลิลิตร	
ตารางที่ 4.30 การทดลองการแข็งตัวของน้ำยางพาราสดต่อกรดอะซิติก	115
ในอัตราส่วน 50 มิลลิลิตร : 5 มิลลิลิตร ที่ความเข้มข้นของกรดอะซิติก 3%	
โดยใส่แอมโมเนียปริมาณมาก 3 มิลลิลิตร	
ตารางที่ 4.31 ผลการวิเคราะห์การกระจายตัวของหินจากการระเบิดแบบอุดรูระเบิดด้วย	116
ปลั๊กน้ำยางพาราสดผสมแอมโมเนีย	
ตารางที่ 4.32 ผลจากการคำนวณต้นทุนการระเบิดแบบอุดรูระเบิดด้วย	118
ปลั๊กน้ำยางพาราสดผสมแอมโมเนีย	

บทที่ 1 บทนำ

1.1 ความสำคัญและที่มาของหัวข้อวิจัย

แหล่งแร่เฟลด์สปาร์ (Feldspar Deposits) ตั้งอยู่ในหมู่เหมืองแร่เฟลด์สปาร์ อำเภอ นบพิตำ จังหวัดนครศรีธรรมราช จัดอยู่ในกลุ่มหินแข็งพบอยู่ในหินอัคนียุคไทรแอสซิก (Triassic) เป็น แหล่งแร่โซเดียมเฟลด์สปาร์ (Sodium Feldspar) โดยผลิตแร่เฟลด์สปาร์จากหินอะแลสไกต์ (Alaskite) และหินเพกมาไทต์ที่แทรกเข้ามาในหินแกรนิต เริ่มทำเหมืองตั้งแต่ปี พ.ศ. 2521 (ธงชัย พึ่ง รัศมี และคณะ, 2554) จนถึงปัจจุบัน เป็นระยะเวลาประมาณ 45 ปี เป็นแหล่งแร่เฟลด์สปาร์ขนาด ใหญ่มีพื้นที่ทำเหมืองรวมกันประมาณ 1,400 ไร่ ดังรูปที่ 1.1 โดยมีปริมาณแร่สำรอง (Inferred Reserves) ประมาณ 82 ล้านเมตริกตัน การใช้ประโยชน์ของแร่เฟลด์สปาร์นิยมใช้ในอุตสาหกรรม เซรามิกและแก้ว โดยทางเซรามิกโซเดียมเฟลด์สปาร์ ใช้เป็นตัวช่วยลดจุดหลอมตัวในสีเคลือบใน ผลิตภัณฑ์ เช่น สโตนแวร์ กระเบื้องปูพื้น สุขภัณฑ์ และพอร์ซเลน เป็นต้น (ปริญญา พัฒนเดช, 2558)

รูปที่ 1.1 แหล่งแร่เฟลด์สปาร์ (Feldspar Deposits)

ทั้งนี้ในปัจจุบันพบว่าสภาพการทำงานบริเวณหน้าเหมืองกระบวนการระเบิดแร่และ หินยังขาดประสิทธิภาพ การทำให้เกิดหินก้อนโต (Oversize) เป็นปริมาณมากส่งผลทำให้รถขุด (Backhoe) กระบวนการขุด (Excavation) และตัก (Loading) ล่าช้า ดังรูปที่ 1.2 ทำให้บุ้งกี้ได้รับ ความเสียหายมาก กระบะของรถบรรทุกอายุการใช้งานก็สั้นลงและยังส่งผลให้การขนส่ง (Hauling) ข้าลงอีกด้วย จึงทำให้ต้นทุนการเจาะระเบิด การขุดตัก และการขนส่งสูงขึ้น เช่น การใช้หัวกระแทก หินก้อนโต ดังรูปที่ 1.3 และรวมไปถึงการเจาะระเบิดครั้งที่ 2 ดังรูปที่ 1.4 การปรับปรุงประสิทธิภาพ การระเบิดจึงเป็นสิ่งสำคัญ ซึ่งถ้าหากสามารถเพิ่มประสิทธิภาพการระเบิดได้ก็จะเป็นการเพิ่มกำลัง การผลิตและส่งผลต่อต้นทุนการผลิตให้ลดต่ำลง

รูปที่ 1.2 หินก้อนโตหลังจากการระเบิด

รูปที่ 1.3 กระแทกหินก้อนโตหลังจากการระเบิด

รูปที่ 1.4 เจาะระเบิดครั้งที่ 2 หินก้อนโตหลังจากการระเบิด

1.2 วัตถุประสงค์ของโครงการ

เพื่อศึกษารูปแบบการระเบิดที่เหมาะสมที่ใช้กับหินแข็งในแหล่งแร่เฟลด์สปาร์นบพิ ตำ จังหวัดนครศรีธรรมราช โดยใช้พื้นที่ศึกษาประทานบัตรที่ 33142/16229 (เหมืองแร่ธงซัย) ของ บริษัท สินหลวง จำกัด

1.3 ประโยชน์ที่คาดว่าจะได้รับ

- รูปแบบการระเบิดที่เหมาะสมกับการใช้ในหินแข็งในแหล่งแร่เฟลสปาร์ โดยมี ต้นทุนการผลิตที่หน้าเหมืองต่ำลง
- เทคนิคการระเบิดแบบใช้ปลั๊กอุดรูระเบิด ช่วยเพิ่มประสิทธิภพการระเบิด หิน แตกหักดีขึ้น และหินก้อนโตลงลด

1.4 ขอบเขตของการวิจัย

- ศึกษาการระเบิดโดยปรับค่า Powder Factor (PF) ในช่วง 0.6 1.0 kg/m³ โดยเปรียบเทียบผลกับรูปแบบการระเบิดแบบปัจจุบัน
- 2. ศึกษาการอุดรูระเบิดโดยใช้ปลั๊กยางธรรมชาติ และปลั๊กน้ำยางพาราสด
- 3. วิเคราะห์การกระจายตัวขนาดของหิน (Size Distribution) โดยใช้ลูกบอลขนาด
 24 นิ้ว และซอฟต์แวร์ Rock Image
- 4. คำนวณต้นทุนรวมการเจาะระเบิดเป็นเกณฑ์การพิจารณา

1.5 สถานที่ดำเนินงานวิจัย

- เหมืองแร่ธงชัย ประทานบัตรที่ 33142/16229 เป็นเหมืองแร่เฟลด์สปาร์ ของ บริษัท สินหลวง จำกัด ตั้งอยู่ที่ หมู่ที่ 2 ตำบลนบพิตำ อำเภอนบพิตำ จังหวัด นครศรีธรรมราช
- สาขาวิชาวิศวกรรมเหมืองแร่และวัสดุ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตหาดใหญ่ จังหวัดสงขลา

บทที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

2.1 ทฤษฎี หลักการ และกรอบแนวคิด

2.1.1 ธรณีวิทยาทั่วไป

ธงชัย พึ่งรัศมี และคณะ (2554) กล่าวไว้ว่า แหล่งแร่เฟลด์สปาร์ตั้งอยู่บริเวณ เทือกเขาหลวง ประกอบด้วยมวลหินอัคนี มีชื่อเรียกว่า เขาหลวงพลูตอน (Pluton) ขนาดใหญ่ คลุม พื้นที่ประมาณ 2,500 ตารางกิโลเมตร ซึ่งประกอบด้วยหินแกรนิต (Granite), หินเพกมาไทต์ (Pegmatite), หินอะแลสไกต์ (Alaskite), หินแอไพลต์ (Aplite), และสายแร่ควอตซ์ (Quartz Vein) จัดอยู่ในหินอัคนียุคไทรแอสซิก (Triassic) (สุภาวดี วิมุกตะนันท์, 2550) ชุดหินที่ได้กล่าวทั้งหมดนั้น ดันแทรกหินตะกอนยุคแคมเบรียน (Cambrian, **€**), ยุคออโดวิเซียน (Ordovician, O), และยุคไซลู เรียนดีโวเนียนคาร์บอนิเฟอรัส (Silurian Devonian Carboniferous, SDC) (เสถียร สนั่นเสียง และ คณะ, 2528 ; สุวิทย์ โคสุวรรณ และสมชาย นาคะผดุงรัตน์, 2535) แสดงดังรูปที่ 2.1

รูปที่ 2.1 แผนที่ธรณีวิทยาบริเวณหมู่เหมืองเฟลด์สปาร์ อำเภอนบพิตำ (ดัดแปลงจาก : สุวิทย์ โคสุวรรณ และสมชาย นาคะผดุงรัตน์, 2535)

2.2 ธรณีวิทยาแหล่งแร่เฟลด์สปาร์จากหินอะแลสไกต์ (Alaskite)

พื้นที่ประกอบกิจกรรมการทำเหมืองแร่ในแหล่งแร่เฟลด์สปาร์ อำเภอนบพิตำ จังหวัดนครศรีธรรมราช ประกอบด้วยหินแกรนิต หินอะแลสไกต์ หินเพกมาไทต์ และสายแร่ควอตซ์ ซึ่งดันแทรกหินท้องที่ ได้แก่ กลุ่มหินตะรุเตา ยุคแคมเบรียน กลุ่มหินทุ่งสง ยุคออโดวิเชียน หมวดหิน เขาดิน ยุคไซลูเรียนดีโวเนียนคาร์บอนิเฟอรัส (เสถียร สนั่นเสียง และคณะ, 2528 ; สุวิทย์ โคสุวรรณ และคณะ, 2535 ; สุภาวดี วิมุกตะนันท์, 2550) แสดงรายละเอียดไว้ดังนี้

2.2.1 หินแกรนิต (Granite)

หินแกรนิตที่พบมีเนื้อหินขนาดปานกลางถึงหยาบ โดยมากจะมีเนื้อปานกลางบางจุด เป็นเนื้อดอก ประกอบด้วยแร่ควอตซ์, เฟลด์สปาร์ (Feldspar), ไบโอไทต์ (Biotite) และมัสโคไวต์ (Muscovite) ดันแทรกขึ้นมาทีหลัง บางแห่งพบเป็นหินแปลกปลอม (Xenolith) ขนาดก้อนหินมนใหญ่ ขนาด 2x4 ถึง 10x10 เมตร อยู่ตอนบนของพนังหินอะแลสไกต์ (ธงชัย พึ่งรัศมี และคณะ, 2532)

2.2.2 หินอะแลสไกต์ (Alaskite)

หินอะแลสไกต์หรือชื่อที่ใช้เรียกในทางการค้าว่า เฟลด์สปาร์ มีเนื้อหินละเอียดถึงปาน กลาง มีสีขาวขุ่นถึงเทาอ่อนประกอบด้วยแร่เฟลด์สปาร์, ควอตซ์, และไบโอไทต์ ปนบ้างเล็กน้อย (ธงชัย พึ่งรัศมี และคณะ, 2532)

2.2.3 หินเพกมาไทต์ (Pegmatite)

หินเพกมาไทต์ที่พบเป็นสายขนาดเล็กๆ หนา 0.02 – 1.00 เมตร ลักษณะรูปเลนซ์ หินทัวร์มาลีนเพกมาไทต์ (Tourmaline Pegmatite) ที่มีผลึก Tourmaline ขนาด 3.50 เซนติเมตร แทรกหินไบโอไทต์แกรนิต (Biotite Granite) (ธงชัย พึ่งรัศมี และคณะ, 2532)

2.2.4 สายแร่ควอซต์ (Quartz Vein)

สายแร่ควอซต์ในบริเวณแหล่งแร่เฟลด์สปาร์แทรกอยู่ในหินแกรนิต, หินอะแลสไกต์ และหินท้องที่ที่ถูกหินแกรนิตดันแทรกขึ้นมา โดยทั่วไปลักษณะของควอตซ์มีสีขาวขุ่น เนื้อละเอียดถึง ปานกลาง มีเนื้อละเอียดมาก สีเทาอมเขียวหรือเทาอ่อน (ธงชัย พึ่งรัศมี และคณะ, 2532)

2.3 ทฤษฎีเกี่ยวกับแร่เฟลด์สปาร์ (Feldspar)

แร่เฟลด์สปาร์ เป็นแร่ประกอบหินที่พบมากที่สุดในหินอัคนี (Igneous Rocks) จัด อยู่ในกลุ่มแร่อะลูมิโนซิลิเกต (Aluminosilicate) ประกอบไปด้วย Na, K, Ca และ Ba (ปริมาณที่น้อย มาก) สามารถเกิดได้หลายรูปแบบ เป็นผลึกเนื้อสมานแน่นหรือเป็นมวลเม็ด จัดเป็นแร่ที่มีสีขาว ไม่มีสี เทา ครีม เหลือง แดง (จากชมพูถึงสีอิฐ) เขียว หรือ อมน้ำเงิน ทั้งนี้ขึ้นอยู่กับสารที่เจือปน มีความแข็ง ประมาณ 6.0 – 6.5 ความถ่วงจำเพาะ 2.54 – 2.76 และจุดหลอมเหลว 1,100 – 1,522 องศา เซลเซียส โดยทั่วไปพบในหินอัคนีกลุ่มแกรนิต (Granitic Rocks) แร่เฟลด์สปาร์ แบ่งได้ 2 กลุ่ม ดังนี้ กลุ่มที่ 1 แพลจิโอเคลสเฟลด์สปาร์ (Plagioclase Feldspars) เป็นกลุ่มแร่อะลูมิโน ซิลิเกต ที่มีรูปผลึกเหมือนกันอย่างต่อเนื่อง (Continuous Series) โดยมีสัดส่วนของปริมาณธาตุ Na และ Ca แปรผันไป แร่แอลไบต์ (Albite) เป็นแร่ตรงปลายชุดที่มีปริมาณของธาตุ Na ระหว่าง 100 – 90% เรียกโซเดียมเฟลด์สปาร์ ส่วน 10% ที่ลดลงจะเป็นปริมาณของธาตุ Ca ที่เกิดร่วมด้วย ซึ่งจะเป็น สัดส่วนที่แปรผันอย่างต่อเนื่องเป็นแร่ลำดับถัดไป คือ โอลิโกเคลส (Oligoclase), แอนดีซีน (Andesine), แลบราโดไรต์ (Labradorite) และไบโทว์ไนต์ (Bytownite) โดยมีสูตรทั่วไปเป็น nNaAlSi₃O₈ • mCaAl₂Si₂O₈ เป็นการเพิ่มปริมาณธาตุ Ca ไปเป็นแร่อะนอร์ไทต์ (Anorthite) ปริมาณ ธาตุ Ca ระหว่าง 90 – 100% ซึ่งเป็นแคลเซียมเฟลด์สปาร์ (Calcium Feldspar) ดังตารางที่ 2.1

แพลจิโอเคลสเฟลด์สปาร์	แอลไบต์ (%)	อะนอร์ไทต์ (%)
แอลไบต์ (NaAlSi ₃ O ₈)	100 - 90	0 - 10
โอลิโกเคลส	90 – 70	10 - 30
แอนดีซีน	70 – 50	30 – 50
แลบราโดไรต์	50 - 30	50 – 70
ไปโทว์ไนต์	30 - 10	70 – 90
อะนอร์ไทต์ (CaAl ₂ Si ₂ O ₈)	10 - 0	90 - 100

ตารางที่ 2.1 สัดส่วนของปริมาณแอลไบต์และอะนอร์ไทต์ในแพลจิโอเคลสเฟลด์สปาร์ (ธงชัย พึ่งรัศมี และคณะ, 2532)

กลุ่มที่ 2 แอลคาไลเฟลด์สปาร์ (Alkali Feldspars) เป็นกลุ่มแร่ที่มีส่วนประกอบ ระหว่างโพแทสเซียมเฟลด์สปาร์ (Potassium Feldspar, KAlSi₃O₈) ซึ่งเป็นแร่ออร์โทเคลสหรือแร่ไม โครไคลน์ (Orthoclase or Microcline) ร่วมกับโซเดียมเฟลด์สปาร์ ซึ่งเป็นแร่แอลไบต์ อาจมีทั้งธาตุ K และ Na ยกตัวอย่างเช่น พบในโซดาออร์โทเคลส (Soda – Orthoclase, (K, Na) AlSi₃O₈) อะนอร์ โทเคลส (Anorthoclase, (Na,K) AlSi₃O₈) หรือโซดาไมโครไคลน์ (Soda – Microcline, (Na, K) AlSi₃O₈) แร่กลุ่มนี้จะมีปริมาณธาตุ Ca น้อย

แร่ที่เกิดระหว่างกลางของกลุ่มแอลคาไลเฟลด์สปาร์ อาจเกิดจากการเกิดของแร่ เฟลด์สปาร์ 2 ชนิดร่วมกันเป็นผลึกผสมเนื้อแยก (Exsolution) ที่อุณหภูมิต่ำที่เรียกเพอร์ไทต์ (Perthite) ซึ่งประกอบด้วยออร์โทเคลสหรือไมโครไคลน์ เป็นเนื้อพื้นกับแอลไบต์ ซึ่งแยกเป็นผลึก แทรกอยู่ในผลึกเนื้อพื้น กลุ่มแร่แอลคาไลเฟลด์สปาร์ ได้แก่ ไมโครไคลน์ ออร์โทเคลส ซานีดีน (Sanidine) อะดูลาเรีย (Adularia) แอลไบต์ อะนอร์โทเคลส และแพลจิโอเคลส ที่มีสัดส่วนปริมาณ ธาตุ Ca น้อย โดยทั่วไปออร์โทเคลสและไมโครไคลน์ จะมี NaAlSi₃O₈ ประมาณ 10 – 25% และ ในแอลไบต์ จะมี KAlSi₃O₈ ประมาณ 5 – 15%

2.4 สารระเบิด (Blasting Agent)

Walter and Konya (1990) ได้กล่าวไว้ในหนังสือ Surface Blast Design จากสูตร เคมี NH4NO3 ของ Ammonium Nitrate (AN) หรือเขียนรูปแบบง่ายๆ ว่า N2H4O3 การใช้ Ammonium Nitrate สามารถปล่อยพลังงานของก๊าซเมื่อเกิดการระเบิดจำนวนมาก ประกอบด้วย ออกซิเจน (O) 60%, ไนโตรเจน (N) 33% และไฮโดรเจน (H) 7% ไม่จัดเป็นวัตถุระเบิดที่แท้จริง มัก นิยมเรียกว่า สารผสมระเบิด เมื่อทำการเติมน้ำมันดีเซล (Fuel Oil) จะกลายเป็นวัตถุระเบิดชนิด ANFO โดยมีอัตราส่วนที่เหมาะสมคือ เปอร์เซ็นต์โดยน้ำหนักของ AN (94.5) : FO (5.5) แสดงดังรูปที่ 2.2 เมื่อมีการผสมของสารทั้งสองอย่างเหมาะสมก็จะเกิดการสลายตัวอย่างรวดเร็วที่อุณหภูมิสูงมาก และให้ปริมาณออกซิเจนกับพลังงานความร้อนอย่างมาก แสดงในรูปปฏิกิริยาดังนี้

ANFO : 3NH₄NO₃ + CH₂ --> 3N₂ + 7H₂O + CO₂

รูปที่ 2.2 พลังงานของ ANFO ที่แสดงการเติมปริมาณน้ำมันเชื้อเพลิงที่แตกต่างกัน (Walter and Konya, 1990)

การระเบิดที่ดีจะมีกลุ่มควันสีเทาอ่อน หากการผสมน้ำมันดีเซลน้อยเกินไปจะเกิด ก๊าซไนตรัสออกไซด์ (Nitrous Oxides) เกิดกลุ่มควันสีเหลืองปนเทา ในทางกลับกันหากมีส่วนผสม ของน้ำมันดีเซลมากเกินไปจะเกิดก๊าซคาร์บอนไดออกไซด์ (Carbon Dioxide) กับคาร์บอน (C) ทำให้ เกิดกลุ่มควันสีเทาดำ

2.5 ขั้นตอนการวางแผนการเจาะระเบิดในงานวิศวกรรม

ไพรัช เจริญกิจ และนวพล เอื้อวิทยา (2550) ได้กล่าวถึงขั้นตอนการวางแผนการ เจาะและการระเบิดว่าเป็นหน่วยปฏิบัติการเริ่มต้นในวงรอบการผลิตของการทำเหมืองแร่ที่ส่งผล กระทบต่อไปในกระบวนการตักและขนแร่ในเหมือง การเจาะและการอัดระเบิดให้มีประสิทธิภาพ สูงสุด เริ่มพิจารณาจากโครงสร้างของหิน การออกแบบความสูงของหน้าระเบิด การวางหลุมระเบิด ขนาดของรูระเบิด ชนิดของวัตถุระเบิดและวิธีการจุดระเบิดที่ใช้ การอัดระเบิดให้พอดี การจดบันทึก ทุกขั้นตอน การประเมินผลขนาดของหินที่ได้ และการนำผลการประเมินไปดัดแปลงการเจาะระเบิด ในครั้งต่อไป แสดงไว้ดังรูปที่ 2.3

รูปที่ 2.3 ขั้นตอนการวางแผนการเจาะระเบิดให้ได้ประสิทธิภาพสูงสุด (ดัดแปลงจาก : ไพรัช เจริญกิจ และ นวพล เอื้อวิทยา, 2550)

2.6 การออกแบบการระเบิด

การออกแบบการเจาะระเบิดและการระเบิดให้มีประสิทธิภาพและมีความปลอดภัย ยังมีความจำเป็นต้องมีการสื่อสารที่ดีระหว่างผู้ปฏิบัติงานและวิศวกรผู้ออกแบบเพื่อนำทฤษฎีและ ประสบการณ์ภาคการปฏิบัติมาใช้ร่วมกันให้ได้ประโยชน์อย่างเต็มที่ การออกแบบการเจาะระเบิดให้มี ประสิทธิภาพมีปัจจัยที่สำคัญทั้งหมด 3 ข้อ แสดงไว้ดังรูปที่ 2.4 ประกอบด้วย

1.การกระจายตัวของวัตถุระเบิดในชั้นหิน (Energy Distribution)
 2.การอัดแน่นของวัตถุระเบิด (Energy Confinement)
 3.ระดับของพลังงานในวัตถุระเบิดที่ใช้ (Energy Level)

รูปที่ 2.4 ปัจจัยที่สำคัญที่สุดในการเจาะระเบิดให้มีประสิทธิภาพ (ดัดแปลงจาก : ไพรัช เจริญกิจ และ นวพล เอื้อวิทยา, 2550)

2.7 ตัวแปรในการออกแบบการระเบิด

การออกแบบตามทฤษฎีพื้นฐานของการเจาะระเบิดเบื้องต้น เพื่อให้เกิดการกระจาย พลังงานระเบิดไปในเนื้อหินและมีผลของการระเบิดที่ดีที่สุดและเพื่อให้เกิดผลกระทบต่อสิ่งแวดล้อม น้อยที่สุด เมื่อทราบผลของการระเบิดในการระเบิดในครั้งแรกแล้ว อาจต้องมีการปรับปรุงรูปแบบการ เจาะระเบิดเพื่อให้มีผลการระเบิดที่ดีขึ้น ตามความเหมาะสมของลักษณะธรณีวิทยาของแต่ละพื้นที่ วิศวกรหรือผู้ปฏิบัติงานจะต้องรู้จักแปรเปลี่ยนค่าต่างๆ ของรูปแบบการเจาะระเบิดตามความ เหมาะสมของลักษณะเฉพาะของชั้นหินในแต่ละแหล่ง การเจาะระเบิดแต่ละพื้นที่สามารถแบ่งค่าตัว แปรต่างๆ ออกเป็น 2 ลักษณะ สรุปได้ดังตารางที่ 2.2

		ค่าตัวแปรที่ไม่สามารถ
ลำดับ	ค่าตัวแปรที่สามารถควบคุมได้	ควบคุมได้
ที่	(Controllable Variables)	(Non-controllable
		Variables)
1	ขนาดของรูเจาะระเบิด (Hole Diameter)	ลักษณะธรณีวิทยาของหิน
2	ความลึกของรูเจาะระเบิด (Hole Depth)	ลักษณะเฉพาะตัวของหิน
3	ค่าความสูงของหน้าผา (Bench Height)	โครงสร้างของชั้นหิน
4	ระยะที่จะต้องเจาะลึกกว่าฐานของหน้าผา	
4	(Sub Drilling Depth)	สมและแน เทคท เง
F	ระยะการปิดปากรูระเบิด	
5	(Stemming Distance)	_
6	วัสดุที่ใช้ในการปิดปากรูระเบิด	
0	(Stemming Material)	-
7	ระยะจากรูระเบิดแถวแรกหรือ	
1	รูที่ระเบิดแรกสุดถึงหน้าผา (Burden)	-
8	ระยะระหว่างรูระเบิด (Spacing) -	
0	ทิศทางการเคลื่อนที่ของหิน	
9	(Direction of Rock Movement)	-
10	เวลาที่จุดระเบิด และอนุกรมการจุดระเบิด (Timing)	_
11	ชนิดของวัตถุระเบิด และระบบการจุดระเบิด (Types of	
11	Explosive and Initiation System)	_

ตารางที่ 2.2 ค่าตัวแปรต่างๆ ในการเจาะระเบิด (ไพรัช เจริญกิจ และ นวพล เอื้อวิทยา, 2550)

สำหรับการผลิตหินเพื่อนำมาใช้ในก่อสร้างเพื่อให้ประสิทธิภาพสูง การระเบิดหิน แบบขั้นบันได (Bench Blasting) แสดงมิติต่างๆ ของการเจาะและการอัดระเบิด ได้แสดงไว้ในรูปที่ 2.5 จึงสามารถอธิบายหน้าที่ของการทำงานสำหรับหน้าเหมืองหิน ดังนี้

-		1	ิย	a	9	
R	=	ระยะระหวา	13989 1761	ากงรเจ′	າະຮະເພດແຄງແຮ	ก
D		000000000		101 1 20 0		

- S = ระยะระหว่างรูเจาะ
- T = ระยะในการปิดปากรูระเบิด
- J (U) = ระยะที่ต้องเจาะต่ำกว่าตีนของหน้าผา
- H = ความสูงของหน้าผา
- C = ระยะอัดระเบิด (Charge Length)
- L = ความลึกของรูระเบิด
- P = ไพรเมอร์ (Primer)

В

= ระเบิดแรงสูงช่วยเสริมแรงกระตุ้นของไพรเมอร์ (Booster)

รูปที่ 2.5 แสดงมิติต่างๆ ของการเจาะและการอัดระเบิด (ไพรัช เจริญกิจ และ นวพล เอื้อวิทยา,

2550)

2.7.1 ระยะระหว่างหน้าผาถึงรูระเบิดที่จุดระเบิดแรกสุดหรือระยะห่างระหว่าง แถว (Burden, B)

การออกแบบงานระเบิด ส่วนของระยะห่างระหว่างแถวเป็นส่วนที่สำคัญที่สุด การ เลือกระยะห่างที่ถี่เกินไป จะส่งผลให้หินแตกหักละเอียดดี หินปลิวกระเด็นได้ไกล ระดับความดังของ เสียงและคลื่นอัดอากาศ (Air Blast) สูงกว่าปกติ ค่าใช้จ่ายเพิ่มขึ้น แต่ทางกลับกันหากเลือกระยะห่าง ที่กว้างมากเกินไป มักทำให้เกิดปัญหาหินแตกไม่ถึงตีนของหน้าผา ที่เรียกว่า Toe ทำให้ได้พื้นที่ไม่ เรียบจะเกิดปรากฏการณ์ของการแตกร้าวทางด้านหลัง (Back Break) ของแนวระเบิดและขนาดหินที่ ได้มีขนาดใหญ่จำนวนมากทำให้ยากต่อการระเบิดในครั้งต่อไป ได้แสดงไว้ในรูปที่ 2.6

รูปที่ 2.6 ระยะระหว่างแถว (ไพรัช เจริญกิจ และ นวพล เอื้อวิทยา, 2550)

สำหรับผู้ออกแบบการเจาะระเบิดควรยึดหลักพื้นฐานของการออกแบบการเจาะ ระเบิด ซึ่งได้รวบรวมวิธีการพื้นฐานในการออกแบบงานระเบิดเป็นสูตรต่างๆ ที่จะนำมาเป็นแนวทาง ในการออกแบบระเบิดไว้ ดังนี้

Atlas Power Company, 1987

B = ((SGe/SGr) + 1.5) De

В	=	ระยะจากรูระเบิดแถวแรกสุดถึงหน้าผา (ฟุต)
SGe	=	ความถ่วงจำเพาะของวัตถุระเบิด
SGr	=	ความถ่วงจำเพาะของหิน
De	=	ขนาดเส้นผ่านศูนย์กลางของรูระเบิด (นิ้ว)
	B SGe SGr De	B = SGe = SGr = De =

2.7.2 ระยะห่างระหว่างหลุมเจาะในแถว (Spacing, S)

เป็นระยะที่ตั้งฉากกับระยะ Burden ถ้าระยะ Spacing ถิ่มากไป จะทำให้เกิดโซน การแตกร้าว (Shattered Zone) ระหว่างหลุมเจาะสูง หากระยะระหว่างหลุมกว้างเกินไป จะส่งผลให้ การแตกหักไม่ดี ทำให้หน้าเหมืองไม่เรียบอีกด้วย เขียนเป็นสูตรได้ ดังนี้

$$S = (1.0 - 1.8) B$$

เมื่อ	S	=	ระยะระหว่างรูระเบิด (ฟุต)
	В	=	ระยะจากรูระเบิดแถวแรกสุดถึงหน้าผา (ฟุต)

2.7.3 ระยะในการปิดปากรูระเบิด (Stemming Distance, T)

การปิดปากรูระเบิดหรืออุดรูระเบิดโดยทั่วไปต้องมีระยะไม่น้อยกว่า 0.7 เท่า ของระยะ Burden จะเป็นระยะที่เพียงพอที่จะป้องกันไม่ให้เศษดินหรือหินที่อัดไว้พ้นออกทางปากรูระเบิด แต่หาก มีการอัดระเบิดที่ไม่ดีพอจะทำให้เศษดินหรือหินที่อัดไว้พ้นออกทางปากรูได้ ค่าที่เหมาะสมมีค่าระหว่าง 0.7 – 1.3 เท่า ของระยะจากหน้าผาถึงรูระเบิดแถวแรก หรืออาจเขียนเป็นสูตรได้ดังนี้

เมื่อ T = ระยะปิดปากรูระเบิด (ฟุต) B = ระยะจากรูระเบิดแถวสุดถึงหน้าผา (ฟุต)

ขนาดของวัสดุที่เหมาะสมในการใช้ปิดปากรูระเบิด (Optimum Size of Stemming Material) โดยทั่วไปวัสดุที่นิยมใช้ในการอุดรูระเบิดมากที่สุด คือหินหรือฝุ่นที่ได้จากการเจาะ (Drilling Cutting) เนื่องจากเป็นวัสดุเดิมของหิน สะดวกและประหยัดค่าใช้จ่าย อย่างไรก็ตามหากมี น้ำในรูระเบิด การใช้หินที่ได้จากการบดที่มีขนาดที่เหมาะสมเป็นวัสดุในการอัดระเบิด จะทำให้ได้ผล ของการระเบิดที่ดีกว่า และสามารถควบคุมการอัดระเบิดได้ง่ายกว่า ในการอัดระเบิดโดยการใช้หินที่ ได้จากการฝุ่นเจาะเป็นวัสดุในการอัดปากรู ควรให้มีการอุดรูระเบิดไม่น้อยกว่าระยะห่างระหว่างแถว (T>B) เพื่อให้มีความมั่นใจได้ว่าจะไม่มีการพ่นออกทางปากรูในการระเบิด

2.7.4 ระยะเจาะลึกใต้ระดับพื้นเหมือง (Sub Drilling, J)

การเจาะระดับที่ต่ำกว่าพื้นของเหมืองทำให้เกิดการแตกหักที่จุดล่างสุด (Toe) เพื่อ ป้องกันการเกิดโขดหินเกะกะ การเคลื่อนย้ายรถเจาะ การขุด ขนย้ายหินในบริเวณหน้าเหมืองได้ดีขึ้น จากการเจาะระเบิดทั่วไป ระยะที่ต้องเจาะให้ลึกกว่าพื้นล่างของหน้าผา ควรมีค่าประมาณ 20-50% ของระยะห่างระหว่างแถว แต่ค่าเริ่มต้นที่นิยมใช้มากที่สุดเท่ากับ 30% ของระยะห่างระหว่างแถว เขียนเป็นสูตรได้ดังนี้

เมื่อ	J	=	ระยะเจาะลึกใต้ระดับพื้นเหมือง (ฟุต)
	В	=	ระยะจากรูระเบิดแถวสุดถึงหน้าผา (ฟุต)

J = 0.3 B

2.7.5 การเจาะระเบิดรูเอียง (Angle Drilling)

การเจาะระเบิดรูเอียง นิยมใช้กับการเจาะที่ต้องการให้ได้ความลาดชันขั้นสุดท้าย ของหน้าผาตามที่ต้องการ หรือต้องการลดความสั่นสะเทือนที่เกิดจากการระเบิด เทียบข้อดีและ ข้อเสียของการเจาะระเบิดรูเอียงและรูดิ่ง สรุปได้ดังตารางที่ 2.3 คือ

ตารางที่ 2.3 ข้อดีและข้อเสียของการเจาะระเบิดรูเอียงเปรียบเทียบกับการเจาะระเบิดโดยใช้รูดิ่ง (ไพรัช เจริญกิจ และ นวพล เอื้อวิทยา, 2550)

° ° 4	การเจาะระเบิดรูเอียง เปรียบเทียบ กับการเจาะระเบิดโดยใช้รูดิ่ง				
តាមបហ	ข้อดี	ข้อเสีย			
1		อัดระเบิดยากกว่าและก้านเจาะติดได้			
1	ดอาเขาะวะกะดาบาโดนพานากกุบาโ	ง่ายกว่า			
2	ทำให้มีการแตกร้าวของหินหลังแนวระเบิด	วางเครื่องเจาะยากกว่า			
2	น้อยกว่า				
2	ทำให้หินแตกได้ดีกว่าและการกองของหิน	การควบคุมให้มีมุมเอียงเท่ากันทุกรูทำได้			
3	ที่ได้ดีกว่า โดยเฉพาะในกรณีที่หน้าผาต่ำๆ	ยาก และทำให้รูเจาะลึกไม่เท่ากัน			
4	ได้หน้อมอนี่มีอากมอกอเอียงห่อให้	หากมีความไม่ต่อเนื่องของชั้นหิน			
	เตกนาด เกานาเรา เมลาตรออก	จะเกิดปัญหาในการระเบิด			
	ายุเกวร เพทาเมา	ได้ง่ายกว่า			

2.7.6 การเลือกขนาดเส้นผ่านศูนย์กลางหลุมเจาะระเบิด (Blast Hole

Diameter, DH)

ค่าใช้จ่ายจะลดน้อยลงเมื่อขนาดเส้นผ่านศูนย์กลางหลุมเจาะใหญ่ขึ้น การเลือก ขนาดของหลุมเจาะ มีผลโดยตรงต่อการแตกหักของหินที่คุ้มค่าที่สุด อย่างไรก็ตามตัวประกอบอื่นต้อง นำมาวิเคราะห์ด้วย เช่น ระยะความสูงของหน้าเหมือง การสั่นสะเทือน (Ground Vibration) และ ผลกระทบอื่นๆ ความแข็งและโครงสร้างของมวลหิน หากหินมีความแข็งมากจะส่งผลทำให้เกิดหิน ขนาดใหญ่มากเกินไปหลังจากการระเบิด

2.7.7 การอัดระเบิดแบบเว้นช่วงการอัด (Decking)

เป็นการอัดระเบิดด้วยการแบ่งการอัดระเบิดเป็นช่วงๆ โดยอัดระเบิดสลับกับการอัด ดินหรือเศษหิน จำเป็นต้องมีการบรรจุแก๊ปและไพรเมอร์ไว้ทุกช่วงของวัตถุระเบิด จุดประสงค์ของการ อัดระเบิดแบบนี้คือ เพื่อป้องกันไม่ให้ก๊าซที่เกิดจากการระเบิดดันตัวออกมาทางโครงสร้างของหิน ใน กรณีที่มีชั้นหินที่อ่อน (Soft Seam) หรือมีโพรงขนาดใหญ่ เกิดอยู่ในชั้นหินแข็ง โดยจะอัดดินหรือหิน บริเวณที่เป็นชั้นดินที่อ่อนหรือโพรงและอัดระเบิดเฉพาะในชั้นหินแข็ง เพื่อป้องกันไม่ให้ก๊าซที่เกิดจาก การระเบิดดันตัวออกมาทางโครงสร้างของหิน ส่งผลให้มีการกระจายตัวของแรงระเบิดดีขึ้น

2.7.8 ปริมาณการใช้วัตถุระเบิดต่อหน่วยปริมาตร (หรือน้ำหนัก) ของหิน (Powder Factor หรือ Explosive Factor หรือ Specific Charge)

การเจาะระเบิดมีค่าแตกต่างกันตามความต้องการผลของการระเบิด ซึ่งขึ้นอยู่กับ ชนิดของหินหรือแร่ที่ทำการระเบิด ชนิดของวัตถุระเบิดที่ใช้ รูปร่างทางเรขาคณิตของการวางรูเจาะ ระเบิดในชั้นหิน และขนาดเส้นผ่านศูนย์กลางของรูเจาะ การใช้วัตถุระเบิดมากเกินไปอาจทำให้หิน หรือแร่บางชนิดมีขนาดเล็ก หรือเกิดเป็นฝุ่นมากเกินไป ทำให้ไม่เป็นที่ต้องการของตลาด การใช้วัตถุ ระเบิดน้อยเกินไป ทำให้ได้หินใหญ่จำนวนมาก ส่งผลต่อการตัก การขนส่งและการระเบิดย่อย สิ่ง เหล่านี้ทำให้เสียค่าใช้จ่ายเพิ่มขึ้น สรุปได้ว่าเมื่อค่า Powder Factor เพิ่มขึ้น ขนาดเฉลี่ยของการ แตกหักของก้อนหินก็จะยิ่งมีขนาดเล็กลง ดังรูปที่ 2.7

นอกจากนี้การพิจารณาปริมาณการใช้วัตถุระเบิดต่อปริมาณหิน ต้องคำนึงถึง ค่าใช้จ่ายในการผลิตรวมทั้งหมดควบคู่กันไป การเพิ่มปริมาณการใช้วัตถุระเบิดทำให้ค่าใช้จ่ายในการ เจาะระเบิดต่อน้ำหนักหินที่ได้เพิ่มขึ้น แต่มักลดค่าใช้จ่ายในการตัก การขนส่งและการบด และการลด ขนาดของหิน แต่การใช้ปริมาณวัตถุระเบิดต่อปริมาณหินมากๆ อาจส่งผลให้เกิดปัญหาสิ่งแวดล้อม เพิ่มขึ้น

รูปที่ 2.7 ขนาดเฉลี่ยของหินหลังจากการระเบิดตามระยะ Burden และค่า Powder Factor (Jimeno et al., 1995)

ค่า Powder Factor (PF) ที่เหมาะสมจะต้องพิจารณาประกอบกับประเภทของชนิดหิน ลักษณะโครงสร้าง และความแข็งแรงของหิน (Blastability Index) ซึ่งในการระเบิดค่า Powder Factor เริ่มตั้งแต่ 0.1 – 1.2 กิโลกรัมต่อลูกบาศก์เมตร (พันธุ์ลพ หัตถโกศล และศักดา วังใจ, 2549; Bender, 1999) ขึ้นอยู่กับชนิดของหินและขนาดที่ต้องการหลังจากการระเบิด ได้แสดงในตารางที่ 2.4 และ 2.5 ตารางที่ 2.4 ค่า Powder Factor โดยทั่วไป จำแนกตามความแข็งแรงของหิน (Dyno Nobel, 2020)

Rock Type	Powder Factor (kg/m³)
Hard Rock	0.7 – 0.8
Medium Rock	0.4 – 0.5
Soft Rock	0.25 – 0.35
Very Soft Rock	0.15 – 0.25

	9 9 1	1 /95 V I	٢ ٢	(
ตารางท 2 5 คา Powder Ez	actor ไบหมบประเภทต	กางๆ (กโลกรบตอลก	ทาวศกเบตรแบบ)	(Render 1999)

Rock Mass	Hardness (Moh)	PF-well shot	PF-medium shot	PF-poor shot (90% 1500mm minus)
Magnetite	9	1.18	0.90	0.65
Andesite	7	0.92	0.70	0.57
Basalt	7	0.92	0.70	0.57
Granite	6.5	0.86	0.65	0.53
Sandstone	4	0.62	0.50	0.37
Conglomerate	3.5	0.65	0.53	0.40
Shale	3	0.56	0.47	0.34
Limestone	3	0.56	0.47	0.34
2.7.9 การจุดระเบิดที่มีการถ่วงเวลาระหว่างรูระเบิด

การทำงานเหมืองแร่ในปัจจุบันนิยมใช้แก๊ปไฟฟ้าในการจุดระเบิด แบ่งออก 2 ชนิด คือ แก๊ปไฟฟ้าธรรมดาและแก๊ปไฟฟ้าชนิดที่มีการถ่วงเวลาระหว่างรูระเบิดต่อรูระเบิด การจุดระเบิดที่ มีการถ่วงเวลามักเป็นการจุดระเบิดที่ใช้แก๊ปไฟฟ้าชนิดที่มีการถ่วงเวลาระหว่างรูระเบิดต่อรูระเบิด การจุดระเบิดที่มีการถ่วงเวลาจะมีการออกแบบให้รูระเบิดที่อยู่ใกล้หน้าอิสระมากที่สุดจุดระเบิดก่อน รูระเบิดที่อยู่ถัดมาจะจุดระเบิดตามมาโดยเว้นระยะห่างกันระหว่าง 8 ถึง 25 มิลลิวินาที ขึ้นอยู่กับ ชนิดของแก๊ปที่ใช้ในการจุดระเบิด

2.7.10 ความสูงของหน้าเหมือง (Bench Height, H)

Konya (1995) ได้กล่าวไว้ในหนังสือ Blast Design การจะให้งานระเบิดมี ประสิทธิภาพดีนั้น ความสูงของหน้าเหมือง (H) จำเป็นต้องมีสัดส่วนที่พอดีกับระยะ Burden (B) ทำ ให้อัตราส่วน H/B หรือที่เรียกว่า อัตราส่วนสตีฟฟ์เนส (Stiffness Ratio, S) ซึ่งมีผลโดยตรงต่อการ แตกหักของหิน การสั่นสะเทือน เสียงดัง และหินปลิว ได้แสดงในตารางที่ 2.6 และหากอัตราส่วน H/B มีค่าสูงขึ้นจะส่งผลโดยตรงกับค่า PF สูงขึ้นด้วย แสดงได้ในรูปที่ 2.8

อัตราส่วน H/B	1	2	3	4
Fragmentation	Poor	Fair	Good	Excellent
Air Blast	Severe	Fair	Good	Excellent
Fly Rock	Severe	Fair	Good	Excellent
Ground Vibration	Severe	Fair	Good	Excellent

ตารางที่ 2.6 อัตราส่วน H/B ที่มีต่อการแตกหักของหินและผลกระทบสิ่งแวดล้อม (Konya, 1995)

รูปที่ 2.8 ค่า Powder Factor กับอัตราส่วนของ H/B (SME Mining Engineering Handbook, 2011)

2.8 การออกแบบรูปแบบการระเบิด (Blasting Pattern Design)

สง่า ตั้งชวาล (2541) ระบุไว้ว่าการเจาะระเบิดที่ใช้ขนาดรูเจาะเท่ากัน ใช้วัตถุระเบิด ชนิดเดียวกัน การที่หินจะแตกได้ดีและมีขนาดเล็ก ใหญ่ตามที่ต้องการ นอกจากจะขึ้นอยู่กับรูปแบบ การเจาะระเบิดทางเรขาคณิต และปริมาณวัตถุระเบิดต่อหน่วยปริมาตรของหินแล้ว ยังมีปัจจัยที่ทำให้ การแตกของหินและผลกระทบที่เกิดขึ้นแตกต่างกัน ดังนี้

2.8.1 แบบอย่างหรือรูปแบบของหลุมเจาะระเบิด (Pattern)

การวางแบบอย่างหรือรูปแบบของหลุมเจาะระเบิด มีความสำคัญมากต่อการแตก ของหินและการจุดระเบิด ที่นิยมใช้มี 3 แบบ ขึ้นอยู่กับอัตราส่วนของระยะ Burden (B) และ Spacing (S) (รูปที่ 2.9 – 2.11) ดังนี้

1. แบบอย่างสี่เหลี่ยมจัตุรัส (Square Pattern) มีค่าอัตราส่วนของ (B/S) เท่ากับ 1:1

	M	-		3	7	F	F	-
0	0	0	0	0	0	0	0	
0	ò	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	

รูปที่ 2.9 แบบอย่างสี่เหลี่ยมจัตุรัส (Ash, 1963)

2. แบบอย่างสี่เหลี่ยมผืนผ้า (Rectangular Pattern) มีค่าอัตราส่วน (B/S) ไม่ เท่ากับ 1:1 (นิยมใช้ 1:1.25)

รูปที่ 2.10 แบบอย่างสี่เหลี่ยมผืนผ้า (Ash, 1963)

3. แบบอย่างสลับฟันปลา (Staggered Pattern) มีค่าอัตราส่วน (B/S) โดยทั่วไป ใช้อัตราส่วน 1:1.15

รูปที่ 2.11 แบบอย่างสลับฟันปลา (Ash, 1963)

2.8.2 การออกแบบทั่วไปสำหรับงานระเบิดหินแบบขั้นบันได

งานการระเบิดหินแบบขั้นบันไดส่วนใหญ่ จะออกแบบให้ทิศทางของมวลหินที่ แตกหักมีการเคลื่อนที่ในแนวตั้งฉากกับหน้าอิสระ (Free Face) และแถวของรูเจาะระเบิดไม่นิยมให้ เกิน 4 แถว เพื่อป้องกันการเกิดรอยแตกร้าวบริเวณด้านหลังหลุมเจาะ สำหรับการออกแบบการ ระเบิดทั่วไปมีหลายรูปแบบ แสดงเป็นการมองผังภาพ A – G เพื่อเพิ่มความสะดวกในการอธิบาย แบบอย่างการระเบิดแต่ละแบบ ดังรูปที่ 2.12

รูปที่ 2.12 ผังภาพ (Plan View) ของการออกแบบการระเบิดหลายรูปแบบแนวหัวลูกศรเป็นทิศทาง ของการเคลื่อนที่ของมวลหินภายหลังการระเบิด (Ash, 1963)

2.8.3 การกระตุ้นวัตถุระเบิด (Priming)

ชนิด ขนาด ปริมาณ และการกระจายตัวของวัตถุระเบิดแรงสูง เพื่อกระตุ้น ANFO มีความสำคัญมากต่อผลของการระเบิด จะต้องมีคุณสมบัติป้องกันน้ำได้ดี สามารถจุดระเบิดได้ด้วย แก้ปเบอร์ 6 ขนาดวัตถุระเบิดแรงสูงควรให้มีขนาดใกล้เคียงกับเส้นผ่านศูนย์กลางของรูระเบิด ปริมาณวัตถุระเบิดแรงสูงที่ใช้ทำวัตถุระเบิดแรงสูงควรมีน้ำหนักประมาณ 2 – 5% ของปริมาณวัตถุ ระเบิดทั้งหมด และควรให้มีการกระจายตัวอยู่ทั่วตลอดความลึกของรูระเบิด การใช้วัตถุระเบิดแรงสูง เพื่อกระตุ้น ANFO ในปริมาณที่น้อยเกินไป ส่งผลทำให้ได้การระเบิดออกมาไม่ดี แต่หากใช้ปริมาณ มากเกินไปก็เป็นการสิ้นเปลือง วัตถุระเบิดแรงสูงจึงป็นที่นิยมใช้เป็นตัวกระตุ้น ANFO

2.8.4 ปัญหาการมีน้ำในหลุมระเบิด

คุณสมบัติไม่ป้องกันน้ำของ ANFO ทำให้ละลายเมื่อเจอน้ำ การแก้ปัญหาเรื่องการมี น้ำในหลุมระเบิดจึงมีความสำคัญมากต่อผลของการระเบิดเหมืองเปิด บริเวณพื้นราบจะประสบปัญหา เรื่องน้ำมากกว่าบนภูเขา น้ำที่เกิดขึ้นในรูระเบิดเกิดจากน้ำที่ตกค้างอยู่ในรอยแตกของหิน จะมีมาก หรือน้อยขึ้นอยู่กับความต่อเนื่องของรอยแตกของหินบริเวณนั้นๆ หากรอยแตกของหินมีความ ต่อเนื่องกันมาก ก็จะทำให้มีน้ำในรูเจาะปริมาณมาก การแก้ปัญหาการมีน้ำในรูระเบิดในเหมืองเปิด บนพื้นราบ สามารถทำได้โดยการทำเป็นบ่อน้ำที่จุดต่ำสุดของขุมเหมือง ซึ่งจะทำให้น้ำไหลตามรอย แตกของหินไปรวมกันอยู่ที่บ่อน้ำดังกล่าวแล้วจึงใช้เครื่องสูบน้ำออกจากขุมเหมือง

2.8.5 โครงสร้างของชั้นหิน (Structure)

งานระเบิดหินหน้าเหมืองพบชั้นหินที่มีรอยแตก หรือมีโพรงในเนื้อหินมากๆ หรือที่ วางตัวเป็นชั้นแคบๆ สลับกัน จะทำให้การเจาะระเบิดทำได้ยากกว่าชั้นหินที่มีเนื้อแน่น เนื่องจากพลัง จากการระเบิดส่วนหนึ่งถูกปล่อยออกสู่บรรยากาศด้วยความดันของก๊าซ ขณะที่กำลังระเบิดมักจะมี หินก้อนโตที่แตกตัวตามรอยแตก หรือรอยของความไม่ต่อเนื่องเดิมของชั้นหิน การแก้ปัญหาอาจทำได้ โดยพยายามวางหน้าระเบิดให้เหมาะสมกับการวางตัวของชั้นหิน แสดงไว้ในรูปที่ 2.13

รูปที่ 2.13 รอยแตกแยกตามธรรมชาติในหินที่มีผลต่อเสถียรภาพหน้าเหมือง (สง่า ตั้งชวาล, 2541) ออกแบบรูปแบบการระเบิด (Blasting Pattern Design)

2.9 การจำแนกประเภทของหินจากทดสอบแบบ UCS

สำหรับการทดสอบแรงกดในแนวแกนเดียว (Uniaxial Compression Test, UCS) สามารถจำแนกประเภทของหิน แสดงได้ตารางที่ 2.7 .

	ตารางที่ 2.7	การจำแนกบ	ไระเภทหินจาก	การทดสอบแบบ	UCS	(Choudhary	and	Sonu,	2013)
--	--------------	-----------	--------------	-------------	-----	------------	-----	-------	-------

Rock Type	UCS (MPa)
Very Low Strength	1 – 5
Low Strength	5 – 25
Medium Strength	25 – 30
High Strength	50 - 100
Very High Strength	100 – 250
Extremely High Strength	>250

2.10 ซอฟต์แวร์ทดลองหาการกระจายขนาดของหิน (Rock Image)

ซอฟต์แวร์ทดลองหาการกระจายขนาดของหิน โดยการใช้ภาพถ่ายทดสอบการหา การกระจายขนาดของหิน โดยมีหลักการทำงานดังที่แสดงในรูปที่ 2.14 ดังนี้

รูปที่ 2.14 แผนภาพการทำงานของซอฟต์แวร์ทดลอง (ไพรัช จรูญพัฒนพงศ์, 2558)

2.11 ยางธรรมชาติ (Natural Rubber)

ยางพาราได้จากการกรีดจากต้นยางพาราสายพันธุ์ Hevea Braziliensis ซึ่งจัดเป็น ไม้ยืนต้นขนาดใหญ่ พบว่ามีถิ่นกำเนิดที่ลุ่มแม่น้ำอะเมซอน ประเทศบราซิล แถบทวีปอเมริกาใต้ เป็น พืชที่ให้น้ำยางมากที่สุด คุณสมบัติของเนื้อยางดีกว่ายางชนิดอื่น ขยายพันธุ์โดยใช้เมล็ดและการติดตา สามารถให้น้ำยางได้ถึง 30 ปี และมีอายุได้นานประมาณ 40 ปี ในประเทศไทยยางพาราจัดเป็นพืชทาง เศรษฐกิจที่มีความสำคัญทำรายได้เข้าสู่ประเทศปีละหลายล้านบาท พื้นที่เพาะปลูกส่วนใหญ่ ได้แก่ ภาคใต้ ภาคตะวันออกและบางส่วนของภาคตะวันออกเฉียงเหนือ เนื่องจากพื้นที่ดังกล่าวมีลักษณะ เป็นดินร่วนที่มีการระบายน้ำดี มีค่าความเป็นกรด – เบส ในช่วง 4.0 – 5.5 และมีฝนตกชุกตลอด (Center of Excellence in Natural Rubber Latex Biotechnology Research and Development [CERB], 2021)

2.12 น้ำยางพารา (Latex)

ลักษณะของน้ำยางมีสีขาวข้น มีเนื้อยางแห้งประมาณ 30% โดยน้ำหนัก หลังจาก นั้นจะถูกนำไปหมุนเหวี่ยง ให้ได้เนื้อยางแห้ง 60% โดยน้ำหนัก ซึ่งจะเรียกว่า น้ำยางข้น และมีการเติม แอมโมเนีย และสารเคมีอื่นๆ เพื่อช่วยรักษาสภาพของน้ำยางข้น หลังจากนั้นจะส่งออกสู่ตลาดเพื่อ นำไปผลิตเป็นผลิตภัณฑ์ต่างๆ เช่น ถุงมือยาง ถุงยางอนามัย ลูกโป่ง จุกหัวนม เป็นต้น ส่วนยางแห้ง ได้จากการนำน้ำยางพาราสดมาเติมกรด (กรดอะซิติค กรดฟอร์มิค หรือกรดซัลฟูริค) ทำให้เกิดการจับ ตัวของน้ำยางเป็นก้อนแข็ง และแยกตัวออกจากน้ำ นำไปรีดด้วยลูกกลิ้ง อบรมควัน เป็นเวลา 2-3 วัน ยางที่ได้จากกระบวนการนี้ คือ ยางแผ่นรมควัน นอกจากนี้ยังมียางเครฟ ซึ่งได้จากการนำเศษยาง ไป รีดในเครื่องเครฟ และนำสิ่งสกปรกต่างๆ ออก ยางชนิดนี้จะมีสีเข้มจำเป็นต้องใส่สารฟอกสี เพื่อให้ ยางมีสีขาวขึ้น (Neo Plastomer, 2010)

2.13 คุณสมบัติของยางธรรมชาติ

มีความยืดหยุ่นสูง มีสมบัติดีเยี่ยมในด้านการเหนียวติดกัน มีค่าความทนทานต่อแรง ดึงสูงมากโดยไม่ต้องเติมสารเสริมแรง มีความทนต่อการฉีกขาดสูงมากทั้งที่อุณหภูมิห้องและ ที่ อุณหภูมิสูง มีความต้านทานต่อการล้าตัวสูง มีความต้านทานต่อการขัดถูสูง มีความเป็นฉนวนไฟฟ้าสูง มาก ยางดิบละลายได้ดีในตัวทำละลายที่ไม่มีขั้ว เช่น เบนซีน เฮกเซน และโทลูอีน เนื่องจากตัวยางดิบ ไม่มีขั้วและไม่ทนต่อน้ำมันปิโตรเลียม แต่กลับทนต่อของเหลวที่มีขั้ว เช่น อะซิโตน นอกจากนี้ยังทน ต่อกรด และด่างอ่อน แต่จะไม่ทนต่อกรดและด่างเข้มข้น ไวต่อการทำปฏิกิริยากับออกซิเจน ไม่ทนต่อ โอโซน การกระเด้งกระดอนสูง อุณหภูมิการใช้งานตั้งแต่ -55 - 70 องศาเซลเซียส แต่หากเก็บไว้ นานๆ จะทำให้ยางสูญเสียความยืดหยุ่นลง (Neo Plastomer, 2010)

2.14 ทบทวนวรรณกรรม สารสนเทศ (Information) ที่เกี่ยวข้อง

สง่า ตั้งชวาล (2541) ได้ศึกษาหลักการระเบิดหินอย่างมีประสิทธิภาพ (Principles of Effective Rock Blasting) นอกจากจะต้องมีการวางแผนการระเบิดที่ดีแล้ว ยังจำเป็นต้อง กำหนดการใช้พลังงานจากวัตถุระเบิดที่เหมาะสมต้องคุ้มค่ากับค่าใช้จ่ายที่ลงทุน หลังจากการระเบิด ผลควรก่อให้เกิดการแตกหักของหินที่ได้ขนาด กองหินกระจายตัวสะดวกต่อการขุดขน แม้แต่พลังงาน ส่วนที่เหลือ เช่น เสียง การสั่นสะเทือน และหินปลิว ต้องอยู่ในขอบเขตที่กฎหมายกำหนด ส่งผล กระทบต่อชุมชนและสิ่งแวดล้อมน้อยที่สุด (รูปที่ 2.15)

การประเมินผลให้ได้ค่าเชิงวิเคราะห์ (Quantitative) การแตกหักของหินจากการ ระเบิดนั้นเป็นวิธีการที่สะดวกและประหยัด เริ่มจากการศึกษาตรวจวัดโครงสร้างและชนิดของหิน รวมทั้งทำการถ่ายรูป (Photographic Method) หน้าเหมืองก่อนการระเบิดและภายหลังการระเบิด ร่วมด้วยการประเมินผลด้วยการตรวจสอบด้วยตาเปล่า (Visual and Analysis) จากนั้นทำการนับ (Counting) ขนาดหินก้อนโตเกินขนาด (Oversize Boulders) ทำการจดบันทึกมิติของก้อนโดยเลือก ขนาดก้อนที่มีความยาวด้านยาวสุดตั้งแต่ 50 เซนติเมตร จนถึงขนาดที่โตกว่า 2.0 เมตร การนับขนาด พยายามนับในช่วงที่รถตักทำการเกลี่ย ตัก และขุดขนก้อนหินใส่รถบรรทุก (Truck) ต่อมาก์นับจำนวน รถบรรทุกทั้งหมดที่ป้อนหินเข้าเครื่องบดย่อยหิน (Crusher) โดยสามารถคำนวณปริมาตรหินและ เทียบหินขนาดต่างๆ คำนวณเป็นเปอร์เซ็นต์ปริมาณหินทั้งหมด การแตกหักของหินจึงมีผลต่อ ค่าใช้จ่ายผลิตหน้าเหมือง

รูปที่ 2.15 การศึกษาขนาดชิ้นส่วนของหินที่แตกหัก บริษัท ปูนซิเมนต์ไทย (ทุ่งสง) จำกัด (มหาชน) (สง่า ตั้งชวาล, 2541)

Ur Rehmen et al. (2021) ได้ทำการศึกษาการปรับปรุงด้านสิ่งแวดล้อมและทาง เศรษฐกิจของการระเบิดด้วยการใช้ Stem plug แบบพลาสติกอุดรูระเบิด ซึ่งกำลังเป็นวิธีที่ได้รับ ความนิยมเนื่องจากการใช้ Stem plug สามารถเพิ่มประสิทธิภาพการระเบิดหินแตกหักได้ดีขึ้น หิน ปลิวลดลง ลดการระเบิดซ้ำ (2nd Blasting) และลดปัญหาด้านสิ่งแวดล้อม จากผลการวิเคราะห์ทาง เศรษฐศาสตร์พบว่าการใช้ Stem plug สามารถลดต้นทุนการระเบิดได้อีกด้วย

โครงการวิจัยในครั้งนี้ได้ดำเนินการที่เหมือง DG Khan Cement Company Limited ตั้งอยู่ที่อำเภอชาควัล ประเทศปากีสถาน เป็นเหมืองหินปูน ดังรูปที่ 2.16 ระดับสูงสุดอยู่ที่ 846 เมตรเหนือระดับน้ำทะเลปานกลาง เปิดหน้าเหมืองจนถึงระดับอยู่ที่ 777 เมตร เหนือ ระดับน้ำทะเลปานกลาง กำลังการผลิตหินปูนเฉลี่ย 16,000 ตัน/วัน และผลิตปูนซีเมนต์ในโรงงาน ประมาณ 6,700 ตัน/วัน

รูปที่ 2.16 ภาพถ่ายทางอากาศของ เหมือง DG Khan Cement (Ur Rehmen et al., 2021)

รูปแบบการดำเนินงานวิจัยเลือกใช้วัตถุระเบิดพื้นฐานแบบ ANFO ร่วมกับทดลองหา วัสดุที่เหมาะสมในการใช้ปิดปากรูระเบิด (Stemming Plugs) โดยเลือกทดสอบทั้งหมด 3 ประเภท

ประเภทที่ 1 แบบกรวยพลาสติก (The Plastic Molded Plug) การใช้กรวยพลาสติก อุดรูเจาะระเบิดหลังจากการโหลดวัตถุระเบิดแล้วปิดด้วยฝุ่นเจาะ ดังรูปที่ 2.17

รูปที่ 2.17 Stemming Plug ครั้งที่ 1 (ก) แบบพลาสติก (ข) การบรรจุในหลุมเจาะ (Ur Rehmen et al., 2021) ประเภทที่ 2 ลูกบอลยาง (Rubber Balls) เริ่มจากการย่อนลูกบอลยางลงไปพร้อม กับสายอากาศสำหรับพองลูกยาง (Air-Plug) ในระดับที่ต้องการและทำอุดรูเจาะระเบิดแล้วปิดด้วยฝุ่น เจาะ ดังรูปที่ 2.18

รูปที่ 2.18 Stemming Plug ครั้งที่ 2 (ก) รูเจาะแบบมีสายอากาศ (ข) ลูกบอลยางพองตัว (Ur Rehmen et al., 2021)

ประเภทที่ 3 ปูนมอร์ต้า (Cement Mortar) นำปูนซีเมนต์ผสมกับน้ำให้เข้ากัน หลังจากการโหลดวัตถุระเบิดแล้วให้เทปูนมอร์ต้าที่ผสมลงไปในรูเจาะระเบิดแล้วระยะที่เหลือให้ปิด ด้วยฝุ่นเจาะ ดังรูปที่ 2.19

รูปที่ 2.19 Stemming Plug ครั้งที่ 3 ปูนมอร์ต้า (Cement Plug) (Ur Rehmen et al., 2021)

ผลจากการทดลองวัสดุปิดปากหลุมที่สามารถนำมาปรับปรุงกับงานระเบิดจากความ คิดเห็นจากผู้ปฏิบัติงานระเบิด พบว่าช่วยลดระยะเวลาในการอัดระเบิด ใช้งานง่าย สะดวก การ แตกหักของหินกระจายตัวดีขึ้น แสดงได้ดังตารางที่ 2.8 และรายละเอียดค่าใช้จ่ายแต่ละรูปแบบ แสดงได้ดังตารางที่ 2.9

สรุปผลแต่ละด้าน	Plug 1	Plug 2	Plug 3
การทำงานล่วงเวลา (นาที)	1	7	5
การปรับตัวในการใช้ง่าย	ต่ำ	ปานกลาง	สูง
ความล้มเหลวในการบรรจุ	ไม่มี	<u>م</u> 22	ไม่มี
ระยะเวลาแข็งตัว	ไม่มี	22 12	۳۵۲
จำนวนอุปกรณ์เสริม	0	1	3
ผลการทำงาน	ดีขึ้น	ยากขึ้น	ยากขึ้น

ตารางที่ 2.8 ผลที่ได้รับจากการใช้ Plug ลงในหลุมเจาะระเบิด (Ur Rehmen et al., 2021)

ตารางที่ 2.9 ค่าใช้จ่ายของแต่ละ Plug (Ur Rehmen et al., 2021)

a levi on	ราคาต่อหน่วย	จำนวนที่ใช้	ค่าใช้จ่ายทั้งหมด
0120111	(US\$)	ต่อหน่วย	(US\$)
Plug 1 (Plastic Molded)	\$2.60	47	\$122.20
Plug 2 (Air-Plug)	\$1.06	80	\$84.80
Plug 3 (Cement Mortar)	\$3.19	56	\$178.64

การทดสอบวัสดุทั้ง 3 ประเภท ที่มีความแตกต่างกัน ซึ่งส่งผลให้เพิ่มประสิทธิภาพ การระเบิดได้ดี แต่พบว่า Plug 1 แบบกรวยพลาสติกจะทำให้เกิดการกระจายตัวของหินได้ดีที่สุด Plug 2 แบบลูกบอลยางประหยัดที่สุด

Bunnaul et al. (2015) ได้ทำการศึกษาเทคนิคการระเบิดแบบใช้ Stem Plug ใน การระเบิดที่เหมืองลิกไนต์แม่เมาะ เปรียบเทียบกับเทคนิคการระเบิดที่ใช้ในปัจจุบัน โดยทำการ ตรวจสอบ แรงสั่นสะเทือน การกระจายตัวของดิน ประสิทธิภาพรถตักและเครื่องบด (Shovel and Crusher) จากการผลการระเบิดด้วย Stem Plug ส่งผลให้แรงสั่นสะเทือนลดลงและการกระจายตัวดี ขึ้น เพิ่มประสิทธิภาพของการรถตักและการบดสูงขึ้น โดยพบว่าอัตราการตักของรถตักใส่ในรถบรรทุก เพิ่มขึ้น 22.6% และอัตราการบดเพิ่มขึ้น 37.0% แสดงไว้ในตารางที่ 2.10 แม้จะทำงานไม่เต็มที่ก็ตาม คาดว่าจะเพิ่มสูงขึ้นมากหากเครื่องบดทำงานเต็มประสิทธิภาพ ทดสอบเทคนิคการระเบิดที่ใช้ใน รูปแบบปัจจุบัน (Blast#1) เปรียบเทียบกับเทคนิคการระเบิดด้วย Stem Plug เป็น Vari-Stem Blasting Plug (Blast#2) จัดทำโดย บริษัท C and S Geotechnical Engineering จำกัด ดังรูปที่ 2.20 มีตัวแปร คือ วัตถุระเบิดที่ใช้, การบรรจุวัตถุระเบิดต่อจังหวะถ่วง, ระยะ Burden และ Spacing ใช้เชื้อปะทุไฟฟ้าทำการถ่วงเวลาแต่ละหลุม ขนาดหลุมเจาะ 7 นิ้ว หรือ 178 มิลลิเมตร ระยะความลึก ของรูเจาะระเบิด 6 เมตร และความสูงหน้าเหมือง 5.5 เมตร

Blast#	1	2
Number of Holes	10	10
Blast Site	C-Pit	C-Pit
Explosive Factor, kg/cu.m.	0.21	0.21
Shovel Cycle Time, s	30-36	27-30
Bucket Filling	Partly Filled	Full Bucket
Buckets/Truck	5-6	4-5
Av Truck Loading Time, s	128	99
Crusher Capacity, ton/hr	2,295	3,145
Crusher Operating Condition	Run at Full Load	Not Full Load

ตารางที่ 2.10 ประสิทธิภาพของ Shovel และ Crusher (Bunnaul et al., 2015)

รูปที่ 2.20 Stemming Plug (Bunnaul et al., 2015)

Bhaskar et al. (2019) ได้ทำการศึกษาการประยุกต์ใช้กรวยพลาสติกในหลุมระเบิด เพื่อปรับปรุงประสิทธิภาพการระเบิดของเหมืองถ่านหินที่โบกาโรตะวันตกในประเทศอินเดีย พบว่า การใช้กรวยพลาสติก (Plastic Funnel) ดังรูปที่ 2.21 ช่วยเพิ่มประสิทธิภาพของการระเบิด ส่งผลให้ มีการกระจายตัวของถ่านหินดีขึ้น หินปลิว เสียง และแรงสั่นสะเทือนลดลงด้วย ซึ่งเป็นที่ต้องการอย่าง มากสำหรับการทำเหมือง ลักษณะการใช้กรวยพลาสติกระหว่างวัตถุระเบิดและฝุ่นเจาะปิดปาก หลุม (Stemming) ดังรูปที่ 2.22 การที่ใช้กรวยพลาสติกกลับด้านช่วยเพิ่มให้ความเร็วของการระเบิด (Velocity of Detonation or VOD) เพิ่มขึ้น เมื่อสามารถเก็บพลังไม่ให้ออกสู่ด้านบนได้ทำให้ของ หลุมระเบิดทำให้พลังงานระเบิดพุ่งด้านหน้ามากขึ้น (Wedge Effect) ดังรูปที่ 2.23

รูปที่ 2.21 ลักษณะของกรวยพลาสติก (Plastic Funnel) (Bhaskar et al., 2019)

รูปที่ 2.22 การบรรจุกรวยพลาสติกกลับด้านลงหลุมเจาะระเบิด (Bhaskar et al., 2019)

รูปที่ 2.23 พลังงานที่เกิดภายในหลุมเจาะ (Wedge Effect) (Bhaskar et al., 2019)

การทดลองในครั้งนี้มีรายละเอียดรูปแบบ (Pattern) การระเบิดหลุมมีค่า Burden และ Spacing เฉลี่ยเท่ากับ 5 และ 6 เมตร ทำการเจาะทั้งหมด 89 รู และแบ่งเป็น 22 รู ที่ใช้กรวย กลับด้าน ความลึกเฉลี่ยของรูเจาะ 10.8 เมตร ขนาดหลุมมีเส้นผ่านศูนย์กลาง 165 มิลลิเมตร และ ขนาดกรวยกลับด้านมีเส้นผ่านศูนย์กลาง 155 มิลลิเมตร ระยะอัดปากหลุม 4 เมตร วัตถุระเบิดที่ใช้ คืออิมัลชันแล้วบรรจุวัตถุระเบิดอุดด้วยกรวยพลาสติกกลับด้านในรูระเบิด หลังจากนั้นปิดด้วยฝุ่นเจาะ จากภาพถ่ายมุมสูงแสดงพื้นที่หลุมเจาะระเบิดที่ทำการอุดกรวยพลาสติกจำนวน 22 รู และที่เหลือ แสดงพื้นที่อีก 67 รู เพื่อเปรียบเทียบผลการระเบิด ดังรูปที่ 2.24 และ 2.25

รูปที่ 2.24 แสดงรูปแบบการระเบิด ที่เหมืองถ่านหินที่โบกาโรตะวันตก (Bhaskar et al., 2019)

รูปที่ 2.25 ภาพการระเบิด ที่เหมืองถ่านหินที่โบกาโรตะวันตก (Bhaskar et al., 2019)

ผลการทดลองหลุมที่ทำไม่ทำการอุดด้วยกรวยพลาสติกกลับด้านจะเกิดหินปลิว ผล การระเบิดไม่ดี แตกต่างกับการอุดด้วยด้วยกรวยพลาสติกกลับด้านที่พลังงานการระเบิดเพิ่มขึ้นส่งผล ให้ได้ผลระเบิดที่ดี แรงสั่นสะเทือน เสียง หินปลิวและแรงอัดอากาศลดลง ดังนั้นการใช้กรวยพลาสติก กลับด้านในหลุมเจาะถือเป็นอีกหนึ่งเทคนิคที่ใช้เพิ่มพลังงานการระเบิด ค่า VOD เพิ่มขึ้นและหินปลิว น้อยลง ดังรูปที่ 2.26

รูปที่ 2.26 ผลลัพธ์ค่า VOD ในหลุมเจาะระเบิด (Bhaskar et al., 2019)

กนกนภัส กุญชรินทร์ และคณะ (2563) ได้ศึกษาการประยุกต์ใช้กรวยยางธรรมชาติ (Natural Stem Plug) ดังรูปที่ 2.27 ทำการอัดรูระเบิดในเหมืองหินปูน ทำการทดสอบที่บริษัท ผาทอง 24 จำกัด โดยทำการทดสอบผลของการระเบิดเปรียบเทียบกับ แรงสั่นสะเทือน, การกระจายตัวของ หินและกำลังกดจุดของหิน เทียบผลการระเบิดแบบเดิม และทำการกำหนดรูปแบบการระเบิด ควบคุม ตัวแปรในการระเบิด ตามรูปแบบการระเบิดของบริษัทฯ โดยใช้วัตถุระเบิดประเภท ANFO หลุมเจาะ ขนาด 3 นิ้ว ความสูงหน้างานประมาณ 9 – 13 เมตร ระยะจากหน้าผาถึงรูเจาะ 2.5 เมตร ระยะหว่าง รูเจาะ 3 เมตร ระยะอุดปากรู 2.5 เมตร ใช้รูปแบบสลับฟันปลาและวางแก๊ปเบอร์ดีเลย์ ดังรูปที่ 2.28

รูปที่ 2.27 กรวยยางธรรมชาติขนาดเส้นผ่านศูนย์กลาง 3.5 นิ้ว (กนกนภัส กุญชรินทร์ และคณะ, 2563)

รูปที่ 2.28 รูปแบบการวางระเบิดแบบสลับฟันปลาและการวางแก๊ปเบอร์ดีเลย์ (กนกนภัส กุญชรินทร์ และคณะ, 2563)

สำหรับการวิจัยครั้งนี้ได้ทำการออกแบบเป็น 3 ส่วน ดังนี้ เริ่มต้นด้วยการระเบิด แบบปกติของทางบริษัทฯ เทียบกับการระเบิดแบบใช้กรวยยางธรรมชาติอัดรูระเบิดอย่างละ 2 ครั้ง ดังรูปที่ 2.29

ส่วนที่ 2 ทำการเว้นช่องว่างระหว่างรูระเบิด 10 เซนติเมตร อุดด้วยกรวยยาง ธรรมชาติ จำนวน 4 ครั้ง และส่วนที่ 3 ทำการเว้นช่องว่างระหว่างรูระเบิด 15 เซนติเมตร อุดด้วย กรวยยางธรรมชาติ จำนวน 2 ครั้ง แสดงไว้ดังรูปที่ 2.30

รูปที่ 2.29 ลักษณะภายในรูระเบิด (a) การระเบิดแบบปัจจุบัน (b) การระเบิดแบบใช้กรวยยาง ธรรมชาติอัดรูระเบิด (กนกนภัส กุญชรินทร์ และคณะ, 2563)

รูปที่ 2.30 ลักษณะภายในรูระเบิด (a) การระเบิดแบบปัจจุบัน (b) การระเบิดแบบใช้กรวยยาง ธรรมชาติอัดรูระเบิด (กนกนภัส กุญชรินทร์ และคณะ, 2563)

ผลการทดลองพบว่าการระเบิดแบบใช้กรวยยางธรรมชาติอุดรูระเบิด สามารถช่วย ลดแรงสั่นสะเทือน ปริมาณหินก้อนโต และค่ากำลังแรงกดจุด ส่วนของการระเบิดแบบใช้กรวยยาง ธรรมชาติร่วมกับการเว้นช่องว่างอากาศ สามารถลดปริมาณวัตถุระเบิดได้อีกด้วย

Siddiqui et al. (2009) ได้ศึกษาเกี่ยวกับการวัดขนาดของหินจากการระเบิดโดยใช้ การประมวลผลภาพดิจิทัล เป็นการประเมินประสิทธิภาพการกระจายตัวของขนาดหินที่ได้จากการ ระเบิดด้วยซอฟต์แวร์ Split Desktop System เพื่อทดลองตรวจสอบหาการกระจายตัวที่เหมาะสม ตรงกับหลักของการผลิตที่ให้ได้ขนาดหินที่ต้องการ สามารถลดต้นทุนการผลิต รวมทุกต้นทุนการตัก ขุด ขนส่ง และการบดย่อย ได้ดำเนินการศึกษาที่เหมือง Dewan ตั้งอยู่ใกล้กับเมืองการาจี ประเทศ ปากีสถาน เป็นเหมืองหินปูนที่ผลิตปูนซีเมนต์

การวิเคราะห์การกระจายตัวของหินหลังจากการระเบิดจะทำการถ่ายภาพการ กระจายตัวของกองหินโดยใช้ Split Desktop Software ประมวลผลภาพที่ออกมาเพื่อคำนวณหา การกระจายตัวของเศษจากภาพถ่าย โดยกำหนดขนาดเทียบกับวัตถุที่อ้างอิง ซึ่งวิธีการประมวลผล ด้วยภาพดิจิทัลเป็นวิธีที่รวดเร็วและต้นทุนต่ำ การทดลองครั้งนี้ได้ใช้ระเบิดประเภท ANFO ร่วมกับ วัตถุระเบิดแรงสูง กำหนดรูปแบบการระเบิดแสดงไว้ในตารางที่ 2.11 ตารางที่ 2.11 พารามิเตอร์การระเบิด (Siddiqui et al., 2009)

Parameters	Description
Hole Diameter	104 mm
Bench Height	12 meters
Sub-Drilling	0.5 meters
Burden	3 meters
Spacing	4 meters
Stemming	3 meters
Blasting Pattern	Rectangular
Initiation System	Nonel or Shock-Tube
Powder Factor	0.5 kg/m ³

หลังจากการระเบิดทำการถ่ายภาพของหินเพื่อวิเคราะห์การกระจายตัวด้วย ซอฟต์แวร์ Split Desktop มีรายละเอียดแต่ละขั้นตอน ดังนี้

ขั้นตอนที่ 1 การรับภาพ (Image Acquisition) ซึ่งเป็นขั้นตอนที่สำคัญที่สุด สำหรับ การวิเคราะห์การกระจายขนาดของหิน วิธีการถ่ายภาพนี้จะต้องเลือกตำแหน่งของภาพ มุมของภาพ มุมของพื้นผิว ต้องถ่ายภาพพื้นผิวตั้งฉากกับเลนส์กล้อง เพื่อให้ได้ภาพที่เป็นตัวแทน ด้วยวิธีการสุ่ม ตัวอย่างรอบคอบ ร่วมกับใช้ลูกบอลขนาดเส้นผ่านศูนย์กลาง 24 เซนติเมตร เป็นตัวกำหนดมาตรา ส่วนในการตรวจสอบ แสดงไว้ดังรูปที่ 2.31

รูปที่ 2.31 ภาพถ่ายจากหน้างานเพื่อคำนวณการกระจายตัว (Siddiqui et al., 2009)

ขั้นตอนที่ 2 การแยกชิ้นส่วน (Fragment Delineation) หลังจากที่ได้ภาพนำไป สร้างไบนารีภาพจากภาพดิจิทัลซึ่งแสดงถึงโครงร่างของอนุภาพที่มองเห็นในภาพ ในขั้นตอนนี้เมื่อใช้ ซอฟต์แวร์ Split Desktop จะทำการวิเคราะห์ขนาดหินให้โดยอัตโนมัติ สังเกตได้จากภาพที่เปลี่ยนไป แสดงระดับสีที่แตกต่างกัน 3 ระดับ คือ สีขาวแสดงอนุภาค สีดำแสดงขอบเขต และสีเทาแสดงส่วนที่ เป็นวัตถุเปรียบเทียบมาตราส่วนจะไม่ทำการนับอนุภาคในการกระจายตัว แสดงไว้ดังรูปที่ 2.32

รูปที่ 2.32 ภาพถ่ายปกติเปรียบเทียบระหว่างภาพไบนารี (Siddiqui et al., 2009)

ขั้นตอนที่ 3 การแก้ไขภาพไบนารี (Binary Image Editing) เป็นการกำหนดขอบเขต ของหินจากการระเบิดให้ชัดเจน ภายในภาพหากพบ ท้องฟ้า รถบรรทุก ที่ไม่เกี่ยวข้องต้องทำการลบ ออกเพื่อความถูกต้องในการนำภาพไปใช้กับซอฟต์แวร์ Split Desktop จะทำให้การวิเคราะห์ขนาด หินได้แม่นยำยิ่งขึ้น

ขั้นตอนที่ 4 การคำนวณขนาดการกระจายตัว (Computation of Size Distribution Curves) เมื่อทำการแก้ไขปรับปรุงภาพไบนารีเสร็จสมบูรณ์แล้ว ในขั้นตอนนี้ถือว่าเป็น ขั้นตอนสุดท้าย ซึ่งสามารถคำนวณการกระจายของขนาดได้ 2 วิธี คือ Rosin-Rammler หรือ Schumann ซึ่งการศึกษาครั้งนี้นำทั้งสองวิธีมาปรับใช้เพื่อให้เกิดความเหมาะสมกับค่าการกระจายตัว การคำนวณขนาดด้วยซอฟต์แวร์ Split Desktop จะปรับค่าอัตโนมัติในการตรวจวัดขนาดอนุภาคใน แต่ละภาพจะมีค่าความละเอียดที่ต่ำกว่าค่าปรับส่วนใหญ่ขึ้นอยู่ค่าความละเอียดภาพ ผลลัพธ์การ กระจายขนาดที่ได้รับจากการระเบิด แสดงไว้ในรูปที่ 2.33 และเปอร์เซ็นต์ Rosin-Rammler และ ค่าเฉลี่ยขนาดการกระจายตัวของหิน แสดงไว้ในตารางที่ 2.12 และ 2.13

รูปที่ 2.33 ผลวิเคราะห์การกระจายขนาด (Siddiqui et al., 2009)

ตารางที่ 2.12 เ	ปอร์เซ็นสะสมของขนาดที่ผ่าเ	เตะแกรง (Siddiqui	et al., 2009)

Size Fractions	Size (mm)
P10	2.08
P20	11.66
P30	50.79
P40	102.15
P50	149.76
P60	225.02
P70	318.24
P80	426.31
P90	566.48
Top-Size	1057.44
Rosin-Rammler Uniformity Index	0.81
Mean Fragment Size	149.76

Size (mm)	%Passing
2000	100
1000	99.02
750	96.04
500	85.78
250	62.81
125	45.46
100	39.43
75	33.46
53	30.36
37.5	27.56
26.5	25.02
19	22.82
13.2	20.66
9.5	18.94
6.7	17.31
4.75	15.86

ตารางที่ 2.13 ลักษณะขนาดของหิน (Siddiqui et al., 2009)

ผลที่ได้จากการวิเคราะห์พบว่าหินประมาณ 25% มีขนาดต่ำกว่า 30 มิลลิเมตร ซึ่ง เป็นส่วนที่เหมาะสมผ่านเครื่องบดหลัก การดำเนินการระเบิดเพื่อเพิ่มประสิทธิภาพให้ได้ขนาด เหมาะสม ต้องปรับค่าพารามิเตอร์จากการระเบิด เช่น ค่า Burden, ค่า Spacing และค่า Stemming ให้สอดคล้องเช่นกัน

Kulula et al. (2017) ได้ศึกษาเกี่ยวกับผลกระทบของพารามิเตอร์การระเบิดและ ความหนาแน่นของหินกับประสิทธิภาพการระเบิดด้วยซอฟต์แวร์ Split Desktop สถานที่ศึกษาคือ เหมืองทองแดง Tschudi Mine ที่เมือง Tsumeb ประเทศ Namibia ดังรูปที่ 2.34 เพื่อตรวจสอบ ผลกระทบดังกล่าว โดยการวิจัยพบว่าปัจจัยที่สำคัญที่สุดต่อกระบวนการแตกหักของหิน แบ่งออกเป็น 3 ประเภท ได้แก่ ประเภทวัตถุระเบิดที่ใช้, ลักษณะของหิน และรูปแบบเรขาคณิตของการระเบิด จาก คุณสมบัติของหินที่ไม่สามารถควบคุมได้นั้น การจัดรูปแบบการระเบิดได้แก่ ความหนาแน่น ความยาว ของระยะการบรรจุวัตถุระเบิด ปริมาตรของการระเบิด และปริมาณวัตถุระเบิดต่อหลุม จึงเป็นตัวแปร สำคัญหลักที่ทำให้เกิดประสิทธิภาพสูงสุด

รูปที่ 2.34 จุดที่ตั้งเหมืองทองแดง Tschudi Mine (Kulula et al., 2017)

จุดประสงค์หลักคือการพัฒนาแบบจำลองเพื่อคาดการณ์ประสิทธิภาพการระเบิด ด้วยการใช้แบบจำลอง Kuz-Ram เป็นสมการที่ใช้ในการคาดการกระจายตัวของหิน หลังจากการการ ระเบิดจะใช้ซอฟต์แวร์ Split Desktop เพื่อประเมินการกระจายตัวของขนาดค่าเฉลี่ยจริง โดยการ วิเคราะห์ภาพกองหินหลังระเบิด ดังรูปที่ 2.35

สังเกตได้ว่าการใช้ลูกบอลจำนวนสองลูกเป็นสเกลในการถ่ายภาพกองหินเพื่อใช้ใน การประมวลผลด้วยซอฟต์แวร์ Split Desktop หลังจากการระเบิด ควรหลีกเลี่ยงแสงเงาที่มากเกินไป เพราะจะส่งผลต่อการกำหนดขอบเขตภาพขณะใช้ซอฟต์แวร์ ให้ทำการวัดขนาดก้อนหินด้วยตัวเอง ก่อนเพื่อความถูกต้อง การประมวลผลหลังการใช้ซอฟต์แวร์ ดังรูปที่ 2.36

รูปที่ 2.35 ตัวอย่างภาพใช้วิเคราะห์กับซอฟต์แวร์ Split Desktop (Kulula et al., 2017)

รูปที่ 2.36 การวิเคราะห์กับซอฟต์แวร์ Split Desktop (Kulula et al., 2017)

เมื่อประมวลผลด้วยซอฟต์แวร์ Split Desktop สำเร็จแล้วจะสามารถคำนวณขนาดการ กระจายตัวขนาดของหิน ดังรูปที่ 2.37

รูปที่ 2.37 ผลวิเคราะห์การกระจายขนาดกับซอฟต์แวร์ Split Desktop (Kulula et al., 2017)

ผลจาการศึกษาครั้งนี้พบว่าการดำเนินการระเบิดที่ได้ขนาดการกระจายตัวที่ เหมาะสมจะส่งผลให้ประสิทธิภาพการทำงานควบคุมการบด ย่อยขนาดแร่ดีขึ้น ความน่าเชื่อถือจาก การใช้แบบจำลองการกระจายตัวในการประเมินประสิทธิภาพการระเบิดด้วยซอฟต์แวร์ Split Desktop พารามิเตอร์ที่นำมาใช้ในการออกแบบจึงเป็นสิ่งสำคัญที่ช่วยเพิ่มความถูกต้อง Souza et al. (2018) ได้ศึกษาเกี่ยวกับการคาดการณ์การระเบิดของหินและการ วิเคราะห์การกระจายตัวของหินโดยใช้ซอฟต์แวร์ Split Desktop การวิเคราะห์โครงสร้างซองหิน อย่างละเอียดเป็นวิธีหนึ่งในการเพิ่มประสิทธิภาพการระเบิด สำหรับการแตกตัวของขนาดของหินจะ ใช้หลักการอัลกอริธึมช่วยในการวิเคราะห์ระดับของการกระจายตัว โดยจะเปรียบเทียบวิธีปัจจุบัน สำหรับการกระจายตัวของหินกับวิธีการวิเคราะห์การกระจายตัวของภาพด้วยซอฟต์แวร์ Split Desktop ทำการทดสอบที่เหมือง Herval Quarry โดยมีปัจจัยที่สำคัญคือการปรับรูปแบบการระเบิด

เริ่มจากการจำลองการกระจายตัวโดย Kuz-Ram Model การทดลองนี้อาศัยข้อมูล ทางลักษณะโครงสร้างของมวลหิน ดังรูปที่ 2.38 โดยจะเก็บข้อมูลทางธรณีวิทยาและลักษณะ คุณสมบัติของหินแสดงไว้ในตารางที่ 2.14 (จำแนกตามรูปแบบของ Bieniawski) โดยการนำข้อมูลที่ ได้รูปแบบการระเบิดมาประยุกต์ใช้ด้วย Excel ในการคำนวณสมการด้วยพารามิเตอร์ดังกล่าวสู่ ผลลัพธ์ของแบบจำลอง Rosin-Rammler แสดงไว้ในตารางที่ 2.15 และขนาดการกระจายตัวของหิน จากการระเบิดด้วยแบบจำลอง Rosin Rammler ดังรูปที่ 2.39

รูปที่ 2.38 ลักษณะของหน้างานแสดงลักษณะธรณีวิทยา (Souza et al., 2018)

Parameters	Weights
Uniaxial Compressive Strength	12
RQD (%)	20
Spacing Between Discontinuities	15
Condition of Discontinuities	20
Water Presence in Discontinuities	15
TOTAL WEIGHT	82

ตารางที่ 2.14 การจำแนกประเภทของหินที่เหมือง Herval Quarry (Souza et al., 2018)

Identification	
Hole Diameter (inch)	3.0
Burden (m)	1.6
Spacing (m)	3.2
Inclination (degrees)	15
Stemming (m)	1.0
Meters Drilled (m)	403
Total Number of Holes	62
Average Length of Holes (m)	6.50

ตารางที่ 2.15 การแสดงรูปแบบการระเบิดที่เหมือง Herval Quarry (Souza et al., 2018)

รูปที่ 2.39 การจำลองขนาดของอนุภาคของหินจากการระเบิด (Souza et al., 2018)

ส่วนการวิเคราะห์ขนาดหินจากประมวลผลภาพถ่ายหลังการระเบิดที่เหมือง Herval Quarry ด้วยซอฟต์แวร์ Split Desktop เป็นการวิเคราะห์และประมวลผลการกระจายตัวของขนาด หิน ตามขั้นตอนการประมวลภาพ การวาดขอบเขตตามขนาดของหินเปรียบเทียบขนาดสัดส่วนของ วัตถุอ้างอิง ดังรูปที่ 2.40 และแสดงผลขนาดของหินจากการประมวลผลด้วยภาพ ดังรูปที่ 2.41

รูปที่ 2.40 การแสดงขอบเขตตามขนาดของหินเปรียบเทียบขนาดสัดส่วนของวัตถุอ้างอิง

รูปที่ 2.41 กราฟทั่วไปของการวิเคราะห์ขนาดหินด้วยภาพ (Souza et al., 2018)

ผลลัพธ์จาการศึกษาครั้งนี้พบว่าการวิเคราะห์ขนาดอนุภาคด้วยระบบดิจิตอล (ภาพถ่าย) ด้วยซอฟต์แวร์ Split Desktop ร่วมกับการเก็บข้อมูลลักษณะของหิน มีผลต่อการกระจาย ตัวและขนาดของหิน เป็นการเพิ่มประสิทธิภาพการระเบิด สามารถลดค่าใช้จ่ายในการทำเหมืองเพิ่ม การผลิต

Xie et al. (2021) ได้ศึกษาเกี่ยวกับการคาดการกระจายตัวขนาดของหินในเหมือง โดยการใช้แบบจำลองหลากหลาย จากการเรียนรู้ของรูปแบบ Meta-Heuristics และอัลกอริธึม ด้วย การระเบิดซึ่งเป็นวิธีที่รู้จักกันดีว่ามีประสิทธิภาพในการย่อยขนาดหรือเคลื่อยย้ายหินในการทำเหมือง เปิด การประเมินคุณภาพของการระเบิดด้วยขนาดหินของการกระจายหลังจากการระเบิดจึงถูกใช้เป็น เกณฑ์ที่สำคัญ หากหินขนาดใหญ่มีปริมาณสูง จะส่งผลต่อค่าใช้จ่ายและมีผลด้านสิ่งแวดล้อมอีกด้วย ดังนั้นจึงเสนอแบบจำลองอัจฉริยะเป็นอัลกอริธึมที่ได้แรงบันดาลใจมาจากธรรมชาติ (Firefly Algorithm, FFA) แสดงไว้ในรูปที่ 2.42 มี 4 รูปแบบ ได้แก่ รูปแบบที่ 1 Gradient Boosting Algorithm (GBM), รูปแบบที่ 2 Support Vector Machine (SVM), รูปแบบที่ 3 Gaussian Process (GP) และรูปแบบที่ 4 Artificial Neural Network (ANN) ได้กำหนดแบบจำลองโดยใช้อักษรย่อไว้ ดังนี้ FFA-GBM, FFA-SVM, FFA-GP และ FFA-ANN ตามลำดับ เพื่อทดสอบผลการกระจายตัวขนาด ของหินจากการระเบิดในเหมืองเปิด เพื่อปรับปรุงประสิทธิภาพการระเบิดด้วยพารามิเตอร์การระเบิด ให้เหมาะสม นำเสนอในกรอบเทคนิคแบบ Hybrid AI ดังรูปที่ 2.43

รูปที่ 2.42 แบบจำลองอัจฉริยะเป็นอัลกอริธึม (Xie et al., 2021)

รูปที่ 2.43 ภาพการนำเสนอกรอบเทคนิคแบบ Hybrid AI (Xie et al., 2021)

สำหรับการพัฒนาและแบบจำลองขนาดของหินจากการระเบิด ด้วยซอฟต์แวร์ Split Desktop แสดงไว้ในรูปที่ 2.44 และ 2.45 ซึ่งได้รวบรวมผลจากการระเบิด 136 ครั้ง โดยการทดสอบ ด้วยรูปแบบที่กำหนดไว้ สรุปได้ว่าผลลัพธ์ได้การปรับรุงด้วยรูปแบบ FFA-GBM มีการกระจายตัว ขนาดของหินที่เหมาะสม ให้ความแม่นยำสูงสุด ซึ่งสามารถนำมาใช้ในการทำเหมืองได้จริง มีผลให้การ ปรับปรุงคุณภาพของการระเบิดการแตกตัวของหินดีขึ้น

ผลลัพธ์จาการศึกษาครั้งนี้พบว่าการระเบิดที่ได้ขนาดการกระจายตัวที่เหมาะสมจะ ส่งผลให้ประสิทธิภาพการระเบิดดีขึ้น ลดปัญหาด้านเศรษฐกิจและสิ่งแวดล้อม ดังนั้นการประเมิน ประสิทธิภาพการกระจายตัวในการระเบิดด้วยซอฟต์แวร์ Split Desktop จึงเป็นสิ่งสำคัญ จิราวรรณ จันทร์แจ้ง และ สิรามล เรืองพิศาล (2564) ได้ศึกษาการประยุกต์ใช้น้ำ ยางพาราสดอุดรูระเบิด โดยศึกษาการคายน้ำในการจับตัวน้ำยางพาราสดกับกรดอะซิติกเพื่อมิให้ ส่งผลกระทบต่อการระเบิด เพื่อเพิ่มประสิทธิภาพในการอุดรูระเบิด ส่งผลให้พลังงานระเบิดเพิ่มขึ้น หลังจากการระเบิดวิเคราะห์การกระจายขนาดของหินด้วยภาพถ่ายโดยใช้ซอฟต์แวร์ Rock Image ของภาควิชาวิศวกรรมเหมืองแร่และปิโตเรียม มหาวิทยาลัยเชียงใหม่ โดยทำการศึกษาที่เหมือง เฟลด์สปาร์ บริษัท สินหลวง จำกัด อำเภอ นบพิตำ จังหวัด นครศรีธรรมราช โดยรูปแบบการระเบิด จะใช้รูปแบบของบริษัท ดังตารางที่ 2.16

ขนาดรูเจาะระเบิด (inch),D	3.0
ความหนาระเบิด (m),B	1.8
ระยะห่างระหว่างหลุม (m),S	2.0
ระยะอุดรูระเบิด (m),T	1.75
ความสูงหน้างานระเบิด (m),H	5.0
Powder Factor (kg/m³)	0.8

ตารางที่ 2.16 รูปแบบการระเบิดที่ใช้ในการทดลอง (ที่มา : จิราวรรณ และ สิรามล, 2564)

โดยจะแบ่งการศึกษาเป็น 2 แบบ ได้แก่ แบบที่ 1 การระเบิดแบบปัจจุบัน และแบบ ที่ 2 การระเบิดแบบใช้น้ำยางพาราสดอุดรูระเบิด โดยมีขั้นตอนการศึกษาในแต่ละรูปแบบ ดังต่อไปนี้

แบบที่ 1 การระเบิดแบบปัจจุบัน ดังรูปที่ 2.46

- 1.1 การบรรจุวัตถุระเบิด
- 1.2 ปิดหลุมรูระเบิดด้วยเศษหิน
- 1.3 บันทึกภาพของหินหลังการระเบิดเพื่อนำไปวิเคราะห์การกระจายขนาดของหิน

รูปที่ 2.46 รูปแบบรูระเบิดแบบปัจจุบัน (ที่มา : จิราวรรณ จันทร์แจ้ง และ สิรามล เรืองพิศาล, 2564)

แบบที่ 2 การระเบิดแบบใช้น้ำยางพาราสดอุดรูระเบิด

ในการศึกษาการคายน้ำและความเหมาะสมในการจับตัวของน้ำยางพาราสด พบว่า ระยะความหนาของน้ำยางพาราสด 15 เซนติเมตร ต้องใช้น้ำยางพาราสด 500 มิลลิลิตร กรดอะซิติก 5 เปอร์เซ็นต์ 50 มิลลิลิตร โดยมีขั้นตอนการระเบิด ดังนี้ (ดังรูปที่ 2.47 – 2.48)

- 2.1 เตรียมน้ำยางพาราสด และกรดอะซิติกเข้มข้น 5%
- 2.2 เตรียมอุปกรณ์ตวงน้ำตามปริมาตรต่างๆ
- 2.3 การบรรจุวัตถุระเบิด
- 2.4 บรรจุเศษหิน 1 เมตร ลงหลุมระเบิด
- 2.5 ผสมน้ำยางพาราสดกับกรดลงขวดพร้อมเขย่าให้เข้ากัน บรรจุลงหลุมรูระเบิด
- 2.6 ปิดหลุมรูระเบิดด้วยเศษหินอีกครั้ง
- 2.7 บันทึกภาพของหินหลังการระเบิดเพื่อนำไปวิเคราะห์การกระจายขนาดของหิน

รูปที่ 2.47 รูปแบบรูระเบิดแบบใส่น้ำยางพาราสด (จิราวรรณ จันทร์แจ้ง และ สิรามล เรื่องพิศาล. 2564)

(ก)

รูปที่ 2.48 วิธีการทดลองการระเบิดจริง (ก) ผสมน้ำยางรารากับกรด, (ข) บรรจุใส่หลุมระเบิด, (ค) วัดการแข็งตัวของน้ำยางพาราสด และปิดหลุมรูระเบิดด้วยเศษหินอีกครั้ง (จิราวรรณ และสิรามล. 2564)

หลังจาการทดลองระเบิดใช้ซอฟต์แวร์ Rock Image ในการวิเคราะห์หาการกระจาย ขนาดของหิน โดยการนำเข้าภาพถ่ายของกองหินภายหลังการระเบิด และทำการประมวลผลตาม ข้อมูลต่างๆ ดังรูปที่ 2.49

รูปที่ 2.49 ตัวอย่างผลการกระจายขนาดของหิน ด้วยซอฟต์แวร์ Rock Image

ผลที่ได้การทดลองพบว่าการระเบิดแบบใช้น้ำยางพาราสดอัดรูระเบิด เมื่อเทียบกับ การระเบิดแบบปัจจุบัน การกระจายของขนาด พบว่าที่ d80 หน้างานที่อุดรูระเบิดโดยใช้เศษหินได้ค่า การกระจายตัวของหินมีขนาด d80 คือ 33 เซนติเมตร และการใช้น้ำยางอุดรูระเบิดมีการกระจายตัว ของหินขนาด d80 อยู่ที่ 28 เซนติเมตร ลดลงคิดเป็นประมาณ 15% ของขนาดปัจจุบัน

วิสวัส หลีวิจิตร (2555) ได้ศึกษาเชิงเปรียบเทียบระหว่างการระเบิดแบบทั่วไปและ การระเบิดโดยใช้กรวยอุดรูระเบิด ในด้านแรงสั่นสะเทือนจากการระเบิด การวิเคราะห์ภาพถ่ายด้วย ซอฟต์แวร์ Split Desktop การวิเคราะห์กำลังการผลิตของโรงโม่ขั้นต้น รอบการตักของรถแบคโฮ CAT 330D การวิเคราะห์ค่าใช้จ่ายในการระเบิด โดยทำการศึกษาที่เหมืองหินปูน บริษัท ผาทอง 24 จำกัด อำเภอทุ่งสง จังหวัดนครศรีธรรมราช

โดยมีรูปแบบการเจาะระเบิดแบบทั่วไปและการระเบิดแบบใช้กรวยอุดรูระเบิด ดัง รูปที่ 2.50 จะใช้ดอกเจาะขนาดเส้นผ่านศูนย์กลาง 3 นิ้ว แถวระเบิด 2 แถว แถวละ 3 รู วางสลับแบบ ฟันปลา โดยมีความสูงของหน้าระเบิด ประมาณ 10 – 11 เมตร โดยมีรายละเอียดแสดงดังรูปที่ 2.51

รูปที่ 2.51 รูปแบบการระเบิด (วิสวัส หลีวิจิตร, 2555)

โดยดำเนินการศึกษาเปรียบเทียบการระเบิดแบบทั่วไปและการระเบิดโดยใช้กรวย อุดรูระเบิด เริ่มตั้งแต่การจำแนกลักษณะของหิน เมื่อทำการระเบิดมีการตรวจวัดแรงสั่นสะเทือน หลังจากการระเบิดจะใช้วัตถุทรงกลมเป็นสเกลใช้ในการวิเคราะห์ขนาดของหินจากภาพถ่ายด้วย ซอฟต์แวร์ Split Desktop เพื่อเปรียบเทียบขนาดของหินระหว่างผลการระเบิดแบบทั่วไปและผลการ ระเบิดโดยใช้กรวยอุดรูระเบิด โดยดูว่าขนาดของหินมีขนาดเล็กลงหรือไม่ ดังแสดงรูปที่ 2.52

จากนั้นคำนวณอัตราการบดของโรงโม่ขั้นต้น จะทำการเก็บข้อมูลในช่วงที่รถ แบคโฮ เริ่มตักกองหินที่ทำการระเบิด จนหมดซึ่งในการเก็บข้อมูลจะเริ่มเก็บในช่วงที่รถบรรทุกทำการเทหินลง สู่ปากโม่ขั้นต้น (Primary Jaw Crusher) จนกว่าปากโม่ขั้นต้นจะบดหินหมดแต่ในระหว่างที่บดหาก เกิดการโม่ลมหรือหินติดปากโม่จะนำเวลาในส่วนนี้มาลบออกและจะนำข้อมูลมาคำนวณเพื่อหาอัตรา การบดของโรงโม่ขั้นต้น รวมไปถึงเก็บข้อมูลรอบตักหินใส่รถบรรทุก

ผลที่ได้การทดลองพบว่าการระเบิดโดยใช้กรวยอุดรูระเบิดช่วยลดแรงสั่นสะเทือน จากการระเบิด 33% ขนาดหินก้อนโต 45.45% รอบการตักของรถแบคโฮ 10.69% และช่วยเพิ่มใน ด้านอัตราการบดของโรงโม่ขั้นต้น 14 – 19% โดยมีค่าวัตถุระเบิดเพิ่มขึ้น เมื่อเปรียบเทียบกับการ ระเบิดแบบทั่วไป อย่างไรก็ตาม ค่าใช้จ่ายส่วนนี้ยังไม่ได้พิจารณาค่าใช้จ่ายโดยรวมที่จะลดลงเนื่องจาก รถแบคโฮตักได้เร็วขึ้นและโรงโม่สามารถบดได้เร็วขึ้น

บทที่ 3 ขั้นตอนการดำเนินการวิจัย วัสดุ และอุปกรณ์

3.1 ขั้นตอนการดำเนินการวิจัย

การดำเนินการวิจัยจะเริ่มจากการศึกษาการระเบิดหินหน้าเหมืองแบบปัจจุบัน (Current Pattern) โดยทำการศึกษาการกระจายตัวของขนาดหิน (Size Distribution) หลังจากการ ระเบิดด้วยภาพถ่ายโดยใช้ทางอากาศยานไร้คนขับ รวมถึงศึกษาต้นทุนจากการระเบิด (Cost) จากนั้น ทำการศึกษาหาข้อมูลและออกแบบเพื่อปรับปรุงประสิทธิการระเบิดด้วยการปรับค่า Powder Factor โดยใช้การทดลองจะพิจารณาเลือกรูปแบบการระเบิดที่ค่า Powder Factor (PF) ใช้ต้นทุนการระเบิด หินน้อยที่สุด นำไปศึกษาทดลองการใช้ปลั๊กอุดรูระเบิดต่อไป ซึ่งในกิจกรรมนี้จะทำการเลือกรูปแบบ การระเบิดจากค่า Powder Factor ที่มีต้นทุนการระเบิดต่ำที่สุด นำมาเพิ่มประสิทธิภาพการระเบิด ด้วยการอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ (Natural Rubber Stem Plug : NRSP) และปลั๊กน้ำ ยางพาราสดที่มีแอมโมเนีย (Fresh Latex Plug : FLP) ผสมกรดอะซิติก จากนั้นทำการวิเคราะห์ ขนาดหินหลังจากการระเบิด และสรุปต้นทุนการระเบิด รวมถึงการออกแบบควบคุมการระเบิดให้มี ความปลอดภัยถูกต้องตามหลักวิศวกรรม โดยมีรายละเอียดดังกิจกรรมต่อไปนี้

3.1.1 กิจกรรมที่ 1 : ศึกษาเอกสาร ตำรา งานวิจัยที่เกี่ยวข้อง และวิเคราะห์ ตัวอย่างหินรวมทั้งเก็บข้อมูลหน้างานการระเบิดเบื้องต้น

- 1. ศึกษารูปแบบการระเบิดสำหรับชนิดหินให้เหมาะสมที่ใช้ในงานวิจัย
- ศึกษาและออกแบบค่า Powder Factor ที่เหมาะสมกับคุณสมบัติของ หินที่ใช้ในการระเบิด
- ศึกษาการใช้ซอฟต์แวร์การวิเคราะห์ขนาดการกระจายตัวของหิน (Rock Image) ด้วยภาพถ่ายด้วยอากาศยานไร้คนขับ (Unmanned Aerial Vehicle: UAV)
- 4. ศึกษาการอุดรูระเบิดด้วยปลั๊กยางธรรมชาติและปลั๊กน้ำยางพาราสดใส่ แอมโมเนีย

3.1.2 กิจกรรมที่ 2 : ทดลองการระเบิดจากรูปแบบปัจจุบันเปรียบเทียบกับรูปแบบ การระเบิดปรับค่า Powder Factor รวมถึงสรุปต้นทุนที่ใช้จากการระเบิด

- เริ่มจากการทดลองการระเบิดด้วยรูปแบบปัจจุบัน หลังจากการระเบิด ทำการถ่ายภาพกองหินด้วยอากาศยานไร้คนขับ นำภาพไปวิเคราะห์ ขนาดการกระจายตัวของหินด้วยซอฟต์แวร์ Rock Image และ คำนวณหาต้นทุนจากการระเบิด โดยจะทดลองการระเบิด 3 ครั้ง
- ศึกษาออกแบบและกำหนดรูปแบบกระบวนการระเบิดด้วยค่า Powder Factor จากผลวิเคราะห์คุณสมบัติของหินในพื้นที่งานวิจัย และทดลองการ ระเบิดตามรูปแบบที่ปรับเปลี่ยนค่า Powder Foctor ตามที่กำหนดไว้ หลังจากการระเบิดทำการถ่ายภาพกองหินด้วยอากาศยานไร้คนขับ นำ ภาพไปวิเคราะห์ขนาดการกระจายตัวของหินด้วยซอฟต์แวร์ Rock Image และคำนวณหาต้นทุนจากการระเบิด โดยแต่ละรูปแบบจะ ทดลองการระเบิด 3 ครั้ง
- สรุปผลการทดลองและเลือกรูปแบบการระเบิดที่ดีที่สุด ไปทดลองการ ระเบิดด้วยการอุดรูระเบิดด้วยปลั๊กยางธรรมชาติและปลั๊กน้ำยางพารา สดผสมแอมโมเนียต่อไป
- 3.1.3 กิจกรรมที่ 3 : ศึกษาและทดลองการระเบิดด้วยการอุดรูระเบิดด้วยปลั๊ก ยางธรรมชาติและปลั๊กน้ำยางพาราสดผสมแอมโมเนีย รวมถึงสรุปต้นทุนที่ ใช้จากการระเบิด
 - 1. ศึกษาคุณสมบัติและวิธีการใช้งานปลั๊กยางธรรมชาติ
 - 2. ศึกษาคุณสมบัติของน้ำยางพาราสดผสมแอมโมเนีย
 - ศึกษาทำการทดลองการระเบิดด้วยรูปแบบที่ดีที่สุด จากการทดลอง กิจกรรมที่ 2 นำมาอุดรูระเบิดด้วยปลั๊กยางธรรมชาติและปลั๊กน้ำ ยางพาราสดผสมแอมโมเนีย
 - 4. สรุปผลการทดลอง
- 3.1.4 กิจกรรมที่ 4 : สรุปผลการทดลองการระเบิดแต่ละรูปแบบการทดลอง และ เขียนรายงาน
 - นำข้อมูลทั้งหมดจากค่าที่ได้จากการระเบิดแต่ละรูปแบบ เช่น ค่าการ กระจายตัวขนาดหินหลังจากการระเบิด ค่าจากผลวิเคราะห์ประเภท ของหินจากฝุ่นเจาะระเบิด ค่าใช้จ่ายต้นทุนจากการระเบิดหิน มา เปรียบเทียบในรูปแบบกราฟ แล้วสรุปและเขียนรายงานการวิจัย

3.2 ขั้นตอนกระบวนการระเบิดเพื่อการผลิตครั้งที่ 1 (1st Blasting)

จะใช้รูปแบบขั้นตอนการทดลองดังกล่าวทำการทดลองในงานวิจัย ทุกรูปแบบโดยจะ ทำการระเบิดเก็บข้อมูลรูปแบบละ 3 ครั้ง โดยมีรายละเอียด ดังนี้

3.2.1 เตรียมหน้างานสำหรับการระเบิด

ลักษณะของหน้างานที่ใช้ทดลองระเบิดเป็นปัจจัยสำคัญในการระเบิด มีผลต่อ พลังงานการระเบิด การแตกหักของหิน ขนาดการกระจายตัว แรงสั่นสะเทือน แรงอัดอากาศ และหิน ปลิว ดังรูปที่ 3.2

(ก)

(ข)

รูปที่ 3.2 สภาพหน้างานที่ใช้ทดลองการระเบิด (ก) หน้างานไม่สะอาด (ข) หน้างานสะอาด

3.2.2 กำหนดทิศทางการระเบิดและตำแหน่งรูเจาะระเบิด

วัดทิศทางและความเอียงของชั้นหิน เพื่อกำหนดทิศทางการระเบิด และวัดระยะ Burden และ Spacing กำหนดรูเจาะ ให้สอดคล้องกับรูปแบบการระเบิด โดยออกแบบการระเบิดต่อ ครั้งให้มีกำลังการผลิตหิน ประมาณ 1,000 ตัน ดังรูปที่ 3.3

รูปที่ 3.3 กำหนดทิศทางการระเบิดและตำแหน่งรูเจาะระเบิด (ก) วัดทิศทางและการเอียงของชั้นหิน (ข) วัดระยะ Burden และ Spacing (ค) กำหนดจำนวนหลุมเจาะการระเบิด

3.2.3 เจาะรูระเบิดและเก็บตัวอย่างฝุ่นเจาะส่งวิเคราะห์

เจาะรูระเบิดใช้เครื่องเจาะ Hydraulic Crawler Drill ขนาดดอกเจาะประมาณ 3.0 นิ้ว ความลึกรูเจาะประมาณ 5.5 เมตร และเก็บตัวอย่างฝุ่นเจาะ (cutting) ทุกครั้งที่ทำการเจาะ ระเบิด ส่งวิเคราะห์ที่แผนกควบคุมคุณภาพ บริษัท สินหลวง จำกัด ดังรูปที่ 3.4

(ข)

(ค)

รูปที่ 3.4 เจาะรูระเบิดและส่งวิเคราะห์ฝุ่นเจาะ (ก) เจาะรูระเบิด (ข) ตัวอย่าง cutting (ค) สุ่มเก็บตัวอย่าง cutting ทุกหลุม (ง) ส่งตัวอย่าง cutting

3.2.4 แบบที่ 1 การบรรจุวัตถุระเบิดแบบปัจจุบัน อุดรูด้วย cutting

(ก)

(ข)

(ค)

3.2.5 แบบที่ 2 การบรรจุวัตถุระเบิดแบบอุดรูด้วยปลั๊กยางธรรมชาติ : Natural Rubber Stem Plug (NRSP)

(ค)

รูปที่ 3.6 ขั้นตอนการบรรจุวัตถุระเบิดแบบอุดด้วยปลั๊กยางธรรมชาติ (ก) ปลั๊กยางธรรมชาติและวัตถุ ระเบิด (ข) การบรรจุวัตถุระเบิดในหลุมเจาะ (ค) การโหลด ANFO ตามระยะที่กำหนด (ง) การใส่ปลั๊ก ยางธรรมชาติ (จ) การปิดรูระเบิดด้วย cutting (ฉ) การต่อวงจรจุดระเบิด

3.2.6 แบบที่ 3 การบรรจุวัตถุระเบิดแบบอุดรูด้วยปลั๊กน้ำยางพาราสดผสม แอมโมเนีย : Fresh Latex Plug (FLP)

(ก)

(ข)

(ค)

(ฌ)

(ຄູ)

รูปที่ 3.7 ขั้นตอนการบรรจุวัตถุระเบิด แบบอุดด้วยปลั๊กยางพาราสดผสมแอมโมเนีย (ก) การเตรียมน้ำยางพาราสดผสมแอมโมเนีย 500 มิลลิลิตร (ข) การต่อแก็ปไฟฟ้ากับวัตถุระเบิดแรงสูง ใส่ลงในหลุมเจาะ (ค) การโหลด ANFO ในรูระเบิดตามระยะที่กำหนด (ง) การใส่ cutting เป็นระยะ 0.5 เมตร ด้านบน ANFO (จ) การเตรียมกรดอะซิติก 50 มิลลิลิตร ความเข้มข้น 3% (ฉ) การเทกรดที่เตรียมไว้ลงในขวดน้ำยางพาราสดผสมแอมโมเนียม (ช) การเขย่าให้ผสมเข้ากัน (ซ) การเทน้ำยางที่ผสมเรียบร้อยลงหลุมเจาะ รอน้ำยางแข็งตัวประมาณ 15 นาที (ฌ) การปิดรูระเบิดด้วย cutting (ญ) การต่อวงจรจุดระเบิด

3.2.7 ภาพถ่ายกองหินวิเคราะห์ขนาดหินด้วยซอฟต์แวร์ Rock Image

การวิเคราะห์หาการกระจายตัวของขนาดของหินภายหลังการระเบิด ด้วยซอฟต์แวร์ Rock Image มีรายละเอียดแต่ละขั้นตอน ดั้งนี้

ขั้นตอนที่ 1 บันทึกภาพถ่ายกองหินหลังจากการระเบิดด้วยอากาศยานไร้คนขับ ดัง รูปที่ 3.8 วิธีการถ่ายภาพนี้จะเลือกมุมถ่ายที่ -90 (Top View) โดยกำหนดความสูงบินจากพื้นกองหิน ประมาณ 20 เมตร ร่วมกับใช้ลูกบอลขนาดเส้นผ่านศูนย์กลาง 24 นิ้ว ซึ่งเป็นขนาดลูกบอล เปรียบเทียบมาจากขนาดหินก้อนโต (Oversize) ที่มีขนาดโตกว่า 24 นิ้ว จะไม่สามารถเข้าสู่ปากโม่ ขั้นต้นได้ (Primary Jaw Crusher) จึงใช้ลูกบอลขนาดดังกล่าวเป็นสเกลตัวกำหนดในการวิเคราะห์ โดยจะใช้ลูกบอลทั้งหมด 5 ลูก วางกระจายทั่วกองหิน ดังรูปที่ 3.9 เพื่อให้ได้ภาพที่เป็นตัวแทนโดยให้ ภาพครอบคลุมตัวอย่างกองอย่างรอบคอบ ดังรูปที่ 3.10

รูปที่ 3.8 ถ่ายภาพมุมสูงด้วยอากาศยานไร้คนขับ

รูปที่ 3.9 วางลูกบอลกระจายให้ทั่วกองหินหลังจากการระเบิด

รูปที่ 3.10 ภาพถ่ายการกระจายตัวกองหินด้วยอากาศยานไร้คนขับ

ขั้นตอนที่ 2 เตรียมภาพถ่ายที่จะนำไปวิเคราะห์ เริ่มจากการกำหนดขอบเขตของ กองหินจากการระเบิดให้ชัดเจน ปรับแสงให้เหมาะสม หากพบวัตถุที่ไม่เกี่ยวข้องต้องทำการลบออก เพื่อเพิ่มความถูกต้องในการนำภาพไปใช้วิเคราะห์กับซอฟต์แวร์ Rock Image ดังรูป 3.11

รูปที่ 3.11 ภาพถ่ายใช้ประมวลผลการกระจายตัว

ขั้นตอนที่ 3 การวิเคราะห์คำนวณหาขนาดการกระจายตัวของหิน (Computation of Size Distribution Curves) ด้วยซอฟต์แวร์ Rock Image โดยมีรายละเอียดดังนี้

1.เริ่มต้นด้วยการนำเข้าภาพถ่ายของกองหินภายหลังการระเบิด ทำโดยใช้คำสั่ง Browse (หมายเลข 1) โดยไฟล์ภาพต้องเป็น .jpg จากนั้นใส่ขนาดเส้นผ่านศูนย์กลางของลูกบอล ซึ่งมี ขนาด 24 นิ้ว (หมายเลข 2) จากนั้นใส่ขนาด Sieve size ที่เราต้องการทราบ (หมายเลข 3) ขั้นต่อไป กดคำสั่ง Show binary image (หมายเลข 4) เพื่อให้ซอฟต์แวร์แสดงรูปก่อนที่จะทำการประมวลผล และ Show pixel retain (หมายเลข 5) เพื่อให้ซอฟต์แวร์แสดงค่า Pixels ที่ทำการประมวลได้ในแต่ ละ Sieve size และกด Run (หมายเลข 6) เพื่อเข้าสู่ขั้นตอนต่อไป ดังรูปที่ 3.12

	Browse														
		-													
aram	eter				'[
Ba	all Diameter (Inch)		24	2	0.9 -										
			24	2											
	Sieve Size (Inch)	Pixels	Percent Pa	assing	0.8										
1	36			^	0.7										
2	32				5.1										
3	28				0.6-										
4	24				0.0										
5	2 20				0.5 -										
6	J 16														
7	12				0.4 -										
8	8														
9	4				0.3 -										
10	2														
11	1			v	0.2										
	Discus bisses	E	0h												
	snow binary image	5	Show Pixel H	tain	0.1										
													~		
	Clear	6	Run		0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
	CIUM	0	Run												

รูปที่ 3.12 ส่วนต่างๆ ของซอฟต์แวร์ Rock Image

2.ทำเครื่องหมายตำแหน่งของลูกบอล ที่เราวางไว้ในรูป จากนั้นกด Enter จากนั้น รอให้ ซอฟต์แวร์ประมวลผล ดังรูปที่ 3.13

รูปที่ 3.13 การทำเครื่องหมายตำแหน่งของลูกบอล

3.ซอฟต์แวร์จะทำการประมวลผลตามข้อมูลต่าง ๆ ที่เราป้อนโดยเทียบ Pixel จาก Ball Scale ในรูกับกองหินแล้วเปรียบเทียบกับขนาด Sieve Size จากนั้นแปลงผลมาเป็นจำนวน Pixel ของแต่ละ Sieve Size จนได้ Percent Passing ออกมา ดังรูปที่ 3.14

รูปที่ 3.14 ภาพไบนารีจากการประมวลผลด้วยซอฟต์แวร์ Rock Image

4.การคำนวณขนาดการกระจายตัวด้วยซอฟต์แวร์จะทำการประมวลผลตามข้อมูล ต่าง ๆ ที่เราป้อนโดยเทียบ Pixel จาก Ball Scale ทั้งหมดในรูปกับกองหินหลังจากการระเบิดแล้ว เปรียบเทียบกับขนาด Sieve Size จากนั้นแปลงผลลัพธ์มาเป็นจำนวน Pixel ของแต่ละ Sieve Size จนได้ Percent Passing ผลลัพธ์การกระจายขนาดที่ได้รับจากการระเบิดออกมา ดังรูปที่ 3.15

รูปที่ 3.15 ผลลัพธ์ที่ได้จากซอฟต์แวร์วิเคราะห์การกระจายขนาด

3.3 ขั้นตอนกระบวนการระเบิดครั้งที่ 2 (2nd Blasting)

หลังจากการระเบิดครั้งที่ 1 ผลวิเคราะห์ขนาดหินทำให้ทราบขนาดหินที่โตกว่า 24 นิ้ว เมื่อทำการตักหินที่ได้จากการระเบิดครั้งที่ 1 ที่มีขนาดเล็กกว่า 24 นิ้ว ใส่รถบรรทุกเพื่อขนส่งไปสู่ โรงแต่งแร่หรือโรงโม่หิน หลังจากนั้นจึงจัดเตรียมหินที่ได้จากการระเบิดครั้งที่ 1 ที่มีขนาดโตกว่า 28 นิ้ว ซึ่งมีสัดส่วนตามผลการวิเคราะห์การกระจายขนาดของหินด้วยภาพถ่ายทางอากาศโดยใช้ ซอฟต์แวร์ Rock Image เพื่อให้รถเจาะรูระเบิดสามารถเข้าไปเจาะรูระเบิดได้สะดวก ทำการเจาะรู ระเบิดหิน บรรจุวัตถุระเบิดเพื่อทำการระเบิดครั้งที่ 2 ดังแสดงในรูปที่ 3.16

(ก)

(ค)

รูปที่ 3.16 ขั้นตอนกระบวนการระเบิดครั้งที่ 2 (ก) การจัดเตรียมหินก้อนโตที่จะทำการเจาะระเบิด (ข) การเจาะรูระเบิด (ค) การบรรจุวัตถุระเบิดและปิดปากรูเพื่อจุดระเบิด

3.4 การกระแทกหิน (Breaker)

จัดเตรียมหินที่มีขนาด 24 – 28 นิ้ว ที่ได้จากการระเบิดครั้งที่ 1 และครั้งที่ 2 เพื่อทำ การกระแทกให้ได้หินด้วยรถขุดติด Hydraulic Breaker เพื่อให้ได้ขนาดเล็กกว่า 24 นิ้ว ซึ่งเป็นขนาด หินที่สามารถป้อนเข้าปากโม่ได้ ดังแสดงในรูปที่ 3.17

(ก)

3.5 คำนวณต้นทุนกระบวนการระเบิด

การคำนวณต้นทุนกระบวนการระเบิด เป็นการวิเคราะห์และประเมินค่าใช้จ่ายที่ เกี่ยวข้องกับกระบวนการระเบิด เพื่อหาต้นทุนของกระบวนการระเบิดจะเริ่มจากการรวบรวมข้อมูล เกี่ยวกับกระบวนการระเบิดทั้งหมด ดังนี้ คือ รูปแบบการระเบิดเพื่อผลิต การระเบิดหินก้อนโต และ การกระแทกหิน แล้วนำมาวิเคราะห์ขนาดหินที่ใช้ได้กี่เปอร์เซ็นต์, หินที่ต้องระเบิดซ้ำ และหินที่ต้อง กระแทก จะสามารถคำนวณต้นทุนการระเบิดได้ ดังนี้

3.5.1 ต้นทุนรูปแบบการระเบิดครั้งที่ 1 (1st Blasting)1.ค่าเจาะ

ค่าใช้จ่ายส่วนนี้ทางบริษัทได้ทำการจ้างผู้รับเหมาทำการเจาะ โดยมีรายละเอียด

ค่าใช้จ่าย ดังนี้

11 ค่าเช่ารถเจาะ	= 90	บาท/เมตร
(ค่าเสื่อมราคา + ค่าซ่อมบำรุง + ค่าแรง + กำไรของ	งผู้ให้เช่า)	
1.2 ค่าน้ำมันเชื้อเพลิง	-	
- อัตราสิ้นเปลือง	= 1.25	เมตร/ลิตร
- ราคาน้ำมันเชื้อเพลิง	= 31	บาท/ลิตร
ดังนั้น ค่าน้ำมันเชื้อเพลิง	= 24	บาท/เมตร
1.3 ค่าวัสดุสิ้นเปลือง		
1.3.1 Shank adapter		
อายุการใช้งาน	= 800	เมตร/ชิ้น
ราคา	= 9,300	บาท/ชิ้น
ค่า Shank adapter	= 11.63	บาท/เมตร
1.3.2 ก้านเจาะ		
อายุการใช้งาน	= 800	เมตร/ก้าน
ใช้จำนวน	= 2	ก้าน/รู
ราคา	= 9,000	บาท/ก้าน
ค่าก้านเจาะ	= 22.5	บาท/เมตร
1.3.3 Coupling		
อายุการใช้งาน	= 800	เมตร/ชิ้น
ราคา	= 1,900	บาท/ชิ้น
ค่า Coupling	= 2.38	บาท/เมตร
1.3.4 ดอกเจาะ		
อายุการใช้งาน	= 800	เมตร/ดอก
ราคา	= 4,300	บาท/ดอก

ค่าดอกเจาะ	= 5.38	บาท/เมตร
รวมค่าวัสดุสิ้นเปลือง	= 41.89	บาท/เมตร
ดั้งนั้น ค่าเจาะระเบิด	ประมาณ 160	บาท/เมตร
2.ค่าวัตถุระเบิดและค่าแรง		
2.1 ค่าแก็ปไฟฟ้า	= 35	บาท/ดอก
2.2 ค่าวัตถุระเบิดแรงสูง	= 125	บาท/กิโลกรัม
2.3 ค่าปุ๋ยแอมโมเนียมในเตรต	= 35	บาท/กิโลกรัม
2.4 ค่าน้้ำมันดีเซล	= 31	บาท/ลิตร
2.5 ค่าปลั๊กยางธรรมชาติ	= 120	บาท/รู
2.6 ค่าปลั๊กน้ำยางพารา	= 20	บาท/รู
2.7 ค่าแรงพนักงานทำงาน 1 วัน	= 450	บาท/คน

ดั้งนั้น ค่าระเบิดเพื่อผลิต (1st Blasting) = ค่าเจาะระเบิด + ค่าวัตถุระเบิดและค่าแรง บาท

3.5.2	ต้นทนร	ปแบบการ	ระเบิดค	รั้งที่ 2	2 (2 nd	Blasting)
5.5.2	រាសពុសព្វ	000001110	000000	0 1 1 1 2	- \4	Dasting

ปริมาณหินจาการระเบิดครั้งที่ 1	= (1)	เมตริกตัน
สัดส่วนหินก้อนโตกว่า 28 นิ้ว (Oversize>24นิ้ว)	= 2	%
ขนาดเฉลี่ยของหิน Oversize	= 3	ີ້ນີ້ວ
จำนวนหิน Oversize	$=$ $(1) \times (2)$	
	= (4)(3)	ก้อน
จำนวนรูเจาะต่อก้อน	= (5)	لى م
ความลึกรูเจาะต่อก้อน	= 6	เมตร
ความลึกรูเจาะรวม	$= (4) \times (5) \times (6)$)
	= (7)	เมตร
ต้นทุนค่าเจาะ	= 160	บาท/เมตร
ดั้งนั้น ค่าระเบิดหินก้อนโต (2 nd Blasting)	= 160 × (7)	บาท

3.5.3 ต้นทุนกระแทกหิน (Breaker) ค่าใช้จ่ายส่วนนี้ทางบริษัทได้ทำการจ้างผู้รับเหมาทำการกระแทกหิน ในราคา ประมาณ 2,000 บาท/ชั่วโมง โดยมีรายละเอียดค่าใช้จ่าย ดังนี้

ປ໌	ริมาณหินจาการระเบิดครั้งที่ 1	=	1	เมตริกตัน
สั	ดส่วนหินขนาด 24 – 28 นิ้ว	=	2	%
ป	ริมาณหินจาการระเบิดครั้งที่ 2	=	3	เมตริกตัน
สั	ดส่วนหินขนาด 24 – 28 นิ้ว	=	(4)	%
ป	ริมาณหินที่ต้องทำการกระแทก	= ($(1) \times (2) + (2)$	3)×(4))
		=	5	เมตริกตัน
ନୀ	วามสามารถในการเตรียมหินกระแทก	=	20	ตัน/ชั่วโมง
ទ	ะยะเวลาในการเตรียมหินกระแทก	=(5) / 20	
		= (6)	ชั่วโมง
ค่	าจ้างเหมา Backhoe กระแทกหิน	= 2	2,000	บาท/ชั่วโมง
ଡ଼ିଏ	ังนั้น ค่ากระแทกหิน (Breaker)	= 2	2,000 × 6	บาท
สรุป ต้นทุนการระเ	บิดหิน = 1 st Blasting + 2 nd Blasting + Breaker 	r= (Cost	บาท/ตัน
	Tonnage			

70

3.6 อุปกรณ์ที่ใช้ในงานระเบิด

3.6.1 ปุ๋ยแอมโมเนียมในเตรต และน้ำมันเชื้อเพลิง (ANFO)

ANFO เป็นสารระเบิดที่มีชื่อเต็มว่า Ammonium Nitrate Fuel Oil เป็นวัตถุระเบิดที่ นิยมใช้กันอย่างแพร่หลายในงานเหมืองแร่ ซึ่งเป็นผลมาจากการผสมกันของสารสองชนิดคือ แอมโมเนียม ในเตรต (Ammonium Nitrate) ซึ่งเป็นปุ๋ยทั่วไป และน้ำมันเชื้อเพลิง (Fuel Oil) ในอัตราส่วนที่นิยมใช้ มาก คือ แอมโมเนียมในเตรต 94% และ น้ำมันเชื้อเพลิง 6% แต่จะละลายเมื่อเจอน้ำ

ในงานวิจัยนี้จะใช้ปุ๋ยแอมโมเนียมไนเตรตที่มีน้ำหนักถุงละ 25 กิโลกรัม ผสมกับ น้ำมันดีเซลที่มีการเติมผง Iron Oxide (Fe₂O₃) หรือออกไซด์เหล็กที่มีสีแดง เพื่อเพิ่มความมั่นใจว่า ANFO ได้ผสมเข้ากันอย่างดีแล้ว การผสม ANFO จะใช้วิธีการผสมแบบชั้นเดียว โดยการนำปุ๋ย แอมโมเนียมไนเตรตมาเทในถังผสม และเติมน้ำมันดีเซลลงไป จากนั้นผสมให้เข้ากันดีพร้อมที่จะ นำไปใช้ในการระเบิด ดังรูปที่ 3.18

(ค)

(१)

รูปที่ 3.18 ปุ๋ยแอมโมเนียมไนเตรต และ น้ำมันดีเซล (ANFO) (ก) ปุ๋ยแอมโมเนียมไนเตรต (ข) การใส่ผงออกไซด์เหล็กที่มีสีแดงผสมน้ำมันดีเซล (ค) การผสมปุ๋ยแอมโมเนียมไนเตรตกับน้ำมันดีเซลที่เติมผงออกไซด์เหล็กที่มีสีแดง (ง) ANFO

3.6.2 วัตถุระเบิดแรงสูง (High Explosive)

เป็นวัตถุระเบิดแรงสูงแบบหนืด ที่ผสมเข้าด้วยกันจากน้ำ, น้ำมัน, และสารระเบิด มี ความยืดหยุ่นสูง ตัวดินจะมีลักษณะเป็นสีเทาและสามารถกำหนดรูปทรงที่สอดคล้องกับช่องว่างที่ต้อง ใช้งาน มีขนาด 25 มิลลิเมตร x 200 มิลลิเมตร น้ำหนัก 1 กิโลกรัม ทนน้ำได้ดีมาก ดังรูปที่ 3.19

รูปที่ 3.19 วัตถุระเบิดแรงสูง

3.6.3 สายไฟต่อระเบิด (Electric Wire)

เป็นอุปกรณ์ที่ใช้ในการเชื่อมต่อระหว่างเครื่องมือสั่งงานระเบิดกับวัตถุระเบิด เพื่อให้ สัญญาณไฟฟ้าถูกส่งมอบไปยังวัตถุระเบิดเพื่อกระตุ้นการระเบิด ในงานวิจัยนี้จะใช้สายไฟเดี่ยว (Single Strand) เป็นหนึ่งในประเภทที่มักจะถูกนำมาใช้ในงานระเบิดหิน โดยใช้สายไฟเดี่ยว (สี เหลือง) ดังรูปที่ 3.20 มีลักษณะเป็นสายไฟฟ้าที่มีเส้นผ่านศูนย์กลางทองแดงหนา 0.5 มิลลิเมตร สามารถทนแรงดึงขณะหย่อนวัตถุระเบิดได้ เพื่อให้สามารถเชื่อมต่อระหว่างเครื่องมือสั่งงานระเบิดกับ วัตถุระเบิดได้อย่างปลอดภัย

รูปที่ 3.20 สายไฟต่อระเบิด

3.6.4 แก็ปไฟฟ้า (Electrical Detonator)

เป็นเครื่องมือที่ใช้ในการควบคุมกระแสไฟฟ้าให้มีการเปลี่ยนแปลงตามเวลาที่ตั้งไว้ แก๊ปไฟฟ้าหน่วงเวลาจะทำงานโดยใช้หลอดเชื้อประทุที่มีวัตถุดิบทำจากอลูมิเนียม โดยหลอดเชื้อประ ทุจะมีความยาวตั้งแต่ 42 - 90 มิลลิเมตร ขึ้นกับการหน่วงเวลาที่ตั้งไว้ และเส้นผ่านศูนย์กลางของ หลอดจะอยู่ที่ 6.8 - 7.0 มิลลิเมตร มีช่องห่างของเชื้อประทุอยู่ที่ 25 มิลลิวินาที ดังรูปที่รูปที่ 3.21

รูปที่ 3.21 แก็ปไฟฟ้า

3.6.5 เครื่องตรวจสอบวงจร (Circuit Tester)

ใช้ในการวัดค่าความต้านทานของวงจรจุดระเบิด โดยเมื่อเชื่อมต่อสองสายของวงจร จุดจุดระเบิดกับช่องสัมผัส ก็จะเปิดทำงานเพื่อตรวจสอบว่าวงจรไฟฟ้าสมบูรณ์และวัตถุระเบิดสามารถ ระเบิดตามแผนการได้หรือไม่ โดยเชื่อมต่อกับวงจรไฟฟ้าโดยใช้สายไฟและตัวเชื่อมต่อ และเมื่อ เชื่อมต่อเรียบร้อยแล้ว จะส่งกระแสไฟฟ้าเล็กน้อยผ่านวงจรเพื่อตรวจสอบว่าวงจรไฟฟ้าเป็นสมบูรณ์ หรือไม่ หากวงจรสมบูรณ์ ก็จะแสดงสถานะว่าพร้อมที่จะเริ่มกระบวนการระเบิดวัตถุระเบิด แสดงดัง รูปที่ 3.22

รูปที่ 3.22 เครื่องตรวจสอบวงจร

3.6.6 หม้อจุดระเบิด (Exploder)

เป็นอุปกรณ์ที่ใช้ในการกำเนิดแรงดันไฟฟ้าแบบชั่วคราวโดยการเกิดการระเบิด และ ไม่มีปุ่มกดเพื่อเปิดเครื่อง แต่เมื่อแรงดันของแคปาชิเตอร์ถึงจุดเป้าหมายก็จะเกิดการเปิดไฟอัตโนมัติ เลย เครื่องมีขนาดเล็กหนัก 1400 กรัม โดยที่การระเบิดจะเกิดขึ้นจากการผ่านกระแสไฟฟ้าที่มีแรงดัน สูงเข้าสู่ช่องว่างภายในหม้อจุดระเบิด ซึ่งจะทำให้กลไกของหม้อจุดระเบิดเกิดการเปลี่ยนแปลง แรงดันไฟฟ้าอย่างรวดเร็ว โดยทำให้เกิดการระเบิดที่เกิดขึ้นในช่วงเวลาอย่างรวดเร็วและแรงดันไฟฟ้า ที่เกิดขึ้นจะสูงมากจนเพียงพอที่จะสามารถเปิดวงจรไฟฟ้าในขณะนั้นได้ ดังแสดงในรูปที่ 3.23

รูปที่ 3.23 หม้อจุดระเบิด

3.6.7 ไม้สำหรับการอัดระเบิด (Explosive Loading Pole)

เป็นเครื่องมือที่ใช้ในการอัดวัตถุระเบิดลงในช่องเจาะหรือช่องวางของหิน จะช่วยให้ วัตถุระเบิดสามารถอยู่ในตำแหน่งที่เหมาะสมและอัดแน่นเพื่อให้เกิดประสิทธิภาพในการระเบิดได้ อย่างเต็มที่ มีความยาวประมาณ 4 เมตร แสดงดังรูปที่ 3.24

รูปที่ 3.24 ไม้สำหรับการอัดระเบิด

3.7 ปลั๊กอุดรูระเบิด (Stemming plug)

ปลั๊ก (plug) เป็นวัสดุที่ใช้ในการอุดรูหรือช่องว่างในการเจาะหรือระเบิดในงานเหมือง แร่ ในงานวิจัยนี้เลือกใช้วัสดุในการอุดรูระเบิด เป็น 2 แบบ ดังนี้

3.7.1 ปลั๊กอุดรูระเบิดแบบสำเร็จรูป

เป็นการนำวััสดุที่มีความยึดหยุ่นอย่าง เช่น ยางธรรมชาติ, ยางสังเคราะห์, หรือ พลาสติก มาขึ้นรูปร่างเป็นปลั๊ก ที่รูปร่างแบบกรวยที่มีฐานกว้างและปลายแคบ โดยส่วนปลายจะมีขนาด เล็กกว่าส่วนฐาน เพื่อให้สามารถแนบติดกับรูเจาะได้ดี ซึ่งในงานวิจัยนี้ได้ใช้ปลั๊กยางธรรมชาติอุดรูระเบิด (Natural Rubber Stem Plug) ยี่ห้อ FLEXZ BLAST ขนาดเส้นผ่านศูนย์กลางที่ฐานด้านบน 9 เซนติเมตร ฐานด้านล่าง 8.75 เซนติเมตร และความสูง 15 เซนติเมตร ดังรูปที่ 3.25

รูปที่ 3.25 ปลั๊กยางธรรมชาติอุดรูระเบิด

3.7.2 ปลั๊กอุดรูระเบิดแบบกึ่งสำเร็จรูป

เป็นการขึ้นรูปร่างของวัสดุในการอุดรูระเบิดแบบผสมที่หน้างาน โดยมีการผสมน้ำ ยางพาราสดกับวัสดุอื่นๆ เช่น แอมโมเนีย และ กรดอะซิติก ในอัตราส่วนที่กำหนดไว้ เทลงในรูเจาะ เพื่อให้คงรูปร่างได้เป็นวัสดุในการอุดรูระเบิดที่มีลักษณะเป็นรูปทรงกระบอก เรียกว่า ปลั๊กน้ำยางพารา อุดรูระเบิด (Fresh Latex Plug) สารประกอบที่เหมาะสมในการอุดรูระเบิด การผสมวัสดุเหล่านี้จะทำให้ เกิดประสิทธิภาพการอุดรูระเบิดที่มีความแข็งแรงและยืดหยุ่นอย่างเหมาะสมในการใช้งาน ดังรูปที่ 3.26

รูปที่ 3.26 ปลั๊กน้ำยางพาราสดอุดรูระเบิด

3.8 อุปกรณ์ที่ใช้ในการเก็บข้อมูล

3.8.1 โดรน (Drone)

เป็นอุปกรณ์ที่มีการออกแบบมาเพื่อใช้ในการบินได้โดยไม่มีผู้ควบคุมอยู่ในเครื่อง โดรนนำประยุกต์ใช้ในงานตรวจสอบและสำรวจพื้นที่ และการถ่ายภาพทางอากาศ กองหินหลังจาก การระเบิด แสดงดังรูปที่ 3.27

รูปที่ 3.27 โดรน (DJI Phantom RTK)

3.8.2 GPG-Garmin (DT-200)

เป็นเครื่องมือที่ใช้ระบุตำแหน่งที่ออกแบบมาสำหรับใช้งานกิจกรรมกลางแจ้งรับ สัญญาณแม่นยำ มีเซ็นเซอร์วัดความสูงจากระดับน้ำทะเล และมีคอมพาสไฟฟ้า GPG (Garmin Proprietary Grid) เป็นระบบกริดที่ใช้โดย Garmin เพื่อแสดงพิกัดบนหน้าจอเมื่อใช้งานในกิจกรรม กลางแจ้ง แสดงดังรูปที่ 3.28

รูปที่ 3.28 เครื่องมือที่ใช้ระบุตำแหน่ง

3.8.3 เข็มทิศธรณี (Geological Compass)

เป็นเครื่องมือที่วัดมุมและทิศทางใช้ในด้านธรณีวิทยา และงานวิศวกรรมเหมืองแร่ เพื่อวัดทิศทางและความเอียงของชั้นหิน และลักษณะธรณีวิทยาอื่น ๆ แสดงดังรูปที่ 3.29

รูปที่ 3.29 เข็มทิศธรณี

3.8.4 ลูกบอลเปรียบเทียบขนาด (Ball Scale)

ใช้ในการวัดและเปรียบเทียบขนาดของหิน โดยใช้ลูกบอลเป็นตัวอ้างอิง สำหรับการ ถ่ายภาพทางอากาศด้วยโดรน ซึ่งเป็นวัตถุที่มีขนาดเท่ากันและน้ำหนักเท่ากันทุกลูก โดยในงานวิจัยนี้ จะใช้ลูกบอล ขนาด 24 นิ้ว ซึ่งเป็นขนาดหินก้อนโต (Oversize) ที่สามารถเข้าปากโม่ได้ แสดงดังรูปที่ 3.30 ใช้สำหรับเป็นลูกบอลเทียบสเกลช่วยในการวิเคราะห์การกระจายของหินหลังจากการระเบิดด้วย ซอฟต์แวร์ Rock Image

รูปที่ 3.30 ลูกบอลขนาด 24 นิ้ว

3.9 ซอฟต์แวร์ที่ใช้ในการวิเคราะห์ข้อมูล

3.9.1 Rock Image

เป็นซอฟต์แวร์วิเคราะห์การกระจายตัวของขนาด ที่ใช้ในการหาการกระจายขนาดของ หินจากรูปภาพ ซึ่งงานวิจัยได้ใช้ภาพถ่ายทางอากาศ โดยดึงไฟล์ภาพและกำหนดตำแหน่งลูกบอลอ้างอิง และหาจำนวนพิกเซลต่อนิ้ว จากนั้นใช้วิธี Region Growing เพื่อทำการปรับปรุงรูปภาพ เช่น แปลงจาก รูปสีเป็นรูปสีเทา ปรับ Contrast และปิดรูขนาดเล็กในรูป เพื่อสร้างมูลฐานโครงสร้างตามขนาดของ ตะแกรง และแปลงจากรูปสีเทาเป็นรูปขาวดำ (Binary Image) เพื่อใช้กระบวนการเปิดในรูปตามมูลฐาน โครงสร้างที่สร้างขึ้น และนับจำนวนพิกเซล เพื่อทราบการกระจายขนาดของหิน ดังแสดงในรูปที่ 3.31

รูปที่ 3.31 ซอฟต์แวร์วิเคราะห์การกระจายตัวขนาด

3.9.2 GstarCAD

ซอฟต์แวร์นี้ใช้สำหรับสร้างรูปแบบและแบบแผนทางเทคนิค 2 มิติและ 3 มิติ โดยเฉพาะ อย่างยิ่งในอุตสาหกรรมสถาปัตยกรรม วิศวกรรมและการผลิต มีเครื่องมือให้ใช้สำหรับการสร้างและแก้ไขรูป แบบอย่างหลากหลาย สำหรับงานวิจัยนี้นำใช้ในการออกแบบจำลองโมเดลการเจาะระเบิด การจัดทำแผนที่ ภูมิประเทศ และธรณีวิทยา ดังแสดงในรูปที่ 3.32

รูปที่ 3.32 GstarCAD Software

บทที่ 4 ผลการทดลองและอภิปราย

4.1 ข้อมูลเบื้องต้นของสถานที่ดำเนินการวิจัย

สถานที่ดำเนินการวิจัย ตั้งอยู่ในพื้นที่หมู่เหมืองเฟลด์สปาร์ ประทานบัตรที่ 33142/16229 ของบริษัท สินหลวง จำกัด ซึ่งตั้งอยู่ที่ หมู่ที่ 2 ตำบลนบพิตำ อำเภอนบพิตำ จังหวัด นครศรีธรรมราช โดยมีตำแหน่งอยู่ในแผนที่ภูมิประเทศมาตราส่วน 1:50,000 ของกรมแผนที่ทหาร ลำดับชุด L7018 ระวาง 4926 IV (บ้านวังรี) บริเวณพิกัด UTM. 580440 – 581441 เมตร ตะวันออก 970875 – 971692 เมตร เหนือ แสดงดังรูปที่ 4.1 เป็นเหมืองแร่เฟลด์สปาร์ เป็นพื้นที่ภูเขาที่ลาด เอียงไปทางทิศตะวันออกเฉียงใต้ โดยมีอยู่ที่ระดับความสูงระหว่าง 210 – 410 เมตร จาก ระดับน้ำทะเลปานกลาง แสดงดังรูปที่ 4.2 ปัจจุบันได้ดำเนินการเปิดหน้าเหมืองผลิตแร่เฟลด์สปาร์ และหินแกรนิตเพื่ออุตสาหกรรมก่อสร้าง ครอบคลุมพื้นที่ประมาณ 200 ไร่ ทำเหมืองลักษณะ ขั้นบันได ซึ่งบริเวณหน้าเหมืองที่ใช้เจาะระเบิดทดลองงานวิจัยมีสภาพหน้าเหมือง แสดงดังรูปที่ 4.3

4.2 ผลวิเคราะห์สมบัติของตัวอย่างหินในพื้นที่งานวิจัย

จากผลวิเคราะห์สมบัติของหินของบริษัท สินหลวง จำกัด โดยเก็บตัวอย่างหินเนื้อสด ในพื้นที่หน้าเหมือง จำนวน 4 ตัวอย่าง ดังแสดงในรูปที่ 4.4 โดยส่งวิเคราะห์สมบัติทางกลศาสตร์ ที่ สาขาวิชาวิศวกรรมเหมืองแร่และวัสดุ มหาวิทยาลัยสงขลานครินทร์ ผลการตรวจสอบแสดงไว้ใน ตารางที่ 4.1

		ตัวอย่าง					
มาวทุตตอก	พสบาวพดสอบ	GN1	GN2	GN3	GN4	เฉลี่ย	
ความถ่วงจำเพาะ	ความถ่วงจำเพาะปรากฏ (%)	2.79	2.84	2.82	2.80	2.81	
การดูดซึมน้ำ	การดูดซึมน้ำ (%)	0.40	0.25	0.26	0.31	0.31	
การทดสอบความ	น้ำหนักที่หายไป (%)	0.77	0.04	0.16	0.23	0.30	
คงทนของมวลรวม							
การสึกกร่อนแบบ	ค่าสึกกร่อน (%)	29.76	29.26	29.40	29.68	29.53	
ลอสแองเจลิส	ภาวะเอกรูป	0.31	0.31	0.36	0.38	0.34	
	กำลังแรงกดจุด (เมกะพาสคัล)	3.33	4.26	3.43	3.88	3.73	
ก เยงตรงกุดเงื่อ	กำลังอัดแปลงค่า (เมกะพาสคัล)	73.00	94.00	76.00	85.00	82.00	

ตารางที่ 4.1 ผลการวิเคราะห์สมบัติทางกลศาสตร์ของตัวอย่างหินจากพื้นที่งานวิจัย

รูปที่ 4.1 แผนที่แสดงลักษณะภูมิประเทศ

รูปที่ 4.2 สถานที่ดำเนินการวิจัย ประทานบัตรที่ 33142/16229

รูปที่ 4.3 สภาพพื้นที่ปัจจุบันของหน้าเหมือง

รูปที่ 4.4 แผนที่แสดงตำแหน่งเก็บตัวอย่างหินเพื่อตรวจวิเคราะห์คุณภาพ

จากผลการทดสอบสมบัติทางกลศาสตร์ ตัวอย่างของหิน GN1 (UK01180319), GN2 (UK02180319), GN3 (UK03180319) และ GN4 (UK04180319) ซึ่งเก็บจากพื้นที่ประทาน บัตรที่ 33142/16229 พบว่ามีค่าความแข็งแรงแบบกดจุดเฉลี่ย 3.73 MPa มีค่าความแข็งแรงต่อแรง กดอัดแปลงค่าเฉลี่ย 82.00 MPa ซึ่งจัดอยู่ในกลุ่มหินที่มีความแข็งแรงในระดับแข็งแรง (Strong) (Attewell and Farmer, 1976) มีค่าความสึกกร่อนของหินจากการทดสอบด้วยเครื่องทดสอบ ลอสแองเจลีส 23.40 – 24.26 % สามารถใช้เป็นหินโรยทางรถไฟ คลุกตามมาตรฐานของกรมทาง หลวงและกรมทางหลวงชนบท ซึ่งกำหนดให้มีค่าความสึกกร่อนของหินไม่เกิน 40 % (กรมทางหลวง, 2544; กรมทางหลวงชนบท, 2557) และสามารถใช้เป็นมวลรวมผสมกับปูนซีเมนต์เพื่อใช้ทำเป็น คอนกรีต ซึ่งกำหนดให้มีค่าความสึกกร่อนของหินไม่เกิน 50 % (กรมโยธาและผังเมือง, 2550) จาก การทดสอบความชื้น พบว่าตัวอย่างดังกล่าวมีความชื้น 0.25 – 0.40 % ถือว่ามีความชื้นน้อย ซึ่งจะ ส่งผลให้อัตราส่วนน้ำต่อซีเมนต์ในส่วนผสมคอนกรีตไม่เปลี่ยนแปลงมาก ส่งผลดีต่อคุณภาพคอนกรีต

4.3 ผลการออกแบบรูปแบบการระเบิด (Blasting Pattern Design)

จากผลการวิเคราะห์สมบัติของหินแกรนิต ปรากฏว่าชนิดของหินอยู่ในประเภท ความแข็งแรงสูง (High Strength) และค่า Powder Factor (PF) ที่เหมาะสมอยู่ในช่วง 0.7 – 0.8 กิโลกรัม/ลูกบาศก์เมตร แสดงไว้ในตารางที่ 4.2 จึงได้ทำการกำหนดรูปแบบการระเบิด (Pattern Blasting) ที่ใช้ทดลองในการวิจัยครั้งนี้ โดยการเปลี่ยนแปลงค่า PF ทั้งสิ้น 5 รูปแบบ เริ่มจากค่า PF เท่ากับ 0.6, 0.7, 0.8, 0.9 และ 1.0 กิโลกรัม/ลูกบาศก์เมตร และได้ออกแบบตามหลักวิศวกรรมยึด อัตราส่วนสตีฟฟ์เนส (Stiffness Ratio) คืออัตราส่วนความสูงหน้าเหมืองต่อระยะจากรูระเบิดแถว แรก เพื่อให้การระเบิดมีประสิทธิภาพดี ซึ่งมีผลโดยตรงต่อการแตกหักของหิน การสั่นสะเทือน เสียง ดัง และหินปลิว แสดงไว้ในตารางที่ 4.3

Rock Type	Powder Factor (kg/m ³)		
Hard Rock	0.7 – 0.8		
Medium Rock	0.4 – 0.5		
Soft Rock	0.25 – 0.35		
Very Soft Rock	0.15 – 0.25		

ตารางที่ 4.2 ค่า Powder Factor โดยทั่วไป จำแนกตามความแข็งแรงของหิน

4.4 การออกแบบรูปแบบการระเบิดโดยการปรับเปลี่ยนค่า Powder Factor (PF)

จากความสูงหน้าเหมืองที่ใช้ในการผลิตมีความสูง เฉลี่ยประมาณ 5 เมตร ดังนั้น จึง ได้ทำการกำหนดค่าระยะ Burden เท่ากับ 1.6 เมตร จะทำให้ค่าอัตราส่วนสตีฟฟ์เนส เท่ากับ 3 อยู่ใน ในเกณฑ์ที่ดี จึงใช้ค่าจากข้อมูลแสดงในตารางที่ 4.3 ดังนั้นการออกแบบรูปแบบการระเบิดโดยการ ปรับเปลี่ยนค่า Powder Factor ทำการเปรียบเทียบกับรูปแบบการระเบิดปัจจุบัน รวมทั้งหมด 6 รูปแบบ โดยจะทำการออกแบบการระเบิดให้ได้หินครั้งละ ประมาณ 1,000 ตัน วางแบบสลับฟันปลา จำนวน 3 แถว จุดระเบิดด้วยจังหวะถ่วง ดังแสดงรูปที่ 4.5

Blasting Pattern	Current	PF1.0	PF0.9	PF0.8	PF0.7	PF0.6
Burden (m)	1.8	1.6	1.6	1.6	1.6	1.6
Spacing (m)	2.0	1.8	2.0	2.2	2.5	2.9
Hole Diameter (in)	3	3	3	3	3	3
Bench Height (m)	5	5	5	5	5	5
Hole Length (m)	5.5	5.5	5.5	5.5	5.5	5.5
Explosive Column Height (m)	3.7	3.9	3.9	3.9	3.9	3.9
Stemming Height (m)	1.8	1.6	1.6	1.6	1.6	1.6
Sub-Drilling (m)	0.5	0.5	0.5	0.5	0.5	0.5
Powder Factor (kg/m ³)	0.8	1.0	0.9	0.8	0.7	0.6
No.Hole/Blast	22	27	25	23	20	17
No.Row	3	3	3	3	3	3

ตารางที่ 4.3 รูปแบบการระเบิดแบบปัจจุบันและแบบการปรับเปลี่ยน ค่า Powder Factor (PF)

รูปที่ 4.5 รูปแบบการวางระเบิดแบบสลับฟันปลาและการวางแก็ปเบอร์ดีเลย์

รูปที่ 4.6 รูปแบบการระเบิดแบบปัจจุบันและแบบการปรับเปลี่ยน ค่า Powder Factor

- (ก) รูปแบบการระเบิดแบบปัจจุบัน (C)
- (ค) ค่ำ Powder Factor = 0.9 kg/m³ (PF0.9)
- (จ) ค่ำ Powder Factor = 0.7 kg/m³ (PF0.7)
- (ข) ค่า Powder Factor = 1.0 kg/m³ (PF1)
- (ง) ค่ำ Powder Factor = 0.8 kg/m³ (PF0.8)
- (ฌ ค่า Powder Factor = 0.6 kg/m³ (PF0.6)

รูปที่ 4.7 รูปแบบการอุดรูระเบิด (ก) แบบปัจจุบัน (ข) แบบปรับปรุง ค่า Powder Factor

4.4.1 ผลการทดลองรูปแบบการระเบิดแบบปัจจุบัน (Current Pattern)

1. สมบัติของหินแข็งที่ทำการทดลอง

ลักษณะของหินไบโอไทต์แกรนิตเนื้อสด ขนาดละเอียดถึงปานกลางบางจุดเป็นเนื้อ ดอก ประกอบด้วยแร่ควอตซ์ ประมาณ 50 – 60%, แพลจิโอเคลสเฟลด์สปาร์ ประมาณ 30 – 50%, แอลคาไลเฟลด์สปาร์ประมาณ 20 – 40%, ไบโอไทต์ ประมาณ 5% และมัสโคไวต์ ประมาณ 3%

2. ผลวิเคราะห์ภาพถ่ายด้วยซอฟต์แวร์ Rock Image

หลังจากการระเบิดแบบปัจจุบันทำการถ่ายภาพกองหินหลังจากการระเบิดเพื่อ วิเคราะห์หาการกระจายตัวด้วยซอฟต์แวร์ Rock Image แสดงไว้ดังตารางที่ 4.4 และดังรูปที่ 4.8 – 4.10

		Passing (%)		
Size (in)	C-1	C-2	C-3	Average
36	93.63	93.22	98.00	94.95
32	92.48	92.20	95.96	93.55
28	91.45	90.00	91.04	90.83
24	89.65	85.60	85.44	86.90
20	87.10	79.85	76.79	81.25
16	81.68	70.77	68.43	73.63
12	73.90	59.89	54.82	62.87
8	61.41	47.33	39.91	49.55
4	35.02	26.91	18.83	26.92
2	15.68	12.13	12.16	13.32
1	11.78	9.20	4.91	8.63

ตารางที่ 4.4 ผลการวิเคราะห์การกระจายตัวของหินจากการระเบิดแบบปัจจุบัน (Current Pattern)

รูปที่ 4.8 กราฟแสดงการกระจายตัวของหินหลังการระเบิดแบบปัจจุบัน

รูปที่ 4.9 แผนภูมิแสดงขนาดของอนุภาคการระเบิดแบบปัจจุบัน

รูปที่ 4.10 แผนภูมิแสดงขนาดหินก้อนโตจากการระเบิดแบบปัจจุบัน

3. ต้นทุนการระเบิดแบบปัจจุบัน (Current Blasting Cost)

ผลจากการคำนวณต้นทุนกระบวนการระเบิดแบบปัจจุบัน โดยจะคำนวณจากต้นทุน การระเบิดครั้งที่ 1 (1st Blasting) ต้นทุนการระเบิดครั้งที่ 2 (2nd Blasting) และต้นทุนการกระแทก หิน (Breaker) รวมกัน แล้วหารด้วยปริมาณหินที่ได้จากการระเบิดในแต่ละครั้ง (ton/blast) แสดงไว้ ดังตารางที่ 4.5 และดังรูปที่ 4.11

Current	1 st Blasting (β)	2 nd Blasting (β)	Breaker (8)	Tonnage (ton/blast)	Blasting Cost (₿/ton)
C-1	33,764.08	6,049.03	8,362.20	1,018	47.32
C-2	33,764.08	6,769.63	12,116.92	1,018	51.72
C-3	33,764.08	6,252.79	12,534.39	1,018	51.62
Average	33,764.08	6,357.15	11,004.50	1,018	50.22

ตารางที่ 4.5 ผลจากการคำนวณต้นทุนการระเบิดแบบปัจจุบัน

รูปที่ 4.11 แผนภูมิแสดงต้นทุนจากการระเบิดแบบปัจจุบัน

จากการทดลองการระเบิดแบบปัจจุบัน ทั้งหมด 3 ครั้ง พบว่า การกระจายตัวของ หินมีขนาด %passing d20, d50 และ d80 เฉลี่ย คือ 2.96, 8.10 และ 19.23 นิ้ว และมีขนาดหิน ก้อนโตกว่า 24 นิ้ว เฉลี่ย เท่ากับ 13.10 % และต้นทุนเฉลี่ยการระเบิด เท่ากับ 50.22 บาท/ตัน
4.4.2 ผลการทดลองรูปแบบการระเบิดแบบค่า PF1.0

1. สมบัติของหินแข็งที่ทำการทดลอง

ลักษณะของหินไบโอไทต์แกรนิตเนื้อสด ขนาดละเอียดถึงปานกลางบางจุดเป็นเนื้อ ดอก ประกอบด้วยแร่ควอตซ์ ประมาณ 50 – 60%, แพลจิโอเคลสเฟลด์สปาร์ ประมาณ 30 – 50%, แอลคาไลเฟลด์สปาร์ประมาณ 20 – 40%, ไบโอไทต์ ประมาณ 5% และมัสโคไวต์ ประมาณ 3%

2. ผลวิเคราะห์ภาพถ่ายด้วยซอฟต์แวร์ Rock Image

หลังจากการระเบิดแบบ PF1.0 ทำการถ่ายภาพกองหินหลังจากการระเบิดเพื่อ วิเคราะห์หาการกระจายตัวด้วยซอฟต์แวร์ Rock Image แสดงไว้ดังตารางที่ 4.6 และดังรูปที่ 4.12 – 4.14

C = c (in)		A		
Size (in)	PF1.0-1	PF1.0-2	PF1.0-3	Average
36	100.00	98.78	100.00	99.59
32	100.00	98.15	99.33	99.16
28	99.48	97.10	98.17	98.25
24	97.26	95.23	96.27	96.25
20	97.00	89.27	92.98	93.08
16	93.99	82.25	88.17	88.14
12	85.64	70.06	79.99	78.56
8	71.42	52.56	64.59	62.86
4	41.51	22.47	37.55	33.84
2	20.12	13.98	15.79	16.63
1	12.54	7.37	11.66	10.52

ตารางที่ 4.6 ผลการวิเคราะห์การกระจายตัวของหินจากการระเบิดแบบ PF1.0

รูปที่ 4.12 กราฟแสดงการกระจายตัวของหินหลังการระเบิดแบบ PF1.0

รูปที่ 4.13 แผนภูมิแสดงขนาดของอนุภาคการระเบิดแบบ PF1.0

รูปที่ 4.14 แผนภูมิแสดงขนาดหินก้อนโตจากการระเบิดแบบ PF1.0

3. ต้นทุนการระเบิดแบบ PF1.0 (PF1.0 Cost)

ผลจากการคำนวณต้นทุนกระบวนการระเบิดแบบ PF1.0 โดยจะคำนวณจากต้นทุน การระเบิดครั้งที่ 1 (1st Blasting) ต้นทุนการระเบิดครั้งที่ 2 (2nd Blasting) และต้นทุนการกระแทก หิน (Breaker) รวมกัน แล้วหารด้วยปริมาณหินที่ได้จากการระเบิดในแต่ละครั้ง (ton/blast) แสดงไว้ ดังตารางที่ 4.7 และดังรูปที่ 4.15

PF1.0	1 st Blasting (₿)	2 nd Blasting (β)	Breaker (ß)	Tonnage (ton/blast)	Blasting Cost (₿/ton)
PF1.0-1	41,709.04	2,058.60	2,606.76	1,000	46.37
PF1.0-2	41,709.04	3,219.87	4,041.35	1,000	48.97
PF1.0-3	41,709.04	2,692.91	3,271.57	1,000	47.67
Average	41,709.04	2,657.13	3,306.56	1,000	47.67

ตารางที่ 4.7 ผลจากการคำนวณต้นทุนการระเบิดแบบ PF1.0

รูปที่ 4.15 แผนภูมิแสดงต้นทุนจากการระเบิดแบบ PF1.0

จากการทดลองการระเบิดแบบ PF1.0 ทั้งหมด 3 ครั้ง พบว่า การกระจายตัวของหิน มีขนาด %passing d20, d50 และ d80 เฉลี่ย คือ 2.33, 6.12 และ 12.39 นิ้ว และมีขนาดหินก้อน โตกว่า 24 นิ้ว เฉลี่ย เท่ากับ 3.75 % และต้นทุนเฉลี่ยการระเบิด เท่ากับ 47.67 บาท/ตัน

4.4.3 ผลการทดลองรูปแบบการระเบิดแบบค่า PF0.9

1. สมบัติของหินแข็งที่ทำการทดลอง

ลักษณะของหินไบโอไทต์แกรนิตเนื้อสด ขนาดละเอียดถึงปานกลางบางจุดเป็นเนื้อ ดอก ประกอบด้วยแร่ควอตซ์ ประมาณ 50 – 60%, แพลจิโอเคลสเฟลด์สปาร์ ประมาณ 30 – 50%, แอลคาไลเฟลด์สปาร์ประมาณ 20 – 40%, ไบโอไทต์ ประมาณ 5% และมัสโคไวต์ ประมาณ 3%

2. ผลวิเคราะห์ภาพถ่ายด้วยซอฟต์แวร์ Rock Image

หลังจากการระเบิดแบบ PF0.9 ทำการถ่ายภาพกองหินหลังจากการระเบิดเพื่อ วิเคราะห์หาการกระจายตัวด้วยซอฟต์แวร์ Rock Image แสดงไว้ดังตารางที่ 4.8 และดังรูปที่ 4.16 – 4.18

C = c (in)		A		
Size (in)	PF0.9-1	PF0.9-2	PF0.9-3	Average
36	99.39	100.00	99.24	99.54
32	98.72	100.00	98.88	99.20
28	97.44	99.04	97.65	98.04
24	95.93	95.70	95.80	95.81
20	94.52	89.89	92.92	92.44
16	89.78	83.00	87.81	86.86
12	83.03	73.82	78.40	78.42
8	67.19	57.20	62.38	62.26
4	35.05	29.35	32.69	32.36
2	18.16	13.80	16.47	16.14
1	10.56	9.11	10.09	9.92

ตารางที่ 4.8 ผลการวิเคราะห์การกระจายตัวของหินจากการระเบิดแบบ PF0.9

รูปที่ 4.16 กราฟแสดงการกระจายตัวของหินหลังการระเบิดแบบ PF0.9

รูปที่ 4.17 แผนภูมิแสดงขนาดของอนุภาคการระเบิดแบบ PF0.9

รูปที่ 4.18 แผนภูมิแสดงขนาดหินก้อนโตจากการระเบิดแบบ PF0.9

3. ต้นทุนการระเบิดแบบ PF0.9 (PF0.9 Cost)

ผลจากการคำนวณต้นทุนกระบวนการระเบิดแบบ PF0.9 โดยจะคำนวณจากต้นทุน การระเบิดครั้งที่ 1 (1st Blasting) ต้นทุนการระเบิดครั้งที่ 2 (2nd Blasting) และต้นทุนการกระแทก หิน (Breaker) รวมกัน แล้วหารด้วยปริมาณหินที่ได้จากการระเบิดในแต่ละครั้ง (ton/blast) แสดงไว้ ดังตารางที่ 4.9 และดังรูปที่ 4.19

PF0.9	1 st Blasting (β)	2 nd Blasting (β)	Breaker (฿)	Tonnage (ton/blast)	Blasting Cost (₿/ton)
PF0.9-1	38,752.81	3,085.08	3,527.80	1,029	44.09
PF0.9-2	38,752.81	2,281.90	4,175.76	1,029	43.94
PF0.9-3	38,752.81	2,979.66	3,715.50	1,029	44.17
Average	38,752.81	2,782.21	3,806.35	1,029	44.07

ตารางที่ 4.9 ผลจากการคำนวณต้นทุนการระเบิดแบบ PF0.9

รูปที่ 4.19 แผนภูมิแสดงต้นทุนจากการระเบิดแบบ PF0.9

จากการทดลองการระเบิดแบบ PF0.9 ทั้งหมด 3 ครั้ง พบว่า การกระจายตัวของหิน มีขนาด %passing d20, d50 และ d80 เฉลี่ย คือ 2.46, 6.26 และ 12.55 นิ้ว และมีขนาดหินก้อน โตกว่า 24 นิ้ว เฉลี่ย เท่ากับ 4.19 % และต้นทุนเฉลี่ยการระเบิด เท่ากับ 44.07 บาท/ตัน

4.4.4 ผลการทดลองรูปแบบการระเบิดแบบค่า PF0.8

1. สมบัติของหินแข็งที่ทำการทดลอง

ลักษณะของหินไบโอไทต์แกรนิตเนื้อสด ขนาดละเอียดถึงปานกลางบางจุดเป็นเนื้อ ดอก ประกอบด้วยแร่ควอตซ์ ประมาณ 50 – 60%, แพลจิโอเคลสเฟลด์สปาร์ ประมาณ 30 – 50%, แอลคาไลเฟลด์สปาร์ประมาณ 20 – 40%, ไบโอไทต์ ประมาณ 5% และมัสโคไวต์ ประมาณ 3%

2. ผลวิเคราะห์ภาพถ่ายด้วยซอฟต์แวร์ Rock Image

หลังจากการระเบิดแบบ PF0.8 ทำการถ่ายภาพกองหินหลังจากการระเบิดเพื่อ วิเคราะห์หาการกระจายตัวด้วยซอฟต์แวร์ Rock Image แสดงไว้ดังตารางที่ 4.10 และดังรูปที่ 4.20 - 4.22

C = c (in)		A		
Size (in)	PF0.8-1	PF0.8-2	PF0.8-3	Average
36	98.81	99.43	98.20	98.81
32	97.35	99.36	98.06	98.26
28	96.91	97.80	96.94	97.22
24	95.23	96.44	94.62	95.43
20	92.35	94.25	92.39	93.00
16	86.58	86.43	86.92	86.64
12	79.15	76.18	79.80	78.38
8	62.61	60.13	62.56	61.77
4	31.96	31.86	30.63	31.48
2	16.18	15.16	16.43	15.92
1	10.50	10.09	9.13	9.91

ตารางที่ 4.10 ผลการวิเคราะห์การกระจายตัวของหินจากการระเบิดแบบ PF0.8

รูปที่ 4.20 กราฟแสดงการกระจายตัวของหินหลังการระเบิดแบบ PF0.8

รูปที่ 4.21 แผนภูมิแสดงขนาดของอนุภาคการระเบิดแบบ PF0.8

รูปที่ 4.22 แผนภูมิแสดงขนาดหินก้อนโตจากการระเบิดแบบ PF0.8

3. ต้นทุนการระเบิดแบบ PF0.8 (PF0.8 Cost)

ผลจากการคำนวณต้นทุนกระบวนการระเบิดแบบ PF0.8 โดยจะคำนวณจากต้นทุน การระเบิดครั้งที่ 1 (1st Blasting) ต้นทุนการระเบิดครั้งที่ 2 (2nd Blasting) และต้นทุนการกระแทก หิน (Breaker) รวมกัน แล้วหารด้วยปริมาณหินที่ได้จากการระเบิดในแต่ละครั้ง (ton/blast) แสดงไว้ ดังตารางที่ 4.11 และดังรูปที่ 4.23

PF0.8	1 st Blasting (₿)	2 nd Blasting (β)	Breaker (₿)	Tonnage (ton/blast)	Blasting Cost (₿/ton)
PF0.8-1	35,796.59	3,369.74	4,160.82	1,041	41.62
PF0.8-2	35,796.59	3,212.26	3,793.92	1,041	41.12
PF0.8-3	35,796.59	3,354.50	4,803.55	1,041	42.22
Average	35,796.59	3,312.17	4,252.76	1,041	41.65

ตารางที่ 4.11 ผลจากการคำนวณต้นทุนการระเบิดแบบ PF0.8

รูปที่ 4.23 แผนภูมิแสดงต้นทุนจากการระเบิดแบบ PF0.8

จากการทดลองการระเบิดแบบ PF0.8 ทั้งหมด 3 ครั้ง พบว่า การกระจายตัวของหิน มีขนาด %passing d20, d50 และ d80 เฉลี่ย คือ 2.55, 6.38 และ 12.68 นิ้ว และมีขนาดหินก้อน โตกว่า 24 นิ้ว เฉลี่ย เท่ากับ 4.57 % และต้นทุนเฉลี่ยการระเบิด เท่ากับ 41.65 บาท/ตัน

4.4.5 ผลการทดลองรูปแบบการระเบิดแบบค่า PF0.7

1. สมบัติของหินแข็งที่ทำการทดลอง

ลักษณะของหินไบโอไทต์แกรนิตเนื้อสด ขนาดละเอียดถึงปานกลางบางจุดเป็นเนื้อ ดอก ประกอบด้วยแร่ควอตซ์ ประมาณ 50 – 60%, แพลจิโอเคลสเฟลด์สปาร์ ประมาณ 30 – 50%, แอลคาไลเฟลด์สปาร์ประมาณ 20 – 40%, ไบโอไทต์ ประมาณ 5% และมัสโคไวต์ ประมาณ 3%

2. ผลวิเคราะห์ภาพถ่ายด้วยซอฟต์แวร์ Rock Image

หลังจากการระเบิดแบบ PF0.7 ทำการถ่ายภาพกองหินหลังจากการระเบิดเพื่อ วิเคราะห์หาการกระจายตัวด้วยซอฟต์แวร์ Rock Image แสดงไว้ดังตารางที่ 4.12 และดังรูปที่ 4.24 – 4.26

$C = c (i_{\alpha})$				
Size (in)	PF0.7-1	PF0.7-2	PF0.7-3	Average
36	97.80	97.61	100.00	98.47
32	96.97	96.90	99.26	97.71
28	96.21	95.18	96.69	96.03
24	93.62	94.15	93.21	93.66
20	91.92	92.82	89.56	91.43
16	85.86	87.89	83.14	85.63
12	77.13	76.80	76.06	76.66
8	60.19	60.08	59.59	59.95
4	32.15	31.55	30.36	31.35
2	15.18	15.16	14.43	14.92
1	8.17	8.69	10.38	9.08

ตารางที่ 4.12 ผลการวิเคราะห์การกระจายตัวของหินจากการระเบิดแบบ PF0.7

รูปที่ 4.24 กราฟแสดงการกระจายตัวของหินหลังการระเบิดแบบ PF0.7

รูปที่ 4.25 แผนภูมิแสดงขนาดของอนุภาคการระเบิดแบบ PF0.7

รูปที่ 4.26 แผนภูมิแสดงขนาดหินก้อนโตจากการระเบิดแบบ PF0.7

3. ต้นทุนการระเบิดแบบ PF0.7 (PF0.7 Cost)

ผลจากการคำนวณต้นทุนกระบวนการระเบิดแบบ PF0.7 โดยจะคำนวณจากต้นทุน การระเบิดครั้งที่ 1 (1st Blasting) ต้นทุนการระเบิดครั้งที่ 2 (2nd Blasting) และต้นทุนการกระแทก หิน (Breaker) รวมกัน แล้วหารด้วยปริมาณหินที่ได้จากการระเบิดในแต่ละครั้ง (ton/blast) แสดงไว้ ดังตารางที่ 4.13 และดังรูปที่ 4.27

PF0.7	1 st Blasting (β)	2 nd Blasting (β)	Breaker (₿)	Tonnage (ton/blast)	Blasting Cost (₿/ton)
PF0.7-1	31,362.25	3,702.51	5,587.40	1,029	39.51
PF0.7-2	31,362.25	4,219.56	4,777.45	1,029	39.22
PF0.7-3	31,362.25	3,466.58	6,129.94	1,029	39.80
Average	31,362.25	3,796.22	5,498.26	1,029	39.51

ตารางที่ 4.13 ผลจากการคำนวณต้นทุนการระเบิดแบบ PF0.7

รูปที่ 4.27 แผนภูมิแสดงต้นทุนจากการระเบิดแบบ PF0.7

จากการทดลองการระเบิดแบบ PF0.7 ทั้งหมด 3 ครั้ง พบว่า การกระจายตัวของหิน มีขนาด %passing d20, d50 และ d80 เฉลี่ย คือ 2.64, 6.51 และ 13.21 นิ้ว และมีขนาดหินก้อน โตกว่า 24 นิ้ว เฉลี่ย เท่ากับ 6.34 % และต้นทุนเฉลี่ยการระเบิด เท่ากับ 39.51 บาท/ตัน

4.4.6 ผลการทดลองรูปแบบการระเบิดแบบค่า PF0.6

1. สมบัติของหินแข็งที่ทำการทดลอง

ลักษณะของหินไบโอไทต์แกรนิตเนื้อสด ขนาดละเอียดถึงปานกลางบางจุดเป็นเนื้อ ดอก ประกอบด้วยแร่ควอตซ์ ประมาณ 50 – 60%, แพลจิโอเคลสเฟลด์สปาร์ ประมาณ 30 – 50%, แอลคาไลเฟลด์สปาร์ประมาณ 20 – 40%, ไบโอไทต์ ประมาณ 5% และมัสโคไวต์ ประมาณ 3%

2. ผลวิเคราะห์ภาพถ่ายด้วยซอฟต์แวร์ Rock Image

หลังจากการระเบิดแบบ PF0.6 ทำการถ่ายภาพกองหินหลังจากการระเบิดเพื่อ วิเคราะห์หาการกระจายตัวด้วยซอฟต์แวร์ Rock Image แสดงไว้ดังตารางที่ 4.14 และดังรูปที่ 4.28 - 4.30

		A		
Size (in)	PF0.6-1	PF0.6-2	PF0.6-3	Average
36	97.79	96.50	96.38	96.89
32	95.47	94.74	93.67	94.63
28	92.09	92.61	90.59	91.76
24	88.00	88.60	88.43	88.34
20	81.70	84.46	84.45	83.54
16	71.82	77.47	76.61	75.30
12	60.94	66.20	63.76	63.63
8	46.55	55.45	49.38	50.46
4	27.82	32.61	25.46	28.63
2	12.44	16.27	12.97	13.89
1	8.42	7.36	9.69	8.49

a	0	6	<u>م</u>	6	6	
ตารา. ท ั / 1/1	แลการาโคร	าซเล็การกร	ระลายตัวขอ	າ.99 <u>8</u> 9 ເລ.	ากการระเบิดแบบ	PEN 6
VI 19 INVI 4.14	MPILLIG 9PLIG		90 1 10 1 9 0 0	1111111		110.0

รูปที่ 4.28 กราฟแสดงการกระจายตัวของหินหลังการระเบิดแบบ PF0.6

รูปที่ 4.29 แผนภูมิแสดงขนาดของอนุภาคการระเบิดแบบ PF0.6

รูปที่ 4.30 แผนภูมิแสดงขนาดหินก้อนโตจากการระเบิดแบบ PF0.6

3. ต้นทุนการระเบิดแบบ PF0.6 (PF0.6 Cost)

ผลจากการคำนวณต้นทุนกระบวนการระเบิดแบบ PF0.6 โดยจะคำนวณจากต้นทุน การระเบิดครั้งที่ 1 (1st Blasting) ต้นทุนการระเบิดครั้งที่ 2 (2nd Blasting) และต้นทุนการกระแทก หิน (Breaker) รวมกัน แล้วหารด้วยปริมาณหินที่ได้จากการระเบิดในแต่ละครั้ง (ton/blast) แสดงไว้ ดังตารางที่ 4.15 และดังรูปที่ 4.31

PF0.6	1 st Blasting (β)	2 nd Blasting (β)	Breaker (฿)	Tonnage (ton/blast)	Blasting Cost (₿/ton)
PF0.6-1	26,927.91	5,715.09	10,163.96	1,014	42.22
PF0.6-2	26,927.91	5,457.72	9,687.33	1,014	41.49
PF0.6-3	26,927.91	6,457.52	9,347.60	1,014	42.14
Average	26,927.91	5,876.78	9,732.96	1,014	41.95

ตารางที่ 4.15 ผลจากการคำนวณต้นทุนการระเบิดแบบ PF0.6

รูปที่ 4.31 แผนภูมิแสดงต้นทุนจากการระเบิดแบบ PF0.6

จากการทดลองการระเบิดแบบ PF0.6 ทั้งหมด 3 ครั้ง พบว่า การกระจายตัวของหิน มีขนาด %passing d20, d50 และ d80 เฉลี่ย คือ 2.83, 7.81 และ 18.13 นิ้ว และมีขนาดหินก้อน โตกว่า 24 นิ้ว เฉลี่ย เท่ากับ 11.66 % และต้นทุนเฉลี่ยการระเบิด เท่ากับ 41.95 บาท/ตัน

4.5 ผลการออกแบบการระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ และปลั๊กน้ำยางพาราสด ผสมแอมโมเนีย

จากผลการทดลองการระเบิดโดยการปรับเปลี่ยนค่า Powder Factor ทำให้ทราบ ถึงต้นทุนการระเบิด จึงเลือกรูปแบบที่มีต้นทุนการระเบิดต่ำที่สุด คือ รูปแบบ Powder Factor = 0.7 kg/m³ หรือ PF0.7 มาใช้ในการทดลองการระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติและปลั๊กน้ำ ยางพาราสดผสมแอมโมเนีย โดยแสดงรายละเอียด ดังรูปที่ 4.32

(ก) แบบปกติ (ข) แบบปลั๊กยางธรรมชาติ (ค) แบบปลั๊กน้ำยางพาราสดผสมแอมโมเนีย

4.5.1 ผลการทดลองการอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ (Natural Rubber Stem Plug : NRSP)

1. สมบัติของหินแข็งที่ทำการทดลอง

ลักษณะของหินไบโอไทต์แกรนิตเนื้อสด ขนาดละเอียดถึงปานกลางบางจุดเป็นเนื้อ ดอก ประกอบด้วยแร่ควอตซ์ ประมาณ 50 – 60%, แพลจิโอเคลสเฟลด์สปาร์ ประมาณ 30 – 50%, แอลคาไลเฟลด์สปาร์ประมาณ 20 – 40%, ไบโอไทต์ ประมาณ 5% และมัสโคไวต์ ประมาณ 3%

2. ผลวิเคราะห์ภาพถ่ายด้วยซอฟต์แวร์ Rock Image

หลังจากการระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ ทำการถ่ายภาพกองหิน หลังจากการระเบิดเพื่อวิเคราะห์หาการกระจายตัวด้วยซอฟต์แวร์ Rock Image แสดงไว้ดังตารางที่ 4.16 และดังรูปที่ 4.33 – 4.35

ตารางที่ 4.16 ผลการวิเคราะห์การกระจายตัวของหินจากการระเบิดแบบอุดรูระเบิดด้วยปลั๊กยาง ธรรมชาติ

C = c (in)		A		
Size (in)	NRSP-1	NRSP-2	NRSP-3	Average
36	98.83	99.49	99.04	99.12
32	98.34	98.09	99.26	98.56
28	96.87	96.64	97.32	96.94
24	95.18	94.98	94.89	95.02
20	91.95	92.89	92.31	92.38
16	88.31	88.66	87.36	88.11
12	79.10	78.79	78.26	78.72
8	62.29	62.83	64.94	63.35
4	33.78	37.44	38.88	36.70
2	19.45	19.95	14.94	18.11
1	9.98	9.99	12.52	10.83

Showing the NRSP Size Distribution 15 12.38 12.41 12.51 12.43 (in) 10 6.02 5.7 5.51 5.74 Size 5 2.17 2.09 2.35 2.2 0 d20 d50 d80 NRSP-1 NRSP-2 NRSP-3 Average NRSP

รูปที่ 4.34 แผนภูมิแสดงขนาดของอนุภาคการระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ

รูปที่ 4.35 แผนภูมิแสดงขนาดหินก้อนโตจากการระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ

3. ต้นทุนการระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ (NRSP Cost)

ผลจากการคำนวณต้นทุนกระบวนการระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ โดยจะคำนวณจากต้นทุนการระเบิดครั้งที่ 1 (1st Blasting) ต้นทุนการระเบิดครั้งที่ 2 (2nd Blasting) และต้นทุนการกระแทกหิน (Breaker) รวมกัน แล้วหารด้วยปริมาณหินที่ได้จากการระเบิดในแต่ละ ครั้ง (ton/blast) แสดงไว้ดังตารางที่ 4.17 และดังรูปที่ 4.36

NRSP	1 st Blasting 2 nd Blasting Breaker (B) (B) (B) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C		Tonnage (ton/blast)	Blasting Cost (₿/ton)	
NRSP-1	33,762.25	3,371.21	4,152.62	1,029	40.12
NRSP-2	33,762.25	3,486.66	4,299.19	1,029	40.38
NRSP-3	33,762.25	3,145.31	4,566.60	1,029	40.31
Average	33,762.25	3,397.98	4,992.58	1,029	40.27

ตารางที่ 4.17 ผลจากการคำนวณต้นทุนการระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ

จากการทดลองการระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ ทั้งหมด 3 ครั้ง พบว่า การกระจายตัวของหินมีขนาด %passing d20, d50 และ d80 เฉลี่ย คือ 2.20, 5.74 และ 12.43 นิ้ว และมีขนาดหินก้อนโตกว่า 24 นิ้ว เฉลี่ย เท่ากับ 4.98 % และต้นทุนเฉลี่ยการระเบิด เท่ากับ 40.27 บาท/ตัน

4.5.2 ผลการทดลองการอุดรูระเบิดด้วยปลั๊กน้ำยางพาราสดผสมแอมโมเนีย (Fresh Latex Plug : FLP)

1. ผลการทดลองหาอัตราส่วนน้ำยางพาราสดต่อกรดอซิติก

ในการศึกษาได้ทำการทดสอบเบื้องต้นเพื่อหาอัตราส่วนน้ำยางพาราสดต่อกรดอะซิ ติก จำนวน 3 อัตราส่วน แสดงไว้ดังตารางที่ 4.18 – 4.20

อัตราส่วนน้ำยางพาราสดต่อกรดอะซิติก 2:1						
รายการ หน่วย (มิลลิลิตร) ราคา (บาท)						
น้ำยางพาราสดต่อรู (ลิตร)	0.500	20				
น้ำกรดอะซิติกต่อรู (ลิตร)	0.250	1				
ราคาต่อรู (บาท)	ราคาต่อรู (บาท) - 21					

ตารางที่ 4.18 อัตราส่วนน้ำยางพาราสดต่อกรดอะซิติก 2:1

ตารางที่ 4.19 อัตราส่วนน้ำยางพาราสดต่อกรดอะซิติก 6:1

อัตราส่วนน้ำยางพาราสดต่อกรดอะซิติก 6:1						
รายการ หน่วย (มิลลิลิตร) ราคา (บาท)						
น้ำยางพาราสดต่อรู (ลิตร)	0.500	20				
น้ำกรดอะซิติกต่อรู (ลิตร)	0.084	0.5				
ราคาต่อรู (บาท)	-	20.5				

ตารางที่ 4.20 อัตราส่วนน้ำยางพาราสดต่อกรดอะซิติก 10:1

อัตราส่วนน้ำยางพาราสุดต่อกรดอะซิติก 10:1						
รายการ หน่วย (มิลลิลิตร) ราคา (บาท)						
น้ำยางพาราสดต่อรู (ลิตร)	0.500	20				
น้ำกรดอะซิติกต่อรู (ลิตร)	0.050	0.3				
ราคาต่อรู (บาท)	-	20.3				

2.ผลการทดลองหาความเข้มข้นของอัตราส่วนน้ำยางพาราสดต่อกรดอะซิติก

ในการศึกษาได้ทำการทดสอบเบื้องต้นเพื่อหาอัตราส่วนน้ำยางพาราสดต่อ กรดอะซิติก จำนวน 3 อัตราส่วน แสดงไว้ดังตารางที่ 4.21 – 4.23

ตารางที่ 4.21 ความเข้มข้นของอัตราส่วนน้ำยางพาราสดต่อกรดอะซิติก 2:1

ความเข้มข้นที่ใช้ (%)	ปริมาณกรดต่อรู (มิลลิลิตร)	ราคากรด (บาท)	ราคารวม (บาท)
3	0.00752	1	21
5	0.01524	2	22

ตารางที่ 4.22 ความเข้มข้นของอัตราส่วนน้ำยางพาราสดต่อกรดอะซิติก 6:1

ความเข้มข้นที่ใช้ (%)	ข้นที่ใช้ (%) ปริมาณกรดต่อรู (มิลลิลิตร) ราคากรด (บาท)		ราคารวม (บาท)	
3	0.00253	0.5	20.5	
5	0.00421	0.7	20.7	

ตารางที่ 4.23 ความเข้มข้นของอัตราส่วนน้ำยางพาราสดต่อกรดอะซิติก 10:1

ความเข้มข้นที่ใช้ (%)	ปริมาณกรดต่อรู (มิลลิลิตร)	ราคากรด (บาท)	ราคารวม (บาท)
3	0.00150	0.3	20.3
5	0.00251	0.5	20.5

รูปที่ 4.37 กราฟแสดงการเปรียบเทียบราคาการระเบิดต่อรูในแต่ละสูตร กับความเข้มข้นกรดอะซิติก

จากรูปที่ 4.37 แสดงการเปรียบราคาการระเบิดต่อรูในแต่ละสูตร ซึ่งมีอัตราน้ำ ยางพาราสดต่อกรดอะซิติก 2:1 6:1 และ 10:1 จากกราฟแสดงให้เห็นว่าที่อัตราส่วนความเข้มข้นของ น้ำยางพาราสดต่อกรดอะซิติก ที่ 10:1 มีราคาต่อรูที่ถูกที่สุด และอัตราส่วนความเข้มข้นของน้ำ ยางพาราสดต่อกรดอะซิติกที่ 6:1 มีราคาปานกลาง คณะผู้จัดทำจึงได้นำอัตราส่วนความเข้มข้นของ น้ำยางพาราสดต่อกรดอะซิติกที่ 6:1 10:1 มาทำการทดลองหาระยะการคายน้ำของน้ำยางพาราสด ต่อกรดอะซิติกในกระบอกอะคริลิคอัตราส่วนความเข้มข้นของน้ำยางพาราสดต่อกรดอะซิติกที่ 2:1 6:1 และ 10:1 ต่อไป

3.ผลการทดลองหาค่าระยะการคายน้ำของน้ำยางพาราสด

การทดลองหาค่าระยะการคายน้ำของน้ำยางพาราสดในอัตราส่วนควมเข้มข้นของ น้ำยาพาราต่อกรดอะซิติกที่ 10:1 โดยใช้กระบอกอะคริลิคขนาดเส้นผ่านศูนย์กลาง 3 นิ้ว ความยาว 1.40 เมตร ใส่ Cutting ที่ระยะ 50 เซนติเมตร ตามด้วยน้ำยางพาราสดที่ผสมกรดอะซิติก (500 มิลลิลิตร : 50 มิลลิลิตร) ความหนาของน้ำยางพาราสดผสมกับกรดอะซิติกประมาณ 15 เซนติเมตร หลังจากที่น้ำยางพาราสดมีการแข็งตัวแล้วนั้น ใส่ Cutting เพิ่มด้านบนเป็นระยะ 0.65 เซนติเมตร ดัง รูปที่ 4.38

รูปที่ 4.38 การทดสอบหาค่าระยะน้ำที่น้ำยางคายตัวออกมา

การทดสอบระยะการคายน้ำของน้ำยางพาราสดในกระบอกอะคริลิคนั้น ทดสอบที่ ความเข้มข้นกรดอะซิติก 3% ทำการวัดระยะการคายน้ำของน้ำยางพาราสดในท่ออะคริลิคทุกๆ 15 นาที จนครบ 1 ชั่วโมง ดังตารางที่ 4.24 – 4.26

	Acetic Acid 3%					
เวลา (นาที)	ครั้งที่ 1 (เซนติเมตร)	ครั้งที่ 2 (เซนติเมตร)	ครั้งที่ 3 (เซนติเมตร)	เฉลี่ย (เซนติเมตร)		
15	3.8	1.0	2.3	2.4		
30	5.7	4.4	2.3	4.1		
45	6.0	5.0	2.3	4.4		
60	6.0	5.0	2.3	4.4		

ตารางที่ 4.24 ระยะการระคายน้ำของน้ำยางในอัตราส่วนที่ 2:1 ที่ความเข้มข้นของกรดอะซิกติก 3%

ตารางที่ 4.25 ระยะการระคายน้ำของน้ำยางในอัตราส่วนที่ 6:1 ที่ความเข้มข้นของกรดอะซิกติก 3%

	Acetic Acid 3%					
เวลา (นาที)	ครั้งที่ 1 (เซนติเมตร)	ครั้งที่ 2 (เซนติเมตร)	ครั้งที่ 3 (เซนติเมตร)	เฉลี่ย (เซนติเมตร)		
15	1.3	1.6	1.4	1.4		
30	2.7	2.6	1.9	2.4		
45	3.4	2.6	1.9	2.6		
60	3.5	2.6	1.9	2.6		

ตารางที่ 4.26 ระยะการระคายน้ำของน้ำยางในอัตราส่วนที่ 10:1 ที่ความเข้มข้นของกรดอะซิกติก 3%

	Acetic Acid 3%					
เวลา (นาที)	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เฉลี่ย		
	(เซนติเมตร)	(เซนติเมตร)	(เซนติเมตร)	(เซนติเมตร)		
15	2.0	1.6	3.0	2.2		
30	3.0	7.0	5.0	5.0		
45	3.1	7.3	5.0	5.1		
60	3.1	7.3	5.0	5.1		

จากรูปที่ 4.39 เป็นกราฟแสดงการเปรียบเทียบค่าเฉลี่ยน้ำในกระบอกอะคริลิค ที่ ความเข้มข้นกรดอะซิติก 3% แสดงให้เห็นว่าเมื่อเที่ยบกับความเข้มข้นในอัตราส่วนที่ 2:1 6:1 และ 10:1 มีระยะการคายน้ำของน้ำยางพาราสดน้อยใกล้เคียงกัน เห็นได้ว่าระยะการคายน้ำไม่ซึมลงถึง วัตถุระเบิดอย่างแน่นอน เนื่องจากเศษหินก่อนใส่น้ำยางพาราสดในรูระเบิดที่มีความหนาถึง 50 เซนติเมตร ดังนั้นการเลือกอัตราส่วนน้ำยางพาราสดจึงไม่มีผลต่อการคายน้ำของน้ำยางพาราสด

4.ผลการทดลองความแตกต่างระหว่างการใช้น้ำยางพาราสดแบบใส่แอมโมเนีย ในปริมาณที่ต่างกัน

การทดลองนี้ใช้น้ำยางพาราสด เท่ากับ 500 มิลลิลิตร/รูระเบิด สำหรับการเก็บน้ำ ยางพาราสด 500 ml ไว้ 1 วัน สามารถใช้แอมโมเนีย (Ammonia) ได้ประมาณ 1.5 - 2.5 ml ขึ้นอยู่ กับความเข้มข้นของแอมโมเนียที่ใช้ สูตรที่แนะนำสำหรับการใช้แอมโมเนียในการเก็บน้ำยางพาราสด เพื่อป้องกันการเน่าเสียและยับยั้งการสลายตัวของน้ำยางคือ 0.3-0.5% ของปริมาณน้ำยางพาราสดที่ ต้องการเก็บไว้ ดังนั้น สำหรับน้ำยางพาราสด 500 มิลลิลิตร สามารถใช้แอมโมเนียประมาณ 1.5 - 2.5 ml โดยกำหนดปริมาณใช้น้ำยางพาราสดผสมแอมโมเนียเป็น 2 สูตร คือ น้ำยางพาราสดใส่แอมโมเนีย น้อยและใส่แอมโมเนียมาก แสดงดังตารางที่ 4.27

ปริมาณน้ำยางพาราสด	ปริมาณแอมโมเนีย (มิลลิลิตร)				
(ມີຄຄີຄືตร)	น้ำยางพาราสดใส่แอมโมเนียน้อย	น้ำยางพาราสดใส่แอมโมเนียมาก			
500	2	3			

ตารางที่ 4.27 ข้อมูลน้ำยางพาราสดผสมแอมโมเนีย

การทดลองการแข็งตัวของน้ำยางพาราสดในอัตราส่วนความเข้มข้นของน้ำยางต่อ กรดอะซิติกที่ 10:1 โดยนำกระบอกใสเส้นผ่านศูนย์กลาง 1 นิ้ว ยาว 30 เซนติเมตร ใส่ Cutting ที่ ระยะ 15 เซนติเมตร ตามด้วยน้ำยางพาราสดที่ผสมกรดอะซิติก (50 มิลลิลิตร : 5 มิลลิลิตร) ความ หนาของน้ำยางพาราสดผสมกับกรดอะซิติกที่ประมาณ 10 เซนติเมตร รอน้ำยางแข็งตัวจากนั้นใส่ Cuttting ที่ระยะ 5 เซนติเมตร ดังรูปที่ 4.40

รูปที่ 4.40 การทดลองการแข็งตัวของน้ำยางพาราสด

การทดลองการแข็งตัวของน้ำยางพาราสดในกระบอกใส ทดลองที่ความเข้มข้น กรดอะซิติก 3% ทำการจับเวลาที่น้ำยางพาราสดมีการแข็งตัวในกระบอกใสทุกๆ 5 นาที จนครบ 30 นาที ดังตารางที่ 4.28 – 4.30

ตารางที่ 4.28 การทดลองการแข็งตัวของน้ำยางพาราสดต่อกรดอะซิติกในอัตราส่วน 50 มิลลิลิตร : 5 มิลลิลิตร ที่ความเข้มข้นของกรดอะซิติก 3%

Acetic Acid 3%						
หมายเลขเปรียบเทียบ			เวลา	(นาที)		
การแข็งตัวของน้ำยาง	5 10 15 20 25 3					30
(0) ยังไม่แข็งตัว						
(1) เริ่มมีการจับตัว						
(2) จับตัวเป็นก้อน	\checkmark					
(3) แข็งตัวแล้ว		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

ตารางที่ 4.29 การทดลองการแข็งตัวของน้ำยางพาราสดต่อกรดอะซิติกในอัตราส่วน 50 มิลลิลิตร : ที่ ความเข้มข้นของกรดอะซิติก 3% โดยใส่แอมโมเนียปริมาณน้อย 2 มิลลิลิตร

Acetic Acid 3%						
หมายเลขเปรียบเทียบ	เวลา (นาที)					
การแข็งตัวของน้ำยาง	5	10	15	20	25	30
(0) ยังไม่แข็งตัว						
(1) เริ่มมีการจับตัว	\checkmark					
(2) จับตัวเป็นก้อน		\checkmark				
(3) แข็งตัวแล้ว			\checkmark	\checkmark	\checkmark	\checkmark

ตารางที่ 4.30 การทดลองการแข็งตัวของน้ำยางพาราสดต่อกรดอะซิติกในอัตราส่วน 50 มิลลิลิตร : 5 มิลลิลิตร ที่ความเข้มข้นของกรดอะซิติก 3% โดยใส่แอมโมเนียปริมาณมาก 3 มิลลิลิตร

Acetic Acid 3%						
หมายเลขเปรียบเทียบ	เวลา (นาที)					
การแข็งตัวของน้ำยาง	5	10	15	20	25	30
(0) ยังไม่แข็งตัว	\checkmark	\checkmark				
(1) เริ่มมีการจับตัว			\checkmark			
(2) จับตัวเป็นก้อน				\checkmark		
(3) แข็งตัวแล้ว					\checkmark	\checkmark

รูปที่ 4.41 กราฟแสดงการเปรียบเทียบการแข็งตัวของน้ำยางพาราสดในกระบอกอะคริลิค ในอัตราส่วนน้ำยางต่อกรดอะซิติก 3%

จากรูปที่ 4.41 กราฟแสดงการเปรียบเทียบค่าในกระบอกอะคริลิค ที่ความเข้มข้น กรดอะซิติก 3% จากการทดลองสรุปได้ว่า การทดลองแบบใช้น้ำยางพาราสดมีการแข็งตัวได้เร็วกว่า แต่หาซื้อได้ค่อนข้างยากเพราะถ้าใช้ในงานจริงต้องสั่งไว้ล่วงหน้า ในขณะที่น้ำยางพาราสดใส่ แอมโมเนียน้อยหาซื้อได้ง่ายกว่าแต่อาจแข็งตัวได้ช้ากว่าน้ำยางพาราสดที่ไม่ใส่แอมโมเนีย สามารถใช้ ทดแทนน้ำยางพาราสดได้ และแบบใส่แอมโมเนียมากค่อนข้างแข็งตัวซ้าไม่ควรนำมาเป็นการทดลอง ดังนั้นจึงได้กำหนดรูปแบบอุดรูระเบิดด้วยปลั๊กน้ำยางพาราสดแบบแอมโมเนียน้อยผสมกับกรดอะซิติก ความเข้มข้น 3% ที่อัตราส่วน 10:1

5. สมบัติของหินแข็งที่ทำการทดลอง

ลักษณะของหินไบโอไทต์แกรนิตเนื้อสด ขนาดละเอียดถึงปานกลางบางจุดเป็นเนื้อ ดอก ประกอบด้วยแร่ควอตซ์ ประมาณ 50 – 60%, แพลจิโอเคลสเฟลด์สปาร์ ประมาณ 30 – 50%, แอลคาไลเฟลด์สปาร์ประมาณ 20 – 40%, ไบโอไทต์ ประมาณ 5% และมัสโคไวต์ ประมาณ 3%

6. ผลวิเคราะห์ภาพถ่ายด้วยซอฟต์แวร์ Rock Image

หลังจากการระเบิดแบบอุดรูระเบิดด้วยปลั๊กน้ำยางพาราสดผสมแอมโมเนีย ทำการ ถ่ายภาพกองหินหลังจากการระเบิดเพื่อวิเคราะห์หาการกระจายตัวด้วยซอฟต์แวร์ Rock Image แสดงไว้ดังตารางที่ 4.31 และดังรูปที่ 4.42 – 4.44

ตารางที่ 4.31 ผลการวิเคราะห์การกระจายตัวของหินจากการระเบิดแบบอุดรูระเบิดด้วยปลั๊กน้ำ ยางพาราสดผสมแอมโมเนีย

Size (in)				
	FLP-1	FLP-2	FLP-3	Average
36	97.76	98.09	98.69	98.18
32	97.35	97.30	99.35	98.00
28	96.82	96.16	97.08	96.69
24	94.65	94.41	94.81	94.62
20	92.93	91.66	90.35	91.65
16	87.30	87.07	84.73	86.37
12	78.82	76.99	77.31	77.71
8	61.94	62.18	62.32	62.15
4	37.54	34.21	36.08	35.94
2	18.57	16.78	17.96	17.77
1	12.39	8.59	9.01	10.00

รูปที่ 4.42 กราฟแสดงการกระจายตัวของหินหลังการระเบิดแบบอุดรูระเบิดด้วย ปลั๊กน้ำยางพาราสดผสมแอมโมเนีย

รูปที่ 4.43 แผนภูมิแสดงขนาดของอนุภาคการระเบิดแบบอุดรูระเบิดด้วย ปลั๊กน้ำยางพาราสดผสมแอมโมเนีย

4.44 แผนภูมแสดงขนาดหนกอนเตจากการระเบดแบบอุดรูระเบดเ ปลั๊กน้ำยางพาราสดผสมแอมโมเนีย

7. ต้นทุนการระเบิดแบบอุดรูระเบิดด้วยปลั๊กน้ำยางพาราสดผสมแอมโมเนีย

(FLP Cost)

ผลจากการคำนวณต้นทุนกระบวนการระเบิดแบบอุดรูระเบิดด้วยปลั้กน้ำยางพารา สดผสมแอมโมเนีย โดยจะคำนวณจากต้นทุนการระเบิดครั้งที่ 1 (1st Blasting) ต้นทุนการระเบิดครั้ง ที่ 2 (2nd Blasting) และต้นทุนการกระแทกหิน (Breaker) รวมกัน แล้วหารด้วยปริมาณหินที่ได้จาก การระเบิดในแต่ละครั้ง (ton/blast) แสดงไว้ดังตารางที่ 4.32 และดังรูปที่ 4.45

ตารางที่ 4.32 ผลจากการคำนวณต้นทุนการระเบิดแบบอุดรูระเบิดด้วยปลั๊กน้ำยางพาราสดผสม แอมโมเนีย

FLP	1 st Blasting (β)	2 nd Blasting (β)	Breaker (8)	Tonnage (ton/blast)	Blasting Cost (₿/ton)
FLP-1	31,762.25	3,396.30	4,684.88	1,029	38.72
FLP-2	31,762.25	3,727.61	4,762.02	1,029	39.12
FLP-3	31,762.25	3,265.79	4,587.17	1,029	38.50
Average	31,762.25	3,463.23	4,678.02	1,029	38.78

้รูปที่ 4.45 แผนภูมิแสดงต้นทุนจากการระเบิดแบบอุดรูระเบิดด้วยปลั๊กน้ำยางพาราสดผสมแอมโมเนีย

จากการทดลองการระเบิดแบบอุดรูระเบิดด้วยปลั๊กน้ำยางพาราสดผสมแอมโมเนีย ทั้งหมด 3 ครั้ง พบว่า การกระจายตัวของหินมีขนาด %passing d20, d50 และ d80 เฉลี่ย คือ 2.25, 5.91 และ 12.76 นิ้ว และมีขนาดหินก้อนโตกว่า 24 นิ้ว เฉลี่ย เท่ากับ 5.38 % และต้นทุนเฉลี่ยการ ระเบิด เท่ากับ 38.78 บาท/ตัน

บทที่ 5 สรุปผลการวิจัยและข้อเสนอแนะ

ในงานวิจัยที่ได้จัดทำขึ้นนี้แบ่งออกเป็น 2 กรณีศึกษาด้วยกันคือ การปรับปรุง ประสิทธิภาพการระเบิดโดยปรับเปลี่ยนค่า Powder Factor และเปรียบเทียบหาต้นทุนการระเบิดที่ ต่ำที่สุด แล้วจึงศึกษาทดลองการอุดรูระเบิดด้วยปลั๊ก เพื่อเพิ่มประสิทธิภาพที่สูงขึ้น ซึ่งผลการวิจัยได้มี ข้อสรุปและข้อเสนอแนะ ดังนี้

5.1 สรุปผลการวิจัย

5.1.1 การปรับเปลี่ยนค่า Powder Factor

จากผลการทดลอง พบว่า การระเบิดค่า Powder Factor เท่ากับ 0.7 kg/m³ (PF0.7) เป็นรูปแบบที่มีต้นทุนการระเบิดที่ต่ำที่สุด เมื่อเปรียบเทียบกับรูปแบบการระเบิดปัจจุบัน โดย พบว่า การกระจายตัวของหินมีขนาด d20, d50 และ d80 ลดลง ประมาณ 10.81%, 19.63% และ 31.31% รายละเอียดหินก้อนโตลดลง ประมาณ 51.60% และต้นทุนการระเบิดลดลง ประมาณ 10.71 บาท/ตัน แสดงไว้ในรูปที่ 5.1 – 5.4

รูปที่ 5.1 กราฟแสดงการกระจายตัวของหินหลังการระเบิด

รูปที่ 5.2 แผนภูมิแสดงขนาดของอนุภาคการระเบิด

รูปที่ 5.3 แผนภูมิแสดงขนาดหินก้อนโตจากการระเบิด

รูปที่ 5.4 แผนภูมิแสดงต้นทุนจากการระเบิด

5.1.2 การระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ และปลั๊กน้ำยางพาราสด

จากผลการทดลองการระเบิดโดยการปรับเปลี่ยนค่า Powder Factor ทำให้ทราบ ถึงต้นทุนการระเบิด จึงเลือกรูปแบบที่มีต้นทุนการระเบิดต่ำที่สุด คือ รูปแบบ Powder Factor = 0.7 kg/m³ (PF0.7) มาใช้ในการทดลองการระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติและปลั๊กน้ำ ยางพาราสดผสมแอมโมเนีย ซึ่งสามารถสรุปผลการทดลองได้ ดังนี้

จากผลการทดลอง สรุปได้ว่า การระเบิดรูปแบบ Powder Factor = 0.7 kg/m³ อุดรูระเบิดด้วยปลั๊กยางธรรมชาติ เปรียบเทียบกับรูปแบบการระเบิดปัจจุบัน พบว่าการกระจายตัว ของหินมีขนาด d20, d50 และ d80 ลดลง ประมาณ 25.68%, 29.14% และ 35.36% หินก้อนโต ลดลง ประมาณ 61.98% และต้นทุนการระเบิดลดลง ประมาณ 9.95 บาท/ตัน และเมื่อเปลี่ยนมาใช้ การอุดรูระเบิดด้วยปลั๊กน้ำยางพาราสด เปรียบเทียบกับรูปแบบการระเบิดปัจจุบัน พบว่าการกระจาย ตัวของหินมีขนาด d20, d50 และ d80 ลดลง ประมาณ 23.99%, 27.04% และ 33.65% และหิน ขนาดใหญ่ลดลง ประมาณ 58.93 % และต้นทุนการระเบิดลดลง ประมาณ 11.44 บาท/ตัน รายละเอียดแสดงไว้ในรูปที่ 5.5 – 5.8

รูปที่ 5.5 กราฟแสดงการกระจายตัวของหินหลังการระเบิด

รูปที่ 5.6 แผนภูมิแสดงขนาดของอนุภาคการระเบิด

รูปที่ 5.7 แผนภูมิแสดงขนาดหินก้อนโตจากการระเบิด

รูปที่ 5.8 แผนภูมิแสดงต้นทุนจากการระเบิด

5.1.3 สรุปโดยภาพรวม

จากการศึกษาวิจัยการปรับปรุงประสิทธิภาพหินแข็ง พบว่า การระเบิดด้วยรูปแบบ Powder Factor = 0.7 kg/m³ (PF0.7) เป็นรูปแบบที่มีต้นทุนรวมการระเบิดต่ำที่สุด เมื่อเปรียบเทียบ กับการระเบิดรูปแบบปัจจุบัน อย่างไรก็ตาม การคำนวณต้นทุนจากการทดลองครั้งนี้ เป็นการศึกษา เฉพาะต้นทุนที่เกิดจากการเจาะและระเบิดเท่านั้น ยังไม่ได้พิจารณาค่าใช้จ่ายทั้งหมดที่รวมด้วยการบด ้ย่อยหินด้วย ซึ่งในทางทฤษฎีหากต้นทุนรวมการเจาะและระเบิดเพิ่มขึ้น ทำให้ค่าเฉลี่ยขนาดหินจาก การระเบิดเล็กลงอาจส่งผลดีต่อการบดย่อยคือสามารถบดได้เร็วขึ้น เนื่องจากการกระจายตัวขนาดที่ ้เล็กลงและปริมาณหินก้อนโตลดลง รถแบคโฮตักได้เร็วขึ้น รถบรรทุกรับหินได้มากขึ้นทำให้ต้นทุน โดยรวมอาจจะลดลงก็ได้ ซึ่งสอดคล้องกับข้อมูลวิทยานิพนธ์ของ นาย วิสวัส หลีวิจิตร ที่ได้ ทำการศึกษาไว้ เมื่อดูจากกราฟแสดงการกระจายตัวของหินหลังจากการระเบิด จะเห็นได้ว่า การศึกษาด้วยรูปแบบการปรับเปลี่ยนค่า Powder Factor ทุกรูปแบบมีขนาดหินก้อนโตลดลงกว่า การระเบิดรูปแบบปัจจุบันอย่างเห็นได้ชัด ส่วนการเพิ่มประสิทธิภาพการระเบิดโดยใช้ปลั๊กยาง ธรรมชาติอุดรูระเบิด พบว่า ให้ขนาดหลังการระเบิดเล็กที่สุด และแบบใช้ปลั๊กน้ำยางพาราสด พบว่า ขนาดของหินก้อนโตลดลง หินแตกหักดีกว่ารูปแบบ Powder Factor = 0.7 kg/m³ และการใช้ปลั๊ก น้ำยางพาราสดในการอุดรูระเบิดมีต้นทุนการระเบิดต่ำที่สุดที่ 38.78 บาท/ตัน แต่มีขนาดของหินหลัง ้การระเบิดก้อนโตกว่าการอุดรูระเบิดด้วยปลั๊กยางธรรมชาติเล็กน้อย ทางเลือกในการใช้ปลั๊กทั้ง 2 แบบ จึงเป็นทางเลือกในการเพิ่มประสิทธิภาพการระเบิดในหินแข็งที่น่าสนใจที่จะทำการศึกษาต่อไป ในมิติค่าใช้จ่ายรวมของการทำเหมือง

5.2 ข้อเสนอแนะ

5.4.1 ควรมีการศึกษาค่าใช้จ่ายรวมเพื่อการตัดสินใจเลือกรูปแบบการระเบิดที่ เหมาะสมยิ่งขึ้น

5.4.2 การศึกษาอิทธิพลของขนาดลูกบอลสเกลในการวิเคราะห์ที่แม่นยำขึ้น

5.4.3 ศึกษาการถ่ายภาพในมุมมองที่ต่างกันที่ส่งผลต่อการวิเคราะห์การกระจายตัว ด้วยซอฟต์แวร์วิเคราะห์

5.4.4 การศึกษาวิธีการใช้น้ำยางพาราสดในการอุดรูระเบิดที่สะดวกมากยิ่งขึ้นกว่านี้ เช่น การใส่ถังและปั้มลงหลุมผ่านท่อ

บรรณานุกรม

- กนกนภัส กุญชรินทร์, นราคินทร์ วงษ์น้อย, วิฆเนศว์ ดำคง และพงศ์ศิริ จุลพงศ์. (2563). *การ* ประยุกต์ใช้กรวยยางธรรมชาติอัดรูระเบิดในเหมืองหิน. ภาควิชาวิศวกรรมเหมืองแร่และวัสดุ คณะวิศวกรรมศาสตร์, มหาวิทยาลัยสงขลานครินทร์.
- จิราวรรณ จันทร์แจ้ง และสิรามล เรืองพิศาล. (2564). *การประยุกต์ใช้น้ำยางในการปรับปรุงการอุดรู ระเบิดในงานเหมืองแร่*. ภาควิชาวิศวกรรมเหมืองแร่และวัสดุ คณะวิศวกรรมศาสตร์, มหาวิทยาลัยสงขลานครินทร์.
- ธงชัย พึ่งรัศมี, ภิญโญ แสงพงศ์ชวาล, และศักดิ์ ชนาเกียรติ. (2532). *เหมืองแร่เฟลด์สปาร์ ตำบลนบพิ* ตำ อำเภอท่าศาลา จังหวัดนครศรีธรรมราช. เอกสารประกอบการประชุมสำนักงานทรัพยากร ธรณีเขต3 (เชียงใหม่) กรมทรัพยากรธรณี, โรงแรมเชียงใหม่ภูคำ เชียงใหม่: 26-27 มกราคม 2532.
- ธงชัย พึ่งรัศมี, ปริญญา พัฒนเดช และอุดมพร วัชรสุธากร. (2554). รายงานการสำรวจธรณีวิทยา แหล่งแร่เฟลด์สปาร์จากหินอะแลสไกต์ (Alaskite) อำเภอนบพิตำ จังหวัดนครศรีธรรมราช รวมทั้งการทำเหมืองและการแต่งแร่. ภาควิชาวิศวกรรมเหมืองแร่และวัสดุ คณะ วิศวกรรมศาสตร์, มหาวิทยาลัยสงขลานครินทร์.
- ปรเมษฐ หอมหวน. (2560). *การปรับปรุงคุณสมบัติของแอสฟัลต์คอนกรีตด้วยน้ำยางพาราธรรมชาติ* [วิทยานิพนธ์ ปริญญามหาบัณฑิต, มหาวิทยาลัยสงขลานครินทร์]. https://kb.psu.ac.th/psukb/bitstream/2016/12520/1/422695.pdf
- ปริญญา พัฒนเดช. (2558). *ประเมินศักยภาพแหล่งแร่เฟลด์สปาร์ อำเภอนบพิตำ จังหวัด* นครศรีธรรมราช [วิทยานิพนธ์ปริญญามหาบัณฑิต, มหาวิทยาลัยสงขลานครินทร์].
- ไพรัช จรูญพัฒนพงศ์. (2558). *การใช้ซอฟต์แวร์ทดลองหาการกระจายขนาดของหิน*. ภาควิชา วิศวกรรมเหมืองแร่และปิโตรเลียม คณะวิศวกรรมศาสตร์, มหาวิทยาลัยเชียงใหม่.
- ไพรัช เจริญกิจ และนวพล เอื้อวิทยา. (2550). *เนื้อหาคู่มือความรู้พื้นฐานวิศวกรรมเหมืองแร่ ส่วนการ* เจาะระเบิดและการระเบิดในงานวิศวกรรม. สภาวิศวกร, กรุงเทพฯ.
- พันธุ์ลพ หัตถโกศล. (2555). *คู่มือพัฒนาผลผลิตและประสิทธิภาพสำหรับอุตสาหกรรมเหมืองแร่และ* โรงโม่หิน. กรมอุตสาหกรรมพื้นฐานและการเหมืองแร่, กรุงเทพฯ.
- พันธุ์ลพ หัตถโกศล และศักดา วังใจ. (2549). *คู่มือการทำเหมืองแบบขั้นบันได เอกสารประกอบการ* อ*บรมเชิงปฏิบัติการ การสร้างมาตรฐานและยกระดับสถานประกอบการเหมืองแร่และโรงโม่ หิน*. กรมอุตสาหกรรมพื้นฐานและการเหมืองแร่ร่วมกับมหาวิทยาลัยเชียงใหม่, กรุงเทพฯ.
- วิสวัส หลีวิจิตร. (2555). *การศึกษาเชิงเปรียบเทียบการระเบิดแบบทั่วไปกับแบบที่ใช้กรวยอุดรูระเบิด* แบบ Stem plug. ภาควิชาวิศวกรรมเหมืองแร่และวัสดุ คณะวิศวกรรมศาสตร์, มหาวิทยาลัยสงขลานครินทร์.
- สง่า ตั้งชวาล. (2541). *การระเบิดหินและผลกระทบหิน*. สำนักพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย, จุฬาลงกรณ์มหาวิทยาลัย.
- สุภาวดี วิมุกตะนันท์. (2550). *แผนที่ธรณีวิทยา จังหวัดนครศรีธรรมราช มาตราส่วน 1:250,000*. สำนักธรณีวิทยา กรมทรัพยากรธรณี, กรุงเทพฯ.
- สุวิทย์ โคสุวรรณ และสมชาย นาคะผดุงรัตน์. (2535). *แผนที่ธรณีวิทยา มาตราส่วน 1:50,000 ระวาง บ้านวังรี 4926IV*. กองธรณีวิทยา กรมทรัพยากรธรณี, กรุงเทพฯ.
- เสถียร สนั่นเสียง, นิติ กิติสาร, และพงศ์ศักดิ์ ศรีพงศ์พันธ์. (2528). *แผนที่ธรณีวิทยา มาตราส่วน* 1:250,000ระวางจังหวัดนครศรีธรรมราช NC47-15. กองธรณีวิทยา กรมทรัพยากรธรณี, กรุงเทพฯ
- Ash, R.L. (1963). *The Mechanics of Rock Breakage*. Pit and Quarry Journal, 2-131 pp.
- Bhaskar, A., Barawal, A.K., Ranjan, P., Jena, T.K., Shekhar, M. and Chakraborty, D. (2019). Application of Plastic Funnel in Blast Hole to Improve Blasting Efficiency of Opencast Coal Mine at West Bokaro. *Coal Operators' Conference*, 345-351, https://ro.uow.edu.au/coal/752
- Bunnaul, P., Dumrongrit, J., Santawong, K., Lheewijit, W. and Rachpech V. (2015). *Stemplug blasting application at EGAT-Mae Moh Lignite Mine: On-the-field Testing*. (Online) Available on https://www.mare.info.hu.com (20 August 2021).
- Bender, W.L. (1999). *The Fundamental of Blast Design*. Workshop of the Golden Wets Chapter of International Society of Explosives Engineers, Spring.
- Center of Excellence in Natural Rubber Latex Biotechnology Research and Development. (2021). *Para Rubber*. Department of Biochemistry, Faculty of Science, Prince of Songkhla University. http://www.cerb.psu.ac.th/images/para.pdf
- Choudhary, B.S. and Sonu, K. (2013). *UCS of Rocks*. (Online) Available on https://www.researchgate.net (20 August 2021).
- Dyno Nobel. (2020). *Explosives Engineer's Guide*. Dyno Nobel Asia Pacific Pty Limited, Australia.

- Jimeo, C.L., Jimeno, E.L. and Carcedo, F.J.A. (1995). *Drilling and Blasting of Rock*. Balkema, Rotterdam, 391pp.
- Konya C.J. (1990). *Blast Design. Intercontinental Development Corporation*, Montville, Ohio, 230 pp.
- Kulula, M.I., Nashongo, M.N. and Akande, J.M. (2017). *Influence of Blasting Parameters and Density of Rocks on Blast Performance at Tschudi Mine, Tsumeb, Namibia*. Journal of Minerals and Materials Characterization and Engineering, Namibia
- Neo Plastomer. (2010). Natural Rubber. https://www.neoplast.biz/index.php
- SME Mining Engineering Handbook. (2011). 3rd Edition, Explosive and Blasting. Society for Mining, Metallurgy, and Exploration, Inc., America.
- Siddiqui, F.I., Ali Shah, S.M. and Behan, M.Y. (2009). *Measurement of Size Distribution* of Blasted Rock Using Digital Image Processing. Engineering Sciences Journal, 2009(2), 81-93
- Souza, J.C., Silva, A.C.S. and Rocha, S.S. (2018). Analysis of Blasting Rock Prediction and Rock Fragmentation Results Using Split-Desktop Software. *Journal of Technology in Metallurgy, Materials and Mining, Brazil.*
- Ur Rehman, A., Emad, M.Z. and Khan, M.U. (2021). Improving The Environmental and Economic Aspects of Blasting In Surface Mining By Using Stemming Plugs. *Journal of the Southern African Institute of Mining and Metallurgy*, USA.
- Walter, E.J. and Konya C.J. (1990). *Surface Blast Design*. KUPDF. https://kupdf.net/download/surface-blast-design-by-walter-and-konya-1990 5aa62900e2b6f5bf2909f5bd pdf
- Xie, C., Nguyen, H., Nam Bui, X., Choi, Y., Zhou, J. and Nguyen-Trang, T. (2021). Predicting Rock Size Distribution In Mine Blasting Using Various Novel Softcomputing Models Based On Meta-Heuristics And Machinelearning Algorithms. *The Journal* of The China University of Geosciences (Beijing) and Peking University, 1-15.

ภาคผนวก ก

ผลวิเคราะห์สมบัติของหิน

		and the second s			
	ภาควิชาวิศวกรรมเหมืองแร่เ	เละวัสดุ คณะวิศวกรรมศาสต	Ś		
	มหาวิทยาลัย	สงขลานครินทร์			
	ผลการทดสอบค่าเฉลี่	ยแรงกดจุดของตัวอย่าง			
	(Result of Po	int Load Test)			
<u>ผู้ส่งตัวอย่าง</u> คุณพิมช	<u>ผู้ส่งตัวอย่าง</u> : คุณพิมชนก แก้ววิหค <u>บริษัท/หน่วยงาน</u> : บริษัท สินหลวง จำกัด				
<u>ลักษณะตัวอย่าง</u> : แท่งตัวอ	<u>ลักษณะตัวอย่าง</u> : แท่งตัวอย่างหิน <u>ข</u>		<u>หมายเลขตัวอย่าง</u> : LOP001-62		
<u>มาตรธาบ</u> : นายกฤด มาตรธาบ : ASTM (<u>ผู้ทดสอบ</u> : นายกฤตภาส ศุภกรชูวงศ์ <u>วันที่ทดสอบ</u> : 2 เมษายน 256;		562		
Mining in Alline		100110031	У У		
ชื่อตัวอย่าง	ชนิดของการทดสอบ	กำลังแรงกดจุด (MPa)	กำลังอัดแปลงค่า (MPa)		
UK01180319	ตัวอย่างแท่งหิน แนวแกน (Core Specimen)	3.33	73		
หมายเหตุ: รายงานการทดล การยินยอมจาก. 	อบนี้ ค่าที่ปรากฏเป็นค่าของแต่ละ วาควิชาฯ OHTEAN งารย์ วิฆเนศว์ ดำคง) ผู้รับรองผล	ตัวอย่างเท่านั้น ไม่อบุญาตให้นำไข (ผู้ข่วยศาสตราจารย์ เ หัวหน้าภาควิชาวิศา	ปโฆษณาเผยแพร่ เว้นแต่ได้รับ กร. เมญ ปาคณม มกรรมสมัยงแรก		
หมายเหตุ: รายงานการทดล การยินยอมจาก. (อา	อบนี้ ค่าที่ปรากฏเป็นค่าของแต่ละ ภาควิชาฯ OHTEAN มารย์ วิฆเนศว์ ดำคง) ผู้รับรองผล	ตัวอย่างเท่านั้น ไม่อนุญาตให้นำไน (ผู้ข่วยศาสตราจารย์ ก หัวหน้าภาควิชาวิศา	ปโฆษณาเผยแพร่ เว้นแต่ได้รับ กร. เมณ ปารายมม กรรมชามืองแรม		

		and the second		
	ภาควิชาวิศวกรรมเหมืองแร่เ	เละวัสดุ คณะวิศวกรรมศาสตร		
	มหาวิทยาลัยส	สงขลานครินทร์		
	ผลการทดสอบค่าเฉลี่เ	ยแรงกดจุดของตัวอย่าง		
	(Result of Po	int Load Test)		
<u>ผู้ส่งตัวอย่าง</u> : คุณพิมชน	ผู้ <u>ส่งตัวอย่าง</u> : คุณพิมชนก แก้ววิหค <u>บริษัท/หน่วยงาน</u> : บริษัท สินหลวง จำกัด			
<u>ลักษณะตัวอย่าง</u> : แท่งตัวอย่	างหิน <u>ห</u>	<u>มายเลขตัวอย่าง</u> : SL002-62		
<u>ผูพดสอบ</u> : นายกฤตภ มาตรรวม - ASTA Di	ผู้ <u>ทดสอบ</u> : นายกฤตภาส ศุภกรชูวงศ์ <u>วันที่ทดสอบ</u> : 2 เมษายน 2562			
NICA : NICH	11.91	<u>ชมหายยาง</u> : UKUZ18031	9	
ชื่อตัวอย่าง	ชนิดของการทดสอบ	กำลังแรงกดจุด (MPa)	กำลังอัดแปลงค่า (MPa)	
UK02180319	ตัวอย่างแท่งหิน แนวแกน (Core Specimen)	4.26	94	
หมายเหตุ: รายงานการทดสอ การยินยอมจากภ (อาจา	บนี้ คำที่ปรากฏเป็นค่าของแต่ละ าควิชาฯ มีปีปีสีสา ารย์ วิฆเนศว์ ดำคง) ผู้รับรองผล	ด้วอย่างเท่านั้น ไม่อนุญาดให้นำไข ไม่ (ผู้ช่วยศาสตราจารย์ ด หัวหน้าภาควิชาวิศา	โฆษณาเผยแพร่ เว้นแต่ได้รับ กร. มานุญากรณามา กรรมถามอาหาร	

		and the second s		
	ภาควิชาวิศวกรรมเหมืองแร่เ	เละวัสดุ คณะวิศวกรรมศาสต	alls,	
	มหาวิทยาลัย	สงขลานครินทร์		
	ผลการทดสอบค่าเฉลี่	ยแรงกดจุดของตัวอย่าง		
	(Result of Po	int Load Test)		
ผู้ <u>ส่งตัวอย่าง</u> : คุณพิมชนก แก้ววิหค <u>บริษัท/หน่วยงาน</u> : บริษัท สินหลวง จำกัด		วง จำกัด		
<u>ลิกษณะตัวอย่าง</u> : แท่งตัวอย่า	<u>ลักษณะตัวอย่าง</u> : แท่งตัวอย่างหิน <u>ท</u> ุ		<u>หมายเลขตัวอย่าง</u> : SL003-62	
<u>ผูชตรอบ</u> : นายกฤตภ มาตรราบ ASTM D5	<u>ผู้ทดสอบ</u> : นายกฤตภาส ศุภกรชูวงศ์ <u>วันที่ทดสอบ</u> : 2 เมษายน 2562			
		<u>1007300 N</u> . 010010001	2	
ชื่อตัวอย่าง	ชนิดของการทดสอบ	กำลังแรงกดจุด (MPa)	กำลังอัดแปลงค่า (MPa)	
UK03180319	ตัวอย่างแท่งหิน แนวแกน	3.43	76	
	(Core Specimen)			
)โฆษณาเผยแพร่ เว้นแต่ได้รับ	
หมายเหตุ: ร่ายงานการทดสอง การยืนยอมจากภา (อาจา	บนี้ ค่าที่ปรากฏเป็นค่าของแต่ละ เควิชาฯ 	ตัวอย่างเท่านั้น ไม่อนุญาตให้นำไข ผู้ช่วยศาสตราจารย์ เ หัวหน้าภาควิชาวิศา	л. 1. л. л. н.	

		South and the second se	
	ภาควิชาวิศวกรรมเหมืองแร่เ มหาวิทยาลัย	เละวัสดุ คณะวิศวกรรมศาสต สงขลานครินทร์	Ś
	ผลการทดสอบค่าเฉลี่ (Result of Po	ยแรงกดจุดของตัวอย่าง int Load Test)	
<u>ผู้ส่งตัวอย่าง</u> : คุณพิมชนศ <u>ลักษณะตัวอย่าง</u> : แท่งตัวอย่า ผู้ <u>ทดสอบ</u> : นายกฤตภ <u>มาตรฐาน</u> : ASTM D5 ⁻	า แก้ววิหค <u>ร</u> เงหิน <u>ห</u> าส ศุภกรชูวงศ์ 731	<u>บริษัท/หน่วยงาน</u> : บริษัท สินหล <u>มายเลขตัวอย่าง</u> : SL004-62 <u>วันที่ทดสอบ</u> : 2 เมษายน 2 <u>ชื่อตัวอย่าง</u> : UK0418031	วง จำกัด 562 9
ชื่อตัวอย่าง	ชนิดของการทดสอบ	กำลังแรงกดจุด (MPa)	กำลังอัดแปลงค่า (MPa)
UK04180319	ตัวอย่างแท่งหิน แนวแกน (Core Specimen)	3.88	85
หมายเหตุ: รายงานการทดสอบ การยืนยอมจากภา 	น้ี ค่าที่ปรากฏเป็นค่าของแต่ละ ควิชาฯ 	ตัวอย่างเท่านั้น ไม่อบุญาตให้นำไข (ผู้ช่วยศาสตราจารย์ ถ หัวหน้าภาควิชาวิศา	ปโฆษณาเผยแพร่ เว้นแต่ได้รับ กร. มนุญมากรักษา กรรมเพยุณมระ

ภาคผนวก ข

ภาพแสดงรูปแบบการระเบิด

รูปแบบการระเบิดแบบปัจจุบัน (Current)

รูปที่ ข 1-1 การระเบิดแบบปัจจุบัน ครั้งที่ 1 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

(ก) (ข) รูปที่ ข 1-2 การระเบิดแบบปัจจุบัน ครั้งที่ 2 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

(ก) (ข) รูปที่ ข 1-3 การระเบิดแบบปัจจุบัน ครั้งที่ 3 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

รูปที่ ข 2-1 การระเบิดแบบ PF1.0 ครั้งที่ 1 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

รูปที่ ข 2-2 การระเบิดแบบ PF1.0 ครั้งที่ 2 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

(ก) (ข) รูปที่ ข 2-3 การระเบิดแบบ PF1.0 ครั้งที่ 3 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

รูปที่ ข 3-1 การระเบิดแบบ PF0.9 ครั้งที่ 1 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

รูปที่ ข 3-2 การระเบิดแบบ PF0.9 ครั้งที่ 2 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

(ก) (ข) รูปที่ ข 3-3 การระเบิดแบบ PF0.9 ครั้งที่ 3 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

รูปที่ ข 4-1 การระเบิดแบบ PF0.8 ครั้งที่ 1 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

(ก) (ข) รูปที่ ข 4-2 การระเบิดแบบ PF0.8 ครั้งที่ 2 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

(ก) รูปที่ ข 4-3 การระเบิดแบบ PF0.8 ครั้งที่ 3 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

รูปที่ ข 5-1 การระเบิดแบบ PF0.7 ครั้งที่ 1 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

(ก) (ข) รูปที่ ข 5-2 การระเบิดแบบ PF0.7 ครั้งที่ 2 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

(ก) (ข) รูปที่ ข 5-3 การระเบิดแบบ PF0.7 ครั้งที่ 3 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

รูปที่ ข 6-1 การระเบิดแบบ PF0.6 ครั้งที่ 1 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

รูปที่ ข 6-2 การระเบิดแบบ PF0.6 ครั้งที่ 2 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

(ก) (ข) รูปที่ ข 6-3 การระเบิดแบบ PF0.6 ครั้งที่ 3 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

รูปแบบการระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ

(ก) (ข) รูปที่ ข 7-1 การระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ ครั้งที่ 1 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

(ก) (ข) รูปที่ ข 7-2 การระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ ครั้งที่ 2 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

(ก) (ข)
รูปที่ ข 7-3 การระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ ครั้งที่ 3
(ก) ก่อนการระเบิด (ข) หลังการระเบิด

รูปแบบการระเบิดแบบอุดรูระเบิดด้วยปลั๊กน้ำยางพาราสดผสมแอมโมเนีย

(ก) (ข) รูปที่ ข 8-1 การระเบิดแบบอุดรูระเบิดด้วยน้ำปลั๊กยางพาราสดผสมแอมโมเนีย ครั้งที่ 1 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

(ก) (ข) รูปที่ ข 8-2 การระเบิดแบบอุดรูระเบิดด้วยปลั๊กน้ำยางพาราสดผสมแอมโมเนีย ครั้งที่ 2 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

(ก) (ข) รูปที่ ข 8-3 การระเบิดแบบอุดรูระเบิดด้วยปลั๊กน้ำยางพาราสดผสมแอมโมเนีย ครั้งที่ 3 (ก) ก่อนการระเบิด (ข) หลังการระเบิด

ภาคผนวก ค

การประมวลผลภาพถ่ายทางอากาศด้วยซอฟต์แวร์ Rock Image

รูปที่ ค 1-1 การระเบิดแบบปัจจุบัน ครั้งที่ 1 (C1)

รูปที่ ค 1-2 การระเบิดแบบปัจจุบัน ครั้งที่ 2 (C2)

รูปที่ ค 2-1 การระเบิดแบบ PF1 ครั้งที่ 1 (PF1.0-1)

รูปที่ ค 2-2 การระเบิดแบบ PF1 ครั้งที่ 2 (PF1.0-2)

รูปที่ ค 2-3 การระเบิดแบบ PF1 ครั้งที่ 3 (PF1.0-3)

รูปที่ ค 3-2 การระเบิดแบบ PF0.9 ครั้งที่ 2 (PF0.9-2)

รูปที่ ค 4-1 การระเบิดแบบ PF0.8 ครั้งที่ 1 (PF0.8-1)

รูปที่ ค 4-2 การระเบิดแบบ PF0.8 ครั้งที่ 2 (PF0.8-2)

รูปที่ ค 4-3 การระเบิดแบบ PF0.8 ครั้งที่ 3 (PF0.8-3)

รูปที่ ค 5-2 การระเบิดแบบ PF0.7 ครั้งที่ 2 (PF0.7-2)

รูปที่ ค 6-1 การระเบิดแบบ PF0.6 ครั้งที่ 1 (PF0.6-1)

รูปที่ ค 6-2 การระเบิดแบบ PF0.6 ครั้งที่ 2 (PF0.6-2)

รูปที่ ค 6-3 การระเบิดแบบ PF0.6 ครั้งที่ 3 (PF0.6-3)

รูปที่ ค 7-1 การระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ ครั้งที่ 1 (NRSP-1)

รูปที่ ค 7-2 การระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ ครั้งที่ 2 (NRSP-2)

รูปที่ ค 7-3 การระเบิดแบบอุดรูระเบิดด้วยปลั๊กยางธรรมชาติ ครั้งที่ 3 (NRSP-3)

รูปที่ ค 8-1 การระเบิดแบบอุดรูระเบิดด้วยปลั๊กน้ำยางพาราสดผสมแอมโมเนีย ครั้งที่ 1 (FLP-1)

รูปที่ ค 8-2 การระเบิดแบบอุดรูระเบิดด้วยปลั๊กน้ำยางพาราสดผสมแอมโมเนีย ครั้งที่ 2 (FLP-2)

รูปที่ ค 8-3 การระเบิดแบบอุดรูระเบิดด้วยปลั๊กน้ำยางพาราสดผสมแอมโมเนีย ครั้งที่ 3 (FLP-3)

ภาคผนวก ง

ความแตกต่างระหว่างการใช้น้ำยางพาราสดแบบใส่แอมโมเนียและไม่ใส่แอมโมเนีย

รูปที่ ง 1-1 การทดลองการแข็งตัวของน้ำยางพาราสดในอัตราส่วน 10:1 ที่ความเข้มข้นของกรดอะซิติก 3% ภาพที่ 1

รูปที่ ง 1-2 การทดลองการแข็งตัวของน้ำยางพาราสดในอัตราส่วน 10:1 ที่ความเข้มข้นของกรดอะซิติก 3% ภาพที่ 2

รูปที่ ง 1-3 การทดลองการแข็งตัวของน้ำยางพาราสดในอัตราส่วน 10:1 ที่ความเข้มข้นของกรดอะซิติก 5% ภาพที่ 1

รูปที่ ง 1-4 การทดลองการแข็งตัวของน้ำยางพาราสดในอัตราส่วน 10:1 ที่ความเข้มข้นของกรดอะซิติก 5% ภาพที่ 2

รูปที่ ง 1-5 การทดลองการแข็งตัวของน้ำยางพาราสดในอัตราส่วน 10:1 ที่ความเข้มข้นของกรดอะซิติก 7% ภาพที่ 1

รูปที่ ง 1-6 การทดลองการแข็งตัวของน้ำยางพาราสดในอัตราส่วน 10:1 ที่ความเข้มข้นของกรดอะซิติก 7% ภาพที่ 2

รูปที่ ง 1-7 การทดลองการแข็งตัวของน้ำยางพาราสดในอัตราส่วน 10:1 ที่ความเข้มข้นของกรดอะซิติก 9% ภาพที่ 1

รูปที่ ง 1-8 การทดลองการแข็งตัวของน้ำยางพาราสดในอัตราส่วน 10:1 ที่ความเข้มข้นของกรดอะซิติก 9% ภาพที่ 2

ภาคผนวก จ

ภาพถ่ายการจับตัวน้ำยางพาราสดกับกรดอะซิติก

รูปที่ จ 1-1 การทดสอบหาค่าระยะการคายน้ำของน้ำยางพาราสดในอัตราส่วน 2:1 ที่ความเข้มข้นของกรดอะซิติก 3% ที่ระยะ Cutting 0.5 m

รูปที่ จ 1-2 การทดสอบหาค่าระยะการคายน้ำของน้ำยางพาราสดในอัตราส่วน 6:1 ที่ความเข้มข้นของกรดอะซิติก 3% ที่ระยะ Cutting 0.5 m

รูปที่ จ 1-3 การทดสอบหาค่าระยะการคายน้ำของน้ำยางพาราสดในอัตราส่วน 10:1 ที่ความเข้มข้นของกรดอะซิติก 3% ที่ระยะ Cutting 0.5 m

รูปที่ จ 1-4 การทดสอบหาค่าระยะการคายน้ำของน้ำยางพาราสดในอัตราส่วน 2:1 ที่ความเข้มข้นของกรดอะซิติก 3% ที่ระยะ Cutting 1 m

รูปที่ จ 1-5 การทดสอบหาค่าระยะการคายน้ำของน้ำยางพาราสดในอัตราส่วน 6:1 ที่ความเข้มข้นของกรดอะซิติก 3% ที่ระยะ Cutting 1

รูปที่ จ 1-6 การทดสอบหาค่าระยะการคายน้ำของน้ำยางพาราสดในอัตราส่วน 10:1 ที่ความเข้มข้นของกรดอะซิติก 3% ที่ระยะ Cutting 1

ภาคผนวก ฉ

ต้นทุนการระเบิด

รูปที่ ฉ 1-3 ต้นทุนการระเบิดแบบปัจจุบัน ครั้งที่ 3 (C3)

	Primary blasting			1st Blasting result		Secondary blastir	ng pattern	Drilling craw	ler	
	Burden (m)	1.80	Overrize	2nd Blasting	8.96%	Avg.lume size (m)	1.00	Drilling machine cost (8/m)		90
	Spacing (m)	2.00	07613126	Hyd.breaker	5.59%	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		84.45%	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.80	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	75%	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
tem	Bench height (m)	4.85	Product		24%	Blasting agt.type	ANFO	Drilling cost (8/m)		156.675
Pat	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	6,7,8				2nd Blasting cost (8)	6,252.79	Backhoe		
	No.Hole/blast	22.00		Explosive				Cost (8/hr)	2,000.00	Cost (8)
	No.Cap#0	7.00		Cap#0 (8/Unit)	35.00			Preparea for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	15.00		Cap#Delay (8/kg)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	3,649.33
	Volume (cum/hole)	17.47	Pilo	Hi Explosive (8/kg)	125.00			Prep.lump for hyd breaker (ton/hr)	50.00	5,013.76
	Volume (cum/blast)	384.24		Blasting agent (8/kg)	35.00			Hyd breaker (ton/hr)	20.00	12,534.39
	Tonnage (ton/blast)	1,018		Fuel (8/liter)	31.00					
	type	Emulsion	1st Bla	sting Explosive cost (8)	13,006.40			Total		54.60
oshe	Provide to tool							Blasting cost (8/ton)	51.62
-lqra	Density (g/cc)	1.25								
tê	Oty (kg/hole)	1.00		Labor						
-	Oty (96)	7.51	Quantity (r	nen)	4.00					
	type	ANFO	Ave cost (8	I/Man/dav)	450.00					
e ag	Load density (ke/m)	3.60	Day/blast		1.00					
astin										
10	Oty (ke/hole)	12.32	1st E	Blastine labor cost (B)	1,800.00					
1st Blasti	ng cost (8)	33,764.08	2nd B	Blasting labor cost (8)	1,800.00					

รูปที่ ฉ 1-2 ต้นทุนการระเบิดแบบปัจจุบัน ครั้งที่ 2 (C2)

	Primary blasting			1st Blasting result		Secondary blasting	pattern	Drilling crawler		
	Burden (m)	1.80	Ourrira	2nd Blasting	10.00%	Avg.lume size (m)	1.00	Drilling machine cost (8/m)		90
	Spacing (m)	2.00		Hyd.breaker	4.40%	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		84.60%	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.80	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.008
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.008
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	75%	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
ten	Bench height (m)	4.85	Product		2496	Blasting agt.type	ANFO	Drilling cost (8/m)		156.675
Part	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	6,7,8				2nd Blasting cost (8)	6,769.63	Backhoe		
	No.Hole/blast	22.00		Explosive				Cost (8/hr)	2,000.00	Cost(8)
	No.Cap#0	7.00		Cap#0 (8/Unit)	35.00			Preparea for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	15.00		Cap#Delay (8/kg)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	4,072.91
	Volume (cum/hole)	17.47	£.	Hi Explosive (8/kg)	125.00			Preplump for hyd breaker (tor/hr)	50.00	4,846.77
	Volume (cum/blast)	384.24		Blasting agent (8/kg)	35.00			Hyd breaker (tory'hr)	20.00	12,116.92
	Tonnage (ton/blast)	1,018		Fuel (8/liter)	31.00					
8	type	Emulsion	1st Blas	iting Explosive cost (8)	13,006.40			Total		51 72
isolo	Density (g/cc)	1.25						Blasting cost (8/ton)		51.12
be u	Qty (kg/hole)	1.00		Labor						
Hig										
	Qty (%)	7.51	Quantity (m	en)	4.00					
15	type	ANFO	Avg cost (8/	'Man/day)	450.00					
lasting	Load density (kg/m)	3.60	Day/blast		1.00					
-	Qty (kg/hole)	12.32	1st B	lasting labor cost (8)	1,800.00					
1st Blastin	g cost (8)	33,764.08	2nd B	lasting labor cost (8)	1,800.00					

รูปที่ ฉ 1-1 ต้นทุนการระเบิดแบบปัจจุบัน ครั้งที่ 1 (C1)

	Primary blasting			1st Blasting result		Secondary blasting	nattern	Drilling crawle	ar	
	Burden (m)	1.80		2nd Blasting	8 55%	Ave lume size (m)	1.00	Drilling machine cost (B/m)		90
	Spacing (m)	2.00	Oversize	Hyd.breaker	1.80%	Avelume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		88.64%	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.80	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	75%	Hi explosive aty. (kg/hole)	0.10	Bit	4,300.00	800.00
L	Bench height (m)	4.85	Product		2496	Blasting agt.type	ANFO	Drilling cost (8/m)		156.675
Patt	No.Row	3.00	Undersize	2	196	Blasting agt. (kg/hole)	0.10			
_	No.Hole/Row	6,7,8				2 nd Blasting cost (8)	6,049.03	Backhoe		
	No.Hole/blast	22.00		Explosive				Cost (8/hr)	2,000.00	Cost (B)
	No.Cap#0	7.00		Cap#0 (8/Unit)	35.00			Prep.area for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	15.00		Cap#Delay (8/kg)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	3,482.34
	Volume (cu.m/hole)	17.47	Price	Hi Explosive (8/kg)	125.00			Prep.lump for hyd breaker (ton/hr)	50.00	3,344.88
	Volume (cu.m/blast)	384.24	_	Blasting agent (B/kg)	35.00			Hyd breaker (ton/hr)	20.00	8,362.20
	Tonnage (ton/blast)	1,018		Fuel (8/liter)	31.00					
ę	type	Emulsion	1st Blast	ing Explosive cost (β)	13,006.40			Total		47 22
losi	Density (g/cc)	1.25						Blasting cost (8/ton)		41.52
exb	Qty (kg/hole)	1.00		Labor						
tigh										
-	Qty (96)	7.51	Quantity	(men)	4.00					
agt	type	ANFO	Avg cost (8/Man/day)	450.00					
guid	Load density (kg/m)	3.60	Day/blast		1.00					
Blast										
	Qty (kg/hole)	12.32	1st Bla	sting labor cost (8)	1,800.00					

รูปที่ ฉ 2-3 ต้นทุนการระเบิดแบบ PF1.0 ครั้งที่ 3 (PF1.0-3)

Primary blasting									
lurden (m)			1st Blasting result		Secondary blasting p	oattern	Drilling crawl	er	
	1.60	Ouerrize	2nd Blasting	1.83%	Avg.lume size (m)	1.00	Drilling machine cost (8/m		90
ipacing (m)	1.80	Oversize	Hyd.breaker	1.90%	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
ub drilling (m)	0.50	Product		86.27%	No.hole/lump	1.00	Fuel	31.00	1.25
itemming (m)	1.60	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
Iole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
fole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
iole angle (degree)	76.00	Oversize	Hyd.breaker	7596	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
lench height (m)	4.85	Product		24%	Blasting agt.type	ANEO	Drilling cost (8/m)		156.675
lo.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
lo.Hole/Row	9.00				2nd Blasting cost (8)	2,692.91	Backhoe		
Io.Hole/blast	27.00		Explosive				Cost (8/hr)	2,000.00	Cost (8)
lo.Cap#0	9.00		Cap#0 (8/Unit)	35.00			Prep.area for 1st blasting (hr/blast)	2.00	4,000.00
Io.Cap#Delay	18.00	0	Cap#Delay (B/kg)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	731.79
/olume (cu.m/hole)	13.97	E S	Hi Explosive (8/kg)	125.00			Prep.lump for hyd breaker (ton/hr)	50.00	1,308.63
/olume (cu.m/blast)	377.25		Blasting agent (B/kg)	35.00			Hyd breaker (ton/hr)	20.00	3,271.57
onnage (ton/blast)	1,000		Fuel (8/liter)	31.00					
ype	Emulsion	1st Blasti	ng Explosive cost (B)	16,642.80			Total		17 67
Density (g/cc)	1.25						Blasting cost (\$/to	n)	41.01
(kg/hole)	1.00		Labor						
Qty (96)	7.12	Quantity (r	men)	4.00					
ype	ANFO	Avg cost (6	3/Man/day)	450.00					
.oad density (kg/m)	3.60	Day/blast		1.00					
ity (kg/hole)	13.04	1st Bla	sting labor cost (8)	1,800.00					
g cost (8)	41,709.04	2nd Bla	sting labor cost (8)	1,800.00					
	remming (m) olo dimeter (mm) olo dimeter (mm) olo angle (degree) ench height (m) is.Row w.holo/Pow o.holo/P	terming (m) 1.60 old dimeter (mm) 76.00 old dimeter (mm) 5.50 old angle (degree) 76.00 oet Apsh (m) 5.50 old angle (degree) 76.00 oet Apsh (m) 4.85 ballow 3.00 o.thole/blast 27.00 o.thole/blast 27.00 o.capH0 9.00 o.capH04 13.97 olume (cum/hole) 13.97 olume (cum/hole) 1.000 ppe Emulsion ensity (s/cc) 1.25 ty (kg/hole) 1.00 ty (kg/hole) 7.12 ppe ANFO cad density (kg/m) 3.60 ty (kg/hole) 13.04 g cost (k) 41,700.04	teaming (m) 1.60 Undersize old dimeter (mm) 76.00 Oversize old dimeter (mm) 5.50 Oversize old angle (degree) 76.00 Oversize old angle (degree) 76.00 Oversize on onch height (m) 4.85 Product b.Row 9.00 ochol/Pow o.hold/Pow 9.00 oc.capH0 o.capH0 9.00 oc.capH0 o.capH0/elay 18.00 great pec Emulsion 1st Blasti ensity (s/cc) 1.25 V/kg/hole ty (kg/hole) 7.12 Quantity (or pe ANEO Avg cost (cad density (kg/m) 3.60 Day/blast sg cost (k) 41,70204 2nd Blasti	terming (m) 1.60 Undersize bld dimeter (mm) 7.00 Versize 2nd Blasting result bld midel (degred) 7.00 Versize Hydbiraker bela mijk (degred) 7.00 Versize Hydbiraker bln More 3.00 Undersize Hydbiraker bln More 3.00 Undersize Explosive bln More 9.00 CapH0 (8/Uril) 0.00 bln More 13.07 2 CapH0 (8/Uril) bln CapH0 (10, Marr) 3.02 Flasting speri (10, R/g) Blasting speri (10, R/g) blume (cu.m/blast) 37.72 Blasting speri (10, R/g) Flasting speri (10, R/g) blume (cu.m/blast) 1.00 Flasting taboricost (8) Explosive (cost (8, R/g) ppe Emulsion 1st Blasting taboricost (8) Labor try (%)ch(ch) 7.12 Quantity (Mar/day) cad density (%/ch) 3.60 Day/blast ppe AFO Arg cost (6/Mar/day) cad density (%/ch) 1.30 1st Blasting labor cost (8)	teamming (m) 1.60 Undersize 1.00% bld dimeter (mm) 1600 Versize 2nd Blasting result beld angli (hm) 5.50 2nd Blasting result 75% beld angli (degree) 16.00 Oversize Hyd.breaker 75% beld angli (degree) 16.00 Oversize Hyd.breaker 75% beld ongli (degree) 3.00 Undersize 1% 24% beldor/blast 2.00 Undersize 1% 24% beldor/blast 9.000 Explosive 55.00 55.00 olume (cu.m/blast) 3.72 Explosive (6/kg) 35.00 35.00 35.00 olume (cu.m/blast) 3.72 Blasting sept (k/kg) 35.00 31.00 36.00	teamming (m) 1.60 Undersize 1.00% Hole depth (m) ble dimeter (mm) 76:00 Verrize 2nd Blasting result Stemming (m) ole dimpti (m) 5.50 2nd Blasting result His oplosive type ole angle (degree) 76:00 Verrize 194 His oplosive type ole angle (degree) 76:00 Verrize 194 Blasting agt.type bs/box 3.00 Undersize 196 Blasting agt.tig/hole) 2nd Blasting agt.tig/hole) oc/hole/flow 3.00 Undersize 196 Blasting agt.tig/hole) 2nd Blasting agt.tig/hole) oc/hole/flow 9.00 CopPIO (H/Unit) 3.500 140 140 olume (cu.m/holat) 3.757 Blasting agent (K/kg) 3.500 140 pre Emulsion 118 Elseting Explosive (K/kg) 3.500 140 pre Emulsion 118 16.62.80 140 pre Emulsion 118 16.62.80 140 pre AIPO Avg cost (M/An/day) 450	terming (m) 1.60 Undersize 1.00% Hele depth (m) 0.30 ble dimeter (mm) 76.00 Versize 1.00% Hele depth (m) 0.40 ble dimeter (mm) 5.50 2nd Blasting result Hi deptolve type Fluidion ble depth (m) 6.50 Versize Hydbreaker 75% Hi deptolve type (knyhole) 0.10 ble depth (m) 4.65 Product 21% Blasting agt; (kg/hole) 0.10 bc/hole/Pow 0.00 Explosive (M/LNI) 55.00 2.692 2.692 bc/hole/Pow 10.00 Explosive (Kr/LNI) 55.00 2.692 2.692 bc/hole/Pow 10.00 Fuel (M/INI) 55.00 2.692 2.692 bc/me (cu.m/hola) 13.77 $\frac{V_{eff}}{2}$ Blasting ager: (Kr/LNI) 1.664.280 pro Emulsion 1.00 Fuel (M/INI) 4.600 pro ANFO Ange cost (M/Anr/day) 450.00 pro ANFO Ange cost (M/Anr/day) 450.00 pro	terming (m) 1.60 Undersize 1.00% Hele depth (m) 0.05 Shank adapter bed dimter (mm) 76.00 Vorrize For dlasting result Hele depth (m) 0.05 Held edpth (m) 0.06 Held edpth (m	terming (m) 1.60 Undersize 1.00% Hele depth (m) 0.00 Shank adapter 9,0000 bed miner (mm) 600

รูปที่ ฉ 2-2 ต้นทุนการระเบิดแบบ PF1.0 ครั้งที่ 2 (PF1.0-2)

		รูปท	น 2-	1 ตนทุนกา	เววะเง	Jดแบบ PFI.() M24N I ((PF1.0-1)		
	Primary blasting			1st Blasting result		Secondary blastir	ne pattern	Drilling crawler		
	Burden (m)	1.60		2nd Blasting	2.91%	Avg.lume size (m)	1.00	Drilling machine cost (8/m)		90
	Spacing (m)	1.80	Oversize	Hyd.breaker	1.86%	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		85.23%	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.60	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	75%	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
Lea	Bench height (m)	4.85	Product		2496	Blasting agt.type	ANFO	Drilling cost (8/m)		156.675
Pat	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	9.00				2nd Blasting cost (8)	3,219.87	Backhoe		
	No.Hole/blast	27.00		Explosive				Cost (8/hr)	2,000.00	Cost (B)
	No.Cap#0	9.00		Cap#0 (8/Unit)	35.00			Prep.area for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	18.00	0	Cap#Delay (8/kg)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	1,163.67
	Volume (cu.m/hole)	13.97	Pic.	Hi Explosive (B/kg)	125.00			Prep.lump for hyd breaker (ton/hr)	50.00	1,616.54
	Volume (cu.m/blast)	377.25		Blasting agent (8/kg)	35.00			Hyd breaker (ton/hr)	20.00	4,041.35
	Tonnage (ton/blast)	1,000		Fuel (8/liter)	31.00					
e.	type	Emulsion	1st Blas	ting Explosive cost (8)	16,642.80			Total		19.07
cplos	Density (g/cc)	1.25						Blasting cost (\$/ton)		40.91
gh ex	Qty (kg/hole)	1.00		Labor						
T	Qty (96)	7.12	Quantity	(men)	4.00					
ti.	type	ANFO	Avg cost (8/Man/day)	450.00					
13 3	Load density (kg/m)	3.60	Day/blast		1.00					
lastí										
8	Qty (kg/hole)	13.04	1st Bl	asting labor cost (8)	1,800.00					
1st Blast	ing cost (8)	41,709.04	2nd B	asting labor cost (8)	1,800.00					

รูปที่ ฉ 2-1 ต้นทุนการระเบิดแบบ PF1.0 ครั้งที่ 1 (PF1.0-1)

	Primary blasting			1st Blasting result		Secondary blasting p	attern	Drilling crawle	(
	Burden (m)	1.60	C	2nd Blasting	0.53%	Avg.lume size (m)	1.00	Drilling machine cost (B/m)		90
	Spacing (m)	1.80	Oversize	Hyd.breaker	2.21%	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		87.26%	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.60	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	7596	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
tern	Bench height (m)	4.85	Product		2495	Blasting agt.type	ANFO	Drilling cost (8/m)		156.675
Pat	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	9.00				2nd Blasting cost (B)	2,058.60	Backhoe		
	No.Hole/blast	27.00		Explosive				Cost (8/hr)	2,000.00	Cost (8)
	No.Cap#0	9.00		Cap#0 (8/Unit)	35.00			Prep.area for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	18.00	0	Cap#Delay (B/kg)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	211.94
	Volume (cu.m/hole)	13.97	iii.	Hi Explosive (8/kg)	125.00			Prep.lump for hyd breaker (ton/hr)	50.00	1,042.70
	Volume (cu.m/blast)	377.25		Blasting agent (8/kg)	35.00			Hyd breaker (ton/hr)	20.00	2,606.76
	Tonnage (ton/blast)	1,000		Fuel (8/liter)	31.00					
ę	type	Emulsion	1st Blasti	ing Explosive cost (8)	16,642.80			Total		44.07
plosiv	Density (e/cc)	1.25						Blasting cost (\$/ton)	46.37
hex	Qty (kg/hole)	1.00		Labor						
HIS	Ob. (01)	7.40	Outpatitus	(a	4.00					
	Qty (96)	1.14	Quantity (men)	4.00					
agt	type	ANEO	Avg cost u	3/Man/day)	450.00					
ting	Load density (kg/m)	3.60	Day/blast		1.00					
Blas	Qty (kg/hole)	13.04	1st Bla	isting labor cost (8)	1,800.00					
1st Blast	ing cost (B)	41 709 04	2nd Bl;	asting Jabor cost (B)	1,800,00					

รูปที่ ฉ 3-3 ต้นทุนการระเบิดแบบ PF0.9 ครั้งที่ 3 (PF0.9-3)

	Primary blasting			1st Blasting result		Secondary blasting	pattern	Drilling crawl	er	
	Burden (m)	1.60	Quarriza	2nd Blasting	2.35%	Avg.lume size (m)	1.00	Drilling machine cost (8/m)	90
	Spacing (m)	2.00	Oversize	Hyd.breaker	1.85%	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		85.80%	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.60	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	7596	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
Ee	Bench height (m)	4.85	Product		24%	Blasting agt.type	ANFO	Drilling cost (8/m)		156.675
Pat	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	8,9				2nd Blasting cost (8)	2,979.66	Backhoe		
	No.Hole/blast	25.00		Explosive				Cost (8/hr)	2,000.00	Cost(8)
	No.Cap#0	8.00		Cap#0 (8/Unit)	35.00			Prep.area for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	17.00		Cap#Delay (8/kg)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	966.80
	Volume (cu.m/hole)	15.52	- Lice	Hi Explosive (8/kg)	125.00			Prep.lump for hyd breaker (ton/hr)	50.00	1,486.20
	Volume (cu.m/blast)	388.12		Blasting agent (8/kg)	35.00			Hyd breaker (ton/hr)	20.00	3,715.50
	Tonnage (ton/blast)	1,029		Fuel (8/liter)	31.00					
e.	type	Emulsion	1st Blast	ing Explosive cost (8)	15,410.00			Total		44.17
sola	Density (g/cc)	1.25						Blasting cost (\$/ton)	
eh e	Qty (kg/hole)	1.00		Labor						
Ť	Qty (%)	7.12	Quantity (men)	4.00					
t	type	ANFO	Avg cost (6/Man/day)	450.00					
e au	Load density (kg/m)	3.60	Day/blast		1.00					
Blast	0. 0. 1. 1.	10.04	4.4.0		1 000 00					
	Quy (kg/hole)	13.04	1 St Biz	isting tabor cost (8)	1,800.00					
1st Bl	asting cost (#)	38,752.81	2nd Bu	asting labor cost (8)	1,800.00					

	Primary blasting			1st Blasting result		Secondary blasting	pattern	Drilling craw	ler	
	Burden (m)	1.60		2nd Blasting	0.96%	Avg.lume size (m)	1.00	Drilling machine cost (8/n	n)	90
	Spacing (m)	2.00	Oversize	Hyd.breaker	3.34%	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		85.70%	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.60	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	75%	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
fern	Bench height (m)	4.85	Product		24%	Blasting agt.type	ANEO	Drilling cost (8/m)		156.675
Pat	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	8,9				2nd Blasting cost (8)	2,281.90	Backhoe		
	No.Hole/blast	25.00		Explosive				Cost (8/hr)	2,000.00	Cost (8)
	No.Cap#0	8.00		Cap#0 (8/Unit)	35.00			Prep.area for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	17.00		Cap#Delay (8/kg)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	394.95
	Volume (cu.m/hole)	15.52	Price	Hi Explosive (8/kg)	125.00			Prep.lump for hyd breaker (ton/hr)	50.00	1,670.31
	Volume (cu.m/blast)	388.12		Blasting agent (8/kg)	35.00			Hyd breaker (ton/hr)	20.00	4,175.76
	Tonnage (ton/blast)	1,029		Fuel (8/liter)	31.00					
e	type	Emulsion	1st Blast	ing Explosive cost (8)	15,410.00			Total		42.04
hosh	Density (g/cc)	1.25						Blasting cost (\$/to	r)	43.94
eh ex	Qty (kg/hole)	1.00		Labor						
Ŧ	Oty (%)	7.12	Quantity (men)	4.00					
t.	type	ANFO	Ave cost (8/Man/day)	450.00					
ig aç	Load density (kg/m)	3.60	Day/blast		1.00					
slasti										
w	Qty (kg/hole)	13.04	1st Bla	isting labor cost (8)	1,800.00					
	ne cost (8)	38,752.81	2nd Bli	asting labor cost (8)	1,800.00					

รูปที่ ฉ 3-1 ต้นทุนการระเบิดแบบ PF0.9 ครั้งที่ 1 (PF0.9-1)

	Primary blasting			1st Blasting result		Secondary blasting	pattern	Drilling crawle	н	
	Burden (m)	1.60	Oromino	2nd Blasting	2.56%	Avg.lume size (m)	1.00	Drilling machine cost (8/m)		90
	Spacing (m)	2.00	Oversize	Hyd.breaker	1.5196	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		85.93%	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.60	Undersize		1.0096	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	7596	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
ma	Bench height (m)	4.85	Product		2496	Blasting agt.type	ANFO	Drilling cost (8/m)		156.675
Patt	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	8,9				2nd Blasting cost (8)	3,085.08	Backhoe		
	No.Hole/blast	25.00		Explosive				Cost (8/hr)	2,000.00	Cost (8)
	No.Cap#0	8.00		Cap#0 (8/Unit)	35.00			Prep.area for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	17.00		Cap#Delay (8/kg)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	1,053.20
	Volume (cu.m/hole)	15.52	Price	Hi Explosive (8/kg)	125.00			Prep.lump for hyd breaker (ton/hr)	50.00	1,411.12
	Volume (cu.m/blast)	388.12	- CL	Blasting agent (8/kg)	35.00			Hyd breaker (ton/hr)	20.00	3,527.80
	Tonnage (ton/blast)	1,029		Fuel (8/liter)	31.00					
a,	type	Emulsion	1st Blast	ing Explosive cost (8)	15,410.00			Total		44.00
visolo	Density (q/cc)	1.25						Blasting cost (\$/ton)		44.09
a c	Qty (kg/hole)	1.00		Labor						
High										
	Qty (%)	7.12	Quantity (men)	4.00					
agt	type	ANFO	Avg cost (8/Man/day)	450.00					
ting	Load density (kg/m)	3.60	Day/blast		1.00					
Blas	Oty (ke/hole)	13.04	1st Bla	asting labor cost (B)	1 800 00					

รูปที่ ฉ 4-3 ต้นทุนการระเบิดแบบ PF0.8 ครั้งที่ 3 (PF0.8-3)

	Primany Marting			t et Blactica consit		Concerdent blacklast	attern	Delline erende	-	
	Purden (m)	1.60		2nd Plasting	2.04%	Aug lumo size (m)	1 00	Drilling maching crawle	N.	90
	Spacing (m)	2.20	Oversize	Hvd breaker	2 3 2 96	Avglume volume (cum)	1.00	Consumption	Price	Life time (m)
	Sub drilling (m)	0.50	Product	1.9 000 00101	84.62%	No hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.60	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9 300 00	800.00
	Hole dimeter (mm)	76.00	011010101010		10010	Stemming (m)	0.40	Bod	9 000 00	800.00
	Hole depth (m)	5 50		2nd Blasting result		Hi exclosive type	Emulsion	Coupling	1 900 00	800.00
	Hole angle (degree)	76.00	Oversize	Hvd.breaker	7596	Hi explosive atv. (ke/hole)	0.10	Bit	4.300.00	800.00
Ę	Bench height (m)	4.85	Product	.,	2496	Blasting agt.type	ANFO	Drilling cost (8/m)		156.675
atte	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	8,7,8				2nd Blasting cost (8)	3,354.50	Backhoe		
	No.Hole/blast	23.00		Explosive				Cost (8/hr)	2,000.00	Cost (8)
	No.Cap#0	8.00		Cap#0 (8/Unit)	35.00			Preparea for 1st blasting (hr/blast)	2.00	4.000.00
	No.Cap#Delay	15.00		Cap#Delay (8/kg)	35.00			Preplump for 2nd blasting (ton/hr)	50.00	1.274.01
	Volume (cum/hole)	17.08	rice	Hi Explosive (8/kg)	125.00			Preplump for hvd breaker (ton/hr)	50.00	1.921.42
	Volume (cu.m/blast)	392.78	LL.	Blasting agent (8/kg)	35.00			Hyd breaker (ton/hr)	20.00	4,803.55
	Tonnage (ton/blast)	1,041		Fuel (8/liter)	31.00					
	broa	Emulsion	1st Blasti	ng Explosive cost (8)	14 177 20			Total		
sive	13.000	CITCLENOIT			14,111,20			Plasting sect (0 (tex)		42.22
☆	Density (g/cc)	1.25						Blasting Cost (\$/ton)		
-pe	Qty (kg/hole)	1.00		Labor						
王.	01. (91)	7.40	0		4.00					
	City (76)	1.1Z	Quantity ((Alex (dev))	4.00					
agt	Load density (kn/m)	ANFO 3.60	Avg cost (//mar//udy/	450.00					
sting	Load density (kg/m)	5.00	Day/Diast		1.00					
Bla	Oty (ka/hole)	13.04	1st Bla	ting labor cost (8)	1 800 00					
1st Blast	ine cost (8)	35,796,59	2nd Bla	sting labor cost (8)	1,800.00					
and burg		227.90.09	2110 010		1,00000					

	Primary blasting			1st Blasting result		Secondary blastin	ig pattern	Drilling crawl	ar	
	Burden (m)	1.60	0	2nd Blasting	2.78%	Avg.lume size (m)	1.00	Drilling machine cost (8/m)	90
	Spacing (m)	2.20	Oversize	Hyd.breaker	1.56%	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		85.66%	No.hole/lump	1.00	Fuel	31.00	1.2
	Stemming (m)	1.60	Undersiz	2	1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	75%	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
tern	Bench height (m)	4.85	Product		2496	Blasting agt.type	ANFO	Drilling cost (8/m)		156.67
Pat	No.Row	3.00	Undersiz		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	8,7,8				2nd Blasting cost (8)	3,212.26	Backhoe		
	No.Hole/blast	23.00		Explosive				Cost (8/hr)	2,000.00	Cost (8)
	No.Cap#0	8.00		Cap#0 (8/Unit)	35.00			Prep.area for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	15.00		Cap#Delay (8/kg)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	1,157.43
	Volume (cu.m/hole)	17.08	Price	Hi Explosive (8/kg)	125.00			Prep.lump for hyd breaker (ton/hr)	50.00	1,517.5
	Volume (cu.m/blast)	392.78		Blasting agent (8/kg)	35.00			Hyd breaker (ton/hr)	20.00	3,793.93
	Tonnage (ton/blast)	1,041		Fuel (8/liter)	31.00					
ę	type	Emulsion	1st Blas	ting Explosive cost (8)	14,177.20			Total		41 12
foold	Density (g/cc)	1.25						Blasting cost (8/ton)	41.12
gh ex	Qty (kg/hole)	1.00		Labor						
Ĩ	Qty (%)	7.12	Quantity	(men)	4.00					
st	type	ANFO	Avg cost	(8/Man/day)	450.00					
sting a	Load density (kg/m)	3.60	Day/blas		1.00					
Bla	Qty (kg/hole)	13.04	1st Bl	asting labor cost (8)	1,800.00					
1st Blas	ting cost (8)	35,796.59	2nd B	asting labor cost (8)	1,800.00					
		รูปที่	ฉ 4-	2 ต้นทุนกา	รระเโ	โดแบบ PF0.8	ครั้งที่ 2	(PF0.8-2)		

รูปที่ ฉ 4-1 ต้นทุนการระเบิดแบบ PF0.8 ครั้งที่ 1 (PF0.8-1) Drilling crawler Drilling machine cost (8/m) Consumpsion

1st Blasting result 2nd Blasting Hyd.breaker

Primary blasting

Secondary blasting pattern 2.78% Avglume size (m) 1.56% Avglume volume (cum) 8.56% Nohole/ump 1.00% Hole depth (m)

	Primary blasting			1st Blasting result		Secondary blasting	g pattern	Drilling crawle	ar	
	Burden (m)	1.60	Ouerrise	2nd Blasting	3.09%	Avg.lume size (m)	1.00	Drilling machine cost (8/m)		90
	Spacing (m)	2.20	Oversize	Hyd.breaker	1.68%	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		85.23%	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.60	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	75%	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
tem	Bench height (m)	4.85	Product		24%	Blasting agt.type	ANFO	Drilling cost (8/m)		156.675
Pat	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	8,7,8				2nd Blasting cost (8)	3,369.74	Backhoe		
	No.Hole/blast	23.00		Explosive				Cost (8/hr)	2,000.00	Cost (8)
	No.Cap#0	8.00		Cap#0 (8/Unit)	35.00			Preparea for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	15.00		Cap#Delay (8/kg)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	1,286.50
	Volume (cu.m/hole)	17.08	Prio	Hi Explosive (8/kg)	125.00			Prep.lump for hyd breaker (ton/hr)	50.00	1,664.33
	Volume (cu.m/blast)	392.78		Blasting agent (8/kg)	35.00			Hyd breaker (ton/hr)	20.00	4,160.82
	Tonnage (ton/blast)	1,041		Fuel (8/liter)	31.00					
ę	type	Emulsion	1st Blast	ing Explosive cost (8)	14,177.20			Total		41.62
plosi	Density (g/cc)	1.25						Blasting cost (8/ton))	41.02
hex	Qty (kg/hole)	1.00		Labor						
Ę										
	Qty (%)	7.12	Quantity (men)	4.00					
agt	type	ANFO	Avg cost (8/Man/day)	450.00					
ting	Load density (kg/m)	3.60	Day/blast		1.00					
Blas	Ob a flag (had a)	12.04	1-6-01-	-the labor and (0)	1 000 00					
	Qty (kg/hole)	13.04	1st Bu	isting labor cost (8)	1,800.00					
1st Bu	sting cost (8)	35,796.59	2nd Bu	asting tabor cost (8)	1,800.00					

	Primary blasting			1st Blasting result		Secondary blasting	pattern	Drilling crawle	r	
	Burden (m)	1.60	- · ·	2nd Blasting	3.79%	Avg.lume size (m)	1.00	Drilling machine cost (8/m)		90
	Spacing (m)	2.50	Oversize	Hyd.breaker	2.59%	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		83.62%	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.60	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	75%	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
tern	Bench height (m)	4.85	Product		2496	Blasting agt.type	ANFO	Drilling cost (8/m)		156.675
Pat	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	6,7				2nd Blasting cost (8)	3,702.51	Backhoe		
	No.Hole/blast	20.00		Explosive				Cost (8/hr)	2,000.00	Cost (8)
	No.Cap#0	6.00		Cap#0 (8/Unit)	35.00			Prep.area for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	14.00		Cap#Delay (8/kg)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	1,559.23
	Volume (cum/hole)	19.41	Prike	Hi Explosive (8/kg)	125.00			Prep.lump for hyd breaker (ton/hr)	50.00	2,234.96
	Volume (cum/blast)	388.12		Blasting agent (8/kg)	35.00			Hyd breaker (ton/hr)	20.00	5,587.40
	Tonnage (ton/blast)	1,029		Fuel (8/liter)	31.00					
e	type	Emulsion	1st Blasti	ng Explosive cost (B)	12,328.00			Total		20 51
hosh	Density (g/cc)	1.25						Blasting cost (\$/ton)		59.51
th ex	Qty (kg/hole)	1.00		Labor						
Ξ	Oty (%)	7.12	Quantity (i	nen)	4.00					
÷.	type	ANFO	Ave cost (3/Man/day)	450.00					
g ag	Load density (kø/m)	3.60	Dav/blast		1.00					
stin										
Bla	Qty (kg/hole)	13.04	1st Bla	sting labor cost (8)	1,800.00					
lst Blast	ine cost (8)	31,362,25	2nd Bla	sting labor cost (B)	1.800.00					

รูปที่ ฉ 5-1 ต้นทุนการระเบิดแบบ PF0.7 ครั้งที่ 1 (PF0.7-1)

	Primary blasting			1st Blasting result		Secondary blasting p	pattern	Drilling crawle	n	
	Burden (m)	1.60	Outrino	2nd Blasting	4.82%	Avg.lume size (m)	1.00	Drilling machine cost (8/m)		90
	Spacing (m)	2.50	Oversize	Hyd.breaker	1.03%	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		84.15%	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.60	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	7596	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
tern	Bench height (m)	4.85	Product		24%	Blasting agt.type	ANFO	Drilling cost (8/m)		156.675
Pat	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	6,7				2nd Blasting cost (8)	4,219.56	Backhoe		
	No.Hole/blast	20.00		Explosive				Cost (8/hr)	2,000.00	Cost (8)
	No.Cap#0	6.00		Cap#0 (8/Unit)	35.00			Prep.area for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	14.00	41	Cap#Delay (8/kg)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	1,982.97
	Volume (cu.m/hole)	19.41	Lin	Hi Explosive (8/kg)	125.00			Prep.lump for hyd breaker (ton/hr)	50.00	1,910.98
	Volume (cu.m/blast)	388.12		Blasting agent (8/kg)	35.00			Hyd breaker (ton/hr)	20.00	4,777.45
	Tonnage (ton/blast)	1,029		Fuel (8/liter)	31.00					
ive	type	Emulsion	1st Blastin	ig Explosive cost (8)	12,328.00			Total		20.22
solqx	Density (g/cc)	1.25						Blasting cost (8/ton)	•	37.22
-fe	Qty (kg/hole)	1.00		Labor						
Ŧ	Qty (%)	7.12	Quantity (m	ien)	4.00					
at	type	ANFO	Avg cost (8,	/Man/day)	450.00					
ng a	Load density (kg/m)	3.60	Day/blast		1.00					
lasti										
40	Qty (kg/hole)	13.04	1st Blas	ting labor cost (B)	1,800.00					
1st Blast	ng cost (8)	31,362.25	2nd Blas	iting labor cost (8)	1,800.00					

รูปที่ ฉ 5-2 ต้นทุนการระเบิดแบบ PF0.7 ครั้งที่ 2 (PF0.7-2)

	Primary blasting			1st Blasting result		Secondary blastin	ig pattern	Drilling craw	ler	
	Burden (m)	1.60	Overrise	2nd Blasting	3.32%	Avg.lume size (m)	1.00	Drilling machine cost (8/m)	90
	Spacing (m)	2.50	CAVELSIZE	Hyd.breaker	3.47%	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		83.21%	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.60	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	7596	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
tern	Bench height (m)	4.85	Product		24%	Blasting agt.type	ANEO	Drilling cost (8/m)		156.675
Pat	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	6,7				2nd Blasting cost (8)	3,466.58	Backhoe		
	No.Hole/blast	20.00		Explosive				Cost (8/hr)	2,000.00	Cost (B)
	No.Cap#0	6.00		Cap#0 (8/Unit)	35.00			Prep.area for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	14.00	0	Cap#Delay(8/kg)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	1,365.87
	Volume (cu.m/hole)	19.41	-Bi	Hi Explosive (8/kg)	125.00			Prep.lump for hyd breaker (ton/hr)	50.00	2,451.98
	Volume (cu.m/blast)	388.12		Blasting agent (8/kg)	35.00			Hyd breaker (ton/hr)	20.00	6,129.94
	Tonnage (ton/blast)	1,029		Fuel (8/liter)	31.00					
ę	type	Emulsion	1st Blas	ting Explosive cost (8)	12,328.00			Total		20.90
plosit	Density (g/cc)	1.25						Blasting cost (8/ton)	39.80
10	Qty (kg/hole)	1.00		Labor						
奎										
	Qty (96)	7.12	Quantity (men)	4.00					
agt										
Sing	type	ANFO	Avg cost (8/Man/day)	450.00					
Blast	Load density (kg/m)	3.60	Day/blast		1.00					
	Qty (kg/hole)	13.04	1st Bla	asting labor cost (8)	1,800.00					
1st Blast	ing cost (8)	31,362.25	2nd Bl	asting labor cost (8)	1,800.00					

รูปที่ ฉ 5-3 ต้นทุนการระเบิดแบบ PF0.7 ครั้งที่ 3 (PF0.7-3)

รูปที่ ฉ 6-3 ต้นทุนการระเบิดแบบ PF0.6 ครั้งที่ 3 (PF0.6-3)

	Primary blasting			1st Blasting result		Secondary blasting	pattern	Drilling crawler		
	Burden (m)	1.60		2nd Blasting	9.4196	Avg.lume size (m)	1.00	Drilling machine cost (8/m)		90
	Spacing (m)	2.90	Oversize	Hyd.breaker	2.1696	Avg.lume volume (cum)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		78.43%	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.60	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	7596	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
E	Bench height (m)	4.85	Product		2496	Blasting agt.type	ANFO	Drilling cost (8/m)		156.675
Patt	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	5,6				2nd Blasting cost (8)	6,457.52	Backhoe		
	No.Hole/blast	17.00		Explosive				Cost (8/hr)	2,000.00	Cost (8)
	No.Cap#0	5.00		Cap#0 (8/Unit)	35.00			Prep.area for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	12.00		Cap#Delay (8/kg)	35.00			Preplump for 2nd blasting (ton/hr)	50.00	3,817.13
	Volume (cu.m/hole)	22.51	je je	Hi Explosive (8/kg)	125.00			Preplump for hyd breaker (ton/hr)	50.00	3,739.04
	Volume (cum/blast)	382.68		Blasting agent (8/kg)	35.00			Hyd breaker (ton/hr)	20.00	9,347.60
	Tonnage (ton/blast)	1,014		Fuel (8/liter)	31.00					
ě.	type	Emulsion	1st Blasti	ing Explosive cost (8)	10,478.80			Total		42.14
plos	Density (e/cc)	1.25						Blasting cost (\$/ton)		42.14
ě	Qty (kg/hole)	1.00		Labor				-		
Hig	01.00	7.10	O months of		4.00					
	(19)	7.12	Quanuty u	nen)	4.00					
agt	type	ANFO	Avg cost (i	3/Man/day)	450.00					
ting	Load density (kg/m)	3.60	Day/blast		1.00					
Blas										
	Uty (kg/hole)	13.04	1st Bla	sting labor cost (8)	1,800.00					
1st Blas	ing cost (B)	26,927.91	2nd Bla	isting labor cost (B)	1,800.00					

	เอารระเบิดแบบ		ม สี่ ว (DF0 < ว)
งูบท น ๐-๛ ตนทุน	1111922061600	PFU.0 PIJ	IN Z (PFU.0-Z)

		•		•						
	Primary blasting			1st Blasting result		Secondary blasting	g pattern	Drilling crawle	a	
	Burden (m)	1.60	Oversize	2nd Blasting	7.39%	Avg.lume size (m)	1.00	Drilling machine cost (8/m)		90
	Spacing (m)	2.90	Oversize	Hyd.breaker	4.01%	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		78.60%	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.60	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	75%	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
tern	Bench height (m)	4.85	Product		24%	Blasting agt.type	ANFO	Drilling cost (8/m)		156.675
Pat	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	5,6				2nd Blasting cost (8)	5,457.72	Backhoe		
	No.Hole/blast	17.00		Explosive				Cost (8/hr)	2,000.00	Cost (8)
	No.Cap#0	5.00		Cap#0 (8/Unit)	35.00			Prep.area for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	12.00		Cap#Delay (8/kg)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	2,997.72
	Volume (cum/hole)	22.51	Price	Hi Explosive (8/kg)	125.00			Prep.lump for hyd breaker (ton/hr)	50.00	3,874.93
	Volume (cum/blast)	382.68		Blasting agent (8/kg)	35.00			Hyd breaker (ton/hr)	20.00	9,687.33
	Tonnage (ton/blast)	1,014		Fuel (8/liter)	31.00					
e.	type	Emulsion	1st Blas	ting Explosive cost (8)	10,478.80			Total		11 10
solqx	Density (g/cc)	1.25						Blasting cost (\$/ton)		41.49
4s	Qty (kg/hole)	1.00		Labor						
Ŧ	Qty (%)	7.12	Quantity (men)	4.00					
agt	type	ANFO	Avg cost (8/Man/day)	450.00					
ting	Load density (kg/m)	3.60	Day/blast		1.00					
Blast	Qty (kg/hole)	13.04	1st B	lasting labor cost (8)	1,800.00					
1st Blas	ting cost (8)	26,927.91	2nd B	lasting labor cost (8)	1,800.00					

รูปที่ ฉ 6-1 ต้นทุนการระเบิดแบบ PF0.6 ครั้งที่ 1 (PF0.6-1)

	Primary blasting			1st Blasting result		Secondary blasting	pattern	Drilling crawler		
	Burden (m)	1.60	Outrino	2nd Blasting	7.91%	Avg.lume size (m)	1.00	Drilling machine cost (8/m)		90
	Spacing (m)	2.90	Oversize	Hyd.breaker	4.09%	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		78.00%	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.60	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	75%	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
tern	Bench height (m)	4.85	Product		24%	Blasting agt.type	ANFO	Drilling cost (8/m)		156.675
Pat	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	5,6				2nd Blasting cost (8)	5,715.09	Backhoe		
	No.Hole/blast	17.00		Explosive				Cost (8/hr)	2,000.00	Cost (8)
	No.Cap#0	5.00		Cap#0 (8/Unit)	35.00			Preparea for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	12.00		Cap#Delay (8/kg)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	3,208.66
	Volume (cu.m/hole)	22.51	Prio	Hi Explosive (8/kg)	125.00			Prep.lump for hyd breaker (ton/hr)	50.00	4,065.58
	Volume (cu.m/blast)	382.68		Blasting agent (8/kg)	35.00			Hyd breaker (ton/hr)	20.00	10,163.96
	Tonnage (ton/blast)	1,014		Fuel (8/liter)	31.00					
e.	type	Emulsion	1st Blas	ting Explosive cost (8)	10,478.80			Total		42.22
solqe	Density (g/cc)	1.25						Blasting cost (8/ton)		42.22
-fs	Qty (kg/hole)	1.00		Labor						
Ŧ	Qty (%)	7.12	Quantity (men)	4.00					I
agt	type	ANFO	Avg cost (F	8/Marv/day)	450.00					
sting	Load density (kg/m)	3.60	Day/blast		1.00					I
Bla	Qty (kg/hole)	13.04	1st Bl	asting labor cost (8)	1,800.00					I
Let Black	the most (B)	26.027.01	Dend Di	lasting labor and (0)	1 800 00					

	Primary blasting			1st Blasting result		Secondary blasting patt	tern	Drilling crawle		
	Burden (m)	1.60	Oversize	2nd Blasting	3.13%	Avg.lume size (m)	1.00	Drilling machine cost (8/m)		90
	Spacing (m)	2.50	CALCENCE.	Hyd.breaker	1.69%	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		85.18%	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.60	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	75%	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
tern	Bench height (m)	4.85	Product		2496	Blasting agt.type	ANFO	Drilling cost (8/m)		156.675
Pat	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	6,7				2nd Blasting cost (8)	3,371.21	Backhoe		
	No.Hole/blast	20.00		Explosive				Cost (8/hr)	2,000.00	Cost (8)
	No.Cap#0	6.00		Cap#0 (8/Unit)	35.00			Prep.area for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	14.00		Cap#Delay (8/Unit)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	1,287.70
	Volume (cu.m/hole)	19.41	Price	Hi Explosive (8/kg)	125.00			Preplump for hyd breaker (ton/hr)	50.00	1,661.05
	Volume (cu.m/blast)	388.12		Blasting agent (8/kg)	35.00			Hyd breaker (ton/hr)	20.00	4,152.62
	Tonnage (ton/blast)	1,029		Fuel (8/liter)	31.00					
é	type	Emulsion	1st Blasti	ing Explosive cost (8)	14,728.00			Total		40.12
losiv	Density (g/cc)	1.25						Blasting cost (\$/ton)		40.12
e e	Qty (kg/hole)	1.00		Labor		Natural Rubber Stem Plug (8/Unit)	120			
Hig										
	Qty (%)	7.12	Quantity (i	men)	4.00					
agt	type	ANFO	Avg cost (I	8/Man/day)	450.00					
gui	Load density (kg/m)	3.60	Day/blast		1.00					
Blas	Obs (ka (bala)	12.04	1 et Pla	eting labor cost (0)	1 800 00					
	(cty (kg/note)	13.04	Ist bia	song abor cost (8)	1,000.00					
1st blast	ing cost (0)	33,162.23	2nd Bu	sting tabor cost (6)	1,800.00					

รูปที่ ฉ 7-1 ต้นทุนการระเบิดแบบ NRSP ครั้งที่ 1 (NRSP-1)

	Primary blasting			1st Blasting result		Secondary blasting patte	em	Drilling crawle	er	
	Burden (m)	1.60	Our	2nd Blasting	3.36%	Avg.lume size (m)	1.00	Drilling machine cost (8/m)		90
	Spacing (m)	2.50	Oversizer	Hyd.breaker	1.66%	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		84.98%	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.60	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	75%	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
tern	Bench height (m)	4.85	Product		24%	Blasting agt.type	ANFO	Drilling cost (8/m)		156.675
Pat	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	6,7				2nd Blasting cost (8)	3,486.66	Backhoe		
	No.Hole/blast	20.00		Explosive				Cost (8/hr)	2,000.00	Cost (8)
	No.Cap#0	6.00		Cap#0 (8/Unit)	35.00			Prep.area for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	14.00		Cap#Delay (8/Unit)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	1,382.32
	Volume (cum/hole)	19.41	-Frio	Hi Explosive (8/kg)	125.00			Preplump for hyd breaker (ton/hr)	50.00	1,719.67
	Volume (cum/blast)	388.12		Blasting agent (8/kg)	35.00			Hyd breaker (tori/hr)	20.00	4,299.19
	Tonnage (ton/blast)	1,029		Fuel (8/liter)	31.00					
e	type	Emulsion	1st Blasti	ng Explosive cost (8)	14,728.00			Total		40.39
hosh	Density (g/cc)	1.25						Blasting cost (\$/ton)		40.30
hey	Qty (kg/hole)	1.00		Labor		Natural Rubber Stern Plug (8/Unit)	120			
Hig	01- (01)	7.10	0		4.00					
	(20) (96)	7.1Z	Quantity (r	nen) Atas (dau)	4.00					
agt	type	ANTO	Avg cost (c	(wany day)	450.00					
sting	Load density (kg/m)	5.60	Day/Duist		1.00					
Blat	Qty (kg/hole)	13.04	1st Bla	sting labor cost (8)	1,800.00					
1st Blast	Ing cost (8)	33,762.25	2nd Bla	sting labor cost (8)	1,800.00					

รูปที่ ฉ 7-2 ต้นทุนการระเบิดแบบ NRSP ครั้งที่ 2 (NRSP-2)

	Primary blasting			1st Blasting result		Secondary blasting patt	iern	Drilling crawle	r	
	Burden (m)	1.60	Outering	2nd Blasting	2.68%	Avg.lume size (m)	1.00	Drilling machine cost (8/m)		90
	Spacing (m)	2.50	Oversize	Hyd.breaker	2.43%	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		84.89%	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.60	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rođ	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	7596	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
tern	Bench height (m)	4.85	Product		2496	Blasting agt.type	ANFO	Drilling cost (8/m)		156.675
Pat	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	6,7				2nd Blasting cost (8)	3,145.31	Backhoe		
	No.Hole/blast	20.00		Explosive				Cost (8/hr)	2,000.00	Cost(8)
	No.Cap#0	6.00		Cap#0 (8/Unit)	35.00			Prep.area for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	14.00	a.	Cap#Delay (8/Unit)	35.00			Preplump for 2nd blasting (ton/hr)	50.00	1,102.57
	Volume (cu.m/hole)	19.41	Prio	Hi Explosive (8/kg)	125.00			Preplump for hyd breaker (ton/hr)	50.00	1,826.64
	Volume (cu.m/blast)	388.12		Blasting agent (8/kg)	35.00			Hyd breaker (ton/hr)	20.00	4,566.60
	Tonnage (ton/blast)	1,029		Fuel (8/liter)	31.00					
é	type	Emulsion	1st Blasti	ing Explosive cost (8)	14,728.00			Total		40.31
plosiv	Density (g/cc)	1.25						Blasting cost (8/ton)		40.51
e L	Qty (kg/hole)	1.00		Labor		Natural Rubber Stem Plug (8/Unit)	120			
Hig										
	Qty (%)	7.12	Quantity (r	nen)	4.00					
ag	type	ANFO	Avg cost (6	3/Man/day)	450.00					
sting	Load density (kg/m)	3.60	Day/blast		1.00					
Bla	Qty (kg/hole)	13.04	1st Bla	sting labor cost (8)	1,800.00					
1st Blast	ing cost (8)	33,762.25	2nd Bla	isting labor cost (8)	1,800.00					

รูปที่ ฉ 7-3 ต้นทุนการระเบิดแบบ NRSP ครั้งที่ 3 (NRSP-3)

รูปที่ ฉ 8-3 ต้นทุนการระเบิดแบบ FLP ครั้งที่ 3 (FLP-3)

	Primary blasting		1st Blasting result			Secondary blasting pattern		Drilling craw		
	Burden (m)	1.60	Outerrise	2nd Blasting	2.92%	Avg.lume size (m)	1.00	Drilling machine cost (8/m	n	90
	Spacing (m)	2.50	Oversize	Hyd.breaker	2.27%	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		84.8196	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.60	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	75%	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
tern	Bench height (m)	4.85	Product		2496	Blasting agt.type	ANEO	Drilling cost (8/m)		156.675
Pat	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	6,7				2nd Blasting cost (8)	3,265.79	Backhoe		
	No.Hole/blast	20.00		Explosive				Cost (8/hr)	2,000.00	Cost (8)
	No.Cap#0	6.00		Cap#0 (8/Unit)	35.00			Prep.area for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	14.00		Cap#Delay(8/Unit)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	1,201.30
	Volume (cum/hole)	19.41	Pilo	Hi Explosive (8/kg)	125.00			Prep.lump for hyd breaker (ton/hr)	50.00	1,834.87
	Volume (cum/blast)	388.12		Blasting agent (B/kg)	35.00			Hyd breaker (ton/hr)	20.00	4,587.17
	Tonnage (ton/blast)	1,029		Fuel (8/liter)	31.00					
	type	Emulsion	1st Blas	ting Explosive cost (B)	12,728.00			Total		20 50
plosiv	Density (g/cc)	1.25						Blasting cost (\$/to	n)	38.50
e e	Qty (kg/hole)	1.00		Labor		Fresh Latex Plug (8/Unit)	20			
Ŧ	Qty (%)	7.12	Quantity (men)	4.00					
	type	ANFO	Avg cost (8/Man/day)	450.00					
Blasting agt	Load density (ky/m)	3.60	Day/blast		1.00					
	Qty (kg/hole)	13.04	1st Bl	asting labor cost (8)	1,800.00					
1st Blast	ing cost (8)	31,762.25	2nd Bl	asting labor cost (8)	1,800.00					

รูปที่ ฉ 8-2 ต้นทุนการระเบิดแบบ FLP ครั้งที่ 2 (FLP-2)

Delesson bloother		1st Blasting result					Delling environ			
Primary biasung	1.00		1st Blasting result	2.040/	Secondary blasting	pattern	Dritting crawle	er.	0.0	
Burden (m)	1.60	Oversize	2nd Blasung	3.0490	Avg.tume size trip	1.00	Dritting machine cost (6/m/	n-1	90	
Spacing (m)	2.50	Denselvent	Hyddorbarden	04.440	Avg.tume votume (co.m)	1.00	Consumpsion	Price	Life Unie (11)	
Sub driung (m)	0.50	Product		04.4170	No.note/tump	1.00	Puet	0.200.00	000.00	
Stemming (m)	1.00	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,500.00	800.00	
Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00	
Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00	
Hole angle (degree)	76.00	Oversize	Hyd.breaker	75%	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00	
Bench height (m)	4.85	Product		2496	Blasting agt.type	ANFO	Drilling cost (8/m)		156.675	
No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10				
No.Hole/Row	6,7				2nd Blasting cost (8)	3,727.61	Backhoe			
No.Hole/blast	20.00		Explosive				Cost (8/hr)	2,000.00	Cost (8)	
No.Cap#0	6.00		Cap#0 (8/Unit)	35.00			Prep.area for 1st blasting (hr/blast)	2.00	4,000.00	
No.Cap#Delay	14.00		Cap#Delay (8/Unit)	35.00			Prep.lump for 2nd blasting (ton/hr)	50.00	1,579.80	
Volume (cum/hole)	19.41	Price	Hi Explosive (8/kg)	125.00			Prep.lump for hyd breaker (ton/hr)	50.00	1,904.81	
Volume (cum/blast)	388.12		Blasting agent (8/kg)	35.00			Hyd breaker (ton/hr)	20.00	4,762.02	
Tonnage (ton/blast)	1,029		Fuel (8/liter)	31.00						
type	Emulsion	1st Blasti	ng Explosive cost (8)	12,728.00			Total		20.12	
Density (g/cc)	1.25						Blasting cost (\$/ton)		39.12	
Qty (kg/hole)	1.00		Labor		Fresh Latex Plug (8/Unit)	20				
Obv (96)	7.12	Quantity (r	men)	4.00						
hma	ANEC	Ann cost (i	8 /Marci /dawi	450.00						
Load density (ka(m)	3.60	Dav/blact	// Wally Gay/	1.00						
Load density (kg/m)	5.80	Day/Diast		1.00						
Qty (kg/hole)	13.04	1st Bla	sting labor cost (8)	1,800.00						
ing cost (8)	31,762.25	2nd Bla	isting labor cost (8)	1,800.00						
	Primary blasting Barden (m) Sach dillag (m) Sch dillag (m) Heide dispeter (mm) Heide dispeter (mm) Heide angle (daynee) Banch height (m) Nached Pilow Nached Pilo	Primary blasting Barden (m) 1.60 Spacing (m) 2.50 Sub difflag (m) 0.50 Ske difflag (m) 0.50 Ske difflag (m) 1.60 Hole direct (mm) 7.60 Barden (m) 5.50 Hole angle (degree) 7.60 Banch height (m) 4.85 Na.Flow 3.00 Na.Flow/Ploat 6.0 Na.Scap#0 6.00 Na.Cap#Delay 14.00 Volume (cum/Notat) 388.12 Tornege (tor/blast) 1.029 type Emulsion Demaily (grc2) 1.22 type ANFO Lad density(kg/m) 3.60 Qity (%p/hole) 1.304	Primary blasting Barden (m) 1.60 Spacing (m) 2.50 Sub diffling (m) 0.50 Product 1.60 Stab diffling (m) 1.60 Undersize 1.60 Hold englet (m) 76.00 Hold anglet (degree) 76.00 Product 4.85 Bench height (m) 4.85 Na.Flow 3.00 Na.Scape0 6.00 No.Scape0 6.00 No.Scape0 1.029 Volume (cum/bast) 1.029 Sype Emulsion Undersize 1.02 Oxf (bg/hola) 1.00 Oxf (bg/hola) 1.02 Oxf (bg/hola) 1.02 </th <th>Prinary blasting ist Blasting result Birden (m) 1.00 Spacing (m) 2.00 Sub dilling (m) 0.50 Sch dilling (m) 1.60 Hed einster (mm) 1.60 Hed einster (mm) 76.00 Hed einster (mm) 76.00 Hed einster (mm) 76.00 Dennheight (m) 4.85 Product Hydtbreaker Banch height (m) 4.85 Na.Fock/Blast 20.00 Kost/ke/Blast 20.00 Kost/ke/Blast 20.00 Kost/ke/Blast 20.00 Volume (cum/hole) 19.41 Volume (cum/hole) 10.02 Volume (cum/hole) 1.029 Volume (cum/hole) 1.030 Labor Chyl Mylwale Otyl (%) 7.12 <t< th=""><th>Primary blasting 1st Blasting result Barden (m) 2.00 Overrize 2nd Blasting 3.84% Spacing (m) 2.00 Overrize 2nd Blasting 3.84% Sub diffug (m) 0.50 Product 84.41% 3.84% Steb diffug (m) 0.50 Product 84.41% 3.84% Steb diffug (m) 1.60 Undersize 1.00% Hold englet (mn) 7.60 2nd Blasting result 1.00% Hold anglet (degree) 7.60 Oversize Hydbreaker 75% 2nd Blasting result 24% Na.Fock/Plast 20.00 Versize 19% Na.Fock/Plast 20.00 Explosive (6/km) 35.00 Na.Scap#Delay 14.00 Cap#Delay (6/Lntit) 35.00 Volume (cum/hold) 35.00 Volume (cum/hold) 35.00 1.02 Evaluating agent (6/kg) 33.00 Volume (cum/hold) 1.00 1.02 Evaluating agent (6/kg) 33.00 1.02 Volume (cum/hold) 1.02.00 1.02 Volume (cum/hold) 1.00 1.00 Voly (6/g/hole)</th><th>Primary blasting ist Blasting result Secondary blasting Birden (m) 1.00 Overrize 21.04 Blasting 3.84% Anglume size (m) Specing (m) 2.50 Hydtbreaker 1.75% Anglume size (m) Sch diffus (m) 0.50 Product 84.41% Nachzel/nump Stemming (m) 1.60 Undersize 1.09% Hole depth (m) Hole depth (m) 5.50 2nd Blasting result He explosive by B Hole angle (degree) 7.600 Overrize 14% Blasting result He explosive dy: Big/hole) Banch height (m) 4.85 Product 24% Blasting agt/type Blasting agt/type NacHoch/blast 20.00 Explosive 1.06 Blasting agt(B/Uhole) 2.04 Blasting agt.06/hole) NacHoch/blast 20.00 Explosive (B/Uhol) 55.00 S5.00 NacHoch/blast 2.00 Volume (cum/hole) 1.94.1 GrapHoley (B/Uhol) 35.00 Yole (B/Uhol) 25.00 Volume (cum/hole) 1.92.9 Fuel(Orl/Uhol) 5</th><th>Primary blasting ist Blasting result Secondary blasting pattern Burden (m) 2.00 2.01 Blasting 3.846 Aleglume sket (m) 1.00 Sub dilling (m) 0.50 Product 84.416 Nakylume volume (cum) 1.00 Steh dilling (m) 0.50 Product 84.416 Nakylume volume (cum) 1.00 Steh dilling (m) 1.60 Undersize 1.00 Hold depth (m) 0.50 Steh dilling (m) 5.50 2nd Blasting result He explosive type Emulsion Hed elight (m) 5.50 2nd Blasting result He explosive type Emulsion Nachse/Plast 2000 Certize 1.00 Easting agt.(bype) 0.10 Nachse/Plast 2000 Explosive 1.00 Stendersite 0.10 Nachse/Plast 2000 Explosive 1.01 3.500 Nachse/Plast 0.010 Nachse/Plast 2000 Explosive (fi/ns) 1.500 Yad Blasting result (fi/ns) 3.500 Nachse/Plast 3.00 Volarme (curr/robat)</th><th>Prinary blastingist Blasting resultSecondary blasting patternDrilling cawleBirden (m)2.50Overrize2.04 Biatring3.84%Alg.Lme skelm (m)1.00Drilling cawleSub dilling (m)0.50Product.84.41%Nac/Lme volume (cum)1.00ConsumptionSteh dilling (m)1.60Undersize1.06%Hold digth (m)0.50Stark digkerSteh dilling (m)5.502nd Blasting resultHe explosive typeEmulsionCouglingHold digth (m)5.502nd Blasting resultHe explosive typeEmulsionCouglingHold digth (m)4.85Product24%Blasting resultHe explosive typeCouglingNachar/Hold4.85Product24%Blasting resultHe explosive typeCouglingNachar/Hold4.85Product24%Blasting resultBlasting resultCouglingNachar/Hold4.85Product24%Blasting resultCouglingCouglingNachar/Hold4.00CouglingCouglingCouglingCouglingNachar/Hold4.00CouglingCouglingCouglingCouglingNachar/Hold1.00CapeDosiveCouglingCouglingNachar/Hold1.00CapeDosiveCouglingCouglingNachar/Hold1.00CapeDosiveSoonCouglingNachar/Hold1.00CapeDosive1.272.00CouglingNachar/Hold1.02CapeDosiveSoonPrepLump</th><th>Primary blasting1st Blasting resultSecondary blasting patternDrilling rankerBarden (m)1.00Ourrize200Construct3.84%Arg Lume size (m)1.00Deliling rankere (st (3/m)Stab dilling (m)0.50Product84.15%Nachole/Lump1.00Fuel31.00Stab dilling (m)1.60Undersize1.00%Fuel31.00Fuel31.00Stemming (m)1.60Undersize1.00%Fuel9.300.00Stamming (m)0.406.0d9.000.00Hed dinget (mm)7.60Oversize2nd Blasting resultHe exploate typeEmulianCoupling1.900.00Beach (m)4.552nd Blasting resultHe exploate typeEmulianCoupling1.900.00Beach (m)4.552nd Blasting resultHe exploate typeEmulianCoupling1.900.00Beach (m)4.552nd Blasting resultHe exploate typeAHOBill4.300.00Beach (m)4.552nd Blasting resultHe exploate typeAHODiffiling cost (8/m)1.900.00Nachour/blait2.00ExplosiveNachour/blait3.727.65BachneCost (8/m)Nachour/blait2.00Cap#IDelay (H/mit)35.00Prepares for 14 blasting for/that)2.000Nachour/blait1.02Fuel (M/mit)35.00Prepares for 14 blasting for/that)2.000Nachour/blait1.02Fuel (N/mit)35.00Prepares for 14 blasting for/that)2.000Nacho</th></t<></th>	Prinary blasting ist Blasting result Birden (m) 1.00 Spacing (m) 2.00 Sub dilling (m) 0.50 Sch dilling (m) 1.60 Hed einster (mm) 1.60 Hed einster (mm) 76.00 Hed einster (mm) 76.00 Hed einster (mm) 76.00 Dennheight (m) 4.85 Product Hydtbreaker Banch height (m) 4.85 Na.Fock/Blast 20.00 Kost/ke/Blast 20.00 Kost/ke/Blast 20.00 Kost/ke/Blast 20.00 Volume (cum/hole) 19.41 Volume (cum/hole) 10.02 Volume (cum/hole) 1.029 Volume (cum/hole) 1.030 Labor Chyl Mylwale Otyl (%) 7.12 <t< th=""><th>Primary blasting 1st Blasting result Barden (m) 2.00 Overrize 2nd Blasting 3.84% Spacing (m) 2.00 Overrize 2nd Blasting 3.84% Sub diffug (m) 0.50 Product 84.41% 3.84% Steb diffug (m) 0.50 Product 84.41% 3.84% Steb diffug (m) 1.60 Undersize 1.00% Hold englet (mn) 7.60 2nd Blasting result 1.00% Hold anglet (degree) 7.60 Oversize Hydbreaker 75% 2nd Blasting result 24% Na.Fock/Plast 20.00 Versize 19% Na.Fock/Plast 20.00 Explosive (6/km) 35.00 Na.Scap#Delay 14.00 Cap#Delay (6/Lntit) 35.00 Volume (cum/hold) 35.00 Volume (cum/hold) 35.00 1.02 Evaluating agent (6/kg) 33.00 Volume (cum/hold) 1.00 1.02 Evaluating agent (6/kg) 33.00 1.02 Volume (cum/hold) 1.02.00 1.02 Volume (cum/hold) 1.00 1.00 Voly (6/g/hole)</th><th>Primary blasting ist Blasting result Secondary blasting Birden (m) 1.00 Overrize 21.04 Blasting 3.84% Anglume size (m) Specing (m) 2.50 Hydtbreaker 1.75% Anglume size (m) Sch diffus (m) 0.50 Product 84.41% Nachzel/nump Stemming (m) 1.60 Undersize 1.09% Hole depth (m) Hole depth (m) 5.50 2nd Blasting result He explosive by B Hole angle (degree) 7.600 Overrize 14% Blasting result He explosive dy: Big/hole) Banch height (m) 4.85 Product 24% Blasting agt/type Blasting agt/type NacHoch/blast 20.00 Explosive 1.06 Blasting agt(B/Uhole) 2.04 Blasting agt.06/hole) NacHoch/blast 20.00 Explosive (B/Uhol) 55.00 S5.00 NacHoch/blast 2.00 Volume (cum/hole) 1.94.1 GrapHoley (B/Uhol) 35.00 Yole (B/Uhol) 25.00 Volume (cum/hole) 1.92.9 Fuel(Orl/Uhol) 5</th><th>Primary blasting ist Blasting result Secondary blasting pattern Burden (m) 2.00 2.01 Blasting 3.846 Aleglume sket (m) 1.00 Sub dilling (m) 0.50 Product 84.416 Nakylume volume (cum) 1.00 Steh dilling (m) 0.50 Product 84.416 Nakylume volume (cum) 1.00 Steh dilling (m) 1.60 Undersize 1.00 Hold depth (m) 0.50 Steh dilling (m) 5.50 2nd Blasting result He explosive type Emulsion Hed elight (m) 5.50 2nd Blasting result He explosive type Emulsion Nachse/Plast 2000 Certize 1.00 Easting agt.(bype) 0.10 Nachse/Plast 2000 Explosive 1.00 Stendersite 0.10 Nachse/Plast 2000 Explosive 1.01 3.500 Nachse/Plast 0.010 Nachse/Plast 2000 Explosive (fi/ns) 1.500 Yad Blasting result (fi/ns) 3.500 Nachse/Plast 3.00 Volarme (curr/robat)</th><th>Prinary blastingist Blasting resultSecondary blasting patternDrilling cawleBirden (m)2.50Overrize2.04 Biatring3.84%Alg.Lme skelm (m)1.00Drilling cawleSub dilling (m)0.50Product.84.41%Nac/Lme volume (cum)1.00ConsumptionSteh dilling (m)1.60Undersize1.06%Hold digth (m)0.50Stark digkerSteh dilling (m)5.502nd Blasting resultHe explosive typeEmulsionCouglingHold digth (m)5.502nd Blasting resultHe explosive typeEmulsionCouglingHold digth (m)4.85Product24%Blasting resultHe explosive typeCouglingNachar/Hold4.85Product24%Blasting resultHe explosive typeCouglingNachar/Hold4.85Product24%Blasting resultBlasting resultCouglingNachar/Hold4.85Product24%Blasting resultCouglingCouglingNachar/Hold4.00CouglingCouglingCouglingCouglingNachar/Hold4.00CouglingCouglingCouglingCouglingNachar/Hold1.00CapeDosiveCouglingCouglingNachar/Hold1.00CapeDosiveCouglingCouglingNachar/Hold1.00CapeDosiveSoonCouglingNachar/Hold1.00CapeDosive1.272.00CouglingNachar/Hold1.02CapeDosiveSoonPrepLump</th><th>Primary blasting1st Blasting resultSecondary blasting patternDrilling rankerBarden (m)1.00Ourrize200Construct3.84%Arg Lume size (m)1.00Deliling rankere (st (3/m)Stab dilling (m)0.50Product84.15%Nachole/Lump1.00Fuel31.00Stab dilling (m)1.60Undersize1.00%Fuel31.00Fuel31.00Stemming (m)1.60Undersize1.00%Fuel9.300.00Stamming (m)0.406.0d9.000.00Hed dinget (mm)7.60Oversize2nd Blasting resultHe exploate typeEmulianCoupling1.900.00Beach (m)4.552nd Blasting resultHe exploate typeEmulianCoupling1.900.00Beach (m)4.552nd Blasting resultHe exploate typeEmulianCoupling1.900.00Beach (m)4.552nd Blasting resultHe exploate typeAHOBill4.300.00Beach (m)4.552nd Blasting resultHe exploate typeAHODiffiling cost (8/m)1.900.00Nachour/blait2.00ExplosiveNachour/blait3.727.65BachneCost (8/m)Nachour/blait2.00Cap#IDelay (H/mit)35.00Prepares for 14 blasting for/that)2.000Nachour/blait1.02Fuel (M/mit)35.00Prepares for 14 blasting for/that)2.000Nachour/blait1.02Fuel (N/mit)35.00Prepares for 14 blasting for/that)2.000Nacho</th></t<>	Primary blasting 1st Blasting result Barden (m) 2.00 Overrize 2nd Blasting 3.84% Spacing (m) 2.00 Overrize 2nd Blasting 3.84% Sub diffug (m) 0.50 Product 84.41% 3.84% Steb diffug (m) 0.50 Product 84.41% 3.84% Steb diffug (m) 1.60 Undersize 1.00% Hold englet (mn) 7.60 2nd Blasting result 1.00% Hold anglet (degree) 7.60 Oversize Hydbreaker 75% 2nd Blasting result 24% Na.Fock/Plast 20.00 Versize 19% Na.Fock/Plast 20.00 Explosive (6/km) 35.00 Na.Scap#Delay 14.00 Cap#Delay (6/Lntit) 35.00 Volume (cum/hold) 35.00 Volume (cum/hold) 35.00 1.02 Evaluating agent (6/kg) 33.00 Volume (cum/hold) 1.00 1.02 Evaluating agent (6/kg) 33.00 1.02 Volume (cum/hold) 1.02.00 1.02 Volume (cum/hold) 1.00 1.00 Voly (6/g/hole)	Primary blasting ist Blasting result Secondary blasting Birden (m) 1.00 Overrize 21.04 Blasting 3.84% Anglume size (m) Specing (m) 2.50 Hydtbreaker 1.75% Anglume size (m) Sch diffus (m) 0.50 Product 84.41% Nachzel/nump Stemming (m) 1.60 Undersize 1.09% Hole depth (m) Hole depth (m) 5.50 2nd Blasting result He explosive by B Hole angle (degree) 7.600 Overrize 14% Blasting result He explosive dy: Big/hole) Banch height (m) 4.85 Product 24% Blasting agt/type Blasting agt/type NacHoch/blast 20.00 Explosive 1.06 Blasting agt(B/Uhole) 2.04 Blasting agt.06/hole) NacHoch/blast 20.00 Explosive (B/Uhol) 55.00 S5.00 NacHoch/blast 2.00 Volume (cum/hole) 1.94.1 GrapHoley (B/Uhol) 35.00 Yole (B/Uhol) 25.00 Volume (cum/hole) 1.92.9 Fuel(Orl/Uhol) 5	Primary blasting ist Blasting result Secondary blasting pattern Burden (m) 2.00 2.01 Blasting 3.846 Aleglume sket (m) 1.00 Sub dilling (m) 0.50 Product 84.416 Nakylume volume (cum) 1.00 Steh dilling (m) 0.50 Product 84.416 Nakylume volume (cum) 1.00 Steh dilling (m) 1.60 Undersize 1.00 Hold depth (m) 0.50 Steh dilling (m) 5.50 2nd Blasting result He explosive type Emulsion Hed elight (m) 5.50 2nd Blasting result He explosive type Emulsion Nachse/Plast 2000 Certize 1.00 Easting agt.(bype) 0.10 Nachse/Plast 2000 Explosive 1.00 Stendersite 0.10 Nachse/Plast 2000 Explosive 1.01 3.500 Nachse/Plast 0.010 Nachse/Plast 2000 Explosive (fi/ns) 1.500 Yad Blasting result (fi/ns) 3.500 Nachse/Plast 3.00 Volarme (curr/robat)	Prinary blastingist Blasting resultSecondary blasting patternDrilling cawleBirden (m)2.50Overrize2.04 Biatring3.84%Alg.Lme skelm (m)1.00Drilling cawleSub dilling (m)0.50Product.84.41%Nac/Lme volume (cum)1.00ConsumptionSteh dilling (m)1.60Undersize1.06%Hold digth (m)0.50Stark digkerSteh dilling (m)5.502nd Blasting resultHe explosive typeEmulsionCouglingHold digth (m)5.502nd Blasting resultHe explosive typeEmulsionCouglingHold digth (m)4.85Product24%Blasting resultHe explosive typeCouglingNachar/Hold4.85Product24%Blasting resultHe explosive typeCouglingNachar/Hold4.85Product24%Blasting resultBlasting resultCouglingNachar/Hold4.85Product24%Blasting resultCouglingCouglingNachar/Hold4.00CouglingCouglingCouglingCouglingNachar/Hold4.00CouglingCouglingCouglingCouglingNachar/Hold1.00CapeDosiveCouglingCouglingNachar/Hold1.00CapeDosiveCouglingCouglingNachar/Hold1.00CapeDosiveSoonCouglingNachar/Hold1.00CapeDosive1.272.00CouglingNachar/Hold1.02CapeDosiveSoonPrepLump	Primary blasting1st Blasting resultSecondary blasting patternDrilling rankerBarden (m)1.00Ourrize200Construct3.84%Arg Lume size (m)1.00Deliling rankere (st (3/m)Stab dilling (m)0.50Product84.15%Nachole/Lump1.00Fuel31.00Stab dilling (m)1.60Undersize1.00%Fuel31.00Fuel31.00Stemming (m)1.60Undersize1.00%Fuel9.300.00Stamming (m)0.406.0d9.000.00Hed dinget (mm)7.60Oversize2nd Blasting resultHe exploate typeEmulianCoupling1.900.00Beach (m)4.552nd Blasting resultHe exploate typeEmulianCoupling1.900.00Beach (m)4.552nd Blasting resultHe exploate typeEmulianCoupling1.900.00Beach (m)4.552nd Blasting resultHe exploate typeAHOBill4.300.00Beach (m)4.552nd Blasting resultHe exploate typeAHODiffiling cost (8/m)1.900.00Nachour/blait2.00ExplosiveNachour/blait3.727.65BachneCost (8/m)Nachour/blait2.00Cap#IDelay (H/mit)35.00Prepares for 14 blasting for/that)2.000Nachour/blait1.02Fuel (M/mit)35.00Prepares for 14 blasting for/that)2.000Nachour/blait1.02Fuel (N/mit)35.00Prepares for 14 blasting for/that)2.000Nacho	

รูปที่ ฉ 8-1 ต้นทุนการระเบิดแบบ FLP ครั้งที่ 1 (FLP-1)

Primary blasting		1st Blasting result			Secondary blasting pattern		Drilling crawler			
	Burden (m)	1.60	Our	2nd Blasting	3.18%	Avg.lume size (m)	1.00	Drilling machine cost (8/m)	90
	Spacing (m)	2.50	Oversize	Hyd.breaker	2.17%	Avg.lume volume (cu.m)	1.00	Consumpsion	Price	Life time (m)
	Sub drilling (m)	0.50	Product		84.65%	No.hole/lump	1.00	Fuel	31.00	1.25
	Stemming (m)	1.60	Undersize		1.00%	Hole depth (m)	0.50	Shank adapter	9,300.00	800.00
	Hole dimeter (mm)	76.00				Stemming (m)	0.40	Rod	9,000.00	800.00
	Hole depth (m)	5.50		2nd Blasting result		Hi explosive type	Emulsion	Coupling	1,900.00	800.00
	Hole angle (degree)	76.00	Oversize	Hyd.breaker	7596	Hi explosive qty. (kg/hole)	0.10	Bit	4,300.00	800.00
ern	Bench height (m)	4.85	Product		2496	Blasting agt.type	ANFO	Drilling cost (8/m)		156.675
Patt	No.Row	3.00	Undersize		196	Blasting agt. (kg/hole)	0.10			
	No.Hole/Row	6,7				2nd Blasting cost (8)	3,396.30	30 Backhoe		
	No.Hole/blast	20.00		Explosive				Cost (8/hr)	2,000.00	Cost (8)
	No.Cap#0	6.00		Cap#0 (8/Unit)	35.00			Prep.area for 1st blasting (hr/blast)	2.00	4,000.00
	No.Cap#Delay	14.00	Price	Cap#Delay (8/Unit)	35.00			Preplump for 2nd blasting (ton/hr)	50.00	1,308.27
	Volume (cum/hole)	19.41		Hi Explosive (θ/kg)	125.00			Preplump for hyd breaker (ton/hr)	50.00	1,873.95
	Volume (cum/blast)	388.12		Blasting agent (8/kg)	35.00			Hyd breaker (tori/hr)	20.00	4,684.88
	Tonnage (ton/blast)	1,029		Fuel (8/liter)	31.00					
	type	Emulsion	1st Blasting Explosive cost (8)		12,728.00			Total		
visolo	Density (g/cc)	1.25						Blasting cost (8/ton)	38.72
ba c	Qty (kg/hole)	1.00		Labor		Fresh Latex Plug (8/Unit)	20	-		
High										
	Qty (96)	7.12	Quantity (men)		4.00					
agt	type	ANFO	Avg cost (8/Man/day)	450.00					
gui	Load density (kg/m)	3.60	Day/blast		1.00					
Blast										
	Qty (kg/hole)	13.04	1st Bla	sting labor cost (8)	1,800.00					

ภาคผนวก ช

บทความวิจัยที่ได้นำเสนอและได้รับการตีพิมพ์

International Journal of Engineering Trends and Technology ISSN: 2231-5381 / https://doi.org/10.14445/22315381/IJETT-V71I4P226

Volume 71 Issue 4, 299-308, April 2023 © 2023 Seventh Sense Research Group®

Original Article

A Feasibility Study of using Natural Rubber Latex to Increase Blast Stemming Efficiency

Thawisak Thinpakphanang¹, Phongpat Sontamino², Vishnu Rachpech³

^{1,2,3}Department of Mining and Materials Engineering, Prince of Songkla University, Songkhla, Thailand.

²Corresponding Author : phongpat.s@psu.ac.th

Received: 23 February 2023 Revised: 02 April 2023 Accepted: 12 April 2023 Published: 25 April 2023

Abstract - Today's mining industry still needs mining blasting to grow and provide enough raw minerals for various industrial uses. It is essential to identify the blasting and explosion stages. Using stemming plugs in blast holes will directly influence rock fractures, ground vibration, air blast, noise, fly rock, dust, and fume. This study aimed to explore the viability of using natural rubber latex to improve blast-stemming efficiency. Testing was done at the feldspar mine in Nakhon Si Thammarat province, Thailand. The performance was evaluated using rock image software to compare the distribution of rock sizes. In conclusion, the preliminary investigation revealed that blasting latex-filled holes with conventional blasting procedures at d20, d50, and d80. The rock achieved size distribution values of d20, d50, and d80, with conventional methods at 2.31, 6.24, and 12.60 inches, respectively. While using natural rubber latex was found in d20, d50, and d80 at 2.05, 5.68, and 10.63 inches, which proportionally represented a lesser proportion of 11%, 9%, and 16% of the average size. It also found that the oversize was less than typical, with lower ground vibration and fly rock.

Keywords - Natural rubber latex, Size distribution, Blasting, Rock image software, Stemming.

1. Introduction

Currently, there are many techniques of blast stemming in mining by plugging stem plugs such as plastic cones, rubber balls, rubber plugs, or cement mixed with water to mix and pour into blast holes [1]-[4]. Using ANFO primary explosives [5], [6] and together with a stem plug is becoming a popular method because, in many studies, it has been found that the use of a stem plug can increase the blasting efficiency of rock fragmentation and also reduce the problem of flying rock, repeated blasting (2nd blasting), and environmental problems. According to the economic analysis results, using stem plugs can also reduce the cost of mine blasting

Natural rubber latex has been known as a polymer [7]. It has several remarkable qualities [8], including good mechanical characteristics, elasticity, toughness, resistance to abrasion, and the capacity to cluster into different shapes. It sticks effectively to other materials [9] and can agglomerate into the proper forms. Therefore, it is popular to apply it to various engineering applications, such as civil engineering [10]-[14], chemical engineering [15]-[19], and mining engineering [1]-[3]. In addition, most mining operations nowadays use blasting methods to break down the size of minerals and rocks to be utilised. It is necessary to use increased blast pressure to increase the efficiency of stemming the blast hole or find different methods of

stemming materials. Due to the improper stemming of the blast hole, fly rock and dust were generated [20].

2. Materials and Methodology

2.1. Study Area

This research recognised the significance of researching the characteristics of natural rubber latex and blast stemming in mining activity. A feasibility study was carried out to improve the effectiveness of blast stemming using natural rubber latex preparatory. Performance is compared by measuring the distribution of rock from the blast [21] using photographic size distribution analysis with the Rock Image software; it is a fast and low-cost digital image processing method. The testing was done in the feldspar mine [28] of Sinluang Co., Ltd., located in Noppitam District. Nakhon Si Thammarat Province, Thailand. Geographic coordinates are 8° 47' 31.995" N latitude and 99° 43' 47.358" E longitude. A view of the study area is highlighted in Fig. 1.

2.2. Raw Materials

- 2.2.1. Natural rubber latex 2.2.2. Acetic acid
- 2.2.3. Plastic bottle
- 2.2.4. Explosive 2.2.5. Measuring tape
- 2.2.6. Ball

EV INC INC This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Phongpat Sontamino et al. / IJETT, 71(4), 299-308, 2023

2.2.7. Camera 2.2.8. Rock image software

2.3. Research Methodology The explosion effect was studied by using ANFO. To compare the proportion of natural rubber latex mixed with the normal blast hole stemming. The size distribution of rocks after blasting was analysed using rock image software in Fig. 2.

2.3.1. Blast holes were drilled to prepare for the experiment according to the blasting pattern [23] in Table 1 and Fig. 3.

Table 1. Experimental blasting pattern				
Blasting pattern	Value			
Burden (m)	1.6			
Spacing (m)	2.2			
Hole diameter (in)	3.0			
Bench height (m)	5.0			
Hole length (m)	5.5			
Explosive column height (m)	3.9			
Stemming height (m)	1.6			
Sub-drilling (m)	0.5			
Explosive factor (kg/m ³)	0.8			

Fig. 1 Study area of feldspar mine

Blasting pattern design	Using natural rubber latex Blasting			Processed by rock image software
	Original		Take picture	

Fig. 2 Design Methodology

Phongpat Sontamino et al. / IJETT, 71(4), 299-308, 2023

Burden (B), Spacing (S), Hole diameter (D), Bench height (BH), Hole length (L), Explosive column height (C), Stemming height (SL), Sub-drilling (SD)

Fig. 3 Blast design

2.3.2. Case 1 Covers a Hole with Drill Cutting as Usual.

2.3.3. Case 2 covers a hole with drill cutting, reinforces it with natural rubber latex, covers the rest of the hole with drill cutting, and has a design instead of the actual blast hole (Fig.4).

Fig. 4 (a) Pattern original and (b) Pattern using natural rubber latex.

Phongpat Sontamino et al. / IJETT, 71(4), 299-308, 2023

Fig. 5 Stemming materia

2.3.4. High explosives, ANFO and drill cutting are used in the original explosions to cover the blast hole (Fig 6).

(b) Fig. 6 Original blasting process (a) Charge high explosives and ANFO. (b) Cover the blast hole with drill cutting

2.3.5. Using natural rubber latex for additional stemming from filling the hole. Mix 500 mL of natural rubber latex with 50 mL of 3% acetic acid to make the latex coagulates faster [24]. (Fig 7).

Load the high explosives and ANFO, then begin covering the holes with a drill cutting about half the length of the stemming. Then, mix natural rubber latex and acetic acid. Shake well before pouring into the hole. Finally, use drill cutting to cover the remainder of the hole (Fig 8).

2.3.6. Detonate using high explosives and ANFO.

2.3.7. Put two balls as reference objects on the pile of rocks $\cite{25}-\cite{27}$ (Fig 9).

2.3.8. Take photos of a whole rock pile. Analyse the rock size distribution using rock image software.

Following the original blasting and natural rubber blasting, the rock image software was used to estimate the average rock size distribution using images of the pile of rocks (Fig 10).

Rock imaging software was used to photograph the rock pile after the explosion and delineate its edges for processing, and two 24-inch balls were used as the scale. (Fig 11).

The boundaries of the objects in the image are processed using rock image software. We entered by comparing the pixels from the ball scale in the figure with the pile of rocks and then with the sieve size, then converting the result to the number of pixels of each sieve size, giving an estimate of the cumulative passing rate [21], [25]-[27]. (Fig 12).

Fig. 7 Stemming plug (natural rubber latex).

Phongpat Sontamino et al. / IJETT, 71(4), 299-308, 2023

Fig. 8 Natural rubber latex blasting process (a) Charge high explosives and ANFO, (b) Load the drill cutting into the blast hole, (c) Combine natural latex with acid in a bottle, and shake before pouring into the blast hole, (d) Cover the blast hole with drill cutting.

Phongpat Sontamino et al. / IJETT, 71(4), 299-308, 2023

Phongpat Sontamino et al. / IJETT, 71(4), 299-308, 2023

3. Results and Discussion

100.00 90.00 80.00

70.00

60.00 %Passing

50.00

40.00

30.00

20.00

10.00

0.00

The size distribution of rock piles, the original blasting in Table 2 and Fig 13, and the use of natural rubber latex in Table 3 and Fig 14.

Table 2. Original blasting analysis results.					
Size (in)	Cumula	Avenage			
Size (III)	Test 1	Test 2	Test 3	Average	
36	100.00	100.00	100.00	100.00	
32	100.00	100.00	100.00	100.00	
28	100.00	100.00	100.00	100.00	
24	90.77	96.87	97.07	94.90	
20	89.97	92.95	96.81	93.24	
16	87.15	85.29	91.22	87.89	
12	81.21	74.2	84.76	80.06	
8	68.59	53.01	61.28	60.96	
4	40.88	28.05	34.49	34.47	
2	22.33	15.34	17.09	18.25	

Fig. 14 Size distribution analysis using natural rubber latex methods.

Table 4. The size distribution of rock d20, d50, and d80.						
Value	Original blasting (in)	Natural rubber latex blasting (in)				
d20	2.31	2.05				
d50	6.24	5.68				
d80	12.60	10.63				

100

Without latex

10

Size (in)

Table 5. Natural Tubber fatex brasuitg analysis results.						
Sine (in)	Cumula					
Size (in)	Test 4	Test 5	Test 6	Ачегаде		
36	100.00	100.00	100.00	100.00		
32	100.00	100.00	100.00	100.00		
28	100.00	100.00	100.00	100.00		
24	100.00	95.47	94.58	96.68		
20	98.06	92.3	94.75	95.04		
16	95.79	87.69	87.71	90.40		
12	85.07	81.46	84.68	83.74		
8	71.49	69.8	59.7	67.00		
4	38.69	37.93	34.52	37.05		
2	21.98	15.98	19.86	19.27		

14

Fig. 16 Size of d20, d50, and d80 using original methods.

Phongpat Sontamino et al. / IJETT, 71(4), 299-308, 2023

Fig. 18 Size of d20, d50, and d80 comparison result.

A comparison of the rock distribution during an original condition and natural rubber latex condition found that at d20, d50, and d80, the rock size was reduced by 11, 9, and 16% than the original blasting condition, respectively.

(b) Fig. 20 (a) Rockpile of original blasting, and (b) Rockpile using natural rubber latex blasting.

4. Conclusion

The feasibility study of natural rubber latex was compared to the original blasting results by controlling the blasting pattern. The images were captured and analysed using

rock image software. Rubber latex was discovered to be potentially useful. The size distribution of rock by original blasting, d20, d50, and d80, was equal to 2.31, 6.24, and 12.60 inches, respectively, and the natural rubber latex blasting at d20, d50, and d80 was 2.05, 5.68, and 10.63 inches. When comparing results, it was found that natural rubber latex had size distribution d20, d50, and d80 reduced than original blasting at 0.26, 0.56, and 1.97 inches, representing 11%, 9%, and 16%, respectively. Furthermore, the results show that using natural rubber latex can help reduce vibration, fly rock, and the volume of oversize rock by about 35% compared to the original method. However, the problem of natural rubber latex hardening relatively quickly when exposed to air and releasing water from natural rubber latex coagulation reactions is still a challenge in progress.

Acknowledgments

The Faculty of Engineering financially supported this research; the Graduate Engineering Scholarship, Prince of Songkla University [grant no. ENG6410120006S]. The author would also like to thank Sinluang Company and the Department of Mining and Materials Engineering, Faculty of Engineering, Prince of Songkla University, for all their support.

References

- Rehman, A. Ur, M. Z. Emad, and M. U. Khan, "Improving the Environmental and Economic Aspects of Blasting in Surface Mining by Using Stemming Plugs," *Journal of the Southern African Institute of Mining and Metallurgy*, vol. 121, no. 7, pp. 369-377, 2021. [Crossref] [Google Scholar] [Publisher Link]
- [2] P. Bunnaul et al., Stemplug Blasting Application At Egat-Mae Moh Lignite Mine, Thailand.
- [3] Bs. Choudhary, and A. Agrawal, "Minimization of Blast-Induced Hazards and Efficient Utilization of Blast Energy by Implementing a Novel Stemming Plug System for Eco-Friendly Blasting in Open Pit Mines," *Natural Resources Research*, pp. 1-18, 2022. [Crossref] [Google Scholar] [Publisher Link]
- [4] A. Bhaskar et al., "Application of Plastic Funnel in Blast Hole to Improve Blasting Efficiency of Opencast Coal Mine at West Bokaro," Coal Operators' Conference, pp. 345-351, 2019. [Google Scholar] [Publisher Link]
- [5] S.I. Jackson, "The Dependence of Ammonium-Nitrate Fuel-Oil (Anfo) Detonation on Confinement," Proceedings of the Combustion Institute, vol. 36, no. 2, pp. 2791-2798, 2017. [Crossref] [Google Scholar] [Publisher Link]
- [6] E.G. Mahadevan, Ammonium Nitrate Explosives for Civil Applications: Slurries, Emulsions and Ammonium Nitrate Fuel Oils, John Wiley & Sons, 2013. Flex Chip Signal Processor (Mc68175/D), Motorola, vol. 15, no. 3, pp. 250-275, 1996. [CrossRef] [Google Scholar] [Publisher Link]
- [7] I. Franta, Elastomers and Rubber Compounding Materials, 1st Edition New York: Elsevier, vol. 1, pp. 33-36, 2012. [Google Scholar]
 [Publisher Link]
- [8] Agricultural Research Development Agency, 2022. [Online]. Available: https://www.arda.or.th/en/
- J.W. Ng, N. Othman, and N.H. Yusof, "Various Coagulation Techniques and Their Impacts towards the Properties of Natural Rubber Latex From Hevea Brasiliensis—A Comprehensive Review Related to Tyre Application," *Industrial Crops and Products*, vol. 181, pp. 114835, 2022.
 [Crossref] [Google Scholar] [Publisher Link]
- [10] A. Buritatum et al, "Durability Improvement of Cement Stabilized Pavement Base Using Natural Rubber Latex," *Transportation Geotechnics*, vol. 28, p. 100518, 2021. [Crossref] [Google Scholar] [Publisher Link]
- [11] J.V. Linch Darones et al., "Discussion of "Mechanical Strength Improvement of Cement-Stabilized Soil Using Natural Rubber Latex for Pavement Base Applications," *Journal of Materials in Civil Engineering*, vol. 34, no. 1, p. 07021018, 2022. [Google Scholar] [Publisher Link]
- [12] B. Muhammad et al., "Elastomeric Effect of Natural Rubber Latex on Compressive Strength of Concrete at High Temperatures," Journal of Materials in Civil Engineering, vol. 23, no. 12, pp. 1697-1702, 2011. [Google Scholar] [Publisher Link]
- [13] A. Suddeepong et al., "Natural Rubber Latex-Modified Concrete Pavements: Evaluation and Design Approach," Journal of Materials in Civil Engineering, vol. 34, no. 9, p. 04022215, 2022. [Google Scholar] [Publisher Link]
- [14] Badrinarayan Rath et al., "Performance of Natural Rubber Latex on Calcined Clay-Based Glass Fiber-Reinforced Geopolymer Concrete," *Asian Journal of Civil Engineering*, vol. 21, no. 6, pp.1051-1066, 2020. [Crossref] [Google Scholar] [Publisher Link]
 [15] Praewpakun Sintharm et al., "Bacterial Cellulose Reinforced with Skim/Fresh Natural Rubber Latex for Improved Mechanical, Chemical and
- Dielectric Properties, "*Cellulose*, vol. 29, no. 3, pp. 1739-1758, 2022. [Crossref] [Google Scholar] [Publisher Link] [16] Nuchnapa Tangboriboon, Sairung Changkhamchom, and Anuvat Sirivat, "Effects of Physical and Chemical Properties of Ceramic Hand Moulds
- [10] Nuchinaja Fangoonoon, Sanung Changkinanchon, and Antivar Sinvar, Encels of Physical and Chemica Properties of Centrife Phato Montes on Natural Rubber Latex Glove Film Formation," *International Journal of Materials and Product Technology*, vol. 65, no. 4, pp. 387-411, 2022. [Crossref] [Google Scholar] [Publisher Link]
- [17] Fei Han et al., "Preparation and Mechanical Properties of Water-Dispersible Hyperbranched Polymer Grafted Carbon Black/Natural Rubber Composites by Latex Blending Method," *Polymers for Advanced Technologies*, vol. 33, no. 1, pp. 368-379, 2022. [Crossref] [Google Scholar] [Publisher Link]

Phonepat Sontamino et al. / IJETT, 71(4), 299-308, 2023

- [18] S. A. V. Dananjaya et al., "Waste Mica as Filler for Natural Rubber Latex Foam Composites," Journal of Polymer Research, vol. 29, no. 3, pp.1-16, 2022. [Crossref] [Google Scholar] [Publisher Link]
- [19] Sunanta Chuayprakong et al., "Feasibility of Using Natural Rubber (Nr) Latex Foam as a Soft Robotic Finger. Role of Foaming Agent in Morphology and Dynamic Properties of Nr Latex Foam," Applied Science and Engineering Progress, vol. 14, no. 1, pp. 80-88, 2021. [Crossref] [Google Scholar] [Publisher Link]
- [20] L. Braden, and W. Paul, SME Mining Engineering Handbook, 3rd Edition, D. Peter, Ed. America: Society for Mining, Metallurgy, and Exploration Inc, pp. 433-459, 2011. [Publisher Link]
- [21] F.I. Siddiqui, "Measurement of the Size Distribution of Blasted Rock Using Digital Image Processing," Engineering Sciences, vol. 20, no. 2, 2009. [Google Scholar] [Publisher Link]
- [22] Daud Manatap Sitorus, Revia Oktaviani, and Shalaho Dina Devy, "Rock Engineering Systems (RES) Method as a Fragmentation Prediction of Rock Blasting at Quarry Bukit Karang Putih Pt Semen Padang West Sumatera," SSRG International Journal of Geoinformatics and Geological Science, vol. 8, no. 3, pp. 29-41, 2021. [Crossref] [Publisher Link]
- [23] Inanloo Arabi Shad. H, and K. Ahangari, "An Empirical Relation to Calculate the Proper Burden in Blast Design of Open Pit Mines Based on Modification of the Konya Relation," International Journal of Rock Mechanics and Mining Sciences, vol. 56, pp. 121-126, 2012. [Crossref] [Google Scholar] [Publisher Link]
- [24] Center of Excellence in Natural Rubber Latex Biotechnology Research and Development, Para Rubber. Department of Biochemistry, Faculty of Science, Prince of Songkhla University, Thailand, 2021.
- [25] Martin Itoolwa Kulula, Maria Ndeapo Nashongo, and Jide Muili Akande, "Influence of Blasting Parameters and Density of Rocks on Blast Performance at Tschudi Mine, Tsumeb, Namibia," Journal of Minerals and Materials Characterization and Engineering, vol. 5, no. 6, p. 339, 2017. [Crossref] [Google Scholar] [Publisher Link]
- [26] Souza et al., "Analysis of Blasting Rocks Prediction and Rock Fragmentation Results Using Split-Desktop Software," Tecnologia Em Metahurgia, Materiais E Mineração, vol. 15, no.1, pp. 22-30, 2018. [Crossref] [Google Scholar] [Publisher Link]
- [27] Chengyu Xie et al., "Predicting Rock Size Distribution in Mine Blasting using Various Novel Soft Computing Models Based on Meta-Heuristics and Machine Learning Algorithms," *Geoscience Frontiers*, vol. 12, no. 3, p. 101105, 2021. [Crossref] [Google Scholar] [Publisher Link]
 [28] Th. Pungrasmi et al., *Feldspar*, 1st Edition, Sonkhla, Thailand: Office of Scientific Instrument and Testing Prince of Songkla University, pp.
- 193-194, 2015.

ประวัติผู้เขียน

ชื่อ สกุล

นายทวีศักดิ์ ถิ่นปากพนัง

รหัสประจำตัวนักศึกษา 6410120006

ว**ุฒิการศึกษา** ว**ุฒิ** วิศวกรรมศาสตรบัณฑิต (วิศวกรรมเหมืองแร่)

ชื่อสถาบัน มหาวิทยาลัยสงขลานครินทร์ **ปีที่สำเร็จการศึกษา** 2555

ทุนการศึกษา

ทุนศิษย์กันกุฏิ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ปีงบประมาณ 2565

ตำแหน่งและสถานที่ทำงาน

วิศวกรเหมืองแร่ ตำแหน่ง หัวหน้าแผนกเหมืองแร่ บริษัท สินหลวง จำกัด ตั้งอยู่ที่ 43 หมู่ที่ 7 ตำบล นบพิตำ อำเภอนบพิตำ จังหวัดนครศรีธรรมราช

การตีพิมพ์เผยแพร่ผลงาน

Thawisak Thinpakphanang, Phongpat Sontamino, Vishnu Rachpech, "A Feasibility Study of using Natural Rubber Latex to Increase Blast Stemming Efficiency, " International Journal of Engineering Trends and Technology, vol. 71, no. 4, pp. 299-308, 2023.