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CHAPTER 1

Introduction

In number theory, the representation of integers as sums of squares
are concerned by many mathematicians. For example, in 1640, Fermat [9] proved
that every prime number p of type p = 4k 4+ 1 can be represented as a sum of two
squares of integers. This implies that a positive integer n can be written as a sum
of two squares of integers if and only if all prime factors of n of the form 4k + 3
have even exponents in the prime factorization of n. In 1770, Lagrange [9] showed

that every positive integer n can be written as
w? + 2% 4+ y° + 2 (1.1)

where w, x,y, and z are integers. In 1798, Lagrange [2] proved that a positive

integer can be represented in the form
P+ 2P (1.2)

where z, y, and z are integers if and only if it is not of the form 4%(8b+-7) for integers
a,b > 0. In connection with Lagrange’s four-square theorem, in 1917, Ramanujan
[7] determined all positive integers a, b, ¢, and d such that every natural number n

is representable in the form
aw? + bx® + cy® + d22. (1.3)

Finally, he found 54 quadruples (a,b,c,d) with 1 < a < b < ¢ < d. In 2005,
Panaitopol [5] showed that there exist no natural numbers a, b, and ¢ such that

all even positive integers can be expressed in the form
azx® + by* + c2? (1.4)

and he proved that for each odd natural number there exist non-zero integers z, y
and z in (1.4) if and only if 3 triples (a, b, c) with 1 < a < b < care (1,1,2),(1,2,3),

or (1,2,4). However, if we allow ¢ in (1.4) to be negative, then the representation is



possible . In 2015, Nowicki [4] showed that if all natural numbers are representable

in the form
oy — 2, (1.5)

then c is of the form ¢ or 2¢q, where either ¢ = 1 or ¢ is a product of primes of the
form 4m+1. In the same year, Lam [3] proved its sufficiency. In 2021, Prugsapitak
and Thongngam [6] proved that if k is not divisible by 4, then all integers can be

written as
o+ ky? — 22, (1.6)

where x,y, and z are non-zero integers. In what follows, we study the representa-

tion of integers of the form
2 ky? — 122 (1.7)

for given positive integers k and [, where zyz # 0.

To obtain the result that we mentioned above, we separate our work
into three chapters as follows:

In Chapter 2, we review definitions and theorems, which use through-
out the dissertation.

In Chapter 3, we first define k—special. Let k be a positive integer.
We say that a positive integer [ is k—special if all integers n can be expressed in
the term n = 22 + ky? — [2? where z,y, and z are non-zero integers. We find
the necessary and sufficient conditions for representing all integers in the form
22 + ky? — 22 where z, 7y, and z are non-zero integers. For an odd positive integer
k, we find the conditions of an odd positive integer [ to be k—special and we
proved that there are infinitely many k—special. Moreover, we show that if & is
odd, then 4m is not k—special.

In Chapter 4, for a positive odd integer k, we find the conditions of
an odd positive integer [ to be 2k—special and we proved that there are infinitely

many 2k—special. Moreover, we show some properties of k—special when k = 2

(mod 8) and k =2 (mod 4).



CHAPTER 2

Preliminaries

In this chapter, we recall some definitions, theorems and examples

that will be used throughout our study.

Definition 2.1 ([8]). If @ and b are integers with a # 0, we say that a divides b if
there is an integer ¢ such that b = ac. If a divides b, we also say that a is a divisor
or factor of b and that b is a multiple of a. If a divides b we write a | b, and if a

does not divides b we write a 1 b.
Theorem 2.1 ([8]). If a,b, and c are integers with a | b and b | ¢, then a | c.

Theorem 2.2 ([8]). If a,b,m, and n are integers, and if ¢ | a and ¢ | b, then

¢ | (ma + nb).

Theorem 2.3 ([8]). (The Division Algorithm) If a and b are integers such

that b > 0, then there are unique integers q and r such that
a=>bq+r with 0 <r <b.

Definition 2.2 ([8]). The greatest common divisor of a and b, which are not both
0, is the largest integer that divides both a and b. We denote the greatest common
divisor of a and b by ged(a, b).

Definition 2.3 ([8]). The integers a and b, with a # 0 and b # 0, are relative

prime if ¢ and b have the greatest common divisor ged(a,b) = 1.

Definition 2.4 ([8]). A prime is an integer greater than 1 that is divisible by no

positive integers other than 1 and itself.

Definition 2.5 ([8]). An integer greater than 1 that is not prime is called com-

posite.

Definition 2.6 ([8]). If a and b are integers, then a linear combination of a and

b is a sum of the form ma + nb, where both m and n are integers.



Theorem 2.4 ([8]). The greatest common divisor of the integers a and b, not both

0, is the least positive integer that is a linear combination of a and b.

Corollary 2.5 ([8]). The integers a and b are relatively prime integers if and only

if there are integers m and n such that ma + nb = 1.

Theorem 2.6 ([8]). (The Euclidean Algorithm) Let r¢ = a and r; = b be
integers such that a > b > 0. If the division algorithm is successively applied to
obtain r; = rj11¢41 + iy, with 0 < rj190 < 7jqp1 for 3 = 0,1,2,...,n — 2 and

Tne1 = 0, then ged(a,b) = ry,, the last non-zero remainder.

Definition 2.7 ([8]). Let m be a positive integer. If a and b are integers, we say
that a is congruent to b modulo m if m | (a —b).

If a is congruent to b modulo m, we write a = b (mod m). If
m 1 (a —b), we write a Z b (mod m), and we say that a and b are incongruent

modulo m.

Theorem 2.7 ([8]). If a and b are integers, then a = b (mod m) if and only if

there is an integer k such that a = b+ km.

Theorem 2.8 ([8]). Let m be a positive integer. Congruences modulo m satisfy

the following properties:
1. Reflexive property: If a is an integer, then a = a (mod m).

2. Symmetric property: If a and b are integers such that a = b (mod m), then

b=a (mod m).

3. Transitive property: If a,b, and c are integers with a = b (mod m) and b = ¢

(mod m), then a = ¢ (mod m).

Theorem 2.9 ([8]). If a,b,c,d, and m are integers with m > 0, such that a = b

(mod m), and ¢ = d (mod m), then
1. a+c=b+c¢ (mod m),
2. a—c=0b—c (mod m),

3. ac = bc (mod m),



4. a+c=b+d (mod m),
5. a—c=b—d (mod m),
6. ac = bd (mod m).

Theorem 2.10 ([8]). If a,b,c, and m are positive integers such that m > 0,

d = ged(e,m), and ac = bc (mod m), then a = b (mod %)

Definition 2.8 ([8]). If m is a positive integer, we say that an integer a is a
quadratic residue of m if ged(a, m) = 1 and the congruence x> = a (mod m) has
a solution. If the congruence 2 = a (mod m) has no solution, we say that a is a

quadratic nonresidue of m.

Definition 2.9 ([8]). Let p be an odd prime and a be an integer not divisible by
p. The Legendre symbol (2) is defined by
p

(a) 1 if a is a quadratic residue of p;

p -1 if a is a quadratic nonresidue of p.

Definition 2.10 ([1]). A nonzero, nonunit elelment p of an integral domain D is

called a prime if p | ab, where a,b € D, implies that p | a or p | b.

Example 1. 2 is not a prime in Z + Zv/—5 as 2 | (1 ++/—=5)(1 — v/=5) yet
241+ /5.

Definition 2.11 ([1]). (Element integral over a domain) Let A and B be
integral domains with A C B. The element b € B is said to be integral over A if

it satisfies a polynomial equation
"+ ap_ 12" - Far+ag=0,
where ag,aq,...,a,_1.

Definition 2.12 ([1]). (Algebraic integer) A complex number which is integral

over Z is called an algebraic integer.

Definition 2.13 ([1]). (Element algebraic over field) Let A and B be integral
domains with A C B. Suppose that A is a field and b € B is integral over A; then

b is said to be algebraic over A.



Definition 2.14 ([1]). (Algebraic number) A complex number that is algebraic

over QQ is called an algebraic number.

Theorem 2.11. A rational number is an algebraic integer if and only if o is an

integer.

Proof. Let a be a rational number. Suppose that « is an algebraic integer. Let f
be the monic polynomial in Z[z] of least degree having « as a root, i.e., f(a) = 0.
So f(z) = (x — a)h(z) for some h(x) € Q[z]. Since f(x) is irreducible over Q,
h(z) =1 or —1. So z — a € Z[z]. Therefore « is an integer as desired. For the

converse, it is easy to see that if a is an integer then « is a rational number. []

We next prove the lemma that we will use in the proof of our main

results.

an+n

ontd s an integer for some integer n,

Lemma 2.12. Let a,b,c,d be integers. I
then cn+d | ad — be.

Proof. Suppose % is an integer for some integer n. Then % is also an
integer.
Thus
c(an +b)  acn+ ad+ (bc — ad)
en+d cn+d
B ad — bc
N cn +d
ad — bc c(an + b)
=aq— ——=.
cn+d cn+d
Since a and C(;LJ:F;) are integers, Céi:—ilc is also an integer.
Hence cn +d | ad — be. O

Lemma 2.13. Let m be a rational. If m? is an integer, then m is an integer.

Proof. Suppose that m? is an integer. Thus m is an algebraic integer because it is
a root of 22 —m? = 0. Since a rational number is an algebraic integer if and only

if it is an integer, m is an integer as desired. O

Lemma 2.14. If x and y can both be represented as a® + 2b%, for some integers a

and b, then xy can be written of this form.



Proof. Suppose x = a? + 2b* and y = ¢® + 2d? for some a, b, c,d € Z. We have
ry = (a* + 2b%)(c* + 2d?)
= a’c® + 2a°d® + 20°? + 4b*d”
= (ac — 2bd)* + 2(ad + be)?,
which is of the desired form. [

Lemma 2.15 ([1]). Let p be a prime of the form 8k+1 or 8k+3, then p = x?+2y>

for some x,y € 7.

Lemma 2.16. If n € Z is of the form x*+2y? for some integers x and vy, then all

primes p of the form 8k+5 or 8k+T have even exponent in the prime factorization.

Proof. Let n = 2% + 2y? for some integers z and y. We have
n=2"4+2y* = (z+yv-2)(z —yvV-2).

Let p be a prime of the form 8%k + 5 or 8k + 7 and p|n. Since —2 is quadratic
nonresidue modulo p, we can see that p is a prime in Z[v/—2]. Thus p|z + y/—2
or plz — yv/—2. If plx + yv/—2, then p|z — y/—2. Thus p|2z and p|2y. Since p
is odd, we have p|z and p|y. Similarly, we can show that if p|z — yy/—2, then p|x
and ply. Thus p|lz +yv/—2 and p?|n. Write x = pz; and y = py, for some integers
21 and yi. Thus n = p?af +2p*yf = p*(af +2y7). So 5 = o] +2yf. I ptaf+2y7,
then p?||n. If p|z? + 2y? then p?|z? + 2y?. We can continue this process and thus

p has even multiplicity in the prime factorization of n. ]

Lemma 2.17. A positive integer n can be written as x> + 2y* for some integers
x and y if and only if all primes of the form 8k +5 or 8k 4+ 7 have even exponent

in the prime factorization of n.

Proof. Let n be a positive integer of the form n = 2? + 2y? for some integers x
and y. Let p be a prime of the form 8k + 5 and 8k + 7. By Lemma 2.16, if p|n,
then p has even multiplicity in the prime factorization of n. Conversely, we know
that 2 = 0% + 2(1%). Let p be a prime divisor of n. If p = 5,7 (mod 8), then its
exponent is even and we have p* = p?+2(0%). If p=1,3 (mod 8), then by Lemma
2.15 we have p = a® + 2b* for some integers a and b. Thus by Lemma 2.14 any
product of integer of the form a2 + 2y? is still an integer of the form x? +2y%. [



In 2005, L. Panaitopol [5] expressed natural numbers as sums of

three squares as follows:

Theorem 2.18 ([5]). Consider integers a,b, and ¢ satisfying 1 < a < b < c.
There exist for each odd natural number n non-negative integers x,y, and z such

that
n = ax? + by* + cz?
if and only if (a,b,c) are (1,1,2),(1,2,3), or (1,2,4).

Theorem 2.19 ([5]). There exist no natural numbers a,b, and ¢ such that every

even natural number n has the representation
n = azx® + by* + cz?
in which x,y, and z are integers.

In 2015, A. Nowicki [4] and P. C. H. Lam [3] provided necessary
and sufficient conditions for representing all integers in the form 22 + 3% — c2? as

follows:

Definition 2.15 ([4]). Let ¢ be a positive integer. We say that c is special if for

every integer k there exist non-zero integers x, y, and z such that 22 4+y? —cz? = k.

Theorem 2.20 ([3]). If ¢ is of the form q or 2q, where either ¢ = 1 or q is a

product of prime numbers of the form 4k + 1, then c is special.

Theorem 2.21 ([4]). Every special number is of the form q or 2q, where either
q =1 or q is a product of prime numbers of the form 4k + 1.

Theorem 2.22 ([4]). There are infinitely many special numbers.



CHAPTER 3

k—Special Numbers

In this chapter, we first define k—special where k is a positive
integer. We say that a positive integer [ is k—special if for all integers n there

exist non-zero integers x,y, and z such that

n =2+ ky? — 122

We provide the necessary and sufficient conditions for 1 to be k-special and we
find the condition for an odd positive integer [ to be k—special for a given odd

positive integer k. Moreover, we provide some properties of k—special.

Definition 3.1. Let k& and [ be positive integers. Let [z, y, z]x; denote the number
2% + ky? — 12 where x,y, and z are integers and we say that [ is k-special if for

every integer n there exist non-zero integers x,y, and z such that n = [z, y, 2]x,.

A. Nowicki [4] showed that 1 is 1—special by giving the following

identities.
Lemma 3.1 ([4]). 1 is 1—special.
Proof. 1t is easy to see that
2 ~1=2+(j 27~ (- 3"
2j =7+ 1= (- 1)

for j € Z. However, one of the variables j — 3,57 — 2,7 — 1, and j becomes zero
if j = 3,2,1, and 0 respectively. So we can use the representations 0 = [3,4, 5] 1,

2 = [3,3,4]1’1, 3 = [6,4, 7]1,1, and 5 = [5,4, 6]1’1. D

Theorem 3.2. Let k be a positive integer. If k is divisible by 4, then 1 is not

k—special.

Proof. Let k be divisible by 4. Assume that 1 is k—special. Then there exist

non-zero integers x, y, and z such that



10

22+ ky? — 22 =2.

So we have 2% — 2?2 = 2 (mod 4). Since quadratic residues modulo 4 are 0 and 1,
we deduce that z2 — 2% = 0,1,3 (mod 4). This is a contradiction. Hence 1 is not

k—special. O]

Theorem 3.3. Let k be a positive integer. If k is not divisible by 4, then 1 is

k— special.

Proof. Let k be a positive integer not divisible by 4. We will show that for any

integer n there exist non-zero integers x,y, and z such that
n=x?+ ky* — 2%,

ie, 12 —22= (v —2)(x+2) =n—ky*
We now consider the following four cases on the value of n:
Case 1. Suppose n =0 (mod 4). Thus n = 45 for some integer j.
We next find non-zero integers z,y, and z such that (x — 2)(z + 2) = 45 — ky?.
We choose y = 45 + 2.
Then

(2 — 2)(x +2) = 4j — k(4] +2)?

= 2(2j — k(2 + 1)(4j +2)).

Let x —z=2and x + z =25 — k(25 + 1)(45 + 2).

Then 22 =2 +2j — k(25 +1)(45+2) and 22 =25 — k(25 + 1)(45 + 2) — 2.
So we obtain x =1+ j — k(27 + 1)? and 2 = j — k(25 + 1)* — 1.

We next show that z,y, and z are non-zero.

Since y = 2 (mod 4), it implies that y # 0.

If z=0, then

j—k(2j+1)—-1=0

k(2j+1)2 =351
j—1
(27 +1)*

Since k > 0, we deduce that j > 1. Thus 1 <j—1< (25 + 1)

This implies that ﬁ is not an integer. Therefore z is non-zero.
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If x =0, then

14+ —k(2j+1)?=0

E(2j4+1)* =1+
145
(27 +1)*

Since k > 0 , we deduce that 7 > —1. If j > 0, then (2}3')2 is not an integer.

If 7 =0, then k =1 and n = 0. We need to provide a presentation for 0, namely
0 = [z,y, 2|11 where zyz # 0. We can write 0 as 0 = 3% + 42 — 52,

Case 2. Suppose n =1 (mod 4). Thus n =45 + 1 for some integer j.
We next find non-zero integers x,y, and z such that (r — z)(z+2) = 47 +1 — ky*.
We choose y = 2(45 + 1).
Then

(x—2)(z+2) =4 +1—4k(4j +1)°

=45+ 1)(1 —4k(4j +1)).

Let z —z=4j+1land v+ 2z =1—4k(4j + 1).

Then 2x =4j +2 — 4k(45 + 1) and 2z = —4k(4j + 1) — 45.

So we obtain x =1+ 2j — 2k(4j + 1) and z = —2j — 2k(4j + 1).
We next show that z,y, and 2z are non-zero.

Since y = 2 (mod 8), we have y # 0.

If x =0, then
1+2j—2k(4j+1)=0
2k(4j+1)=25+1
25 +1
C2(45+ 1)
Since 25 + 1 is odd and 2(4j + 1) is even, we deduce that % is not an integer.

So this is a contradiction.

If 2 =0, then

—2j — 2k(45 +1) =0

2%(45 + 1) = —2j
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Since k is an integer and by Lemma 2.12, we deduce that 45+1 | (=1)(1) —(0)(4).
This implies that 45 + 1 | —1. Thus 45 +1 = —1,1 and hence j = 0.
If j =0, then k£ = 0. This contradicts the fact that k is a positive integer.
Thus z is non-zero.
Case 3. Suppose n =2 (mod 4). Thus n = 45 + 2 for some integer j.
Subcase 3.1. Suppose k = 2 (mod 4). Thus k = 4r + 2 for some non-

negative integer r. We next find non-zero integers z,y, and z such that
(x—2)(x+2) =45 +2 — (4r + 2)y%.

We choose y = 25 + 1.
Then

(x—2)(x+2)=4j+2— (4r+2)(2j +1)°
=4j+2)1—(2r+1)(2j+1))

= (47 + 2)(—4rj — 2j — 2r).

Let x —z=4j+2and x + 2 = —4drj — 25 — 2r.

Then 20 = —4rj + 25 — 2r + 2 and 2z = —4rj — 65 — 2r — 2.
Soweobtainz=j—r—2rj+1land z=-35—r —2rj — 1.
We next show that z,y, and 2z are non-zero.

Since y is odd, we have y # 0.

If x =0, then

J—r—=2rj+1=0
r(2j+1)=j+1
J+1
r= = .
27 +1

Since r is an integer and by Lemma 2.12, we deduce that 25 + 1 | (1)(1) — (1)(2).
This implies that 25 + 1 | —1. Thus 2j +1 = —1,1 and hence j = 0 and j = —1.
If j = 0, then r = % = 1. Sok =6 and n = 2. We need to provide a
presentation for 2, namely 2 = [z,y,2]¢1 where zyz # 0. So we can use the
representation 2 = [12,3, 144 ;.

If j = —1, then r = 2j]+—+11 = 0. So k =2 and n = —2. We need to provide a

presentation for -2, namely —2 = [z, y, 2]o; where zyz # 0. We can write —2 as
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—2=1[4,3,6]21.
If 2 =0, then

—3j—r—2rj—1=0

r(2j+1)=-3j—1

- —3j—1

27+1
Since r is an integer and by Lemma 2.12, we deduce that 2j+1 | (=3)(1)—(—1)(2).
This implies that 25 + 1 | —1. Thus 2j +1 = —1,1 and hence j = 0 and j = —1.
If 7 =0, then r = —1. This contradicts the fact that r is a non-negative integer.
If j = —1, then r = —2. This contradicts the facts that r is a non-negative integer.

Thus z is non-zero.

Subcase 3.2. Suppose k = 1 (mod 2). Thus k& = 2r + 1 for some non-

negative integer . We next find non-zero integers x, y, and z such that
(x—2)(x+2) =45 +2— (2r + 1)y

We choose y = 25 + 1.
Thus

(z—2)(x+2)=4j+2—(2r+1)(2j +1)°
=25+ 1)2—-©2r+1)(2j+1))

= (25 + 1)(1 — 4rj — 2r — 2).

Let x —2=27+1andx+2z=1—4rj — 2r — 2j.
Then 2x = —4rj — 2r + 2 and 2z = —4rj — 2r — 4j.
So we obtain x =1 —7r —2rj and z = —r — 25 — 2rj.
We next show that z,y, and 2z are non-zero.

Since y is odd, it implies that y is non-zero.

If x =0, then
1—r—2r5=0
r(2j+1)=1
1
r =
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Since 7 is an integer and by Lemma 2.12, we deduce that 25 +1 | (0)(1) — (1)(2).
This implies that 2j +1 | —2. Thus 25 + 1 = —1,1,2,—2 and hence j = 0 and
j=—1.

If 7 =0, then r = 1. We obtain k = 3 and n = 2. We will use the representation
2 =122+ 3(3)2 — 132

If j = —1, then r = —1. This contradicts the fact that r is a non-negative integer.

If z=0, then

—r—27—2r7=0

r(2j+1)=-2j
—2j
r=— .
27 +1

Since r is an integer and by Lemma 2.12, we deduce that 2j+1 | (—2)(1) —(0)(2).

This implies that 25 + 1 | —2. Thus 25 +1 = —1,1,2,—2 and hence j = 0 and

j=—1

If 7 =0, then r = 0. We obtain k =1 and n = 2. We will use the representation

2 = 324 1(3)* — 4? instead.

If j = —1, then r = —2. We obtain k£ = —3. This contradicts the fact that £ > 0.
Case 4. Let n =3 (mod 4). Thus n = 45 + 3 for some integer j.

We next find non-zero integers x,y, and z such that (x — 2)(z+2) = 45 + 3 — ky*.

We choose y = 2(45 + 3).

Thus

(z—2)(z+2) =4j + 3 — 4k(4j + 3)°

= (47 + 3)(1 — 4k (45 + 3)).

Let t —z=4j+3 and v+ z = 1 — 4k(4j + 3).

Then 2x = 4j + 4 — 4k(4j + 3) and 2z = —4k(4j + 3) — 45 — 2.
So we obtain z = 25 — 6k — 8kj + 2 and z = —2j — 6k — 8kj — 1.
We next show that z,y, and 2z are non-zero.

Since y = 6 (mod 8), we have that y is non-zero.
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If x =0, then

2j — 6k —8kj+2=0
k(85 +6) =25 +2
g+l
4543

Since k is an integer and by Lemma 2.12, we deduce that 45 4+ 3 | (1)(3) — (1)(1).
This implies that 45 +3 | —2. Thus 45 +3 = —1,1, —2,2 and hence j = —1.

If j = —1, then £ = 0. This contradicts the fact that k£ > 0.

If z=0, then

—2j—6k—8kj—1=0

k(8j+6)=—(2j+1)

L @i+
8 +6

Since 2j 4+ 1 is odd and 87 + 6 is even, we deduce that _g.ﬂ:%l) is not an integer.

Both cases imply that  and z are non-zero. Il

In conclusion, we have proved the following theorem.

Theorem 3.4. Let k be a positive integer. Then 1 is k—special if and only if k is
not divisible by 4.

We next provide examples when 1 is k—special where k£ < 20 and &

is not divisible by 4.

Example 2. We show that 1 is 1—special and next we will show that 1 is k—special
for 2 < k < 20 by giving the following identities:

e 1 is 2—special.

[852 + 37 + 1,45 +2,85% + 7j + 3]o1 = 47,
(145 + 3,85 + 2,185 +4]p1 = 4j + 1,
[1+1,25+1,3j+1]21 =45 + 2,

(145 + 10,85 + 6,185 + 13]o1 = 45 + 3,
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and [4,3,6]y; = —2.
e 1 is 3—special.
[125% + 115 + 2,45 + 2,125 + 115 + 4]3,; = 47,
[22] + 5,85 42,265 4 6]s1 = 45 + 1,
2,25 + 1,45 + 13, = 45 + 2,
(227 + 16,85 + 6,265 + 19]3, = 45 + 3,
and [12,3,13]51 = 2.
e 1 is H—special.
2052 4 195 + 4,45 + 2,205 + 195 + 6]5.1 = 47,
(385 + 9,85 + 2,425 + 10]5; = 45 + 1,
[45 + 1,25 + 1,65 + 2]51 = 45 + 2,
387 + 28,87 +6,42] + 31]5, = 45 + 3.
e 1 is 6—special.
[245% + 235 + 5,47 + 2,245% 4+ 235 + T)g.1 = 47,
[467 + 11,85 + 2,505 + 12]61 = 45 + 1,
7,25+ 1,5) + 261 = 45 + 2,
[467 + 34,85 + 6,505 + 37]61 = 4 + 3,
and [12,3,14]g, = 2.
e 1 is 7—special.
2852 + 275 + 6,45 + 2, 285% + 271 4 8], = 47,
[547 + 13,85 + 2,585 + 14]71 = 45 + 1,
(65 +2,2 +1,8) + 3], = 4j + 2,
[547 + 40,85 + 6,58j + 43]71 = 45 + 3.
e 1 is 9—special.
3652 + 355 + 8,45 + 2,365% + 355 + 10]g1 = 47,
(705 + 17,85 + 2,745 + 18]g1 = 4j + 1,
85 + 3,25 + 1,105 +4lo1 = 45 + 2,

[70§ + 52,8j + 6, 74j + 55]g1 = 4j + 3.



e 1 is 10—special.

[405% + 395 + 9,45 + 2,405% 4+ 395 + 11]49.1 = 47,
[785 + 19,85 + 2,825 + 20]101 = 45 + 1,
837+ 1,25+ 1,75 + 3101 = 45 + 2,

(785 + 58,87 + 6,745 + 61]101 = 45 + 3.
e 1 is 11—special.

(445 + 437 + 10,45 + 2,445 + 435 + 12111 = 4,
867 + 21,85 + 2,905 +22]11,1 = 45 + 1,
(105 44,25 +1,12j + 5}111 = 45 + 2,

867 + 64,85 + 6,905 + 67)11.1 = 475 + 3.
e 1 is 13—special.

(5257 + 51 + 12,45 + 2,525 + 51 + 14]13, = 47,
[1025 + 25,85 +2,1065 + 26}131 = 45 + 1,
(125 + 5,2 + 1,145 + 6]131 = 47 + 2,

[102) + 76,85 + 6,106 + 79]131 = 4 + 3.
e 1 is 14—special.

(5652 + 557 + 13,45 + 2,5652 + 55 + 15|14, = 4j,
[110f + 27,8j + 2, 1145 + 28141 = 4j + 1,
[5j + 272j + 1,9j + 4]14,1 = 4] —+ 2,

(1105 + 82,85 + 6,1145 + 85]141 = 45 + 3.
e 1 is 15—special.

(6052 + 595 + 14,45 42,6052 + 595 + 16151 = 47,
(1185 + 29,85 +2,1225 + 30]151 = 45 + 1,
(147 + 6,25 + 1,165 + 7)151 = 45 + 2,

(1185 + 88,85 + 6,122 + 91]15,1 = 4j + 3.

17
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e 1 is 17—special.

6872 + 675 + 16,45 + 2,685% + 67j + 18]17.1 = 4,
[134) +33,8) +2,138) + 34]171 = 4j + 1,
(165 + 7,25 + 1,185 + 8171 = 45 + 2,

[1347 + 100,85 + 6,1385 + 103]171 = 45 + 3.
e 1 is 18—special.

(7242 4 715 + 17,45 + 2, 7252 4+ 715 + 19)151 = 47,
[142) + 35,8 + 2,146 + 36]151 = 45 + 1,
77 +3,25 + 1,115 + 5151 = 45 + 2,

(1425 + 106, 85 + 6, 1467 + 109]151 = 45 + 3.
e 1 is 19—special.

(7642 + 755 + 18,45 + 2,765% + 755 + 20191 = 4,
(1505 + 37,8j + 2, 1545 + 38]191 = 4 + 1,
[185 + 8,25 + 1,205 + 9191 = 45 + 2,

(1505 + 112,85 + 6, 1545 + 115]19; = 45 + 3.
We next provide some properties of k—special.

Theorem 3.5. Let k be a positive integer. Then k is k—special if and only if
kE=1.

Proof. 1t is known that 1 is 1-special by Lemma 3.1. Now if £ = 2, then for any
integer n there exist non-zero integers x, v, and z such that n = 2242y?>—222. Since
22 =0,1,4 (mod 8), by a direct calculation 2% = 0,2 (mod 8) and —22% =0, —2
(mod 8), we have 22 +2y? — 222 # 5 (mod 8). Thus 2 is not 2—special. For k > 2,
if k is k—special then for any integer n there exist non-zero integers x, y, and z
such that n = 2? + ky? — kz?. Since k > 2, there exists a non-quadratic residue

modulo k, namely &’. Thus &’ = 2% (mod k). This is a contradiction. O

Next, we apply P. C. H. Lam’s method [3] to identify k—special

numbers when £ is odd.
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Theorem 3.6. Let | and k be odd positive integers. If | = x® + ky® for some
positive integers x and y and ged(x, ky) = 1, then [ is k—special.

Proof. Suppose | = x*+ ky? for some positive integers z and y where ged(x, ky) =
1. Since ged(z, ky) = 1, there exist integers ag and [y such that xag + kyfy = 1.
For any positive integer n, We define a,, = o + nky and 3, =

Bo — nx. Consider

ray, + kyB, = x(ag + nky) + ky(Bo — nx)
= zag + anky + kyBy — knyx

= zxag + kyPBo.

So (a, B,) is a solution of xag + kyfy = 1.
Let a, = zj + oy, b, = yj + B, and ¢ = 7, where j is an integer which will be
selected later. Thus

aZ + kb2 — 12 = a2 + kb2 — (2* + ky®)c?
= (xj + an)® + k(yj + Ba)? — (° + ky?) ;7
= 2%5° + 2xjon, + ol + ky P + 2kyjfn + kB, — 2257 — ky?s°
= 2xja, + o’ + 2kyjB, + kBa

= 2j(zay, + kyB,) + o + kB2,
We have
ap, + kB = (a0 + nky)® + k(B — nx)?
= a2 + 2nkagy + n*k*y? + kB2 — 2knfBox + kn?a?
= ol + kB3 + n*k*y® + kn*z?  (mod 2)

o+ kB3 (mod 2) if n is even,

g+ kB +y*+2* (mod2) if nisodd.

Since [ and k are odd, we can see that x and y have different parities. Thus

0?4 kB2 = of + kG5 (mod 2) if n is even,

n

al+kB2+1 (mod2) ifnisodd.
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For any non-negative integer r, We obtain the following identities

a3, + kb3, —lc3, = 2jo, + a3, + kB3, = 2jo, + ad + kB3 (mod 2)
A1 + K031 — 165,40 = 2ot + 0,y + KBSy = 21 + g + KB +1 (mod 2).

We can see that all integers can be represented in the form a? +
kb? — Ic? by using both identities.
Case 1. a2 + k32 =0 (mod 2). We first consider an even integer.

Let m be an even integer. We choose a suitable value of j5, such that
m = 2jo, + b, + kB, = aj, + kb, — 3,

where as, = Tja,+ oy, boy = Yjor+ o, and ca, = ja,.. We can see that asg,.be,.co = 0
if and only if m is one of the following values: o3, + kf3.,03, + k33, — 222 or

o, +2kp3, — 25% Since

lim oo, = lim (—f,) = oo,
r—00 r—00

there exists a non-negative integer r such that a3, + kB3 — 2"9‘% > m, Qo > 0,
and S, < 0. Thus we obtain a representation for m, namely m = a3, + kb3, —Ic3,
where as,.by,.Co, # 0.

Next, we consider a representation for an odd integer m. Let m be

an odd integer. We choose a suitable value of an integer jo,,; such that

— 9 2 2 _ 2 2 2
m = 2jar1 + 0y + KBy iy = a3y + Kby —le3

where as,1 = Tjori1 + o1, borp1 = Yjorg1 + Porgr and corp1 = Jorp1. We

can see that asg,y1bor11c0.11 = 0 if and only if m is one of the following values:

2 2 2 2 202,41 2 2 2682r41  Q;
i1 + KBy, Oy + KB3 — = Or gy + 2K05, 1 — Yy Since

lim g 41 = lim (—52r+1) = 00,
r—00 T—00

2009741

there exists a non-negative integer r such that a3, 41t kB3 -

> m,
agry1 > 0, and Py,.41 < 0. Therefore we obtain a representation for m, namely
m = a3, + kb3, ., —1c3, . where as,1ba1¢or41 # 0.

Case 2. a2 + k32 =1 (mod 2). We first find a representation for

an even integer m. Let m be an even integer. We choose a suitable value of an

integer js,11 such that

_ 9 2 2 _ 2 2 2
m = 2jor41 + oy pq T kf52r+1 = Apq1 T kb2r+1 - lC2r+1
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where ag.11 = Tjor41 + o1, borp1 = Yiorpr + Porgr and copp1 = Jorp1. We

can see that as,y1bo,11c0.11 = 0 if and only if m is one of the following values:

2 2 2 2 209,41 2 2 282r41 :
i1 + kB4, 0oy + RBG — 5 Or gy + 2K554 — Yy Since

lim ag,q1 = lim (—52r+1) = 00,
r—00 r—00

. . . 2 2 202741
there exists a non-negative integer r such that as.,, + kB3, — ==

> m,
agry1 > 0, and By.41 < 0. Therefore we obtain a representation for m, namely
m = a3, + kb3, ., —1c3,., where as,1ba1¢2r41 # 0.

Next, let m be an odd integer. We choose a suitable value of an

integer jo, such that
m = 2j2r + Oé%r + kﬁgr = agr + kb%r - lcgr

where ag, = xjo, + oy, boy = Yjor+ Bor and co,. = jo,.. We can see that asg,.by,.co, = 0
if and only if m is one of the following values: a3, + kf3,.,03, + kB3, — 2= or

ol +2kB3. — 2’3% Since

lim oo, = lim (—f,) = oo,
r—00 r—00

there exists a non-negative integer r such that as, > 0, a2, + k33, — QO‘% > m and
Bar < 0. Therefore we obtain a representation for m, namely m = a3, + kb3, — lc3,

where as,.b9.co. # 0. Thus [ is k—special. O

We next provide examples how to obtain representation for any

integer n of the form x? + ky* — 122 for (k,1) = (3,7),(3,13),(3,19), and (3,49).

Example 3. Let [ = 7. Then [ = 22 + 3(1?). So that x = 2 and y = 1. Since
ged(z,3y) = ged(2,3) = 1, there exist integers ag = —1 and [y = 1 such that
2(—1) +3(1)(1) = 1. Using the notation in Theorem 3.6, we obtain oy = 2 and
pr=—1.

Thus the identities are given by

(2k —1)% + 3(k + 1)® — Tk* = 2k + 4,
(2k +2)2+3(k — 1) — Tk* = 2k + T.

So all integers except 2,4,5,7, and 9 can be written in the form z? + 3y? — 722

where xyz # 0. Thus we have to find new representations for 2,4,5,7, and 9.



22

We define as = ag + 6y,52 = [y — 22,3 = ag + 9y and [3 = [y — 3z, i.e.,
(6%)) :5752 = —3,053 = 8 and 53 = —5.

Then we obtain new identities given by

(2k +5)* + 3(k — 3)* — Tk* = 2k + 52,
(2k +8)2 + 3(k — 5)% — Tk? = 2k + 139.

Thus

2 — 45 + 3(28%) — 7(25%),
4 =43% + 3(27%) — 7(24?),
5 = 126% 4 3(722) — 7(67%),
7 = 1242 + 3(712) — 7(662),
9 = 1222 + 3(70%) — 7(652).

Hence 7 is 3—special as desired.

Example 4. Let [ = 13. Then [ = 12 + 3(2?). So that z = 1 and y = 2. Since
ged(z,3y) = ged(1,6) = 1, there exist integers oy = —5 and Sy = 1 such that
1(=5) + 3(2)(1) = 1. Using the notation in Theorem 3.6, we obtain a; = 1 and
pr1=0.

Thus the identities are given by

(k —5)2 +3(2k +1)* — 13k? = 2k + 28,
(k+1)%+3(k)> — 13k* = 2k + 1.

So all integers except —1, 1,28, and 38 can be written in the form x? 4 3y% — 1322
where zyz # 0. Thus we have to find new representation of —1, 1,28, and 38.
We define ay = ag + 6y, = [y — 2x,a3 = a9 + 9y and (3 = [y — 3z,i.e.,
s =7,0=—1,a3 =13 and (3 = —2.

Then we obtain new identities given by

(k+7)%+3(2k — 1)* — 13k? = 2k + 52,
(k +13)% + 3(2k — 2)2 — 13k% = 2k + 181.
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Thus
28 = 5% + 3(25%) — 13(12?),
—1 = 78% + 3(1842) — 13(91?),
1 =77 + 3(182%) — 13(90?).
We again find the representation of 38. We define ay = g+ 12y and 54 = [y — 4z,
i.e., ay =19 and By = —3. Thus the new identity is given by
(k +19)2 + 3(2k — 3)? — 13k? = 2k + 388
and 38 = 1562 + 3(353)% — 13(175%).
Hence 13 is 3—special as desired.
Example 5. Let [ = 19. Then [ = 4> + 3(1?). So that z = 4 and y = 1. Since
ged(x, 3y) = ged(4,3) = 1, there exist integers ag = 1 and 5 = —1 such that
4(1) + 3(1)(—1) = 1. Using the notation in Theorem 3.6, we obtain oy = 4 and

B1 = —5.
Thus the identities are given by

(4k +1)? + 3(k — 1)? — 19k* = 2k + 4,
(4k + 4)? + 3(k — 5)? — 19k? = 2k + 91.
So all integers except 6,4, 89,101, and 91 can be written in the form 2%+ 3y?—1922
where xyz # 0. Thus we have to find new representation of 6,4,89,101, and 91.
We define g = ag + 6y, 52 = [y — 2x, 3 = g + 9y and B3 = [y — 3z,ie.,
as =7,0=—9,a3 =10 and B3 = —13.
Then we obtain new identities given by
(4k +7)% 4+ 3(k — 9)? — 19k% = 2k + 292,
(4k +10)? + 3(k — 13)? — 19k* = 2k + 607.
Thus
6 = 565% + 3(152%) — 19(143%),
4 = 569% + 3(153%) — 19(144%),
89 = 1026* + 3(272%) — 19(259?),
101 = 1002* + 3(2667) — 19(253%),

91 = 10222 + 3(271%) — 19(258?).
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Hence 19 is 3—special as desired.
Example 6. Let [ = 49. Then [ = 1% + 3(4?). So that x = 1 and y = 4. Since
ged(zx, 3y) = ged(1,12) = 1, there exist integers ag = —11 and By = 1 such that
1(—11) 4+ 3(4)(1) = 1. Using the notation in Theorem 3.6, we obtain a; = 1 and
B = 0.
Thus the identities are given by
(b —11)? 4 3(4k + 1)* — 49k* = 2k + 124,
(k+1)% + 3(4k)? — 49k% = 2k + 1.
So all integers except 146, 124, —1, and 1 can be written in the form 2 + 3y% — 4922
where zyz # 0. Thus we have to find new representation of 146,124, —1, and 1.
We define ap = ag + 6y,08: = [y — 2x,a3 = a9 + 9y and (3 = [y — 3z,i.e.,
Qg = 13,ﬁ2 = —1,@3 = 25 and 53 = -2
Then we obtain new identities are given by
(k +13)% + 3(4k — 1)2 — 49k? = 2k + 172,
(k +25)% + 3(4k — 2)? — 49k* = 2k + 637.
Thus
124 = 11% 4 3(97%) — 49(24%),
—1 = 2947 4 3(1278)?) — 49(319%),
1 = 293% 4 3(1274%) — 49(318?).
We again find the representation of 146. We define oy = ap+12y and 5, = [y —4z,
i.e., ay = 37 and 84, = —3. Thus the new identity is given by
(k4 37)? + 3(4k — 3)® — 49k* = 2k + 1396
and 146 = 588% + 3(2503)? — 49(625?).
Hence 49 is 3—special as desired.

We present an odd integer [ which is k—special for some odd integer
k where [ < 50 by providing the following identities:
e 5 is 1—special.
[Qk + 1,k - 1,k]1’5 == 2k + 2,

2k + 2,k — 3, k|15 = 2k + 13,
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27,20, 15]15 = 4, [29,21,16],5 = 2, [50,34,27),5 = 11, [42,30,23),5 = 19, and
[48,33,26]; 5 = 13.

e 7 is 3—special.

2k — 1,k + 1,k|37 = 2k + 4,

[2]{}4—2,]?- 1,]4]]3’7 = 2]€+7,

[45,28,25]37 = 2, [43,27,24]37 = 4, [126,72,67]37 = 5, [124,71,66]37; = 7, and
[122,70,65]57 = 9.

e 9 is H—special.

2k — 2,k +1,k|59 = 2k +09,

2k 4 3,k — 1, k]5.0 = 2k + 14,

[92,53,50]5.0 = 9, [94, 54,515, = 7, [90,52,49]5, = 11, [265, 144, 139]5,4 = 16, and
267,145, 140]5.9 = 14.

e 11 is 7—special.

2k — 3,k + 1, k]7.11 = 2k + 16,

2k + 4,k — 1, k|11 = 2k + 23,

[159, 88, 85711 = 14, [157,87,84]711 = 16, [462,245,240]; 1, = 19,
(456,242, 237|711 = 25, and [458, 243, 238|711 = 23.
e 13 is 3—special.

[k - 5, 2k + 1, ]{7]3’13 =2k + 28,

(k+ 1,k k|13 = 2k + 1,
5,25,12]3 13 = 28, [78,184,91]313 = —1, [77,182,90]5 5 = 1, and
[156, 353, 175]3.13 = 38.

e 15 is 11—special.
2k — 5,k + 1, k|1115 = 2k + 316,
2k 4+ 6,k — 1, k]1115 = 2k + 47,

337,180, 177)11.15 = 34, [335, 179, 1761115 = 36, [990, 514, 50911 15 = 41,
(082,510, 5051115 = 49, and [984, 511, 506]11 15 = 47.
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e 17 is 13—special.

[2]{? - 6, k + 1, ]{3]13,17 =2k + 49,

2k + 7,k — 1, kli317 = 2k + 52,
442,234, 231]1517 = 55, [450, 238, 235|135 17 = 47, [448,237,234]1317 = 49,
(1327, 685, 680]13.17 = 54, and [1329, 686, 681]15 17 = 52.
e 19 is 15—special.

2k — 7,k + 1, kl1510 = 2k + 64,

[2]{? + 8, k — 1, k]15719 =2k + 79,
(579,304, 301]1519 = 62, [577,303,300]1519 = 64, [1710, 879, 874]1519 = 71,
[700, 874, 869]15719 = 81, and [1702, 875, 870]15’19 =179.
e 21 is H—special.

[k —9,2k + 1, k|50 = 2k + 86,

[k + 1,2k, k|501 = 2k + 1,

420,905, 451|591 = 104, [1,21,10]52; = 106, [9,41, 20]5 91 = 86,
210,464, 231|591 = —1, and [209, 462, 230]5 21 = 1.
e 23 is 7T—special.

[4k + 2,k — 1, k|95 = 2k + 11,

[4k + 9,k — 5, k]7.23 = 2k + 256,
(1604, 414, 405]723 = 13, [1608,415,406]7 25 = 11, [2869, 736, 723]723 = 266, and
2889, 741, 728|793 = 256.
e 25 is 1—special.

[4k + 1, 3k' - 1, kh’25 == Qk + 2,

[4k + 4,3k — 5, k|25 = 2k + 41,
[249, 201, 64]1,25 = 2, [450, 358, 115]1’25 = 39, and [446, 355, 114]1,25 =41.
e 27 is 23—special.

2k — 11,k + 1, klag o7 = 2k + 144,

2k + 12,k — 1, k]az 07 = 2k + 167,
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[1255, 648, 64525 27 = 1420, [1253,647,644]93 07 = 144, [3726, 1897, 1892]33 97 =
155, [3712,1890, 1885|2327 = 169, and [3714, 1891, 1886]23 27 = 167.
e 29 is 5—special.

3k — 3,2k + 1, k500 = 2k + 14,

[Sk + 7, 2k — 2, k}g,’gg =2k + 69,

[580,403,199]529 = 16, [583,405,200]599 = 14, [1440,986,489]529 = 71, and
(1443, 988, 490]5 29 = 69.
e 31 is 3—special.

[2k - 4, 3]€ + 1, k}gygl = 2]€ + 19,

2k + 5,3k — 1, k]33 = 2k + 28,

(186,303, 100]3,31 = 23, [190, 309, 102]5 3; = 19, and [553, 869, 288]3 31 = 28.
e 33 is 29—special.

{Qk - 14, k‘ + 17 /{3]29733 - 2]€ + 2257

[2k + 15, k - 1, k’]29733 - 2k + 254,

[1914,982,979]29 35 = 239, [1930, 990, 987]29 35 = 223, [1928, 989, 986]29 33 = 225,
[5725,2904, 2899]29 33 = 256, and [5727,2905, 2900]29 35 = 254.
e 35 is 31—special.

2k — 15,k + 1, k]335 = 2k + 256,

2k + 16,k — 1, k]31.35 = 2k + 287,

(2187, 1120, 1117]3; 35 = 254, [2185,1119, 1116]3; 35 = 256, [6510, 3299, 3294]31 35 =
271, [6492, 3290, 328531 35 = 289, and [6494, 3291, 328631 35 = 287.
e 37 is 3—special.

[5]€ - 172k‘ + 1,]@}3737 - 2]{} + 4,

5k + 5,2k — 4, k|3 37 = 2k + 73,

889,369, 180]5.3; = 4, [1998,820,403]53; = 71, [1983,814,400]35; = 77, and
(1993, 818, 402]5 57 = 73.



28

e 39 is 35—special.

{2]€ - 17, k' + 1, ]{3]35,39 - 2]€ + 324,
[2]? + 18, k‘ - 1, /{]35739 - 2]§ + 359,
2749, 1404, 140135 39 = 322, [2747, 1403, 1400]35 39 = 324, [8190, 4144, 4139]35 30 =
341, [8170,4134,4129]35 39 = 361, and [8172,4135,4130]35 30 = 359.
e 41 is 5—special.
6k + 1,k — 1,k]s.41 = 2k + 6,
6k + 6,k — 7, k]5.41 = 2k + 281,
2863, 492, 479]5.41 = 8, [2869, 493, 480]5 41 = 6, [5330, 910, 891]5 41 = 279,
[5282,902, 883|541 = 295, and [5324, 909, 890]5 4; = 281.
e 43 is 3—special.
[4k — 2,3k + 1,k|343 = 2k + 7,
[4k + 7,3k — 3, k|3 43 = 2k + 76,
(776,601, 198|3 43 = 7, [1795, 1376, 455]5 45 = 78, and [1799, 1379, 456]3 45 = 76.
e 45 is 41 —special.
2k — 20,k + 1, k|41 45 = 2k + 441,
{21{5 + 2]., k— 1, k]41,45 =2k + 482,
(3690, 1879, 1876]41 45 = 461, [3712, 1890, 1887]4;1 45 = 439, [3710, 1889, 188641 45 =

441, [11047, 5580, 5575]41 45 = 484, and [11049, 5581, 5576]4; 45 = 482.
e 47 is 43—special.

2k — 21,k + 1, klag a7 = 2k + 484,

2k + 22,k — 1, k|43 47 = 2k + 527,
[4065, 2068, 2065]43 47 = 482, [4063, 2067, 2064|453 47 = 484, [12126,6122, 6117|4347 =
505, [12102,6110,6105]43 47 = 529, and [12104,6111,6106]43 47 = 527.
e 49 is 3—special.

[k - 11,4k + 1, k]3749 - Qk + 172,

[k + 1,4k, k340 = 2k + 1,
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[11,97,24]3 49 = 124, [204,1278,319]5 49 = —1, [293, 1274, 318]35.49 = 1,
and [588, 2503, 625]5 49 = 146.

We now present some results obtained from Theorem 3.6.

Corollary 3.7. Let k be an odd positive integer. There are infinitely many

k— special numbers.

Proof. For any odd integer k, we can always choose infinitely many integers x and
y such that ged(2z, ky) = 1. By Theorem 3.6, we have that [ = (22)? + ky? is

k—special. Il
Theorem 3.8. Let k andl be positive integers. If k is odd, then 4l is not k—special.

Proof. Assume that 4l is k—special. For any integer n, there exist non-zero integers
x,y, and z such that
2?2+ kyt—4Al=n
2> +ky?=n (mod 4).
We now consider the following two cases on the values of k.
Case 1. k=1 (mod 4). Then
22+ y*=n (mod 4).

We can see that 2% + y? # 3 (mod 4). This is a contradiction.
Case 2. k=3 (mod 4). Then

2+ 3y* =n (mod 4).

We can see that 2% + 3y? # 2 (mod 4). This is a contradiction.

Therefore 41 is not k—special. O]
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CHAPTER 4

2k—Special Numbers

In this chapter, we provide conditions for an integer [ to be 2k—special
where k is odd. Furthermore, we show that there are infinitely many 2k—special.

Moreover, we provide some properties of k—special when £ = 2 (mod 4) and k = 2

(mod 8).

Theorem 4.1. Let | be a positive integer. If | is 2—special, then | = 2% + 2y? for

some integers x and y.

Proof. Let | be 2—special. Then there exist non-zero integers x, y, and z such that

2?2 4 2y% — [2% = 2Ic® where ¢ € Z. So 2% + 2y* = [(2¢* + 2z?). By Lemma 2.17,

e+ = I w I @

pi=5,7 (mod 8) i #5,7 (mod 8)
where p;, g; are primes, b; is a non-negative integer and a; is even for all .
By Lemma 2.17,

22+22= I w»* JI "

pi=5,7 (mod 8) ¢ Z5,7 (mod 8)

where b] is a non-negative integer and a; is even for all i,

= T s [ e

pi=5,7 (mod 8) ¢;Z5,7 (mod 8)

So we have a; — a is even for all 1.

Hence again by Lemma 2.17, [ is of the form z2 + 2. O
Example 7. From Theorem 3.4, 1 is 2—special because 1 = 1% + 2(0?).

The converse of the above theorem is not true. As we will see in the

next theorem that 8 is not 2—special.

Theorem 4.2. Let k be an odd integer. If | is divisible by 8, then | is not
2k—special.
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Proof. Let [ be divisible by 8. Suppose on the contrary that [ is 2k—special.
Then

2?2+ 2ky? — 122 =5
for some non-zero integers v, and z. So z? 4 2ky? = 12® + 5.
This implies that z? + 2ky* =5 (mod 8). Since 22 = 0,1,4 (mod 8) and 2ky?* =
0,2k (mod 8), it is easy to see that 2% + 2ky? = 0,1, 2k, 2k + 1,2k + 4 (mod 8).

Since k is odd, we can see that 22 +2ky?* # 5 (mod 8). This is a contradiction. [J

Next, we apply P. C. H. Lam’s method [3] to identify 2k—special

numbers when k is odd.

Theorem 4.3. Let k and l be odd positive integers. Ifl can be written as x4 2ky?

for some positive integers x and y where ged(z, 2ky) = 1, then 1 is 2k—special.

Proof. Let | be an odd positive integer and | = x? + 2ky? where ged(z, 2ky) = 1.
Case 1. We first find the representation of odd numbers of the form x?+42ky? —122
where x,y, and z are non-zero integers.

Since ged(z, 2ky) = 1, there exist integers o and [y such that
rag + 2kyBy = 1.

For any positive integer n, let o, = ag + 2kny and 3, = By — nx.

Consider

roy, + 2ky B, = x(ag + 2kny) + 2ky(By — nx)
= zag + 2kxny + 2kyBy — 2kynx

= zag + 2kyby.

So (ay, By) is another solution of zag + 2kyfy = 1.
Let a, = xj + ay, b, = yj + B, and ¢, = 7, where j is an integer which will be
selected later. Thus

a2+ 2kb2 — 12 = (2 + on)? + 2k(yj + Ba)? — (2 + 2ky?) 5
= 2%j% + 2xja, + o + 2ky*5* + 4kyj B, + 2kB2 — %% — 2ky?j?
= 2wjon, + 4kyj B + ol + 2k

= 2j(ra, + 2kypB,) + O‘i + 2]{;55.
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Since z is odd and z«,, + 2ky[, = 1, we can see that «,, is odd.

Then we obtain the identity of odd given by
(@ji + 0a)? + 2k(yji + B;)* — (22 + 2ky?) 7 = 2ji + o + 2k,

for any non-negative integer i. We can use these identities to represent odd in-
tegers. Let m be an odd integer. For any non-negative integer n, we choose a

suitable value of an integer j,, such that
m = 2j, + a2 4+ 2kB% = a? + 2kb? — Ic?

where a, = xj, + @n, b, = yj, + B, and ¢, = j,. We can see that a,b,c, = 0

20y,

if and only if m is one of the following values; o2 + 2k(2, a2 + 2kf32 — 22

a? +2k32 — % Since

or

lim o, = lim (—f,) = oo,
n—oo n—o0

there exists a non-negative integer n such that a, > 0, a2 + 2k2 — 222 > m and
B, < 0. Therefore we obtain a representation for m, namely m = a? + 2kb? — Ic?
where a,b,c, # 0.

Case 2. We next find the representation of even numbers of the form x?+2ky?—122
where x,y, and z are non-zero integer.

Since ged(z, 2ky) = 1, ged(x, ky) = 1. Then there exist integers o and [y such
that

xag + kyBy = 1.

For any positive integer n, let a,, = oy + kny and S, = Sy — nz. Then

xay, + knyB, = x(ag + kny) + ky(Bo — nx)
= xao + kxny + kypBy — kynx
= zap + kySo.
So (ap, Br) is another solution of zay + kyBy = 1.

Let a, = xj + 2, b, = yj + B, and ¢ = j where j is an integer which will be
selected later. Thus
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aZ + 2kb2 — 12

= (2] + 20)* + 2k(yj + Ba)? — (2* + 2ky?)5?
= 22§ + dxjoy, + 402 + 2ky?5% + dyjkB, + 2kB2 — 2257 — 2P ky? 5>

= 4j(za, + kyB,) + 4a + 2kB2.
Since z is odd, we have

4o + 2k = 4(ag + kny)? + 2k(By — nx)?
= dag + Sknyag + 4k*n*y* + 2kB; — 4knx By + 2kn’z?
= 2k + 2kn*z®  (mod 4)

= 2k + 2kn®  (mod 4)

2k32  (mod 4) if n is even,

2k(B2 +1) (mod 4) if nis odd.

For any non-negative integer r, we obtain two identities of even given by

(Ij2'r + 20527")2 + 2k(yj27" + 627“)2 - ('12 + 2ky2)j22r = 4j27" + 406%T + 2]56%“
($j2r+1+2&2r+1)2+2k’(yj2r+1+52r+1)2—($2+2k3/2)j§r+1 = 4j27“+1+4a%7"+1+2k622r+1‘

Let m be an even integer. we can write m as follows:
Subcase 2.1. m = 0 (mod 4) and 32 = 0 (mod 4). We choose a

suitable value of an integer jo, such that
m = 4jo, + 4a3, + 2kfB3, = a3, + 2kb3, — lc3,

where ag,. = xjo,+200,, by, = Yjor,+ o and co. = jo.. We can see that ag,.be.co, = 0
if and only if m is one of the following values: 403, + 2kf3,, 403, + 2kf3, — 222 or

4ol + 2kB3. — 45%. Since

lim ag, = lim (—fy,) = oo,
r—00 r—00

there exists a non-negative integer r such that as, > 0, 403 +2k33. — 8"&‘% > m and
Bar < 0. Therefore we obtain a representation for m, namely m = a3, +2kb3. —lc3,
where as,.by.Co. # 0.

Subcase 2.2. m = 2 (mod 4) and 82 = 0 (mod 4). We choose a

suitable value of an integer js,,; such that

m = 4jor41 + 4agr+1 + 2k5§r+1 = a§r+1 + kagr—l—l - lcgr—i-l
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where agr 1 = TJjor1 + 202041, bary1 = YJors1 + Borp1 and copp1 = Jorq1. We
can see that as,y1bo,11c0.11 = 0 if and only if m is one of the following values:

2 2 2 2 Bazr41 2 2 4B2r41 :
405,41 + 2k03, 11, 405,y + 2kP5, 1 — = or dag, g + 2k, — Yy Since

lim agey1 = lim (—fgr41) = 00,
r—00 r—00

there exists a non-negative integer r such that 43, ., + 2kf33, ., — &"TT“

> m,
agry1 > 0, and Po,.11 < 0. Therefore we obtain a representation for m, namely
m = a3, + 2kb3, | — I3, where ag,1bor 410911 # 0.

Subcase 2.3. m = 0 (mod 4) and 32 = 1 (mod 4). We choose a

suitable value of an integer js,,1 such that
A 2 2 _ 2 2 2
m = 4jors1 + 405,y + 205,y = a3y + 2kby, 4 — lcg,

where ag,1 = Tjory1 + 202041, borp1 = YJorr1 + Bory1 and oy = Jory1. We
can see that as,y1bo,11c0.11 = 0 if and only if m is one of the following values:

2 2 2 2 8aory1 2 2 4B2r41 :
dag, g + 2603, 11,405, + 2k05, — = or dag,y +2k65, 4 — Ty Since

lim o941 = lim (—fa41) = 00,
T—00 r—00

8agr+1

> m,
X

there exists a non-negative integer r such that 4a3, , + 2kf335, ., —
agry1 > 0, and P17 < 0. Thus we obtain a representation for m, namely m =
a3, 1+ 2kb3, . —lc3,. where as,1ba1¢2r41 # 0.

Subcase 2.4. m =2 (mod 4) and 5 = 1 (mod 4). We choose a

suitable value of an integer js, such that
m = 4jo, + 4a3, + 2kB3, = ai, + 2kb3, —lc3,

where as, = xjo,4+202,, by, = yJo,+ P2, and co, = jo,.. We can see that as,.be,.co, = 0
if and only if m is one of the following values: 403, + 2kf3,, 403, + 2k, — 222 or
4o, + 2kB3, — 4*3%. Since

lim oo, = lim (—f,) = oo,
r—00 r—00

there exists a non-negative integer r such that ay, > 0, 43, + 2kS3 — 80;% >m
and 35, < 0. Hence we again obtain a representation for m, namely m = a3, +

2kb2. — Ic3, where ao,by,cor # 0. Therefore, [ is 2k—special as desired. O
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We next provide examples of how to obtain representations for any
integer n of the form x?+2ky?*—12? where (k,1) = (2,3),(2,9), (2, 11), (2, 17), (2, 19),
(6,7), (10,11), and (10, 19).

Example 8. We will show that 3 is 2—special. So we have to show that for any
integer n, there exist non-zero integers x,v, and z such that n = 22 + 2y — 322
We will use the notation in Theorem 4.3. Write 3 = 12 + 2(12). Then z =y = 1.
Case 1. We will find the representation for odd integers.

Since ged(z,2y) = ged(1,2) = 1, there exist oy = —1 and fy = 1 such that
1(—1) +2(1) = 1.

A representation for odd integers is given by
(j—12+2(j+1)*=352=25+3.

The above identity gives a representation for odd integers n # 1,3, and 5 of the
form 22 + 2y? — 322 where zyz # 0. We next define a; = o + 2y and 8; = By — 7,
ie,ap=—1+2=1land gy =1—-1=0.

Then a representation for odd integers is
(G+1)2+2()2—352=25+ 1.
We can use this identity to represent 3 and 5. So we can write 3 and 5 as follows:

3=2%+2(1%) — 3(1%),

5=3%4+2(2%) — 3(2%).

We next find a new representation for 1. We define an, = ag+4y and py = [y — 2z,
ie,ag=—1+4=3and fo=1—-2=—1.

Then a new representation for odd integers is
(j+3)2%+2( —1)2—352=2j+11.

So the representation for 1 is 22 + 2(6%) — 3(5%) = 1.

Case 2. We next find the representation for even integers.

Since ged(z,y) = ged(1,1) = 1, there exist ap = 2 and fy = —1 such that
1(2) + (1)(—1) = 1. We also obtain a; = 3 and ) = —2.



36

The representations for even integers are given by

(j+4)?+2( —1)* =352 =45 + 18,
(j+6)>+2(j —2)° — 3% = 4j + 44.
The above identity gives a representation for even integers n # 2,22, 18,20, 52, and
44 of the form z? + 2y? — 322 where zyz # 0. We next define oy = o + 2y, 2 =
Bo—2x, a3 = ag+3y and B3 = Sy — 3z, i.e., ay =4, 6y = =3, a3 = 5 and 3 = —4.
Then the new representations for even integers are given by
(j+8)°+2(j —3)> — 35% = 45 + 82,
(j +10)* +2(j —4)* — 352 = 45 + 132
Thus
2 = 122 4+ 2(23%) — 3(20?),
22 = 7% 4+ 2(18%) — 3(15%),
18 = 82 +2(19?) — 3(16%),
20 = 18% + 2(32?) — 3(28?),
52 = 107 + 2(24?) — 3(20%),

44 = 12 + 2(26°) — 3(22?).
Therefore from both cases we can conclude that 3 is 2—special.

Example 9. We will show that 9 is 2—special. So we have to show that for any
integer n, there exist non-zero integers x,y, and z such that n = 2% + 2y? — 922
We will use the notation in Theorem 4.3. Write 9 = 1% + 2(2?). Then z = 1 and
y=2.

Case 1. We will find the representation for odd integers.

Since ged(z,2y) = ged(1,4) = 1, there exist oy = —3 and fy = 1 such that

1(=3) +2(2)(1) = 1. A representation for odd integers is given by
(J—3)2+2(2j + 1) =952 =2j +11.

The above identity gives a representation for odd integers n # 11 and 17 of the
form 22 + 2y% — 922 where zyz # 0. We next define a; = ag + 2y and 8; = 3y — =,
ie, o =—-34+4=1land /1 =1-1=0.

Then a representation for odd integers is
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(G+1)2+2(25)2—-952 =25+ 1.

We can use this identity to represent 17 and 11. So we can write 17 and 11 as

follows:

17 = 92 + 2(162) — 9(8%),

11 = 5% +2(10%) — 9(5%).

Case 2. We next find the representation for even integers.

Since ged(z,y) = ged(1,2) = 1, there exist ap = —1 and fy = 1 such that
(=) +(2)(1) =1.

We also obtain a; =1 and g = 0.

The representations for even integers are given by

(7 =2 +2(2 +1)* = 957 =4j +6,
(5 +2)%4+2(2)* — 952 =45 + 4.
The above identities give a representation for even integers n # 14,6, —4, and 4
of the form z? + 2y* — 922 where zyz # 0.
We next define ay = ag + 2y, B2 = By — 22, a3 = a9 + 3y and f3 = [y — 3z, i.e.,
as =3,0,=—1, a3 =5 and B3 = —2.

Then the representations for even integers are
(j+6)*+2(2j —1)* — 95> = 45 + 38,
(5 +10)2 +2(2j — 2)% — 95% = 45 + 108.
Thus
6 = 22 +2(17%) — 9(8%),

—4 = 18% 4 2(58?%) — 9(28%),

4 = 16% + 2(54%) — 9(26%).

We next find a representation for 6.
We define oy = o + 4y and By = [y — 4z, i.e., ay =7 and By = —3.

Then a new representation for even integers is

(j 4 14)% + 2(2j — 3)2 — 952 = 45 + 214.
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So the representation for 14 is 14 = 362 + 2(103)? — 9(50?).

Therefore 9 is 2—special.

Example 10. We will show that 11 is 2—special. We have to show that for any

integer n, there exist non-zero integers x,y, and z such that n = 22 + 2y — 1122

We will use the notation in Theorem 4.3. Write 11 = 3% 4+ 2(1%). Then z = 3 and
y=1.
Case 1. We will find the representation for odd integers.
Since ged(z,2y) = ged(3,2) = 1, there exist oy = 1 and fy = —1 such that
3(1)+2(1)(—-1) = 1.
A representation for odd integers is given by

(Bj+1)2+2(j —1)> = 1152 =25 + 3.
The above identity gives a representation for odd integers n # 3 and 5 of the form
2?2 + 2y? — 1122 where zyz # 0.
We next define ay = a9+ 2y and 6y = By —z, ie., oy = 1+2 =3 and 3 =
—1-3=—-4.

Then a representation for odd integers is
(37 +3)2+2(5 —4)2 — 1152 = 2j + 41.
We can use this identity to represent 3 and 5. So we can write 3 and 5 as follows:
3 = 547 4 2(23%) — 11(19?),
5 =517 4 2(22%) — 11(18%).

Case 2. We will find the representation for even integers.
Since ged(z,y) = ged(3,1) = 1, there exist ap = 1 and fy = —2 such that
3(1) + 1(—2) = 1. We also obtain oy = 2 and f; = —5.

The representations for even integers are given by

(37 +2)%+2(j —2)* — 1152 = 45 + 12,
(35 +4)? +2(j — 5)* — 115% = 45 + 66.

The above identities give a representation for even integers n # 20, 12,86, and 66

of the form 22 + 2y? — 1122 where zyz # 0..
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We next define ap = ap + 2y, 82 = By — 2x,a3 = oy + 3y and B3 = By — 3z,i.e.,
Oy = 3,52 = —8,053 =4 and 63 = —11.

Then the new representations for even integers are

(35 +6)* +2(j — 8)* — 1152 = 45 + 164,

(35 +8)2 +2(j — 11)% — 1152 = 45 + 306.
Thus

20 = 1022 + 2(442) — 11(362),

Y

(447) — 11(36°)
12 = 108% + 2(46°) — 11(38?),
86 = 1572 + 2(66%) — 11(55?)
(717) — 11(60%)

66 = 1722 + 2(712%) — 11(60?).

Therefore 11 is 2—special.

Example 11. We will show that 17 is 2—special. We have to show that for any
integer n, there exist non-zero integers x,y, and z such that n = x? + 2y* — 1722
We will use the notation in Theorem 4.3. Write 17 = 3% 4 2(22). Then x = 3 and
y=2.

Case 1. We will fine the representation for odd integers.

Since ged(z,2y) = ged(3,4) = 1, there exist ap = —1 and [y = 1 such that
3(—1) +2(2)(1) = 1.

A representation for odd integers is given by
(3 —1)2+2(2j +1)> =175 = 25 + 3.

The above identity gives a representation for odd integers n # 3 of the form
2% + 2y* — 172% where zyz # 0.

We next define a; = a9 + 2y and 81 = By — z, ie, a3y = —1+4 = 3 and
fr=1-3=-2

Then a new representation for integers is
(35 +3)2+2(2j —2)2 — 1752 =25 +17.

So we can write 3 = 18% + 2(12) — 17(7?).

Case 2. We will find the representation for even integers.
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Since ged(z,y) = ged(3,2) = 1, there exist ap = 1 and fy = —1 such that
3(1) +2(—1) = 1. We also obtain oy =3 and 1 = —

The representations for even integers are given by

(35 +2)2 +2(25 — 1) — 172 = 45 + 6,

(37 +6)2 +2(2j —4)* — 17j% = 4j + 68.

The above identities give a representation for even integers n # 6,60, 76, and 68
of the form z? + 2y? — 1722 where xyz # 0.

We next define as = ag + 2y, B = By — 22, a3 = ap + 3y and B3 = [y — 3z, i.e.,
gy =5,0y=—7,a3 =Tand f3 = —

Then the representation for even integers are

(35 +10)* 4+2(25 — 7)? — 1752 = 45 + 198,

(35 + 14)* +2(25 — 10)* — 175* = 45 + 396.
Thus

6 = 1342 4 2(103>

76 = 2262 + 2(170?

(103%) — 17(48%)
60 = 2387 + 2(1782) — 17(84),
(170%) —17(80%)
68 = 2322 + 2(174%) — 17(82%).

Therefore 17 is 2—special.

Example 12. We will show that 19 is 2—special. We have to show that for any
integer n, there exist non-zero integers x,y, and z such that n = 22 + 2y? — 1922
We will use the notation in Theorem 4.3. Write 11 = 1% 4+ 2(3%). Then z = 1 and
y=3.

Case 1. We will find the representation for odd integers.

Since ged(z,2y) = ged(1,6) = 1, there exist ap = —5 and [y = 1 such that
1(=5)+2(3)(1) = 1.

A representation for odd integers is given by

(1 —5)2+2(35 + 1) — 1952 = 2j + 27.
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The above identity gives a representation for odd integers n # 27 and 37 of the
form 22 4 2y? — 1922 where xyz # 0.

We next define a; = a9+ 2y and 6, = By — x, ie.,, a7 = =54+ 6 = 1 and
B=1-1=0.

Then a new representation for odd integers is
(+1)2+2(35)* = 1952 =25 + 1.

We can use this identity to represent 27 and 37. So we can write 27 and 37 as

follows:

27 = 14% 4 2(39?) — 19(13?),

37 = 197 4 2(54?) — 19(182).

Case 2. we will find the representation for even integers.
Since ged(z,y) = ged(1,3) = 1, there exist ag = —2 and Sy = 1 such that
1(=2) + 3(1) = 1. We also obtain a; = 1 and 5, = 0.

The representations for even integers are given by

(j—4)? +2(35 — 1)* — 1957 = 45 + 18,

(5 +2)% 4+ 2(35)* — 195 = 45 + 4.

The above identities give a representation for even integers n # 34,18, —4, and 4
of the form 22 + 2y? — 1922 where zyz # 0.

We define an, = ag + 2y, 52 = By — 2x,a3 = ag + 3y and (3 = [y — 3z, ie.,
as =4,0=—1,a3 =7 and 3 = —2.

Thus the representations for even integers are

(j+8)% +2(3j — 1)? — 1952 = 45 + 66,
(5 +14)* +2(35 — 2)* — 1952 = 4j + 204.
Thus
18 = 42 +2(37%) — 19(12%),

—4 = 387 4+ 2(158%) — 19(52?%),

4 = 36% 4 2(152%) — 19(50%).
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Next, we have to find the representation for 34. Then we define ay = oy + 4y and
By = Po —4x, ie., ay = 10 and [y, = —3.

So the new representation for even integers which congruent 2 modulo 4 is
(7 +20)2 +2(3j — 3)* — 1952 = 45 + 418.

Thus 34 = (76%) + 2(291%) — 19(962).
Therefore 19 is 2—special.

Example 13. We will show that 7 is 6—special. We have to show that for any
integer n, there exist non-zero integers x,y, and z such that n = 22 + 6y% — 722
We will use the notation in theorem 4.3. Write 7 = 12 4+ 6(12). Then z = 1 and
y=1.

Case 1. We will find the representation for odd integers.

Since ged(z,6y) = ged(1,6) = 1, there exist ap = —5 and [y = 1 such that
1(=5) + (6)(1) = 1.

A representation for odd integers is given by
(j—5)?+6(j +1)* =752 =25+ 3L

The above identity gives a representation for odd integers n # 29,31, and 41 of
the form 22 + 6y? — 722 where zyz # 0.
We next define a; = a9 + 6y and 81 = By — z, ie.,, ay = =5+ 6 = 1 and
B=1-1=0.
Then a new representation for odd integers is

(G+1)2+6()*—T7/2=2j+1.
So we can write 29 = 15% + 6(14%) — 7(14%), 31 = 16* + 6(15*) — 7(15?), and
41 = 21% + 6(20%) — 7(202).
Case 2. we will find the representation for even integers.
Since ged(z,3y) = ged(1,3) = 1, there exist oy = —2 and fy = 1 such that
1(—=2) + 3(1) = 1. We also obtain a; = 1 and ; = 0.

The representations for even integers are given by

(=42 +6(j +1)>=7j% =45 + 22,

(j+2)2+6(5)2—7j2 =45+ 4.
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The above identities give a representation for even integers n # 38, 18,22, —4, and
4 of the form x? + 6y? — 72? where zyz # 0.

We next define ay = ag + 6y, 82 = By — 2z, a3 = ag + 9y and f3 = [y — 3z, i.e.,
as =4,0=—1,a3 =7 and 3 = —2.

Then the representation for even integers are

(j+8)2+6(j — 1) —174% =45+ 70,

(j+14)* +6(j —2)* — 752 = 45 + 220.
Thus

18 = 52 + 6(14?) — 7(13%),
22 = 4% 4+ 6(13%) — 7(12?),
—4 = 42% 4+ 6(58%) — 7(567),

4 = 40% + 6(56%) — 7(54%).

We next find a representation for 38.
We defineay = o+ 12y and 5, = Sy — 4z, i.e., ay = 10 and B4 = —3. Then a new

representation for even integers is
(7 +20)2+6(5 —3)* — 752 = 45 + 454.

Thus 38 = (842) 4 6(1072) — 7(1042).

Therefore 7 is 6—special.

Example 14. We will show that 11 is 10—special. We have to show that for any
integer n, there exist non-zero integers z,y, and z such that n = 22+ 10y? — 1122
We will use the notation in Theorem 4.3. Thus 11 = 124 10(1?). Then z = 1 and
y=1.

Case 1. We will find the representation for odd integers.

Since ged(z, 10y) = ged(1,10) = 1, there exist ap = —9 and fy = 1 such that
1(=9) + (10)(1) = 1.

A representation for odd integers are given by

(1 —9)2+10(j + 1) — 1152 = 25 + 91.
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The above identity gives a representation for odd integers n # 89,91, and 109 of
the form x? + 10y — 112% where zyz # 0.
We next define a; = a9 + 10y and By = By — z, i.e.,, g = =9+ 10 = 1 and
B=1-1=0.
Then a new representation for odd integers is

(j+1)2+10(5)% — 1152 =25 + 1.
So we can write 89 = 452 4 10(44?) — 11(44?), 91 = 46% + 10(45%) — 11(45%), and
109 = 552 + 10(54%) — 11(54?).
Case 2. we will find the representation for even integers.
Since ged(z,by) = ged(1,5) = 1, there exist ap = —4 and [y = 1 such that
1(—4) +5(1) = 1. We also obtain a; = 1 and f; = 0.

The representations for even integers are given by
(j—8)2+10(j 4+ 1)* — 115% = 45 + 74,
(j+2)? +10(j)* — 115% = 45 + 4.
The above identity gives a representation for even integers n # 106, 70,74, —4,
and 4 of the form 22 + 10y? — 1122 where zyz # 0.
We next define ap = a9 + 10y, B = By — 22, a3 = ap + 15y and fB3 = [y — 3z, i.e.,
Qg = G,ﬁg = —1,()(3 =11 and Bg = 2.
Then the representation for even integers are
(j+12)2 +10(j — 1)? — 115% = 45 + 154,

(j+22)*+10(j — 2)* — 1152 = 4j + 524.
Thus

70 = 9% +10(222) — 11(21?),
74 = 8 +10(21%) — 11(20%),
—4 = 110% 4 10(134%) — 11(132?),
4 = 108% 4 10(132?%) — 11(130%).
We next find the representation for 106.

We define ay = oy + 20y and By = [y — 4x, ie., ay = 16 and 54 = —3. So the

representation of even integers which congruent 2 modulo 4 is
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(4 32)2+10(j — 3)2 — 1152 = 45 + 1114.

So we can write 106 = (220?) + 10(255%) — 11(2522).
Therefore 11 is 10—special.

Example 15. We will show that 19 is 10—special. We have toshow that for any
integer n, there exist non-zero integers x,y, and z such that n = 2%+ 10y? — 1922
We will use the notation in Theorem 4.3. Write 11 = 3% 4+ 10(1%). Then z = 3
and y = 1.

Case 1. We will find the representation for odd integers.

Since ged(z, 10y) = ged(3,10) = 1, there exist ap = —3 and fy = 1 such that
3(—=3) + (10)(1) = 1.

A representation foe odd integers is given by
(35 —3)2+10(j + 1) — 1952 = 25 + 19.

The above identity gives a representation for odd integers n # 21,17, and 19 of
the form 22 + 10y? — 1922 where xyz # 0.
We next define a; = ag + 10y and 51 = By — x, ie., ag = =3+ 10 = 7 and
fr=1-3=-2
Then a new representation for odd integers is

(35 +7)2+10(j — 2)% — 1952 = 25 + 89.
So we can write 21 = 95% 4+ 10(36%) — 19(34?), 17 = 101% + 10(38%) — 19(36%), and
19 = 982 + 10(37%) — 19(35%).
Case 2. we will find the representation for even integers.
Since ged(z,5y) = ged(3,5) = 1, there exist oy = 2 and fy = —1 such that
3(2) +5(—1) = 1. We also obtain oy = 7 and ; = —4.

The representations for even integers are given by
(37 —4)2 +10(j — 1)* — 195% = 45 + 26,
(35 4+ 14)* +10(j — 4)* — 1952 = 45 + 356.
The above identities give a representation for even integers n # 30, 26,372, and

356 of the form z? + 10y* — 1922 where zyz # 0.
We define as = ag + 10y, B2 = By — 22,3 = ag + 15y and [B3 = [y — 3z, i.e.,
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Qg = 12,52 = —7, 3 = 17 and 53 = —10.

Then the representations for even integers are

(35 +24)* +10(j — 7)* — 195 = 45 + 1066,

(35 4+ 34)? +10(j — 10)* — 1952 = 45 + 2156.
Thus

30 = 7532 + 10(2667) — 19(259?),
26 = 756% 4 10(267%) — 19(260%),
372 = 1304% + 10(4567) — 19(446?),

356 = 1316 + 10(460%) — 19(450%).
Therefore 19 is 10—special.

We now present examples of 2—special. We show that [ is 2—special
for [ < 50 by giving identities to represent any integer n of the form n = z? +
29% — k2% where zyz # 0.

e 3 is 2—special.

[j - 17J + 17j]2,3 = QJ +37
[j +47] - 17j]2,3 = 4] + 187

[ +6,7 = 2,725 = 4] + 44,

[2,6,5]25 = 1, [12,23,20]55 = 2, [2,1,1]a3 = 3, [3,2,2]25 = 5, [8,19,16]5.5 = 18,
[18,32,28],5 = 20, [7,18,15]5.5 = 22, [12, 26,2255 = 44, and [10, 24, 20], 5 = 52.

e 9 is 2—special.

[J—3,2 4+ 1,jlag = 25 + 11,
[j - 2727 + 17j]2,9 = 4] +67

[.7 + 272j7j]2,9 = 4] +47

(18,58, 2859 = —4, [16,54,26]2.9 = 4, [5,10, 5]09 = 11, [2,17, 8]0 = 6, [9, 16, 8]5.9 =
17, and [36,103,50]5,9 = 14.
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e 11 is 2—special.

[3J + 17] - 1aj]2,11 = 2] + 37

35+ 2,7 =2, jlo11 = 45 + 12,

[3.] + 47] - 57j]2,11 - 4] + 667
[54,23,19]211 = 3, [51,22,18]211 = 5, [108,46, 38211 = 12, [102,44,36]211 = 20,
[172,71,60]211 = 66, and [157,66, 55211 = 86.
e 17 is 2—special.

13 — 1,254+ 1, j]o17 = 25 + 3,

37 +2,25 — 1, 4]217 = 45 + 6,

[3) +6,2) — 4, j]o17 = 47 + 68,
[18,1,7]a17 = 3, [134, 103, 48]5.17 = 6, [238, 178, 84|17 = 60, [232, 174, 82]517 = 68,
and [226, 170, 80]5 17 = 76.
e 19 is 2—special.

[ —5,3j + 1,210 = 25 + 27,

[ —4,3j — 1,210 = 45 + 18,

[.7 + 27 3j7j]2,19 = 4.7 + 47

[38, 158, 52]2’19 == —4, [36, 152, 50]2719 = 4, [4,37, 12]2’19 == 18, [14,39, 13]2’19 — 27,
(76,291, 96]219 = 34, and [19, 54, 18]9.19 = 37.
e 27 is 2—special.

[5] + 17] - 27j]2,27 = 2] + 97

55 + 2,5 — 4, jlaor = 45 + 36,

55+ 4,5 =9, jlaor = 45 + 178,
232,54, 47297 = 13, [242, 56, 49]2727 =0, [484,112,98]2 97 = 36, [464, 108, 94]2727 =
52, [752,171,152]5 97 = 178, and [707, 162, 143]5 o7 = 214.
e 33 is 2—special.

[j - 77 4] + 17j]2,33 = 2] + 517

[J—6,4) +1,jlo33 = 45 + 38,

[.] + 274jaj]2,33 = 4.] +47
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(66,338, 84,35 = —4, [64,330,82]5.55 = 4, [6,65,16]2.53 = 38, [26, 100, 255 33 = 51,
132, 635, 158]5.33 = 62, and [33,128,32]5.53 = 65.

e 41 is 2—special.

[3] + 374.] - 17j]2,41 = 2] + 117
[3.] - 274j + 17j]2,41 = 4] + 67

[3.] + 674J - 27j]2,41 = 4.] +447

[166, 245, 60]2741 == 6, [205, 2927 72]2’41 == 97 [202, 288, 71]2741 == ]_1, and
410, 584, 144]5 41 = 36.

Corollary 4.4. Let k be an odd positive integer. There are infinitely many

2k—special numbers.

Proof. For any odd integer k, we can always choose infinitely many integers x and
y such that ged(x,2ky) = 1. By Theorem 4.3, we have that | = 2? + 2ky? is
2k—special. ]

Theorem 4.5. Let k be a positive integer. If 4 is k—special, then k =2 (mod 4).

Proof. Let 4 be k-special. Then 2% + ky? — 422 = n for all integers n, there exist
integers x,y, and z such that 2% + ky? = n (mod 4).

Case 1. k& = 0 (mod 4). Then 2> = n (mod 4). If n = —1
(mod 4), then 2 = —1 (mod 4). We know that the Legendre symbol (=) = —1.
Hence there is no integer z such that 2 + ky? — 42? = n where n = —1 (mod 4).

Case 2. k = 1 (mod 4). Then 2? + 3> = n (mod 4). We have
72 =0,1 (mod 4) and y*> = 0,1 (mod 4). If n = —1 (mod 4), then 22 + y* = —1
(mod 4). We know that 22 + y* = 0,1, and 2 (mod 4).
Hence there is no integers x and y such that 2% + y?> — 42> = n where n = —1
(mod 4).

Case 3. k = 3 (mod 4). Then 2? + 3y*> = n (mod 4). We have
72 = 0,1 (mod 4) and y* = 0,1 (mod 4). Then z* + 3y*> = 0,1, and 3 (mod 4).
Moreover, if n = 2 (mod 4), then 22 + 3y* = 2 (mod 4). This is a contradiction.

]

Theorem 4.6. Let k and | be positive integers. If k = 2 (mod 8) and | # 2

(mod 4), then 4l is not k—special.
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Proof. Suppose that K =2 (mod 8). Then k = 8m + 2 for some m € Z.
Suppose on the contrary that 4/ is k-special.
For any integer n, there exist non-zero integers z,y, and z such that

2 4+ (8m + 2)y? — 412* = 2n.

Since 2n is even, we can see that x is even. Let x = 22’ for any integer .

Thus

42" + (8m 4 2)y* — 412* = 2n
22" + (4m + 1)y — 202* = n.
If n is odd, then y is odd. Since y is odd, y?> =1 (mod 8).
We consider 22 — 202% = n — (4m + 1)y°.

We now consider the following three cases on the values of [.

Case 1. [ =0 (mod 4). Thus [ = 4r for some r € Z. Then
20" —2(4r)2* =n — (4m+1) (mod 8)
20 =n — (4m +1) (mod 8).
Subcase 1.1. m is even. Then
22”7 =n—1 (mod 8).

Since the quadratic residues modulo 8 are 0, 1, and 4, we have 22 = 0,2 (mod 8).
If n=5,7 (mod 8), then 22> = 4,6 (mod 8). This is a contradiction.
Subcase 1.2. m is odd. Then

222 =n —5 (mod 8).

Since the quadratic residues modulo 8 are 0, 1, and 4, we have 22 = 0,2 (mod 8).
If n=1,3 (mod 8), then 22> = 4,6 (mod 8). This is a contradiction.
Case 2. [ =1 (mod 4). Thus [ = 4r + 1 for some r € Z. Then

202 —2(4r + )22 =n — (4m +1) (mod 8)

202 — 222 =n— (4m+1) (mod 8).

Subcase 2.1. m is even. Then

22" — 222 =n—1 (mod 8).
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Since the quadratic residues modulo 8 are 0,1, and 4, we have 22"? — 222 = 0,2,6
(mod 8). If n =5 (mod 8), then 222 — 22?2 =4 (mod 8). This is a contradiction.
Subcase 2.2. m is odd. Then

22" — 222 =n —5 (mod 8).

Since the quadratic residues modulo 8 are 0,1, and 4, we have 22"? — 222 = 0,2,6
(mod 8). If n =1 (mod 8), then 22"? — 22 =4 (mod 8). This is a contradiction.
Case 3. [ =3 (mod 4). Thus [ = 4r + 3 for some r € Z. Then

202 —2(4r +3)22 =n — (4m +1) (mod 8)
202 — 622 =n— (4m+1) (mod 8).
Subcase 3.1. m is even. Then
222 — 622 =n —1 (mod 8).

Since the quadratic residues modulo 8 are 0, 1, and 4, we have 222 — 622 = 0, 2, 4
(mod 8). If n =7 (mod 8), then 22"? — 22?2 = 6 (mod 8). This is a contradiction.
Subcase 3.2. m is odd. Then

222 — 622 =n —5 (mod 8).

Since the quadratic residues modulo 8 are 0, 1, and 4, we have 222 — 622 =0, 2, 4
(mod 8). If n =3 (mod 8), then 22" — 62> = 6 (mod 8). This is a contradiction.

Therefore 41 is not k—special.
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CHAPTER 5

Conclusion

Let k& be a positive integer. We define a positive integer [ to be

k—special if for every integer n there exist non-zero integers a, b, and ¢ such that
n=a®+ kb* — 1%

In Chapter 3, we first show that 1 is k—special when k is not divisible
by 4. We next widen the scope of k and [. We show that k is k—special if and
only if £ = 1. We let k and [ be odd positive integers and show that [ is k—special
if [ = 2% + ky? for some positive integers z and y and ged(z, ky) = 1. Moreover,
there are infinitely many k—special when k is an odd integer. Furthermore, we
prove that for any positive odd integer k, 4/ is not k—special.

In Chapter 4, we show that if [ is 2—special, then | = 2% + 2y? for
some integers x and y but the converse is not true. We provide conditions of [
to be 2k-special where k is odd. That is [ = 22 + 2ky? for some positive integers
x and y and ged(x, 2ky) = 1. Moreover, we show that there are infinitely many
2k—special when k is an odd integer. Furthermore, we prove that if 4 is k—special,
then &k = 2 (mod 4). However, for any positive integer [, 4] is not k—special if

k=2 (mod 8) and | # 2 (mod 4).
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