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CHAPTER 1

Introduction

In number theory, the representation of integers as sums of squares
are concerned by many mathematicians. For example, in 1640, Fermat [9] proved
that every prime number p of type p = 4k+1 can be represented as a sum of two
squares of integers. This implies that a positive integer n can be written as a sum
of two squares of integers if and only if all prime factors of n of the form 4k + 3

have even exponents in the prime factorization of n. In 1770, Lagrange [9] showed
that every positive integer n can be written as

w2 + x2 + y2 + z2 (1.1)

where w, x, y, and z are integers. In 1798, Lagrange [2] proved that a positive
integer can be represented in the form

x2 + y2 + z2 (1.2)

where x, y, and z are integers if and only if it is not of the form 4a(8b+7) for integers
a, b ≥ 0. In connection with Lagrange’s four-square theorem, in 1917, Ramanujan
[7] determined all positive integers a, b, c, and d such that every natural number n
is representable in the form

aw2 + bx2 + cy2 + dz2. (1.3)

Finally, he found 54 quadruples (a, b, c, d) with 1 ≤ a ≤ b ≤ c ≤ d. In 2005,
Panaitopol [5] showed that there exist no natural numbers a, b, and c such that
all even positive integers can be expressed in the form

ax2 + by2 + cz2 (1.4)

and he proved that for each odd natural number there exist non-zero integers x, y
and z in (1.4) if and only if 3 triples (a, b, c) with 1 ≤ a ≤ b ≤ c are (1, 1, 2), (1, 2, 3),
or (1, 2, 4). However, if we allow c in (1.4) to be negative, then the representation is
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possible . In 2015, Nowicki [4] showed that if all natural numbers are representable
in the form

x2 + y2 − cz2, (1.5)

then c is of the form q or 2q, where either q = 1 or q is a product of primes of the
form 4m+1. In the same year, Lam [3] proved its sufficiency. In 2021, Prugsapitak
and Thongngam [6] proved that if k is not divisible by 4, then all integers can be
written as

x2 + ky2 − z2, (1.6)

where x, y, and z are non-zero integers. In what follows, we study the representa-
tion of integers of the form

x2 + ky2 − lz2 (1.7)

for given positive integers k and l, where xyz $= 0.
To obtain the result that we mentioned above, we separate our work

into three chapters as follows:
In Chapter 2, we review definitions and theorems, which use through-

out the dissertation.
In Chapter 3, we first define k−special. Let k be a positive integer.

We say that a positive integer l is k−special if all integers n can be expressed in
the term n = x2 + ky2 − lz2 where x, y, and z are non-zero integers. We find
the necessary and sufficient conditions for representing all integers in the form
x2 + ky2 − z2 where x, y, and z are non-zero integers. For an odd positive integer
k, we find the conditions of an odd positive integer l to be k−special and we
proved that there are infinitely many k−special. Moreover, we show that if k is
odd, then 4m is not k−special.

In Chapter 4, for a positive odd integer k, we find the conditions of
an odd positive integer l to be 2k−special and we proved that there are infinitely
many 2k−special. Moreover, we show some properties of k−special when k ≡ 2

(mod 8) and k ≡ 2 (mod 4).
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CHAPTER 2

Preliminaries

In this chapter, we recall some definitions, theorems and examples
that will be used throughout our study.

Definition 2.1 ([8]). If a and b are integers with a $= 0, we say that a divides b if
there is an integer c such that b = ac. If a divides b, we also say that a is a divisor
or factor of b and that b is a multiple of a. If a divides b we write a | b, and if a
does not divides b we write a ! b.

Theorem 2.1 ([8]). If a, b, and c are integers with a | b and b | c, then a | c.

Theorem 2.2 ([8]). If a, b,m, and n are integers, and if c | a and c | b, then
c | (ma+ nb).

Theorem 2.3 ([8]). (The Division Algorithm) If a and b are integers such
that b > 0, then there are unique integers q and r such that

a = bq + r with 0 ≤ r < b.

Definition 2.2 ([8]). The greatest common divisor of a and b, which are not both
0, is the largest integer that divides both a and b. We denote the greatest common
divisor of a and b by gcd(a, b).

Definition 2.3 ([8]). The integers a and b, with a $= 0 and b $= 0, are relative
prime if a and b have the greatest common divisor gcd(a, b) = 1.

Definition 2.4 ([8]). A prime is an integer greater than 1 that is divisible by no
positive integers other than 1 and itself.

Definition 2.5 ([8]). An integer greater than 1 that is not prime is called com-
posite.

Definition 2.6 ([8]). If a and b are integers, then a linear combination of a and
b is a sum of the form ma+ nb, where both m and n are integers.
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Theorem 2.4 ([8]). The greatest common divisor of the integers a and b, not both
0, is the least positive integer that is a linear combination of a and b.

Corollary 2.5 ([8]). The integers a and b are relatively prime integers if and only
if there are integers m and n such that ma+ nb = 1.

Theorem 2.6 ([8]). (The Euclidean Algorithm) Let r0 = a and r1 = b be
integers such that a ≥ b > 0. If the division algorithm is successively applied to
obtain rj = rj+1qj+1 + rj+2, with 0 < rj+2 < rj+1 for j = 0, 1, 2, ..., n − 2 and
rn+1 = 0, then gcd(a, b) = rn, the last non-zero remainder.

Definition 2.7 ([8]). Let m be a positive integer. If a and b are integers, we say
that a is congruent to b modulo m if m | (a− b).

If a is congruent to b modulo m, we write a ≡ b (mod m). If
m ! (a − b), we write a $≡ b (mod m), and we say that a and b are incongruent
modulo m.

Theorem 2.7 ([8]). If a and b are integers, then a ≡ b (mod m) if and only if
there is an integer k such that a = b+ km.

Theorem 2.8 ([8]). Let m be a positive integer. Congruences modulo m satisfy
the following properties:

1. Reflexive property: If a is an integer, then a ≡ a (mod m).

2. Symmetric property: If a and b are integers such that a ≡ b (mod m), then
b ≡ a (mod m).

3. Transitive property: If a, b, and c are integers with a ≡ b (mod m) and b ≡ c

(mod m), then a ≡ c (mod m).

Theorem 2.9 ([8]). If a, b, c, d, and m are integers with m > 0, such that a ≡ b

(mod m), and c ≡ d (mod m), then

1. a+ c ≡ b+ c (mod m),

2. a− c ≡ b− c (mod m),

3. ac ≡ bc (mod m),
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4. a+ c ≡ b+ d (mod m),

5. a− c ≡ b− d (mod m),

6. ac ≡ bd (mod m).

Theorem 2.10 ([8]). If a, b, c, and m are positive integers such that m > 0,
d = gcd(c,m), and ac ≡ bc (mod m), then a ≡ b

(
mod m

d

)
.

Definition 2.8 ([8]). If m is a positive integer, we say that an integer a is a
quadratic residue of m if gcd(a,m) = 1 and the congruence x2 ≡ a (mod m) has
a solution. If the congruence x2 ≡ a (mod m) has no solution, we say that a is a
quadratic nonresidue of m.

Definition 2.9 ([8]). Let p be an odd prime and a be an integer not divisible by
p. The Legendre symbol

(
a

p

)
is defined by

(
a

p

)
=






1 if a is a quadratic residue of p;

−1 if a is a quadratic nonresidue of p.

Definition 2.10 ([1]). A nonzero, nonunit elelment p of an integral domain D is
called a prime if p | ab, where a, b ∈ D, implies that p | a or p | b.

Example 1. 2 is not a prime in Z + Z
√
−5 as 2 | (1 +

√
−5)(1 −

√
−5) yet

2 ! 1±
√
−5.

Definition 2.11 ([1]). (Element integral over a domain) Let A and B be
integral domains with A ⊆ B. The element b ∈ B is said to be integral over A if
it satisfies a polynomial equation

xn + an−1xn−1 + · · ·+ a1x+ a0 = 0,

where a0, a1, . . . , an−1.

Definition 2.12 ([1]). (Algebraic integer) A complex number which is integral
over Z is called an algebraic integer.

Definition 2.13 ([1]). (Element algebraic over field) Let A and B be integral
domains with A ⊆ B. Suppose that A is a field and b ∈ B is integral over A; then
b is said to be algebraic over A.
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Definition 2.14 ([1]). (Algebraic number) A complex number that is algebraic
over Q is called an algebraic number.

Theorem 2.11. A rational number is an algebraic integer if and only if α is an
integer.

Proof. Let α be a rational number. Suppose that α is an algebraic integer. Let f

be the monic polynomial in Z[x] of least degree having α as a root, i.e., f(α) = 0.
So f(x) = (x − α)h(x) for some h(x) ∈ Q[x]. Since f(x) is irreducible over Q,
h(x) = 1 or −1. So x − α ∈ Z[x]. Therefore α is an integer as desired. For the
converse, it is easy to see that if α is an integer then α is a rational number.

We next prove the lemma that we will use in the proof of our main
results.

Lemma 2.12. Let a, b, c, d be integers. If an+n
cn+d is an integer for some integer n,

then cn+ d | ad− bc.

Proof. Suppose an+b
cn+d is an integer for some integer n. Then c(an+b)

cn+d is also an
integer.
Thus

c(an+ b)

cn+ d
=

acn+ ad+ (bc− ad)

cn+ d

= a− ad− bc

cn+ d
ad− bc

cn+ d
= a− c(an+ b)

cn+ d
.

Since a and c(an+b)
cn+d are integers, ad−bc

cn+d is also an integer.
Hence cn+ d | ad− bc.

Lemma 2.13. Let m be a rational. If m2 is an integer, then m is an integer.

Proof. Suppose that m2 is an integer. Thus m is an algebraic integer because it is
a root of x2 −m2 = 0. Since a rational number is an algebraic integer if and only
if it is an integer, m is an integer as desired.

Lemma 2.14. If x and y can both be represented as a2 +2b2, for some integers a

and b, then xy can be written of this form.
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Proof. Suppose x = a2 + 2b2 and y = c2 + 2d2 for some a, b, c, d ∈ Z. We have

xy = (a2 + 2b2)(c2 + 2d2)

= a2c2 + 2a2d2 + 2b2c2 + 4b2d2

= (ac− 2bd)2 + 2(ad+ bc)2,

which is of the desired form.

Lemma 2.15 ([1]). Let p be a prime of the form 8k+1 or 8k+3, then p = x2+2y2

for some x, y ∈ Z.

Lemma 2.16. If n ∈ Z is of the form x2+2y2 for some integers x and y, then all
primes p of the form 8k+5 or 8k+7 have even exponent in the prime factorization.

Proof. Let n = x2 + 2y2 for some integers x and y. We have

n = x2 + 2y2 = (x+ y
√
−2)(x− y

√
−2).

Let p be a prime of the form 8k + 5 or 8k + 7 and p|n. Since −2 is quadratic
nonresidue modulo p, we can see that p is a prime in Z[

√
−2]. Thus p|x+ y

√
−2

or p|x − y
√
−2. If p|x + y

√
−2, then p|x − y

√
−2. Thus p|2x and p|2y. Since p

is odd, we have p|x and p|y. Similarly, we can show that if p|x− y
√
−2, then p|x

and p|y. Thus p|x+ y
√
−2 and p2|n. Write x = px1 and y = py1 for some integers

x1 and y1. Thus n = p2x2
1+2p2y21 = p2(x2

1+2y21). So n
p2 = x2

1+2y21. If p ! x2
1+2y21,

then p2||n. If p|x2
1 + 2y21 then p2|x2

1 + 2y21. We can continue this process and thus
p has even multiplicity in the prime factorization of n.

Lemma 2.17. A positive integer n can be written as x2 + 2y2 for some integers
x and y if and only if all primes of the form 8k + 5 or 8k + 7 have even exponent
in the prime factorization of n.

Proof. Let n be a positive integer of the form n = x2 + 2y2 for some integers x

and y. Let p be a prime of the form 8k + 5 and 8k + 7. By Lemma 2.16, if p|n,
then p has even multiplicity in the prime factorization of n. Conversely, we know
that 2 = 02 + 2(12). Let p be a prime divisor of n. If p ≡ 5, 7 (mod 8), then its
exponent is even and we have p2 = p2+2(02). If p ≡ 1, 3 (mod 8), then by Lemma
2.15 we have p = a2 + 2b2 for some integers a and b. Thus by Lemma 2.14 any
product of integer of the form x2 +2y2 is still an integer of the form x2 +2y2.
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In 2005, L. Panaitopol [5] expressed natural numbers as sums of
three squares as follows:

Theorem 2.18 ([5]). Consider integers a, b, and c satisfying 1 ≤ a ≤ b ≤ c.
There exist for each odd natural number n non-negative integers x, y, and z such
that

n = ax2 + by2 + cz2

if and only if (a, b, c) are (1, 1, 2), (1, 2, 3), or (1, 2, 4).

Theorem 2.19 ([5]). There exist no natural numbers a, b, and c such that every
even natural number n has the representation

n = ax2 + by2 + cz2

in which x, y, and z are integers.

In 2015, A. Nowicki [4] and P. C. H. Lam [3] provided necessary
and sufficient conditions for representing all integers in the form x2 + y2 − cz2 as
follows:

Definition 2.15 ([4]). Let c be a positive integer. We say that c is special if for
every integer k there exist non-zero integers x, y, and z such that x2+y2−cz2 = k.

Theorem 2.20 ([3]). If c is of the form q or 2q, where either q = 1 or q is a
product of prime numbers of the form 4k + 1, then c is special.

Theorem 2.21 ([4]). Every special number is of the form q or 2q, where either
q = 1 or q is a product of prime numbers of the form 4k + 1.

Theorem 2.22 ([4]). There are infinitely many special numbers.
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CHAPTER 3

k−Special Numbers

In this chapter, we first define k−special where k is a positive
integer. We say that a positive integer l is k−special if for all integers n there
exist non-zero integers x, y, and z such that

n = x2 + ky2 − lz2.

We provide the necessary and sufficient conditions for 1 to be k-special and we
find the condition for an odd positive integer l to be k−special for a given odd
positive integer k. Moreover, we provide some properties of k−special.

Definition 3.1. Let k and l be positive integers. Let [x, y, z]k,l denote the number
x2 + ky2 − lz2 where x, y, and z are integers and we say that l is k-special if for
every integer n there exist non-zero integers x, y, and z such that n = [x, y, z]k,l.

A. Nowicki [4] showed that 1 is 1−special by giving the following
identities.

Lemma 3.1 ([4]). 1 is 1−special.

Proof. It is easy to see that

2j − 1 = 22 + (j − 2)2 − (j − 3)2,

2j = j2 + 12 − (j − 1)2

for j ∈ Z. However, one of the variables j − 3, j − 2, j − 1, and j becomes zero
if j = 3, 2, 1, and 0 respectively. So we can use the representations 0 = [3, 4, 5]1,1,
2 = [3, 3, 4]1,1, 3 = [6, 4, 7]1,1, and 5 = [5, 4, 6]1,1.

Theorem 3.2. Let k be a positive integer. If k is divisible by 4, then 1 is not
k−special.

Proof. Let k be divisible by 4. Assume that 1 is k−special. Then there exist
non-zero integers x, y, and z such that
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x2 + ky2 − z2 = 2.

So we have x2 − z2 ≡ 2 (mod 4). Since quadratic residues modulo 4 are 0 and 1,
we deduce that x2 − z2 ≡ 0, 1, 3 (mod 4). This is a contradiction. Hence 1 is not
k−special.

Theorem 3.3. Let k be a positive integer. If k is not divisible by 4, then 1 is
k−special.

Proof. Let k be a positive integer not divisible by 4. We will show that for any
integer n there exist non-zero integers x, y, and z such that

n = x2 + ky2 − z2,

i.e., x2 − z2 = (x− z)(x+ z) = n− ky2.
We now consider the following four cases on the value of n:
Case 1. Suppose n ≡ 0 (mod 4). Thus n = 4j for some integer j.

We next find non-zero integers x, y, and z such that (x− z)(x+ z) = 4j − ky2.
We choose y = 4j + 2.
Then

(x− z)(x+ z) = 4j − k(4j + 2)2

= 2(2j − k(2j + 1)(4j + 2)).

Let x− z = 2 and x+ z = 2j − k(2j + 1)(4j + 2).
Then 2x = 2 + 2j − k(2j + 1)(4j + 2) and 2z = 2j − k(2j + 1)(4j + 2)− 2.
So we obtain x = 1 + j − k(2j + 1)2 and z = j − k(2j + 1)2 − 1.
We next show that x, y, and z are non-zero.
Since y ≡ 2 (mod 4), it implies that y $= 0.
If z = 0, then

j − k(2j + 1)2 − 1 = 0

k(2j + 1)2 = j − 1

k =
j − 1

(2j + 1)2
.

Since k > 0, we deduce that j > 1. Thus 1 ≤ j − 1 < (2j + 1)2.
This implies that j−1

(2j+1)2 is not an integer. Therefore z is non-zero.
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If x = 0, then

1 + j − k(2j + 1)2 = 0

k(2j + 1)2 = 1 + j

k =
1 + j

(2j + 1)2
.

Since k > 0 , we deduce that j > −1. If j > 0, then 1+j
(2j+1)2 is not an integer.

If j = 0, then k = 1 and n = 0. We need to provide a presentation for 0, namely
0 = [x, y, z]1,1 where xyz $= 0. We can write 0 as 0 = 32 + 42 − 52.

Case 2. Suppose n ≡ 1 (mod 4). Thus n = 4j + 1 for some integer j.
We next find non-zero integers x, y, and z such that (x− z)(x+ z) = 4j+1− ky2.
We choose y = 2(4j + 1).
Then

(x− z)(x+ z) = 4j + 1− 4k(4j + 1)2

= (4j + 1)(1− 4k(4j + 1)).

Let x− z = 4j + 1 and x+ z = 1− 4k(4j + 1).
Then 2x = 4j + 2− 4k(4j + 1) and 2z = −4k(4j + 1)− 4j.
So we obtain x = 1 + 2j − 2k(4j + 1) and z = −2j − 2k(4j + 1).
We next show that x, y, and z are non-zero.
Since y ≡ 2 (mod 8), we have y $= 0.
If x = 0, then

1 + 2j − 2k(4j + 1) = 0

2k(4j + 1) = 2j + 1

k =
2j + 1

2(4j + 1)
.

Since 2j +1 is odd and 2(4j +1) is even, we deduce that 2j+1
2(4j+1) is not an integer.

So this is a contradiction.
If z = 0, then

−2j − 2k(4j + 1) = 0

2k(4j + 1) = −2j

k =
−j

4j + 1
.
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Since k is an integer and by Lemma 2.12, we deduce that 4j+1 | (−1)(1)− (0)(4).
This implies that 4j + 1 | −1. Thus 4j + 1 = −1, 1 and hence j = 0.
If j = 0, then k = 0. This contradicts the fact that k is a positive integer.
Thus z is non-zero.

Case 3. Suppose n ≡ 2 (mod 4). Thus n = 4j + 2 for some integer j.
Subcase 3.1. Suppose k ≡ 2 (mod 4). Thus k = 4r + 2 for some non-

negative integer r. We next find non-zero integers x, y, and z such that

(x− z)(x+ z) = 4j + 2− (4r + 2)y2.

We choose y = 2j + 1.
Then

(x− z)(x+ z) = 4j + 2− (4r + 2)(2j + 1)2

= (4j + 2)(1− (2r + 1)(2j + 1))

= (4j + 2)(−4rj − 2j − 2r).

Let x− z = 4j + 2 and x+ z = −4rj − 2j − 2r.
Then 2x = −4rj + 2j − 2r + 2 and 2z = −4rj − 6j − 2r − 2.
So we obtain x = j − r − 2rj + 1 and z = −3j − r − 2rj − 1.
We next show that x, y, and z are non-zero.
Since y is odd, we have y $= 0.
If x = 0, then

j − r − 2rj + 1 = 0

r(2j + 1) = j + 1

r =
j + 1

2j + 1
.

Since r is an integer and by Lemma 2.12, we deduce that 2j + 1 | (1)(1)− (1)(2).
This implies that 2j + 1 | −1. Thus 2j + 1 = −1, 1 and hence j = 0 and j = −1.
If j = 0, then r = j+1

2j+1 = 1. So k = 6 and n = 2. We need to provide a
presentation for 2, namely 2 = [x, y, z]6,1 where xyz $= 0. So we can use the
representation 2 = [12, 3, 14]6,1.
If j = −1, then r = j+1

2j+1 = 0. So k = 2 and n = −2. We need to provide a
presentation for -2, namely −2 = [x, y, z]2,1 where xyz $= 0. We can write −2 as
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−2 = [4, 3, 6]2,1.
If z = 0, then

−3j − r − 2rj − 1 = 0

r(2j + 1) = −3j − 1

r =
−3j − 1

2j + 1
.

Since r is an integer and by Lemma 2.12, we deduce that 2j+1 | (−3)(1)−(−1)(2).
This implies that 2j + 1 | −1. Thus 2j + 1 = −1, 1 and hence j = 0 and j = −1.
If j = 0, then r = −1. This contradicts the fact that r is a non-negative integer.
If j = −1, then r = −2. This contradicts the facts that r is a non-negative integer.
Thus z is non-zero.

Subcase 3.2. Suppose k ≡ 1 (mod 2). Thus k = 2r + 1 for some non-
negative integer r. We next find non-zero integers x, y, and z such that

(x− z)(x+ z) = 4j + 2− (2r + 1)y2.

We choose y = 2j + 1.
Thus

(x− z)(x+ z) = 4j + 2− (2r + 1)(2j + 1)2

= (2j + 1)(2− (2r + 1)(2j + 1))

= (2j + 1)(1− 4rj − 2r − 2j).

Let x− z = 2j + 1 and x+ z = 1− 4rj − 2r − 2j.
Then 2x = −4rj − 2r + 2 and 2z = −4rj − 2r − 4j.
So we obtain x = 1− r − 2rj and z = −r − 2j − 2rj.
We next show that x, y, and z are non-zero.
Since y is odd, it implies that y is non-zero.
If x = 0, then

1− r − 2rj = 0

r(2j + 1) = 1

r =
1

2j + 1
.
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Since r is an integer and by Lemma 2.12, we deduce that 2j + 1 | (0)(1)− (1)(2).
This implies that 2j + 1 | −2. Thus 2j + 1 = −1, 1, 2,−2 and hence j = 0 and
j = −1.
If j = 0, then r = 1. We obtain k = 3 and n = 2. We will use the representation
2 = 122 + 3(3)2 − 132.
If j = −1, then r = −1. This contradicts the fact that r is a non-negative integer.
If z = 0, then

−r − 2j − 2rj = 0

r(2j + 1) = −2j

r =
−2j

2j + 1
.

Since r is an integer and by Lemma 2.12, we deduce that 2j+1 | (−2)(1)− (0)(2).
This implies that 2j + 1 | −2. Thus 2j + 1 = −1, 1, 2,−2 and hence j = 0 and
j = −1.
If j = 0, then r = 0. We obtain k = 1 and n = 2. We will use the representation
2 = 32 + 1(3)2 − 42 instead.
If j = −1, then r = −2. We obtain k = −3. This contradicts the fact that k > 0.

Case 4. Let n ≡ 3 (mod 4). Thus n = 4j + 3 for some integer j.
We next find non-zero integers x, y, and z such that (x− z)(x+ z) = 4j+3− ky2.
We choose y = 2(4j + 3).
Thus

(x− z)(x+ z) = 4j + 3− 4k(4j + 3)2

= (4j + 3)(1− 4k(4j + 3)).

Let x− z = 4j + 3 and x+ z = 1− 4k(4j + 3).
Then 2x = 4j + 4− 4k(4j + 3) and 2z = −4k(4j + 3)− 4j − 2.
So we obtain x = 2j − 6k − 8kj + 2 and z = −2j − 6k − 8kj − 1.

We next show that x, y, and z are non-zero.
Since y ≡ 6 (mod 8), we have that y is non-zero.



15

If x = 0, then

2j − 6k − 8kj + 2 = 0

k(8j + 6) = 2j + 2

k =
j + 1

4j + 3
.

Since k is an integer and by Lemma 2.12, we deduce that 4j + 3 | (1)(3)− (1)(1).
This implies that 4j + 3 | −2. Thus 4j + 3 = −1, 1,−2, 2 and hence j = −1.
If j = −1, then k = 0. This contradicts the fact that k > 0.
If z = 0, then

−2j − 6k − 8kj − 1 = 0

k(8j + 6) = −(2j + 1)

k =
−(2j + 1)

8j + 6
.

Since 2j + 1 is odd and 8j + 6 is even, we deduce that −(2j+1)
8j+6 is not an integer.

Both cases imply that x and z are non-zero.

In conclusion, we have proved the following theorem.

Theorem 3.4. Let k be a positive integer. Then 1 is k−special if and only if k is
not divisible by 4.

We next provide examples when 1 is k−special where k ≤ 20 and k

is not divisible by 4.

Example 2. We show that 1 is 1−special and next we will show that 1 is k−special
for 2 ≤ k ≤ 20 by giving the following identities:
• 1 is 2−special.

[8j2 + 3j + 1, 4j + 2, 8j2 + 7j + 3]2,1 = 4j,

[14j + 3, 8j + 2, 18j + 4]2,1 = 4j + 1,

[j + 1, 2j + 1, 3j + 1]2,1 = 4j + 2,

[14j + 10, 8j + 6, 18j + 13]2,1 = 4j + 3,
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and [4, 3, 6]2,1 = −2.
• 1 is 3−special.

[12j2 + 11j + 2, 4j + 2, 12j2 + 11j + 4]3,1 = 4j,

[22j + 5, 8j + 2, 26j + 6]3,1 = 4j + 1,

[2j, 2j + 1, 4j + 1]3,1 = 4j + 2,

[22j + 16, 8j + 6, 26j + 19]3,1 = 4j + 3,

and [12, 3, 13]2,1 = 2.
• 1 is 5−special.

[20j2 + 19j + 4, 4j + 2, 20j2 + 19j + 6]5,1 = 4j,

[38j + 9, 8j + 2, 42j + 10]5,1 = 4j + 1,

[4j + 1, 2j + 1, 6j + 2]5,1 = 4j + 2,

[38j + 28, 8j + 6, 42j + 31]5,1 = 4j + 3.

• 1 is 6−special.

[24j2 + 23j + 5, 4j + 2, 24j2 + 23j + 7]6,1 = 4j,

[46j + 11, 8j + 2, 50j + 12]6,1 = 4j + 1,

[j, 2j + 1, 5j + 2]6,1 = 4j + 2,

[46j + 34, 8j + 6, 50j + 37]6,1 = 4j + 3,

and [12, 3, 14]6,1 = 2.
• 1 is 7−special.

[28j2 + 27j + 6, 4j + 2, 28j2 + 27l + 8]7,1 = 4j,

[54j + 13, 8j + 2, 58j + 14]7,1 = 4j + 1,

[6j + 2, 2j + 1, 8j + 3]7,1 = 4j + 2,

[54j + 40, 8j + 6, 58j + 43]7,1 = 4j + 3.

• 1 is 9−special.

[36j2 + 35j + 8, 4j + 2, 36j2 + 35j + 10]9,1 = 4j,

[70j + 17, 8j + 2, 74j + 18]9,1 = 4j + 1,

[8j + 3, 2j + 1, 10j + 4]9,1 = 4j + 2,

[70j + 52, 8j + 6, 74j + 55]9,1 = 4j + 3.



17

• 1 is 10−special.

[40j2 + 39j + 9, 4j + 2, 40j2 + 39j + 11]10,1 = 4j,

[78j + 19, 8j + 2, 82j + 20]10,1 = 4j + 1,

[3j + 1, 2j + 1, 7j + 3]10,1 = 4j + 2,

[78j + 58, 8j + 6, 74j + 61]10,1 = 4j + 3.

• 1 is 11−special.

[44j2 + 43j + 10, 4j + 2, 44j2 + 43j + 12]11,1 = 4j,

[86j + 21, 8j + 2, 90j + 22]11,1 = 4j + 1,

[10j + 4, 2j + 1, 12j + 5]11,1 = 4j + 2,

[86j + 64, 8j + 6, 90j + 67]11,1 = 4j + 3.

• 1 is 13−special.

[52j2 + 51j + 12, 4j + 2, 52j2 + 51j + 14]13,1 = 4j,

[102j + 25, 8j + 2, 106j + 26]13,1 = 4j + 1,

[12j + 5, 2j + 1, 14j + 6]13,1 = 4j + 2,

[102j + 76, 8j + 6, 106j + 79]13,1 = 4j + 3.

• 1 is 14−special.

[56j2 + 55j + 13, 4j + 2, 56j2 + 55j + 15]14,1 = 4j,

[110j + 27, 8j + 2, 114j + 28]14,1 = 4j + 1,

[5j + 2, 2j + 1, 9j + 4]14,1 = 4j + 2,

[110j + 82, 8j + 6, 114j + 85]14,1 = 4j + 3.

• 1 is 15−special.

[60j2 + 59j + 14, 4j + 2, 60j2 + 59j + 16]15,1 = 4j,

[118j + 29, 8j + 2, 122j + 30]15,1 = 4j + 1,

[14j + 6, 2j + 1, 16j + 7]15,1 = 4j + 2,

[118j + 88, 8j + 6, 122j + 91]15,1 = 4j + 3.
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• 1 is 17−special.

[68j2 + 67j + 16, 4j + 2, 68j2 + 67j + 18]17,1 = 4j,

[134j + 33, 8j + 2, 138j + 34]17,1 = 4j + 1,

[16j + 7, 2j + 1, 18j + 8]17,1 = 4j + 2,

[134j + 100, 8j + 6, 138j + 103]17,1 = 4j + 3.

• 1 is 18−special.

[72j2 + 71j + 17, 4j + 2, 72j2 + 71j + 19]18,1 = 4j,

[142j + 35, 8j + 2, 146j + 36]18,1 = 4j + 1,

[7j + 3, 2j + 1, 11j + 5]18,1 = 4j + 2,

[142j + 106, 8j + 6, 146j + 109]18,1 = 4j + 3.

• 1 is 19−special.

[76j2 + 75j + 18, 4j + 2, 76j2 + 75j + 20]19,1 = 4j,

[150j + 37, 8j + 2, 154j + 38]19,1 = 4j + 1,

[18j + 8, 2j + 1, 20j + 9]19,1 = 4j + 2,

[150j + 112, 8j + 6, 154j + 115]19,1 = 4j + 3.

We next provide some properties of k−special.

Theorem 3.5. Let k be a positive integer. Then k is k−special if and only if
k = 1.

Proof. It is known that 1 is 1-special by Lemma 3.1. Now if k = 2, then for any
integer n there exist non-zero integers x, y, and z such that n = x2+2y2−2z2. Since
x2 ≡ 0, 1, 4 (mod 8), by a direct calculation 2y2 ≡ 0, 2 (mod 8) and −2z2 ≡ 0,−2

(mod 8), we have x2+2y2−2z2 $≡ 5 (mod 8). Thus 2 is not 2−special. For k > 2,
if k is k−special then for any integer n there exist non-zero integers x, y, and z

such that n = x2 + ky2 − kz2. Since k > 2, there exists a non-quadratic residue
modulo k, namely k′. Thus k′ ≡ x2 (mod k). This is a contradiction.

Next, we apply P. C. H. Lam’s method [3] to identify k−special
numbers when k is odd.
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Theorem 3.6. Let l and k be odd positive integers. If l = x2 + ky2 for some
positive integers x and y and gcd(x, ky) = 1, then l is k−special.

Proof. Suppose l = x2+ky2 for some positive integers x and y where gcd(x, ky) =
1. Since gcd(x, ky) = 1, there exist integers α0 and β0 such that xα0 + kyβ0 = 1.

For any positive integer n, We define αn = α0 + nky and βn =

β0 − nx. Consider

xαn + kyβn = x(α0 + nky) + ky(β0 − nx)

= xα0 + xnky + kyβ0 − knyx

= xα0 + kyβ0.

So (αn, βn) is a solution of xα0 + kyβ0 = 1.
Let an = xj + αn, bn = yj + βn and c = j, where j is an integer which will be
selected later. Thus

a2n + kb2n − lc2n = a2n + kb2n − (x2 + ky2)c2n

= (xj + αn)
2 + k(yj + βn)

2 − (x2 + ky2)j2

= x2j2 + 2xjαn + α2
n + ky2j2 + 2kyjβn + kβ2

n − x2j2 − ky2j2

= 2xjαn + α2
n + 2kyjβn + kβ2

0

= 2j(xαn + kyβn) + α2
n + kβ2

n.

We have

α2
n + kβ2

n = (α0 + nky)2 + k(β0 − nx)2

= α2
0 + 2nkα0y + n2k2y2 + kβ2

0 − 2knβ0x+ kn2x2

≡ α2
0 + kβ2

0 + n2k2y2 + kn2x2 (mod 2)

≡






α2
0 + kβ2

0 (mod 2) if n is even,

α2
0 + kβ2

0 + y2 + x2 (mod 2) if n is odd.

Since l and k are odd, we can see that x and y have different parities. Thus

α2
n + kβ2

n ≡






α2
0 + kβ2

0 (mod 2) if n is even,

α2
0 + kβ2

0 + 1 (mod 2) if n is odd.
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For any non-negative integer r, We obtain the following identities

a22r + kb22r − lc22r = 2j2r + α2
2r + kβ2

2r ≡ 2j2r + α2
0 + kβ2

0 (mod 2)

a22r+1 + kb22r+1 − lc22r+1 = 2j2r+1 + α2
2r+1 + kβ2

2r+1 ≡ 2j2r+1 + α2
0 + kβ2

0 + 1 (mod 2).

We can see that all integers can be represented in the form a2 +

kb2 − lc2 by using both identities.
Case 1. α2

0 + kβ2
0 ≡ 0 (mod 2). We first consider an even integer.

Let m be an even integer. We choose a suitable value of j2r such that

m = 2j2r + α2
2r + kβ2

2r = a22r + kb22r − lc22r

where a2r = xj2r+α2r, b2r = yj2r+β2r and c2r = j2r. We can see that a2rb2rc2r = 0

if and only if m is one of the following values: α2
2r + kβ2

2r,α
2
2r + kβ2

2r − 2α2r
x or

α2
2r + 2kβ2

2r − 2β2r

y . Since

lim
r→∞

α2r = lim
r→∞

(−β2r) = ∞,

there exists a non-negative integer r such that α2
2r + kβ2

2r − 2α2r
x > m, α2r > 0,

and β2r < 0. Thus we obtain a representation for m, namely m = a22r + kb22r − lc22r

where a2rb2rc2r $= 0.
Next, we consider a representation for an odd integer m. Let m be

an odd integer. We choose a suitable value of an integer j2r+1 such that

m = 2j2r+1 + α2
2r+1 + kβ2

2r+1 = a22r+1 + kb22r+1 − lc22r+1

where a2r+1 = xj2r+1 + α2r+1, b2r+1 = yj2r+1 + β2r+1 and c2r+1 = j2r+1. We
can see that a2r+1b2r+1c2r+1 = 0 if and only if m is one of the following values:
α2
2r+1 + kβ2

2r+1, α2
2r+1 + kβ2

2r+1 −
2α2r+1

x or α2
2r+1 + 2kβ2

2r+1 −
2β2r+1

y . Since

lim
r→∞

α2r+1 = lim
r→∞

(−β2r+1) = ∞,

there exists a non-negative integer r such that α2
2r+1 + kβ2

2r+1 − 2α2r+1

x > m,
α2r+1 > 0, and β2r+1 < 0. Therefore we obtain a representation for m, namely
m = a22r+1 + kb22r+1 − lc22r+1 where a2r+1b2r+1c2r+1 $= 0.

Case 2. α2
0 + kβ2

0 ≡ 1 (mod 2). We first find a representation for
an even integer m. Let m be an even integer. We choose a suitable value of an
integer j2r+1 such that

m = 2j2r+1 + α2
2r+1 + kβ2

2r+1 = a22r+1 + kb22r+1 − lc22r+1
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where a2r+1 = xj2r+1 + α2r+1, b2r+1 = yj2r+1 + β2r+1 and c2r+1 = j2r+1. We
can see that a2r+1b2r+1c2r+1 = 0 if and only if m is one of the following values:
α2
2r+1 + kβ2

2r+1,α
2
2r+1 + kβ2

2r+1 −
2α2r+1

x or α2
2r+1 + 2kβ2

2r+1 −
2β2r+1

y . Since

lim
r→∞

α2r+1 = lim
r→∞

(−β2r+1) = ∞,

there exists a non-negative integer r such that α2
2r+1 + kβ2

2r+1 − 2α2r+1

x > m,
α2r+1 > 0, and β2r+1 < 0. Therefore we obtain a representation for m, namely
m = a22r+1 + kb22r+1 − lc22r+1 where a2r+1b2r+1c2r+1 $= 0.

Next, let m be an odd integer. We choose a suitable value of an
integer j2r such that

m = 2j2r + α2
2r + kβ2

2r = a22r + kb22r − lc22r

where a2r = xj2r+α2r, b2r = yj2r+β2r and c2r = j2r. We can see that a2rb2rc2r = 0

if and only if m is one of the following values: α2
2r + kβ2

2r,α
2
2r + kβ2

2r − 2α2r
x or

α2
2r + 2kβ2

2r − 2β2r

y . Since

lim
r→∞

α2r = lim
r→∞

(−β2r) = ∞,

there exists a non-negative integer r such that α2r > 0, α2
2r + kβ2

2r − 2α2r
x > m and

β2r < 0. Therefore we obtain a representation for m, namely m = a22r +kb22r − lc22r

where a2rb2rc2r $= 0. Thus l is k−special.

We next provide examples how to obtain representation for any
integer n of the form x2 + ky2 − lz2 for (k, l) = (3, 7), (3, 13), (3, 19), and (3, 49).

Example 3. Let l = 7. Then l = 22 + 3(12). So that x = 2 and y = 1. Since
gcd(x, 3y) = gcd(2, 3) = 1, there exist integers α0 = −1 and β0 = 1 such that
2(−1) + 3(1)(1) = 1. Using the notation in Theorem 3.6, we obtain α1 = 2 and
β1 = −1.
Thus the identities are given by

(2k − 1)2 + 3(k + 1)2 − 7k2 = 2k + 4,
(2k + 2)2 + 3(k − 1)2 − 7k2 = 2k + 7.

So all integers except 2, 4, 5, 7, and 9 can be written in the form x2 + 3y2 − 7z2

where xyz $= 0. Thus we have to find new representations for 2, 4, 5, 7, and 9.
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We define α2 = α0 + 6y, β2 = β0 − 2x,α3 = α0 + 9y and β3 = β0 − 3x, i.e.,
α2 = 5, β2 = −3,α3 = 8 and β3 = −5.
Then we obtain new identities given by

(2k + 5)2 + 3(k − 3)2 − 7k2 = 2k + 52,
(2k + 8)2 + 3(k − 5)2 − 7k2 = 2k + 139.

Thus

2 = 452 + 3(282)− 7(252),

4 = 432 + 3(272)− 7(242),

5 = 1262 + 3(722)− 7(672),

7 = 1242 + 3(712)− 7(662),

9 = 1222 + 3(702)− 7(652).

Hence 7 is 3−special as desired.

Example 4. Let l = 13. Then l = 12 + 3(22). So that x = 1 and y = 2. Since
gcd(x, 3y) = gcd(1, 6) = 1, there exist integers α0 = −5 and β0 = 1 such that
1(−5) + 3(2)(1) = 1. Using the notation in Theorem 3.6, we obtain α1 = 1 and
β1 = 0.
Thus the identities are given by

(k − 5)2 + 3(2k + 1)2 − 13k2 = 2k + 28,
(k + 1)2 + 3(k)2 − 13k2 = 2k + 1.

So all integers except −1, 1, 28, and 38 can be written in the form x2 +3y2 − 13z2

where xyz $= 0. Thus we have to find new representation of −1, 1, 28, and 38.
We define α2 = α0 + 6y, β2 = β0 − 2x,α3 = α0 + 9y and β3 = β0 − 3x,i.e.,
α2 = 7, β2 = −1,α3 = 13 and β3 = −2.
Then we obtain new identities given by

(k + 7)2 + 3(2k − 1)2 − 13k2 = 2k + 52,
(k + 13)2 + 3(2k − 2)2 − 13k2 = 2k + 181.
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Thus

28 = 52 + 3(252)− 13(122),

−1 = 782 + 3(1842)− 13(912),

1 = 772 + 3(1822)− 13(902).

We again find the representation of 38. We define α4 = α0+12y and β4 = β0−4x,
i.e., α4 = 19 and β4 = −3. Thus the new identity is given by

(k + 19)2 + 3(2k − 3)2 − 13k2 = 2k + 388

and 38 = 1562 + 3(353)2 − 13(1752).
Hence 13 is 3−special as desired.

Example 5. Let l = 19. Then l = 42 + 3(12). So that x = 4 and y = 1. Since
gcd(x, 3y) = gcd(4, 3) = 1, there exist integers α0 = 1 and β0 = −1 such that
4(1) + 3(1)(−1) = 1. Using the notation in Theorem 3.6, we obtain α1 = 4 and
β1 = −5.
Thus the identities are given by

(4k + 1)2 + 3(k − 1)2 − 19k2 = 2k + 4,
(4k + 4)2 + 3(k − 5)2 − 19k2 = 2k + 91.

So all integers except 6, 4, 89, 101, and 91 can be written in the form x2+3y2−19z2

where xyz $= 0. Thus we have to find new representation of 6, 4, 89, 101, and 91.
We define α2 = α0 + 6y, β2 = β0 − 2x,α3 = α0 + 9y and β3 = β0 − 3x,i.e.,
α2 = 7, β2 = −9,α3 = 10 and β3 = −13.
Then we obtain new identities given by

(4k + 7)2 + 3(k − 9)2 − 19k2 = 2k + 292,
(4k + 10)2 + 3(k − 13)2 − 19k2 = 2k + 607.

Thus

6 = 5652 + 3(1522)− 19(1432),

4 = 5692 + 3(1532)− 19(1442),

89 = 10262 + 3(2722)− 19(2592),

101 = 10022 + 3(2662)− 19(2532),

91 = 10222 + 3(2712)− 19(2582).
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Hence 19 is 3−special as desired.

Example 6. Let l = 49. Then l = 12 + 3(42). So that x = 1 and y = 4. Since
gcd(x, 3y) = gcd(1, 12) = 1, there exist integers α0 = −11 and β0 = 1 such that
1(−11) + 3(4)(1) = 1. Using the notation in Theorem 3.6, we obtain α1 = 1 and
β1 = 0.
Thus the identities are given by

(k − 11)2 + 3(4k + 1)2 − 49k2 = 2k + 124,
(k + 1)2 + 3(4k)2 − 49k2 = 2k + 1.

So all integers except 146, 124,−1, and 1 can be written in the form x2+3y2−49z2

where xyz $= 0. Thus we have to find new representation of 146, 124,−1, and 1.
We define α2 = α0 + 6y, β2 = β0 − 2x,α3 = α0 + 9y and β3 = β0 − 3x,i.e.,
α2 = 13, β2 = −1,α3 = 25 and β3 = −2.
Then we obtain new identities are given by

(k + 13)2 + 3(4k − 1)2 − 49k2 = 2k + 172,
(k + 25)2 + 3(4k − 2)2 − 49k2 = 2k + 637.

Thus

124 = 112 + 3(972)− 49(242),

−1 = 2942 + 3(1278)2)− 49(3192),

1 = 2932 + 3(12742)− 49(3182).

We again find the representation of 146. We define α4 = α0+12y and β4 = β0−4x,
i.e., α4 = 37 and β4 = −3. Thus the new identity is given by

(k + 37)2 + 3(4k − 3)2 − 49k2 = 2k + 1396

and 146 = 5882 + 3(2503)2 − 49(6252).
Hence 49 is 3−special as desired.

We present an odd integer l which is k−special for some odd integer
k where l < 50 by providing the following identities:
• 5 is 1−special.

[2k + 1, k − 1, k]1,5 = 2k + 2,

[2k + 2, k − 3, k]1,5 = 2k + 13,
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[27, 20, 15]1,5 = 4, [29, 21, 16]1,5 = 2, [50, 34, 27]1,5 = 11, [42, 30, 23]1,5 = 19, and
[48, 33, 26]1,5 = 13.

• 7 is 3−special.

[2k − 1, k + 1, k]3,7 = 2k + 4,

[2k + 2, k − 1, k]3,7 = 2k + 7,

[45, 28, 25]3,7 = 2, [43, 27, 24]3,7 = 4, [126, 72, 67]3,7 = 5, [124, 71, 66]3,7 = 7, and
[122, 70, 65]3,7 = 9.

• 9 is 5−special.

[2k − 2, k + 1, k]5,9 = 2k + 9,

[2k + 3, k − 1, k]5,9 = 2k + 14,

[92, 53, 50]5,9 = 9, [94, 54, 51]5,9 = 7, [90, 52, 49]5,9 = 11, [265, 144, 139]5,9 = 16, and
[267, 145, 140]5,9 = 14.

• 11 is 7−special.

[2k − 3, k + 1, k]7,11 = 2k + 16,

[2k + 4, k − 1, k]7,11 = 2k + 23,

[159, 88, 85]7,11 = 14, [157, 87, 84]7,11 = 16, [462, 245, 240]7,11 = 19,
[456, 242, 237]7,11 = 25, and [458, 243, 238]7,11 = 23.

• 13 is 3−special.

[k − 5, 2k + 1, k]3,13 = 2k + 28,

[k + 1, k, k]3,13 = 2k + 1,

[5, 25, 12]3,13 = 28, [78, 184, 91]3,13 = −1, [77, 182, 90]3,13 = 1, and
[156, 353, 175]3,13 = 38.
• 15 is 11−special.

[2k − 5, k + 1, k]11,15 = 2k + 316,

[2k + 6, k − 1, k]11,15 = 2k + 47,

[337, 180, 177]11,15 = 34, [335, 179, 176]11,15 = 36, [990, 514, 509]11,15 = 41,
[982, 510, 505]11,15 = 49, and [984, 511, 506]11,15 = 47.
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• 17 is 13−special.

[2k − 6, k + 1, k]13,17 = 2k + 49,

[2k + 7, k − 1, k]13,17 = 2k + 52,

[442, 234, 231]13,17 = 55, [450, 238, 235]13,17 = 47, [448, 237, 234]13,17 = 49,
[1327, 685, 680]13,17 = 54, and [1329, 686, 681]13,17 = 52.

• 19 is 15−special.

[2k − 7, k + 1, k]15,19 = 2k + 64,

[2k + 8, k − 1, k]15,19 = 2k + 79,

[579, 304, 301]15,19 = 62, [577, 303, 300]15,19 = 64, [1710, 879, 874]15,19 = 71,
[700, 874, 869]15,19 = 81, and [1702, 875, 870]15,19 = 79.

• 21 is 5−special.

[k − 9, 2k + 1, k]5,21 = 2k + 86,

[k + 1, 2k, k]5,21 = 2k + 1,

[420, 905, 451]5,21 = 104, [1, 21, 10]5,21 = 106, [9, 41, 20]5,21 = 86,
[210, 464, 231]5,21 = −1, and [209, 462, 230]5,21 = 1.

• 23 is 7−special.

[4k + 2, k − 1, k]7,23 = 2k + 11,

[4k + 9, k − 5, k]7,23 = 2k + 256,

[1604, 414, 405]7,23 = 13, [1608, 415, 406]7,23 = 11, [2869, 736, 723]7,23 = 266, and
[2889, 741, 728]7,23 = 256.
• 25 is 1−special.

[4k + 1, 3k − 1, k]1,25 = 2k + 2,

[4k + 4, 3k − 5, k]1,25 = 2k + 41,

[249, 201, 64]1,25 = 2, [450, 358, 115]1,25 = 39, and [446, 355, 114]1,25 = 41.
• 27 is 23−special.

[2k − 11, k + 1, k]23,27 = 2k + 144,

[2k + 12, k − 1, k]23,27 = 2k + 167,
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[1255, 648, 645]23,27 = 1420, [1253, 647, 644]23,27 = 144, [3726, 1897, 1892]23,27 =

155, [3712, 1890, 1885]23,27 = 169, and [3714, 1891, 1886]23,27 = 167.

• 29 is 5−special.

[3k − 3, 2k + 1, k]5,29 = 2k + 14,

[3k + 7, 2k − 2, k]5,29 = 2k + 69,

[580, 403, 199]5,29 = 16, [583, 405, 200]5,29 = 14, [1440, 986, 489]5,29 = 71, and
[1443, 988, 490]5,29 = 69.
• 31 is 3−special.

[2k − 4, 3k + 1, k]3,31 = 2k + 19,

[2k + 5, 3k − 1, k]3,31 = 2k + 28,

[186, 303, 100]3,31 = 23, [190, 309, 102]3,31 = 19, and [553, 869, 288]3,31 = 28.
• 33 is 29−special.

[2k − 14, k + 1, k]29,33 = 2k + 225,

[2k + 15, k − 1, k]29,33 = 2k + 254,

[1914, 982, 979]29,33 = 239, [1930, 990, 987]29,33 = 223, [1928, 989, 986]29,33 = 225,
[5725, 2904, 2899]29,33 = 256, and [5727, 2905, 2900]29,33 = 254.

• 35 is 31−special.

[2k − 15, k + 1, k]31,35 = 2k + 256,

[2k + 16, k − 1, k]31,35 = 2k + 287,

[2187, 1120, 1117]31,35 = 254, [2185, 1119, 1116]31,35 = 256, [6510, 3299, 3294]31,35 =
271, [6492, 3290, 3285]31,35 = 289, and [6494, 3291, 3286]31,35 = 287.

• 37 is 3−special.

[5k − 1, 2k + 1, k]3,37 = 2k + 4,

[5k + 5, 2k − 4, k]3,37 = 2k + 73,

[889, 369, 180]3,37 = 4, [1998, 820, 403]3,37 = 71, [1983, 814, 400]3,37 = 77, and
[1993, 818, 402]3,37 = 73.
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• 39 is 35−special.

[2k − 17, k + 1, k]35,39 = 2k + 324,

[2k + 18, k − 1, k]35,39 = 2k + 359,

[2749, 1404, 1401]35,39 = 322, [2747, 1403, 1400]35,39 = 324, [8190, 4144, 4139]35,39 =
341, [8170, 4134, 4129]35,39 = 361, and [8172, 4135, 4130]35,39 = 359.

• 41 is 5−special.

[6k + 1, k − 1, k]5,41 = 2k + 6,

[6k + 6, k − 7, k]5,41 = 2k + 281,

[2863, 492, 479]5,41 = 8, [2869, 493, 480]5,41 = 6, [5330, 910, 891]5,41 = 279,
[5282, 902, 883]5,41 = 295, and [5324, 909, 890]5,41 = 281.

• 43 is 3−special.

[4k − 2, 3k + 1, k]3,43 = 2k + 7,

[4k + 7, 3k − 3, k]3,43 = 2k + 76,

[776, 601, 198]3,43 = 7, [1795, 1376, 455]3,43 = 78, and [1799, 1379, 456]3,43 = 76.
• 45 is 41−special.

[2k − 20, k + 1, k]41,45 = 2k + 441,

[2k + 21, k − 1, k]41,45 = 2k + 482,

[3690, 1879, 1876]41,45 = 461, [3712, 1890, 1887]41,45 = 439, [3710, 1889, 1886]41,45 =
441, [11047, 5580, 5575]41,45 = 484, and [11049, 5581, 5576]41,45 = 482.

• 47 is 43−special.

[2k − 21, k + 1, k]43,47 = 2k + 484,

[2k + 22, k − 1, k]43,47 = 2k + 527,

[4065, 2068, 2065]43,47 = 482, [4063, 2067, 2064]43,47 = 484, [12126, 6122, 6117]43,47 =
505, [12102, 6110, 6105]43,47 = 529, and [12104, 6111, 6106]43,47 = 527.

• 49 is 3−special.

[k − 11, 4k + 1, k]3,49 = 2k + 172,

[k + 1, 4k, k]3,49 = 2k + 1,
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[11, 97, 24]3,49 = 124, [294, 1278, 319]3,49 = −1, [293, 1274, 318]3,49 = 1,
and [588, 2503, 625]3,49 = 146.

We now present some results obtained from Theorem 3.6.

Corollary 3.7. Let k be an odd positive integer. There are infinitely many
k−special numbers.

Proof. For any odd integer k, we can always choose infinitely many integers x and
y such that gcd(2x, ky) = 1. By Theorem 3.6, we have that l = (2x)2 + ky2 is
k−special.

Theorem 3.8. Let k and l be positive integers. If k is odd, then 4l is not k−special.

Proof. Assume that 4l is k−special. For any integer n, there exist non-zero integers
x, y, and z such that

x2 + ky2 − 4lz2 = n

x2 + ky2 ≡ n (mod 4).

We now consider the following two cases on the values of k.
Case 1. k ≡ 1 (mod 4). Then

x2 + y2 ≡ n (mod 4).

We can see that x2 + y2 $≡ 3 (mod 4). This is a contradiction.
Case 2. k ≡ 3 (mod 4). Then

x2 + 3y2 ≡ n (mod 4).

We can see that x2 + 3y2 $≡ 2 (mod 4). This is a contradiction.
Therefore 4l is not k−special.
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CHAPTER 4

2k−Special Numbers

In this chapter, we provide conditions for an integer l to be 2k−special
where k is odd. Furthermore, we show that there are infinitely many 2k−special.
Moreover, we provide some properties of k−special when k ≡ 2 (mod 4) and k ≡ 2

(mod 8).

Theorem 4.1. Let l be a positive integer. If l is 2−special, then l = x2 + 2y2 for
some integers x and y.

Proof. Let l be 2−special. Then there exist non-zero integers x, y, and z such that
x2 + 2y2 − lz2 = 2lc2 where c ∈ Z. So x2 + 2y2 = l(2c2 + z2). By Lemma 2.17,

l(2c2 + z2) =
∏

pi≡5,7 (mod 8)

pi
ai

∏

qi &≡5,7 (mod 8)

qi
bi

where pi, qi are primes, bi is a non-negative integer and ai is even for all i.
By Lemma 2.17,

2c2 + z2 =
∏

pi≡5,7 (mod 8)

pi
a′i

∏

qi &≡5,7 (mod 8)

qi
b′i

where b′i is a non-negative integer and a′i is even for all i,

l =
∏

pi≡5,7 (mod 8)

pi
ai−a′i

∏

qi &≡5,7 (mod 8)

qi
bi−b′i .

So we have ai − a′i is even for all i.
Hence again by Lemma 2.17, l is of the form x2 + 2y2.

Example 7. From Theorem 3.4, 1 is 2−special because 1 = 12 + 2(02).

The converse of the above theorem is not true. As we will see in the
next theorem that 8 is not 2−special.

Theorem 4.2. Let k be an odd integer. If l is divisible by 8, then l is not
2k−special.
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Proof. Let l be divisible by 8. Suppose on the contrary that l is 2k−special.
Then

x2 + 2ky2 − lz2 = 5

for some non-zero integers x, y, and z. So x2 + 2ky2 = lz2 + 5.
This implies that x2 + 2ky2 ≡ 5 (mod 8). Since x2 ≡ 0, 1, 4 (mod 8) and 2ky2 ≡

0, 2k (mod 8), it is easy to see that x2 + 2ky2 ≡ 0, 1, 2k, 2k + 1, 2k + 4 (mod 8).
Since k is odd, we can see that x2+2ky2 $≡ 5 (mod 8). This is a contradiction.

Next, we apply P. C. H. Lam’s method [3] to identify 2k−special
numbers when k is odd.

Theorem 4.3. Let k and l be odd positive integers. If l can be written as x2+2ky2

for some positive integers x and y where gcd(x, 2ky) = 1, then l is 2k−special.

Proof. Let l be an odd positive integer and l = x2 + 2ky2 where gcd(x, 2ky) = 1.
Case 1. We first find the representation of odd numbers of the form x2+2ky2−lz2

where x, y, and z are non-zero integers.
Since gcd(x, 2ky) = 1, there exist integers α0 and β0 such that

xα0 + 2kyβ0 = 1.

For any positive integer n, let αn = α0 + 2kny and βn = β0 − nx.
Consider

xαn + 2kyβn = x(α0 + 2kny) + 2ky(β0 − nx)

= xα0 + 2kxny + 2kyβ0 − 2kynx

= xα0 + 2kyβ0.

So (αn, βn) is another solution of xα0 + 2kyβ0 = 1.
Let an = xj + αn, bn = yj + βn and cn = j, where j is an integer which will be
selected later. Thus

a2n + 2kb2n − lc2n = (xj + αn)
2 + 2k(yj + βn)

2 − (x2 + 2ky2)j2

= x2j2 + 2xjαn + α2
n + 2ky2j2 + 4kyjβn + 2kβ2

n − x2j2 − 2ky2j2

= 2xjαn + 4kyjβn + α2
n + 2kβ2

n

= 2j(xαn + 2kyβn) + α2
n + 2kβ2

n.
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Since x is odd and xαn + 2kyβn = 1, we can see that αn is odd.
Then we obtain the identity of odd given by

(xji + αi)2 + 2k(yji + βi)2 − (x2 + 2ky2)j2i = 2ji + α2
i + 2kβ2

i ,

for any non-negative integer i. We can use these identities to represent odd in-
tegers. Let m be an odd integer. For any non-negative integer n, we choose a
suitable value of an integer jn such that

m = 2jn + α2
n + 2kβ2

n = a2n + 2kb2n − lc2n

where an = xjn + αn, bn = yjn + βn and cn = jn. We can see that anbncn = 0

if and only if m is one of the following values; α2
n + 2kβ2

n,α
2
n + 2kβ2

n − 2αn
x or

α2
n + 2kβ2

n − 2βn

y . Since

lim
n→∞

αn = lim
n→∞

(−βn) = ∞,

there exists a non-negative integer n such that αn > 0, α2
n + 2kβ2

n − 2αn
x > m and

βn < 0. Therefore we obtain a representation for m, namely m = a2n + 2kb2n − lc2n

where anbncn $= 0.
Case 2. We next find the representation of even numbers of the form x2+2ky2−lz2

where x, y, and z are non-zero integer.
Since gcd(x, 2ky) = 1, gcd(x, ky) = 1. Then there exist integers α0 and β0 such
that

xα0 + kyβ0 = 1.

For any positive integer n, let αn = α0 + kny and βn = β0 − nx. Then

xαn + knyβn = x(α0 + kny) + ky(β0 − nx)

= xα0 + kxny + kyβ0 − kynx

= xα0 + kyβ0.

So (αn, βn) is another solution of xα0 + kyβ0 = 1.
Let an = xj + 2αn, bn = yj + βn and c = j where j is an integer which will be
selected later. Thus
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a2n + 2kb2n − lc2n

= (xj + 2αn)
2 + 2k(yj + βn)

2 − (x2 + 2ky2)j2

= x2j2 + 4xjαn + 4α2
n + 2ky2j2 + 4yjkβn + 2kβ2

n − x2j2 − 2y2ky2j2

= 4j(xαn + kyβn) + 4α2
n + 2kβ2

n.

Since x is odd, we have

4α2
n + 2kβ2

n = 4(α0 + kny)2 + 2k(β0 − nx)2

= 4α2
0 + 8knyα0 + 4k2n2y2 + 2kβ2

0 − 4knxβ0 + 2kn2x2

≡ 2kβ2
0 + 2kn2x2 (mod 4)

≡ 2kβ2
0 + 2kn2 (mod 4)

≡






2kβ2
0 (mod 4) if n is even,

2k(β2
0 + 1) (mod 4) if n is odd.

For any non-negative integer r, we obtain two identities of even given by

(xj2r + 2α2r)2 + 2k(yj2r + β2r)2 − (x2 + 2ky2)j22r = 4j2r + 4α2
2r + 2kβ2

2r,
(xj2r+1+2α2r+1)2+2k(yj2r+1+β2r+1)2−(x2+2ky2)j22r+1 = 4j2r+1+4α2

2r+1+2kβ2
2r+1.

Let m be an even integer. we can write m as follows:
Subcase 2.1. m ≡ 0 (mod 4) and β2

0 ≡ 0 (mod 4). We choose a
suitable value of an integer j2r such that

m = 4j2r + 4α2
2r + 2kβ2

2r = a22r + 2kb22r − lc22r

where a2r = xj2r+2α2r, b2r = yj2r+β2r and c2r = j2r. We can see that a2rb2rc2r = 0

if and only if m is one of the following values: 4α2
2r +2kβ2

2r, 4α
2
2r +2kβ2

2r − 8α2r
x or

4α2
2r + 2kβ2

2r − 4β2r

y . Since

lim
r→∞

α2r = lim
r→∞

(−β2r) = ∞,

there exists a non-negative integer r such that α2r > 0, 4α2
2r+2kβ2

2r− 8α2r
x > m and

β2r < 0. Therefore we obtain a representation for m, namely m = a22r+2kb22r− lc22r

where a2rb2rc2r $= 0.
Subcase 2.2. m ≡ 2 (mod 4) and β2

0 ≡ 0 (mod 4). We choose a
suitable value of an integer j2r+1 such that

m = 4j2r+1 + 4α2
2r+1 + 2kβ2

2r+1 = a22r+1 + 2kb22r+1 − lc22r+1
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where a2r+1 = xj2r+1 + 2α2r+1, b2r+1 = yj2r+1 + β2r+1 and c2r+1 = j2r+1. We
can see that a2r+1b2r+1c2r+1 = 0 if and only if m is one of the following values:
4α2

2r+1 + 2kβ2
2r+1, 4α

2
2r+1 + 2kβ2

2r+1 −
8α2r+1

x or 4α2
2r+1 + 2kβ2

2r+1 −
4β2r+1

y . Since

lim
r→∞

α2r+1 = lim
r→∞

(−β2r+1) = ∞,

there exists a non-negative integer r such that 4α2
2r+1 + 2kβ2

2r+1 −
8α2r+1

x > m,
α2r+1 > 0, and β2r+1 < 0. Therefore we obtain a representation for m, namely
m = a22r+1 + 2kb22r+1 − lc22r+1 where a2r+1b2r+1c2r+1 $= 0.

Subcase 2.3. m ≡ 0 (mod 4) and β2
0 ≡ 1 (mod 4). We choose a

suitable value of an integer j2r+1 such that

m = 4j2r+1 + 4α2
2r+1 + 2kβ2

2r+1 = a22r+1 + 2kb22r+1 − lc22r+1

where a2r+1 = xj2r+1 + 2α2r+1, b2r+1 = yj2r+1 + β2r+1 and c2r+1 = j2r+1. We
can see that a2r+1b2r+1c2r+1 = 0 if and only if m is one of the following values:
4α2

2r+1 + 2kβ2
2r+1, 4α

2
2r+1 + 2kβ2

2r+1 −
8α2r+1

x or 4α2
2r+1 + 2kβ2

2r+1 −
4β2r+1

y . Since

lim
r→∞

α2r+1 = lim
r→∞

(−β2r+1) = ∞,

there exists a non-negative integer r such that 4α2
2r+1 + 2kβ2

2r+1 −
8α2r+1

x > m,
α2r+1 > 0, and β2r+1 < 0. Thus we obtain a representation for m, namely m =

a22r+1 + 2kb22r+1 − lc22r+1 where a2r+1b2r+1c2r+1 $= 0.
Subcase 2.4. m ≡ 2 (mod 4) and β2

0 ≡ 1 (mod 4). We choose a
suitable value of an integer j2r such that

m = 4j2r + 4α2
2r + 2kβ2

2r = a22r + 2kb22r − lc22r

where a2r = xj2r+2α2r, b2r = yj2r+β2r and c2r = j2r. We can see that a2rb2rc2r = 0

if and only if m is one of the following values: 4α2
2r +2kβ2

2r, 4α
2
2r +2kβ2

2r − 8α2r
x or

4α2
2r + 2kβ2

2r − 4β2r

y . Since

lim
r→∞

α2r = lim
r→∞

(−β2r) = ∞,

there exists a non-negative integer r such that α2r > 0, 4α2
2r + 2kβ2

2r − 8α2r
x > m

and β2r < 0. Hence we again obtain a representation for m, namely m = a22r +

2kb22r − lc22r where a2rb2rc2r $= 0. Therefore, l is 2k−special as desired.
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We next provide examples of how to obtain representations for any
integer n of the form x2+2ky2−lz2 where (k, l) = (2, 3), (2, 9), (2, 11), (2, 17), (2, 19),

(6, 7), (10, 11), and (10, 19).

Example 8. We will show that 3 is 2−special. So we have to show that for any
integer n, there exist non-zero integers x, y, and z such that n = x2 + 2y2 − 3z2.
We will use the notation in Theorem 4.3. Write 3 = 12 + 2(12). Then x = y = 1.
Case 1. We will find the representation for odd integers.
Since gcd(x, 2y) = gcd(1, 2) = 1, there exist α0 = −1 and β0 = 1 such that
1(−1) + 2(1) = 1.
A representation for odd integers is given by

(j − 1)2 + 2(j + 1)2 − 3j2 = 2j + 3.

The above identity gives a representation for odd integers n $= 1, 3, and 5 of the
form x2+2y2− 3z2 where xyz $= 0. We next define α1 = α0+2y and β1 = β0−x,
i.e., α1 = −1 + 2 = 1 and β1 = 1− 1 = 0.
Then a representation for odd integers is

(j + 1)2 + 2(j)2 − 3j2 = 2j + 1.

We can use this identity to represent 3 and 5. So we can write 3 and 5 as follows:

3 = 22 + 2(12)− 3(12),

5 = 32 + 2(22)− 3(22).

We next find a new representation for 1. We define α2 = α0+4y and β2 = β0−2x,
i.e., α2 = −1 + 4 = 3 and β2 = 1− 2 = −1.
Then a new representation for odd integers is

(j + 3)2 + 2(j − 1)2 − 3j2 = 2j + 11.

So the representation for 1 is 22 + 2(62)− 3(52) = 1.
Case 2. We next find the representation for even integers.
Since gcd(x, y) = gcd(1, 1) = 1, there exist α0 = 2 and β0 = −1 such that
1(2) + (1)(−1) = 1. We also obtain α1 = 3 and β1 = −2.
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The representations for even integers are given by

(j + 4)2 + 2(j − 1)2 − 3j2 = 4j + 18,

(j + 6)2 + 2(j − 2)2 − 3j2 = 4j + 44.

The above identity gives a representation for even integers n $= 2, 22, 18, 20, 52, and
44 of the form x2 + 2y2 − 3z2 where xyz $= 0. We next define α2 = α0 + 2y, β2 =

β0−2x,α3 = α0+3y and β3 = β0−3x, i.e., α2 = 4, β2 = −3,α3 = 5 and β3 = −4.
Then the new representations for even integers are given by

(j + 8)2 + 2(j − 3)2 − 3j2 = 4j + 82,

(j + 10)2 + 2(j − 4)2 − 3j2 = 4j + 132.

Thus

2 = 122 + 2(232)− 3(202),

22 = 72 + 2(182)− 3(152),

18 = 82 + 2(192)− 3(162),

20 = 182 + 2(322)− 3(282),

52 = 102 + 2(242)− 3(202),

44 = 122 + 2(262)− 3(222).

Therefore from both cases we can conclude that 3 is 2−special.

Example 9. We will show that 9 is 2−special. So we have to show that for any
integer n, there exist non-zero integers x, y, and z such that n = x2 + 2y2 − 9z2.
We will use the notation in Theorem 4.3. Write 9 = 12 + 2(22). Then x = 1 and
y = 2.
Case 1. We will find the representation for odd integers.
Since gcd(x, 2y) = gcd(1, 4) = 1, there exist α0 = −3 and β0 = 1 such that
1(−3) + 2(2)(1) = 1. A representation for odd integers is given by

(j − 3)2 + 2(2j + 1)2 − 9j2 = 2j + 11.

The above identity gives a representation for odd integers n $= 11 and 17 of the
form x2+2y2− 9z2 where xyz $= 0. We next define α1 = α0+2y and β1 = β0−x,
i.e., α1 = −3 + 4 = 1 and β1 = 1− 1 = 0.
Then a representation for odd integers is
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(j + 1)2 + 2(2j)2 − 9j2 = 2j + 1.

We can use this identity to represent 17 and 11. So we can write 17 and 11 as
follows:

17 = 92 + 2(162)− 9(82),

11 = 52 + 2(102)− 9(52).

Case 2. We next find the representation for even integers.
Since gcd(x, y) = gcd(1, 2) = 1, there exist α0 = −1 and β0 = 1 such that
1(−1) + (2)(1) = 1.
We also obtain α1 = 1 and β1 = 0.
The representations for even integers are given by

(j − 2)2 + 2(2j + 1)2 − 9j2 = 4j + 6,

(j + 2)2 + 2(2j)2 − 9j2 = 4j + 4.

The above identities give a representation for even integers n $= 14, 6,−4, and 4

of the form x2 + 2y2 − 9z2 where xyz $= 0.
We next define α2 = α0 + 2y, β2 = β0 − 2x,α3 = α0 + 3y and β3 = β0 − 3x, i.e.,
α2 = 3, β2 = −1,α3 = 5 and β3 = −2.
Then the representations for even integers are

(j + 6)2 + 2(2j − 1)2 − 9j2 = 4j + 38,

(j + 10)2 + 2(2j − 2)2 − 9j2 = 4j + 108.

Thus

6 = 22 + 2(172)− 9(82),

−4 = 182 + 2(582)− 9(282),

4 = 162 + 2(542)− 9(262).

We next find a representation for 6.
We define α4 = α0 + 4y and β4 = β0 − 4x, i.e., α4 = 7 and β4 = −3.
Then a new representation for even integers is

(j + 14)2 + 2(2j − 3)2 − 9j2 = 4j + 214.
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So the representation for 14 is 14 = 362 + 2(103)2 − 9(502).
Therefore 9 is 2−special.

Example 10. We will show that 11 is 2−special. We have to show that for any
integer n, there exist non-zero integers x, y, and z such that n = x2 + 2y2 − 11z2.
We will use the notation in Theorem 4.3. Write 11 = 32 + 2(12). Then x = 3 and
y = 1.
Case 1. We will find the representation for odd integers.
Since gcd(x, 2y) = gcd(3, 2) = 1, there exist α0 = 1 and β0 = −1 such that
3(1) + 2(1)(−1) = 1.
A representation for odd integers is given by

(3j + 1)2 + 2(j − 1)2 − 11j2 = 2j + 3.

The above identity gives a representation for odd integers n $= 3 and 5 of the form
x2 + 2y2 − 11z2 where xyz $= 0.
We next define α1 = α0 + 2y and β1 = β0 − x, i.e., α1 = 1 + 2 = 3 and β1 =

−1− 3 = −4.
Then a representation for odd integers is

(3j + 3)2 + 2(j − 4)2 − 11j2 = 2j + 41.

We can use this identity to represent 3 and 5. So we can write 3 and 5 as follows:

3 = 542 + 2(232)− 11(192),

5 = 512 + 2(222)− 11(182).

Case 2. We will find the representation for even integers.
Since gcd(x, y) = gcd(3, 1) = 1, there exist α0 = 1 and β0 = −2 such that
3(1) + 1(−2) = 1. We also obtain α1 = 2 and β1 = −5.
The representations for even integers are given by

(3j + 2)2 + 2(j − 2)2 − 11j2 = 4j + 12,

(3j + 4)2 + 2(j − 5)2 − 11j2 = 4j + 66.

The above identities give a representation for even integers n $= 20, 12, 86, and 66

of the form x2 + 2y2 − 11z2 where xyz $= 0..
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We next define α2 = α0 + 2y, β2 = β0 − 2x,α3 = α0 + 3y and β3 = β0 − 3x,i.e.,
α2 = 3, β2 = −8,α3 = 4 and β3 = −11.
Then the new representations for even integers are

(3j + 6)2 + 2(j − 8)2 − 11j2 = 4j + 164,

(3j + 8)2 + 2(j − 11)2 − 11j2 = 4j + 306.

Thus

20 = 1022 + 2(442)− 11(362),

12 = 1082 + 2(462)− 11(382),

86 = 1572 + 2(662)− 11(552),

66 = 1722 + 2(712)− 11(602).

Therefore 11 is 2−special.

Example 11. We will show that 17 is 2−special. We have to show that for any
integer n, there exist non-zero integers x, y, and z such that n = x2 + 2y2 − 17z2.
We will use the notation in Theorem 4.3. Write 17 = 32 + 2(22). Then x = 3 and
y = 2.
Case 1. We will fine the representation for odd integers.
Since gcd(x, 2y) = gcd(3, 4) = 1, there exist α0 = −1 and β0 = 1 such that
3(−1) + 2(2)(1) = 1.
A representation for odd integers is given by

(3j − 1)2 + 2(2j + 1)2 − 17j2 = 2j + 3.

The above identity gives a representation for odd integers n $= 3 of the form
x2 + 2y2 − 17z2 where xyz $= 0.
We next define α1 = α0 + 2y and β1 = β0 − x, i.e., α1 = −1 + 4 = 3 and
β1 = 1− 3 = −2.
Then a new representation for integers is

(3j + 3)2 + 2(2j − 2)2 − 17j2 = 2j + 17.

So we can write 3 = 182 + 2(12)− 17(72).
Case 2. We will find the representation for even integers.
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Since gcd(x, y) = gcd(3, 2) = 1, there exist α0 = 1 and β0 = −1 such that
3(1) + 2(−1) = 1. We also obtain α1 = 3 and β1 = −4.
The representations for even integers are given by

(3j + 2)2 + 2(2j − 1)2 − 17j2 = 4j + 6,

(3j + 6)2 + 2(2j − 4)2 − 17j2 = 4j + 68.

The above identities give a representation for even integers n $= 6, 60, 76, and 68

of the form x2 + 2y2 − 17z2 where xyz $= 0.
We next define α2 = α0 + 2y, β2 = β0 − 2x,α3 = α0 + 3y and β3 = β0 − 3x, i.e.,
α2 = 5, β2 = −7,α3 = 7 and β3 = −10.
Then the representation for even integers are

(3j + 10)2 + 2(2j − 7)2 − 17j2 = 4j + 198,

(3j + 14)2 + 2(2j − 10)2 − 17j2 = 4j + 396.

Thus

6 = 1342 + 2(1032)− 17(482),

60 = 2382 + 2(1782)− 17(842),

76 = 2262 + 2(1702)− 17(802),

68 = 2322 + 2(1742)− 17(822).

Therefore 17 is 2−special.

Example 12. We will show that 19 is 2−special. We have to show that for any
integer n, there exist non-zero integers x, y, and z such that n = x2 + 2y2 − 19z2.
We will use the notation in Theorem 4.3. Write 11 = 12 + 2(32). Then x = 1 and
y = 3.
Case 1. We will find the representation for odd integers.
Since gcd(x, 2y) = gcd(1, 6) = 1, there exist α0 = −5 and β0 = 1 such that
1(−5) + 2(3)(1) = 1.
A representation for odd integers is given by

(j − 5)2 + 2(3j + 1)2 − 19j2 = 2j + 27.
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The above identity gives a representation for odd integers n $= 27 and 37 of the
form x2 + 2y2 − 19z2 where xyz $= 0.
We next define α1 = α0 + 2y and β1 = β0 − x, i.e., α1 = −5 + 6 = 1 and
β1 = 1− 1 = 0.
Then a new representation for odd integers is

(j + 1)2 + 2(3j)2 − 19j2 = 2j + 1.

We can use this identity to represent 27 and 37. So we can write 27 and 37 as
follows:

27 = 142 + 2(392)− 19(132),

37 = 192 + 2(542)− 19(182).

Case 2. we will find the representation for even integers.
Since gcd(x, y) = gcd(1, 3) = 1, there exist α0 = −2 and β0 = 1 such that
1(−2) + 3(1) = 1. We also obtain α1 = 1 and β1 = 0.
The representations for even integers are given by

(j − 4)2 + 2(3j − 1)2 − 19j2 = 4j + 18,

(j + 2)2 + 2(3j)2 − 19j2 = 4j + 4.

The above identities give a representation for even integers n $= 34, 18,−4, and 4

of the form x2 + 2y2 − 19z2 where xyz $= 0.
We define α2 = α0 + 2y, β2 = β0 − 2x,α3 = α0 + 3y and β3 = β0 − 3x, i.e.,
α2 = 4, β2 = −1,α3 = 7 and β3 = −2.
Thus the representations for even integers are

(j + 8)2 + 2(3j − 1)2 − 19j2 = 4j + 66,

(j + 14)2 + 2(3j − 2)2 − 19j2 = 4j + 204.

Thus

18 = 42 + 2(372)− 19(122),

−4 = 382 + 2(1582)− 19(522),

4 = 362 + 2(1522)− 19(502).
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Next, we have to find the representation for 34. Then we define α4 = α0 +4y and
β4 = β0 − 4x, i.e., α4 = 10 and β4 = −3.
So the new representation for even integers which congruent 2 modulo 4 is

(j + 20)2 + 2(3j − 3)2 − 19j2 = 4j + 418.

Thus 34 = (762) + 2(2912)− 19(962).
Therefore 19 is 2−special.

Example 13. We will show that 7 is 6−special. We have to show that for any
integer n, there exist non-zero integers x, y, and z such that n = x2 + 6y2 − 7z2.
We will use the notation in theorem 4.3. Write 7 = 12 + 6(12). Then x = 1 and
y = 1.
Case 1. We will find the representation for odd integers.
Since gcd(x, 6y) = gcd(1, 6) = 1, there exist α0 = −5 and β0 = 1 such that
1(−5) + (6)(1) = 1.
A representation for odd integers is given by

(j − 5)2 + 6(j + 1)2 − 7j2 = 2j + 31.

The above identity gives a representation for odd integers n $= 29, 31, and 41 of
the form x2 + 6y2 − 7z2 where xyz $= 0.
We next define α1 = α0 + 6y and β1 = β0 − x, i.e., α1 = −5 + 6 = 1 and
β1 = 1− 1 = 0.
Then a new representation for odd integers is

(j + 1)2 + 6(j)2 − 7j2 = 2j + 1.

So we can write 29 = 152 + 6(142) − 7(142), 31 = 162 + 6(152) − 7(152), and
41 = 212 + 6(202)− 7(202).
Case 2. we will find the representation for even integers.
Since gcd(x, 3y) = gcd(1, 3) = 1, there exist α0 = −2 and β0 = 1 such that
1(−2) + 3(1) = 1. We also obtain α1 = 1 and β1 = 0.
The representations for even integers are given by

(j − 4)2 + 6(j + 1)2 − 7j2 = 4j + 22,

(j + 2)2 + 6(j)2 − 7j2 = 4j + 4.
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The above identities give a representation for even integers n $= 38, 18, 22,−4, and
4 of the form x2 + 6y2 − 7z2 where xyz $= 0.
We next define α2 = α0 + 6y, β2 = β0 − 2x,α3 = α0 + 9y and β3 = β0 − 3x, i.e.,
α2 = 4, β2 = −1,α3 = 7 and β3 = −2.
Then the representation for even integers are

(j + 8)2 + 6(j − 1)2 − 7j2 = 4j + 70,

(j + 14)2 + 6(j − 2)2 − 7j2 = 4j + 220.

Thus

18 = 52 + 6(142)− 7(132),

22 = 42 + 6(132)− 7(122),

−4 = 422 + 6(582)− 7(562),

4 = 402 + 6(562)− 7(542).

We next find a representation for 38.
We defineα4 = α0+12y and β4 = β0− 4x, i.e., α4 = 10 and β4 = −3. Then a new
representation for even integers is

(j + 20)2 + 6(j − 3)2 − 7j2 = 4j + 454.

Thus 38 = (842) + 6(1072)− 7(1042).
Therefore 7 is 6−special.

Example 14. We will show that 11 is 10−special. We have to show that for any
integer n, there exist non-zero integers x, y, and z such that n = x2+10y2− 11z2.
We will use the notation in Theorem 4.3. Thus 11 = 12 +10(12). Then x = 1 and
y = 1.
Case 1. We will find the representation for odd integers.
Since gcd(x, 10y) = gcd(1, 10) = 1, there exist α0 = −9 and β0 = 1 such that
1(−9) + (10)(1) = 1.
A representation for odd integers are given by

(j − 9)2 + 10(j + 1)2 − 11j2 = 2j + 91.
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The above identity gives a representation for odd integers n $= 89, 91, and 109 of
the form x2 + 10y2 − 11z2 where xyz $= 0.
We next define α1 = α0 + 10y and β1 = β0 − x, i.e., α1 = −9 + 10 = 1 and
β1 = 1− 1 = 0.
Then a new representation for odd integers is

(j + 1)2 + 10(j)2 − 11j2 = 2j + 1.

So we can write 89 = 452 + 10(442)− 11(442), 91 = 462 + 10(452)− 11(452), and
109 = 552 + 10(542)− 11(542).
Case 2. we will find the representation for even integers.
Since gcd(x, 5y) = gcd(1, 5) = 1, there exist α0 = −4 and β0 = 1 such that
1(−4) + 5(1) = 1. We also obtain α1 = 1 and β1 = 0.
The representations for even integers are given by

(j − 8)2 + 10(j + 1)2 − 11j2 = 4j + 74,

(j + 2)2 + 10(j)2 − 11j2 = 4j + 4.

The above identity gives a representation for even integers n $= 106, 70, 74,−4,
and 4 of the form x2 + 10y2 − 11z2 where xyz $= 0.
We next define α2 = α0 + 10y, β2 = β0 − 2x,α3 = α0 + 15y and β3 = β0 − 3x, i.e.,
α2 = 6, β2 = −1,α3 = 11 and β3 = −2.
Then the representation for even integers are

(j + 12)2 + 10(j − 1)2 − 11j2 = 4j + 154,

(j + 22)2 + 10(j − 2)2 − 11j2 = 4j + 524.

Thus

70 = 92 + 10(222)− 11(212),

74 = 82 + 10(212)− 11(202),

−4 = 1102 + 10(1342)− 11(1322),

4 = 1082 + 10(1322)− 11(1302).

We next find the representation for 106.
We define α4 = α0 + 20y and β4 = β0 − 4x, i.e., α4 = 16 and β4 = −3. So the
representation of even integers which congruent 2 modulo 4 is
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(j + 32)2 + 10(j − 3)2 − 11j2 = 4j + 1114.

So we can write 106 = (2202) + 10(2552)− 11(2522).
Therefore 11 is 10−special.

Example 15. We will show that 19 is 10−special. We have toshow that for any
integer n, there exist non-zero integers x, y, and z such that n = x2+10y2− 19z2.
We will use the notation in Theorem 4.3. Write 11 = 32 + 10(12). Then x = 3

and y = 1.
Case 1. We will find the representation for odd integers.
Since gcd(x, 10y) = gcd(3, 10) = 1, there exist α0 = −3 and β0 = 1 such that
3(−3) + (10)(1) = 1.
A representation foe odd integers is given by

(3j − 3)2 + 10(j + 1)2 − 19j2 = 2j + 19.

The above identity gives a representation for odd integers n $= 21, 17, and 19 of
the form x2 + 10y2 − 19z2 where xyz $= 0.
We next define α1 = α0 + 10y and β1 = β0 − x, i.e., α1 = −3 + 10 = 7 and
β1 = 1− 3 = −2.
Then a new representation for odd integers is

(3j + 7)2 + 10(j − 2)2 − 19j2 = 2j + 89.

So we can write 21 = 952 + 10(362)− 19(342), 17 = 1012 + 10(382)− 19(362), and
19 = 982 + 10(372)− 19(352).
Case 2. we will find the representation for even integers.
Since gcd(x, 5y) = gcd(3, 5) = 1, there exist α0 = 2 and β0 = −1 such that
3(2) + 5(−1) = 1. We also obtain α1 = 7 and β1 = −4.
The representations for even integers are given by

(3j − 4)2 + 10(j − 1)2 − 19j2 = 4j + 26,

(3j + 14)2 + 10(j − 4)2 − 19j2 = 4j + 356.

The above identities give a representation for even integers n $= 30, 26, 372, and
356 of the form x2 + 10y2 − 19z2 where xyz $= 0.
We define α2 = α0 + 10y, β2 = β0 − 2x,α3 = α0 + 15y and β3 = β0 − 3x, i.e.,
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α2 = 12, β2 = −7,α3 = 17 and β3 = −10.
Then the representations for even integers are

(3j + 24)2 + 10(j − 7)2 − 19j2 = 4j + 1066,

(3j + 34)2 + 10(j − 10)2 − 19j2 = 4j + 2156.

Thus

30 = 7532 + 10(2662)− 19(2592),

26 = 7562 + 10(2672)− 19(2602),

372 = 13042 + 10(4562)− 19(4462),

356 = 13162 + 10(4602)− 19(4502).

Therefore 19 is 10−special.

We now present examples of 2−special. We show that l is 2−special
for l < 50 by giving identities to represent any integer n of the form n = x2 +

2y2 − kz2 where xyz $= 0.
• 3 is 2−special.

[j − 1, j + 1, j]2,3 = 2j + 3,

[j + 4, j − 1, j]2,3 = 4j + 18,

[j + 6, j − 2, j]2,3 = 4j + 44,

[2, 6, 5]2,3 = 1, [12, 23, 20]2,3 = 2, [2, 1, 1]2,3 = 3, [3, 2, 2]2,3 = 5, [8, 19, 16]2,3 = 18,
[18, 32, 28]2,3 = 20, [7, 18, 15]2,3 = 22, [12, 26, 22]2,3 = 44, and [10, 24, 20]2,3 = 52.
• 9 is 2−special.

[j − 3, 2j + 1, j]2,9 = 2j + 11,

[j − 2, 2j + 1, j]2,9 = 4j + 6,

[j + 2, 2j, j]2,9 = 4j + 4,

[18, 58, 28]2,9 = −4, [16, 54, 26]2,9 = 4, [5, 10, 5]2,9 = 11, [2, 17, 8]2,9 = 6, [9, 16, 8]2,9 =
17, and [36, 103, 50]2,9 = 14.
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• 11 is 2−special.

[3j + 1, j − 1, j]2,11 = 2j + 3,

[3j + 2, j − 2, j]2,11 = 4j + 12,

[3j + 4, j − 5, j]2,11 = 4j + 66,

[54, 23, 19]2,11 = 3, [51, 22, 18]2,11 = 5, [108, 46, 38]2,11 = 12, [102, 44, 36]2,11 = 20,
[172, 71, 60]2,11 = 66, and [157, 66, 55]2,11 = 86.
• 17 is 2−special.

[3j − 1, 2j + 1, j]2,17 = 2j + 3,

[3j + 2, 2j − 1, j]2,17 = 4j + 6,

[3j + 6, 2j − 4, j]2,17 = 4j + 68,

[18, 1, 7]2,17 = 3, [134, 103, 48]2,17 = 6, [238, 178, 84]2,17 = 60, [232, 174, 82]2,17 = 68,
and [226, 170, 80]2,17 = 76.
• 19 is 2−special.

[j − 5, 3j + 1, j]2,19 = 2j + 27,

[j − 4, 3j − 1, j]2,19 = 4j + 18,

[j + 2, 3j, j]2,19 = 4j + 4,

[38, 158, 52]2,19 = −4, [36, 152, 50]2,19 = 4, [4, 37, 12]2,19 = 18, [14, 39, 13]2,19 = 27,
[76, 291, 96]2,19 = 34, and [19, 54, 18]2,19 = 37.
• 27 is 2−special.

[5j + 1, j − 2, j]2,27 = 2j + 9,

[5j + 2, j − 4, j]2,27 = 4j + 36,

[5j + 4, j − 9, j]2,27 = 4j + 178,

[232, 54, 47]2,27 = 13, [242, 56, 49]2,27 = 9, [484, 112, 98]2,27 = 36, [464, 108, 94]2,27 =
52, [752, 171, 152]2,27 = 178, and [707, 162, 143]2,27 = 214.
• 33 is 2−special.

[j − 7, 4j + 1, j]2,33 = 2j + 51,

[j − 6, 4j + 1, j]2,33 = 4j + 38,

[j + 2, 4j, j]2,33 = 4j + 4,
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[66, 338, 84]2,33 = −4, [64, 330, 82]2,33 = 4, [6, 65, 16]2,33 = 38, [26, 100, 25]2,33 = 51,
[132, 635, 158]2,33 = 62, and [33, 128, 32]2,33 = 65.
• 41 is 2−special.

[3j + 3, 4j − 1, j]2,41 = 2j + 11,

[3j − 2, 4j + 1, j]2,41 = 4j + 6,

[3j + 6, 4j − 2, j]2,41 = 4j + 44,

[166, 245, 60]2,41 = 6, [205, 292, 72]2,41 = 9, [202, 288, 71]2,41 = 11, and
[410, 584, 144]2,41 = 36.

Corollary 4.4. Let k be an odd positive integer. There are infinitely many
2k−special numbers.

Proof. For any odd integer k, we can always choose infinitely many integers x and
y such that gcd(x, 2ky) = 1. By Theorem 4.3, we have that l = x2 + 2ky2 is
2k−special.

Theorem 4.5. Let k be a positive integer. If 4 is k−special, then k ≡ 2 (mod 4).

Proof. Let 4 be k-special. Then x2 + ky2 − 4z2 = n for all integers n, there exist
integers x, y, and z such that x2 + ky2 ≡ n (mod 4).

Case 1. k ≡ 0 (mod 4). Then x2 ≡ n (mod 4). If n ≡ −1

(mod 4), then x2 ≡ −1 (mod 4). We know that the Legendre symbol
(−1

4

)
= −1.

Hence there is no integer x such that x2 + ky2 − 4z2 = n where n ≡ −1 (mod 4).
Case 2. k ≡ 1 (mod 4). Then x2 + y2 ≡ n (mod 4). We have

x2 ≡ 0, 1 (mod 4) and y2 ≡ 0, 1 (mod 4). If n ≡ −1 (mod 4), then x2 + y2 ≡ −1

(mod 4). We know that x2 + y2 ≡ 0, 1, and 2 (mod 4).
Hence there is no integers x and y such that x2 + y2 − 4z2 = n where n ≡ −1

(mod 4).
Case 3. k ≡ 3 (mod 4). Then x2 + 3y2 ≡ n (mod 4). We have

x2 ≡ 0, 1 (mod 4) and y2 ≡ 0, 1 (mod 4). Then x2 + 3y2 ≡ 0, 1, and 3 (mod 4).
Moreover, if n ≡ 2 (mod 4), then x2 + 3y2 ≡ 2 (mod 4). This is a contradiction.

Theorem 4.6. Let k and l be positive integers. If k ≡ 2 (mod 8) and l $≡ 2

(mod 4), then 4l is not k−special.
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Proof. Suppose that k ≡ 2 (mod 8). Then k = 8m+ 2 for some m ∈ Z.
Suppose on the contrary that 4l is k-special.
For any integer n, there exist non-zero integers x, y, and z such that

x2 + (8m+ 2)y2 − 4lz2 = 2n.

Since 2n is even, we can see that x is even. Let x = 2x′ for any integer x′.
Thus

4x′2 + (8m+ 2)y2 − 4lz2 = 2n

2x′2 + (4m+ 1)y2 − 2lz2 = n.

If n is odd, then y is odd. Since y is odd, y2 ≡ 1 (mod 8).
We consider 2x′2 − 2lz2 = n− (4m+ 1)y2.

We now consider the following three cases on the values of l.
Case 1. l ≡ 0 (mod 4). Thus l = 4r for some r ∈ Z. Then

2x′2 − 2(4r)z2 ≡ n− (4m+ 1) (mod 8)

2x′2 ≡ n− (4m+ 1) (mod 8).

Subcase 1.1. m is even. Then

2x′2 ≡ n− 1 (mod 8).

Since the quadratic residues modulo 8 are 0, 1, and 4, we have 2x′2 ≡ 0, 2 (mod 8).
If n ≡ 5, 7 (mod 8), then 2x′2 ≡ 4, 6 (mod 8). This is a contradiction.

Subcase 1.2. m is odd. Then

2x′2 ≡ n− 5 (mod 8).

Since the quadratic residues modulo 8 are 0, 1, and 4, we have 2x′2 ≡ 0, 2 (mod 8).
If n ≡ 1, 3 (mod 8), then 2x′2 ≡ 4, 6 (mod 8). This is a contradiction.
Case 2. l ≡ 1 (mod 4). Thus l = 4r + 1 for some r ∈ Z. Then

2x′2 − 2(4r + 1)z2 ≡ n− (4m+ 1) (mod 8)

2x′2 − 2z2 ≡ n− (4m+ 1) (mod 8).

Subcase 2.1. m is even. Then

2x′2 − 2z2 ≡ n− 1 (mod 8).
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Since the quadratic residues modulo 8 are 0, 1, and 4, we have 2x′2 − 2z2 ≡ 0, 2, 6

(mod 8). If n ≡ 5 (mod 8), then 2x′2 − 2z2 ≡ 4 (mod 8). This is a contradiction.
Subcase 2.2. m is odd. Then

2x′2 − 2z2 ≡ n− 5 (mod 8).

Since the quadratic residues modulo 8 are 0, 1, and 4, we have 2x′2 − 2z2 ≡ 0, 2, 6

(mod 8). If n ≡ 1 (mod 8), then 2x′2 − 2z2 ≡ 4 (mod 8). This is a contradiction.
Case 3. l ≡ 3 (mod 4). Thus l = 4r + 3 for some r ∈ Z. Then

2x′2 − 2(4r + 3)z2 ≡ n− (4m+ 1) (mod 8)

2x′2 − 6z2 ≡ n− (4m+ 1) (mod 8).

Subcase 3.1. m is even. Then

2x′2 − 6z2 ≡ n− 1 (mod 8).

Since the quadratic residues modulo 8 are 0, 1, and 4, we have 2x′2 − 6z2 ≡ 0, 2, 4

(mod 8). If n ≡ 7 (mod 8), then 2x′2 − 2z2 ≡ 6 (mod 8). This is a contradiction.
Subcase 3.2. m is odd. Then

2x′2 − 6z2 ≡ n− 5 (mod 8).

Since the quadratic residues modulo 8 are 0, 1, and 4, we have 2x′2 − 6z2 ≡ 0, 2, 4

(mod 8). If n ≡ 3 (mod 8), then 2x′2 − 6z2 ≡ 6 (mod 8). This is a contradiction.
Therefore 4l is not k−special.



51

CHAPTER 5

Conclusion

Let k be a positive integer. We define a positive integer l to be
k−special if for every integer n there exist non-zero integers a, b, and c such that

n = a2 + kb2 − lc2.

In Chapter 3, we first show that 1 is k−special when k is not divisible
by 4. We next widen the scope of k and l. We show that k is k−special if and
only if k = 1. We let k and l be odd positive integers and show that l is k−special
if l = x2 + ky2 for some positive integers x and y and gcd(x, ky) = 1. Moreover,
there are infinitely many k−special when k is an odd integer. Furthermore, we
prove that for any positive odd integer k, 4l is not k−special.

In Chapter 4, we show that if l is 2−special, then l = x2 + 2y2 for
some integers x and y but the converse is not true. We provide conditions of l

to be 2k-special where k is odd. That is l = x2 + 2ky2 for some positive integers
x and y and gcd(x, 2ky) = 1. Moreover, we show that there are infinitely many
2k−special when k is an odd integer. Furthermore, we prove that if 4 is k−special,
then k ≡ 2 (mod 4). However, for any positive integer l, 4l is not k−special if
k ≡ 2 (mod 8) and l $≡ 2 (mod 4).
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