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ABSTRACT 

Objectives: First part was to evaluate the surface structure, phase determination, 
translucency, and strength (flexural) of the zirconia (Katana STML Block and Disc) 
between the regular sintering (RS) and the speed sintering (SS) with and without low-
temperature degradation (LTD). The second part aimed to compare the surface 
structure, cracks, and load-bearing capacity in zirconia screw-retained implant crowns 
between RS and SS protocols with and without cyclic loading (fatigue). 

Materials and methods:  For the first part, a total of 60 zirconia discs (30 per 
group; RS and SS). The zirconia discs were subjected to RS and SS with and without 
LTD. Scanning electron microscopy (SEM) was done to characterize the zirconia 
specimens and the zirconia grain size. Furthermore, the zirconia specimens were 
analyzed for elemental analysis using energy dispersive spectroscopy (EDS) and phase 
identification using X-ray diffraction. The zirconia specimens were analyzed for the 
translucency measurements and biaxial flexural strength testing. For the second part, a 
total of 60 screw-retained crowns were fabricated from zirconia (Katana STML Block) 
by the CAD/CAM system. Then, 30 crowns were subjected to the RS protocol and 30 
crowns to the SS protocol. Cyclic loading was done in half zirconia crowns (15 crowns 
in each group) using a chewing simulator at room temperature. SEM was done to study 
the surface of the crowns and the cracks in the crowns of the RS and SS protocols, with 
and without fatigue. Load to failure was also evaluated.  

Results: For the first part, the zirconia specimens with and without LTD in RS 
and SS presented a similar surface structure. RS showed more translucency compared 
to SS. Multiple comparisons of the translucency parameter were a significant difference 
(p value < 0.05) among various groups except for the comparison between SS and SS 
with LTD. The RS sintering showed bigger gain sizes and slightly more translucency 
compared to SS. The SS showed higher biaxial flexural strengths compared to RS. For 
the second part, for the SS group, the crack surface looks more uniform, and the crack 
lines are present at a short distance compared to RS. It showed that the SS group showed 
the maximum fracture load, followed by the RS, SS with fatigue, and RS with fatigue 
groups. The fracture load in various groups showed significant differences. 

Conclusions: The RS showed a bigger grain size and slightly more translucency 
compared to SS. The SS showed higher biaxial flexural strengths compared to RS. This 
shows that SS can be considered a suitable method of sintering zirconia. Hence, when 
biaxial flexural strength is required, SS can be considered; however, when better 
translucency is required, RS is recommended. 
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Introduction 
 
1. Introduction to Ceramic in Dentistry 

All-ceramic dental restorations and prostheses are widely used at present 
because they are potential alternative to the metal-ceramic prostheses because of their 
esthetics, strengths, stability, and biocompatibility.[1-3] Zirconia (ZrO2), a type of 
dental ceramic, is glass-free polycrystalline (96–99%) in nature in which all atoms are 
compacked into regular crystalline structure.[4] Zirconia has excellent physicochemical 
properties, such as excellent hardness, fracture toughness, flexural strength, 
biocompatibility, and esthetic. Hence, its application has been expanding in 
dentistry.[4] 

Zirconia is polymorphic biomaterial and exists in basic three forms: monoclinic 
(m), tetragonal (t) , and cubic (c).[5,6] It is present in the m form at the room 
temperature zirconia and it is stable up to 1170◦C. When heated above the temperature 
of 1170◦C, a transformation results to the t phase which is stable up to 2370◦C.[7] 
Above the temperature of 2670 ◦C, zirconia assumes its c form.[8] On cooling from 
high to low temperatures, the c–t transformation occurs.[9] Conversely, the c–m 
transformations and t–m are caused from high-volume expansions (3%–5%). Pure 
zirconia results cracks from large stresses during cooling. To avoid these problems, 
oxide additives, e.g., calcium oxide (CaO), cerium oxide (CeO2), magnesium oxide 
(MgO), and yttria (yttrium oxide, Y2O3) are added to stabilize the t or c phase of 
zirconia. 

The main shortcomings of zirconia restorations are chipping of veneering 
porcelain and the inadequate adhesion.[10] Sometimes, airborne-particles can cause 
damage to the zirconia material and jeopardize the long-term outcome of the zirconia 
restorations. Another shortcomings of zirconia restorations is their less translucency, 
weak veneered with porcelain over zirconia cores due to the failure of the adhesion 
between the two materials.[11] In consideration to these problems, recently, new 
zirconia restorations (which is also known as the third generation) are introduced in the 
market with an intent to solve these problems of zirconia. More scientific evidences are 
needed for their applications in clinical dentistry. 

The zirconia from different manufacturing processes has different processes 
related to microstructure. The Y-TZP undergoes low temperature degradation (LTD) 
which may cause damage of the restoration or even failure of the implant.[12] The aging 
of zirconia results due to the transformation of the stable t phase to the m phase (m–t 
transformation) in the presence of water or water vapor at relatively low temperatures 
(approximate 30°C up to 400°C) a phenomenon known as hydrothermal or 
LTD.[13,14] LTD has a adverse effect on the mechanical behavior of zirconia.[13] 
LTD becomes faster by the combination of stress and moisture.[15,16] In addition, the 
LTD is also related with other factors, such as type and amount of stabilizer [17], 
residual stress [17,18], density [19], sintering temperature and fabrication method and 
hydrothermal consitions [20,21], and surface finish [22]. 
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This study will compare the surface structure, phase determination, 
translucency, and biaxial flexural strength of zirconia blocks and discs between regular 
sintering and speed sintering. In addition, this study will also compare the surface/ 
cracks determination and load-bearing capacity in zirconia screw-retained implant 
crowns between the regular sintering and the speed sintering. 
 
2. Literature Review 
2.1 Dental Ceramic and Zirconia Restorations 

All-ceramic restorations are commonly used in dental clinics due to their good 
esthetic properties.[1] They are potential alternative to metal-ceramic restorations due 
to their esthetics, and biocompatibility.[2,3] Types of dental ceramic include glass 
ceramic, glass infiltrated ceramic, and oxide ceramic (Figure 1).[23]  

 
Figure 1. Types of dental ceramics.[23] 

Zirconia (ZrO2), a type of dental ceramic, is used in biomedical applications 
since the 1960s and it is used as a long-span restoration. It is glass-free polycrystalline 
(96%–99%) ceramics in which all atoms are packed into regular crystalline arrays.[4] 
Zirconia has excellent physicochemical properties, such as excellent biocompatibility, 
hardness, fracture toughness, flexural strength, and satisfactory esthetic (Figure 2). 
Hence, its application has been expanding in dentistry.[4] Zirconia restorations play 
important in dental implantology as they meet the functional and aesthetic need of the 
patients. Evidently, 3 mol% stabilized t zirconia polycrystalline (3Y-TZP) are being 
used as a favorable restoration due to their good mechanical properties such as high 
strength, biocompatibility, and esthetics.[2,24,25] Nevertheless, the zirconia core is 
less translucent than the glass-infiltrated ceramic.[26-28] 
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Figure 2. All-ceramic restorations. 

Zirconia is polymorphic biomaterial which exists in three forms: m, t, and c 
(Figure 3).[5,6] It is present in its m form at the room temperature and it is stable up to 
1170◦C. Above 1170◦C, a transformation occurs to the t phase that is stable up to 
2370◦C.[7] Above the temperature of 2670 ◦C, zirconia assumes its c form.[8] On 
cooling to low temperatures, the c–t transformation occurs.[9] 

 
Figure 3. Polymorphic transformation of zirconia.[5] 

Zirconia is generally produced from zircon mineral (ZrSiO4) using 
decomposition agents.[9] Highly pure t zirconia is produced from the sol-gel process 
which includes dissolving acid by zirconium salt and nucleation and growth of zirconia 
particles. With this process, Y2O3 can be integrated during the fabrication process for 
the stabilization of t zirconia.. Finally, a high level of homogeneity and required particle 
size can be obtained. Furthermore, additives to zirconia such as MgO, CaO, CeO2, and 
Y2O3 are used to stabilize the high-temperature phases and are known as partially 
stabilized zirconia (PSZ).[29] Yttria is used as a stabilizer but full stabilization is 
achieved with yttria t zirconia particles (Y-TZP). Thus, 8, 5, 3 and 2 mol% yttria fully 
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stabilized zirconia are found in market. The yttria stabilizer particle sizes may range 
from 0.5 μm to 0.1 μm. Table 1 shows the chemical composition and technical 
properties of third generation zirconia.[30] 

Table 1. The composition and properties of third generation zirconia.[30] 

Details Contents 

Chemical Composition  

• ZrO2 + HfO2  87–92% 

• Yttrium oxide (Y2O3)  8–11% 

• Other oxides 0–2% 

Properties  
• Bending strength 557 MPa 

• Coefficient of thermal expansion (25–500 °C) 9.7 ± 0.2 10-6K-1 

• Translucency 43% 

 
Various uses of zirconia in dentistry include abutments, crowns (full and 

partial), implant material, veneer, orthodontic brackets, and posts. Zirconia dental 
prosthesis can be produced from a zirconia disc or block (Figure 4). 

  

 
Figure 4. Fabrication of zirconia dental prosthesis from zirconia disc and block. 
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In dentistry, the use of metallic parts results may cause unfavorable esthetic 
results from grayish color discoloration of ceramic crowns and gingiva and may cause 
allergy. These problems led to the production of esthetic zirconia and other ceramic 
materials. Zirconia implants are esthetically pleasing with no dark discoloration around 
the gingiva and option for people with known metal allergies.  Zirconia also can be used 
in implant dentistry such as prosthetic crowns, abutments, and dental implants (Figure 
5). A zirconia implant material retains less plaque and calculus compared to 
titanium.[31,32] It has been shown zirconia implants can be used as an alternative to 
titanium with a superior aesthetics, biocompatibility, and soft-tissue response.[33,34] 
But the zirconia is more brittle with lower fracture and flexural strength than titanium. 
Zirconia implants with a small diameter are prone to fracture. 

 

 
Figure 5. Various applications of zirconia in dental dentistry. 

Zirconia is divided into three groups according to the yttria content as 
follows.[35] 
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1. First Group: This group is strong, 3 mole % Y-TZP (3Y-TZP, mainly 
tetragonal) (IPS e.max® ZirCad LT and MO, , 3M; BruxZir®, Glidewell 
Laboratories; Ivoclar Vivadent; Lava™ Plus and KATANA™ HT, Kuraray 
Noritake). 

2. Second Group: This group is more translucent, 4 mole % Y-TZP (4Y-TZP) (IPS 
e.max ZirCAD MT; Zpex® 4, Kraun; and KATANA™ ST/STML). 

3. Third Group: This group is most translucent, 5 mole % Y-TZP (5Y-TZP) with 
reduced mechanical properties (Lava Esthetic; Cercon® XT, 
KATANA™ UT/UTML; BruxZir Anterior; Dentsply Sirona; and Zpex Smile),  
 
The properties also vary according to the % Y-TZP as shown in Table 2. 

Table 2. Types of zirconia-based on the yttria content. 

 3 Y-TZP 4 Y-TZP 5 Y-TZP 

Phase Mainly 
tetragonal 

Tetragonal and 
cubic 

More cubic and less 
tetragonal  

Flexural strength Maximum High Lower 
Fracture toughness Maximum High Lower 
Translucency White opaque Some 

translucency Moderate translucency 

Esthetic Low esthetic Moderate 
esthetic High esthetic 

 
An example of third generation zirconia restoration is shown in Figure 6. They 

have light refraction similar to that of the natural teeth, integrated translucency, and no 
laborious pretreatment but only polishing or glazing required, and available in various 
shades.[30] But the fracture toughness and flexural strength are slightly lower than first 
and second generation zirconia. The c phase zirconia having increasing yttria content 
(5Y-TZP) have shown the best effect of translucency as a result of 9.35 wt.% yttria-
stabilized zirconia powder and 46% t zirconia and 54% c zirconia.[36,37] 
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Figure 6. Dental restoration made from third generation zirconia.[30] 

Various mechanical and chemical treatment methods are proposed on zirconia 
surfaces to bond the zirconia to the resin-based materials. Phosphoric acid (30%–40%) 
is used to clean and remove contaminants from the bonding surface of prosthetic 
restoration.[10] Aluminum oxide air abrasion increases the bonding area for mechanical 
interlocking and surface wettability of zirconia. Other protocols for the surface 
treatment of zircona are plasma technology, hydrofluoric acid (>40%), and coupling 
agents (zirconia primers, metal primers, and silanes). 

 
2.2 Sintering of Zirconia and Zirconia Restorations 

Zirconia restorations can be fabricated by two methods. One method is by 
partially sintered state from soft machining followed by sintering cycle and another 
method is fully sintered state by using hard machining.[38,39] The soft machining 
produces less accurate frameworks due to the shrinkage during sintering. But, the hard 
machining results t–m transformation and can introduce cracks, and can cause milling 
machine wear.[40] 

The sintering of zirconia allow densification without causing simultaneous 
grain growth necessary for the microstructural refinement.[41] Pretreatment is done at 
a low temperature and then at higher-temperature and then cooling. This allows 
refinement of the microstructure and present better properties.[42]  

The details on the conventional, rapid, and super-speed sintering is shown in 
Table 3. Table 4 shows various mechanical properties of zirconia according to the types 
of sintering of zirconia (conventional, rapid and super-rapid).[43] 
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Table 3. Various tested materials, sintering protocols for zirconia.[43] 

 Sintering Details Sintering 
time 

Conventional 
sintering (CS) 
 
Super-speed 
sintering-1 (S-1) 

 
 

Super-speed 
sintering-2 (S-2) 
 

Heating at 2 °C/min to 1480 °C, then dwelling for 
120 min, then cooling at 30 °C/min down to 200 °C. 
 
Heating at 400 °C/min to 1200 °C, then at 190 
°C/min to 1580 °C, dwelling for 2 min, then cooling 
at 310 °C/ min down to room temperature. 

 
Heating at 400 °C/min to 1200 °C, dwelling for 5 
min, then at 190 °C/min to 1580 °C, dwelling for 10 
min, followed by cooling at 310 °C/ min down to 
room  

15 h 
 
 
 

12 min 
 
 
 
 

25 min 
 

Table 4. Properties of zirconia of various sintering protocols.[43]  

Properties Conventional 
sintering Rapid sintering Super-speed 

sintering 
Grain size (μm) 0.6 0.59 0.32 
Hardness (GPa) 13.4 (0.2) 13.3 (0.1) 13.6 (0.2) 
Flexural strength 
(MPa) 1172 (73) 1151 (149) 1038 (183) 

Fracture 
toughness 
(MPa・m1/2) 

5.89 (0.18) 5.92 (0.09) 5.33 (0.34) 

Presence of a 
stable 
monoclinic 
phase 

Monoclinic phases 
10% 

Monoclinic phases 
5% 

No obvious 
monoclinic phase 

Structure under 
scanning 
electron 
microscopy 

   
 
2.3 Failures of Zirconia 

Failure of zirconia/ceramic materials result from the surface or volume flaws. 
The pores can act as a stress concentration during cooling and lead to the formation of 
microcrack. [45-47] Hoffman and Rödel [46] showed that the critical stress for 
microcrack formation decreases with increasing grain size and the failure is caused by 
the stress concentrations around the pore before a microcrack can form. 

It has been found that when monolithic zirconia restoration is exposed to the 
humid environment of saliva, it may be deteriorated by low temperature degradation 
because of the zirconia structure.[48] Regarding the aging and degradation of zirconia, 
some theories have explained. Yttria is added in zirconia to achieve phase stability and 
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it is finished through a reaction with water resulting in t to m (t–m) transformation.[48-
50] This transformation is caused when the zirconia bond (Zr-O) is disturbed by water 
(O2 fills the O2 vacancies), thereby creating stress due to the diffusion of OH− and 
forming lattice defects.[51,52] This results in microcracks and grain pull-out produced 
on zirconia surfaces. Water can penetrate cracks and induce the surface degradation of 
zirconia.[50] 

 
2.4 Low Temperature Degradation (LTD) 

The aging process results from the transformation of the stable t phase to the m 
phase (t–m transformation) in the presence of water or water vapor at relatively low 
temperatures (approximately 30°C up to 400°C) a phenomenon known as hydrothermal 
or LTD.[13,14] The LTD of t zirconia was first reported by Kobayashi et al. in 
1981.[54] Since then, much research has been performed on the degradation of zirconia 
ceramics.[55] A thinner Y‐TZP specimen presents surface defects and microcracks 
after aging and decreases the flexural strengths.[55] 

LTD is increased by stress and moisture in an environment (Figure 7).[15,16] 
In addition, the LTD can also be associated with other factors, type and amount of 
stabilizer [17], residual stress [17,18], density [19], sintering temperature and 
fabrication method [20,21], surface finish [22], and different hydrothermal conditions. 

 
Figure 7. Scanning electron microscopy images of polished monolithic (A) and glazed 

monolithic (B) fractured specimens, crack propagation starts at the occlusal 
surface.[16] 

The LTD results in a detrimental influence on the long-term mechanical 
behavior of zirconia ceramics in the oral cavity.[13] The stresses the near grains and 
microcracks appear allowing water to penetrate and the process to progress, resulting 
in a remarkably surface roughness increase and decrease in hardness and strength 
thereby severely degrading the zirconia properties.[56-58] In addition, a recent study 
by Kengtanyakich and Peampring [59] showed that hydrothermal aging in the autoclave 
for 8 hours caused a significant decrease in the fracture toughness and low-temperature 
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degradation affected the surface properties (surface roughness and hardness) of 3Y-
TZP zirconia material, owing to the spontaneous t-m transformation.  

In addition, the mechanical properties of the Y-TZP can dramatically reduce 
due to LTD. Flinn et al.[60] evaluated the LTD behavior of Y-TZP materials by 
accelerated aging specimens in steam at 134°C, 2 bar. It also showed that following 200 
hours of aging of Y-TZP could cause a significant transformation from t-m crystal 
structure, which statistically significant decrease in the flexural strength.[60,61]  

 
2.5 Effect of Sintering Protocol on Zirconia Properties 

The sintering of zirconia can affect its microstructure and properties.[62,63] 
Various types of sintering can be done for the zirconia from conventional to super-fast. 
Table 4 shows the review of some studies (tested materials, experimental design, 
sintering protocols, and testing for zirconia). 

Studies have been done on the effect of the changes in sintering time and 
temperature on the grain size, biaxial flexural strength, and translucency of 
zirconia.[25,64-66] Li et al.[43] found super-speed sintered at 1580 °C dental zirconia 
with a dwelling time of less than 20 min results acceptable clinical performances for 
one-visit application. In 20 minutes, a longer dwelling time can present better 
transmittance and mechanical properties of zirconia (Table 5). Kaizer et al. [44] 
mentioned that fast sintering protocols results better microstructural, physical, and wear 
properties of monolithic zirconia (Table 6). 

Table 5. Results of mechanical properties of dental zirconia ceramics after conventional 
and super-speed sintering.[43] 

 
Conventional 
sintering (CS) 

Super-speed 
sintering-1 

(S-1) 

Super-speed 
sintering-2 

(S-2) 

Super-speed 
sintering-3 

(S-3) 

Grain size (μm)  0.63 0.32 0.51 0.59 

Flexural strength 
(MPa)  1172(73) 1038(183) 1087 (124) 1151(149) 

Hardness (GPa)  13.4(0.2) 13.6(0.2) 13.4(0.3) 13.3(0.1) 

Fracture toughness 
(MPa·m1/2) 5.89(0.18) 5.33 (0.34) 5.49(0.17) 5.92(0.09) 
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Table 6. Results of mechanical properties of zirconia crowns after long-term and super-
speed sintering.[44] 

 
Long-term 

sintering (LT) 
Speed sintering 

(S) 
Super-speed 

sintering (SS) 
Grain size (μm) 0.66 0.50 0.59 
Flexural strength (MPa) 13.3 (0.1) 13.1 (0.2) 13.1 (0.2) 
Hardness (GPa)  579.7 (130.6) 622.3 (82.7) 904.27 (115.7) 
Translucency 4.3 (04) 4.2 (0.5) 4.6 (0.4) 

 
Kim et al.[64] studied the effects of the sintering conditions of dental zirconia 

(Lava and KaVo) on grain size and translucency. The dwelling time was 20 min for 
microwave sintering (MS) and 20 min, 2, 10, and 40 hours for conventional sintering 
(CS). They concluded that different sintering conditions resulted in differences in grain 
size and light transmittance. Shorter sintering times result in more translucent dental 
zirconia restorations. Other important parameters are the composition type, particle 
size, and processing method can affect the final microstructure. Figure 8 shows the 
schematic representation of the conventional and two-step sintering technique.[67] 

 
Figure 8. Conventional and two-step sintering and microstructural refinement.[67] 

2.6 Screw-Retained Implant Restoration 
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Implant restorations (screw-retained or cemented retained on standard or 
customized abutments) are two types of restoration that show similar outcomes in 
clinical studies.[69] The fracture load of implant-supported restorations is an important 
factor in clinical success. Mokhtarpour et al. [70] evaluated the effect of two techniques 
for screw hole preparation (screw hole preparation before sintering and preparing screw 
hole manually after sintering) on the fracture load and found both techniques in implant-
supported zirconia-based crowns decreased the fracture load. 

 
Figure 9. Screw access hole preparation on the fracture load of implant-supported 

zirconia-based crowns.[70] Milled zirconia with screw hole before sintering (A) and 
after sintering and testing (C-D). 

As the zirconia from different manufacturing processes has different process-
related microstructures, there is a need to assess their aging sensitivity. The Y-TZP can 
undergo LTD and can result restoration damage or failure of the implant.[12] 

3. Rationale 
It is important to study the surface structure, phase determination, translucency, 

and biaxial flexural strength of zirconia blocks and discs between the regular sintering 
and the speed sintering. In addition, it is also important to compare the surface/ cracks 
determination and load-bearing capacity in zirconia screw-retained implant crowns 
between the regular sintering and the speed sintering. But there is no literature on these 
topics. 

4. Research Questions 
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Is there a difference in the surface structure, phase determination, translucency, 
and biaxial flexural strength of cubic containing zirconia between the regular sintering 
and the speed sintering? 

Is there a difference in the surface/crack determination and load-bearing 
capacity in zirconia screw-retained implant crowns between the regular sintering and 
the speed sintering? 

5. Conceptual Framework 
The conceptual framework of this study is shown below (Figure 10). 

 
Figure 10. Conceptual framework of this study
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Objectives 

The research objectives are as follows. 
The first objective is to compare the surface structure, phase determination, 

translucency, and biaxial flexural strength of cubic containing zirconia between the 
regular sintering and the speed sintering with and without low temperature degradation. 

The second objective is to compare the surface/ cracks determination and load-
bearing capacity in zirconia screw-retained implant crowns between the regular 
sintering and the speed sintering with and without cyclic loading (fatigue). 
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Result and Discussion 

 

Results 

1. Results of Zirconia Disc 

1.1 Surface Structure and Elemental Analysis 
The SEM images of the zirconia specimens are shown in Figure 11 and the 

results of the grain size (µm) in each group are shown in Table 7 and Figure 12. It 
showed that regular sintering showed a higher grain size compared to speed sintering. 
The LTD zirconia specimens showed a similar structure to no LTD in both regular and 
speed sintering groups. 

Table 7. Results of the grain sizes of the zirconia specimens in various groups. 

Groups Mean (µm) SD (µm) 

Regular  3.206 1.257 

Regular LTD 3.442 1.820 

Speed  1.822 0.452 

Speed LTD 1.689 1.053 

SD = Standard deviation. 

 
Figure 11. Scanning electron microscopy images of the zirconia specimens for regular 

sintering and speed sintering with and without low-temperature degradation (LTD). 
Regular sintering (A–F) and speed sintering (G–I) from low magnification to high 

magnification. 
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Figure 12. Grain size (µm) as measured from the scanning electron microscopy 

images of the zirconia specimens for the regular sintering and speed sintering with 
and without low-temperature degradation (LTD). 

Table 8 shows the multiple comparisons of the grain size of the zirconia 
specimens among various groups among groups. The regular sintering showed a 
significantly bigger grain size (p value < 0.05) compared to the speed sintering LTD 
and regular sintering LTD compared to the speed sintering and speed sintering LTD. 
There was no difference in the flexural strength between the regular sintering vs regular 
sintering LTD (p value = 0.975) and speed sintering vs speed sintering LTD (p value = 
0.995). 
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Table 8. Multiple comparisons of the grain size of the zirconia specimens among 
various groups. 

(I) Groups (J) Groups Mean Difference 
(I-J) p value 

Regular  
Regular LTD −0.236 0.975 
Speed  1.383 0.075 
Speed LTD 1.517 0.042 * 

Regular LTD 
Regular  0.236 0.975 
Speed  1.6192 0.026 * 
Speed LTD 1.7532 0.014 * 

Speed  
Regular  −1.383 0.075 
Regular LTD −1.6192 0.026 * 
Speed LTD 0.134 0.995 

Speed LTD 
Regular Sintering −1.517 0.042 * 
Regular Sintering LTD −1.753 0.014 * 
Speed Sintering −0.134 0.995 

* The significant difference at the 0.05 level. Multiple comparisons done using 
Scheffe analysis. 

The EDS elemental analysis of the zirconia specimens is shown in Figure 13 
and Table 9. Figure 13 shows the EDS spectra and Table 9 shows the elemental analysis 
of the zirconia specimens in atomic %. The speed sintering presented slightly higher 
Zr. LTD showed slightly lower C and O with higher Y, Zr, and Hf. 

 
Figure 13. EDS Spectra of the zirconia specimens for the regular speed sintering and 

speed sintering with and without low-temperature degradation (LTD). 
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Table 9. Results of the EDS elemental analysis of the zirconia specimens for the regular 
speed sintering and speed sintering with and without low-temperature degradation 
(LTD). 

Zirconia 
Specimens 

C 
(Mean ± 
SD) 
(Atomic %) 

O 
(Mean ± 
SD) 
(Atomic %) 

Y 
(Mean ± 
SD) 
(Atomic %) 

Zr 
(Mean ± 
SD) 
(Atomic %) 

Hf 
(Mean ± SD) 
(Atomic %) 

Regular Sintering 35.073 ± 
1.355 

53.773 ± 
1.505 

1.220 ± 
0.051 

9.833 ± 
0.238 

0.016 ± 
0.004 

Regular Sintering 
LTD 

32.973 ± 
1.682 

47.436 ± 
0.947 

2.076 ± 
0.084 

17. 376 ± 
0.6930 

0.1433 ± 
0.024 

Speed Sintering 34.260 ± 
2.692 

53.123 ± 
1.831 

1.346 ± 
0.097 

11.163 ± 
0.906 

0.013 ± 
0.004 

Speed Sintering 
LTD 

28.190 ± 
0.190 

50.093 ± 
0.339 2.316 ± 0.02 19.236 ± 

0.182 
0.166 ± 
0.012 

SD = Standard deviation. 

1.2 Phase Structure 
The XRD analysis (Figure 14) of the zirconia specimens shows that the 

zirconium specimens showed that the peak positions for the spectra correspond to the t 
phase for zirconium yttrium oxides (ZrO2).  

 
Figure 14. X-ray diffraction (XRD) analysis of the zirconia specimens for regular 

sintering and speed sintering with and without low-temperature degradation (LTD). 
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1.3 Translucency  
The results of the transparency are shown in Table 10. Regular sintering 

showed more translucency compared to speed sintering. Multiple comparisons 
of the contrast ratio between the groups show that there was a significant 
difference (p value < 0.05) between the various groups. However, the 
translucency parameter presented a significant difference (p value < 0.05) 
between the various groups except for between speed sintering vs speed 
sintering LTD (p value = 0.931). 

Table 10. Results of the contrast ratios transparency, and biaxial flexural strength of 
the zirconia specimens. 

Zirconia Specimens Contrast Ratio 
(Mean ± SD) 

Translucency 
(Mean ± SD) 

Flexural strength 
(MPa) 
(Mean ± SD) 

Regular Sintering 0.787 ± 0.034 10.581 ± 0.798 466.41 ± 22.898 

Regular Sintering 
LTD 0.734 ± 0.028 12.443 ± 1.173 471.85 ± 20.789 

Speed Sintering 0.833 ± 0.021 9.052 ± 0.618 500.5 ± 23.432 

Speed Sintering LTD 0.824 ± 0.252 9.263 ± 0.775 513.63 ± 19.909 
SD = Standard deviation. 

1.4 Biaxial Flexural Strength 
The results of the flexural strength (MPa) are shown in Table 10. It showed that 

speed sintering and speed sintering LTD showed higher biaxial flexural strengths. Table 
11 shows the multiple comparisons of flexural strength (MPa) among the groups. The 
regular sintering showed significantly lower flexural strength (p value ≤ 0.01) 
compared to the speed sintering and speed sintering LTD. Similarly, the regular 
sintering LTD showed a significantly lower flexural strength (p value < 0.005) 
compared to the speed sintering and speed sintering LTD. However, there was no 
difference in the flexural strength between the speed sintering and speed sintering LTD 
(p value = 0.444). 
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Table 11. Multiple comparisons of the biaxial flexural strength of the zirconia 
specimens among various groups. 

(I) Groups (J) Groups 
Mean 
Difference 
(I-J) 

p value 

Regular Sintering 

Regular Sintering LTD −5.436 0.926 

Speed Sintering −34.097 * 0.001 * 

Speed Sintering LTD −47.219* <0.0001 * 

Regular Sintering LTD 
Regular Sintering 5.436 0.926 
Speed Sintering −28.661 * 0.008 * 
Speed Sintering LTD −41.783 * <0.0001 * 

Speed Sintering 
Regular Sintering 34.097 * 0.001 * 
Regular Sintering LTD 28.661 * 0.008 * 
Speed Sintering LTD −13.122 0.444 

Speed Sintering LTD 
Regular Sintering 47.219 * <0.0001 * 
Regular Sintering LTD 41.783 * <0.0001 * 
Speed Sintering 13.122 0.444 

* The sigificant difference at the 0.05 level. Multiple comparisons done using Scheffe 
analysis. 

2. Results of Implant Crown 
2.1 Fractographic Analysis 

The surface of various zirconia crowns of various sintering groups is shown in 
Figure 15. It shows that, for all samples, the crack lines run from the top (occlusal) to 
the bottom (gingiva). Indeed, the arrest lines are perpendicular to the crack 
propagations. For the SS group, the material looks more uniform, and the crack lines 
are present at shorter distances compared to RS; this concurs with the result that SS 
provides higher strength than RS. Once the material was fatigued, more crack lines 
were presented. The direction of crack lines in the fatigue group is presented in different 
directions compared to the non-fatigue group. In this study, all zirconia crowns were 
presented with bulk catastrophic material as shown in Figure 16. 
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Figure 15. Surface structure in SEM of the zirconia crowns of various sintering 

groups. 

 
Figure 16. Fracture of the zirconia crowns of various sintering groups. 

2.2 Load to Failure 
The descriptive statistics of the fracture load are shown in Table 12. It shows 

that the speed group showed the maximum fracture load, followed by the regular, speed 
fatigue, and regular fatigue groups. The multiple comparisons show that the fracture 
load was a significant difference among the various groups; regular vs regular fatigue, 
regular vs speed, regular vs speed fatigue, regular fatigue vs speed, regular fatigue vs 
speed fatigue, and speed vs speed fatigue (Table 13). 
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Table 12. Descriptive statistics of fracture load. 

Sintering N Mean 
(N) 

Std. 
Deviation Std. Error Minimum Maximum 

Regular 15 3223.60 76.11 19.65 3146.00 3456.00 

Regular fatigue 15 2143.06 135.93 35.09 1783.00 2324.00 

Speed 15 3664.46 140.90 36.38 3276.00 3787.00 

Speed fatigue  15 2450.06 128.26 33.12 2290.00 2790.00 

Table 13. Multiple comparisons of the fracture load among the groups. 

(I) Groups (J) Groups Mean Difference (I-J) p Value 

Regular 
Regular fatigue 1080.53 <0.001 * 
Speed −440.86 <0.001 * 
Speed fatigue  773.53 <0.001 * 

Regular fatigue 
Regular −1080.53 <0.001 * 
Speed −1521.40 * <0.001 * 
Speed fatigue  −307.00 <0.001 * 

Speed 
Regular 440.86 <0.001 * 
Regular fatigue 1521.40 <0.001 * 
Speed fatigue  1214.40 <0.001 * 

Speed fatigue  
Regular −773.53 <0.001 * 
Regular fatigue 307.00 <0.001 * 
Speed −1214.40 <0.001 * 

* The mean difference is significant at the 0.05 level. 

Figure 17 shows the Weibull distribution for the zirconia crowns. The 63.3% 
value was also marked, for which the strength according to the analysis is σ0 = 3244 
MPa for regular, σ0 = 2190 MPa for regular fatigue, σ0 = 3765 MPa for speed, and σ0 = 
2457 MPa for speed fatigue (Table 14). It shows that only the regular group shows an 
R2 of less than 65%. The sintering protocol with a larger Weibull module and durability 
increases reliability. 
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Figure 17. Weibull plot for the strength of the zirconia crowns of various sintering 
groups. R = regular, S = speed sintering, RF = regular fatigue, SF = speed fatigue. 

Table 14. Results of Weibull distribution analysis. 

Sintering 
Protocol N Characteristic strength 

σo [MPa] 

Coefficient of 
determination 
R2 

Weibull 
modulus 
m 

Regular 15 3244 0.64 42.69 
Regular fatigue 15 2190 0.95 18.19 
Speed 15 3765 0.90 29.62 
Speed fatigue 15 2457 0.79 21.46 
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Discussion 

1. Zirconia Disc 

Zirconia has good wear resistance and good color stability.[71] There have 
developed various sintering methods to enhance the properties and esthetics of zirconia. 
As there was no study that studied the speed sintering with aging or LTD. Sintering 
times with LTD aging affects the structural, optical, and mechanical properties of 
zirconia.[72] Hence, it was important to study the surface structure, phase 
determination, translucency, and flexural strength of zirconia between regular sintering 
and speed sintering. So, this research was done to compare the surface structure, phase 
determination, translucency, and flexural strength of zirconia blocks and discs (5Y-
TZP) between the regular speed sintering and the speed sintering with and without 
LTD. In this study, we rejected the null hypothesis as there was a difference in the 
surface structure, grain size, contrast ratio, and biaxial flexural strength in zirconia 
between the regular sintering and the speed sintering with and without LTD. In this 
study, regular sintering with LTD showed the most translucency. From XRD, there was 
no difference in all groups. All the peaks were the same; however, the translucencies 
are different, which could be due to the difference in the grain size.[73] In addition, in 
this study, for speed sintering, we can notice a smaller grain size. The smaller grain of 
the m lattice may cause less light transmission. Liu et al.[74] also found conventionally-
sintered Y-PSZ had a larger average grain size than speed-sintered Y-PSZ. 

Furthermore, Kilinc et al.[72] studied the various sintering methods and aging 
on the grain size, flexural strength, and translucency of the zirconia and they found that 
the sintering method and aging significantly influence the translucency. The flexural 
strength and grain sizes were influenced by aging only (p < 0.001). Aging times 
increased the grain size but prolonged sintering with 120 min of aging negatively 
influenced the translucency of zirconia. The increase in grain size compared to our 
research might be due to the shorter aging time (60 min and 120 min), but in our 
research, the samples were subjected to 122 °C under 2-bar pressure for 8 h. Hence, 
prolonged aging reduces grain size. 

In this study, the size of the zirconium samples before sintering was 1.226 times 
bigger than the size of the zirconium samples after sintering. This bigger size before 
sintering is to compensate for the shrinkage following the sintering (enlargement factor 
of 1.226). In addition, the dimensions of the zirconia samples of both sintering protocols 
were similar. Ahmed et al.[75] also found that there is no difference in the linear and 
dimensional changes between standard and fast sintering methods. 

Liu et al.[76] studied the optical properties of two generations of rapid sintered 
translucent zirconia (3Y-TZP and 5Y-TZP) and they found that rapid sintering resulted 
in reduced lightness but did not affect the surface roughness. They concluded that rapid 
sintering is a practical method of reducing the production time of zirconia restorations.  

In our study, flexural strength was affected by the sintering method. These 
results could be due to the smaller grain size of zirconia from speed sintering. These 
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results were similar to Ersoy et al.[77], who found that both a high and low sintering 
temperature combination increases the zirconia’s flexural strength, but there were no 
visible differences in the grain size in the zirconia specimens. Stawarczyk et al.[66] 
mentioned that the grain size of zirconia increases with the sintering temperatures and 
the sintering temperature significantly affects the flexural strength. 

When heating or LTD, the m phase will transform into a t and c phase according 
to the temperature, and when cooling, it will transform back to m, which is not strong. 
Producing stable sintered zirconia ceramic is difficult as the large volume change 
occurs while transition from t to m (approximately 5%). Hence, yttria is added to 
stabilize in the t phase.[78,79]  

Arcila et al.[80] characterized the microstructure of three types of zirconia; 3Y-
TZP (yttria-t zirconia polycrystal), 4Y-PSZ, and 5Y-PSZ (yttria-partially stabilized 
zirconia) and compared their hardness, fracture resistance, and fatigue and flexural 
strength. Three zirconia used were 3Y-TZP (Vita YZ HT), 4Y-PSZ (Vita YZ ST), and 
5Y-PSZ (Vita YZ XT). The 4Y-PSZ and 5Y-PSZ specimens presented some surface 
defects under the SEM, whereas the 3Y-TZP demonstrated a greater grain consistency 
on the surface. They concluded that despite the structural differences, 4Y-PSZ and 3Y-
TZP had similar fatigue. The 5Y-PSZ had the least mechanical strength. 

Finally, in this study, only one brand of zirconia was used, and different 
manufacturers may have presented different grain sizes for sintering zirconia. Future 
studies can be done to study the grain size and its chemistry. 
 
2. Implant Crown 

We analyzed the zirconia’s survival using the Weibull approach. A low Weibull 
modulus shows more variability in the strength (σc), whereas a high Weibull modulus 
signifies higher reliability of zirconia material. Weibull’s theory is based on the weakest 
link theory whereby failure is the result of the weakest line break in the chain.[81] 

The crack propagation mechanism in zirconia materials differs according to the 
type of material composition and sintering protocols. For the two material types, it was 
found that an intergranular fracture is seen in 3Y-TZP and a combination of 
intergranular and intragranular crack propagation is seen in 5Y-TZP.[82] When a 
micro-crack is created during the manufacturing process, the failure will start. 

Our results were similar to the results obtained by some previous studies.[83-
85] Jerman et al.[85] found that the Weibull modulus of the three thermomechanically 
aged materials was negatively influenced by high-speed sintering; hence, they also 
mentioned that high-speed sintering is presents an alternative to conventional sintering. 

Arcila et al. [80] studied the microstructure of 3 yttria partially stabilized (3Y-
PSZ) disc-shaped zirconia and compared the fracture resistance, hardness, and fatigue 
flexural strength of 3Y-TZP, 4Y-PSZ, and 5Y-PSZ. They demonstrated that all zirconia 
materials show similar compositions but vary the yttria content (5Y-PSZ > 4Y-PSZ > 
3Y-TZP). They concluded that despite the microstructural differences, 3Y-TZP and 
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4Y-PSZ showed similar fatigue behavior whereas 5Y-PSZ had the least fatigue 
behavior. 

Ordoñez Balladares et al.[86] compared the fracture strength of monolithic Zr 
dioxide after sintering in two different furnaces: CEREC SpeedFire (fast sintering) and 
InFire HTC Speed (slow sintering) produced from CAD/CAM. They found that the 
CEREC SpeedFire presented 1222.8 N fracture strength, whereas InFire HTC Speed 
showed 1068.5 N fracture strength, but no significant differences among the groups. 
The different furnaces did not affect the strengths of the zirconia and there is time 
saving when using rapid sintering. However, speed-sintered restorations may have 
limited reliability. According to a previous article, super-speed sintering is considered 
an option [87]; however, in the esthetic area where translucency is required, super-
speed sintering might not be suitable. 

The thickness reduction of zirconia and fatigue affects the failure load of 
monolithic zirconia crowns. Prott et al.[88] mentioned that less thickness of the crown 
leads to less strength, even if the failure loads surpass the chewing forces. Fatigue 
significantly lessened the failure load of 0.5 mm 3Y-TZP crowns. 

Regarding the limitations of this research, we should note the limited sample 
size. For the regular group, the R2 might be higher if we cut out the samples or add 
more samples. This research is preliminary. Further research can be carried out to 
analyze the chemical chain or strengthening phenomena in zirconia. In addition, in this 
research, we did not compare the shades of the zirconia block. Further research can be 
done to try different block colors and see if there are any differences in translucency 
results. Also, the color change of zirconia should be investigated and compared between 
regular sintering and speed sintering. 
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Concluding remarks 

Within the limitations of this study, the following are conclusions. 
1. There was a difference in surface structure, translucency, and biaxial flexural 

strengths. Regular sintering showed a bigger grain size and slightly more 
translucency compared to speed sintering. The speed sintering showed higher 
biaxial flexural strengths compared to regular sintering. This shows that speed 
sintering can be considered a suitable method of sintering zirconia. Hence, when 
biaxial flexural strength is required, speed sintering can be considered; however, 
when better translucency is required, regular sintering is recommended. 

2. Surface flaws are the failure origin, and the crack lines ran from the occlusal to 
the bottom. Handling of the zirconia plays an important role in the longevity of 
the zirconia restorations. It was found that the speed sintering group showed the 
maximum fracture load followed by the regular, speed fatigue, and regular 
fatigue groups. These values provide reference fracture load values for the 
implant crown and fixed partial denture and are used to assess the durability of 
zirconia in dentistry. 
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