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ABSTRACT

Seiricuprolide (1) and pestalotioprolide B (2) belong to a rare 14-membered o, [3-
unsaturated macrolides bearing a chiral epoxide functionality. Seiricuprolide (1) was
originally isolated from a fungus Seiridium cupressi and was discovered to display
phytotoxic activity by Sparapano et al. in 1988. Macrolide 1 is a 14-membered
unsaturated lactone core with (E)-o,B-unsaturated ester at C2—C3 position, -epoxide
at C5—C6 position and Z-alkene at C8—C9 position as well as three alcohol stereogenic
centers at the 4, 7 and 13 positions. The C8-C9 E-alkene analogue of 1,
pestalotioprolide B (2), was first discovered as a diacetate derivative from the
mangrove-derived endophytic fungus Pestalotiopsis sp. PSU-MA119 by
Rukachaisirikul et al. in 2012. Although macrolides 1 and 2 were later reported to have
no cytotoxicity against the L5178Y murine lymphoma and the A2780 human ovarian
cancer cell lines by Liu and Proksch et al., their novel structure and unprecedented
chemical syntheses led us to set out the syntheses of 1 and 2 in order to provide material
for further evaluation of their cytotoxic activities against other cancer cell lines as well
as other biological activities. The ring-closing metathesis (RCM) and Yamaguchi
esterification were initially chosen as the key strategies for forming the macrocyclic
core of 1 and 2. However, the epoxide moiety of RCM precursor diene 8 proved to be
incompatible with the final ring-closing metathesis which prompted us to revise the
synthetic route for 1 and 2. The revised synthetic route involved Shiina
macrolactonization of seco acids 14 and 15 to construct the macrocyclic skeletons of 1
and 2. The C2—C3 (E)-o,B-unsaturated ester of 14 and 15 was generated via Wittig
olefination. The Z- or E-double bond at C8—C9 of 14 or 15 was constructed from
Lindlar or Red-Al reduction of chiral propargylic alcohol 138. Although the addition
of alkyne 12 to epoxy aldehyde 11 afforded the desired 138 as a minor product, the
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undesired major 13R could be converted to 13 in 2 steps via Mitsunobu inversion. The
installation of B-epoxide moiety of 11 was first undertaken via m-CPBA epoxidation of
Z-allylic alcohol 4 which contains (S)-a-silyloxy stereogenic center following a
protocol by Baltas et al. but this methodology apparently led to the a-epoxide product
as a major product. The substrate for epoxidation was then changed to Z-allylic alcohol
10 which can be easily prepared from known alcohol 9 in 3 steps. OH-Directed
epoxidation of Z-allylic alcohol 10 mediated by m-CPBA was highlighted as an
efficient tool for installing B-epoxide of 11 in high stereoselectivity (dr = 16:1). The B-
epoxide moiety proved to be robust since degradation of epoxide was not observed in
any steps upon carrying epoxy aldehyde 11 to the final target. Overall, the total
syntheses of 1 and 2 have been accomplished in 17 longest linear and 19 total steps and
1.9% and 1.6% overall yields starting from chiral allylic alcohol 9 derived from
commercially available D-mannitol in 4 steps. Synthetic macrolides 1 and 2 were
evaluated for their cytotoxic activity against the HCT116 colon cancer cells as well as
their inhibitory effect on cystic fibrosis transmembrane regulator (CFTR) in human
intestinal epithelial (T84) cells compared to their previously reported analogues. These
two synthetic macrolides were discovered to possess no reactivity of both biological
activities tested. Preliminary structure—activity relationship suggested that the C5-C6
B-epoxide moiety of both 1 and 2 suppressed the cytotoxic activity against the HCT116

colon cancer cells as well as their CFTR inhibitory effect.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

14-Membered macrolides are a significant class of polyketide metabolites
that show diverse biological profiles particularly antibacterial activity (Chu et al., 1995,
Zhanel et al., 2001 and Park et al., 2019). The structure of this class of macrolides
possesses 14-membered macrolactone functionalized by various groups. This class of
macrolides can be divided into two groups based on the presence of sugar moiety. The
remarkable examples of 14-membered macrolides containing sugar moiety, which are
widely utilized in human antibiotic medicine, are erythromycin (1) and its derivatives
(Figure 1) (McGuire et al., 1952, Kanfer et al., 1998 and Galvidis et al., 2015). Another
important subclass of bioactive 14-membered macrolides are those bearing an (E)-a.,3-
unsaturated ester subunit as depicted in Figure 1. Sch 725674 (2), isolated from
Aspergillus sp. by Yang and co-workers in 2005, exhibited promising antifungal
activity against Saccharomyces cevrevisiae (PM503) and Candida albicans (C43) with
MICs of 8 and 32 pg/mL, respectively. 7-O-Methylnigrosporolide (3) and
pestalotioprolide E (4) were found from the mangrove-derived endophytic fungus
Pestalotiopsis microspora in 2016 by Liu and co-workers. Macrolides 3 and 4 displayed
potent cytotoxic activity against the L5178Y murine lymphoma cells with an ICs value
of 0.7 uM and significant cytotoxic activity against the A2780 human ovarian cancer
cells with an ICso value of 1.2 uM, respectively. Another example that displayed a broad
range of biological activities is mutolide (5), originally discovered from culture broth
of fungus strain derived from UV mutagenesis of the fungus Sphaeropsidales sp. by
Bode and co-workers in 2000. The Bode group also reported that compound 5 exhibited

weak antibacterial activity against B. subtillis and E. coli. In 2015, macrolide 5 was



reisolated from the coprophilous fungus Lepidosphaeria sp. (PM0651419) and its
promising anti-inflamatory activity was also disclosed in this work (Shah et al., 2015).
Isolation of 5 from the endophytic fungus Aplosprella javeedii was later reported by
Gao and co-workers in 2020. Moreover, the isolated 5 was discovered to exhibit
significant cytotoxic activity against the L5178Y mouse lymphoma, the Jurkat J16
human leukemia and the Ramos lymphoma cell lines with ICso values of 0.4, 5.8 and
4.4 uM, respectively.

Figure 1 Structures of erythromycin (1) and selected examples of 14-membered

membered macrolides bearing an (E)-o,-unsaturated ester subunit (2-5)

OH

ZHO

=z A HO.
OMe. /..
> oH
o
o
7-O-methylnigrosporolide (3) pestalotioprolide E (4) mutolide (5)

An interesting subgroup of 14-unsaturated macrolides are those containing
chiral epoxide that also display diverse and promising biological activities. This
subgroup of macrolides can be broadly classified into two groups based on the presence
of a B-resorcylic acid subunit. The biologically active examples of B-resorcylic acid
lactones (RALSs) containing chiral epoxide motif are illustrated in Figure 2. Radicicol
(6) was first isolated from Monocillium nordinii along with its dechlorinated analogue,
monocillin I (7). Both RALs were found to show a variety of antifungal activities by
Ayer et al. in 1980. RAL 6 was later disclosed to display other biological activities
including antimalarial, anti-inflammatory and antiviral activities (Mejia ef al., 2014,
Zhao et al., 2013 and Isaacs et al. 2003), whereas RAL 7 was found to inhibit the
proliferation of various human cancer cell lines (Turbyville et al., 2006, McLellan et

al., 2007 and Paranagama et al., 2007). In 2009, Shinonaga and co-workers reported



the isolation of pochonins K (8) and O (9) along with 6 and 7 from a culture broth of
the fungus Pochonia Chlamydosporia TF-0480. Furthermore, RALs 6-9 were
evaluated for their inhibitory activity against wingless-type mouse memory tumor virus
integration site family, member SA (WNT-5A) expression by the Shinonaga group. It
was found that RALs 6 and 7 showed potent inhibitory activity against the WNT-5A
expression with ICso values of 0.19 and 1.93 uM, whereas RALs 8 and 9 exhibited
moderate inhibitory activity with ICso values of 8.57 and 9.39 uM. Notably, the trans-
epoxide moiety at C4—C5 of 6-9 was suggested to be one of necessary functional groups
for this activity. Hypothemycin (10), another 14-membered RAL with C10—C11 trans-
epoxide motif, was originally obtained from a fungus Hypomyces tricothecoides by
Nair et al. in 1980. In 2002, Isaka et al. reisolated RAL 10 from the fungus Aigialus
parvus BCC 5311 and discovered that 10 displayed strong antimalarial activity against
Plasmodium falciparum K1 with an ICso value of 2.2 pg/mL. Furthermore, the
isolations of bioactive analogues of 10 were later reported. 5'-O-Methylhypothemycin
(11), isolated from the fruiting body of Helvella acetabulum, was found to act as a
potent and specific inhibitor of a mitogen-activated protein kinase (MEK), a popular
target of anticancer drugs, with an ICso value of 4 pM by Zhao and co-workers in 1999.
In 2006, 4-O-demethylhypothemycin (12) was isolated from the fungal strain
Hypomyces subiculosus DSM 11931. RAL 12 was disclosed to show potent cytotoxic
activity against the COL829 and the HT29 human colon cancer cell lines with 1Cso
values of 0.1 and 0.2 uM, respectively (Wee et al., 2006).

Figure 2 Structures of selected examples of 14-membered RALs containing a chiral

epoxide moiety

Cl
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RO =H, Ry = H, 4-O-demethylhypothemycin (12)




Another group of 14-membered unsaturated macrolides bearing chiral
epoxide moiety features those lacking the B-resorcylic acid moiety. This group of
macrolides is rare in nature and only a few examples have been reported as shown in
Figure 3. Seiricuprolide (13) was first isolated from a fungus Seiridium cupressi by
Ballio et al. in 1988. Macrolide 13 was reported to display phytotoxic activity by the
isolation group. Pestalotioprolide B (14) was first discovered as a diacetate derivative
(15) from the mangrove-derived endophytic fungus Pestalotiopsis sp. PSU-MA119 by
Rukachaisirikul et al. in 2012. The isolation of macrolides 13 and 14 was reported again
from the mangrove-derived endophytic fungus Pestalotiopsis microspora by the Liu
and Proksch group in 2016. Structurally, seiricuprolide (13) possesses a 14-membered
unsaturated lactone core with (E)-a,B-unsaturated ester at C2—C3, B-epoxide at C5—C6
and internal Z-alkene at C8—C9 as well as three alcohol stereogenic centers at the 4, 7
and 13 positions. Pestalotioprolide B (14) differs from 13 by the configuration of the
internal alkene at C8—C9 which is an E-double bond. The absolute configurations of
the five chiral centers of crystalline 13 were first determined by Bartolucci ef al. in
1991, to be 4R, 55, 6R, 7S and 13§ by single-crystal X-ray diffraction analysis. The Liu
group later reported the absolute configurations of 14 to be analogous to those of 13 via
X-ray crystallographic analysis. The Liu group also disclosed the evaluation of
cytotoxic activity against the L5178Y and A2780 cell lines for macrolides 13 and 14
using MTT assay. Unfortunately, they were inactive against these two cell lines. Since
macrolides 13 and 14 were tested against only two cancer cell lines and there has been
no report on the syntheses of these two compounds, we are interested in synthesizing
seiricuprolide (13) and pestalotioprolide B (14) in order to further evaluate their
cytotoxic activities against other cancer cell lines.

Figure 3 Structures of 14-membered unsaturated macrolides containing a chiral

epoxide moiety

seiricuprolide (13) pestalotioprolide B (14) 15 43



Currently, there has been no report on syntheses of seiricuprolide (13) and
pestalotioprolide B (14). However, a few reports on syntheses of other 14-unsaturated
macrolides having the core structure similar to 13 and 14 are precedented. According
to the previous reports on syntheses of other 14-unsaturated macrolides containing (E)-
o, B-unsaturated esters at C2—C3 and Z-alkenes at C8—C9, it was found that the synthetic
strategies of macrocyclic formation mainly relied on Shiina macrolactonization and
Yamaguchi esterification. Moreover, Lindlar’s reduction and ring-closing metathesis
were disclosed as strategies for generation of Z-alkene at C8—C9 (Tadpetch et al., 2015
and Baikadi et al., 2019). In addition, the formation of (E)-o,B-unsaturated esters at
C2-C3 of previously reported 14-unsaturated macrolides possessing this functionality
was achieved via Wittig olefination, ring-closing metathesis (RCM) and intramolecular
Horner-Wadsworth-Emmons (HWE) (Tadpetch et al., 2015, Paul et al., 2018 and
Baikadi et al., 2019).

Figure 4 Key bond formations of previously reported examples of 14-membered
unsaturated macrolides containing (£)-a,B-unsaturated esters at C2—C3 and

Z-alkenes at C8—C9

- Lindlar’s reduction ----------- 8
- ring-closing metathesis 9 NS/;I—H
R
i3 R
—_
2 SN

130,
/ - Wittig olefination
// O
7

- ring-closing metathesis

- intramolecular HWE olefination
- Shiina macrolactonization
- Yamaguchi esterification

To date, there has been no report on synthesis of 14-unsaturated macrolide
natural products possessing chiral epoxide motif at C5—C6, however, only 2 examples
of syntheses of 14-unsaturated macrolides containing (E)-o.,-unsaturated ester at C2—
C3 and Z-double bond at C8—C9 have been reported. This section will focus on details
of these two reported examples. Firstly, Tadpetch and co-workers disclosed the
synthesis of the proposed structure of pestalotioprolide A (16) in 2015 as depicted in

Scheme 1. They utilized the Wittig olefination to generate (£)-a,B-unsaturated ester at



C2-C3. In addition, Yamaguchi esterification and ring-closing metathesis were
employed as key strategies to construct the macrocyclic core of 16. The synthesis
started with preparation of known chiral epoxide 18 from D-(+)-gluconic acid 6-lactone
(17) in 4 steps. Epoxide 18 was converted to chiral allylic alcohol 19 by regioselective
ring opening using sulfonium ylide in excellent yield. Allylic alcohol 19 was then
transformed to primary alcohol 20 in 5 steps via standard protection-deprotection
reactions. Alcohol 20 was treated with PhI(OAc): in the presence of catalytic TEMPO
to give the corresponding aldehyde 21. Wittig olefination of aldehyde 21 using
stabilized phosphonium ylide Phs3P=CHCO:Et furnished (E)-o.,B-unsaturated ester 22
as a single stereoisomer in 90% yield. The (E)-geometry was confirmed by the 'H-'H
coupling constant of 15.6 Hz between H2 and H3. Subjection of 22 to basic hydrolysis
resulted in the key intermediate carboxylic acid 23. Coupling of carboxylic acid 23 with
(5)-6-hepten-2-ol (23) via Yamaguchi esterification afforded diene ester 25 in 87%
yield. Both silyl protecting groups of diene 25 were then removed to avoid steric
hindrance of terminal diene to facilitate the ensuing RCM by using
tetrabutylammonium fluoride (TBAF) to give 26. Diol 26 was treated with Grubbs’s
first-generation catalyst (50 mol %) in refluxing dichloromethane to furnish the
macrocycle in 35% yield based on recovered starting diene and formed the requisite Z-
olefin at C8-C9 of 27 which was confirmed with the "H-'"H coupling constant of 10.5
Hz between H8 and HO. It should be noted that, based upon their optimization, ring-
closing metathesis of 26 using 10 mol % of the more reactive Grubbs’s second-
generation catalyst led to reverse stereoselectivity which afforded (E)-isomer 28 as a
major product in low combined yield. Lastly, removal of the acetonide protecting group
of 27 utilizing HCI delivered the proposed structure of pestalotioprolide A (16) in 70%
yield.



Scheme 1 Synthesis of the proposed structure of pestalotioprolide A (16) by Tadpetch

et al.
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In 2019, the synthesis of advanced intermediate of 7-O-
methylnigrosporolide (3), another 14-membered macrolactone containing (E)-o,-
unsaturated ester at C2—C3 and Z-double bond at C8—C9, was reported by Baikadi and
co-workers (Scheme 2). The key reactions of their synthesis included HWE olefination
to generate (E)-o,pB-unsaturated ester at C2—C3, asymmetric carbonyl reduction to
install the alcohol stereogenic center at C7-position, Lindlar reduction for formation of
C8-C9 Z-alkene and construction of the macrocyclic ring via Shiina
macrolactonization. The synthesis began with preparation of racemic propargylic
alcohol 32 via acetylide addition between known alkyne 31 and (Z)-o.,B-unsaturated
aldehyde 30, in which aldehyde 30 was derived from commercially available D-

mannitol (29) in 4 steps. Alcohol 32 was then oxidized with 2-iodoxybenzoic acid



(IBX) to afford the corresponding ynone 33. After that, 33 was selectively reduced
using (R)-Corey-Bakshi-Shibata (CBS) reagent (34) to generate chiral alcohol 35 in
86% yield with good diastereoselectivity (dr = 90:10). The absolute configuration of
the newly generated chiral center of propargylic alcohol 35 was confirmed by Mosher
ester analysis. Propargylic alcohol 35 was then further converted to primary alcohol 36
in 5 steps via protection-deprotection reactions. The methoxymethyl (MOM) ether was
chosen to be a protecting group of secondary alcohol at C4 position of 36. Alcohol 36
was transformed to (E)-o,B-unsaturated ester 38 in 2 steps by treatment with Dess-
Martin periodinane (DMP), followed by HWE olefination of the corresponding enal
with triethylphosphonoacetate (37) and sodium hydride. The (£)-geometry of C2—C3
olefin was confirmed with the "TH-'H coupling constant of 15.6 Hz between H2 and H3.
The seco acid 39 was then prepared by hydrolysis of ester 38 with LiOH and
deprotection of silyl ether with HF:Py in 2 high-yielding steps. The key
macrocyclization was accomplished via Shiina macrolactonization using 2-methyl-6-
nitrobenzoic anhydride (40) and 4-dimethylaminopyridine (DMAP) in toluene to yield
macrocycle 41 in 80% yield. Lindlar reduction of 41 with Pd/BaSOs4 in
EtOAc/pyridine/1-octene was utilized to generate Z-olefin at C8—C9 of 42 as a single
stereoisomer in 88% yield, which was confirmed with the 'H-'H coupling constant of
11.4 Hz between H8 and H9. However, in the final step they failed to remove the MOM
protecting group at C4-position of 42 under various acidic conditions and these

conditions only led to decomposition of the starting material.
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Scheme 2 Attempted synthesis of 7-O-methylnigrosporolide (3) by Baikadi et al.
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According to the two reports mentioned above, Wittig olefination is
apparently an efficient strategy for generation of (E)-o,B-unsaturated ester at C2—C3
with high selectivity and excellent yield. Moreover, Yamaguchi esterification and
Shiina macrolactonization are reliable strategies for generating C—O ester linkage with
impressive yields. Therefore, we envisioned that these three strategies would be
applicable in the syntheses of macrolides 13 and 14. In addition, based on Tadpetch’s
report, the ring closing metathesis of diene intermediate 26 could lead to selective
formation of Z- or E- double bonds at C8—C9 of 27 or 28 by using different Grubbs
catalysts. Since structures of macrocycles 27 and 28 are nearly identical to our targeted
macrolides 13 and 14, we then anticipated that diene intermediate 26 could be employed
as a precursor for constructing Z- and E£- double bonds of 13 and 14 via selective ring-
closing metathesis. Nonetheless, the more challenging part of syntheses of 13 and 14 is

the installation of the cis-p-epoxide since epoxides are sensitive functional groups and
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late stage installation of epoxides would ideally be preferable. Furthermore, there has
been no report on synthesis of other 14-membered unsaturated natural products
containing cis-fB-epoxide. This section will focus on literature precedents on synthesis
of previously reported 14-, 15- and 17-membered macrolactone natural products
containing a chiral epoxide. It was found that installations of chiral epoxide of such
natural products could be performed in both early and late stages of the syntheses. The
first part will focus on the syntheses of macrolactones bearing chiral epoxide motif, in
which the chiral epoxides were installed in the early stage via Sharpless asymmetric
epoxidation (SAE). Generally, the SAE is a useful method for preparing chiral epoxy
alcohols from allylic alcohol substrates and fert-butyl hydroperoxide (TBHP) is
commonly utilized as an oxidizing agent in the presence of chiral tartrate ligand. The
chirality of newly formed epoxide of the SAE product is usually predicted following
Sharpless’s mnemonic as depicted in Figure 5. The interaction of an oxidizing agent
and the face of olefin is controlled by chiral tartrate ligand. The use of (—)-diethyl or
(—)-diisopropyl tartrate preferentially leads to epoxidation on the top face of olefin to
provide B-epoxide, while the use of (+)-diethyl or (+)-diisopropyl tartrate preferentially

occurs on the bottom face of olefin to obtain a-epoxide (Goswami et al., 1980).

Figure 5 Mnemonic for prediction of facial selectivity of Sharpless asymmetric

epoxidation by Goswami et al.
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The first example is the convergent synthesis of two 14-membered RALSs
embedding frans-epoxide, radicicol (6) and monocillin I (7), reported by the Garbaccio
group in 1998 as illustrated in Scheme 3. They utilized SAE to form frans-epoxide at
C4-CS5 position. In addition, Mitsunobu esterification and ring-closing metathesis were
employed as key strategies to construct their macrocyclic cores. The synthesis began
with preparation of SAE precursor 44 in 4 steps from (S)-methyl 3-hydroxybutanoate
(43) via key HWE olefination. E-Allylic alcohol 44 was therefore subjected to SAE
using TBHP and titanium isopropoxide in the presence of (+)-diethyl tartrate to yield
the corresponding chiral epoxy alcohol 45 in 90% yield and 95% ee. Epoxy alcohol 45
was then converted to alcohol 46 in 3 steps. Coupling of alcohol 46 and carboxylic acid
counterpart 47 was then affected by Mitsunobu esterification to give ester 48 in 75%
yield. To prepare the ring-closing metathesis precursor 50, ester 48 was then coupled
with 49 via dithiane alkylation, followed by TBS protection. Diene 50 was then
subjected to ring-closing metathesis to furnish macrolactone 51 in 60% yield. The
global deprotection of silyl and dithiane protecting groups was performed in 3 steps to
afford monocillin I (7) in 60% over 3 steps. In addition, radicicol (6) was obtained from
regioselective aromatic chlorination of 7 using sulfuryl chloride. It is important to note
that degradation of C4—C5 epoxide functional group, which was installed in the early
stage, was not observed from any transformations in this synthetic route.

Scheme 3 Syntheses of radicicol (6) and monocillin I (7) by Garbaccio et al.

Sharpless
epoxidation
(+)-DET
HO 4 steps TBDPSO Ti(OPr),, TBHP
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P(fur)s, DIAD, benzene, 1, 75% DMF. 0 °C to rt, 88%
Mitsunobu esterification
ring-closing OTBSO
metathesis
Grubbs I
(10mol %) rgppso
CH,Cl,, 42 °C

60%

monocillin | (7)

radicicol (6)
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Another example of synthesis of 14-membered macrolactone bearing
trans-epoxide, amphinolide V (52), in which early stage installation of epoxidation was
also affected by SAE to form C8—C9 trans epoxide (Scheme 4). The key reactions for
forming their macrocyclic backbone included ring-closing alkyne metathesis and
intermolecular enyne metathesis. The synthesis started with coupling of alcohol 54 and
4-hexynoic acid (53) via standard esterification to provide ester 55 in excellent yield.
To prepare SAE precursor 56, the terminus tetrahydropyranyl (THP) protecting group
of 55 was removed using PPTS to deliver E-allylic alcohol 56. Sharpless epoxidation
of 56 was then performed by using TBHP and titanium isopropoxide in the presence of
(+)-diethyl tartrate to furnish the corresponding epoxy alcohol 57 in 83% yield and a
diastereomeric ratio of 98:2. Epoxy alcohol 57 was further subjected to 2-step
transformation to obtain key diyne intemedate 59 via DMP oxidation, followed by
treatment with bis(alkynyl)zinc reagent 58 which provided separable alcohol
diastereomers in 64% combined yield and good diastereoselectivity. The silylation of
major diastereomer 59 was performed to prepare substrate for ring-closing alkyne
metathesis in the next step. The ring-closing alkyne metathesis of the resulting diyne
was then affected by employing a catalyst generated in situ from molybdenum complex
60 in dichloromethane to form the strained 14-membered cycloalkyne 61 in 84% yield
without reacting to other olefin functional groups. The alkyne functionality of 61was
next elaborated to vicinal methylene branches of 62 by subjection of 61 to enyne
metathesis by reacting with ethylene gas (1.8 atm) using Grubbs’s second-generation
catalyst. Lastly, macrolactone 62 was further transformed in 4 steps to complete the
synthesis of amphidinolide V (52), which did not lead to any degradations of requisite
C8—C9 epoxide (Fiirstner et al., 2009).
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Scheme 4 Syntheses of amphidinolide V (52) by Fiirstner et al.
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The last example is the synthesis of macrocyclic core of iriomoteolide 3a
(63), 15-membered macrolactone containing trans-epoxide, which was reported by
Reddy and co-workers in 2009 (Scheme 5). This work also utilized SAE to generate
C11-C12 trans epoxide of advanced intermediate 71 in early stage of the synthesis. In
addition, Yamaguchi esterification and ring-closing metathesis were used as key
strategies for constructing its macrocyclic core. Firstly, E-allylic alcohol 65 was
prepared from lactone 64 in 6 steps. E-allylic alcohol 65 was then subjected to SAE by
using TBHP and titanium isopropoxide in the presence of (+)-diisopropyl tartrate to
deliver epoxy alcohol 66 in 88%. It should be noted that the exact values of
diastereomeric ratio of SAE was not provided, however, Reddy and co-workers only
claimed that these conditions led to good stereoselectivity to provide 66. After that,
epoxy alcohol 66 was elaborated to alcohol 67 in 4 steps. Yamaguchi esterification of

alcohol 67 and carboxylic acid 68 was later performed to furnish RCM precursor 69 in
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93% yield. Diene 69 was then subjected to ring-closing metathesis using 15 mol % of
Grubbs’s second-generation catalyst to afford the separable E- and Z-isomers (8:2) of
RCM products in 71% combined yield. The E-isomer 70 was exposed to desilylation
to deliver the macrocyclic core 71 in 89% yield. Although C11-C12 epoxide moiety of
66 was installed in the early stage of synthesis, the intermediate 66 could be carried

through multistep without affecting the requisite epoxide moiety (Reddy et al., 2009).

Scheme 5 Syntheses of macrocyclic core of iriomoteolide 3a (63) by Reddy ef al.

MOMO Sharpless epoxidation
)-DIPT, Ti(OiPr)4, TBHP
. OTBDPS
TBSO " 6 steps X
_, OTBS CH,Cl, —20 °C, 88%
64
MOMO 4 steps MOMO ~C\/\/u\
OTBDPS X OTBS
2,4,6-tricholobenzoyl chloride
oTBS EtsN, DMAP, toluene, 93%
67

MOMO

Lo
O OTBS Grubbs Il (15 mol %) o

CH,Cly, reflux, 83%
(E/Z mixture 8:2)

69 70

MOMO

TBAF

THF, 0 °C to rt, 89%

iriomoteolide 3a (63)

Our attention will next focus on examples of syntheses of macrolactones
bearing chiral epoxide which was installed in the late stage of the syntheses. The first
example is the synthesis of a 14-membered RAL consisting of trans-epoxide motif,
hypothemycin (10), which was reported by Sellés and co-workers (Scheme 6). Their
methodology for forming chiral epoxide of 10 was totally different from the previously
described epoxidation in syntheses of 6 and 7. In this work, epoxidation was performed

in the final stage of synthesis and m-CPBA epoxidation was utilized for constructing
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C10—C11 trans-epoxide. The synthesis commenced with Suzuki coupling of 72 and 73
to provide alkene 74 in 76% yield. Ester 74 was then converted to seco acid 75 in 3
steps. Macrolactonization of 75 was performed via Mitsunobu reaction to afford
macrolactone 76 in 67% yield. The next task was the installation of chiral epoxide
functional group, in which macrolactone 76 was then subjected to 3-step transformation
to smoothly afford 77 as a precursor of m-CPBA epoxidation. Lastly, m-CPBA
epoxidation of 77 was performed to yield C10-C11 a-epoxide of the desired
hypothemycin (10) in 17% yield along with unreacted starting 77 (30%) and no other
epoxide products were observed. The absolute configuration of the newly formed
epoxide was identified by comparison of "H NMR and '*C NMR spectra with those of
previously reported natural product. However, the rationale of the stereoselectivity of
epoxidation of 77, which was presumably substrate-controlled, was not provided in this

work.

Scheme 6 Syntheses of hypothemycin (10) by Sellés et al.
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Another crucial example is synthesis of ivorenolide B (78), 17-membered
macrolide bearing cis-epoxide which was reported by Wang and co-workers in 2014
(Scheme 7). The formation of cis-epoxide of ivorenolide B (78) was performed in the
late stage of its synthesis and substrate-controlled epoxidation mediated by m-CPBA
was utilized as an efficient tool to provide high yield and excellent selectivity. Initially,

diene 81 was prepared via Cadiot-Chodkiewicz coupling of 79 and 80 in the presence
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of Cu(I). Diene 81 was then subjected to ring-closing metathesis using Grubbs’s first-
generation catalyst to obtain separable Z- and E-products in the ratio of 1:1.5 and 90%
combined yield. The next task was installation of chiral epoxide moiety. Epoxidation
of the minor Z- product 82 was therefore affected using m-CPBA to afford the desired
epoxide 83 as a sole product. They proposed that the m-CPBA approached the double
bond of 82 from sterically less hindered olefin face to provide the desired a-epoxide
83. Finally, TBDPS protecting group was removed to complete the synthesis of
ivorenolide B (78).

Scheme 7 Synthesis of ivorenolide B (78) by Wang et al.
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According to the previously reported syntheses of macrolactones
embedding chiral epoxide moiety mentioned above, it is obvious that the epoxide
formation could be performed in both early and late stages of the synthesis. Sharpless
asymmetric epoxidation proved to be an efficient method to form trans-epoxide moiety
from E-allylic alcohol substrates with high yield and good selectivity. Epoxidation of
Z-allylic alcohol mediated by m-CPBA was an alternative strategy that provided good
stereoselectivity, however, the stereoselectivity outcome would be substrate-controlled.
Nevertheless, most examples were formations of trans-epoxides, whereas our targeted
natural products contain a cis-epoxide. To gain an insight on cis-epoxide formation, the
next section will focus on literature precedents on general methods for cis-epoxide
formation which might be applicable for syntheses of 13 and 14. The general methods

reported for forming cis epoxides rely on epoxide formation from 1,2-trans diol and Z-
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allylic alcohol. The first method is the generation of cis-epoxide from 1,2-trans diol
which was reported by Migawa et al. in 2013. Migawa and co-workers reported the
synthesis of constrained D-altriol nucleic acid 84, in which epoxide 88 was utilized as
a key intermediate. The preparation of epoxide 88 commenced with the conversion of
1,2-diol 85 to monotosylate 87 in 2 steps via tosylation by treatment with tosyl chloride
and pyridine to provide bis-tosylate 86, followed by selective methanolysis. Alcohol 87
was later exposed to sodium hydride to afford cis-epoxide 88 in excellent yield
(Scheme 8). Since the rationale for selective methanolysis was not mentioned in this
work, the regioselective removal of the tosyl moiety might be substrate-dependent.
Although the regioselectivity for monotosylate removal was unclear and this
methodology required three steps for epoxide formation, this method can presumably
be an alternative guideline to screen the preparation of the desired -epoxide of 13 and

14 from 1,2-diol substrate in the late stage of synthesis.

Scheme 8 Generation of cis-epoxide 88 from 1,2-trans diol 85 by Migawa ef al.
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The next approach is the installation of cis-epoxide from Z-allylic alcohol.
Although Sharpless asymmetric epoxidation is well known as a very efficient method
to install chiral epoxide from FE-allylic alcohols, Z-allylic alcohols are generally poor
and inactive substrates for SAE (Matsumoto et al., 2012). However, a few examples on
SAE of Z-allylic alcohol substrates utilizing (—)-diethyl tartrate that provided -
epoxides as major product with good selectivity, have been reported (Scheme 9). In
2016, Thirupathi and co-workers reported the SAE of intermediate 89 for construction
of C17 stereogenic center of herboxidiene (91). Z-Allylic alcohol 89 was treated with
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TBHP and titanium isopropoxide in the presence of (—)-diethyl tartrate to deliver the -
epoxide of 90 in 87% yield and a diastereomeric ratio of 10:1 as determined by HPLC
analysis. In the same year, Bodugam and co-workers also disclosed the Sharpless
asymmetric epoxidation of intermediate 92 which promoted the generation of C4
stereogenic center of Sch 725674 (2). Employment of Z-allylic alcohol 92 with cumene
hydroperoxide (CHP) and titanium isopropoxide in the presence of (—)-diethyl tartrate
selectively provided B-epoxide of 93 as a major product in 80% based on recovered of

starting 92 along with minor antipode in 9% yield.

Scheme 9 A) Sharpless epoxidation of Z-allylic alcohol 89 by Thirupathi et al/; B)
Sharpless epoxidation of Z-allylic alcohol 92 by Bodugam et al
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Another crucial example is selective m-CPBA epoxidation of Z-allylic
alcohol bearing adjacent (S)-silyloxy stereogenic centers by Baltas et al. in 2013 as
shown in Scheme 10. Baltas and co-workers reported the preparation of epoxy alcohols
intermediates 93a and 94a which were utilized as precursors for the synthesis of
octulsonic acids. To prepare B-epoxy alcohols 93a and 94a, epoxidations of Z-allylic
alcohols 93 and 94 was performed using m-CPBA in the presence of NaHCOs3 to
provide 2:1 and 6:1 erythro/threo of epoxy alcohol products 93a:93b and 94a:94b, in
which the major erythro products 93a and 94a contain a B-epoxide moiety. In addition,

this work disclosed the particular trend in the vicinal coupling constants between
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methine protons of the chiral epoxides a to silyloxy stereogenic centers and the methine
protons of the silyloxy stereogenic centers (J34). The J34 of threo products were
generally observed to possess higher values compared to those of the erythro
counterparts. This information could be utilized as a guideline to verify the absolute
configurations of chiral epoxides bearing adjacent silyloxy stereogenic centers.
Nonetheless, the rationale of the stereoselectivity of epoxidation of this substrate was
not discussed. Since epoxidation of this particular substrates delivered the erythro series
as major products in good selectivity, we envisioned that this method would be also

applicable in B-epoxide formations of 13 and 14.

Scheme 10 Selective epoxidation of Z-allylic alcohols 93 and 94 by Baltas et al.
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Based on the literature precedents, we envisioned that the B-epoxide of 13
and 14 could be installed in both early and late stages of the synthesis. The proposed
synthesis of our targeted natural products was set out in two schemes. The first proposed
syntheses of 13 and 14, which was planned to install the B-epoxide motif from 1,2-trans
diol intermediate in the late stage of the synthesis, is depicted in Scheme 11. The
construction of 14-membered macrocycles of 95 and 96 would be achieved by ring-
closing metathesis of Tadpetch’s intermediate 26, which was prepared via key
Yamaguchi esterification and Wittig olefination. The Z- or E-olefin at C8—C9 of 95 and
96 would be derived from the selective ring-closing metathesis. In order to elaborate
the acetonide protecting group to B-epoxide, protection of both free hydroxyl groups of
95 and 96 would be required before removal of the acetonide protecting group was
performed to provide diol of 97 and 98. The 1,2-trans diols 97 and 98 would be
transformed to the corresponding tosylates 99 and 100 by selective monotosylation of

C5-hydroxyl group or by subsequently converting diol to bis tosylate and selectively
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hydrolysis of C6-tosylate. It should be noted that selective monotosylation or selective
hydrolysis of bis tosylate as mentioned could be challenging because the most stable
conformation of 14-membered macrolide is not known and steric hindrance around the
two hydroxyl groups are not different. The p-epoxides of 13 and 14 would then be
accomplished by displacement of tosylate of 99 and 100 mediated by a base. Inspired
by Baltas’s epoxidation, another proposed synthesis of 13 and 14 was designed to install
the B-epoxide functional groups from starting Z-allylic alcohol bearing adjacent (S)-
silyloxy stereogenic center substrate and this epoxidation step was planned to perform
in the early stage of the synthesis. However, carrying epoxide intermediate through
multistep synthesis could be also challenging since the requisite use of acidic conditions
might lead to degradation of the sensitive epoxide functional group. The B-epoxide of
proposed key intermediate 102 would be prepared from Z-allylic alcohol 101 via m-
CPBA epoxidation. The synthesis of the remaining parts of 13 and 14 were proposed
to utilize the same key strategies previously mentioned including ring-closing

metathesis, Yamaguchi esterification and Wittig olefination (Scheme 12).

Scheme 11 Proposed syntheses of seiricuprolide (13) and pestalotioprolide B (14)

(route I) via late stage installation of epoxide from 1,2-diol
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Scheme 12 Proposed syntheses of seiricuprolide (13) and pestalotioprolide B (14)
(route II) via early stage epoxidation of Z-allylic alcohol mediated by
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1.2 Objectives

1. To synthesize seiricuprolide (13) and pestalotioprolide (14)

2. To provide materials for further evaluation of biological activities
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CHAPTER 2

ATTEMPTED SYNTHESES OF SEIRICUPROLIDE AND
PESTALOTIOPROLIDE B

2.1 Results and Discussion

Synthesis of seiricuprolide (13) and pestalotioprolide B (14) was first
attempted using the proposed synthetic procedure (route I) which was planned to install
the epoxide functionality of 13 and 14 in the late stage of the synthesis as previously
described in Scheme 11. The synthesis commenced with the preparation of RCM
precursor 26 in 15 steps starting from D-(+)-gluconic acid d-lactone (17) utilizing
Yamaguchi esterification and Wittig olefination as key steps, in which the details of all
transformations were mentioned in Scheme 1 (Tadpetch et al., 2015). The next task
was formation of Z- and E-olefins at C8—C9 position of 13 and 14 as well as their
macrocyclic cores via ring-closing metathesis (Scheme 13). Ring-closing metathesis of
26 was then undertaken using 5 mol % of the second generation Grubbs catalyst in
refluxing dichloromethane at high dilution (0.8 mM). Notably, these conditions
afforded separable stereoisomers 27 and 28 in 17% and 52% along with dimeric
compound 102 in 11% yield. The Z- and E-geometries of 27 and 28 were confirmed
with the 'H-'H coupling constants between H8 and H9 of 10.6 and 15.6 Hz,
respectively. Since macrolactone 28 was obtained as a major product, we decided to

carry 28 to screen conditions for constructing C5—C6 B-epoxide.
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Scheme 13 Synthesis of macrolactones 27 and 28
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The next task was protection of free alcohols at C4- and C7-positions of
28, followed by removal of acetonide protecting group. Since acetonide protecting
group is generally removed under acidic conditions, the protecting group for the two
free alcohols of 28 should not be acid sensitive. We decided to choose the benzoyl (Bz)
group as protecting groups at C4- and C7-positions of 28 since the Bz group generally
can be deprotected under basic conditions. In addition, previous reports on removal of
acetonide between two vicinal benzoates are widely precedented under acidic
conditions (McKenzie et al., 2018, Kim et al., 2007, Yu et al., 2001 Cid et al., 2009
and Vinaykumar et al., 2017). Diol 28 was therefore treated with 5 equivalents of
benzoyl chloride and triethylamine to obtain benzoate ester 103 in 74% yield. We then
screened various acidic conditions in order to remove the acetonide protecting group of
103 as shown in Table 1. We began investigation of deprotection of acetonide under
mild conditions. In 2012, Palframan and co-workers reported a methodology for
deprotection of acetonide adjacent to benzoate using iodine as soft acid in MeOH at
room temperature, in which the benzoyl group was compatible with the reaction
conditions. Unfortunately, no desired diol product 104 was observed when 103 was
subjected to the conditions and the starting material was recovered (entry 1). We next
turned our attention to screen reaction conditions utilizing typical acids such as HCI in

THF or MeOH (entries 2 and 3), pTSA in MeOH:CH>CL, (entry 4) and 90%
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trifluoroacetic acid (TFA) in CH2Clz (entry 5) (Sun et al., 2021, Yu et al., 2001 and
Kim et al., 2007). However, the desired diol product was again not observed from any
of these conditions. Further optimization was then performed using harsher conditions,
103 was treated with 80% AcOH in the absence of solvent at 60 °C (McKenzie ef al.,
2018) (entry 6). Disappointingly, no desired product was observed. In an attempt to use
stronger acid, deprotection of acetonide of 103 was therefore performed using 12
equivalents of 90% TFA without any solvent at 0 °C (Cid et al., 2009 and Vinaykumar
et al., 2017). After maintaining the reaction at this temperature for 2 h, there was no
noticeable change upon monitoring by TLC. Thus, the reaction temperature was raised
to room temperature (entry 7). Unexpectedly, several spots on TLC plate were noticed
after maintaining the reaction temperature at room temperature for 1 h. Since the
reaction conditions in entry 7 was screened in only 30 milligrams scale, we could not
purify and identify all observed products. However, this result suggested that room
temperature was not suitable for acetonide deprotection using neat TFA. The next
optimization was performed by increasing the amount of 90% TFA to 100 equivalents
while maintaining the reaction temperature at 0 °C (entry 8). Surprisingly, these
conditions provided the desired product 104 in 9% yield (30% yield based on recovered
103). In an attempt to improve the product yield, the amount of 90% TFA was further
increased to 200 equivalents under the same conditions (entry 9). Gratifyingly, the yield
of 104 was observed to increase to 43% yield (56% yield based on recovered 103).
Nonetheless, when 103 was treated with greater amount of 90% TFA (250 equiv) at 0
°C (entry 10), the yield of 104 decreased to 36% yield (41% yield based on recovered
103) and other unidentified products were observed. After that, we tried to use milder
reagent, trifluoroacetic anhydride (TFAA) in aqueous solution, with anticipation that
reaction might be cleaner. Therefore, 103 was treated with 90% TFAA at 0 °C. After
warming the reaction to room temperature and maintaining reaction at this temperature

for 19 h, it was found that the reaction was inert and the diol 104 was observed in trace
amount. Thus, the use of 200 equivalents of 90% TFA at 0 °C would be the optimal
conditions for deprotection of acetonide group of 103. Nonetheless, it was found that

these conditions were irreproducible and the observed product yields were inconsistent

and decreased to 10-20%. Since the desired diol 104 could not be produced in large
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quantity for screening the next epoxide formation, we decided to change the synthetic

route for synthesis of 13 and 14.

Table 1 Optimization of removal of acetonide protecting group of 103

O’P OH
RS OH
BzCI (5 equiv) ' 7 i
EtsN, DMAP 0Bz 90% TFA (X equiv) 0Bz .5,
CHZC|2, O°Ctort 0°C ¢} |
74% o)
various acetonide deprotection A
28 103 :  conditons 104
time
entry conditions results
(h)

1 iodine, MeOH, rt 18 no reaction
2 IM HCI, THF, 0 °C to 40 °C 3.5 no reaction
3 4M HCI, MeOH, rt 4.5 no reaction
4 pTSA (12 equiv), MeOH: CHxCly, rt 5 no reaction
5 90% TFA (12 equiv), CH2Cl,, 0 °C to rt 5 no reaction
6 80% AcOH, 60 °C 4 no reaction
7 90% TFA (12 equiv), 0 °C to 1t 3 unidentified products
8 90% TFA (100 equiv), 0 °C 1.5 104, 9% (30% brsm)
9 90% TFA (200 equiv), 0 °C 1.5 104, 43% (56% brsm)
10 90% TFA (250 equiv), 0 °C 1 104, 36% (41% brsm)
11 90% TFAA (100 equiv), 0 °C to rt 22 trace of 104

We then turned our attention to the proposed synthetic route II which was

planned to install the B-epoxide in the early stage of the synthesis according to Baltas’s

protocol. However, this synthetic route still utilized the same key strategies for forming

macrocyclic skeletons of 13 and 14 as the proposed synthetic route I as shown in

Scheme 14. Retrosynthetically, the macrocyclic cores of 13 and 14 would be

constructed by ring-closing metathesis of diene 105. Diene 105 would be prepared via
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Yamaguchi esterification of (S)-hept-6-en-2-ol (24) and carboxylic acid 106. The
terminal alkene of 106 would be installed by vinylation of epoxy aldehyde 107. It was
anticipated that the adjacent chiral epoxide of aldehyde 107 would direct the
stereoselectivity of vinylation step. Chiral epoxy aldehyde 107 would be prepared from
substrate-controlled and selective epoxidation of known Z-allylic alcohol bearing (S)-
silyloxy stereogenic center 108 which is nearly identical to Baltas’s substrate. Z-allylic
alcohol 108 would be synthesized from (+)-epichlorohydrin (109) via a protocol

previously reported by our research group (Thiraporn et al., 2022a).

Scheme 14 Retrosynthetic analysis of seiricuprolide (13) and pestalotioprolide B (14)

ring-closing metathesis

vinylation
o (o]
N X
+ 4
OH —— ‘OTBDPS
Q< OH
[}
Yamaguchi esterification
Z-alkene at C8-C9, seiricuprolide (13) 105 24 106
E-alkene at C8-C9, pestalotioprolide B (14)
HO selective epoxidation |, 0)
A mediated by m-CPBA
C|)>\/CI N o :
‘OTBDPS “OTBDPS
OPMB OPMB
epichlorohydrin (109) 108 107

The synthesis of 13 and 14 began with preparation of known Z-allylic
alcohol 108 from (+)-epichlorohydrin (109) in 8 steps via key Jacobsen hydrolytic
kinetic resolution (HKR) and Still-Gennari olefination that allowed for multi-gram
scale synthesis (Thiraporn et al., 2022) (Scheme 15). Twenty grams of (£)-
epichlorohydrin (109) was initially subjected to 2-step transformation via substitution
reaction using PMBOH to yield racemic epoxide 110, followed by Jacobsen HKR using
(R,R)-Co Salen*OAc catalyst to afford 12 grams of (S)-chiral epoxide 1108 (44%)

along with diol 111 in 48% yield. The chiral epoxide 1108 was further converted to
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silyl ether 112 in 2 steps via epoxide ring opening using sulfonium ylide, followed by
protection of the secondary alcohol of the resulting allylic alcohol with fert-
butyldiphenylsilyl (TBDPS) group. The alkene 112 was subsequently elaborated to
aldehyde 113 in 2 steps via dihydroxylation, followed by oxidative cleavage. Aldehyde

113 was next exposed to Still-Gennari olefination to give (£)-0.,B-unsaturated ester 115
in 79% yield. The Z-geometry was confirmed with the 'H-'H coupling constant of 12.0
Hz. After that, the (2)-a,B-unsaturated ester 115 was treated with DIBAL-H to provide

the desired Z-allylic alcohol 108 as epoxidation substrate according to Baltas’s protocol

in a 6-gram scale.

Scheme 15 Synthesis of Z-allylic alcohol 108 by Thiraporn et al.
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Having accomplished the synthesis of 108 in multi-gram scale, Z-allylic
alcohol 108 was therefore subjected to Baltas’s protocol (m-CPBA in the presence of
NaHCO; at 0 °C) to provide the separable epoxy alcohol diastereomers 116a (18%, Ry
=0.57 in 2% EtOAc/CH2Cl2) and 116b (50%, Ry= 0.38 in 2% EtOAc/CH2Cl2) in 68%
combined yield (dr = 1:2.7) as depicted in Scheme 16. Unfortunately, the absolute
configuration of newly formed epoxides could not be determined by comparison of J3/4
vicinal coupling constants due to unclear multiplicity of H3 and H4 signals of the major

product 116b. However, we observed the J3/4 vicinal coupling constant in the minor
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product 116a to be 8.40 Hz, which was comparable to the values observed for threo
products in Baltas’s report. Although the absolute configuration of 116a and 116b were
not known at this stage, we decided to elaborate epoxy alcohols 116a and 116b to the
final targets with anticipation that the absolute configurations of 116a and 116b would
be verified in the final stage by comparison of spectroscopic data to those of previously
reported natural products 13 and 14. Since epoxy alcohol 116b was obtained in larger
quantity than its diastereomer 116a, we initially decided to carry epoxy alcohol 116b

to the remaining steps for evaluating the robustness of epoxide moiety.

Scheme 16 Synthesis of epoxy alcohol 116a and 116b

* = unknown absolute configuration
o (e}
HO. HO. > H3> HO. <,
m-CPBA, NaHCO, * Hyo JHaha= 8.4 Hz
“OTBDPS  GH,Cl,, 0 °C “OTBDPS + ‘OTBDPS
OPMB OPMB OPMB
108 minor diastereomer 116a, 18% major diastereomer 116b, 50%
R;=0.57 R;=0.38
(2% EtOAC/CH,Cly) (2% EtOAc/CH,Cly)

Epoxy alcohol 116b was then subjected to oxidation mediated by IBX to
afford epoxy aldehyde 117 in 78% yield. Our next task was generation of (75)-
stereogenic center of targeted 13 and 14 by vinylation of chiral epoxy aldehyde 117.
Vinylation of 117 was performed by treatment with vinylmagnesium bromide to
provide separable diastereomeric propargylic alcohols 1185 and 118R in 35% and 39%
yields without affecting the epoxide moiety. The (7S5)- and (7R)-stereogenic centers of
118S and 118R were confirmed by Mosher’s ester analysis (Scheme 17).

Scheme 17 Synthesis of allylic alcohols 1185 and 118R

O * O * O * O
H * H S R
© . IBX N A MgBr  ~ . " .
. o ., OH /., OH /.,
‘OTBDPS DMSO, 0 °Ctort OTBDPS THF, 0°C OTBDPS 4 OTBDPS
OPMB 78% OPMB OPMB OPMB
major diastereomer 116b 17 118S, 35% 118R, 39%

* = unknown absolute configuration
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With the desired allylic alcohol 118§ in hand, we next continued to
elaborate 118S to the diene precursor for ring-closing metathesis. Initially, protection
of allylic alcohol 118§ was required and TBS group was chosen as a protecting group
at this position due to its ease of removal since we planned to remove both silyl
protecting group at C4- and C7-alcohols before ring-closing metathesis to reduce steric
hindrance of terminal diene of RCM precursor. Allylic alcohol 1185 was then treated
with TBSCl and imidazole to give silyl ether 119 in 84% yield. Subsequent deprotection
of PMB moiety of 119 with DDQ, followed by oxidation of the resulting primary
alcohol mediated by Dess-Martin periodinane (DMP) to afford the corresponding
aldehyde 120 in 95% yield. To install the requisite 2-carbon o,B-unsaturated ester
subunit, aldehyde 120 was subjected Wittig olefination using Ph;P=CHCO:Et to
provide (£)-a,pB-unsaturated ester 121 in 94% yield. Notably, (£)-o,B-unsaturated ester
121 was obtained as a single stereoisomer and the (E)-geometry was confirmed with
the '"H-'H coupling constant of 15.7 Hz between H2 and H3. Ethyl ester of 121 was
next hydrolyzed with LiOH-H>0O and subsequent acidic workup to give carboxylic acid
122 in 78%, in which the epoxide moiety remained untouched. After that, coupling of
carboxylic acid 122 with (S)-hept-6-en-2-o0l (24) (Tadpech et al., 2015) via Yamaguchi
esterification smoothly provided diene ester 123 in 71%. Both silyl protecting groups
of diene 123 were then removed to avoid steric hindrance of terminal diene to facilitate
RCM in the next step by using tetrabutylammonium fluoride (TBAF) to smoothly give
diol 124 in 89% yield (Scheme 18). The final yet challenging step was the ring-closing
metathesis to assemble the macrocycle and to selectively form C8—C9 olefin (Table 2).
Initially, diene 124 was treated with Grubbs’s second generation catalyst (5 mol %) in
refluxing dichloromethane (0.8 mM) (entry 1). Disappointingly, these conditions only
led to decomposition of starting material suggesting that the epoxide moiety of 124 was
apparently incompatible with these conditions. Based on the results from synthetic
route I, ring-closing metathesis of diene 26 which contains the acetonide group in this
emplacement was not problematic when performed under the same conditions.
Lowering the catalyst loading to 2 mol % and higher dilution of CH2Cl, solvent (0.5
mM) at room temperature also resulted in the decomposition of diene 124 (entry 2).
Further optimizations were then performed by changing the solvent to toluene (0.5 mM)

(entry 3) or the catalyst to Grubbs’s first generation (entry 4). Unfortunately, these
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conditions only led to the same results. Thus, it is obvious that the epoxide moiety of
124 was not suitable for ring-closing metathesis reaction. Due to unsuccessful final
ring-closing metathesis described, the synthetic scheme for 13 and 14 needs to be

revised and will be discussed in the next chapter.

Scheme 18 Synthesis of ring-closing metathesis precursor 124
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Table 2 Attempted synthesis of 13 and 14 via ring-closing-metathesis of 124

(0]
| e} ing-closi tathesi o] *
N . ring-closing metathesis = . 7 .
Grubbs catalyst OH J. + OH ‘.,
OH “OH | “OH | OH
o) | solvent, temperature o) o
o O ©

124 125 126

* = unknown absolute configuration

entry catalyst solvent temperature results

Grubbs II CH.CL, o

! (5 mol %) (0.8 mM) 43°C

) Grubbs 11 CHxCl, ot
(2 mol %) (0.5 mM) decomposition

3 Grubbs 11 toluene ot of diene 124
(2 mol %) (0.5 mM)
Grubbs I toluene o

4 (10 mol %) 05mM) | T060°C

2.2 Conclusion

Syntheses of seiricuprolide (13) and pestalotioprolide B (14) following our
proposed synthetic routes I and II were unsuccessful. In the case of screening of
synthetic route I, ring-closing metathesis of diene 26 was achieved to furnish 14-
membered skeletons of 13 and 14, in which acetonide protecting group at C5-C6
position of 26 proved to be compatible with these reaction conditions. However, further
removal of the acetonide protecting group was problematic because the optimal
conditions (200 equivalents of 90% TFA at 0 °C) was irreproducible. In addition, the
observed product yields of the resulting diol from all reaction conditions attempted
were low. Owing to paucity of the diol intermediate, the subsequent epoxide formation
could not be screened. Another synthetic route, which differs from synthetic route I by
switching the step of epoxide formation to the early stage of the synthesis, was also
screened. The preparation of epoxidation precursor, Z-allylic alcohol 108, was achieved
in 8 steps starting from commercially available epichlorohydrin (109) via Jacobsen
hydrolytic kinetic resolution and Still-Gennari olefination. However, m-CPBA

epoxidation of 108 led to separable epoxy alcohols 116a and 116b in only a modest
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diastereoselective ratio. Since absolute configurations of generated epoxides 116a and
116b could not be verified at this stage, the major epoxy alcohol 116b was then chosen
as intermediate for screening remaining reactions. It was discovered that epoxide
moiety of 116b is quite robust because 116b could be elaborated to ring-closing
metathesis precursor 124 in 8 steps, in which the degradation of the epoxide moiety
was not observed from any steps. However, upon attempts to assemble the macrocycle
by using various ring-closing metathesis conditions in the last step, we failed to obtain
macrocycle product since all conditions only led to decomposition of starting diene 124
and the epoxide moiety at C5—-C6 position of 124 was likely incompatible with ring-
closing metathesis reaction. Therefore, the revision of the synthetic route will be

discussed in the next chapter.
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CHAPTER 3

COMPLETION OF SYNTHESES OF SEIRICUPROLIDE AND
PESTALOTIOPROLIDE B

3.1 Results and Discussion

According to the unsuccessful ring-closing metathesis in the final step of
synthetic route II described in the previous chapter, we then need to revise the synthetic
route for synthesizing seiricuprolide (13) and pestalotioprolide B (14). The new
synthetic route was inspired by a previous accomplishment of syntheses of
14-membered macrolide analogues of 13 and 14, nigrosporolide (127) and (4S,7S,135)-
4,7-dihydroxy-13-tetradeca-2,5,8-trienolide (128) (Figure 6), reported by our research
group (Thiraporn et al., 2022b). The key synthetic features for syntheses of 127 and
128 involved Shiina macrolactonization and acetylide addition to form the macrocyclic
core, Wittig olefination and selective reduction of propargylic alcohol to construct
internal £ or Z-olefins. Since macrolides 127 and 128 are essentially C5—C6 B-epoxy
analogues of 13 and 14, respectively, we anticipated that key bond formation strategies
previously employed in syntheses of 127 and 128 would be applicable for syntheses of
13 and 14. Nevertheless, the challenging part of syntheses of 13 and 14 was
a stereoselective installation of the B-epoxide moiety. Ideally, our targeted macrolides
13 and 14 might be directly prepared via selective epoxidation 127 and 128. However,
this strategy posed a challenge due to the presence of two olefins in the molecules of
127 and 128 in addition to facial selectivity of the epoxidation step. Thus, the
installation of the chiral epoxide moiety would be performed in the early stage to avoid
such challenges. The new retrosynthetic analysis of 13 and 14 is outlined in Scheme
19. To assemble the macrocycles of 13 and 14, Shiina macrolactonization of seco acids
129 and 130 would be employed in place of ring-closing metathesis which was

unsuccessful in the previous route. Wittig olefination would still be utilized to generate
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the C2—C3 (E)-a,B-unsaturated ester moiety of both 129 and 130. The Z- or E-double
bond at  C8-C9 (of 129 or 130, respectively) would be derived from selective
reduction of chiral propargylic alcohol 131, which would in turn be elaborated from
acetylide addition of known alkyne 132 prepared from (S)-propylene oxide (133) to
chiral epoxy aldehyde 107. It was again anticipated that the adjacent chiral epoxide of
aldehyde 107 would direct the stereoselectivity of this acetylide addition step (Li et al.,
2009). It should be noted that chiral epoxy aldehyde 107 was prepared from Z-allylic
alcohol 108 via the Baltas’s protocol in the previous synthetic route (Method I)
discussed in Chapter 2 and these conditions provided epoxy alcohol products 116a and
116b in a modest diastereomeric ratio (116a:116b = 1:2.7). Moreover, the absolute
configurations of epoxide moiety of 116a and 116b could not be verified at the stage
of epoxide formation as described in Scheme 16. Due to such problems, we then turned
our attention to screen other methodologies for installing the B-epoxide moiety. SAE of
108 using (—)-diethyl tartrate as a chiral ligand (Method II) was initially chosen for
constructing B-epoxide of 107, with hope that the stereoselectivity of this reaction might
improve and the absolute configuration of major product might be unambiguously
predicted by analogy following Sharpless’s mnemonic shown in Figure 5 (Chapter 1)
(Mohapatra et al., 2016 and Hassan ef al., 2016). Alternatively, we envisioned that 3-
epoxide of 107 could be obtained via chiral OH-directed m-CPBA epoxidation of 134
(Method IIT) (Minami et al., 1995), in which modified Z-allylic alcohol 134 would be
easily derived from Z-allylic alcohol 108.

Figure 6 Structures of nigrosporolide (127) and (4S,7S,135)-4,7-dihydroxy-13-
tetradeca-2,5,8-trienolide (128)
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tretadeca-2,5,8-trienolide (128)
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Scheme 19 Retrosynthetic analysis of seiricuprolide (13) and pestalotioprolide B (14)
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The first task was focused on screening for selective epoxidation following
Methods II and III (Scheme 20). We initially attempted to utilize SAE of Z-allylic
alcohol 108 by employment of fert-butyl hydroperoxide or cumene hydroperoxide in
the presence of (—)-diethyl tartrate and titanium isopropoxide in CH2Cl> at —40 °C
(Method II) (Thirupathi et al., 2016 and Bodugam et al., 2016). Disappointingly, after
maintaining both reactions at this temperature for 6-7 days, there was no noticeable
change upon monitoring by TLC and only unreacted starting material was recovered.
Since SAE of Z-allylic alcohol 108 in the presence of (—)-diethyl tartrate was
unsuccessful in our hands, we proposed that the bulky TBDPS protecting group of the
adjacent chiral alcohol moiety of 108 might obstruct the approach of (—)-diethyl tartrate
to the olefin. In addition, literature precedents on SAE of Z-allylic alcohol bearing a
TBDPS protecting group at a-chiral center in the presence of (—)-diethyl tartrate are
scarce. To the best of our knowledge, there has been only one report on SAE of such a
substrate which was achieved by using (+)-diisopropyl tartrate as a chiral ligand, in
which the reaction reached only 56% completion after 5 h (Kumar et al., 2018). Since
Z-allylic alcohol 108 was inert to SAE conditions using (—)-diethyl tartrate in our hands

and further screening on SAE in the presence of (—)-diisopropyl tartrate ligand was not
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performed due to the lack of chemical supply at the time, our attention focused then on
chiral OH-directed epoxidation (Method III). We then decided to transform Z-allylic
alcohol 108 to chiral allylic alcohol 134 as anticipation that the a-hydroxy chiral center
of substrate 134 would direct the stereoselectivity of epoxidation. Primary alcohol of
108 was then protected with a benzoyl group due to its orthogonality to other protecting
groups to yield benzoate 135 in 88% yield, followed by TBDPS deprotection using
TBAF to deliver alcohol 134. The m-CPBA epoxidation of chiral allylic alcohol 134
was then performed to provide inseparable diastereomeric epoxy alcohols 136 in 78%
combined yield. The inseparable mixture was then elaborated to epoxy alcohols 116a
and 116b in order to determine the stereoselectivity outcome compared to Method 1.
Interestingly, ensuing 2-step transformations, including TBDPS protection and
methanolysis, proceeded smoothly to give separable epoxy alcohols 116a and 116b in
excellent diastereomeric ratio of 16:1, in which the 'H and '3C NMR spectroscopic data
as well as retention factor values (0.57 and 0.38 in 2% EtOAc/CH2Cl,) of 116a and
116b from this protocol are identical to those of epoxy alcohol products obtained from

m-CPBA epoxidation of Z-allylic alcohol 108 in Method I (Chapter 2).

Scheme 20 Methods II and III for installing epoxide moiety of 116a and 116b
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According to contrastively observed results from Methods I and III, we
therefore proposed the conformational models to rationalize the stereoselectivity
observed in each chiral substrate based on Sharpless model as shown in Scheme 21
(Rossiter et al., 1979, Narula et al., 1983, Adam et al., 1999, Freccero et al., 2000 and
Bressin et al., 2020). In the case of chiral allylic alcohol substrate 134 (Method III), the
major product, B-epoxide 136 erythro, would result from m-CPBA epoxidation directed
by the adjacent chiral hydroxyl group via the lower-energy transition state TS1 due to
minimization of 1,3-allylic strain (Hoffmann et al., 1989) whereas the other transition
state TS2 leading to a-epoxide 136 threo would suffer from 1,3-allylic strain. On the
other hand, m-CPBA epoxidation of allylic alcohol substrate 108 bearing adjacent (S)-
silyloxy stereogenic center provided a reversed diastereoselectivity. Since the allylic
hydroxyl group of 108 contains no chiral entity to differentiate the facial selectivity of
epoxidation via hydrogen bonding, we proposed that the observed stereoselectivity in
the epoxidation of 108 would derive from the minimization of 1,3-allylic strain
controlled by the bulky adjacent silyloxy stereogenic center as shown in transition states
TS3 and TS4. TS4 would be preferred due to the minimized 1,3-allylic strain compared
to TS3 rendering the epoxidation to occur on the alkene face opposite to the bulky
OTBDPS group and delivered a-epoxide 116b threo as a major product. Based on our
proposed conformations, the absolute configurations of epoxide moiety of 116a and
116b were proposed to be - (erythro) and a- (threo) epoxides, respectively. To verify
our proposed rationale, we decided to elaborate epoxy alcohols 116a and 116b to
Baltas’s epoxy alcohol intermediates (94a and 94b) in 4 steps via standard protection-
deprotection (Scheme 22A). Epoxy alcohol 116b (a major product from Method I, a
minor product from Method III and the proposed threo isomer) was initially converted
to epoxy alcohol 140. To our surprise, the '"H and '*C NMR data of 140 matched those
reported by the Baltas group for ‘erythro’ intermediate 94a which was their major
product (Table 3). In addition, we further converted epoxy alcohol 116a (a minor
product from Method I, a major product from Method III and the proposed erythro
isomer) to epoxy alcohol 144 (Scheme 22B) and found that the 'H and '*C NMR data
of 144 were identical to those reported for the minor ‘threo’ intermediate 94b by the
Baltas group (Table 4). It is obvious that our proposed absolute configuration of

epoxide moiety of 116a and 116b was contradictory to the previously reported results
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by the Baltas group. Even though the absolute configuration of each epoxy alcohol still
could not be unambiguously confirmed at this stage, we were certain, based on these
results, that the a-epoxide threo product would predominate from m-CPBA epoxidation
of Z-allylic alcohol containing (S)-a-silyloxy stereogenic center such as 108. Thus, we
decided to proceed with epoxy alcohol 116a, a major diastereomer from Method III,
due to its availability in larger quantity and the excellent erythro diastereoselectivity

rationalized above.

Scheme 21 Proposed rationale for observed diastereoselectivities in the epoxidation of

Z-allylic alcohols 108 (Method I) and 134 (Method III)
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Scheme 22 A) Conversion of epoxy alcohol 116b thero to Baltas’s epoxy alcohol 140.

B) Conversion of epoxy alcohol 116a erythro to Baltas’s epoxy alcohol

144.
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With the proposed B-epoxy alcohol 116a in hand, we then proceeded to
assemble the key fragments as shown in Scheme 23A. 3-Epoxy alcohol 116a was then
subjected to oxidation mediated by IBX to yield the requisite epoxy aldehyde 107 in
81% yield. Another key fragment, known alkyne 132, was prepared from (S)-propylene
oxide (133) in 5 steps using our previously reported protocol via the key
Bestmann—Ohira homologation (Thiraporn ef al., 2022a). The next task was coupling
of chiral epoxy aldehyde 107 with known alkyne 132 via acetylide addition. Epoxy
aldehyde 107 was exposed to a premixed solution of alkyne 132 and n-butyl lithium at
—78 °C in THF. After warming to 0 °C for 2 hours, separable propargylic alcohols 131§
and 131R were obtained in respective 21% and 56% yields upon purification by column
chromatography. Notably, the degradation of epoxide moiety was not observed from
these reaction conditions. The absolute configuration of the newly formed alcohol

stereogenic center of each diastereomer was assigned by Mosher’s ester analysis.
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Table 3 Comparison of 'H and '3C NMR data for epoxy alcohols Baltas’s ‘erythro’

94a and 140.
"HNMR (5 and J in Hz) BC NMR (5)
194a 140
Position 94a (400 MHz) 140 (300 MHz)
(100 MHz) (75 MHz)
in CDCl; in CDCl;
in CDCl; in CDCl;
3.27-3.18, m/ 3.25-3.18, m/
1 60.77 60.65
3.38-3.28, m 3.32,dd (12.27, 3.96)
2 3.03, dt (6.90,4.18) | 3.03, dt (6.90, 4.05) 57.19 57.17
3.15, dd (6.20,
3 3.16, dd (5.85, 4.05) 57.44 57.27
4.18)
4 71.11 71.00
3.66-3.64, m 3.74-3.64, m
5 66.23 66.11
Cq of Bu (TBS) - - 18.64 18.52
CH; of Bu (TBS) 1.07 1.08 27.00 26.89
-5.35 -5.45
CH; of TBS —0.04/-0.06 0.08/0.05
-5.23 -5.35
Cq of Bu
- - 19.50 19.38
(TBDPS)
CH; of 1Bu
0.92 0.92 26.15 26.04
(TBDPS)
Cq of Phe 133.46 133.35
(TBDPS) 133.70 133.56
127.91 127.78
127.94 127.82
7.42-7.34, m/ 7.48-7.36, m/7.79— 130.12 130.00
CH of Phe TBDPS
7.71-7.67, m 7.71, m 130.21 130.09
136.10 135.98
136.14 136.01
OH 1.60-1.50, m 1.86, brs - -
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Table 4 Comparison of 'H and '*C NMR data for epoxy alcohols Baltas’s ‘threo’ 94b

and 144.
'H NMR (§ and J in Hz) C NMR (3)
94b 144
Position 94b (400 MHz) 144 (300 MHz)
(100 MHz) | (75 MHz)in
in CDCl; in CDCl;
in CDCl; CDCl;
3.27-3.18, m/ 3.28-3.17, m/
1 61.09 61.01
3.71-3.49, m 3.78-3.49, m
2 3.27-3.18, m 3.28-3.17,m 56.81 56.17
3.11, dd (8.26,
3 3.10, dd (7.86, 3.75) 59.97 59.89
4.13)
4 72.03 72.02
3.71-3.49, m 3.78-3.49, m
5 65.55 65.47
Cq of 1Bu (TBS) - - 18.64 18.65
CH; of /Bu (TBS) 1.12 1.09 26.17 26.07
~5.49 -5.58
CH; of TBS ~0.02/-0.00 ~0.05/-0.02
-5.38 ~5.48
Cq of tBu (TBDPS) - - 19.50 19.46
CHj; of tBu (TBDPS) 0.83 0.80 27.12 27.04
133.31 133.27
Cq of Phe (TBDPS) - -
134.02 133.97
127.74 127.64
127.87 127.76
7.42-7.34, m/ 7.46-7.34, m/
CH of Phe TBDPS 129.85 129.96
7.71-7.67, m 7.78-7.66, m
136.02 136.00
136.09 136.15
OH 2.71-2.68, m 2.74, brs - -
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Although the B-epoxide moiety of 107 did not lead to the desired (S)-
propargylic alcohol 131§ as a major product as anticipated, the undesired (R)-
propargylic alcohol 131R could be smoothly transformed to 131§ in 2 steps with
satisfying yield (78% in 2 steps) via Mitsunobu inversion with acetic acid, followed by
methanolysis (Li et al., 2009). In addition, the reaction conditions for coupling of 107
and 132 in asymmetric fashion using Trost’s asymmetric Zn-mediated alkynylation was
also screened (Scheme 23B). However, these reaction conditions were unsuccessful in
our hands, in which substrates 107 and 132 were presumably inert to such conditions

(Trost et al., 2006 and 2012).

Scheme 23 A) Coupling of the key fragments 107 and 132 via acetylide addition. B)
Attempted coupling of the key fragments 107 and 132 via Trost’s

asymmetric alkyne addition.

A)
\)/\\\
HO Q o 132 s 9 S

Mj o H\'(j OTBS M ;
N n-BuLi OH /., OH .,
OR “pmso OR ——————~ OTBS OR + OTBS OR

OPMB 0°Ctort opm THF, —781t00°C OPMB OPMB
the proposed 81% 107 1315, 21% 131R, 56%
116a erythro R = TBDPS R =TBDPS R =TBDPS

1. PPhs, DEAD, AcOH, toluene, 0 °C

R =TBDPS
2. K,COg, MeOH, rt, 78% (2 steps) ‘

B)
X
0 X 0
132 S
H otes ' h
e} . ZnMe,, (S,S)-ProPhenol .
‘OR 2 OTBS OH ~or
OPMB toluene, 0 °C to rt OPMB
107 1318
R =TBDPS R = TBDPS

After chiral propargylic alcohol 131§ was successfully synthesized, our
next task was to complete the synthesis of seiricuprolide (13) using our previously
established sequence for its closely related analogue (Thiraporn et al., 2022b) (Scheme
24). The synthesis commenced with preparation of C8—C9 Z-alkene subunit of 13, Z-
selective reduction of propargylic alcohol 1318 was therefore undertaken via Lindlar
hydrogenation in ethyl acetate to furnish Z-allylic alcohol 145 in 89% yield. The
Z-geometry of 145 was confirmed by a coupling constant of 10.8 Hz between H8 and
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H9. Subsequent protection of allylic alcohol of 145 with TBDPSCI, followed by
removal of a PMB protecting group of the resulting silyl ether using DDQ afforded
primary alcohol 146 in high yield. The next task was to install the C2—-C3 (£E)-a.,f3-
unsaturated ester subunit of 13 which was carried out in 2 steps. Oxidation of 146
mediated by Dess—Martin periodinane, followed by Wittig olefination with
Ph3;P=CHCO:Et furnished (E)-o.,B-unsaturated ester 147 as a single isomer in excellent
85% yield over 2 steps. The E-geometry of 147 was confirmed by a coupling constant
of 15.5 Hz between H2 and H3. Upon completion of installing all 14 carbons of 13, our
remaining task was to construct the macrocyclic core via Shiina macrolactonization. To
prepare macrolactonization precursor 130, ester 147 was then subjected to selective
deprotection of TBS protecting group using 4 equivalents of weakly acidic pyridinium
p-toluenesulfonate (PPTS) to give alcohol 148 in 84% yield. Gratifyingly, the B-
epoxide remained untouched and deprotection of TBDPS protecting groups was not
observed. Ensuing ester hydrolysis and acidic workup also smoothly furnished seco
acid 130 in 77% yield without affecting the epoxide moiety. Shiina macrolactonization
was performed by slowly adding a solution of seco acid 130 in toluene to a premixed
solution of 2-methyl-6-nitrobenzoic anhydride (MNBA) and DMAP in toluene at high
dilution (2 mM) at room temperature over 8 h to provide macrolactone 149 in 65%
yield. Final global deprotection of 149 was achieved using our established conditions
using 10 equivalents of TBAF in the presence of 4 mol % of acetic acid in THF at 60
°C to provide seiricuprolide (13) in 49% yield as a white solid along with 12% of
monoprotected analogue 150. The 'H and '*C NMR spectroscopic data of synthetic 13
were identical to those reported for natural 13 (Table 5) (Ballio ez al., 1988). Moreover,
the observed range of melting point of synthetic 13 (126.5-127.9 °C) was comparable
to that of natural product 13 (128-130 °C) (Ballio et al., 1988). The specific rotation
([a]p®) of synthetic 13 of +48.12 (¢ 2.70, MeOH) was in good agreement with the
reported value for natural product 13 ([a]p?® = +40, ¢ 2.7, MeOH) by the Liu group,
which unambiguously confirmed the absolute configuration of B-epoxide intermediate
116a and verified our rationale for the diastereoselectivity of m-CPBA epoxidation. It
is clear that the installation of chiral epoxide moiety can be performed in the early stage

and B-epoxide 116a proved to be a very robust substrate for the total synthesis.
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Scheme 24 Completion of synthesis of seiricuprolide (13)

JHS-HQ =10.8 Hz

(_\Hs (o}

N L0 Hy ~ 1.TBDPS _ g
H,, Pd/CaCO,/Pb imidazole, DMAP
OH . quinoline “'OR CH,Cl,, rt, 88% OR “OR
OTBS “OR OPMB
OPMB EtOAc, 89% OTBS 2.DDQ OTBSOH
CHyCl,, 0°Ctort 85%

131S R =TBDPS 145 R = TBDPS 146 R = TBDPS

o
1. DMP, CH,Cl, =
0°Ctort, PPTS (4 equiv) LiOHeH,O OR “OR
2. PhgP=CHCO,Et EtOH, rt, 84% i;)?? THF/MeOH/H,0 i;)?/?
CH,Cly, rt ot = 15.5 Hz EtO,C i, 77% HO,C

85% (2 steps)

147 R = TBDPS 148 R = TBDPS 130 R = TBDPS
(o}
MNBA “ TBAF (10 equiv),
DMAP (6 equiv) OR “OR AcOH (4 mol %)
toluene, t, 65% o | THF, 0 to 60°C then rt
0
149 R = TBDPS seiricuprolide (13), 49% 150, R = TBDPS, 12%

After our rationale for the diastereoselectivity of m-CPBA epoxidation was
verified through the synthesis of sericuprolide (13) mentioned above, it could reaffirm
that OH-directed m-CPBA epoxidation of modified Z-allylic alcohol 134 (Method III)
was an excellent method for constructing the desired B-epoxide motif. However, our
synthetic sequence for 134 is lengthy (10 linear steps from epichlorohydrin in 3.6%
overall yield) and requires the use of some relatively expensive reagents such as
osmium tetroxide, n-butyllithium and Still-Gennari reagent, leading us to develop a
more concise synthetic route of 134 that also allowed for multigram scale synthesis
(Scheme 25). We therefore set out the preparation of Z-allylic alcohol 134 from known
allylic alcohol 151 in 3 steps. Allylic alcohol 151 was easily prepared in 10-gram scale
from D-mannitol in 4 steps via the key Wittig olefination following a procedure
reported by Baltas et al. and Chu et al. Allylic alcohol 151 was further transformed to
diol 153 in 2 steps by benzoylation to give benzoate ester 152 in 89% yield, followed

by acetonide deprotection by treatment with 2M HCI in acetonitrile.
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Table 5 Comparison of 'H and '*C NMR data for natural and synthetic seiricuprolide

(13).
'"HNMR (5 and J in Hz) BC NMR (8)
. Natural Synthetic Natural Synthetic
Position
(500 MHz) (500 MHz) (125 MHz) (125 MHz)
in CDCl; in CDCl3 in CDCl; in CDCl3
1 - - 166.0 166.1
2 6.14,dd (15.4,1.5) | 6.15,dd (15.5, 0.5) 123.8 123.7
3 6.84,dd (15.4,6.1) | 6.85,dd (15.5, 6.5) 142.9 143.0
4.32,ddd (6.3, 6.1,
4 4.36-4.29, m 71.9 71.9
1.5)
5 3.23,dd (6.3, 4.4) 3.28-3.24, m 62.6 62.6
6 3.01,dd (8.5, 3.3) 3.03,dd (8.5, 4.5) 58.9 59.0
7 4.23,dd (8.5, 8.5) 4.27-4.20, m 64.4 64.4
5.37,ddd (11.0, 8.5, 5.39,ddd (11.5,
8 127.4 127.4
2.6) 9.5, 1.5)
5.54,ddd (11.0, 9.6, 5.57,ddd (11.5,
9 135.5 135.6
3.3) 9.5, 1.0)
2.51-2.39, m/
10 2.43, m/2.07, m 28.8 29.0
2.14-2.04, m
1.85-1.75, m/
11 1.78, m/ 1.23, m 25.1 25.2
1.27-1.21, m
1.86, ddd (13.6,
10.6, 7.4)/ 1.94-1.85, m/1.46,
12 33.5 33.6
1.44, ddd (13.6, ddd (14.5,9.0, 1.5)
7.4,7.4)
4.91,ddq (8.8, 7.4,
13 5.004.91, m 73.1 73.3
3.3,2.5)
14 1.26, d (6.6) 1.29,d (6.5) 19.8 20.1
4-OH - 2.55, brs - -
7-OH - 2.16, brs - -
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The next task was to regioselectively protect of the primary alcohol of diol
153 with a PMB group and the optimizations of this step are shown in Table 6. Initially,
the use of typical conditions for PMB protection (PMBCI and NaH in the presence of
TBAI in anhydrous DMF at 0 °C) was screened (entry 1). Disappointingly, these
conditions only produced undesired diol 154 in 62% yield, in which the degradation of
benzoyl protecting moiety presumably caused by basic hydrolysis. In addition,
hydroxyl proton at C4-position was apparently the most acidic proton of starting 153
since only C4-hydroxyl group was protected with a PMB group of diol 154 under these
conditions. From these results, we turned our attention to the use of a more reactive
reagent in the absence of a strong base with hope that the regioselective PMB protection
of C3-hydroxyl group might occur, diol 153 was then treated with p-methoxybenzyl
trichloroacetamidate (PMBTCA) in the presence of PPTS in dichloromethane at 0 °C
(entry 2) (Ikeuchi et al., 2019). Unfortunately, these conditions provided a mixture of
the desired PMB ethers 134 and its regioisomer 155 in a poor regioisomeric ratio of
1:1.3 (84% combined yield) upon maintaining the reaction temperature at 0 °C for 1 h.
Further optimization was performed by lowering reaction temperature to —78 °C (entry
3) or slowly adding starting 153 at 0 °C (entry 4). Disappointingly, the results from both
conditions were similar to entry 2. Since the regioselective PMB protection of diol 153
was difficult to control, we decided to convert diol 153 to stannylene acetal by using
dibutyltin oxide, followed by employment of PMBCI in the presence of TBAB to
provide the desired 134 in 71% yield along with 24% of undesired regioisomer 155
(entry 5) (Gucchait et al., 2021). As a result, these conditions were chosen as optimized
PMB protection conditions. Overall, the revised synthetic route for Z-allylic alcohol
134 starting from commercially available D-mannitol was shortened by 3 steps and

overall yield increased to 10.3%.

Scheme 25 Synthesis of diol 153 from known allylic alcohol 151

BzO BzO
4 steps BzCl, Et3 = 2M HC ’ h
D-mannitol - m ’
., e , o , o, v
Baltac’s an d o CH,Cl,, t, 89% ¢ o ° OH
Chu’s protocol 7/\ o

151 152 153
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Table 6 Optimization of regioselective PMB protection of diol 153

BzO
M; 4 conditions HO L~ BzO BzO_
ey, . . + .
31 "OH “OPMB “OH “OPMB
OH OH OH

OPMB
153 154 134 155
time
entry reagents solvent | temp ) results
1 PMBCI, NaH, TBAI DMF 0°C 2 154 (62%)

134:155=1:1.3*

2 PMBTCA, PPTS DCM | 0°C 1 T
84% combined yield
134:155=1:1.2*
3 PMBTCA, PPTS DCM | —78°C | 1 T
84% combined yield
PMBTCA, PPTS 134:155=1:1.3*
4 DCM 0°C 12 _ ‘
(slowly adding 153) 84% combined yield
134 (71%) and

BuzSnO in MeOH at 80 °C then PMBCI,
5 5 155 (24%)
TBAB in DMF at 65 °C

* Determined by the integration ratio of '"H NMR data
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Our attention focused then on completion of synthesis of pestalotioprolide
B (14). The synthesis began with optimization of E-selective reduction of propargylic
alcohol 1318 mediated by sodium(2-methoxyethoxy)aluminium hydride (Red-Al) as a
reducing agent (Table 7). Propargylic alcohol 131 was initially treated with 1.2 or 3.0
equivalents of Red-Al in THF from 0 °C to room temperature (entries 1 and 2) (Li et
al., 2009). Disappointingly, these conditions gave no desired product and the starting
material was recovered. Increasing Red-Al to 5 equivalents under the same conditions
provided an inseparable mixture of the desired 156 and overreduced product 157 in
53% combined yield and a ratio of 1:2.1 as determined by 'H NMR spectroscopy (entry
3). Further optimization was then performed by changing the solvent to toluene (entry
4) or ether (entry 5) under the same conditions as entry 3. Unfortunately, only the
starting material 1318 was observed from both conditions. These results suggested that
THF should be the appropriate solvent for Red-Al-mediated reduction of 131S.
Formation of overreduced product 157 observed in entry 3 thus prompted us to perform
this reaction at lower temperature. After slowly warming the reaction mixture from
—30 °C to 0 °C for 6.5 h (Albert et al., 2007 and Meta et al., 2004), no undesired
overreduced product 157 was obtained under these conditions and only an inseparable
mixture (1:1) of the desired 156 and unreacted starting material 131§ in a combined
79% was observed (entry 6). Further optimization was then performed by slightly
increasing the reaction temperature to 4 °C. Gratifyingly, after maintaining the reaction
at this temperature for 5 h, starting 1318 was completely consumed and the desired E-
allylic alcohol 156 was observed in 74% yield without the overreduced counterpart.
The E-geometry of 156 was confirmed by a coupling constant of 15.5 Hz between H8
and HO.
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Table 7 Optimization of E-selective reduction of propargylic alcohol 1318 mediated

by Red-Al
S o J=155Hz Hg o o
. 74
Red-Al (5 )
OTBS OH ~1BDPS Rk Hy O" ~“oreoPs + OH ~oTBDPS
OPMB THF, 4°C, 74% OTBSOpMmB OTBS Jove
1318 156 157
entry Red-Al solvent temp time results
(equiv) (h)
1 1.2 THF 0°Ctort 6 no reaction
2 3.0 THF 0°Ctort 20 no reaction
o 156:157=1:2.1*
3 5.0 THF 0°Ctort 4.5 (53% combined yield)
4 5.0 toluene 0°Ctort 5 no reaction
5 5.0 ether 0°Ctort 5 no reaction
156 (40%)* and
6 5.0 THF -30°Cto0°C 6.5 13185 (39%)*
7 5.0 THF 4°C 5 156 (74% yield)

* Determined by the integration ratio of '"H NMR data

With the requisite intermediate 156 in hand, the remaining installation of
(E)-a,B-unsaturated ester as well as the construction of macrocyclic core of 14 were
accomplished by transformation of 156 to macrolactone 161 in 7 steps via the same
synthetic sequence established in the synthesis of 13. The global deprotection of 161
was also performed under the same conditions employed for 13 to deliver
pestalotioprolide B (14) in slightly higher yield (56%) as a white solid (Scheme 26).
The 'H and '*C NMR data of synthetic 14 were excellent agreement with those reported
for natural 14 by the Liu group (Table 8). Similarly, the observed range of melting
point of synthetic 14 (109.6—111.3 °C) was nearly identical to the value reported by the
Liu group (111-115 °C). Moreover, the observed specific rotation of synthetic 14,
[a]p?® =+75.96 (c 1.00, CHCl3), was also essentially identical to that of natural product
14, ([o]p* = +72, ¢ 1.0, CHCIs). These results once again verified the absolute
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configuration of B-epoxide intermediate 116a, thereby rendering its diastereomer 116b

an o-epoxide antipode.

Scheme 26 Completion of synthesis of Pestalotioprolide B (14)

0 1.TBDPS (o)
/ imidazole, DMAP / 1. DMP, CH,Cl,
. CH,Cly, 1, 91% 5 0°Ctort,
OH ~0om Ze OR ~0oR
OTBS yous 2.DDQ OTBS 1, 2. PhyP=CHCO,Et
CHxCl;, 0°Ctort 92% CH,Cly, 1t
156R = TBDPS 188R=TBDPS  gao. ( steps) 159 R = TBDPS
0 o o
/ / MNBA /
PPTS (4 equiv) OR “OR LiOHeH,O OR J. DMAP (6 equiv) OR “OR
“OR o
EtOH, rt, 81% oH | THF/MeOH/H,0 OH || toluene, rt, 59% o
EtO,C rt, 69% HO,C
160 R = TBDPS 129 R = TBDPS 161 R = TBDPS
o)
4
TBAF (10 equiv), OH .,
AcOH (4 mol %) | OH
o)

THF, 0 to 60°C then rt 5

56%
° pestalotioprolide B (14)
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Table 8 Comparison of 'H and '*C NMR data for natural and synthetic pestalotioprolide

B (14).
'HNMR (8 and J in Hz) C NMR (3)
Natural
o Natural Synthetic Synthetic
Position (150 MHz)
(600 MHz) in (500 MHz) in . (125 MHz) in
1n acetone-
acetone-ds acetone-ds J acetone-ds
6
1 - - 166.1 166.1
2 5.99,dd (15.5,2.0) | 5.99,dd (15.5, 1.8) 120.9 120.8
3 7.11,dd (15.5,4.0) | 7.11,dd (15.5, 3.6) 148.2 148.2
4 4.32, m 4.35-4.28, m 71.4 71.4
5 2.92,dd (5.6, 4.6) 2.93-2.89, m 61.8 61.7
6 2.94,dd (8.9, 4.6) 2.94,dd (8.9, 4.5) 59.3 59.2
3.94,ddd (8.9, 7.7,
7 3.97-3.91, m 71.7 71.7
3.9
8 5.55,dd (15.6,7.7) | 5.55,dd (15.5,7.8) 130.9 130.9
9 5.96, m 6.30-5.90, m 135.2 135.2
2.16-2.08, m/
10 2.12, m/2.01, m 33.7 33.7
2.03-1.93, m
1.89-1.75, m/
11 1.86, m/ 1.13, m 25.4 25.3
1.16-1.09, m
1.89-1.75, m/
12 1.80, m/ 1.56, m 35.1 35.1
1.60-1.50, m
13 4.66, m 4.69-4.62, m 72.3 72.3
14 1.22,d(6.2) 1.21,d (6.2) 20.3 20.3
4-OH 4.99,d (4.4) 5.01, brs - -
7-OH 4.17,d (3.9) 4.21, brs - -
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Having successful syntheses of seiricuprolide (13) and pestalotioprolide B
(14), our next focus was to evaluate biological activity of synthetic 13 and 14. Recently,
our research group has reported the in vitro cytotoxic activity of 14-membered
analogues of 13 and 14, nigrosprolide (127), (4S,7S,135)-4,7-dihydroxy-13-tetra-2,5,8-
trienolide (128) and mutolide (5), against three human cancer cell lines including
HCT116 colorectal carcinoma, MCF-7 breast adenocarcinoma and Calu-3 lung
adenocarcinoma using the MTT assay (Thiraporn ef al., 2022b). Synthetic mutolide (5)
apparently was significantly active against the HCT116 colon cancer cells (ICso =12
uM) and was inactive against the other two cell lines (ICso > 50 uM), whereas
macrolactone analogues 127 and 128 showed no cytotoxic effects on all three cancer
cell lines tested. The HCT116 cancer cell was then chosen for screening of cytotoxic
activity of compounds 13 and 14 using MTT assay which was performed by the
laboratory of Prof. Dr. Chatchai Muanprasat of Chakri Naruebadin Medical Institute,
Faculty of Medcine Ramathibodi Hospital, Mahidol University (Figure 7). In addition,
synthetic 13 and 14 were evaluated for their cytotoxicity against non-cancerous (Vero)
cells determined by MTT assay (Figure 8). Viability of both cells treated with
compounds 13 and 14 at 0, 10, 20, 50 and 100 uM at 24, 48 and 72 h of incubation were
then performed. It was discovered that both compounds showed no cytotoxic effects
on the HCT116 colon cancer cells even at 100 uM and prolonged incubation time of 72
h. Similar results were observed for seiricuprolide (13) on Vero cells viability, whereas
pestalotioprolide B (14) slightly inhibited the viability of Vero cells when 14 was
treated at high concentration and was incubated in prolonged time. The Ilatter
observation suggested that macrolide 14 was more cytotoxic to Vero cells to other
related analogues 13, 127, 128 and 5. Based on the cytotoxic activity results, it can be
roughly concluded that the B-epoxide moiety at C5—-C6 of this group of macrolides
suppressed the cytotoxicity against HCT116 cancer cells. This preliminary structure—
activity relationship is in accordance with Liu’s report that the B-epoxide group of
natural products 13 and 14 decreased cytotoxic activities against the L5178Y mouse
lymphoma cells compared to natural products 126 and 127 which possess the Z-olefin

at this emplacement.



56

Figure 7 Viability of HCT116 cells treated with synthetic compounds 13 and 14 after
24 h, 48 h and 72 h of incubations at indicated concentrations determined by
the MTT assay. * indicated the p-value of < 0.05 (1 way ANOVA compared
with concentration 0 uM).
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Figure 8 Viability of Vero cells treated with synthetic compounds 13 and 14 after 24
h, 48h and 72h of incubations at indicated concentrations determined by the
MTT assay. *, ** *** and **** indicated the p-values of < 0.05, < 0.01, <
0.0005, <0.0001, respectively (1 way ANOVA compared with concentration
0 uM)
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Synthetic seiricuprolide (13) and pestalotioprolide B (14) were further
subjected to evaluation on inhibitory activity of cystic fibrosis transmembrane regulator
(CFTR)-mediated chloride secretion in human intestinal epithelial (T84) cells using
short-circuit analysis (Isc) which was also tested by the laboratory of Prof. Dr. Chatchai
Muanprasat of Chakri Naruebadin Medical Institute, Faculty of Medcine Ramathibodi
Hospital, Mahidol University. Our group has also recently disclosed the CFTR
inhibitory activity of synthetic macrolides 127, 128 and S, in which mutolide (5)

showed stronger inhibition (~70% inhibition) compared to analogues 127 (40%
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inhibition) and 128 (30% inhibition) at the same concentration (5 uM) (Thiraporn et
al., 2022b). Disappointingly, synthetic macrolides 13 and 14 showed no effects on
CFTR-mediated chloride secretion in T84 cells stimulated by forskolin (a cAMP donor)
at both 5 and 10 uM compared to a positive control, CFTR(inh)-172 (Figure 9).
Clearly, the B-epoxide moiety of macrolides 13 and 14 suppressed the CFTR inhibitory
activity compared to compounds 127 and 128, which are their C5-C6 Z-olefin

counterparts.

Figure 9 Evaluation of effects of synthetic compounds 13 and 14 (5 and 10 uM) on
CFTR-mediated chloride secretion in T84 cells. Forskolin (20 uM) was used
to stimulate the CFTR-mediated chloride secretion. CFTR(inh)-172 (20 uM)
was used as a positive control. Representative tracings of 3 experiments as

shown.

Compound 13 [uM] Compound 14 [uM]
Control CFIR 172

IR 72 g o CFR a7

—— | 1 | |

S — e

I =20 uxa€|
sC

15 min

3.2 Conclusion

In conclusion, we have accomplished the first and convergent total
synthesis of seiricuprolide (13) and pestalotioprolide B (14) in a longest linear sequence
of 17 steps and a total of 19 steps in 1.9 and 1.6% overall yields starting from known
alkyne 132 and chiral Z-allylic alcohol 151, in which 151 was derived from D-mannitol,
an inexpensive and commercially available chiral building block. Our key bond
formations involved in Shiina macrolactonization and acetylide addition to construct
14-membered skeleton, Wittig olefination to generate the (E)-o,p-unsaturated ester
subunit and selective reduction of propargylic alcohol to form Z- or E-olefin at C8—C9

for 13 and 14. Highly stereoselective substrate-controlled m-CPBA epoxidation was
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highlighted as an efficient method for installing the C5—C6 B-epoxide at the early stage
of the synthesis, which reaffirmed the remarkable robustness of this B-epoxide moiety
of both natural products. Our work also verified that m-CPBA epoxidation of Z-allylic
alcohol substrate containing (S)-a-silyloxy stereogenic center according to Baltas’s
protocol would selectively form the a-epoxide threo product which led to the revision
of the absolute configurations of Baltas’s originally proposed chiral epoxy alcohol
intermediates. Synthetic macrolides 13 and 14 were evaluated for their cytotoxic
activity against the HCT116 colon cancer cell line as well as their inhibitory effect on
CFTR in human intestinal epithelial (T84) cells compared to their previously reported
analogues. These two synthetic macrolides were discovered to possess no reactivity of
both biological activities tested. Preliminary structure—activity relationship suggested
that the C5—-C6 B-epoxide moiety of both 13 and 14 suppressed the cytotoxic activity
against the HCT116 colon cancer cells as well as their CFTR inhibitory effect.
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CHAPTER 4

EXPERIMENTAL

4.1 General Information

Unless otherwise stated, all reactions were performed under a nitrogen
or argon atmosphere in oven- or flamed-dried glassware. Solvents were used as
received from suppliers or distilled before use using standard procedures. All other
reagents were obtained from commercial sources and used without further purification.
Column chromatography was carried out on silica gel 60 (0.063—-0.200 mm, Merck).
Thin-layer chromatography (TLC) was carried out on silica gel 60 F2s4 plates (Merck).
'H, 13C and 2D NMR spectroscopic data were recorded on 300 or 500 MHz Bruker FT
NMR Ultra Shield spectrometers. Chemical shifts () in the 'H and '*C NMR spectra
are reported in ppm relative to internal tetramethylsilane. The data are presented as
follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m
= multiplet, , br = broad), coupling constant(s) in hertz (Hz), and integration. Infrared
(IR) spectra were recorded with a Perkin-Elmer 783 FTS165 FT-IR spectrometer.
High-resolution mass spectra were obtained on a Ultra-Performance Liquid
Chromatography-High Resolution Mass Spectrometer (Agilent LC-QTOF 6500
system), Mae Fah Luang University or a High-Performance Liquid Chromatograph—
Mass Spectrometer (Shimadzu LCMS-IT-TOF Model LC-20ADXR), Thammasat
University. Melting points were measured using an Electrothermal IA9200 melting
point apparatus and are uncorrected. The optical rotations were recorded on a JASCO

P-2000 polarimeter.
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4.2 Experimentals and Characterization data

4.2.1 General procedure for IBX oxidation

To a solution of epoxy alcohol derivative (1.0 equiv) in DMSO (0.5 M) at room
temperature was added 2-iodoxybenzoic acid (IBX, 3.0 equiv). After being stirred at
room temperature until the starting epoxy alcohol was completely consumed, the
reaction was cooled to 0 °C and then quenched with H>O. The resulting mixture was
then filtered through a pad of Celite and washed with EtOAc. The organic layer of the
colorless filtrate was separated and the aqueous layer was extracted with EtOAc (x2).
The combined organic layers were washed with brine, dried over anhydrous Na>SO4
and concentrated in vacuo. The crude residue was purified by column chromatography
to give the corresponding epoxy aldehyde derivative.

4.2.2 General procedure for TBS protection

To a solution of alcohol derivative (1.0 equiv) in anhydrous CH>Cl, (0.2 M) at

room temperature was added 4-dimethylaminopyridine (DMAP, 0.3 equiv), imidazole
(2.0 equiv) and tert-butyl(chloro)dimethylsilane (TBSCI, 1.5 equiv). After being stirred
at room temperature until the starting alcohol derivative was completely consumed, the
reaction was quenched with H>O. The organic layer was separated and the aqueous
layer was extracted with CH2Cl» (x2). The combined organic phases were washed with
brine, dried over anhydrous Na>SO4 and concentrated in vacuo. The crude residue was
purified by column chromatography to give the corresponding TBS ether derivative.

4.2.3 General procedure for PMB deprotection

To a solution of PMB ether derivative (1.0 equiv) in CH2Cl2:H>O (3:1, 0.06 M)
at 0 °C was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ, 1.5 equiv). The
reaction mixture was stirred from 0 °C to room temperature until the starting alcohol
derivative was completely consumed. The reaction was then quenched with saturated
aqueous NaHCOs. The organic layer was separated and the aqueous layer was extracted
with CH2Cl, (x3). The combined organic phases were washed with brine, dried over
anhydrous Na»SOs and concentrated in vacuo. The crude residue was purified by

column chromatography to give the corresponding alcohol derivative.
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4.2.4 General procedure for DMP oxidation

To a solution of alcohol derivative (1.0 equiv) in anhydrous CH>Cl> (0.02 M)
at room temperature was added Dess—Martin periodinane (DMP, 2.0 equiv), After
being stirred at room temperature until the starting alcohol was completely consumed,
the reaction was quenched with saturated aqueous NaHCO3. The organic layer was
separated and the aqueous layer was extracted with CH>Cl, (x2). The combined organic
phases were washed with brine, dried over anhydrous Na,SOs4 and concentrated in
vacuo. The crude residue was purified by column chromatography to give the
corresponding aldehyde derivative.

4.2.5 General procedure for Wittig olefination

To a solution of aldehyde derivative (1.0 equiv) in anhydrous CH>Cl, (0.08 M)
at room temperature was added (carbethoxymethylene)triphenylphosphorane (2.2
equiv). The reaction mixture was stirred at room temperature overnight. The reaction
mixture was then concentrated in vacuo. The crude residue was purified by column
chromatography to give the corresponding E-o.,3-unsaturated ester derivative.

4.2.6 General procedure for ester hydrolysis

To a solution of ester derivative (1.0 equiv) in THF:MeOH:H»O (8:1:1, 0.03 M)
at room temperature was added LiOH (5.0 equiv). After being stirred at room
temperature overnight, the reaction was neutralized with 4M HCI. The organic layer
was separated and the aqueous layer was extracted with EtOAc (x5). The combined
organic phases were washed with brine, dried over anhydrous Na,SO4 and concentrated
in vacuo. The crude residue was purified by column chromatography to give the
corresponding carboxylic acid derivative.

4.2.7 General procedure for TBDPS protection

To a solution of alcohol derivative (1.0 equiv) in anhydrous CH>Cl (0.2 M) at
room temperature was added 4-dimethylaminopyridine (DMAP, 0.2 equiv), imidazole
(3.0 equiv) and tert-butyl(chloro)diphenylsilane (TBDPSCI, 2.0 equiv). After being
stirred at room temperature overnight, the reaction was quenched with H>O. The
organic layer was separated and the aqueous layer was extracted with CH2Clz (x2). The
combined organic phases were washed with brine, dried over anhydrous Na,SO4 and
concentrated in vacuo. The crude residue was purified by column chromatography to

give the corresponding TBDPS ether derivative.



63

4.2.8 General procedure for benzoate ester protection

To a solution of alcohol derivative (1.0 equiv) in anhydrous CH>Cl> (0.26 M)
at room temperature was added triethylamine (EtzN, 2.0 equiv) and benzoyl chloride
(BzCl, 1.05 equiv). After being stirred at room temperature overnight, the reaction was
quenched with saturated aqueous NH4Cl. The organic layer was separated and the
aqueous layer was extracted with CH2Clz (x2). The combined organic phases were
washed with brine, dried over anhydrous Na,SO4 and concentrated in vacuo. The crude
residue was purified by column chromatography to give the corresponding benzoate
ester derivative.

4.2.9 General procedure for methanolysis

To a solution of ester derivative (1.0 equiv) in methanol (0.17 M) at room
temperature was added potassium carbonate (1.5 equiv). After being stirred at room
temperature until the starting benzoate ester derivative was completely consumed, the
reaction was quenched with H>O. The organic layer was separated and the aqueous
layer was with EtOAc (x3). The combined organic phases were washed with brine,
dried over anhydrous Na>xSO4 and concentrated in vacuo. The crude residue was
purified by column chromatography to give the corresponding alcohol derivative.

4.2.10 General procedure for TBS deprotection

To a solution of TBS ether derivative (1.0 equiv) in EtOH (0.05 M) at room
temperature was added pyridinium p-toluenesulfonate (PPTS, 4.0 equiv). After being
stirred at room temperature overnight, the reaction was quenched with H>O. The
organic layer was separated and the aqueous layer was with EtOAc (x4). The combined
organic phases were washed with brine, dried over anhydrous Na;SO4 and concentrated
in vacuo. The crude residue was purified by column chromatography to give the
corresponding alcohol derivative.

4.2.11 General procedure for Shiina macrolactonization

To a solution of 2-methyl-6-nitrobenzoic anhydride (MNBA, 0.7 equiv) in
anhydrous toluene (0.0021 M) was added 4-dimethylaminopyridine (DMAP, 6.0
equiv). After being stirred for 15 min, the reaction was slowly added a solution of seco
acid (1.0 equiv) in anhydrous toluene (0.012 M) by syringe pump at room temperature
for 8 h. The reaction mixture was then concentrated in vacuo. The crude residue was

purified by column chromatography to give the corresponding macrolactone derivative.
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4.2.12 General procedure for global TBDPS deprotection

To a solution of TBDPS ether derivative (1.0 equiv) in anhydrous THF (0.04
M) at 0 °C was added dropwise acetic acid (0.04 equiv) and tetrabutylammonium
fluoride (TBAF, 1.0 M solution in THF, 10.0 equiv). The reaction mixture was stirred
from 0 °C to 60 °C overnight. The reaction was then quenched with saturated aqueous
NaHCOj3 and H>O. The organic layer was separated and the aqueous layer was extracted
with EtOAc (x5). The combined organic phases were washed with brine, dried over
anhydrous Na»SOs and concentrated in vacuo. The crude residue was purified by

column chromatography to give the corresponding alcohol derivative.

0
/ .
H .
© | ‘OH
0
o]
27 28 102

Macrolactones 27, 28 and 102: A solution of known diene 26 (101.1 mg, 0.29 mmol,
1.0 equiv) in anhydrous CH>Cl, (357 mL, 0.8 mM) at room temperature was purged
with argon over 5 min before Grubbs second generation catalyst (12.1 mg, 14.3 umol,
5 mol %) was added in one portion at room temperature. The reaction mixture was then
heated at 40 °C. After maintaining reaction temperature at 40 °C for 2 h, the reaction
was cooled to room temperature and concentrated in vacuo. The resulting crude was
purified by column chromatography (20—80% EtOAc/hexanes) to give macrolactones
27 (15.8 mg, 17%), 28 (47.9 mg, 52%) and 102 (20.5 mg, 11%).

Macrolactone 27: Ry= 0.60 (60% EtOAc/hexanes); 'H NMR (300 MHz, CDCl3) § 6.79
(dd, J=15.6, 2.5 Hz, 1H), 6.25 (dd, J = 15.6, 2.5 Hz, 1H), 5.59 (dt, J = 10.6, 7.8 Hz,
1H), 5.53-5.41 (m, 1H), 5.18-5.04 (m, 1H), 4.84-4.71 (m, 1H), 4.34-4.23 (m, 2H),
3.79 (d, J=8.5 Hz, 1H), 2.85 (brs, 1H), 2.09-1.94 (m, 2H), 1.94-1.78 (m, 1H), 1.48 (s,
3H), 1.45 (s, 3H), 1.30 (d, J= 6.2 Hz, 3H); 3C NMR (75 MHz, CDCI3) 6 165.2, 141.4,
132.7, 129.9, 122.8, 110.9, 78.2, 78.0, 71.4, 67.4, 65.3, 33.9, 28.8, 27.3, 27.2, 24.9,
20.1. The spectral data of 27 matched those previously described (Tadpetch et al.,
2015).



65

Macrolactone 28: Ry= 0.40 (60% EtOAc/hexanes); 'H NMR (300 MHz, CDCl3)  6.60
(dd, J=15.7, 2.3 Hz, 1H), 6.25 (dd, J = 15.7, 2.3 Hz, 1H), 5.75 (dt, J = 15.6, 7.8 Hz,
1H), 5.09—4.92 (m, 2H), 4.71-4.63 (m, 1H), 4.05-3.96 (m, 2H), 3.92 (dd, J=9.3, 5.9
Hz, 1H), 2.63 (d, J = 8.5 Hz, 1H), 2.19-2.02 (m, 1H), 1.98-1.80 (m, 1H), 1.75-1.60
(m, 4H) 1.51 (s, 3H), 1.45 (s, 3H), 1.32 (d, J= 6.6 Hz, 3H); 13C NMR (75 MHz, CDCl;)
0 165.6,144.5,136.2, 128.6, 122.2, 110.2, 80.9, 78.7, 76.6, 69.8, 69.7, 34.0, 29.9, 27.6,
27.5,23.6, 21.1.

Macrolactone 102: R, = 0.13 (60% EtOAc/hexanes); 'H NMR (300 MHz, CDCIl3) &
6.89 (dd, J=15.7, 3.9 Hz, 1H), 6.16 (dd, J = 15.7, 3.9 Hz, 1H), 5.60 (dt, J = 15.7, 6.3
Hz, 1H), 5.49 (dd, J = 15.7, 6.0 Hz, 1H), 5.06-4.88 (m, 1H), 4.57—4.44 (m, 1H), 4.05
(dd, J=6.9, 4.8 Hz, 1H), 3.96-3.89 (m, 2H), 3.38 (brs, 1H), 3.13 (brs, 1H), 2.20-1.87
(m, 2H), 1.73-1.51 (m, 2H), 1.43 (s, 9H), 1.24 (d, J = 6.2 Hz, 3H); '*C NMR (75 MHz,
CDCl3) 6 165.7, 144.3, 134.0, 129.1, 122.5, 110.0, 79.8, 78.6, 72.1, 71.3, 69.9, 35.6,

31.9,27.4,25.3,204.
o—%
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Benzoate ester 103: To a solution of diol 28 (100.1 mg, 0.31 mmol, 1.0 equiv) in
anhydrous CH>Cl, (11 mL, 0.03 M) at 0 °C was added triethylamine (300 pL, 2.14
mmol, 7.0 equiv), benzoyl chloride (180 pL, 1.53 mmol, 1.05 equiv) and DMAP (62.4
mg, 0.51 mmol, 0.6 equiv), respectively. After being stirred at room temperature
overnight, the reaction was quenched with saturated aqueous NH4Cl. The organic layer
was separated and the aqueous layer was extracted with CH>Cl, (2x10 mL). The
combined organic phases were washed with brine, dried over anhydrous Na,SO4 and
concentrated in vacuo. The crude residue was purified by column chromatography
(10—20% EtOAc/hexanes) to give benzoate ester 103 (122.6 mg, 74%) as a light yellow
oil: Ry=0.61 (20% EtOAc/hexanes); 'H NMR (300 MHz, CDCl3) & 8.22-8.00 (m, 4H),
7.69-7.36 (m, 6H), 6.81 (dd, J = 15.7, 3.2 Hz, 1H), 6.20-6.15 (m, 1H), 6.02 (dt, J =
15.7, 6.3 Hz, 1H), 5.96 (dd, J = 15.7, 6.0 Hz, 1H), 5.65 (t, J=9.4, 3.2 Hz, 1H), 5.19
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(dd, J=15.3, 8.8 Hz, 1H), 5.12-4.97 (m, 1H), 4.53 (dd, J=9.8, 1.7 Hz, 1H), 4.36 (dd,
J=523, 1.7 Hz, 1H), 2.20-2.04 (m, 1H), 1.98-1.77 (m, 1H), 1.76-1.61 (m, 3H), 1.60—
1.47 (m, 1H), 1.43 (s, 9H), 1.32 (d, J = 6.1 Hz, 3H), 1.24 (s, 3H); '*C NMR (75 MHz,
CDCls) § 165.7, 165.3, 165.2, 142.7, 138.5, 133.7, 133.1, 130.4, 130.0, 129.9, 128.8,
128.4,125.3, 122.3, 111.5, 79.6, 77.5, 77.3, 71.8, 69.9, 33.8, 29.9, 27.5, 23.3, 21.0.

OH
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Diol 104: To a round-bottom flask containing acetonide 103 (40.2 mg, 0.07 mmol, 1.0
equiv) at 0 °C was added 90% trifluoroacetic acid (1.32 mL, 17.2 mmol, 200 equiv).
After being stirred at 0 °C for 1.5 h, the reaction was quenched with saturated aqueous
NaHCOs. The organic layer was separated and the aqueous layer was extracted with
EtOAc (4x5 mL). The combined organic phases were washed with brine, dried over
anhydrous Na»SOs and concentrated in vacuo. The crude residue was purified by
column chromatography (15-25% EtOAc/hexanes) to give diol 104 (14.9 mg, 43%)
along with unreacted 103 (12.2 mg, 30%).

Diol 104: White solid; Ry= 0.54 (30% EtOAc/hexanes); 'H NMR (300 MHz, CDCl3) &
8.21-7.96 (m, 4H), 7.66-7.55 (m, 2H), 7.51-7.39 (m, 4H), 6.83 (dd, J = 15.7, 3.2 Hz,
1H), 6.03 (dt, J=15.7, 6.3 Hz, 1H), 5.98 (dd, J = 15.7, 6.0 Hz, 1H), 5.69 (dd, J = 9.4,
3.2 Hz, 1H), 5.40 (dd, J = 15.3, 8.8 Hz, 1H), 5.32-5.18 (m, 1H), 4.09 (d, J = 9.8 Hz,
1H), 4.01-3.85 (m, 1H), 2.28-2.08 (m, 1H), 2.08-1.83 (m, 2H), 1.83—-1.44 (m, 6H),
1.28 (d, J = 6.5 Hz, 2H), 1.25 (s, 3H); 13C NMR (75 MHz, CDCl3) & 166.3, 165.3,
143.0, 137.0, 133.7, 133.5, 130.1, 130.0, 129.9, 129.8, 129.3, 128.7, 128.6, 126.0,
123.5, 74.5, 70.6, 70.1, 70.0, 33.0, 31.0, 29.8, 22.9, 18.5.

OQ\/OPMB

110
2-(((4-Methoxybenzyl)oxy)methyl)oxirane (110): To a stirred suspension of sodium
hydride (NaH, 60% dispersion in mineral oil, 10.37 g, 259.4 mmol, 1.2 equiv) in THF
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(117 mL, 1.85 M) at 0 °C was added a solution of 4-methoxybenzyl alcohol (PMBOH
32.8 g, 237.6 mmol, 1.1 equiv) in THF (80 mL, 2.7 M). The reaction was then stirred
from 0 °C to room temperature for 1.5 h. After that, tetrabutylammonium iodide (TBAI,
638.8 mg, 1.7 mmol, 8 mol %) and a solution of epichlorohydrin (109) (20.21 g, 216.2
mmol, 1.0 equiv) in THF (40 mL, 4.45 M) were added at 0 °C. The reaction mixture
was stirred from 0 °C to room temperature overnight before being quenched with
saturated aqueous NH4Cl (80 mL). The organic layer was separated and the aqueous
layer was extracted with EtOAc (3%x70 mL). The combined organic layers were washed
with brine, dried over anhydrous Na>SO4 and concentrated in vacuo. The crude residue
was purified column chromatography (10-20% EtOAc/hexanes) to yield 110 as a light
yellow oil (29.71 g, 71%): Rr = 0.20 (10% EtOAc/hexanes); 'H NMR (300 MHz,
CDCl3) 6 7.27 (d, J=8.4 Hz, 2H), 6.88 (d, /= 8.7 Hz, 2H), 4.51 (dd, /= 18.9, 11.4 Hz,
2H), 3.80 (s, 3H), 3.72 (dd,J=11.4,3.3 Hz, 1H), 3.41 (dd, J=11.4, 5.7 Hz, 1H), 3.20—
3.14 (m, 1H), 2.79 (t, J = 4.5 Hz, 1H), 2.60 (dd, J = 5.1, 2.7 Hz, 1H). '"H NMR data of
110 matched those previously described (Thiraporn et al., 2022).

?}\/OPMB
110S
(S)- 2-(((4-Methoxybenzyl)oxy)methyl)oxirane (110S): To a 100-mL round-bottom
flask was added (R,R)-cobalt(IT)salen (330.4 mg, 0.5 mmol, 5 mol %) and toluene (2.3
mL) at room temperature. The mixture was added acetic acid (135 pL, 2.18 mmol, 20
mol %) and stirred open air at room temperature for 1 h. The resulting dark brown
solution was then concentrated under reduced pressure to afford a brown solid before
racemic epoxide 110 (22.43 g, 109.4 mmol) was added in one portion. The reaction
mixture was then cooled to 0 °C and H>O (1.3 mL, 0.6 equiv) was added dropwise. The
mixture was stirred from 0 °C to room temperature overnight before being concentrated
under reduced pressure and purified by column chromatography (10-30%
EtOAc/hexanes) to provide chiral epoxide 110S as a yellow oil (9.64 g, 45%): Ry=0.20
(10% EtOAc/hexanes); [a]p® =—-2.90 (¢ 1.00, CHCIl3); '"H NMR (300 MHz, CDCl3) §
7.25 (d,J=28.7Hz, 2H), 6.86 (d, J=8.7 Hz, 2H), 4.48 (dd, J=18.3, 11.4 Hz, 2H), 3.76
(s, 3H),3.70 (dd, /= 11.4, 3.0 Hz, 1H), 3.37 (dd, J=11.4, 6.0 Hz, 1H), 3.16-3.11 (m,
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1H), 2.75 (t, J = 4.5 Hz, 1H), 2.56 (dd, J = 5.1, 2.7 Hz, 1H). Specific rotation and 'H
NMR data of 1108 matched those previously described (Thiraporn et al., 2022).

OH
o~ OPMB

162
(S)-1-((4-Methoxybenzyl)oxy)but-3-en-2-0l (162): To a stirred suspension of
trimethylsulfonium iodide (11.82 g, 57.9 mmol, 1.5 equiv) in anhydrous THF (128 mL,
0.3 M) at 0 °C was added dropwise lithium bis(trimetylsilyl)amide (LHMDS, ca. 1.3
M solution in THF, 74 mL, 96.5 mmol, 2.5 equiv). After being stirred at 0 °C for 1 h,
the light yellow cloudy solution was added a solution of chiral epoxide 1108 (7.52 g,
38.6 mmol, 1.0 equiv) at 0 °C. The mixture was then stirred from 0 °C to room
temperature for 1 h, then quenched with saturated aqueous NH4ClI (80 mL). The organic
layer was separated and the aqueous layer was extracted with EtOAc (3x80 mL). The
combined organic layers were washed with brine, dried over anhydrous Na>SO4 and
concentrated in vacuo. The crude residue was purified column chromatography (10—
30% EtOAc/hexanes) to yield allylic alcohol 162 as a light yellow oil (5.37 g, 71%): Ry
=0.24 (20% EtOAc /hexanes); 'H NMR (300 MHz, CDCl3) § 7.26 (d, J = 8.4 Hz, 2H),
6.88 (d, J= 8.7 Hz, 2H), 5.82 (ddd, J = 16.8, 10.5, 5.7 Hz, 1H), 5.35 (d, /= 17.4 Hz,
1H), 5.18 (d, /= 10.8 Hz, 1H), 4.50 (s, 2H), 4.33 (brs, 1H), 3.80 (s, 3H), 3.51 (dd, J =
9.6, 3.3 Hz, 1H), 3.37-3.31 (m, 1H). 'H NMR data of 162 matched those previously
described (Thiraporn et al., 2022).

OTBDPS
x~_-OPMB
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(8)-tert-Butyl((4-Methoxybenzyl)oxy)but-3-en-2-yl)oxy)diphenylsilane (112): To a
stirred solution of allylic alcohol 162 (6.98 g, 33.5 mmol, 1.0 equiv) in anhydrous
CH:Cl; (112 mL, 0.3 M) at 0 °C was added DMAP (1.22 g, 10.0 mmol, 30 mol %),
imidazole (4.56 g, 67.0 mmol, 2.0 equiv) and tert-butyldiphenylchlorosilane (10.3 mL,
40.2 mmol, 1.2 equiv), respectively. The reaction mixture was stirred from 0 °C to room
temperature overnight before being quenched with H>O (70 mL). The organic layer was

separated and the aqueous layer was extracted with CH>Cl (3 x 50 mL). The combined



69

organic layers were washed with brine, dried over anhydrous Na>;SO4, and concentrated
in vacuo. The crude residue was purified by column chromatography (100% hexanes—
2% EtOAc/hexanes) to yield TBDPS ether 112 as a colorless oil (20.75 g, 88%): Ry=
0.73 (20% EtOAc/hexanes); 'H NMR (300 MHz, CDCl3) § 7.69-7.62 (m, 6H), 7.10 (d,
J=8.4 Hz, 2H), 6.80 (d, J = 8.4 Hz, 2H), 5.87 (ddd, J=17.1, 10.5, 5.7 Hz, 1H), 5.16
(dt, J=17.1, 1.5 Hz, 1H), 5.06 (dt, J = 10.5, 1.5 Hz, 1H), 4.33-4.30 (m, 3H), 3.79 (s,
3H), 3.36 (qd, J=10.5, 1.5 Hz, 1H), 1.06 (s, 9H). '"H NMR data of 112 matched those
previously described (Thiraporn et al., 2022).

OTBDPS

HWT/\\/OPMB
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(R)-2-((tert-Butyldiphenylsilyl)oxy)-3-((4-methoxybenzyl)oxy)propanal (113): To a
stirred solution of allylic alcohol 112 (10.21 g, 22.4 mmol, 1.0 equiv) in acetone/H>O
(4:1,223 mL, 0.1 M) at 0 °C was added N-methylmorpholine N-oxide (NMO, 50 wt%
in H>0, 9.4 mL, 44.7 mmol, 2.0 equiv), followed by osmium tetroxide (OsOa, 4 wt%
in H>O, 1.42 mL, 0.22 mmol, 1 mol %). The reaction mixture was stirred from 0 °C to
room temperature overnight. The mixture was then concentrated under reduced
pressure, diluted with H,O (50 mL) and EtOAc (50 mL). The aqueous phase was
separated and further extracted with EtOAc (3%x50 mL). The combined organic layers
were washed with brine, dried over anhydrous Na,SOs4, and concentrated in vacuo. The
crude residue was purified by column chromatography (10-70% EtOAc/hexanes) to
yield the diol intermediate as a colorless oil (9.04 g, 84%): Ry = 0.30 (40%
EtOAc/hexanes). The diol intermediate was immediately carried to the next step.

To a stirred solution of diol intermediate (9.04 g, 18.8 mmol, 1.0 equiv) in
acetone/H>O (5:1, 75 mL, 0.25 M) at 0 °C was added sodium periodate (NalOa, 8.17 g,
37.6 mmol, 2.0 equiv). After being stirred from 0 °C to room temperature for 2.5 h, the
reaction mixture was concentrated under reduced pressure and diluted with H>O (40
mL). The aqueous phase was separated and further extracted with EtOAc (3x40 mL).
The combined organic layers were washed with brine, dried over anhydrous Na>SOs,
and concentrated in vacuo. The crude residue was purified by column chromatography

(7% EtOAc/hexanes) to yield aldehyde 113 as a colorless oil (6.14 g, 73%): Rr= 0.26
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(10% EtOAc/hexanes); 'H NMR (300 MHz, CDCl3) 8 9.65 (s, 1H), 7.67-7.31 (m, 6H),
7.15(d,J=8.1Hz, 2H), 6.84 (d, ] = 8.4 Hz, 2H), 4.37 (s, 2H), 4.16-4.13 (m, 1H), 3.79
(s, 3H), 3.64 (dd, J = 10.2, 4.8 Hz, 1H), 3.56 (dd, J = 10.2, 4.2 Hz), 1.11 (s, 9H). 'H
NMR data of 113 matched those previously described (Thiraporn et al., 2022).

MeO XN

© ““OTBDPS
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(8,2)-Methyl-4-((tert-Butyldiphylsilyl)oxy)-5-((4-methoxybenzoyl)oxy)pent-2-
enoate (115): To a solution of methyl P,P-bis(2,2,2-trifluoroethyl)phosphonoacetate
(114) (4.96 g, 13.8 mmol, 1.2 equiv) in anhydrous THF (100 mL, 0.14 M) at 0 °C was
added sodium hydride (60% dispersion in mineral oil, 652.7 mg, 16.3 mmol, 1.2 equiv).
After stirring at 0 °C for 1 h, a solution of aldehyde 113 (5.14 g, 11.4 mmol, 1.0 equiv)
in anhydrous THF (50 mL, 0.28 M) was slowly added. The reaction mixture was stirred
at 0 °C for 10 min before being quenched with saturated aqueous NH4CI (50 mL). The
organic layer was separated and the aqueous layer was extracted with EtOAc (3%60
mL). The combined organic layers were washed with brine, dried over anhydrous
NaxSO4, and concentrated in vacuo. The crude residue was purified by column
chromatography (5-10% EtOAc/hexanes) to yield Z-ester 115 as a colorless oil (5.20
g, 79%): Rr=0.33 (10% EtOAc/hexanes); '"H NMR (300 MHz, CDCl3) § 7.70-7.61 (m,
4H), 7.41-7.27 (m, 6H), 7.19 (d, J= 8.4 Hz, 2H), 6.22 (dd, J=11.7, 7.8 Hz, 1H), 5.58
(dd, J=11.7, 0.9 Hz, 1H), 5.54-5.51 (m, 1H), 4.42 (s, 2H), 3.77 (s, 3H), 3.57 (dd, J =
10.5, 5.4 Hz, 1H), 3.49-3.45 (m, 4H), 1.08 (s, 9H). '"H NMR data of 115 matched those
previously described (Thiraporn et al., 2022).

HO XN
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(8,2)-4-((tert-Butyldiphylsilyl)oxy)-5-((4-methoxybenzoyl)oxy)pent-2-en-1-ol
(108): To a solution of ester 115 (6.19 g, 12.3 mmol, 1.0 equiv) in anhydrous CH>Cl,
(120 mL, 0.1 M) at —78 °C was slowly added DIBAL-H (1.0 M in THF, 28 mL, 28.3

mmol, 2.3 equiv). The reaction was then stirred at —78 °C for 30 min before being
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quenched with saturated aqueous potassium sodium tartrate (100 mL). The mixture was
further stirred at room temperature for 1 h. After that, the organic layer was separated
and the aqueous layer was extracted with CH>Cl, (3%x70 mL). The combined organic
layers were washed with brine, dried over anhydrous Na>SO4 and concentrated in
vacuo. The crude residue was purified by column chromatography  (20-30%
EtOAc/hexanes) to yield alcohol 115 as a colorless oil (3.8 g, 69%): Rr= 0.33 (10%
EtOAc/hexanes); 'H NMR (300 MHz, CDCl3) 8 7.64 (t,J= 7.5 Hz, 4H), 7.41-7.31 (m,
6H), 7.14 (d, J = 8.1 Hz, 2H), 6.82 (d, J = 8.4 Hz, 2H), 3.51 (dd, J/=9.0, 5.1 Hz, 1H),
3.33-3.27 (m, 1H), 1.04 (s, 9H). 'H NMR data of 108 matched those previously
described (Thiraporn et al., 2022).

0
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Epoxy alcohols 116a and 116b (Method I): To a suspension of 3-chloroperbenzoic
acid (70-75%, 768.9 mg, 3.12 mmol, 2.0 equiv) in anhydrous CH>Cl, (32 mL, 0.5 M)
at 0 °C was added NaHCOs3 (131.0 mg, 1.56 mmol). The resultant white cloudy
suspension was stirred at 0 °C for 15 min before a solution of Z-allylic alcohol 108
(740.3 mg, 1.56 mmol, 1.0 equiv) in anhydrous CH>Cl, (23 mL, 0.068 M) was slowly
added. The colorless mixture was stirred at 0 °C for 3 h. The yellow cloudy mixture
was quenched with saturated aqueous NaHCO; (35 mL). The aqueous layer was
extracted with CH2Cl> (3x50 mL). The combined organic layers were washed with
brine, dried over anhydrous Na,SOj4, and concentrated in vacuo. The crude residue was
purified by column chromatography (1-10% EtOAc/CH2Cl2) to give epoxy alcohols
116a and 116b.

Epoxy alcohol 116a: Colorless oil (137.7 mg, 18%): Rr= 0.57 (2% EtOAc/CH2Cly);
[a]p? =-36.08 (c 1.00, CHCI3); '"H NMR (300 MHz, CDCl3) & 7.68 (t,J= 7.2 Hz, 4H),
7.51-7.30 (m, 6H), 7.11 (d, J = 8.7 Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H), 4.27 (s, 2H), 3.78
(s, 3H), 3.74-3.62 (m, 2H), 3.48 (t,J = 9.3 Hz, 1H), 3.36 (dd, /=9.0, 4.5 Hz, 1H), 3.15
(dt,J=28.4,4.3 Hz, 1H), 3.07 (dd, /= 8.4, 4.3 Hz, 1H), 3.02 (dd, J=11.7, 8.5 Hz, 1H),
2.89 (brs, 1H), 1.07 (s, 9H); 3C NMR (75 MHz, CDCl3) 8 159.7, 136.1, 135.9, 133.9,
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133.1,129.9, 129.8, 128.7, 127.7, 127.6, 144.1, 73.5, 71.1, 70.4, 60.6, 59.9, 55.7, 55.3,

27.0, 19.4; IR (thin film): 3447, 2932, 1514, 1249, 1111, 703 cm™'; HRMS (ESI) m/z
calcd for C2oH36NaOsSi (M+Na)* 515.2230, found 515.2215.

Epoxy alcohol 116b: Colorless oil (382.6 mg, 50%): Rr= 0.38 (2% EtOAc/CH2Cly);
[a]p?® = —17.57 (c 1.00, CHCl3); '"H NMR (300 MHz, CDCls) 8 7.69 (d, J = 6.9 Hz,
4H), 7.47-7.30 (m, 6H), 7.18 (d, J= 8.4 Hz, 2H), 6.85 (d, /= 8.4 Hz, 2H), 4.38 (s, 2H),
3.81 (s, 3H), 3.53-3.42 (m, 3H), 3.20 (dd, J = 12.0, 6.3 Hz, 1H), 3.15-3.04 (m, 2H),
1.04 (s, 9H); 1*C NMR (75 MHz, CDCl3) & 159.2, 139.5, 133.4, 133.2, 130.0, 129.9,
129.5, 127.8, 127.7, 113.8, 73.1, 72.5, 69.7, 60.5, 57.1, 57.0, 55.3, 26.9, 19.3; IR (thin

film): 3423, 2932, 2857, 1514, 1248, 1112 cm™'; HRMS (ESI) m/z caled for
CaoH36NaOsSi (M+Na)* 515.2230, found 515.2229.
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Epoxy aldehyde 117: Epoxy aldehyde 117 was prepared from epoxy alcohol 116b
(1.79 g, 3.65 mmol, 1.0 equiv) using a general procedure for IBX oxidation. The crude
residue was purified by column chromatography (10-15% EtOAc/hexanes) to yield
epoxy aldehyde 117 as a colorless oil (1.41 g, 78%): Rr= 0.64 (5% EtOAc/hexanes);
'"H NMR (300 MHz, CDCl3) $ 9.32 (d, J=4.6 Hz, 1H), § 7.67-7.61 (m, 4H), 7.43-7.25
(m, 6H), 7.06 (d, J= 7.8 Hz, 2H), 6.82 (d, J = 7.5 Hz, 2H), 4.29-4.03 (m, 4H), 3.79 (s,
3H), 3.47-3.30 (m, 4H), 1.06 (s, 9H); 3*C NMR (75 MHz, CDCl3) 4 198.1, 159.2, 135.9,
133.4,132.4, 130.1, 129.3, 127.8, 113.7, 72.9, 71.6, 68.5, 60.4, 57.6, 55.3, 29.7, 26.9,
19.2. The epoxy aldehyde 117 was immediately carried to the next step.

.\\Q A\\Q
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Allylic alcohols 1185 and 118R: To a solution of epoxy aldehyde 117 (1.13 g, 2.31
mmol, 1.0 equiv) in anhydrous THF (6 mL, 0.4 M) at 0 °C was added vinylmagnesium
chloride (1.0 M in THF, 2.77 mL, 2.77 mmol, 1.2 equiv). The reaction was then stirred
at 0 °C for 10 min before being quenched with saturated aqueous NH4Cl (5 mL). The
organic layer was separated and the aqueous layer was extracted with CH2Clz (3%5 mL).
The combined organic layers were washed with brine, dried over anhydrous Na>SO4
and concentrated in vacuo. The crude residue was purified by column chromatography
(1-10% EtOAc/CH2Cly) to give allylic alcohols 1185 (419.3 mg, 35%) and 118R
(467.2 mg, 39%). The absolute configuration was determined by Mosher’s method
using the corresponding (S)-MTPA and (R)-MTPA esters.

Allylic alcohol 118S: Colorless oil; Ry= 0.62 (20% EtOAc/hexanes); [o]p> = —8.56 (¢
1.00, CHCl3); '"H NMR (300 MHz, CDCl3) § 7.81-7.61 (m, 4H), 7.52-7.32 (m, 6H),
7.16 (d, J = 8.6 Hz, 1H), 6.83 (d, J = 8.6 Hz, 1H), 5.97 (ddd, J = 16.4, 10.6, 5.7 Hz,
1H), 5.32 (dt,J=16.4, 1.5 Hz, 1H), 5.19 (dd, J=10.6, 1.2 Hz, 1H), 4.51-4.42 (m, 1H),
439 (d,J=11.6 Hz, 1H), 4.32 (d, J = 11.6 Hz, 1H), 4.25-4.15 (m, 1H), 3.77 (s, 3H),
3.47-3.32 (m, 3H), 3.02-2.85 (m, 2H), 1.06 (s, 3H); '*C NMR (75 MHz, CDCls) &
159.5, 137.9, 136.2, 135.9, 133.8, 132.8, 130.1, 129.9, 129.8, 129.3, 127.8, 127.7,
116.2, 113.9,73.2, 71.3, 69.8, 69.5, 59.2, 57.3, 55.3, 26.9, 19.4.

(S)-MTPA ester of 118S (R)-MTPA ester of 118S

(S)-MTPA ester of allylic alcohol 118S: 'H NMR (300 MHz, CDCls) § 7.76-7.62 (m,
4H), 7.53-7.44 (m, 2H), 7.44-7.32 (m, 9H), 7.01 (d, J = 8.6 Hz, 1H), 6.79 (d, J = 8.6
Hz, 1H), 5.64 (ddd, J = 16.4, 10.6, 5.7 Hz, 1H), 5.15 (d, J= 9.6 Hz, 1H), 4.99 (d, J =
16.2 Hz, 1H), 4.19 (d, J = 11.6 Hz, 1H), 4.13 (d, /= 11.6 Hz, 1H), 4.04 (dd, J = 10.5,
5.3 Hz, 1H), 3.80 (s, 3H), 3.49 (s, 3H), 3.39 (t, /= 4.4 Hz, 1H), 3.21 (dd, /= 5.8, 3.4
Hz, 1H), 3.11 (dd, J = 5.3, 3.4 Hz, 1H), 1.06 (s, 9H).
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(R)-MTPA ester of allylic alcohol 118S: "H NMR (300 MHz, CDCl3) § 7.76-7.62 (m,
4H), 7.53-7.447 (m, 2H), 7.47-7.29 (m, 9H), 7.00 (d, J = 8.6 Hz, 1H), 6.79 (d, /= 8.6
Hz, 1H), 5.76 (ddd, J = 16.4, 10.6, 5.7 Hz, 1H), 5.62 (t, J= 5.7 Hz, 1H), 5.20 (d, J =
10.5 Hz, 1H), 5.08 (d, /= 10.5 Hz, 1H), 4.12 (d,J=11.6 Hz, 1H), 4.06 (d, /= 11.6 Hz,
1H), 4.03 (dd, J=10.5, 5.3 Hz, 1H), 3.79 (s, 3H), 3.49 (s, 3H), 3.28 (d, /= 5.0 Hz, 1H),
3.16 (dd, J=5.8, 3.4 Hz, 1H), 3.04 (dd, J= 5.3, 3.4 Hz, 1H), 1.06 (s, 9H).

-0.09 -0.05

Table 9 Ad (85— 6r) data for (S)- and (R)-MTPA esters of allylic alcohol 118§

position Os-ester (Ppm) OR-ester (Ppm) A3 (85— 0r) (ppm)

6 4.19 4.12 +0.07

4.13 4.06 +0.07
9 3.21 3.16 +0.05
10 3.11 3.04 +0.07
12 5.64 5.76 -0.12
13 4.99 5.08 -0.09

5.15 5.20 -0.05

Allylic alcohol 118R: Colorless oil; Ry= 0.48 (60% EtOAc/hexanes); [a]p?* = +22.16
(¢ 1.00, CHCls); 'H NMR (300 MHz, CDCls) & 7.73-7.62 (m, 4H), 7.46-7.27 (m, 6H),
7.09 (d, J = 8.6 Hz, 1H), 6.82 (d, J = 8.6 Hz, 1H), 5.66 (ddd, J = 16.4, 10.7, 4.9 Hz,
1H), 5.21 (dt, J=17.3, 1.3 Hz, 1H), 5.05 (dd, /= 10.6, 1.0 Hz, 1H), 4.28 (d, /J=11.5
Hz, 1H), 4.24 (d, J = 11.5 Hz, 1H), 3.95 (dt, J = 6.7, 4.6 Hz, 1H), 3.84-3.76 (m, 1H),
3.77 (s, 3H), 3.55-3.40 (m, 2H), 3.25 (dd, J = 6.9, 3.9 Hz, 1H), 2.88 (dd, J = 6.9, 4.1
Hz, 1H), 2.22 (brs, 1H), 1.04 (s, 3H); '3C NMR (75 MHz, CDCl3) 8 159.2, 136.3, 136.1,
135.9, 133.7, 133.3, 130.3, 129.9, 129.8, 129.3, 127.7, 127.6, 72.9, 72.6, 69.4, 69.3,
59.9, 58.4, 55.3,27.1,27.0, 19.4.
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(S)-MTPA ester of 118R (R)-MTPA ester of 118R

(S)-MTPA ester of allylic alcohol 118R: "H NMR (300 MHz, CDCl3) § 7.75-7.64 (m,
4H), 7.45-7.36 (m, 11H), 7.06 (d, J= 8.5 Hz, 1H), 6.81 (d, J = 8.5 Hz, 1H), 5.74 (ddd,
J=17.1,10.8, 6.0 Hz, 1H), 5.51-5.46 (m, 1H), 5.29 (d, /= 17.1 Hz, 1H), 5.16 (d, J =
10.6 Hz, 1H), 4.21 (d, J= 11.8 Hz, 1H), 4.16 (d, /= 11.8 Hz, 1H), 4.05 (dd, J = 10.3,
5.2 Hz, 1H), 3.90 (t,/=4.7 Hz, 1H), 3.80 (s, 3H), 3.52 (s, 3H), 3.47-3.36 (m, 2H), 3.26
(dd,J=5.6,4.2 Hz, 1H), 3.11 (dd,J=8.5,4.1 Hz, 1H), 1.06 (s, 9H).

(R)-MTPA ester of allylic alcohol 118R: 'H NMR (300 MHz, CDCl3) § 7.71-7.66 (m,
4H), 7.44-7.36 (m, 11H), 7.07 (d, J= 8.6 Hz, 1H), 6.81 (d, J = 8.6 Hz, 1H), 5.65 (ddd,
J=17.1,10.8, 5.7 Hz, 1H), 5.52 (dd, /= 8.7, 5.7 Hz, 1H), 5.17-5.13 (m, 1H), 5.08 (d,
J=10.8 Hz, 1H),4.21 (d,J=11.8 Hz, 1H),4.17 (d,J=11.8 Hz, 1H), 4.08 (dd, J=9.9,
4.8 Hz, 1H), 3.94 (s, 3H), 3.80 (s, 3H), 3.48-3.35 (m, 2H), 3.30 (dd, J = 5.7, 4.2 Hz,
1H), 3.14 (dd, J = 8.7, 4.2 Hz, 1H), 1.05 (s, 9H).

Table 10 Ad (0s— dr) data for (S)- and (R)-MTPA esters of allylic alcohol 118R

position |  ds-ester (Ppm) OR-ester (PpM) AS (85— 6r) (ppm)
6 4.16 4.17 -0.01
8 4.05 4.08 -0.03
9 3.11 3.14 -0.03
10 3.26 3.30 -0.04
12 5.16 5.08 +0.08
13 5.74 5.65 +0.09
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Silyl ether 119: Silyl ether 119 was prepared from alcohol 1185 (411.1 mg, 0.79 mmol)
using the general procedure for TBS protection. The crude residue was purified by
column chromatography (5% EtOAc/hexanes) to give silyl ether 119 (501.5 mg, 84%)
as a colorless oil: Ry=0.54 (10% EtOAc/hexanes); [o]p*? =—17.12 (¢ 1.00, CHCl3); 'H
NMR (300 MHz, CDCl3) 8 7.78 (dd, J = 6.7, 1.2 Hz, 4H), 6 7.49-7.45 (m, 2H), 7.42—
7.37 (m, 4H), 7.13 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 5.77-5.65 (m, 1H),
5.00 (d, /= 10.3 Hz, 1H), 4.90 (d, J = 17.2 Hz, 1H), 4.34-4.29 (m, 4H), 3.85 (s, 9H),
3.57-3.56 (m, 2H), 3.22 (dd, /= 6.5, 3.9 Hz, 1H), 3.21-3.01 (m, 1H), 1.13 (s, 9H), 0.88
(s, 9H), 0.02 (s, 3H), 0.00 (s, 3H); *C NMR (75 MHz, CDCls) § 159.1, 137.9, 136.2,
136.0, 134.4, 133.7, 130.6, 129.7, 129.6, 129.4, 127.6, 127.5, 166.7, 113.6, 72.9, 72.8,
71.1,69.2,59.5,57.7,55.3,27.1,25.9, 19.5, 18.2, 4.1, 4.5.
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Alcohol 163: Alcohol 163 was prepared from PMB ether 119 (328.2 mg, 0.52 mmol)
using a general procedure for PMB deprotection. The crude residue was purified by
column chromatography (50% CH:Cl2/EtOAc) to yield alcohol 163 as a light yellow
oil (245.8 mg, 93%): Ry= 0.42 (10% EtOAc/hexanes); [o]p** =—43.80 (¢ 1.00, CHCI3);
'"H NMR (300 MHz, CDCl3) 6 7.77-7.72 (m, 4H), 7.47-7.43 (m, 6H), 5.62-5.50 (m,
1H), 4.95 (d, J=10.3 Hz, 2H), 4.87 (d, /= 17.2 Hz, 1H), 4.26—4.19 (m, 2H), 3.70 (d,
J=4.3Hz, 2H), 3.19 (dd, /= 6.3, 3.9 Hz, 1H), 2.97-2.94 (m, 1H), 2.05 (brs, 1H), 1.12
(s, 9H), 0.83 (s, 9H), 0.03 (s, 3H), 0.05 (s, 3H); *C NMR (75 MHz, CDCl3) § 137.5,
136.0,135.7,133.7,133.3,130.1, 128.0, 127.9, 117.0, 71.4, 69.3, 65.5, 59.3, 58 .4, 27.0,
259,194, 18.2,4.2,-4.5.
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Ester 121: Alcohol 163 (138.1 mg, 0.27 mmol) was first transformed to aldehyde
intermediate 120 using a general procedure for DMP oxidation. The crude residue was
purified by column chromatography (7% EtOAc/hexanes) to yield aldehyde 120 as a
colorless oil (130.6 mg, 95%): Rr=0.61 (10% EtOAc/hexanes) as a colorless oil, which
was immediately converted to ester 121 using a general procedure for Wittig
olefination. The crude residue was purified by column chromatography (2%
EtOAc/hexanes) to yield ester 120 as a colorless oil (255.4 mg, 93%): Ry = 0.38 (5%
EtOAc/hexanes); [a]p?? = —1.68 (¢ 1.00, CHCl3); 'H NMR (300 MHz, CDCls) & 7.72—
7.62 (m, 4H), 7.46-7.34 (m, 6H), 6.83 (dd, /= 15.7, 6.8 Hz, 1H), 5.69 (d, J = 15.7 Hz,
1H), 5.48-5.41 (m, 1H), 5.24 (dd, J = 17.0, 1.1 Hz, 1H), 4.96 (dd, J = 10.4, 1.7 Hz,
1H), 4.82-4.24 (m, 1H), 4.16 (q, J=7.1 Hz, 2H), 3.79-3.76 (m, 1H), 3.12 (dd, J=5.8,
4.1 Hz, 1H), 2.85 (dd, /= 7.9, 4.0 Hz, 1H), 1.27 (t, J= 7.1 Hz, 3H), 1.08 (s, 9H), 0.86
(s, 9H), 0.05 (s, 3H), 0.05 (s, 3H), —0.06 (s, 3H); 3C NMR (75 MHz, CDCls) 8 165.8,
145.7, 136.1, 136.0, 133.0, 132.7, 130.3, 130.1, 127.9, 122.9, 115.7, 71.6, 70.5, 61.1,
60.5,59.2,27.1,25.9,19.4, 18.4, 14.3, 4.5, -4.8.

“‘OTBDPS

122

Carboxylic acid 122: Carboxylic acid 122 was prepared from ester 29 (290.8 mg, 0.49
mmol) using a general procedure for ester hydrolysis. The crude residue was purified
by column chromatography (30% EtOAc/hexanes—100% EtOAc) to give carboxylic
acid 122 as a colorless oil (214.5 mg, 78%): Rr= 0.44 (30% EtOAc/hexanes); [a]p?? =
—5.98 (¢ 1.00, CHCl3); 'H NMR (300 MHz, CDCl3) 8 7.75-7.65 (m, 4H), 7.47-7.37
(m, 6H), 7.06 (dd, J=15.7, 5.3 Hz, 1H), 5.96 (d, /= 15.7 Hz, 1H), 5.56-5.44 (m, 1H),
4.87 (d, J=10.3 Hz, 1H), 4.81 (d, J = 4.6 Hz, 1H), 4.81-4.77 (m, 1H), 4.23 (dd, J =
7.1, 3.8 Hz, 1H), 3.08 (dd, J = 5.7, 3.8 Hz, 1H), 2.94-2.91 (m, 1H), 1.10 (s, 9H), 0.81
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(s, 9H), —0.05 (s, 6H); 3C NMR (75 MHz, CDCl3) § 171.5, 149.6, 137.5, 136.0, 135.9,
133.3,132.9, 130.2, 130.1, 127.9, 121.1, 117.1, 71.3, 68.8, 59.8, 59.1, 27.0, 25.9, 19.5,
18.2,-4.2, 4.4,

/6
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Ester 123: To a solution of carboxylic acid 122 (85.3 mg, 0.15 mmol, 1.0 equiv) in
anhydrous toluene (960 pL, 0.16 M) at room temperature was added triethylamine
(65 uL, 0.46 mmol, 3.0 equiv) and 2,4,6-trichlorobenzoyl chloride (36 pL, 0.23 mmol,
1.5 equiv). The reaction mixture was then stirred at room temperature for 1.5 h. After
that, a solution of (S)-hept-6-en-2-ol (24) (18 mg, 0.15 mmol, 1.0 equiv) in anhydrous
toluene (730 puL, 0.21 M) and DMAP (23.4 mg, 0.18 mmol, 1.2 equiv) were added and
the reaction mixture was further stirred for 10 min. The resulting white cloudy solution
was then quenched with saturated NaHCO3 (2 mL). The aqueous layer was extracted
with EtOAc (3x3 mL). The combined organic layers were washed with brine, dried
over anhydrous Na>SO4, and concentrated in vacuo. The crude residue was purified by
column chromatography (2% EtOAc/hexanes) to give ester 123 (67.7 mg, 71%) as a
light yellow oil: Ry=0.76 (10% EtOAc/hexanes); 'H NMR (300 MHz, CDCls) 8 7.73—
7.63 (m, 4H), 7.45-7.36 (m, 6H), 6.87 (dd, J = 15.8, 5.8 Hz, 1H), 5.84-5.72 (m, 2H),
5.61-5.49 (m, 1H), 4.72-4.69 (m, 1H), 4.24-4.20 (m, 1H), 3.07-3.04 (m, 1H), 2.92—
2.89 (m, 1H), 2.10-2.03 (m, 2H), 1.65-1.39 (m, 4H), 1.26-1.21 (m, 1H), 1.07 (s, 9H),
1.07 (s, 9H), 0.80 (s, 9H), —0.05 (s, 6H); '3C NMR (75 MHz, CDCls) § 165.7, 146.1,
138.6, 137.7, 136.0, 133.4, 133.1, 130.1, 127.8, 122.7, 116.9, 114.9, 71.1, 70.9, 69.2,
59.9,59.2,35.5, 33.6,27.0, 25.9, 24.7, 20.1, 19.5, 18.2, 4.2, 4.4.
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124

Diol 124: To a solution of silyl ether 123 (50.1 mg, 0.07 mmol, 1.0 equiv) in anhydrous
THF (1 mL, 0.07 M) at 0 °C was added TBAF (1.0 M solution in THF, 465 pL, 6.0
equiv). The stirred reaction was then heated to 60 °C. After maintaining reaction
temperature at 60 °C for 8 h, the reaction was cooled to room temperature, and
quenched with saturated aqueous NH4Cl (1 mL). The organic layer was separated and
the aqueous layer was extracted with EtOAc (4x3 mL). The combined organic phases
were washed with brine, dried over anhydrous Na,SO4 and concentrated in vacuo. The
crude residue was purified by column chromatography (30% EtOAc/hexanes) to give
diol 124 as colorless oil: Ry= 0.56 (40% EtOAc/hexanes); 'H NMR (300 MHz, CDCl5)
0 7.02 (dd, J = 15.8, 4.5 Hz, 1H), 6.15 (dd, J = 15.8, 1.6 Hz, 1H), 6.07-5.96 (m, 1H),
5.81-5.69 (m, 1H), 5.41 (d, J=17.3 Hz, 1H), 5.29 (d, /= 10.5 Hz, 1H), 5.02-4.92 (m,
2H), 4.30-4.25 (m, 1H), 4.13-4.09 (m, 1H), 3.06-3.00 (m, 2H), 2.08-2.01 (m, 2H),
1.66-1.50 (m, 2H), 1.48-1.34 (m, 2H), 1.23 (d, J = 6.2 Hz, 3H); 3C NMR (75 MHz,
CDCl) 6 166.2, 145.7, 138.5, 137.0, 122.5, 117.4, 114.9, 71.6, 71.0, 69.2, 58.4, 58.0,

35.4,33.5,24.7, 20.0.
BzO N
-,
15207§

(85,2)-3-(2,2-Dimethyl-1,3-dioxolan-4-yl)allyl benzoate (152): Benzoate ester 152
was prepared from the known allylic alcohol 151 (5.87 g, 37.1 mmol) using the general
procedure for benzoate ester protection. The crude residue was purified by column
chromatography (10-20% EtOAc/hexanes) to yield benzoate ester 152 as a colorless
oil (8.66 g, 89%): Rr= 0.57 (20% EtOAc/hexanes); [a]p?® = —18.19 (c 1.00, CHCI3);
'"H NMR (300 MHz, CDCl3) & 8.06-7.99 (m, 2H), 7.54 (t, J = 7.5 Hz, 1H), 7.47-7.37
(m, 2H), 5.86 (dt, J = 10.2, 6.9 Hz, 1H), 5.75-5.65 (m, 1H), 4.99—4.84 (m, 3H), 4.13
(dd, J= 8.1, 6.2 Hz, 1H), 3.65-3.52 (m, 1H), 1.43 (s, 1H), 1.39 (s, 1H); 13C NMR (75
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MHz, CDCl;) 6 166.3, 133.1, 132.4, 130.1, 129.7, 128.5, 127.4, 109.7, 72.0, 69.5, 60.6,

26.7,25.9; IR (thin film): 2986, 2930, 1721, 1452, 1271, 1061 cm™'; HRMS (ESI) m/z
calcd for CisHisNaO4 (M+Na)" 285.1103, found 285.1059.

BzO N
“'OH

OH
153

(S,2)-4,5-Dihydroxypent-2-en-1-yl benzoate (153): To a solution of acetonide 152
(8.60 g, 32.8 mmol, 1.0 equiv) in acetonitrile:H>O (5:1, 480 mL, 0.068 M) at 0 °C was
slowly added 2M HCI (40 mL). After stirring from 0 °C to room temperature for 3 h,
the reaction mixture was quenched with saturated aqueous NaHCO; (80 mL). The
aqueous phase was extracted with EtOAc (4x100 mL). The combined organic layers
were washed with brine, dried over anhydrous Na,;SOs4, and concentrated in vacuo. The
crude residue was purified by column chromatography (50-80% EtOAc/hexanes) to
give diol 153 as a colorless o0il (5.97 g, 82%): Rr= 0.21 (50% EtOAc/hexanes); [o]p?’
=+27.32 (¢ 1.00, CHCl3); 'H NMR (300 MHz, CDCl3) & 8.06-7.95 (m, 2H), 7.52 (t, J
= 7.5 Hz, 1H), 7.45-7.34 (m, 2H), 5.81-5.63 (m, 2H), 5.03 (dd, J = 12.9, 6.9 Hz, 1H),
4.85 (dd, J = 12.9, 6.0 Hz, 1H), 4.69 (dt, J = 10.8, 3.9 Hz, 1H), 4.17 (brs, 1H), 3.82
(brs, 1H), 3.71-3.47 (m, 2H); '3C NMR (75 MHz, CDCl3) 6 166.8, 133.2, 133.1, 129.9,
129.7, 128.5, 126.9, 68.8, 66.2, 61.1; IR (thin film): 3385, 2931, 1718, 1451, 1274,

1070 cm™'; HRMS (ESI) m/z caled for Ci2HisNaOs (M+Na)® 245.0709, found

245.0761.
BzO

“'OH
OPMB
134

(8,2)-4-Hydroxy-5-((4-methoxybenzyl)oxy)pent-2-en-1-yl benzoate (134): To a
solution of diol 153 (5.01 g, 22.5 mmol, 1.0 equiv) in methanol (132 mL, 0.17 M) at
room temperature was added dibutyltin oxide (6.73 g, 27.1 mmol, 1.2 equiv). The
reaction mixture was then heated to 80 °C and stirred for 3 h before being cooled to

room temperature. After that, the solvent was evaporated and co-evaporated with
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toluene (3x100 mL) under reduced pressure. The resulting crude residue was
redissolved in anhydrous DMF (56 mL, 0.4 M) at room temperature and p-
methoxybenzyl chloride (3.3 mL, 24.8 mmol, 1.1 equiv) and tetrabutylammonium
bromide (TBAB, 5.81 g, 17.9 mmol, 0.8 equiv) were added. The mixture was then
heated to 65 °C and stirred for 2 h before being cooled to room temperature. The solvent
was evaporated by co-evaporation with toluene (200 mL) under reduced pressure. The
crude was diluted with EtOAc (100 mL) and washed with 2M HCI (2x30 mL) and H,O
(50 mL), dried over anhydrous Na;SO4 and concentrated in vacuo. The crude residue
was purified by column chromatography (10-30% EtOAc/hexanes) to give PMB ether
134 as a light yellow oil (5.48 g, 71%): Ry=0.21 (20% EtOAc/hexanes); [a]p? =+13.88
(¢ 1.00, CHCI3); 'H NMR (300 MHz, CDCls) & 8.09-7.99 (m, 2H), 7.55 (t,J= 7.5 Hz,
1H), 7.49-7.37 (m, 2H), 7.25 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 5.79 (dt, J
=11.1, 7.2 Hz, 1H), 5.74-5.63 (m, 1H), 4.99 (dd, J = 12.9, 6.9 Hz, 1H), 4.87 (dd, J =
12.9, 6.3 Hz, 1H), 4.75 (dt, J=11.4, 3.9 Hz, 1H), 4.50 (s, 2H), 3.78 (s, 2H), 3.52-3.38
(m, 2H); *C NMR (75 MHz, CDCl3) 8 166.5, 159.5, 133.1, 130.2, 130.0, 129.7, 129.5,
128.4,127.1,114.0,73.5,73.2,67.2,61.1, 55.3; IR (thin film): 3422, 2859, 1717, 1272,

1109, 710 cm™'; HRMS (ESI) m/z caled for C20H22NaOs (M+Na)* 365.1365, found
365.1307.

BzO

“OH
OPMB

136
Epoxy alcohol 136 (Method III): To a solution of Z-allylic alcohol 134 (4.27 g, 12.5
mmol, 1.0 equiv) in CH2Cl (156 mL, 0.08 M) at room temperature was added 3-
chloroperbenzoic acid (70-75%, 5.54 g, 22.5 mmol, 1.8 equiv) and the mixture was
stirred at room temperature overnight. The white cloudy solution was then quenched
with saturated aqueous NaHCO;s (80 mL). The aqueous layer was extracted with
CH:Cl> (3x70 mL). The combined organic layers were washed with brine, dried over
anhydrous Na>SOs, and concentrated in vacuo. The crude residue was purified by
column chromatography (10—20% EtOAc/hexanes) to yield inseparable diastereomeric
mixture of epoxide 136 as a colorless oil (3.48 g, 78%): Rr = 0.10 (20%
EtOAc/hexanes); [a]p?® = +17.22 (¢ 1.00, CHCl3); 'H NMR (300 MHz, CDCls) & 8.06
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(d, J = 7.2 Hz, 2H), 7.60-7.55 (m, 1H), 7.49-7.39 (m, 1H), 7.25 (d, J = 8.7 Hz, 2H),
6.87 (d, J = 8.7 Hz, 2H), 4.61 (dd, J = 12.6, 3.6 Hz, 1H), 4.50 (s, 2H), 4.38 (dd, J =
12.6, 7.2 Hz, 1H), 3.88-3.76 (m, 1H), 3.79 (s, 3H), 3.57 (d, J= 5.4 Hz, 2H), 3.41 (dt, J
=17.5,4.2 Hz, 1H), 3.16 (dd, J = 6.6, 4.2 Hz, 1H); °C NMR (75 MHz, CDCl3) 5 166.4,
159.5, 133.3, 129.9, 129.8, 129.5, 128.5, 114.1, 73.4, 71.2, 68.9, 63.4, 57.7, 55.4, 54.4;

IR (thin film): 3447, 2932, 2857, 1722, 1513, 1110 cm™'; HRMS (ESI) m/z calcd for
C20H22KOs (M+K)* 397.1053, found 397.1053. This mixture was further elaborated to
epoxy alcohols 116a and 116b by a 2-step transformation.

(0]
BzO

“‘OTBDPS
OPMB

164
Silyl ether 164: Silyl ether 164 was prepared from epoxy alcohol 136 (2.74 g, 7.65
mmol, 1.0 equiv) using a general procedure for TBDPS protection. The crude residue
was purified by column chromatography (100% hexanes—5% EtOAc/hexanes) to yield
inseparable diastereomeric mixture of silyl ether 164 as a light yellow oil (3.92 g, 86%)):
Rr=0.33 (5% EtOAc/hexanes); [a]p> = +11.46 (¢ 1.00, CHCls); '"H NMR (300 MHz,
CDCl3) 6 8.01 (d, J = 7.2 Hz, 2H), 7.81-7.63 (m, 4H), 7.59—7.49 (m, 1H), 7.48-7.29
(m, 8H), 7.11 (d, J= 8.4 Hz, 2H), 6.82 (d, /= 8.4 Hz, 2H), 4.41 (dd, J = 12.3, 2.7 Hz,
1H), 4.27 (s, 2H), 3.89-3.73 (m, 1H), 3.76 (s, 3H), 3.69 (dt, J=9.9, 5.1 Hz, 1H), 3.49—
3.32 (m, 3H), 3.27 (dd, J=8.19, 4.5 Hz, 1H), 1.09 (s, 9H) ; 1*C NMR (75 MHz, CDCl;)
0 166.3, 159.3, 136.1, 136.0, 133.9, 133.2, 133.1, 129.9, 129.8, 129.7, 129.3, 128.4,
127.7,127.6, 113.9, 73.1, 71.5, 71.3, 64.2, 59.1, 55.3, 54.5, 27.0, 19.5; IR (thin film):
2932, 2857, 1722, 1270, 1110, 708 cm™'; HRMS (ESI) m/z calcd for CscH4106Si
(M+H)" 597.2672, found 597.2675. Silyl ether 164 (4.97 g, 8.33 mmol, 1.0 equiv) was
then transformed to epoxy alcohols 116a and 116b using the general procedure for
methanolysis. The crude residue was purified by column chromatography (1-10%
EtOAc/CH2Cl) to give separable epoxy alcohols 116a (3.04 g, 74%): Rr= 0.57 (2%
EtOAc/ CH2Cl,) and 116b (205.1 mg, 5%): Rr= 0.38 (2% EtOAc/ CH2Cl) as colorless

oils.
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\O
BzO =

“‘OTBDPS
137 OPMB

((25,395)-3-((R)-1-((tert-Butyldiphenylsilyl)oxy)-2-((4-methoxybenzyl)oxy)ethyl)

oxiran-2-yl)methyl benzoate (137). Benzoate ester 137 was prepared from epoxy
alcohol 116b (387.6 mg, 0.79 mmol) using a general procedure for benzoate ester
protection. The crude residue was purified by column chromatography (2-5%
EtOAc/hexanes) to give benzoate ester 137 as a colorless oil (394.4 mg, 84%): Ry=0.63
(5% EtOAc/hexanes); [a]p?* = —29.38 (¢ 1.00, CHCI3); '"H NMR (300 MHz, CDCl3) §
7.98 (d, J= 7.7 Hz, 2H), 7.70 (d, J = 6.8 Hz, 4H), 7.53 (t, J = 7.2 Hz, 2H), 7.48-7.29
(m, 8H), 7.16 (d, J= 8.3 Hz, 2H), 6.84 (d, J= 8.3 Hz, 2H), 4.36 (s, 2H), 4.22—4.10 (m,
1H), 3.94-3.69 (m, 2H), 3.79 (s, 3H), 3.62—3.51 (m, 2H), 3.34-3.20 (m, 2H), 1.06 (s,
9H); 3C NMR (75 MHz, CDCl3) § 166.2, 159.2, 136.1, 136.0, 133.4, 133.1, 130.3,
130.1,129.9,129.8,129.4,128.4,127.9,127.7,113.8,73.1, 72.7, 69.8, 63.3, 56.6, 55 .4,

54.4,27.0, 19.4; IR (thin film): 2932, 1723, 1513, 1270, 1111, 708 cm™!; HRMS (ESI)
m/z calcd for C3cHaoNaOsSi (M+Na)* 619.2492, found 619.2481.

BzO \Q

“OTBDPS
138 OH

((25,395)-3-((R)-1-((tert-Butyldiphenylsilyl)oxy)-2-((4-methoxybenzyl)oxy)ethyl)

oxiran-2-yl)methyl benzoate (138). Alcohol 138 was prepared from PMB ether 137
(340.2 mg, 0.57 mmol) using a general procedure for PMB deprotection. The crude
residue was purified by column chromatography (10-20% EtOAc/hexanes) to give
alcohol 138 (209.2 mg, 77%) as a colorless oil: R;= 0.53 (20% EtOAc/hexanes); [o]p?*
=-23.26 (¢ 1.00, CHCl3); '"H NMR (300 MHz, CDCl3) 8 8.01-7.91 (m, 2H), 7.79—7.64
(m, 4H), 7.58-7.51 (m, 1H), 7.51-7.35 (m, 8H), 3.92 (dd, J = 12.4, 2.9 Hz, 1H),
3.81-3.74 (m, 2H), 3.73-3.60 (m, 2H), 3.26 (dd, /= 7.6, 4.2 Hz, 1H), 3.18 (dt,J=9.9,
4.2 Hz, 1H), 1.09 (s, 9H); 3C NMR (75 MHz, CDCl3) § 166.2, 135.9, 135.7, 132.2,
132.8,130.4, 129.8, 129.7, 128.5, 128.2, 128.1, 70.1, 65.5, 63.0, 56.7, 54.4, 27.0, 19.4;
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IR (thin film): 3448, 2931, 1722, 1271, 1111, 704 cm™!; HRMS (ESI) m/z calcd for
C2sH3:NaOsSi (M+Na)" 499.1917, found 499.1919.

BzO \Q

“"OTBDPS
139 OTBS

((25,39)-3-((R)-2,2,8,8,9,9-Hexamethyl-3,3-diphenyl-4,7-dioxa-3,8-disiladecan-5-

yloxiran-2-yl)methyl benzoate (139). Silyl ether 139 was prepared from alcohol 138
(210.9 mg, 0.44 mmol) using a general procedure for TBS protection. The crude residue
was purified by column chromatography (2—-5% EtOAc/hexanes) to give silyl ether 139
as a colorless oil (209.1 mg, 80%): R/= 0.80 (5% EtOAc/hexanes); [a]p? = —19.08 (¢
1.00, CHCl3); 'H NMR (300 MHz, CDCl3) 8 8.06—7.99 (m, 2H), 7.83—7.74 (m, 4H),
7.61-7.53 (m, 1H), 7.51-7.36 (m, 8H), 4.16 (dd, J=12.5, 2.5 Hz, 1H), 3.89 (dd, J =
12.5, 7.6 Hz, 1H), 3.77-3.68 (m, 1H), 3.73 (s, 3H), 3.33-3.20 (m, 2H), 1.10 (s, 9H),
0.92 (s, 9H), 0.06 (s, 3H), 0.03 (s, 3H); *C NMR (75 MHz, CDCl3) § 166.2, 136.1,
133.5, 133.4, 133.1, 130.1, 130.0, 129.8, 128.4, 127.9, 127.8, 70.9, 65.9, 63.5, 56.6,
54.5, 27.0, 26.0, 19.4, 18.5, —=5.3, —=5.4; IR (thin film): 2930, 1724, 1270, 1111, 708

cm™'; HRMS (ESI) m/z caled for C3aHa6NaOsSi» (M+Na)* 613.2781, found 613.2762.

HO O

‘OTBDPS
140 OTBS

((25,39)-3-((R)-2,2,8,8,9,9-Hexamethyl-3,3-diphenyl-4,7-dioxa-3,8-disiladecan-5-

yloxiran-2-yl)methanol (140). Epoxy alcohol 140 was prepared from benzoate ester
139 (167.0 mg, 0.28 mmol) using a general procedure for methanolysis. The crude
residue was purified by column chromatography (10-20% EtOAc/hexanes) to give
epoxy alcohol 140 (108.8 mg, 79%) as a colorless oil: Ry=0.67 (20% EtOAc/hexanes);
[a]p?® = —25.33 (¢ 1.08, CHCl3); '"H NMR (300 MHz, CDCl3) & 7.71-7.67 (m, 4H),
7.42-7.34 (m, 6H), 3.66-3.64 (m, 3H), 3.32 (dd, /= 12.3, 4.0 Hz, 1H), 3.25-3.18 (m,
1H), 3.16 (dd, J=5.9, 4.0 Hz, 1H), 3.03 (dt, J = 6.9, 4.0 Hz, 1H), 1.86 (brs, 1H) 1.08
(s, 9H), 0.92 (s, 9H), 0.08 (s, 3H), 0.05 (s, 3H); *C NMR (75 MHz, CDCl3) § 136.0,
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135.9,133.6,133.3, 130.1, 130.0, 127.8, 127.7, 71.0, 66.1, 60.6, 57.3, 57.2, 26.9, 26.0,

19.4, 18.5, —=5.35, =5.45; IR (thin film): 3421, 2930, 2857, 1270, 1104, 774 cm™!;

HRMS (ESI) m/z caled for C27H42NaO4Si> (M+Na)* 509.2519, found 509.2523.

BzO g

““OTBDPS
141 OPMB

((2R,3R)-3-((R)-1-((tert-Butyldiphenylsilyl)oxy)-2-((4-methoxybenzyl)oxy)ethyl)

oxiran-2-yl)methyl benzoate (141). Benzoate ester 141 was prepared from epoxy
alcohol 116a (250.1 mg, 0.51 mmol) using a general procedure for benzoate ester
protection. The crude residue was purified by column chromatography (2-5%
EtOAc/hexanes) to give benzoate ester 141 as a colorless oil (224.2 mg, 74%): Ry=0.60
(5% EtOAc/hexanes); [a]p?® = —1.38 (¢ 1.00, CHCl3); 'H NMR (300 MHz, CDCl3) &
8.22 (d, J = 7.7 Hz, 2H), 7.98-7.88 (m, 4H), 7.74 (t, J = 7.2 Hz, 2H), 7.67-7.49 (m,
8H), 7.32 (d, J = 8.3 Hz, 2H), 7.02 (d, J= 8.3 Hz, 2H), 4.64 (dd, J = 12.4, 2.2 Hz, 1H),
4.48 (s,2H), 4.04 (dd,J=12.4, 7.8 Hz, 1H), 3.97 (s, 3H), 3.95-3.85 (m, 1H), 3.75-3.53
(m, 3H), 3.49 (dd, J = 8.2, 4.5 Hz, 1H), 1.31 (s, 9H); 3C NMR (75 MHz, CDCls3) &
166.2, 159.2, 136.1, 135.9, 133.8, 133.1, 129.9, 129.8, 129.7, 129.3, 128.4, 127.7,
127.6, 113.8, 73.0, 71.4, 71.3, 64.1, 59.1, 55.3, 54.5, 27.0, 19.5; IR (thin film): 2932,

1718, 1508, 1270, 1110, 772 cm™'; HRMS (ESI) m/z caled for C3sHaoNaOgSi (M+Na)*
619.2492, found 619.2472.

BzO Q

“OTBDPS
142 OH

((2R,3R)-3-((R)-1-((tert-Butyldiphenylsilyl)oxy)-2-hydroxyethyl)oxiran-2-yl)

methyl benzoate (142). Alcohol 142 was prepared from PMB ether S5 (164.4 mg, 0.28
mmol) using a general procedure for PMB deprotection. The crude residue was purified
by column chromatography (10-20% EtOAc/hexanes) to give alcohol 141 (105.0 mg,
80%) as a colorless oil: R/=0.50 (20% EtOAc/hexanes); [o]p>> =—3.02 (¢ 1.00, CHCl5);
'"H NMR (300 MHz, CDCl;3) é 8.05-7.94 (m, 2H), 7.79-7.65 (m, 4H), 7.60—7.49 (m,
1H), 7.47-7.29 (m, 8H), 4.28 (dd, J=12.1, 3.5 Hz, 1H), 3.93 (dd, J=12.1, 6.7 Hz,
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1H), 3.69-3.53 (m, 3H), 3.40—3.26 (m, 2H), 1.11 (s, 9H); 13C NMR (75 MHz, CDCls)
5 166.3, 136.1, 135.9, 133.5, 133.4, 132.9, 130.1, 130.0, 129.8, 129.5, 128.5, 127.9,
127.7,72.8, 64.6, 63.4, 58.2, 54.2, 27.0, 19.5; IR (thin film): 3613, 1717, 1270, 1111,

772 ¢cm™'; HRMS (ESI) m/z calcd for C3sHisNaOsSi» (M+Na)* 499.1917, found

499.1928.

BzO ?

“'OTBDPS
143 OTBS

((2R,3R)-3-((R)-2,2,8,8,9,9-Hexamethyl-3,3-diphenyl-4,7-dioxa-3,8-disiladecan-5-
yl)oxiran-2-yl)methyl benzoate (143). Silyl ether 143 was prepared from alcohol 142
(120.3 mg, 0.25 mmol) using a general procedure for TBS protection. The crude residue
was purified by column chromatography (2—5% EtOAc/hexanes) to give silyl ether 143
(122.3 mg, 82%) as a colorless oil: R;= 0.83 (5% EtOAc/hexanes); [a]p? = +7.94 (¢
1.00, CHCl3); 'H NMR (300 MHz, CDCl3) 8 8.15-8.03 (m, 2H), 7.92—7.68 (m, 4H),
7.62—7.53 (m, 1H), 7.53—7.34 (m, 8H), 4.59 (dd, J=12.5, 2.1 Hz, 1H), 3.78 (dd, J =
12.5, 8.3 Hz, 1H), 3.68-3.47 (m, 3H), 3.46—3.36 (m, 1H), 3.32-3.25 (m, 1H), 1.13 (s,
9H), 0.84 (s, 9H), —0.03 (s, 3H), —0.04 (s, 3H); 1*C NMR (75 MHz, CDCl3) § 166.3,
136.1, 136.0, 134.0, 133.3, 133.2, 129.9, 129.8, 128.5, 127.7, 127.6, 72.9, 65.1, 64.5,
59.2,54.7,27.1, 26.1, 19.5, 18.5, =5.4, —=5.5; IR (thin film): 2932, 2857, 1724, 1513,

1270, 1109, 709 cm™'; HRMS (ESI) m/z calcd for C34H4sNaOsSi> (M+Na)* 613.2781,
found 613.2772.

HO §

““OTBDPS
144 OTBS

((2R,3R)-3-((R)-2,2,8,8,9,9-Hexamethyl-3,3-diphenyl-4,7-dioxa-3,8-disiladecan-5-
yl)oxiran-2-yl)methanol (144). Epoxy alcohol 144 was prepared from benzoate ester
143 (60.2 mg, 0.10 mmol) using a general procedure for methanolysis. The crude
residue was purified by column chromatography (10-20% EtOAc/hexanes) to give
epoxy alcohol 144 (40.2 mg, 80%) as a colorless oil: Rr=0.80 (20% EtOAc/hexanes);
[a]p® = —17.66 (¢ 2.31, CHCl3); 'H NMR (300 MHz, CDCI3) § 7.71-7.67 (m, 4H),
7.42-7.34 (m, 6H), 3.71-3.49 (m, 4H), 3.28-3.17 (m, 2H), 3.10 (dd, J = 7.9, 3.8 Hz,
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1H), 2.74 (brs, 1H), 1.09 (s, 9H), 0.80 (s, 9H), —0.02, —0.05; 13C NMR (75 MHz, CDCl5)
5 136.2, 136.0, 134.0, 133.3, 130.0, 127.8, 127.6, 72.0, 65.5, 61.0, 59.9, 56.1, 27.0,
26.0,19.5, 18.6, —5.49, —5.58; IR (thin film): 3447, 2931, 2857, 1723, 1258, 1104, 775

cm™!; HRMS (ESI) m/z caled for C27H42NaO4Si> (M+Na)* 509.2519, found 509.2526.

)

© ““OTBDPS

OPMB
107

(28,3R)-3-((R)-1-((tert-Butyldiphenylsilyl)oxy)-2-((4-methoxybenzyl)oxy)

ethyl)oxirane-2-carbaldehyde (107): Epoxy aldehyde 107 was prepared from epoxy
alcohol 116a (2.71 g, 5.50 mmol) using a general procedure for IBX oxidation. The
crude residue was purified by column chromatography (5—10% EtOAc/hexanes) to
yield epoxy aldehyde 107 (2.41 g, 81%): Ry = 0.47 (20% EtOAc/hexanes); [a]p®* =
—67.58 (¢ 1.00, CHCI3); '"H NMR (300 MHz, CDCl3) 6 8.90 (d, /= 5.7 Hz, 1H), 7.76—
7.66 (m, 4H), 7.49-7.34 (m, 3H), 7.06 (d, J = 8.4 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H),
422 (d,J=11.8 Hz, 1H), 4.17 (d, /= 11.8 Hz, 1H), 3.98-3.80 (m, 1H), 3.81 (s, 3H),
3.47-3.41 (m, 1H), 3.41-3.32 (m, 2H), 3.28 (dd, /= 9.6, 4.5 Hz, 1H), 1.10 (s, 9H) ; 13C
NMR (75 MHz, CDCl3) 6 196.8, 159.4, 136.1, 136.0, 133.6, 132.9, 130.1, 130.0, 129.8,
127.7,129.4,127.8, 113.9, 72.9, 70.6, 70.5, 61.5, 58.2, 55.4, 27.0, 19.5; IR (thin film):

2932, 2857, 1722, 1513, 1248, 1111 cm™'; HRMS (ESI) m/z caled for CaoH34NaOsSi
(M+Na)* 513.2073, found 513.2069.

s 4§ g
OH_ -, OTBS “OTBDPS
OTBS OTBDPS
OPMB OPMB
1318 131R

Propargylic alcohols 1318 and 131R: To a solution of (S)-fert-butyl(hept-6-yn-2-
yloxy)dimethylsilane (132, 2.10 g, 9.27 mmol, 2.0 equiv) (prepared from (S)-propylene
oxide in 5 steps using a protocol previously described by Thiraporn et al in 2022) in

anhydrous THF (20 mL, 0.23 M) at —78 °C was added n-butyllithium (ca. 1.6 M
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solution in hexanes, 12 mL, 9.27 mmol, 2.0 equiv) dropwise. The mixture was then
stirred at —78 °C for 1 h before a solution of epoxy aldehyde 107 (2.27g, 4.64 mmol,
1.0 equiv) in anhydrous THF (9 mL, 0.5 M) at —78 °C was added. The reaction mixture
was further stirred from —78 °C to 0 °C for 1.5 h. The white cloudy mixture was
quenched with saturated aqueous NH4Cl (10 mL). The aqueous layer was extracted
with EtOAc (2 x 10 mL). The combined organic layers were washed with brine, dried
over anhydrous Na>SO4, and concentrated in vacuo. The crude residue was purified by
column chromatography (10—20% EtOAc/hexanes) to give the separable propargylic
alcohols 1318 and 131R. The absolute configuration was determined by Mosher’s
method using the corresponding (S)-MTPA and (R)-MTPA esters.

Propargylic alcohol 131S: Colorless oil (0.69 g, 21%): Rr = 0.50 (20%
EtOAc/hexanes); [o]p** = —23.56 (¢ 1.00, CHCl3); 'H NMR (300 MHz, CDCls) &
7.75-7.62 (m, 4H), 7.47-7.28 (m, 6H), 7.13 (d, J = 8.6 Hz, 1H), 6.83 (d, J = 8.6 Hz,
1H), 4.38—4.25 (m, 2H), 4.08—3.99 (m, 1H), 3.96 (dt,J= 8.2, 6.0 Hz, 1H), 3.79 (s, 3H),
3.76—3.69 (m, 1H), 3.51-3.36 (m, 2H), 3.25 (dd, /=8.2,4.3 Hz, 1H), 3.17 (dd, /= 6.2,
4.3 Hz, 1H), 2.31 (d, J = 3.9 Hz, 1H), 2.10—1.92 (m, 2H), 1.56—1.32 (m, 4H), 1.07 (s,
12H), 0.86 (s, 9H), 0.02 (s, 3H), 0.01 (s, 3H); '*C NMR (75 MHz, CDCI3) & 159.4,
136.3, 136.1, 134.2, 133.5, 130.0, 129.9, 129.8, 129.4, 127.63, 127.60, 113.9, 87.8,
73.1, 71.7, 71.0, 68.3, 61.1, 60.2, 59.7, 55.4, 38.9, 27.1, 26.0, 24.8, 23.9, 19.5, 18.9,

18.2, 4.2, —4.6; IR (thin film): 3427, 2932, 2857, 1727, 1248, 1111 cm™!; HRMS
(ESI) m/z calcd for C42HsoNaOsSi2 (M+Na)* 739.3826, found 739.3837.
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(S)-MTPA ester of 113S (R)-MTPA ester of 113S
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(S)-MTPA ester of propargylic alcohol 131S: 'H NMR (300 MHz, CDCls) &
7.76=7.64 (m, 4H), 7.46—7.36 (m, 6H), 7.37-7.28 (m, 5H), 7.14 (d, J = 8.6 Hz, 2H),
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6.84 (d, J=8.6 Hz, 2H), 4.98 (d, J = 8.8 Hz, 1H), 4.35 (s, 2H), 3.81 (s, 3H), 3.78-3.68
(m, 2H), 3.59 (s, 3H), 3.44 (d, J=4.7 Hz, 2H), 3.38 (dd, /= 8.2, 4.3 Hz, 1H), 3.33 (dd,
J=28.8,4.3 Hz, 1H), 2.05 (t,J=5.6Hz, 1H), 1.45-1.32 (m, 4H), 1.09 (s, 12H), 0.87 (s,
9H), 0.02 (s, 3H), 0.01 (s, 3H).

(R)-MTPA ester of propargylic alcohol 131S: 'H NMR (300 MHz, CDCls) &
7.76—7.65 (m, 4H), 7.46—7.32 (m, 11H), 7.13 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.6 Hz,
2H), 5.11 (d, J=8.7 Hz, 1H), 4.33 (s, 2H), 3.80 (s, 3H), 3.86—3.77 (m, 1H), 3.77-3.69
(m, 1H), 3.58 (s, 3H), 3.47-3.40 (m, 2H), 3.35 (dd, /= 8.1, 4.4 Hz, 1H), 3.29 (dd, J =
8.7, 4.4 Hz, 1H), 2.08 (t, J = 6.6 Hz, 1H), 1.49-1.33 (m, 6H), 1.10 (s, 12H), 0.86 (s,
9H), 0.03 (s, 3H), 0.01 (s, 3H).

Table 11 Ad (05— dr) data for (S)- and (R)-MTPA esters of propargylic alcohol 1318

position 8s-ester (PpmM) OR-ester (Ppm) A (85— dr)

(ppm)

1 3.81 3.80 +0.01
3 7.14 7.13 +0.01
4 6.84 6.83 +0.01
6 4.35 4.33 +0.02
7 3.44 342 +0.02
9 3.38 3.35 +0.03
10 3.33 3.29 +0.04
14 2.05 2.08 -0.03
15 1.38 1.40 -0.02
17 3.73 3.75 -0.02
17a 1.09 1.10 -0.01
17b 0.02 0.03 -0.01

Propargylic alcohol 131R: Colorless oil (1.85 g, 56%): Rr = 0.57 (20%
EtOAc/hexanes); [o]p?* = +35.41 (¢ 1.00, CHCl3); "H NMR (300 MHz, CDCl3) § 7.73—
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7.59 (m, 4H), 7.48-7.29 (m, 6H), 7.10 (d, J = 7.3 Hz, 1H), 6.83 (d, J = 7.3 Hz, 1H),
4.33-4.18 (m, 2H), 3.80 (s, 3H), 3.84-3.74 (m, 1H), 3.70-3.55 (m, 2H), 3.47 (t, J=9.2
Hz, 1H), 3.34 (dd, J = 8.9, 4.2 Hz, 1H), 3.16, (dd, J = 8.6, 4.1 Hz, 1H), 3.08 (dd, J =
8.6, 4.1 Hz, 1H), 2.30-2.11 (m, 2H), 1.67-1.46 (m, 4H), 1.14 (d, J= 6.1 Hz, 1H), 1.08
(s, 9H), 0.90 (s, 9H), 0.06 (s, 6H); 3C NMR (125 MHz, CDCl3) 5 159.8, 136.2, 136.1,
136.0, 133.7, 132.9, 130.1, 130.0, 128.2, 127.8, 127.7, 114.2, 86.6, 73.5, 70.8, 70.2,
68.4, 61.3, 60.3, 59.3, 55.4, 38.9, 27.0, 26.1, 26.0, 24.9, 24.0, 19.4, 19.1, 18.3, —4.3,

—4.6; IR (thin film): 3421, 2931, 2857, 1515, 1252, 1111 cm™!; HRMS (ESI) m/z calcd
for C42HeoNaOsSi> (M+H)* 717.4007, found 717.4006.
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(S)-MTPA ester of 113R (R)-MTPA ester of 113R

(S)-MTPA ester of propargylic alcohol 131R: 'H NMR (300 MHz, CDCl3) &
7.74-7.62 (m, 4H), 7.44—7.41 (m, 5H), 7.40—-7.24 (m, 6H), 7.12 (d, J = 8.6 Hz, 2H),
6.84 (d, J = 8.6 Hz, 2H), 5.07 (d, J = 5.9 Hz, 1H), 4.24-4.12 (m, 2H), 3.81 (s, 3H),
3.78-3.72 (m, 2H), 3.51 (s, 3H), 3.30 (dd, /= 8.3, 4.0 Hz, 1H), 3.24-3.12 (m, 2H), 3.07
(dd, J=10.1,4.0 Hz, 1H), 2.15-1.98 (m, 2H), 1.48—1.38 (m, 4H), 1.10 (d, /= 5.9 Hz,
1H), 1.08 (s, 9H), 0.89 (s, 9H), 0.05 (s, 3H), 0.04 (s, 3H).

(R)-MTPA ester of propargylic alcohol 131R: '"H NMR (300 MHz, CDCI3) &
7.74-7.65 (m, 4H), 7.46—7.40 (m, 5H), 7.39-7.31 (m, 6H), 7.10 (d, J = 8.6 Hz, 2H),
6.83 (d, J=8.6 Hz, 2H), 5.22 (d, /= 5.5Hz, 1H), 4.26 (d,J=11.8 Hz, 1H), 4.18 (d, J
=11.8 Hz, 1H), 3.89 (dt, J=7.9, 5.0 Hz, 1H), 3.81 (s, 3H), 3.79-3.71 (m, 1H), 3.41
(s, 3H), 3.32 (dd, J=17.6,4.2 Hz, 1H), 3.26 (t, J=5.3 Hz, 2H), 3.18 (dd, /= 10.1, 4.2
Hz, 1H), 2.05 (t,J = 5.7 Hz, 2H), 1.47-1.38 (m, 4H), 1.10 (d, /= 6.1 Hz, 1H), 1.08 (s,
9H), 0.88 (s, 9H), 0.05 (s, 3H), 0.04 (s, 3H).
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Table 12 Ad (05— dr) data for (S)- and (R)-MTPA esters of propargylic alcohol 131R

position Os-ester (PpmM) OR-ester (PpM) Ad (85— 0r) (ppm)
1 4.18 4.21 -0.03
6 3.18 3.26 -0.08
7 3.76 3.77 -0.01
9 3.29 3.32 -0.03
10 3.07 3.18 -0.11
14 2.07 2.05 +0.02
15 1.43 1.42 +0.01

Mitsunobu inversion (conversion of 131R to 131S): To a suspension of
triphenylphosphine (2.31 g, 8.79 mmol, 14.0 equiv) in anhydrous toluene (6 mL) at 0
°C was added diethyl azodicarboxylate (3.45 mL, ca. 2 M in solution toluene, 6.91
mmol, 11.0 equiv). The mixture was then stirred at 0 °C for 1 h. After that, the mixture
was added a solution of 131R (450.7 mg, 0.62 mmol, 1.0 equiv) in anhydrous toluene
(3 mL), followed by acetic acid (500 pL, 8.79 mmol, 14.0 equiv) at 0 °C. The reaction
mixture was further stirred from 0 °C to room temperature for 1.5 h before being
quenched with H,O (5 mL). The aqueous layer was extracted with EtOAc (3 x 10 mL).
The combined organic layers were washed with brine, dried over anhydrous Na,SO,
and concentrated in vacuo. The crude residue was purified by column chromatography
(100% hexanes—5% EtOAc/hexanes) to afford acetate ester intermediate as a colorless
oil (395.9 mg, 83%, Rr= 0.40 (5% EtOAc/hexanes)). Methanolysis of the acetate ester
intermediate (395.9 mg, 0.52 mmol, 1.0 equiv) was later performed by using the general
procedure for methanolysis. The crude residue was purified by column chromatography
(10—20% EtOAc/CH:Cl) to give the desired propargylic alcohol antipode 1315 (350.5
mg, 94%).
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145
Z-Allylic alcohol 145: To a solution of propargylic alcohol 1318 (620.7 mg, 0.87
mmol, 1.0 equiv) in EtOAc (8.7 mL, 0.1 M) at room temperature was added 5%
Pd/CaCOs (276.3 mg, 0.13 mmol, 0.15 equiv), followed by quinoline (205 pL, 1.73
mmol, 2.0 equiv). The reaction mixture was stirred under H> atmosphere for 1.5 h. The
mixture was then filtered through a pad of Celite and washed with EtOAc. The filtrate
was washed with 50 mL of 1 M HCI (100 mL). The organic layer was separated and
concentrated in vacuo. The crude residue was purified by column chromatography
(10—20% EtOAc/hexanes) to yield allylic alcohol 145 as a colorless oil (554.0 mg,
89%): Ry=0.45 (20% EtOAc/hexanes); [a]p** = —8.08 (¢ 1.00, CHCl3); 'H NMR (300
MHz, CDCl3) 6 7.84-7.763 (m, 4H), 7.52-7.30 (m, 6H), 7.15 (d, /= 8.4 Hz, 2H), 6.85
(d, J= 8.4 Hz, 2H), 5.39 (dt, /= 10.8, 7.1 Hz, 1H), 5.34-5.17 (m, 1H), 4.35 (m, 2H),
3.97 (dd, J= 8.6, 6.0 Hz, 1H), 3.85-3.72 (m, 1H), 3.82 (s, 3H), 3.88-3.78 (m, 1H), 3.40
(d, J=5.1 Hz, 2H), 3.26 (dd, J = 8.4, 4.5 Hz, 1H), 3.06-2.92 (m, 1H), 1.91 (brs, 1H),
1.84-1.59 (m, 2H), 1.41-1.22 (m, 4H), 1.17-0.98 (m, 12H), 0.91 (s, 9H), 0.06 (s, 3H),
0.05 (s, 3H); *C NMR (75 MHz, CDCl3) 8 159.4, 136.2, 136.1, 134.4, 134.2, 133.6,
130.1,129.8,129.7,129.4,127.6, 127.5,127.4,113.8,73.2,71.9, 71.2, 68.6, 65.6, 60.3,
60.1,55.4,39.4,27.8,27.1,26.0,25.7,25.7, 19.5, 18.2, 4.2, —4.6; IR (thin film): 3421,

2931, 2857, 1515, 1249, 1112 cm™!; HRMS (ESI) m/z calcd for C4Hes2NaOeSiz

(M+Na)* 741.3983, found 741.3984.
(0]
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OTBSOPMB
165 R = TBDPS
TBDPS ether 165: Silyl ether 165 was prepared from allylic alcohol 145 (550.8 mg,

0.77 mmol) using a general procedure for TBDPS protection. The crude residue was

purified by column chromatography (2—10% EtOAc/hexanes) to yield TBDPS ether
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165 as a colorless oil (645.4 mg, 88%): Ry=0.73 (5% EtOAc/hexanes); [a]p®® = —8.56
(¢ 1.00, CHCl;): 'H NMR (300 MHz, CDCl3) § 7.69 (d, J = 7.2 Hz, 2H) 7.67-7.56 (m,
6H), 7.43-7.25 (m, 6H), 7.24-7.12 (m, 6H), 7.02 (d, J = 8.7 Hz, 2H), 6.80 (d, J = 8.7
Hz, 2H), 5.31-5.19 (m, 1H), 4.98 (dt, /= 11.1, 7.2 Hz, 1H), 4.23 (d, J = 11.4 Hz, 1H),
4.16 (d,J = 11.4 Hz, 1H), 4.02-3.91 (m, 1H), 3.80 (s, 3H), 3.57-3.46 (m, 1H), 3.36—
3.26 (m, 2H), 3.26-3.07 (m, 3H), 1.74-1.57 (m, 1H), 1.08 (s, 9H), 1.036 (s, 9H), 0.98
(d, 7= 6.1 Hz, 3H), 0.88 (s, 9H), 0.82-0.72 (m, 4H), 0.66-0.52 (m, 1H), 0.02 (s, 3H),
0.00 (s, 3H); *C NMR (75 MHz, CDCl3) § 159.2, 136.3, 136.2, 136.15, 136.11, 134 .4,
134.2,133.7,133.2,130.4, 129.7,129.6, 129.5, 129.4, 129.3,127.6, 127.4, 126.8, 113.7,
73.1,72.4, 72.3, 69.5, 68.7, 61.3, 58.5, 55.4, 39.5, 27.2, 27.0, 26.1, 25.4, 24.0, 19.6,

18.2,—4.3,-4.5"; IR (thin film): 2932, 2858, 1699, 1427, 1112, 1066 cm™!; HRMS (ESI)

m/z calcd for CssHg106Si3 (M+H)"™ 979.5160, found 979.5166.
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146 R =TBDPS
Alcohol 146: Alcohol 146 was prepared from PMB ether 165 (682.2 mg, 0.71 mmol)
using a general procedure for PMB deprotection. The crude residue was purified by
column chromatography (5—15% EtOAc/hexanes) to yield alcohol 146 as a light yellow
oil (507.1 mg, 85%): Rr= 0.47 (5% EtOAc/hexanes); [a]p** = —16.60 (¢ 1.00, CHCI3);
'"H NMR (300 MHz, CDCl3) & 7.79-7.57 (m, 8H), 7.47-7.35 (m, 4H), 7.33-7.17 (m,
8H), 5.45-5.31 (m, 1H), 5.23-5.10 (m, 1H), 4.06-3.94 (m, 1H), 3.65-3.48 (m, 1H),
3.40-3.20 (m, 5H), 1.40-1.27 (m, 2H), 1.14 (s, 9H), 1.05 (s, 9H), 1.03 (d, J = 6.1 Hz,
3H), 0.98-0.94 (m, 2H), 0.90 (s, 9H), 0.87-0.78 (m, 2H), 0.05 (s, 3H), 0.02 (s, 3H); 13C
NMR (75 MHz, CDCl3) 6 136.2, 135.9, 134.0, 133.7, 133.6, 133.2, 133.1, 130.0, 129.7,
129.6, 127.9, 127.7, 127.6, 127.4, 126.9, 73.6, 69.4, 68.6, 64.7, 61.1, 58.2, 39.4, 27.3,
27.2,27.0, 26.0, 25.3, 23.9, 19.5, 19.4, 18.2, —4.3, —4.6; IR (thin film): 3609, 2931,

2857, 1277, 1112 cm™!; HRMS (ESI) m/z caled for CsoH75NaOsSis (M+Na)* 859.4585,
found 859.4576.
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147 R = TBDPS
Ester 147: Alcohol 146 (350.1 mg, 0.42 mmol) was first transformed to aldehyde

intermediate using a general procedure for DMP oxidation. The crude residue was
purified by column chromatography (5-10% EtOAc/hexanes) to furnish the
corresponding aldehyde intermediate as a colorless oil (328.3 mg, 94%) which was
immediately subjected to Wittig olefination using a general procedure for Wittig
olefination. The crude residue was purified by column chromatography (2—5%
EtOAc/hexanes) to yield o,B-unsaturated ester 147 as a colorless oil (316.7 mg, 89%):
Rr=0.54 (5% EtOAc/hexanes); [a]p> = +25.40 (c 1.00, CHCls); '"H NMR (500 MHz,
CDClz) 6 7.71 (d, J = 7.0 Hz, 2H), 7.57 (d, J = 7.0 Hz, 4H), 7.52 (d, J = 7.5 Hz, 4H),
7.41 (t,J=17.0 Hz, 1H), 7.37-7.25 (m, 5H), 7.21 (t, J= 7.0 Hz, 2H), 7.16 (t, J= 7.5 Hz,
2H), 7.09 (t, J = 7.5 Hz, 2H), 6.47 (dd, J = 15.5, 3.5 Hz, 1H), 6.03 (dd, J = 15.5, 1.0
Hz, 1H), 5.37 (t,J=10.5 Hz, 1H), 5.24-5.16 (m, 1H), 4.15-4.03 (m, 2H), 3.97 (t, J=
8.0 Hz, 1H), 3.87-3.80 (m, 1H), 3.54-3.46 (m, 1H), 3.22 (dd, J = 8.0, 4.5 Hz, 1H ),
3.03(dd,J=17.5,4.5Hz, 1H) 1.22 (t,J=7.1 Hz, 3H ), 1.10 (s, 9H), 1.08-1.02 (m, 2H),
1.00 (s, 9H), 0.97 (d, J= 5.6 Hz, 1H), 0.89—-0.80 (m, 4H), 0.86 (s, 9H), —0.00 (s, 3H), —
0.02 (s, 3H) ; 3*C NMR (125 MHz, CDCl3) 8 166.1, 145.1, 136.2, 136.1, 136.0, 133.8,
133.6, 133.4, 133.2, 133.1, 130.0, 129.9, 129.7, 129.6, 127.7, 127.6, 127.5, 127.4,
126.7, 122.4, 72.0, 69.1, 68.6, 60.7, 60.4, 59.9, 39.4, 27.5, 27.2, 27.0, 26.0, 25.3, 23.9,
19.5,19.4, 18.2, 14.3, —4.3, —4.6; IR (thin film): 2957, 2931, 2857, 1723, 1112, 1065

cm™'; HRMS (ESI) m/z caled for CsaH76NaOgSiz (M+Na)* 927.4847, found 927.4838.
0]
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148 R = TBDPS
Alcohol 148: Alcohol 148 was prepared from ester 147 (220.4 mg, 0.24 mmol) using a

general procedure for TBS deprotecton. The crude residue was purified by column
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chromatography (20—40% EtOAc/hexanes) to yield alcohol 148 as a colorless oil
(161.8 mg, 84%): Ry=0.73 (50% EtOAc/hexanes); [a]p>’ = +9.06 (¢ 1.00, CHCl3); 'H
NMR (500 MHz, CDCl3) ¢ 7.72 (d, J= 7.5 Hz, 2H), 7.58 (d, /= 7.0 Hz, SH), 7.53 (d,
J="1.5Hz, 2H), 7.41 (t, J= 7.0 Hz, 1H), 7.37-7.25 (m, 6H), 7.25-7.20 (m, 2H), 7.18
(t,J=17.5Hz, 2H), 7.08 (t, J= 7.5 Hz, 2H), 6.45 (dd, J = 15.5, 3.5 Hz, 1H), 6.02 (dd, J
=15.5, 1.0 Hz, 1H), 5.44-5.35 (m, 1H), 5.20 (dt, J=10.5, 6.5 Hz, 1H), 4.15-4.03 (m,
2H), 3.97 (t, J= 8.5 Hz, 1H), 3.87-3.82 (m, 2H), 3.50-3.40 (m, 1H), 3.23 (dd, J=17.5,
4.5 Hz, 1H), 3.05 (dd, /= 8.0, 4.5 Hz, 1H), 1.22 (t, J=7.1 Hz, 3H), 1.11 (s, 9H), 1.00
(s, 12H), 0.98-0.91 (m, 3H), 0.90-0.80 (m, 3H); 3*C NMR (125 MHz, CDCl3) § 166.2,
145.1, 136.2, 136.18, 136.10, 133.9, 133.4, 133.3, 133.2, 130.0, 129.96, 129.91, 129.7,
129.6, 127.7,127.6, 127.5, 127.4, 127.0, 122.5, 72.1, 69.1, 67.8, 60.7, 60.5, 59.9, 38.8,
27.2,27.0, 25.0, 23.3, 19.6, 19.5, 14.3; IR (thin film): 3431, 2932, 2858, 1720, 1427,

1112 cm™; HRMS (ESI) m/z caled for CasHe3O6Si> (M+H)* 791.4163, found 791.4160.

)
=

OrR J.,
[ oR

OH
HOLC

130 R = TBDPS
Seco acid 130: Seco acid 130 was prepared from alcohol 148 (240.8 mg, 0.30 mmol)
using a general procedure for hydrolysis. The crude residue was purified by column
chromatography (30% EtOAc/hexanes—100% EtOAc) to give seco acid 130 as a
colorless oil (182.6 mg, 77%): Rr=0.33 (50% EtOAc/hexanes); [a]p>’ = +9.64 (c 1.00,
CHCI3); '"H NMR (500 MHz, CDCl3) 8 7.73 (d, J = 7.5 Hz, 2H), 7.59 (t, J = 6.0 Hz,
4H), 7.53 (d, J= 7.5 Hz, 2H), 7.43 (t, J=7.0 Hz, 1H), 7.38-7.26 (m, 5H), 7.26-7.22
(m, 2H), 7.18 (t, J = 7.5 Hz, 2H), 7.10 (t, J = 7.5 Hz, 2H), 6.50 (dd, J = 15.5, 3.0 Hz,
1H), 6.02 (d, J=15.5 Hz, 1H), 5.40 (t, /= 10.5 Hz, 1H), 5.19 (dt,J=10.5, 6.5 Hz, 1H),
3.95 (t, J= 8.5 Hz, 1H), 3.88-3.80 (m, 1H), 3.55-3.41 (m, 1H), 3.25 (dd, J=7.5, 4.5
Hz, 1H), 3.08 (dd, J=17.5, 4.5 Hz, 1H), 1.32-1.23 (m, 1H), 1.12 (s, 9H), 1.02 (s, 12H),
0.99-0.91 (m, 2H), 0.91-0.80 (s, 3H); *C NMR (125 MHz, CDCl3) & 170.2, 147.1,
136.2, 136.0, 133.8, 133.4, 133.3, 133.0, 132.9, 130.0, 129.9, 129.7, 129.6, 129.5,
127.7,127.6, 127.5, 127.4, 126.9, 121.9, 72.1, 68.9, 68.1, 60.6, 59.7, 38.5, 27.1, 27.0,
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26.9, 24.9, 23.1, 19.5, 19.4; IR (thin film): 3421, 2931, 2858, 1701, 1427, 1112 cm™!;
HRMS (ESI) m/z calcd for C42HsoNaOsSiz (M+Na)* 785.3670, found 785.3666.

149 R =TBDPS
Macrolactone 149: Macrolactone 149 was prepared from seco acid 130 (200.3 mg,
0.26 mmol) using a general procedure for Shiina macrolactonization. The crude residue
was purified by column chromatography (5—-10% EtOAc/hexanes) to yield
macrolactone 149 as a colorless oil (124.4 mg, 65%): Rr= 0.52 (5% EtOAc/hexanes);
[a]p® = —12.50 (¢ 1.00, CHCI3); '"H NMR (500 MHz, CDCl3) 4 7.73 (d, J = 7.2 Hz,
2H), 7.57 (d, J= 7.2 Hz, 2H), 7.44 (t, J = 7.4 Hz, 2H), 7.38 (t, J = 7.4 Hz, 2H), 7.36—
7.23 (m, 6H), 7.15 (t, J= 7.5 Hz, 2H), 7.03 (t, J = 7.5 Hz, 2H), 6.32 (dd, J = 15.5, 7.1
Hz, 1H), 5.38-5.30 (m, 1H), 5.20 (d, J = 15.5 Hz, 2H), 5.18-5.12 (m, 1H), 4.92-4.82
(m, 1H), 3.87-3.81 (m, 1H), 3.77-3.70 (m, 1H), 3.24 (t,J = 4.6 Hz, 1H), 3.00 (dd, J =
8.8,4.2 Hz, 1H), 1.87-1.81 (m, 1H), 1.76-1.56 (m, 2H), 1.52-1.43 (m, 2H), 1.12 (d, J
= 6.2 Hz, 3H), 1.08 (s, 9H), 1.00 (s, 9H), 0.96-0.87 (m, 1H); '*C NMR (125 MHz,
CDCl3) 6 165.7, 143.0, 136.3, 136.1, 133.8, 133.7, 133.4, 133.3, 132.9, 130.1, 129.9,
129.6, 129.5, 128.2, 127.8, 127.7, 127.44, 127.40, 123.1, 73.8, 71.9, 66.8, 62.8, 59.4,
33.2, 30.4, 28.0, 27.0, 26.9, 25.7, 24.7, 19.8, 19.6, 19.3; IR (thin film): 2930, 2857,

1723, 1472, 1112, 1065 cm™'; HRMS (ESI) m/z calcd for C4sHssNaOsSi» (M+Na)*
767.3564, found 767.35609.

(0] (0]
= =
H OR
© | OH | OH
(0] (0]
0] (0]
seiricuprolide (13) 150 R = TBDPS

Seiricuprolide (13) and macrolactone 150: Macrolactones 13 and 150 were obtained
from macrolactone 149 (55.7 mg, 0.07 mmol) using a general procedure for global
TBDPS deprotection. The crude residue was purified by column chromatography
(20—80% EtOAc/hexanes) to give compounds 13 and 150.
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Seiricuprolide (13): White solid (9.8 mg, 49%): Ry= 0.16 (50% EtOAc/hexanes); mp
126.5-127.9 °C; [a]p® = +48.12 (c 2.70, MeOH); '"H NMR (500 MHz, CDCls) & 6.85
(dd, J=15.5, 6.5 Hz, 1H), 6.15 (dd, J=15.5, 0.5 Hz, 1H), 5.57 (ddd, J=11.5, 9.5, 1.0
Hz, 1H), 5.39 (ddd, J=11.5, 9.5, 1.5 Hz, 1H), 5.00-4.91 (m, 1H), 4.36—4.29 (m, 1H),
4.27-4.20 (m, 1H), 3.28-3.24 (m, 1H), 3.03 (dd, J = 8.5, 4.5 Hz, 1H), 2.55 (brs, 1H),
2.51-2.39 (m, 1H), 2.16 (brs, 1H), 2.14-2.04 (m, 1H), 1.94-1.85 (m, 1H), 1.85-1.75
(m, 1H), 1.46 (ddd, J = 14.5, 9.0 Hz, 1.5H), 1.29 (d, J = 6.5 Hz, 1H), 1.27-1.21 (m,
1H); 3C NMR (125 MHz, CDCl3) 6 166.1, 143.0, 135.6, 127.4, 123.7,73.3,71.9, 64.4,
62.6, 59.0, 33.6, 29.0, 25.2, 20.0; IR (thin film): 3477, 2932, 2859, 1722, 1242, 1111,

1048 c¢cm™'; HRMS (ESI) m/z caled for CisHoNaOs (M+Na)® 291.1208, found
291.1180.

Macrolactone 150: Light yellow oil (4.5 mg, 12%): Rr= 0.34 (20% EtOAc/hexanes);
[a]p?® = +39.08 (¢ 1.00, CHCl3); 'H NMR (500 MHz, CDCls) 8 7.77 (d, J = 6.8 Hz,
2H), 7.68 (d, J = 6.8 Hz, 2H), 7.48-7.35 (m, 6H), 6.45 (dd, J=15.5, 5.4 Hz, 1H), 5.62
(dd, J=15.5, 1.0 Hz, 1H), 5.44 (t,J=9.7 Hz, 1H), 5.34-5.27 (m, 1H), 4.93—4.85 (m,
1H), 3.98 (t, /= 9.0 Hz, 1H), 3.21 (t, J = 6.2 Hz, 1H), 3.03 (dd, J = 8.7, 4.3 Hz, 1H),
3.01-2.97 (m, 1H), 1.93-1.80 (m, 1H), 1.81-1.65 (m, 2H), 1.65-1.55 (m, 1H), 1.51-
1.40 (m, 1H), 1.32-1.23 (m, 2H), 1.21 (d, J= 6.3 Hz, 1H), 1.07 (s, 9H); 3C NMR (125
MHz, CDCl3) 6 165.9, 142.6, 136.6, 136.2, 134.0, 133.9, 133.8, 130.0, 129.8, 128.4,
127.7, 127.5, 123.5, 72.7, 72.0, 66.3, 61.6, 59.1, 33.7, 28.7, 27.1, 25.2, 20.0, 19.6; IR

(thin film): 3421, 2931, 2857, 1717, 1260, 1112, 1055 cm™!; HRMS (ESI) m/z calcd for

C30H338NaOsSi (M+Na)* 529.2386, found 529.2380.

)

7/

OH .,
ores [ OTBDPS

OPMB
156
E-Allylic alcohol 156: To a solution of propargylic alcohol 1318 (358.3 mg, 0.49
mmol, 1.0 equiv) in anhydrous THF (10 mL, 0.05 M) at 4 °C was added sodium bis(2-
methoxyethoxy)aluminium hydride (Red-Al, 3.6 M solution in toluene, 700 uL, 2.49
mmol, 5.0 equiv). After being maintained at this temperature for 5 h, the reaction

mixture was quenched with saturated aqueous potassium sodium tartrate solution (10
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mL). The aqueous phase was extracted with EtOAc (2 x 10 mL). The combined organic
layers were washed with brine, dried over anhydrous Na>SO4, and concentrated in
vacuo. The crude residue was purified by column chromatography (2—10%
EtOAc/hexanes) to give E-allylic alcohol 156 as a colorless oil (265.9 mg, 74%): Ry=
0.46 (20% EtOAc/hexanes); [a]p* = —16.30 (¢ 1.00, CHCI3); 'H NMR (300 MHz,
CDClz) 6 7.75 (d, J= 7.5 Hz, 2H), 7.72 (d, J = 7.5 Hz, 2H), 7.44 (t, J = 7.0 Hz, 2H),
7.41-7.35 (m, 3H), 7.14 (d, J= 8.5 Hz, 2H), 6.85 (d, /= 8.5 Hz, 2H), 5.53 (dt, /= 15.5,
6.5 Hz, 1H), 5.34 (dd, J = 15.5, 5.5 Hz, 1H), 4.37-4.30 (m, 2H), 3.85 (dt, /= 8.3, 5.4
Hz, 1H), 3.81 (s, 3H), 3.78-3.71 (m, 1H), 3.66 (t, J = 6.0 Hz, 1H), 3.47-3.39 (m, 2H),
3.26 (dd, J = 8.5, 4.5 Hz, 1H), 3.00-2.97 (m, 1H), 1.96 (brs, 1H), 1.90-1.84 (m, 2H),
1.45-1.21 (m, 4H), 1.11 (s, 12H), 0.90 (s, 9H), 0.05 (s, 3H), 0.04 (s, 3H) ;'3C NMR (75
MHz, CDCls) ¢ 159.4, 136.3, 136.1, 134.2, 133.6, 133.3, 130.0, 129.9, 129.8, 129.4,
128.1, 127.6, 127.5, 113.9, 73.1, 71.9, 69.8, 68.6, 60.6, 60.3, 55.3, 39.3, 32.4, 25.3,
23.9,19.5, 18.2, —4.3, —4.6; IR (thin film): 3420, 2932, 2858, 1699, 1427, 1112, 1066

cm™'; HRMS (ESI) m/z caled for C42He2NaOgSi» (M+Na)* 741.3983, found 741.3995.

)

/
OR

“OR
OTBS (o

166 R = TBDPS
Silyl ether 166: Silyl ether 166 was prepared from allylic alcohol 156 (110.5 mg, 0.15
mmol) using a general procedure for TBDPS protection. The crude residue was purified
by column chromatography (2—-10% EtOAc/hexanes) to give siyl ether 166 as a
colorless oil (133.9 mg, 91%): Ry= 0.76 (5% EtOAc/hexanes); [a]p** = —4.24 (¢ 1.00,
CHCI3); '"H NMR (500 MHz, CDCl3) 8 7.68 (d, J = 7.5 Hz, 2H), 7.63-7.52 (m, 6H),
7.44-7.30 (m, 5H), 7.28-7.24 (m, 2H), 7.23-7.17 (m, 3H), 7.14 (t, J = 7.6 Hz, 2H),
7.00 (d, J= 8.5 Hz, 2H), 6.78 (d, J= 8.5 Hz, 2H), 5.15 (dd, J=15.5, 7.1 Hz, 1H), 4.87
(dt,J=15.5,6.8 Hz, 1H), 4.19 (d,J=11.7 Hz, 1H), 4.13 (d, /= 11.7 Hz, 1H), 3.79 (s,
3H), 3.70-3.64 (m, 1H), 3.61 (t, J= 7.4 Hz, 1H), 3.40-3.34 (m, 1H), 3.27 (dd, /= 8.5,
4.4 Hz, 1H), 3.23 (dd, J=10.4, 5.0 Hz, 1H), 3.15 (/= 7.4, 4.4 Hz, 2H), 1.65-1.52 (m,
4H), 1.30-1.22 (m, 1H), 1.20-1.12 (m, 1H), 1.06 (s, 9H), 1.05 (s, 12H), 0.88 (s, 9H),
0.03 (d, /= 10.4 Hz, 1H); 3C NMR (125 MHz, CDCl3) 8 159.1, 136.3, 136.2, 136.0,
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135.3, 134.9, 134.3, 133.9, 133.7, 133.4, 130.3, 129.8, 129.6, 129.57, 129.50, 129.4,
129.1,127.9,127.7,127.5,127.4, 127.3, 113.7, 74.0, 72.8, 72.2, 72.1, 68.5, 61.0, 58.6,
55.4,39.3,32.2,27.1,27.0,26.7, 24.9, 23.9, 19.6, 19.4, 18.3, —4.2, —4.6; IR (thin film):

2932, 2858, 1699, 1427, 1112, 1066 cm™'; HRMS (ESI) m/z caled for CssHsoNaO4Sis
(M+Na)* 979.5160, found 979.5171.

/
OR

“OR
oTBS |,

158 R = TBDPS
Alcohol 158: Alcohol 158 was prepared from PMB ether 166 (298.9 mg, 0.31 mmol)
using a general procedure for PMB deprotection. The crude residue was purified by
column chromatography (5-15% EtOAc/hexanes) to yield alcohol 158 as a colorless
oil (240.4 mg, 92%): Ry = 0.47 (5% EtOAc/hexanes); [a]p** = +9.02, ¢ 1.00, CHCI3);
'"H NMR (500 MHz, CDCl3) 8 7.66 (d, J = 7.4 Hz, 4H), 7.56 (t, J = 8.0 Hz, 4H), 7.42—
7.34 (m, 4H), 7.27-7.20 (m, 8H), 5.23 (dd, /= 15.5, 8.0 Hz, 1H), 4.78 (dt, J=15.5, 6.6
Hz, 1H), 3.73-3.66 (m, 1H), 3.57 (t,J = 7.8 Hz, 1H), 3.36-3.29 (m, 2H), 3.29-3.23 (m,
2H), 3.19 (dd, J=7.6,4.2 Hz, 1H), 1.89—1.80 (brs, 1H), 1.74-1.66 (m, 2H), 1.34-1.14
(m, 4H), 1.10 (s, 9H), 1.07 (d, J = 6.2 Hz, 3H), 1.05 (s, 9H), 0.04 (d, J = 9.9 Hz, 3H);
BC NMR (125 MHz, CDCl3) & 136.2, 136.16, 136.12, 135.8, 134.4, 134.1, 133.8,
133.7, 132.9, 129.9, 129.8, 129.6, 129.5, 127.9, 127.6, 127.5, 127.4, 74.3, 73.1, 68.5,
64.6, 60.9, 57.8,39.3,32.2,27.1, 27.2,26.0, 24.9,23.9, 19.5, 19.4, 18.2, 4.3, —4.6; IR

(thin film): 3613, 2930, 2857, 1457, 1112, 1052 cm™'; HRMS (ESI) m/z caled for
CsoH75NaOsSi3 (M+Na)*™ 859.4585, found 859.4591.

159 R = TBDPS

Ester 159: Alcohol 158 (200.1 mg, 0.24 mmol) was first transformed to aldehyde

intermediate using a general procedure for DMP oxidation. The crude residue was
purified by column chromatography (10-20% EtOAc/hexanes) to furnish the

corresponding aldehyde intermediate as a colorless oil (175.7 mg, 88%) which was
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immediately subjected to Wittig olefination using a general procedure for Wittig
olefination. The crude residue was purified by column chromatography (2-10%
EtOAc/hexanes) to yield ester 159 as a colorless oil (179.0 mg, 94%): Ry = 0.55 (5%
EtOAc/hexanes); [a]p? = +8.40 (¢ 1.00, CHCl3); '"H NMR (500 MHz, CDCl3) § 7.65
(d, J=17.2 Hz, 2H), 7.60 (d, J = 7.2 Hz, 2H), 7.54-7.49 (m, 4H), 7.41-7.29 (m, 4H),
7.26-7.16 (m, 8H), 6.51 (dd, J=15.7,4.7 Hz, 1H), 5.78 (d, J=15.7 Hz, 1H), 5.22 (dd,
J=15.5,7.7Hz, 1H), 4.88 (dt,J=15.5, 6.6 Hz, 1H), 4.15-4.04 (m, 2H), 3.88-3.81 (m,
1H), 3.73-3.64 (m, 1H), 3.59 (t, /= 7.7 Hz, 1H), 3.15 (dd, J = 7.8, 4.4 Hz, 1H), 3.03
(dd, J=17.9, 4.4 Hz, 1H), 1.78-1.69 (m, 2H), 1.36-1.25 (m, 4H), 1.22 (t, J = 7.1 Hz,
1H), 1.08 (s, 9H), 1.06 (d, J = 6.1 Hz, 3H), 1.02 (s, 9H), 0.88 (s, 9H), 0.03 (s, 3H), 0.02
(s, 3H); 3*C NMR (125 MHz, CDCl3) 6 166.0, 144.7, 136.2, 136.1, 134.8, 134.0, 133.8,
133.2, 133.1, 129.9, 127.7, 127.6, 127.57, 127.50, 127.4, 122.6, 74.0, 72.1, 68.5, 60.5,
60.4,59.6,39.3,32.1,24.8,23.9,19.5,19.4, 18.3, 14.3, 4.3, —4.6; IR (thin film): 3431,

2932, 2858, 1720, 1427, 1112 cm™'; HRMS (ESI) m/z caled for CssHzsNaOgSis
(M+Na)* 927.4847, found 927.4854.

/
OH

OH ||
EtO,C

“OR

160 R = TBDPS
Alcohol 160: Alcohol 160 was prepared from ester 159 (160.7 mg, 0.18 mmol) using a
general procedure for TBS deprotecton. The crude residue was purified by column
chromatography (20—40% EtOAc/hexanes) to yield alcohol 160 as a colorless oil (130.2
mg, 81%): Rr=0.73 (50% EtOAc/hexanes); [a]p** = +31.04 (c 1.00, CHCl3); '"H NMR
(500 MHz, CDCl3) 6 7.66 (d, J= 7.1 Hz, 2H), 7.59 (d, J = 7.2 Hz, 2H), 7.54-7.49 (m,
4H), 7.41-7.31 (m, 5H), 7.28-7.23 (m, 3H), 7.21-7.16 (m, 4H), 6.51 (dd, J=15.6, 4.4
Hz, 1H), 5.86 (d, J = 15.6 Hz, 1H), 5.24 (dd, J = 15.5, 7.8 Hz, 1H), 4.81 (dt, J = 15.5,
6.7 Hz, 1H), 4.15-4.04 (m, 2H), 3.89-3.82 (m, 1H), 3.72-3.67 (m, 1H), 3.57 (t, /=7.9
Hz, 1H), 3.16 (dd, J = 7.8, 4.4 Hz, 1H), 3.03 (dd, /= 7.9, 4.4 Hz, 1H), 1.86-1.65 (m,
4H), 1.28-1.20 (m, 2H), 1.22 (t,J= 7.2 Hz, 1H), 1.11 (d, J= 6.2 Hz, 3H), 1.08 (s, 9H),
1.02 (s, 9H); 1*C NMR (125 MHz, CDCl3) 8 166.4, 145.2, 136.2, 136.1, 136.0, 134.7,
134.1,133.7,133.2,133.0, 129.9, 129.7, 129.6, 127.7, 127.6, 127.5, 127.4, 122.5, 74.2,
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72.1,67.8, 60.7, 60.4, 59.6, 38.9, 32.1, 27.1, 27.0, 24.9, 23.3, 19.5, 19.4, 14.3; IR (thin

film): 3421, 2931, 2857, 1699, 1112, 1065 cm™'; HRMS (ESI) m/z calcd for

CasHe2NaOsSi2 (M+Na)* 813.3983, found 813.3990.

o)
7/
OH
OH
HO,C
129 R = TBDPS

| “OR

Seco acid 129: Seco acid 129 was prepared from alcohol 160 (118.7 mg, 0.15 mmol)
using a general procedure for hydrolysis. The crude residue was purified by column
chromatography (30% EtOAc/hexanes—100%EtOAc) to yield seco acid 129 as a
colorless oil (80.7 mg, 69%): Ry=0.33 (50% EtOAc/hexanes); [a]p®® = +34.94 (¢ 1.00,
CHCI3); '"H NMR (500 MHz, CDCl3) 8 7.67 (d, J = 7.2 Hz, 2H), 7.57 (d, J = 7.2 Hz,
2H), 7.51 (d, J = 7.3 Hz, 4H), 7.42-7.37 (m, 1H), 7.37-7.31 (m, 3H), 7.28-7.23 (m,
2H), 7.23-7.13 (m, 6H), 6.54 (dd, J=15.5, 4.5 Hz, 1H), 5.83 (d, /= 15.5 Hz, 1H), 5.24
(dd, J=15.5,7.9 Hz, 1H), 4.79 (dt, J = 15.5, 6.7 Hz, 1H), 4.75-4.53 (brs., 2H), 3.86—
3.80 (m, 1H), 3.75-3.67 (m, 1H), 3.53 (t, /= 8.0 Hz, 1H), 3.16 (dd, J = 8.0, 4.4 Hz,
1H), 3.05 (dd, J=7.7,4.4 Hz, 1H), 1.84-1.72 (m, 1H), 1.71-1.61 (m, 1H), 1.25 (s, 4H),
1.08 (s, 12H), 1.01 (s, 9H); 3C NMR (125 MHz, CDCl3) & 169.2, 146.6, 136.2, 136.1,
136.09, 136.04, 134.8, 134.0, 133.6, 133.1, 133.0, 129.9, 129.6, 129.5, 127.7, 127.6,
127.5,127.4,122.1,74.0, 72.2, 68.3, 60.2, 59.8, 38.6, 32.1, 27.1, 27.0, 24.9, 22.9, 19.5,

19.4; IR (thin film): 3431, 2931, 2857, 1699, 1112, 1065 cm™'; HRMS (ESI) m/z calcd

for C4sHssNaOeSi2 (M+Na)" 785.3670, found 785.3662.

)

/

R .
© ‘OR

o
o]
161 R = TBDPS
Macrolactone 161: Macrolactone 161 was prepared from seco acid 129 (74.8 mg, 0.10
mmol) using a general procedure for Shiina macrolactonization. The crude residue was
purified by column chromatography (5-10% EtOAc/hexanes) to yield macrolactone
161 as a colorless oil (42.1 mg, 59%): Rr= 0.59 (5% EtOAc/hexanes); [o]p> = +33.44,
(¢ 1.00, CHCI3); '"H NMR (300 MHz, CDCl3) 4 7.77-7.70 (m, 2H), 7.59-7.51 (m, 6H),
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7.47-7.28 (m, 8H), 7.18 (t, J= 7.6 Hz, 2H), 7.06 (t, J= 7.6 Hz, 2H), 6.51 (dd, J = 15.3,
4.2 Hz, 1H), 5.93 (dd, J= 15.3, 1.6 Hz, 1H), 5.37 (dt, J = 15.5, 5.6 Hz, 1H), 5.22-5.10
(m, 1H), 4.72-4.59 (m, 1H), 4.01-3.95 (m, 1H), 3.56 (t, /= 8.2 Hz, 1H), 3.13-3.05 (m,
2H), 1.99-1.86 (m, 1H), 1.77-1.55 (m, 4H), 1.34-1.29 (m, 1H), 1.15 (d, J = 6.3 Hz,
3H), 1.12 (s, 9H), 1.02 (s, 9H); 3C NMR (75 MHz, CDCL) § 165.8, 145.6, 136.2,
136.1, 136.0, 135.0, 134.1, 133.4, 133.1, 130.0, 129.9, 129.6, 129.5, 129.0, 127.8,
127.4,127.3,121.6,73.5,72.8, 71.9, 61.8, 58.9, 34.4, 33.0, 27.1, 27.0, 24.3, 20.1, 19.5,

19.4; IR (thin film): 293, 2857, 1719, 1259, 1112, 1065 cm™!; HRMS (ESI) m/z calcd

for C46Hs6sNaOsSi> (M+Na)* 767.3564, found 767.3567.

)

/

OH | O
o)

o]
pestalotioprolide B (14)

Pestalotioprolide B (14): Pestalotioprolide B (14) was obtained from macrolactone
161 (42.1 mg, 0.06 mmol) using a general procedure for global deprotection. The crude
residue was purified by column chromatography (20-80% EtOAc/hexanes) to give
macrolactone 14 (8.9 mg, 59%) as a white solid: Ry= 0.17 (50% EtOAc/hexanes); mp
109.6-111.3 °C; [a]p® = +75.96, (¢ 1.00, CHCl3); '"H NMR (500 MHz, acetone-ds) &
7.11 (dd, J = 15.5, 3.6 Hz, 1H), 5.99 (dd, J = 15.5, 1.8 Hz, 1H), 6.03-5.90 (m, 1H),
5.55(dd,J=15.5,7.8 Hz, 1H), 5.01 (brs, 1H), 4.69—4.62 (m, 1H), 4.21 (brs, 1H), 4.35—
4.28 (brs, 1H), 3.97-3.91 (m, 1H), 2.94 (dd, J = 8.9, 4.5 Hz, 1H), 2.93-2.89 (m, 1H),
2.16-2.08 (m, 1H), 2.03-1.93 (m, 1H), 1.89-1.75 (m, 2H), 1.60-1.50 (m, 1H), 1.21 (d,
J=6.2 Hz, 3H), 1.16-1.09 (m, 1H); 3C NMR (125 MHz, acetone-ds) & 166.1, 148.2,
135.2,130.9, 120.8, 72.3, 71.7, 71.4, 61.7, 59.2, 35.1, 33.7, 25.3, 20.3; IR (thin film):

3369, 2930, 2857, 1722, 1242, 1112, 1048 cm™'; HRMS (ESI) m/z caled for
Ci14H20NaOs (M+Na)* 291.1208, found 291.1190.
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4.3 Cytotoxicity assay

The evaluation of cytotoxic activity against the HCT116 colon cancer and non-
cancerous (Vero) cells of 13 and 14 was measured using 3-(4,5-dimethyl-2-thiazolyl)-
2,5-diphenyl-2H-tetrazolium bromide (MTT) assay following a procedure previously
described (Thiraporn et al., 2022) by the laboratory of Prof. Dr. Chatchai Muanprasat
of Chakri Naruebadin Medical Institute, Faculty of Medcine Ramathibodi Hospital,
Mahidol University.

4.4 CFTR inhibition assay

The evaluation of inhibitory effect on CFTR in human intestinal epithelial (T84)
cells of 4 and 5 was measured using short-circuit current analysis following a procedure
previously described (Muangnil et al., 2018 and Thiraporn et al., 2022) by the
laboratory of Prof. Dr. Chatchai Muanprasat of Chakri Naruebadin Medical Institute,
Faculty of Medcine Ramathibodi Hospital, Mahidol University.
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The first total syntheses of seiricuprolide and pestalotioprolide
B, rare 14-membered o,3-unsaturated macrolides embedding a
chiral epoxide motif, were achieved in 17 steps with 1.9% and
1.6 % overall yields, respectively. Our synthesis featured the key
Shiina macrolactonization to construct the 14-membered
macrocyclic skeleton, Wittig olefination to generate the (E)-a,f3-
unsaturated ester and selective reduction of advanced chiral
propargylic alcohol intermediate to enable the exclusive

Introduction

14-Membered macrolactones are a significant class of polyke-
tide metabolites exhibiting a broad range of biological activities
and diverse architectural features. Because of this, these macro-
lides have received a great deal of interest from organic
chemists. A rare subgroup of 14-membered macrolides are
those containing chiral epoxides. This subgroup of macrolides
can be divided into two group based on the presence of a -
resorcylic acid subunit. The prominent examples of resorcylic
acid lactones (RALs) containing epoxide motif are depicted in
Figure 1A. Radicicol (1),”*9 monocillin 1 (2)*" and hypothemy-
cin (3)?¥ were isolated from various strains of fungi and are
shown to display a wide range of biological activities such as
cytotoxic,” antifungal,® antibiotic,’ antimalarial®® and HSP90
inhibitory activities.”’ Owing to their promising biological
activities, the syntheses of RALs 1-3 were reported by many
research groups.” Another group of 14-membered macrolides
bearing epoxide moiety are those lacking the f-resorcylic acid
which are very rare in nature and, to the best of our knowledge,
only two examples have been reported (Figure 1B). Seiricupro-
lide (4) was originally isolated from a fungus Seiridium cupressi
by Sparapano etal. in 1988 The Sparapano group also
reported the phytotoxic activity of macrolide 4. Structurally,
seiricuprolide (4) is a 14-membered o,B-unsaturated lactone
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formation of Z- or E-olefin at C8—C9. Synthetic seiricuprolide
and pestalotioprolide B were evaluated for their cytotoxic
activity against the HCT116 colon cancer cell line as well as their
inhibitory effect on CFTR chloride channel activity in human
intestinal epithelial (T84) cells. Preliminary structure-activity
relationship suggested that the C5—C6 (-epoxide moiety sup-
pressed both biological activities.

containing B-epoxide at C5—C6, Z-double bond at C8—C9 as
well as three alcohol stereogenic centers. The structure and the
absolute configurations of 4 were later confirmed by single-
crystal X-ray diffraction analysis by the Lamba group in 1992,®
rendering 4 a (-epoxide analogue of nigrosporolide (7, Fig-
ure 1C), a known 14-membered macrolactone of which the first
total synthesis was disclosed by our research group.” Pestalo-
tioprolide B (5), the other known macrolactone of this subclass,
was first discovered as a diacetate derivative 6 from mangrove-
derived endophytic fungus Pestalotiopsis sp. PSU-MA119 by
Rukachaisirikul etal. in 2012."" In 2016, macrolides 4 and 5
were reisolated from the mangrove-derived endophytic fungus
Pestalotiopsis microspora by Liu and Proksch and co-workers.""
The Liu and Proksch group also verified the structures and the
absolute configurations of macrolide 5 by single-crystal X-ray
diffraction analysis. Pestalotioprolide B (5) is structurally nearly
identical to 4 except for the configuration of double bond at
C8-C9, which also makes 5 a -epoxide analogue of previously
reported (4S,75,135)-4,7-dihydroxy-13-tetradeca-2,5,8-trienolide
(8, Figure 10).”! Although macrolactones 4 and 5 were reported
to have no cytotoxicity against the L5178Y murine lymphoma
and the A2780 human ovarian cancer cell lines by the Liu and
Proksch group, their novel structures and unprecedented
chemical syntheses sparked our interest. As part of our ongoing
program on total syntheses and anticancer drug discovery of
14-membered macrolides, we report herein the first total
syntheses of seiricuprolide (4) and pestalotioprolide B (5) as
well as evaluation of their cytotoxic activity against the HCT116
colon cancer cells and inhibitory activity against cystic fibrosis
transmembrane regulator (CFTR). In addition, the preliminary
structure-activity relationship of this subgroup of 14-membered
macrolactones was suggested in this work.

© 2023 Wiley-VCH GmbH
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nigrosporolide (7)

(4S,7S,13S)-4,7-dihydroxy-13-
tetradeca-2,5,8-trienolide (8)

mutolide (9)

Figure 1. A) Selected examples of RALs containing epoxide moiety B) 14-membered a,f3-unsaturated macrolides containing epoxide moiety C) 14-membered
a,B-unsaturated macrolides of which total syntheses were reported by our research group.

Results and Discussion

Since seiricuprolide (4) and pestalotioprolide B (5) are structur-
ally similar to those of nigrosporolide (7) and (4S,7S,135)-4,7-
dihydroxy-13-tetradeca-2,5,8-trienolide (8), we anticipated that
our previously described key bond formation strategy em-
ployed in the syntheses of 7 and 8 would be applicable for
syntheses of 4 and 5.°' However, the challenging part of
syntheses of 4 and 5 is the installation of the $-epoxide moiety
since epoxides are sensitive functional group and late stage
installation of epoxides would be preferable. Ideally, macro-
lactone targets 4 and 5 should be directly obtained via selective
epoxidation of macrolides 7 and 8. Nevertheless, this strategy
posed a challenge due to the presence of two olefins in the
molecules of 7 and 8 in addition to the facial selectivity of the
epoxidation step. Thus, our bond disconnections would rely on
installing the epoxide moiety in an early stage to avoid such
challenges. The retrosynthetic analysis of 4 and 5 is outlined in
Scheme 1. Our approach would still rely on the same key
disconnection strategy to our previous reports on the total
syntheses of the closely-related analogues.”” Shiina macro-
lactonization of seco acids 10 and 11 would be utilized to
assemble the macrocycles. Wittig olefination would be em-
ployed to generate the C2—C3 (E)-o,3-unsaturated ester moiety
of both 10 and 11. The Z- or E-double bond at C8—C9 (of 10 or

Eur. J. Org. Chem. 2023, €202300034 (2 of 9)

11, respectively) would be derived from selective reduction of
chiral propargylic alcohol 12, which would in turn be elaborated
from acetylide addition of known chiral alkyne 13"'% prepared
from (S)-propylene oxide to chiral epoxy aldehyde 14. It was
anticipated that the adjacent chiral epoxide of aldehyde 14
would direct the stereoselectivity of this acetylide addition
step.l'? Chiral epoxy aldehyde 14 would then be prepared from
substrate-controlled and selective epoxidation of our previously
reported chiral Z-allylic alcohol 15 via the Baltas’s protocol.’ In
2003, Baltas and co-workers reported the substrate-controlled
m-CPBA-mediated epoxidation of Z-allylic alcohols bearing
adjacent (S)-silyloxy stereogenic centers (16 and 17) which
provided good erythro selectivity leading to [B-epoxides as
major products (Scheme 2A). Since our chiral Z-allylic alcohol
substrate 15 is nearly identical to 16 and 17, we expected that
m-CPBA epoxidation of 15 would provide the desired (-
selectivity. The Baltas group also observed a particular trend in
vicinal coupling constants of methine protons in the chiral
epoxides o to silyloxy stereogenic centers (Jy,) i.e. threo
products generally have higher values of J;, vicinal coupling
constants compared to those of the erythro counterparts. This
information could be used as a guideline to verify the absolute
configurations of chiral epoxides bearing adjacent silyloxy
stereogenic centers. Nevertheless, the rationale of the stereo-
selectivity of epoxidation of this particular substrate was not
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\)/ HOY \ R = TBDPS
Wittig

olefination

10: Z-alkene at C8—C9
11: E-alkene at C8-C9

Shuna macrolactonization

seiricuprolide (4): Z-alkene at C8-C9,
pestalotioprolide B (5): E-alkene at C8—C9

acetylide addition

8 /
OTBS ]/j “OTBDPS

OPMB

=
}O : “OTBDPS
13 4
S OPMB
(S)-propylene oxide OoTBS selective
epoxidation
6 6
HO 5 BzO _ -~ 5
epichlorohydrin —— . or ., —— D-mannitol
‘OTBDPS ‘OH
15 opwvB 18 opmB
Scheme 1. Retrosynthetic analysis of sericuprolide (4) and pestalotioprolide B (5)
A) Baltas’s procedure
0] \\Q
HO m-CPBA, NaHCO, ~ HO wHs HO Hs
- Hy + Hy
TBDPSO CHyCl, 0°C TBDPSO TBDPSO
OR 16a:16b = 2:1 OR OR
17a:17b = 6:1 erythro threo
16 R = TBDPS 16a R=TBDPS, Jy3.14 =7.50 Hz 16b R = TBDPS, Jy3.14 = 8.20 Hz
17 R =TBS 17aR=TBS, Jys.a = 6.20 Hz 17b R = TBS, Jyz.p4 = 8.26 Hz
B) Method |
ﬁo &0
8steps HO_ m-CPBA, NaHCO; ~ HO HO
epichlorohydrin —=» +
TBDPSO CH.Cl, 0°C,68%  1BpDPSO TBDPSO
OoPMB (19a:19b =1:2.7) OPMB OPMB
15 19a, 18% 19b, 50%
Rf=0.57 Rf=0.38

(2% EtOAC/CH,Cly)

(2% EtOAC/CH,Cly)

Scheme 2. A) Previously reported m-CPBA epoxidation by Baltas et al. B) m-CPBA epoxidation of Z-allylic alcohol 15 using Baltas’s protocol (Method ).

discussed. Alternatively, we envisioned that [3-epoxide 14 could
be obtained via chiral OH-directed m-CPBA epoxidation of
18." The modified Z-Allylic alcohol 18 would be synthesized
from D-mannitol, a commercially available and inexpensive
chiral building block.!*'!

Synthesis of macrolides 4 and 5 started with preparation of
chiral epoxy aldehyde 14. The first method was the use of our
previously reported Z-allylic alcohol intermediate 15, which was

Eur. J. Org. Chem. 2023, €202300034 (3 of 9)

obtained from epichlorohydrin in 8 steps via the key Jacobsen
hydrolytic kinetic resolution and Still-Gennari olefination,"'® as
epoxidation substrate according to Baltas’s protocol."” Z-Allylic
alcohol 15 was therefore subjected to m-CPBA in the presence
of NaHCO; at 0°C to provide the separable epoxy alcohol
diastereomers 19a (18%, R,=0.57 in 2% EtOAc/CH,Cl,) and
19b (50%, R;=0.38 in 2% EtOAc/CH,Cl,) in 68% combined
yield (dr=1:2.7) (Method |, Scheme 2B). Unfortunately, the
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absolute configuration of newly formed epoxides could not be
determined by comparison of J;, vicinal coupling constants
due to unclear multiplicity of H3 and H4 signals of the major
product 19b. However, we observed the J;, vicinal coupling
constant in the minor product 19a to be 8.40 Hz, which was
comparable to the values observed for threo products in Baltas’s
report. Since m-CPBA epoxidation of 15 provided the modest
diastereomeric ratio, allylic alcohol substrate 15 may not be
suitable for gram-scale synthesis. In addition, although our
reported preparation of 15 is efficient, it is somewhat lengthy
and requires the use of some relatively expensive reagents,"®
leading us to screen another method to efficiently access the
requisite B-epoxide.

Synthesis of the modified epoxidation precursor, Z-allylic
alcohol 18, began with conversion of D-mannitol to known
allylic alcohol 20 in 4 steps in a 10-gram scale via the key Wittig
olefination following a protocol reported by Baltas et al."® and
Chu et al.™ (Scheme 3). Allylic alcohol 20 was then transformed
to diol 22 in 2 steps via benzoylation to give benzoate ester 21
in 89% vyield, followed by acetonide deprotection by treatment
with 2 M HCl in acetonitrile. The next task was regioselective
protection of primary alcohol of diol 22 with a p-metheoxyben-
zyl (PMB) group. We decided to convert diol 22 to stannylene
acetal by using dibutyltin oxide, followed by employment of
PMBCI in the presence of tetrabutylammonium bromide (TBAB)
to provide the desired PMB ether 18 in 71% yield along with
24% of undesired PMB ether regioisomer."” It should be noted
that using typical conditions for PMB protection (NaH, PMBCI)
or using the more reactive 4-methoxybenzyl 2,2,2-
trichloroacetimidate™ gave the undesired PMB ether re-
gioisomer as a major product. Next, m-CPBA epoxidation of
allylic alcohol 18 was then performed to give inseparable

diastereomeric epoxy alcohols in 78% combined yield. We
decided to elaborate this mixture to epoxy alcohols 19a and
19b in order to determine the stereoselectivity outcome
compared to Method I. Ensuing 2-step transformations, includ-
ing TBDPS protection and methanolysis, proceeded smoothly to
give separable epoxy alcohol diastereomers 19a and 19b in a
combined 79% vyield and an excellent diastereomeric ratio of
16:1, in which 'H and "®C NMR spectroscopic data as well as
retention factor values (0.57 and 0.38 in 2% EtOAc/CH,Cl,) of
19a and 19b from these conditions were identical to those of
epoxy alcohol products from Method I.

According to contrastively observed results from Methods |
and ll, we therefore proposed the conformational models to
rationalize the stereoselectivity observed in each chiral sub-
strate based on Sharpless model, which requires conformation
alignment of the O—C—C=C dihedral angle (a) estimated to be
120° (Scheme 4)."" In the case of chiral allylic alcohol substrate
18 (Method lI), the major product, -epoxide 23 erythro, would
result from m-CPBA epoxidation directed by the adjacent chiral
hydroxyl group via the lower-energy transition state TS1 due to
minimization of 1,3-allylic strain®” whereas the other transition
state TS2 leading to a-epoxide 23 threo would suffer from 1,3-
allylic strain. On the other hand, m-CPBA epoxidation of allylic
alcohol substrate 15 bearing adjacent (S)-silyloxy stereogenic
center provided a reversed diastereoselectivity. Since the allylic
hydroxyl group of 15 contains no chiral entity to differentiate
the facial selectivity of epoxidation via hydrogen bonding, we
proposed that the observed stereoselectivity in the epoxidation
of 15 would derive from the minimization of 1,3-allylic strain
controlled by the bulky adjacent silyloxy stereogenic center as
shown in transition states TS3 and TS4. TS4 would be preferred
due to the minimized 1,3-allylic strain compared to TS3

HO BzO BzO
D-mannitol —»4 steps o BzCl, EtN b 2MHCI o
0 CH,Cl, rt, 89% Q MeCN, 0°C,82%  HO

ﬂ\o *)\o OH
20 21 22
0
BzO Method Il &
BuzsnOo Z AN etho BzO TBDPSCI
MeOH, 80 °C m-CPBA imidazole, DMAP
HO
then PMBCI, TBAB 0 HO 0
then PMECI, TBA Opmp  CH2Cla, 1t 78% Loy CHzCla 1t 86%
18 23
0
BzO._< K,CO4 Ho <9 Ho_<J
+
0,
TBDPSO 1“;‘*22;} 17:.?’ TBDPSO TBDPSO

opmp (19a:19b=16:1) OPMB OPMB

24 19a, 74% 19b, 5%

R; = 0.57 R;=0.38

(2% EtOAC/CH,Cl,)

(2% EtOAC/CH,Cly)

Scheme 3. Synthesis of Z-allylic alcohol 18 and m-CPBA epoxidation of Z-allylic alcohol 18 using Baltas’s protocol (Method II).
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(0] o” O / K
HO / \ H /’.: H HO H
L SRS S s P
\
TBDPSO OPMB o—x Methodl H 4 OPMB TBDPSO
1,3-allylic strain OpMB OTBDPS OQ( 15
19a erythro 15 Ar 19b threo
TS3 TS4

Scheme 4. Proposed rationale for observed diasteroselectivities in the epoxidation of Z-allylic alcohols 15 (Method I) and 18 (Method II).

rendering the epoxidation to occur on the alkene face opposite
to the bulky OTBDPS group and delivered a-epoxide 19b threo
as a major product. This proposed rationale would be contra-
dictory to the previously reported results by the Baltas group.
To verify our proposed rationale, we therefore converted the
minor epoxy alcohol 19b to Baltas’s epoxy alcohol intermediate
(17a or 17b) in 4 steps (Scheme S1A in the Supporting
Information). To our surprise, the 'H and *C NMR data of this
derivative matched those reported by the Baltas group for
‘erythro’ intermediate 17a which was their major product. In
addition, we further converted the major epoxy alcohol 19a to
Baltas’s intermediate (Scheme S1B in the Supporting Informa-
tion) and found that the 'H and *C NMR data of this compound
were identical to those reported for the minor ‘threo’ product
by the Baltas group. Even though the absolute configuration of
each epoxy alcohol could not be unambiguously confirmed at
this stage, we were certain, based on these results, that the a-
epoxide threo product would predominate from m-CPBA

epoxidation of Z-allylic alcohol containing (S)-a-silyloxy stereo-
genic center for example 15. Thus, we decided to proceed with
epoxy alcohol 19a, a major diastereomer from Method I, due
to its availability in larger quantity and the excellent erythro
diastereoselectivity rationalized above.

With the proposed B-epoxy alcohol 19a in hand, we then
proceeded to assemble the key fragments as shown in
Scheme 5. B-Epoxy alcohol 19a was subjected to oxidation
mediated by IBX to yield the requisite epoxy aldehyde 14 in
81% yield. The next task was coupling of chiral epoxy aldehyde
14 with known alkyne 13 via acetylide addition. Epoxy aldehyde
14 was exposed to a premixed solution of alkyne 13 and n-
butyl lithium at -78°C in THF. After warming to 0°C for 2 h,
propargylic alcohols 12a and 12b were obtained in respective
21% and 56 % yields upon purification by column chromatog-
raphy. The absolute configuration of the newly formed alcohol
stereogenic center of each diastereomer was assigned by
Mosher’s ester analysis. Although the B-epoxide moiety of 14

s <9
N
H .,
OTBS © ‘OTBDPS
o 0 H (o} L s 13 OPMB
IBX mBuL] 1. PPhs, DEAD,
“'OR (@) “/OR AcOH, toluene, 0 °C
OPMB DMSO,OO Ctort OPMB THF, -78t0 0 °C 2. K,CO3, MeOH, rt
19a 81% 14 78% (2 steps)
R = TBDPS R = TBDPS

Scheme 5. Coupling of the key fragments 13 and 14.
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did not lead to the desired (S)-propargylic alcohol 12a as a
major product as anticipated, we were delighted to find that
the undesired (R)-propargylic alcohol 12b could be smoothly
transformed to 12a in 2 steps via Mitsunobu inversion? with
acetic acid, followed by methanolysis. Attempts to perform this
coupling in asymmetric fashion using Trost’s asymmetric Zn-
mediated alkynylation®’ were unsuccessful in our hands as
substrates 13 and 14 were inert to such conditions.

Having successfully obtained the requisite chiral propargylic
alcohol 12a, we next continued to complete the synthesis of
seiricuprolide (4) using our previously established sequence as
shown in Scheme 6. The synthesis commenced with Z-selective
reduction of propargylic alcohol 12a, which was carried out via
Lindlar hydrogenation in ethyl acetate to exclusively furnish Z-
allylic alcohol 25 in 89% vyield. The Z-geometry of 25 was
confirmed on the basis of a coupling constant of 10.8 Hz
between H8 and H9. Subsequent protection of allylic alcohol of
25 with TBDPSCI provided silyl ether 26 in 88 % yield. The next
task was to install the requisite 2-carbon o,f3-unsaturated ester
fragment which was performed in 3 steps. Removal of a PMB
protecting group of 26 by treatment with DDQ afforded
primary alcohol 27 in 85% yield. Subsequent oxidation of 27
mediated by Dess-Martin periodinane, followed by Wittig
olefination with Ph;P=CHCO,Et furnished (E)-o,f-unsaturated
ester 28 as a single isomer in excellent 85% yield over 2 steps.
The E-geometry of the newly formed olefin was verified by a
coupling constant of 15.5 Hz between H2 and H3. With the
advanced intermediate with all 14 carbons of seiricuprolide in

hand, our remaining task was to elaborate 28 to the macro-
lactonization precursor, seco acid 10. Ester 28 was then
subjected to selective deprotection of TBS protecting group
using 4 equivalents of weakly acidic PPTS to give alcohol 29 in
84 % yield. Gratifyingly, the B-epoxide remained untouched and
deprotection of TBDPS protecting groups was not observed.
Ensuing ester hydrolysis and acidic workup also smoothly
furnished seco acid 10 in 77% vyield without affecting the
epoxide moiety. Shiina macrolactonization of seco acid 10 was
then performed using 2-methyl-6-nitrobenzoic anhydride
(MNBA) in the presence of 6 equivalents of DMAP in toluene at
room temperature to achieve macrolactone 30 in 65% yield.
Final global deprotection of 30 was achieved using our
established conditions i.e. 10 equivalents of TBAF buffered with
AcOH (4 mol%) in THF at 60°C to provide seiricuprolide (4) in
49% yield as a white solid along with monoprotected analogue
31 (12%). The 'H and *C NMR spectroscopic data as well as the
melting point of synthetic 4 were identical to those reported for
natural 4.”' Moreover, a specific rotation of synthetic 4 as
[alp® = +48.12 (c 2.70, MeOH) was in good agreement with the
reported value for natural product 4 ([0],= +40, ¢ 2.7,
MeOH),"" which unambiguously confirmed the absolute config-
uration of [-epoxide intermediate 19a and verified our ration-
ale for the diastereoselectivity of m-CPBA epoxidation. Remark-
ably, B-epoxide 19a proved to be a very robust substrate for
the total synthesis, leading us to utilize 12a for completion of
the other targeted natural product pestalotioprolide B.

(\J=10.8 Hz
H (0] (0]

H.wo
X Q H,, Pd/CaCO4/Pb Z TBDPS ~
inoline » imi OR -,
OH ., quinoli 'OTBDPS imidazole, DMAP OR
oTBS OTBDPS EtOAc, rt, 89% oTBSOPMB CHCly, rt, 88% oTBSOPMB
OPMB
12a 25 26 R = TBDPS
0 0 0
=
! 1. DMP, CH,Cl, PPTS ~
DDQ R-"or 0<Ctort “OR (4 equiv) OR “or
CH;Clp, 0°Ctort otBsOH 2. PhsP=CHCO,Et EtOH, 1t, 84% \ AL
2
85% CH2C|21 rt JH2—H3 =155Hz
27R=TBDPS  85% (2steps) 28 R = TBDPS 29 R = TBDPS
0 0 )
g 7 =
MNBA TBAF (10 equiv),

LiOH OR /“/or DMAP (6 equiv) OR_~“/or  AcOH (4 mol%) OR| “IOH

THF/MeOH/H,0 \©H toluene, rt, 65% 0 THF, 0 to 60 °C then rt ~°

HO,C
rt, 77% o o

R = H, seiricuprolide (4), 49%

30R=TBDPS R = TBDPS. 31, 12%

10 R = TBDPS
Scheme 6. Completion of synthesis of seiricuprolide (4).
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Our attention focused then on completion of synthesis of
pestalotioprolide B (2). The synthesis began with optimization
of E-selective reduction of propargylic alcohol 12a mediated by
sodium(2-methoxyethoxy)aluminium hydride (Red-Al) as a re-
ducing agent (Table 1). Propargylic alcohol 12a was initially
treated with 1.2 or 3.0 equivalents of Red-Al in THF from 0°C to
room temperature (entries 1 and 2).*? Disappointingly, these
conditions gave no desired product, and the starting material
was recovered. Increasing Red-Al to 5 equivalents under the
same conditions provided an inseparable mixture of the desired
32 and overreduced product 33 in 53% combined yield and a
ratio of 1:2.1 as determined by 'H NMR spectroscopy (entry 3).
Further optimization was then performed by changing the
solvent to toluene (entry 4) or ether (entry 5) under the same
conditions as entry 3. Unfortunately, only the starting material
12a was observed from both conditions. These results
suggested that THF should be the appropriate solvent for Red-
Al-mediated reduction of 12a. Formation of overreduced
product 33 observed in entry 3 thus prompted us to perform
this reaction at lower temperature. After slowly warming the
reaction mixture from —30°C to 0°C for 6.5 h, no undesired
overreduced product 33 was obtained under these conditions
and the desired 32 was observed (40%) along with unreacted
starting material 12a (39%) as an inseparable 1:1 mixture as
determined by 'H NMR spectroscopy (entry 6). Further
optimization was then performed by slightly increasing the
reaction temperature to 4 °C. Gratifyingly, after maintaining the
reaction at this temperature for 5h, starting 12a was
completely consumed and the desired E-allylic alcohol 32 was
observed in 74% yield without the overreduced counterpart.
The E-geometry of 32 was again confirmed by a coupling
constant of 15.5 Hz between H8 and H9.

With the requisite intermediate 32 in hand, the remaining
installation of (E)-o,B-unsaturated ester as well as the con-
struction of macrocyclic core of 5 were accomplished by
transformation of 32 to 38 in 7 steps via the same synthetic
sequence established in the synthesis of 4. The global
deprotection of 38 was also performed under the same
conditions employed for 4 to deliver expected 5 in slightly

higher yield (56 %) as a white solid (Scheme 7). The 'H and "*C
NMR spectroscopic data as well as HRMS data and melting
point of synthetic 5 were in excellent agreement with those
reported for natural 5."" Moreover, the observed specific
rotation of synthetic 5, [a]l,®= +75.96 (c 1.00, CHCl;), was
essentially identical to that of natural product 5, ([a]p® = 472, ¢
1.0, CHCL,)." These results once again verified the absolute
configuration of $-epoxide intermediate 19 a, thereby rendering
its diastereomer 19b an a-epoxide antipode.

Our research group has recently reported the in vitro
cytotoxic activity of synthetic analogues of 4 and 5, i.e.
nigrosporolide (7), (4S,75,135)-4,7-dihydroxy-13-tetradeca-2,5,8-
trienolide (8) and mutolide (9) against three human cancer cell
lines including HCT116 colorectal carcinoma, MCF-7 breast
adenocarcinoma and Calu-3 lung adenocarcinoma using the
MTT assay.” It was discovered that synthetic mutolide (9) was
significantly active against the HCT116 colon cancer cells (IC5,=
12 uM) and was essentially inactive against the other two cell
lines (ICs,>50 uM), whereas macrolactone analogues 7 and 8
showed no cytotoxic effects on all three cancer cell lines tested.
Therefore, the HCT116 colon cancer cell line was selected for
screening of cytotoxic activity of synthetic 4 and 5 (Figure S75
in the Supporting Information). In addition, cytotoxicity against
non-cancerous (Vero) cells of 4 and 5 was evaluated using MTT
assay (Figure S76 in the Supporting Information). The dose-
response experiments of compounds 4 and 5 were then
performed on both cell lines at 0, 10, 20, 50 and 100 puM at 24,
48 and 72 h of incubation. It was found that both compounds
showed no cytotoxic effects on the HCT116 colon cancer cells
even at 100 pM and prolonged incubation time of 72 h. Similar
results were observed for seiricuprolide (4) on Vero cells
viability, whereas pestalotioprolide B (5) inhibited the viability
of Vero cells in a more dose-dependent manner. The latter
observation suggested that macrolide 5 was more cytotoxic to
Vero cells to other related analogues 4 and 7-9. On the basis of
the cytotoxic activity results, it can be roughly concluded that
the p-epoxide moiety at C5-C6 of this group of macrolides
suppressed the cytotoxicity against HCT116 cancer cells. This
preliminary structure-activity relationship is in accordance with

Table 1. Optimization of E-selective reduction of propargylic alcohol 12a mediated by Red-Al.
HsJ =155Hz
(0] (0]
R o
Red-Al reduction ) OH
OH /., “OTBDPS *
oTBS 'OTBDPS ———= Soue otes [ OTEORS
OPMB

12a 32 33
entry Red-Al (equiv.) solvent temp time [h] results
1 1.2 THF 0°Ctort 6 no reaction
2 3.0 THF 0°Ctort 20 no reaction
3 5.0 THF 0°Ctort 4.5 32:33=1:2.1 (53 % combined yield)
4 5.0 toluene 0°Ctort 5 no reaction
5 5.0 ether 0°Ctort 5 no reaction
6 5.0 THF —30°Cto 0°C 6.5 32 (40%)™ and 12a (39 %)™
7 5.0 THF 4°C 5 32 (74 % yield)
[a] Determined by the integration ratio of '"H NMR data.
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32 34 R =TBDPS 35 R =TBDPS
(0]
1. DMP, CH,Cl, 4 LiOH
0°C tort PPTS (4 equiv) OR ‘., _—
OR — OH ] OR " THF/MeOH/H,O
2. PhyP=CHCO,Et EtOH, rt, 81% EtO.C rt, 69%
CHoCly, rt Jho-Hs = 15.7 Hz 2
83% (2 steps) 36 R = TBDPS 37 R=TBDPS
MNBA TBAF (10 equiv),
DMAP (6 equiv) AcOH (4 mol%)

(0]
74
OH ORor
| toluene, rt, 59%
HO,C

11 R = TBDPS

Scheme 7. Completion of synthesis of pestalotioprolide B (5).

Liu and Proksch’s report that the -epoxide group of natural
products 4 and 5 decreased cytotoxic activities against the
L5178Y mouse lymphoma cells compared to natural products 7
and 8 which possess the Z-olefin at this emplacement.'”

Synthetic seiricuprolide (4) and pestalotioprolide B (5) were
further subjected to evaluation on inhibitory activity on cystic
fibrosis transmembrane regulator (CFTR)-mediated chloride
secretion in human intestinal epithelial (T84) cells using short-
circuit current analysis (I, ). Our group has also recently
disclosed the CFTR inhibitory activity of synthetic macrolide 7-
9, in which mutolide (9) showed stronger inhibition (~70%
inhibition) compared to analogues 7 (40% inhibition) and 8
(30% inhibition) at the same concentration of 5 uM.” Dis-
appointingly, synthetic 4 and 5 were found to show no effects
on CFTR-mediated chloride secretion in T84 cells stimulated by
forskolin (@ cAMP donor) at both 5 and 10 uM compared to a
positive control, CFTR(inh)-172 (Figure S77 in the Supporting
Information). Therefore, the [-epoxide moiety of macrolides 4
and 5 apparently suppressed the CFTR inhibitory activity
compared to compounds 7 and 8, which are their C5-C6 Z-
olefin counterparts.

Conclusion

In conclusion, we have accomplished the first and convergent
total synthesis of seiricuprolide (4) and pestalotioprolide B (5)
starting from known alkyne 13 and chiral Z-allylic alcohol 18, in
which 18 derived from D-mannitol, an inexpensive and
commercially available chiral building block. The synthetic
macrolides 4 and 5 were achieved in a longest linear sequence
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o)
/
- | “OR
o THF, 0 to 60 °C then rt
0 56%

38 R=TBDPS

pestalotioprolide B (5)

of 17 steps and a total of 19 steps in 1.9 and 1.6 % overall yields,
respectively. The key strategies for our synthesis included Shiina
macrolactonization to construct 14-membered skeleton, Wittig
olefination to generate the (E)-o,f-unsaturated ester segment
and selective reduction of propargylic alcohol to form Z- or E-
olefin at C8—C9 for 4 and 5. Our work also highlighted a highly
stereoselective substrate-controlled m-CPBA epoxidation to
install the C5—C6 [-epoxide at the early stage, which reaffirmed
the remarkable robustness of this (-epoxide moiety of both
natural products. Synthetic macrolides 4 and 5 were evaluated
for their cytotoxic activity against the HCT116 colon cancer cells
as well as their inhibitory effect on CFTR in human intestinal
epithelial (T84) cells. These two synthetic macrolides were
found to possess no reactivity of both biological activities
tested. Preliminary structure-activity relationship suggested that
the C5—C6 fB-epoxide moiety of both 4 and 5 suppressed the
cytotoxic activity against the HCT116 colon cancer cells as well
as their CFTR inhibitory effect.

Experimental Section

General Information: Unless otherwise stated, all reactions were
performed under a nitrogen or argon atmosphere in oven- or
flamed-dried glassware. Solvents were used as received from
suppliers or distilled before use using standard procedures. All
other reagents were obtained from commercial sources and used
without further purification. Column chromatography was carried
out on Silica gel 60 (0.063-0.200 mm, Merk). Thin-layer chromatog-
raphy (TLC) was carried out on Silica gel 60 F,s, plates (Merk). 'H,
3C and 2D NMR spectroscopic data were recorded on 300 or
500 MHz Bruker FT NMR Ultra Shield spectrometers. Chemical shifts
(8) in the "H and "*C NMR spectra are reported in ppm relative to

© 2023 Wiley-VCH GmbH
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internal tetramethylsilane. The data are presented as follows:
chemical shift, multiplicity (s=singlet, d=doublet, t=triplet, m=
multiplet, br=broad), coupling constant(s) in hertz (Hz), and
integration. Infrared (IR) spectra were recorded with a Perkin-Elmer
783 FTS165 FTIR spectrometer. High-resolution mass spectra were
obtained on a Ultra-Performance Liquid Chromatography-High
Resolution Mass Spectrometer (Agilent LC-QTOF 6500 system), Mae
Fah Luang University or a High-Performance Liquid Chromato-
graph-Mass Spectrometer (Shimadzu LCMS-IT-TOF Model LC-
20ADXR), Thammasat University. Melting points were measured
using an Electrothermal 1A9200 melting point apparatus and are
uncorrected. The optical rotations were recorded on a JASCO P-
2000 polarimeter. All cell lines for biological assay were purchased
from the American Type Culture Collection (ATCC). Detailed
experimental procedure, full characterization data and NMR spectra
of new compounds can be found in the Supporting Information.

Cytotoxic Assay: evaluation of cytotoxic activity against the
HCT116 colon cancer cell line and non-cancerous (Vero) cells of 4
and 5 was performed using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphen-
yl-2H-tetrazolium bromide (MTT) assay following the procedure
previously described by our research group (cell viability assay for
7_9).[9]

CFTR Inhibition Assay: inhibitory effect on CFTR in human
intestinal epithelial (T84) cells of 4 and 5 was measured using short-
circuit current analysis following the procedure previously de-
scribed by our research group (for CFTR inhibition of 7-9® or a
fungal metabolite zearalenone®).

Acknowledgements

This work was financially supported by Prince of Songkla
University (Grant No. SCI610438S). P. S. thanks the Faculty of
Science Research Fund, Prince of Songkla University for research
assistantship (Contract No. 1-2562-02-002). Additional support
was generously provided by the Graduate School, Prince of
Songkla University and Center of Excellence for Innovation in
Chemistry (PERCH-CIC), Ministry of Higher Education, Science,
Research and Innovation and Faculty of Science, Prince of Songkla
University. C. M. acknowledges support from the NSRF via the
Program Management Unit for Human Resources & Institutional
Development, Research and Innovation (grant number
B05F650041). We also thank Prof. Surat Laphookhieo of Mae Fah
Luang University, Thailand for HRMS analysis and Miss Supattra
Kaewtaro for NMR experiments.

Conflict of Interest

The authors declare no conflict of interest.
Data Availability Statement

The data that support the findings of this study are available in
the supplementary material of this article.

Eur. J. Org. Chem. 2023, €202300034 (9 of 9)

Keywords: biological activity - 14-membered macrolactones -
pestalotioprolide - seiricuprolide - total synthesis

[1] a) G. G. Zhanel, M. Dueck, D. J. Hoban, L. M. Vercaigne, J. M. Embil, A. S.
Gin, J. A. Karlowsky, Drugs 2001, 61, 443-498; b) A. Janas, P. Przybylski,
Eur. J. Med. Chem. 2019, 182, 111662; c) H. Zhang, J. Zou, X. Yan, J.
Chen, X. Cao, J. Wu, Y. Liu, T. Wang, Mar. Drugs 2021, 19, 180.

[2] a) W. A. Ayer, S. P. Lee, A. Tsuneda, Y. Hiratsuka, Can. J. Microbiol. 1980,
26, 766-773; b) D. T. Wicklow, A. M. Jordan, J. B. Gloer, Mycol. Res. 2009,
113, 1433-1442; ¢) C. A. McLellan, T.J. Turbyville, E. M. K. Wijeratne, A.
Kerschen, E. Verling, C. Queitsch, L. Whitesell, A. A. L. Gunatilaka, Plant
Physiol. 2007, 145, 174-182; d) M. lIsaka, C. Suyarnsestakorn, M.
Tanticharoen, J. Org. Chem. 2002, 67, 1561-1566.

[3] M. Isaka, P. Chinthanom, S. Veeranondha, S. Supothina, J.J. Luangsa-
ard, Tetrahedron 2008, 64, 11028-11033.

[4] M. Arai, K. Yamanoto, I. Namatame, H. Tomoda, S. Omura, J. Antibiotica
2003, 6, 526-533.

[5] a) J.S. Isaacs, W. Xu, L. Neckers, Cancer Cell 2003, 3, 213-217; b) S. V.
Sharma, T. Agatsuma, H. Nakano, Oncogene 1998, 16, 2639-2645.

[6] a) M. Lampilas, R. Lett, Tetrahedron Lett. 1992, 33, 777-780; b)I.
Tichkowsky, R. Lett, Tetrahedron Lett. 2002, 43, 4003-4007; c) R. M.
Gabaccio, S.J. Stachel, D. K. Baeschlin, S.J. Danishefsky, J. Am. Chem.
Soc. 2001, 723, 10903-10908; d) P. Sellés, R. Lett, Tetrahedron Lett. 2002,
43, 4621-4625; e) P. Selles, R. Lett, Tetrahedron Lett. 2002, 43, 4627-
4631.

[7] A. Ballio, A. Evident, A. Graniti, G. Randazzo, L. Sparapano, Phytochemis-
try 1988, 27, 3117-3121.

[8] C. Bartolucci, S. Cerrini, D. Lamba, A. Evidente, G. Randazzo, Acta
Crystallogr. 1992, C48, 83-86.

[9] A. Thiraporn, N. Saikachain, R. Khumjiang, C. Muanprasat, K. Tadpetch,
Chem. Asian J. 2022, 17, €202200329.

[10] V. Rukachaisirikul, A. Rodglin, S. Phongpaichit, J. Buatong, J. Sakayaroj,
Phytochem. Lett. 2012, 5, 13-17.

[11] S. Liu, H. Dai, G. Makhloufi, C. Heering, C. Janiak, R. Hartmann, A. Mandi,
T. Kurtan, W. E. G. Miller, M. U. Kassack, W. Lin, Z. Liu, P. Proksch, J. Nat.
Prod. 2016, 79, 2332-2340.

12] J. Li, S. Park, R. L. Miller, D. Lee, Org. Lett. 2009, 11, 571-574.

13] C. H. Sugisaki, Y. Ruland, M. Baltas, Eur. J. Org. Chem. 2003, 2003, 672-
688.

14] N. Minami, S. S. Ko, Y. Kishi, J. Am. Chem. Soc. 1982, 104, 1109-1111.

[15] Y. Zhao, T. Yang, M. Lee, D. Lee, M. G. Newton, C. K. Chu, J. Org. Chem.

1995, 60, 5236-5242.

A. Thiraporn, P. lawsipo, K. Tadpetch, Synlett 2022, 33, 1341-1346.

A. Gucchait, M. Kundu, A. K. Misra, Synthesis 2021, 53, 3613-3620.

K. Ikeuchi, K. Murasawa, H. Yamada, Synlett 2019, 30, 1308-1312.

a) B. E. Rossiter, T. R. Verhoeven, K. B. Sharpless, Tetrahedron Lett. 1979,

20, 4733-4736; b) A.S. Narula, Tetrahedron Lett. 1983, 24, 5421-5424;

c) W. Adam, V.R. Stegmann, C. R. Saha-Méller, J. Am. Chem. Soc. 1999,

121, 1879-1882; d) M. Freccero, R. Gandolfi, M. Sarzi-Amade, A. Rastelli,

J. Org. Chem. 2000, 65 2030-2042; e)R.K. Bressin, S. Osman, .

Pohorilets, U. Basu, K. Koide, J. Org. Chem. 2020, 85, 4637-4647.

[20] R. W. Hoffmann, Chem. Rev. 1989, 89, 1841-1860.

[21] a) B. M. Trost, A. H. Weiss, A.J. von Wangelin, J. Am. Chem. Soc. 2006,
128, 8-9; b) B. M. Trost, A.H. Weiss, Org. Lett. 2006, 8, 4461-4464;
c) B. M. Trost, M. J. Bartlett, A. H. Weiss, A. J. von Wangelin, V.S. Chan,
Chem. Eur. J. 2012, 18, 16498-16509.

[22] J. Li, S. Park, R. L. Miller, D. Lee, Org. Lett. 2009, 11, 571-574.

[23] a) B.J. Albert, A. Sivaramanabhan, T. Naka, N. L. Czaicki, K. Koide, J. Am.
Chem. Soc. 2007, 129, 2648-2659; b) C. T. Meta, K. Koide, Org. Lett. 2004,
6, 1785-1787.

[24] T.R. Hoye, C.S. Jeffrey, F. Shao, Nat. Protoc. 2007, 2, 2451-2458.

[25] P. Muangnil, S. Satitsri, K. Tadpetch, P. Saparpakorn, V. Chatshuthipong,
S. Hannongbua, V. Rukachaisirikul, C. Muanprasat, Biochem. Pharmacol.
2018, 150, 293-304.

Manuscript received: January 12, 2023
Revised manuscript received: February 11, 2023
Accepted manuscript online: February 15, 2023

© 2023 Wiley-VCH GmbH

85U 1T SUOWIWOD SR 3|aeat|dde sy Aq pausenoh ale sapiie YO ‘8sn JO Sa|nu 10} Akeiq1aUIUO S| UO (SUONIPUOD-PUB-SWLLBYWOD A8 | 1M Ale.g 1 puUlUO//SdNY) SUORIPUOD pue swid | 8Y1 39S *[£202/c0/ST] uo Arigiauluo AB|IM ‘AseAIuN temee | euoieN Aq #£000£202 20 B/200T 0T/I0p/wod A3 1M Azeiqiputjuo-adone-Ansiwayoy//sdny wouy pepeojumd ‘0 ‘0690660T


https://doi.org/10.2165/00003495-200161040-00003
https://doi.org/10.1016/j.ejmech.2019.111662
https://doi.org/10.3390/md19040180
https://doi.org/10.1139/m80-133
https://doi.org/10.1139/m80-133
https://doi.org/10.1016/j.mycres.2009.10.001
https://doi.org/10.1016/j.mycres.2009.10.001
https://doi.org/10.1104/pp.107.101808
https://doi.org/10.1104/pp.107.101808
https://doi.org/10.1021/jo010930g
https://doi.org/10.1016/j.tet.2008.09.077
https://doi.org/10.1016/S1535-6108(03)00029-1
https://doi.org/10.1038/sj.onc.1201790
https://doi.org/10.1016/S0040-4039(00)77713-6
https://doi.org/10.1016/S0040-4039(02)00714-1
https://doi.org/10.1016/S0040-4039(02)00870-5
https://doi.org/10.1016/S0040-4039(02)00870-5
https://doi.org/10.1016/S0040-4039(02)00871-7
https://doi.org/10.1016/S0040-4039(02)00871-7
https://doi.org/10.1016/0031-9422(88)80011-6
https://doi.org/10.1016/0031-9422(88)80011-6
https://doi.org/10.1016/j.phytol.2011.08.008
https://doi.org/10.1021/acs.jnatprod.6b00473
https://doi.org/10.1021/acs.jnatprod.6b00473
https://doi.org/10.1021/ol802675j
https://doi.org/10.1021/ja00368a040
https://doi.org/10.1021/jo00121a047
https://doi.org/10.1021/jo00121a047
https://doi.org/10.1016/S0040-4039(01)86696-X
https://doi.org/10.1016/S0040-4039(01)86696-X
https://doi.org/10.1016/S0040-4039(00)87885-5
https://doi.org/10.1021/ja9827503
https://doi.org/10.1021/ja9827503
https://doi.org/10.1021/jo991530k
https://doi.org/10.1021/acs.joc.9b03370
https://doi.org/10.1021/cr00098a009
https://doi.org/10.1021/ja054871q
https://doi.org/10.1021/ja054871q
https://doi.org/10.1021/ol0615836
https://doi.org/10.1002/chem.201202085
https://doi.org/10.1021/ol802675j
https://doi.org/10.1021/ja067870m
https://doi.org/10.1021/ja067870m
https://doi.org/10.1021/ol0495366
https://doi.org/10.1021/ol0495366
https://doi.org/10.1038/nprot.2007.354
https://doi.org/10.1016/j.bcp.2018.02.024
https://doi.org/10.1016/j.bcp.2018.02.024

123

PS-2-080A in CDC13

Figure 10 '"H NMR (300 MHz, CDCl;3) spectrum of compound 27

'H and *C NMR spectra
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Figure 12 'H NMR (300 MHz, CDCl;3) spectrum of compound 28
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Figure 14 'H NMR (300 MHz, CDCl3) spectrum of compound 102

PS-1-042D-A in CDC13
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Figure 15 3C NMR (75 MHz, CDCl3) spectrum of compound 102

PS-1-042D-A in CDC13
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Figure 16 'H NMR (300 MHz, CDCl3) spectrum of compound 103
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Figure 18 'H NMR (300 MHz, CDCl3) spectrum of compound 104
Figure 19 3C NMR (75 MHz, CDCl3) spectrum of compound 104
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Figure 20 'H NMR (300 MHz, CDCl;3) spectrum of compound 110
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Figure 21 'H NMR (300 MHz, CDCl3) spectrum of compound 1108
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CcDC13

PS-3-227 in

Figure 22 'H NMR (300 MHz, CDC]l5) spectrum of compound 162
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Figure 24 '"H NMR (300 MHz, CDCl3) spectrum of compound 113

PS-3-122 in CDC13
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PS-4-055 in CDC13
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PS-3-022 in CDC13

Figure 26 '"H NMR (300 MHz, CDCl;3) spectrum of compound 108
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Figure 28 3C NMR (75 MHz, CDCl3) spectrum of compound 116a

PS-4-201-1 in CDC13
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Figure 30 3C NMR (75 MHz, CDCl3) spectrum of compound 116b

0488 in CDCL13
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Figure 32 3C NMR (75 MHz, CDCl3) spectrum of compound 117

PS-3-027 in CDC13
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Figure 34 3C NMR (75 MHz, CDCl3) spectrum of compound 1185

PS-3-185A-1 in CDC13
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PS-3-237R in CDC13

Figure 36 'H NMR (300 MHz, CDCls) spectrum of (R)-MTPA ester of 1185
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Figure 38 3C NMR (75 MHz, CDC]l3) spectrum of compound 118R

PS-3-185B-2 in CDC13 13C
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Figure 40 'H NMR (300 MHz, CDCls) spectrum of (R)-MTPA ester of 118R

PS-3-208R in CDC13
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Figure 44 3C NMR (75 MHz, CDCl3) spectrum of compound 163

CDC13
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Figure 48 13C NMR (75 MHz, CDCls) spectrum of compound 122

PS-3-262-1 in CDC13
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PS-3-263-1 in CDC13 13C

Figure 50 3C NMR (75 MHz, CDCl3) spectrum of compound 123
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Figure 51 'H NMR (300 MHz, CDCl3) spectrum of compound 124
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Figure 52 3C NMR (75 MHz, CDCl3) spectrum of compound 124

PS-3-266-1 in CDC1l3 13C
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Figure 53 'H NMR (300 MHz, CDCl3) spectrum of compound 152
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Figure 54 3C NMR (75 MHz, CDCl3) spectrum of compound 152

PS-4-277-1 in CDC13
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Figure 56 3C NMR (75 MHz, CDCl3) spectrum of compound 153

CDC13
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0" L2t

PS-5-001 in CDC13

Figure 58 3C NMR (75 MHz, CDCl3) spectrum of compound 134
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Figure 62 3C NMR (75 MHz, CDCl3) spectrum of compound 164

CDC13
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CDC13
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Figure 64 3°C NMR (75 MHz, CDCl3) spectrum of compound 137
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Figure 66 3*C NMR (75 MHz, CDCls) spectrum of compound 138

PS-5-146 in CDC13
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Figure 68 '3*C NMR (75 MHz, CDCl3) spectrum of compound 139

PS-5-142-1 in CDC13
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Figure 70 3C NMR (75 MHz, CDCl3) spectrum of compound 140

in CDC13
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Figure 72 3C NMR (75 MHz, CDCl3) spectrum of compound 141

CcDC13
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Figure 74 3C NMR (75 MHz, CDCl3) spectrum of compound 142

48 in CDC13
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Figure 76 3C NMR (75 MHz, CDCl3) spectrum of compound 143

PS-5-149 in CDC1l3
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Figure 78 13C NMR (75 MHz, CDCls) spectrum of compound 144

PS-5-150 irn CDC13
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Figure 80 '3*C NMR (75 MHz, CDCls) spectrum of compound 107

PS-5-042-1 in CDC13
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Figure 82 '3C NMR (75 MHz, CDCl3) spectrum of compound 1318

PS-4-239C in CDC13
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Figure 84 '"H NMR (300 MHz, CDCl;3) spectrum of (R)-MTPA ester of 1318

in CDC1l3
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Figure 86 '3C NMR (125 MHz, CDCl;) spectrum of compound 131R

CDC13
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Figure 88 'H NMR (300 MHz, CDCls) spectrum of (R)-MTPA ester of 131R

in CDC13
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PS-4-263-1 in CDC13

Figure 90 3C NMR (75 MHz, CDCl3) spectrum of compound 145
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Figure 92 3C NMR (75 MHz, CDCl3) spectrum of compound 165

in CDC13
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Figure 94 3C NMR (75 MHz, CDCl3) spectrum of compound 146
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Figure 96 3*C NMR (125 MHz, CDCl3) spectrum of compound 147

PS-5-06%9-1 in CDC13
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Figure 98 3C NMR (125 MHz, CDCl3) spectrum of compound 148

PS-5-073B-1 in CDC13
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Figure 100 3C NMR (125 MHz, CDCl3) spectrum of compound 130

PS-5-086-1 in CDC13
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Figure 102 3C NMR (125 MHz, CDCl3) spectrum of compound 149

CDC13
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Figure 104 3C NMR (125 MHz, CDCl3) spectrum of compound 13

100B in CDC13
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100A-1 in CDC13

PS-5-

Figure 106 3*C NMR (125 MHz, CDCl3) spectrum of compound 150
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Figure 108 3C NMR (75 MHz, CDCl3) spectrum of compound 156

CDC13
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Figure 112 3C NMR (125 MHz, CDCl3) spectrum of compound 158

in CDC13
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Figure 114 3C NMR (125 MHz, CDCl3) spectrum of compound 159

PS-5-118A-2 in CDC13
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Figure 115 'H NMR (500 MHz, CDCl;3) spectrum of compound 160
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Figure 116 3C NMR (125 MHz, CDCl3) spectrum of compound 160

CDC13
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Figure 117 'H NMR (500 MHz, CDCl;3) spectrum of compound 129
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Figure 118 3C NMR (125 MHz, CDCl3) spectrum of compound 129

PS-5-133 in CDC13
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Figure 119 'H NMR (500 MHz, CDCl;3) spectrum of compound 161

PS-5-135 in cDC13
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Figure 120 3C NMR (125 MHz, CDCl3) spectrum of compound 161

PS-5-135 in CDC13
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Figure 121 '"H NMR (500 MHz, acetone-ds) spectrum of compound 14
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Figure 122 3C NMR (125 MHz, acetone-ds) spectrum of compound 14

PS-5-121 in acetone-dé
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Figure 124 Comparison of 'H NMR spectra of synthetic and natural
pestalotioprolide B
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