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ชื่อวิทยานิพนธ์ เกือบไอดีลและเกือบไอดีลวิภัชนัยในโครงสร้างพีชคณิต

ผู้เขียน นางสาวสุดาพร สืบสังข์

สาขาวิชา คณิตศาสตร์

ปีการศึกษา 2564

บทคัดย่อ

กึ่งกรุป คือ คู่อันดับ (S, ·) โดยที่ S ไม่เป็นเซตว่าง และ · เป็นการดำ

เนินการทวิภาคที่มีสมบัติการเปลี่ยนหมู่ สำหรับกึ่งกรุป (S, ·) ที่มีอันดับบางส่วน ≤ เป็น

กึ่งกรุปอันดับ ถ้า x ≤ y แล้ว x · z ≤ y · z และ z · x ≤ z · y สำหรับทุก x, y, z ∈ S

กึ่งไฮเปอร์กรุป (H, ∗) ถูกนิยามในทำนองเดียวกันกับกึ่งกรุป แต่ต่างกันที่การดำเนินการ

∗ ของกึ่งไฮเปอร์กรุปจะเป็นฟังก์ชันที่ส่งจากเซต H ×H ไปยัง P ∗(H) โดยที่ P ∗(H) คือ

เซตของเซตย่อยที่ไม่เป็นเซตว่างทั้งหมดของ H

ในงานวิจัยนี้ เราได้นิยามและศึกษาสมบัติบางประการของเกือบ (m,n)-

ไอดีล และเกือบ (m,n)-ไอดีลวิภัชนัยในกึ่งกรุป นอกจากนี้เราได้นิยามเกือบไอดีลอันดับ

เกือบไบไอดีลอันดับ เกือบควอซีไอดีลอันดับ เกือบไอดีลอันดับวิภัชนัย เกือบไบไอดีลอัน

ดับวิภัชนัย และเกือบควอซีไอดีลอันดับวิภัชนัยในกึ่งกรุปอันดับ พร้อมทั้งศึกษาความสัม

พันธ์ของไอดีลอันดับกับไอดีลอันดับวิภัชนัยเหล่านี้อีกด้วย ยิ่งไปกว่านั้นเรายังนิยามเกี่ยว

กับเกือบไฮเปอร์ไอดีล เกือบไบไฮเปอร์ไอดีล และเกือบควอซีไฮเปอร์ไอดีลในกึ่งไฮเปอร์

กรุป และกล่าวถึงคุณสมบัติและความสัมพันธ์น่าสนใจบางประการของไฮเปอร์ไอดีลเหล่านี้
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ABSTRACT

A semigroup is an ordered pair (S, ·), where S is a nonempty set and

· is an associative binary operation. The semigroup (S, ·) with a partial order ≤ is an

ordered semigroup if x ≤ y, then x · z ≤ y · z and z · x ≤ z · y for all x, y, z ∈ S.

A semihypergroup (H, ∗) can be defined in a similar way to the semigroup, but the

operation ∗ of the semihypergroup is a function from H × H into P ∗(H), where

P ∗(H) is a set of all nonempty subsets of H .

In this thesis, we define almost (m,n)-ideals and fuzzy almost (m,n)-

ideals in semigroups and study some of their properties. In addition, we define or-

dered almost ideals, ordered almost bi-ideals, ordered almost quasi-ideals, fuzzy or-

dered almost ideals, fuzzy ordered almost bi-ideals and fuzzy ordered almost quasi-

ideals in ordered semigroups and we give the relations of them. Moreover, we define

almost hyperideals, almost bi-hyperideals and almost quasi-hyperideals in semihy-

pergroups, and give some interesting properties and relations of them.
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CHAPTER 1

Introduction

1.1 Background and significance

The notion of almost ideals (or A-ideals) was first introduced in semi-

lattices by Grosek [5] in 1979. A later year, Satko and Grosek [23] generalized this

notion to semigroups. They discovered minimal almost ideals and the smallest al-

most ideals of semigroups in [24] and [6], respectively. In 1981, Bogdanovic [1] used

the concepts of almost ideals and bi-ideals in semigroups to define almost bi-ideals

in semigroups. Later, Wattanatripop, Chinram and Changphas [28] defined almost

quasi-ideals by using the concepts of almost ideals and quasi-ideals in semigroups,

and provided some properties of almost quasi-ideals in semigroups. In [25], Solano,

Suebsung and Chinram extended almost ideals in n-ary semigroups.

The theory of algebraic hyperstructures was introduced by Marty [20]

in 1934. He defined hypergroups under the hyperoperation that was a function into

a set, while the operation on classical algebraic structures was a function into an ele-

ment. Moreover, he studied some properties of these structures and applied these

structures to groups. In 1999, Hasankhani [7] began to study semihypergroups

and introduced the concept of ideals in semihypergroups. Moreover, he studied

the relationships between ideals and the hyper versions of Green’s relations. Hila,

Davvaz and Naka [8] introduced the notion of quasi-hyperideals in semihypergroups,

and provided (m,n)-quasi-hyperideals, n-right hyperideals and m-left hyperideals
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in semihypergroups. Also, some interesting properties were investigated. In [2],

Changphas and Davvaz studied hyperideals in ordered semihypergroups, and pro-

vided their properties.

The concept of fuzzy subsets was initially introduced by Zadeh [29]

in 1965. This notion by Zadeh was adapted to groups by Rosenfeld [22]; he pro-

vided definitions of fuzzy subgroups and fuzzy ideals in groups. A fuzzy subset in a

semigroup was introduced by Kuroki [13]. He studied various kinds of fuzzy ideals

in semigroups and characterized them in [13]-[17]. In 2019, Mahboob, Davvaz and

Khan [19] defined fuzzy (m,n)-ideals, fuzzy (m, 0)-ideals and fuzzy (0, n)-ideals

for all positive integers m, n in semigroups. Furthermore, Kehayopulu and Tsinge-

lis introduced the notions of fuzzy ideals, fuzzy bi-ideals and fuzzy quasi-ideals in

ordered semigroups in [11], [9], and [12], respectively. In 2018, fuzzy almost ideals

and fuzzy almost quasi-ideals in semigroups were defined by Wattanatripop, Chin-

ram and Changphas [28], using the ideas of almost ideals and almost quasi-ideals in

semigroups. With this idea, they also defined fuzzy almost bi-ideals in semigroups

in [27]. Recently, Gaketem generalized results in [27] to study interval valued fuzzy

almost bi-ideals of semigroups in [4]. In [26], Suebsung, Wattanatripop and Chin-

ram defined and studied some properties of almost ideals and fuzzy almost ideals of

ternary semigroups.

In this thesis, we define almost (m,n)-ideals and fuzzy almost (m,n)-

ideals in semigroups and we study some interesting properties. In addition, we de-

fine ordered almost ideals, ordered almost bi-ideals, ordered almost quasi-ideals,

fuzzy ordered almost ideals, fuzzy ordered almost bi-ideals and fuzzy ordered al-

most quasi-ideals in ordered semigroups, and give the relations of them. Moreover,

we define almost hyperideals, almost bi-hyperideals and almost quasi-hyperideals in

semihypergroups, and give some interesting properties and relations of them.
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1.2 Objectives and scope

1. To study almost (m,n)-ideals and fuzzy almost (m,n)-ideals in semigroups.

2. To study ordered almost ideals, ordered almost bi-ideals and ordered almost

quasi-ideals in ordered semigroups.

3. To study fuzzy ordered almost ideals, fuzzy ordered almost bi-ideals and fuzzy

ordered almost quasi-ideals in ordered semigroups.

4. To study almost hyperideals, almost bi-hyperideals, and almost quasi-hyper-

ideals in hypersemigroups.

1.3 Research plan

Task 2019 2020 2021

08-12 01-03 04-06 07-12 01-03 04-06

Literature review * *

Write up the thesis proposal * *

Present the thesis proposal *

Work on the problems * *

Write up the thesis * * *

Present the thesis *

1.4 Expected benefits

Some new knowledge about almost ideals and fuzzy almost ideals in many algebraic

structures.



CHAPTER 2

Preliminaries

In this chapter, we present some definitions and results, which will be

used throughout this thesis.

2.1 Semigroups

In this section, we will introduce some definitions and properties of

semigroups that will be used in this thesis. First of all, the definition of a semigroup

can be defined as follows:

Definition 2.1.1. A semigroup is a pair (S, ·) in which S is a nonempty set and

1. · is a binary operation, that is, · : S × S → S,

2. x · (y · z) = (x · y) · z for all x, y, z ∈ S.

For simplicity, a binary operation · will be identified with a multipli-

cation of two elements, i.e., x·y will be identified with xy. LetA andB be nonempty

subsets of a nonempty set S. A product A ·B, commonly written as AB, is the set

AB := {ab | a ∈ A and b ∈ B}.

Proposition 2.1.2. Let A, B and C be nonempty subsets of a semigroup S. If

A ⊆ B, then AC ⊆ BC and CA ⊆ CB.

Definition 2.1.3. A nonempty subset A of a semigroup S is called a subsemigroup

of S if AA ⊆ A.
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Definition 2.1.4. Let A be a nonempty subset of a semigroup S.

1. A is called a left ideal of S if SA ⊆ A.

2. A is called a right ideal of S if AS ⊆ A.

3. A is called an ideal of S if it is both a left ideal and a right ideal of S.

Definition 2.1.5. An ideal A of a semigroup S is prime if xy ∈ A implies x ∈ A or

y ∈ A for all x, y ∈ S.

Definition 2.1.6. An idealA of a semigroup S is semiprime if x2 ∈ A implies x ∈ A

for all x ∈ S.

The definition of (m,n)-ideals in semigroups was introduced by La-

jos in [18] as follows:

Definition 2.1.7. Let m and n be non-negative integers. A subsemigroup A of a

semigroup S is called an (m,n)-ideal of S if AmSAn ⊆ A (Am is suppressed if

m = 0).

Remark 2.1.8. Let S be a semigroup. Then the following statements hold.

(i) A left ideal of S is a (0, 1)-ideal of S.

(ii) A right ideal of S is a (1, 0)-ideal of S.

In [23], Satko and Grosek introduced the notions of left almost ideals,

right almost ideals and almost ideals in semigroups as follows:

Definition 2.1.9. Let A be a nonempty subset of a semigroup S.

1. A is called a left almost ideal of S if xA ∩ A 6= ∅ for all x ∈ S.

2. A is called a right almost ideal of S if Ax ∩ A 6= ∅ for all x ∈ S.

3. A is called an almost ideal of S if it is both a left almost ideal and a right

almost ideal of S.
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Example 2.1.10. Consider a semigroup S = {a, b, c, d, e} under the multiplication ·

defined as in the following table.

· a b c d e

a a b a a a

b a b a a a

c a b c a a

d a b a a d

e a b a a e

We see that the left almost ideals of S are {a}, {b}, {a, b}, {a, c}, {a, d}, {a, e},

{b, c}, {b, d}, {b, e}, {a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {b, c, d},

{b, c, e}, {b, d, e}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, c, d, e}, {b, c, d, e} and S.

And the right almost ideals of S are {a, b}, {a, b, c}, {a, b, d}, {a, b, e}, {a, b, c, d},

{a, b, c, e}, {a, b, d, e} and S.

Thus {a, b}, {a, b, c}, {a, b, d}, {a, b, e}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e} and

S are almost ideals of S.

Remark 2.1.11. Let S be a semigroup. Then the following statements are true.

(i) Every left ideal of S is a left almost ideal of S.

(ii) Every right ideal of S is a right almost ideal of S.

(iii) Every ideal of S is an almost ideal of S.

In 1981, Bogdanovic introduced the definition of almost bi-ideals in

semigroups in [1] as follows:

Definition 2.1.12. A nonempty subset B of a semigroup S is called an almost bi-

ideal of S if BxB ∩B 6= ∅ for all x ∈ S.
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Example 2.1.13. Consider a semigroup S = {a, b, c, d} with the multiplication ta-

ble:

· a b c d

a a a a a

b a a a a

c a a b a

d a a b b

We have that {a}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d} and S are all

almost bi-ideals of S.

Remark 2.1.14. Every bi-ideal of a semigroup S is an almost bi-ideal of S.

In [28], Wattanatripop, Chinram and Changphas defined almost quasi-

ideals in semigroups by using the concepts of almost ideals and quasi-ideals in semi-

groups.

Definition 2.1.15. Let S be a semigroup. A nonempty subset Q of S is called an

almost quasi-ideal of S if (xQ ∩Qx) ∩Q 6= ∅ for all x ∈ S.

Example 2.1.16. Consider a semigroup S = {a, b, c, d} with the multiplication ta-

ble:

· a b c d

a a b a a

b b a b b

c a b d c

d a b c d

The almost quasi-ideals of S are {a, b}, {b, c}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d},

and S.
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2.2 Ordered semigroups

In this section, we recall some basic notions in ordered semigroups.

Furthermore, we introduce definitions of ideals, bi-ideals and quasi-ideals (some

authors call ordered ideals, ordered bi-ideals and ordered quasi-ideals) in ordered

semigroups.

Definition 2.2.1. Let S be a nonempty set with a binary relation ≤. Then (S,≤) is

called a partially ordered set if ≤ is a partial order on S, that is, for all x, y, z ∈ S,

1. x ≤ x (reflexive),

2. if x ≤ y and y ≤ x, then x = y (anti-symmetric),

3. if x ≤ y and y ≤ z, then x ≤ z (transitive).

Definition 2.2.2. Let S be a set with a binary operation · and a binary relation ≤.

Then (S, ·,≤) is called an ordered semigroup if

1. (S, ·) is a semigroup,

2. (S,≤) is a partially ordered set,

3. for all x, y, z ∈ S, if x ≤ y, then xz ≤ yz and zx ≤ zy.

Let (S, ·,≤) be an ordered semigroup. For a nonempty subset A of

S, we denote (A] := {x ∈ S | x ≤ a for some a ∈ A}.

Proposition 2.2.3. Let A and B be nonempty subsets of an ordered semigroup

(S, ·,≤). The following properties are true.

(1) A ⊆ (A].

(2) If A ⊆ B, then (A] ⊆ (B].

(3) (A ∩B] ⊆ (A] ∩ (B].

(4) (A ∪B] = (A] ∪ (B].
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Definition 2.2.4. Let (S, ·,≤) be an ordered semigroup. An element a ∈ S is called

an ordered idempotent if a ≤ a2.

Definition 2.2.5. Let A be a nonempty subset of an ordered semigroup (S, ·,≤).

1. A is called a left ordered ideal of S if SA ⊆ A and (A] = A.

2. A is called a right ordered ideal of S if AS ⊆ A and (A] = A.

3. A is called an ordered ideal of S if A is both a left ordered ideal and a right

ordered ideal of S

Example 2.2.6. Consider an ordered semigroup S = {a, b, c, d, e} under the binary

operation · and the order relation ≤ given below.

· a b c d e

a a b a a a

b a b a a a

c a b c a a

d a b a a d

e a b a a e

≤:= {(a, a), (a, b), (b, b), (c, a), (c, b), (c, c), (d, a), (d, b), (d, d), (e, e)}.

The left ordered ideals of S are {a, c, d}, {a, b, c, d}, {a, c, d, e} and S. The right

ordered ideals of S are {a, b, c, d} and S. The ordered ideals of S are {a, b, c, d} and

S.

Definition 2.2.7. Let (S, ·,≤) be an ordered semigroup. A subsemigroup B of S is

called an ordered bi-ideal of S if BSB ⊆ B and (B] = B.

Example 2.2.8. From Example 2.2.6, the ordered bi-ideals of S are {a, c, d}, {a, b, c, d},

{a, c, d, e} and S.

Definition 2.2.9. Let (S, ·,≤) be an ordered semigroup. A subsemigroup Q of S is

called an ordered quasi-ideal of S if SQ ∩QS ⊆ Q and (Q] = Q.

Example 2.2.10. From Example 2.2.6, we have that the ordered quasi-ideals of S

are {a, c, d}, {a, b, c, d}, {a, c, d, e} and S.
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2.3 Semihypergroups

In this section, definitions of semihypergroups and hyperideals are

introduced. Moreover, some properties of them that will be used in chapter 3 are

given. We begin this section with the definition of semihypergroups.

Let H be a nonempty set. A hyperoperation on H is a function ∗

from H × H into P ∗(H), where P ∗(H) is a set of all nonempty subsets of H . For

subsets A and B of H and x ∈ H , we denote

A ∗B =
⋃

a∈A, b∈B

a ∗ b, x ∗ A = {x} ∗ A, and B ∗ x = B ∗ {x}.

Definition 2.3.1. Let H be a nonempty set with a hyperoperation ∗. An ordered pair

(H, ∗) is called a semihypergroup if the following assertion is satisfied:

(x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ H .

Example 2.3.2. Let H = {x, y, z} be a set of three elements and define a hyperop-

eration ∗ on H as follows:

∗ x y z

x {x} {x, y} {x, z}

y {x} {x, y} {x, y}

z {x} {x, y} {z}

Then (H, ∗) is a semihypergroup.

Proposition 2.3.3. LetA,B andC be nonempty subsets of a semihypergroup (H, ∗).

If A ⊆ B, then A ∗ C ⊆ B ∗ C and C ∗ A ⊆ C ∗B.

Definition 2.3.4. A nonempty subset A of a semihypergroup (H, ∗) is called a sub-

semihypergroup of H if A ∗ A ⊆ A.

The concept of ideals in semihypergroups is defined by Hasankhani

in [7]. Later, a book on semihypergroups was published by Davvaz [3], and he also

defined hyperideals in semihypergroups as follows:
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Definition 2.3.5. Let (H, ∗) be a semihypergroup.

1. A nonempty subset L of H is called a left hyperideal of H if H ∗ L ⊆ L.

2. A nonempty subset R of H is called a right hyperideal of H if R ∗H ⊆ R.

3. A nonempty subset I of H is called a hyperideal of H if I is a left hyperideal

and a right hyperideal of H.

Example 2.3.6. Let H = {a, b, c, d, f} be a semihypergroup under the hyperopera-

tion ∗ defined by the following table.

∗ a b c d f

a {a} {a} {a} {a} {a}

b {a} {a, b} {a} {a, d} {a}

c {a} {a, f} {a, c} {a, c} {a, f}

d {a} {a, b} {a, d} {a, d} {a, b}

f {a} {a, f} {a} {a, c} {a}

We can deduce that

{a}, {a, b, f}, {a, c, d} and H are left hyperideals of H ,

{a}, {a, b, d}, {a, c, f} and H are right hyperideals of H .

Thus the hyperideals of H are {a} and H .

Definition 2.3.7. A subsemihypergroup B of a semihypergroup (H, ∗) is called a

bi-hyperideal of H if B ∗H ∗B ⊆ B.

Example 2.3.8. A unit real interval numbers H = [0, 1] is a semihypergroup under

the hyperoperation ∗ defined by

x ∗ y = [0, xy] for all x, y ∈ H .

Let B = [0, t] with 0 ≤ t ≤ 1. Then B is a subsemihypergroup of H . We have

B ∗H ∗B = [0, t2] ⊆ [0, t] = B. Therefore, B is a bi-hyperideal of H .

Theorem 2.3.9. Every hyperideal of a semihypergroup is a bi-hyperideal.
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The definition of quasi-hyperideals was given by Hila, Davvaz and

Naka [8] as follows:

Definition 2.3.10. A nonempty subset Q of a semihypergroup (H, ∗) is called a

quasi-hyperideal of H if (H ∗Q) ∩ (Q ∗H) ⊆ Q.

Example 2.3.11. LetH = {a, b, c, d} be a semihypergroup under the hyperoperation

∗ defined as in the following table.

∗ a b c d

a {a} {a, b} {a, c} H

b {b} {b} {b, d} {b, d}

c {c} {c, d} {c} {c, d}

d {d} {d} {d} {d}

The quasi-hyperideals of H are {d}, {b, d}, {c, d}, {b, c, d} and H .

Theorem 2.3.12. Every quasi-hyperideal of a semihypergroup is a subsemihyper-

group.

2.4 Fuzzy subsets and fuzzy ideals

In this section, we present some definitions and results of fuzzy sub-

sets. In addition, we introduce the definition of fuzzy ideals in semigroups and or-

dered semigroups, and some interesting properties of them.

In 1965, Zadeh introduced fuzzy subsets. A function f from a set S

to the unit interval [0, 1] is a fuzzy subset of S.

For any two fuzzy subsets f and g of a nonempty set S, the union and

intersection of f and g, denoted by f ∪ g and f ∩ g, are fuzzy subsets of S defined

by, for all x ∈ S,

(f ∪ g)(x) = max{f(x), g(x)},

(f ∩ g)(x) = min{f(x), g(x)}.
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Let F (S) be a set of all fuzzy subsets of a set S. A relation on F (S) is defined by,

for all fuzzy subsets f and g of S,

f ⊆ g ⇐⇒ f(x) ≤ g(x) for all x ∈ S.

For a fuzzy subset f of a set S, a support of f is defined by

supp(f) = {x ∈ S | f(x) 6= 0}.

Let A be a subset of a set S. A characteristic function CA is a function from S to

[0, 1] defined by

CA(x) =

1 if x ∈ A,

0 if x /∈ A.

A definition of fuzzy points was given by Pao-Ming and Ying-Ming [21]. Let s ∈ S

and α ∈ (0, 1]. A fuzzy point sα of a set S is a fuzzy subset of S defined by

sα(x) =

α if x = s,

0 if x 6= s.

For a nonempty set S, fuzzy subsets 1 and 0 of S are defined by

1(x) = 1 and 0(x) = 0 for all x ∈ S.

Proposition 2.4.1. LetA andB be nonempty subsets of a nonempty set S. IfA ⊆ B,

then CA ⊆ CB.

Next, we give products of fuzzy subsets in semigroups and ordered

semigroups. For any two fuzzy subsets f and g of a semigroup S, we define the

product of f and g by, for all x ∈ S,

(f ◦ g)(x) :=


sup
x=ab

min{f(a), g(b)} if x ∈ S2,

0 otherwise.
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Let (S, ·,≤) be an ordered semigroup. The product of fuzzy subsets f and g of S is

defined by, for all x ∈ S,

(f ◦ g)(x) :=


sup
x≤uv

min{f(u), g(v)} if x ∈ (S2],

0 otherwise.

Proposition 2.4.2. Let F (S) be a set of all fuzzy subsets of a semigroup S. Then

(F (S), ◦) is a semigroup.

Proposition 2.4.3. Let F (S) be a set of all fuzzy subsets of an ordered semigroup

(S, ·,≤). Then (F (S), ◦,⊆) is an ordered semigroup.

Proposition 2.4.4. Let f, g and h be fuzzy subsets of a semigroup (or an ordered

semigroup). Then the following statements hold.

(1) If f ⊆ g, then f ◦ h ⊆ g ◦ h and h ◦ f ⊆ h ◦ g.

(2) If f ⊆ g, then f ∩ h ⊆ g ∩ h.

(3) If f ⊆ g, then f ∪ h ⊆ g ∪ h.

(4) If f ⊆ g, then supp(f) ⊆ supp(g).

Definition 2.4.5. A fuzzy subset f of a semigroup S is called a fuzzy subsemigroup

of S if f(xy) ≥ min{f(x), f(y)} for all x, y ∈ S.

Definition 2.4.6. Let f be a fuzzy subset of a semigroup S.

1. f is called a fuzzy left ideal of S if f(xy) ≥ f(y) for all x, y ∈ S.

2. f is called a fuzzy right ideal of S if f(xy) ≥ f(x) for all x, y ∈ S.

3. f is called a fuzzy ideal of S if it is both a fuzzy left ideal and a fuzzy right

ideal of S, that is, f(xy) ≥ max{f(x), f(y)} for all x, y ∈ S.

4. f is called a fuzzy bi-ideal of S if f(xyz) ≥ min{f(x), f(z)} for all x, y, z ∈

S.

5. f is called a fuzzy quasi-ideal of S if (f ◦ 1) ∩ (1 ◦ f) ⊆ f
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Mahboob, Davvaz and Khan defined fuzzy (m,n)-ideals, where m

and n are any positive integers, of semigroups in [19].

Definition 2.4.7. Let S be a semigroup, and m and n be positive integers. A fuzzy

subsemigroup f of S is called a fuzzy (m,n)-ideal of S if

f(x1x2 · · · xmzy1y2 · · · yn) ≥ min{f(x1), f(x2), ..., f(xm), f(y1), f(y2), ..., f(yn)}

for all x1, x2, ..., xm, z, y1, y2, ..., yn ∈ S.

Next, we will introduce the defintions of a fuzzy ordered ideal, a fuzzy

ordered bi-ideal and a fuzzy ordered quasi-ideal in an ordered semigroup, which can

be defined in a similar way to a semigroup, by adding add one more condition.

Definition 2.4.8. Let (S, ·,≤) be an ordered semigroup. A fuzzy subset f of S is

called a fuzzy left ordered ideal of S if for all x, y ∈ S,

1. x ≤ y implies f(x) ≥ f(y) and

2. f(xy) ≥ f(y).

A fuzzy subset f of S is called a fuzzy right ordered ideal of S if for all x, y ∈ S,

1. x ≤ y implies f(x) ≥ f(y) and

2. f(xy) ≥ f(x).

A fuzzy subset f of S is called a fuzzy ordered ideal of S if it is both a fuzzy left

ordered ideal and a fuzzy right ordered ideal of S, that is, for all x, y ∈ S,

1. x ≤ y implies f(x) ≥ f(y) and

2. f(xy) ≥ max{f(x), f(y)}.

Definition 2.4.9. Let (S, ·,≤) be an ordered semigroup. A fuzzy subset f of S is

called a fuzzy ordered bi-ideal of S if for all x, y, z ∈ S,

1. x ≤ y implies f(x) ≥ f(y) and

2. f(xyz) ≥ min{f(x), f(z)}.
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Definition 2.4.10. Let (S, ·,≤) be an ordered semigroup. A fuzzy subset f of S is

called a fuzzy ordered quasi-ideal of S provide that

1. if x, y ∈ S such that x ≤ y, then f(x) ≥ f(y), and

2. (f ◦ 1) ∩ (1 ◦ f) ⊆ f .

From the definitions of fuzzy ordered bi-ideals and fuzzy ordered

quasi-ideals in ordered semigroups, the fuzzy ordered bi-ideal is defined in term of

the fuzzy subset f itself while the fuzzy ordered quasi-ideal in terms of the product

f ◦ 1 and 1 ◦ f . In [10], the fuzzy ordered quasi-ideal f can be defined in a similar

way using only the fuzzy subset f itself as in the following theorem.

Theorem 2.4.11. Let (S, ·,≤) be an ordered semigroup. A fuzzy subset f of S is a

fuzzy ordered quasi-ideal of S if and only if the following conditions are satisfied.

(1) If x ≤ y, then f(x) ≥ f(y) for all x, y ∈ S.

(2) If x ≤ ab and x ≤ cd, then f(x) ≥ min{f(a), f(d)} for all x, a, b, c, d ∈ S.

In [28], Wattanatripop, Chinram and Changphas defined the notion of

almost quasi-ideals of a semigroup. Moreover, they introduced the notions of fuzzy

almost ideals and fuzzy almost quasi-ideals of a semigroup.

Definition 2.4.12. Let f be a nonzero fuzzy subset of a semigroup S.

1. f is called a fuzzy left almost ideal of S if (Cs ◦ f) ∩ f 6= 0 for all s ∈ S.

2. f is called a fuzzy right almost ideal of S if (f ◦ Cs) ∩ f 6= 0 for all s ∈ S.

3. f is called a fuzzy almost ideal of S if f is both a fuzzy left almost ideal and a

fuzzy right almost ideal of S.

4. f is called a fuzzy almost quasi-ideal of S if (Cs ◦ f) ∩ (f ◦ Cs) ∩ f 6= 0 for

all s ∈ S.
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Theorem 2.4.13. Let A be a nonempty subset of a semigroup S.

(1) A is a left almost ideal of S if and only if CA is a fuzzy left almost ideal of S.

(2) A is a right almost ideal of S if and only if CA is a fuzzy right almost ideal of

S.

(2) A is an almost ideal of S if and only if CA is a fuzzy almost ideal of S.

(4) A is an almost quasi-ideal of S if and only if CA is a fuzzy almost quasi-ideal

of S.

Theorem 2.4.14. Let f be a fuzzy subset of a semigroup S.

(1) f is a fuzzy left almost ideal of S if and only if supp(f) is a left almost ideal of

S.

(2) f is a fuzzy right almost ideal of S if and only if supp(f) is a right almost ideal

of S.

(3) f is a fuzzy almost ideal of S if and only if supp(f) is an almost ideal of S.

(4) f is a fuzzy almost quasi-ideal of S if and only if supp(f) is an almost quasi-

ideal of S.

In [27], Wattanatripop, Chinram and Changphas defined fuzzy almost

bi-ideals in semigroups and give some relationship between almost bi-ideals and

fuzzy almost bi-ideals of semigroups.

Definition 2.4.15. Let f be a nonzero fuzzy subset of a semigroup S. Then f is

called a fuzzy almost bi-ideal of S if (f ◦ Cs ◦ f) ∩ f 6= 0 for all s ∈ S.

Theorem 2.4.16. LetB be a nonempty subset of a semigroup S. ThenB is an almost

bi-ideal of S if and only if CB is a fuzzy almost bi-ideal of S.

Theorem 2.4.17. Let f be a fuzzy subset of a semigroup S. Then f is a fuzzy almost

bi-ideal of S if and only if supp(f) is an almost bi-ideal of S.



CHAPTER 3

Almost (m,n)-ideals and fuzzy almost

(m,n)-ideals in semigroups

In this chapter, definitions of almost (m,n)-ideals and fuzzy almost

(m,n)-ideals in semigroups are introduced. Moreover, we give some properties and

a relation of almost (m,n)-ideals and fuzzy almost (m,n)-ideals in semigroups.

Throughout this chapter unless stated otherwise m and n stand for non-negative in-

tegers.

3.1 Almost (m,n)-ideals in semigroups

In this section, we use the concepts of (m,n)-ideals and almost ide-

als in semigroups to define an almost (m,n)-ideal in a semigroup and study some

properties of them. Let S be a semigroup. For a, s ∈ S and k ∈ N, we denote

1. ak := aaa . . . a (k copies),

2. aksa0 := aks,

3. a0sak := sak, and

4. a0sa0 := s.
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Let A be a nonempty subset of a semigroup S and s ∈ S. For k ∈ N,

we define

1. Ak := AAA . . . A (k copies),

2. AksA0 := Aks,

3. A0sAk := sAk, and

4. A0sA0 := {s}.

Firstly, we give a definition of almost (m,n)-ideals in semigroups as

follows:

Definition 3.1.1. A nonempty subset A of a semigroup S is called an almost (m,n)-

ideal of S if AmsAn ∩ A 6= ∅ for all s ∈ S.

Remark 3.1.2. Let S be a semigroup. The following statements hold.

(i) An almost (0, 1)-ideal of S is a left almost ideal of S.

(ii) An almost (1, 0)-ideal of S is a right almost ideal of S.

(iii) Every (m,n)-ideal of S is an almost (m,n)-ideal of S.

Proof. Clearly, (i) and (ii) are true. LetA be an (m,n)-ideal of S and let s ∈ S. Then

we have A 6= ∅ and AmSAn ⊆ A, so AmsAn 6= ∅ and AmsAn ⊆ AmSAn ⊆ A.

Thus AmsAn ∩ A = AmsAn 6= ∅. Hence, A is an almost (m,n)-ideal of S.

Example 3.1.3. Consider a semigroup (Z6,+). Let A = {1, 4, 5}. We see that

(A1 + 0̄ + A0) ∩ A = (A+ 0̄) ∩ A = {1̄, 4̄, 5̄} ∩ A = {1̄, 4̄, 5̄},

(A1 + 1̄ + A0) ∩ A = (A+ 1̄) ∩ A = {0̄, 2̄, 5̄} ∩ A = {5̄},

(A1 + 2̄ + A0) ∩ A = (A+ 2̄) ∩ A = {0̄, 1̄, 3̄} ∩ A = {1̄},

(A1 + 3̄ + A0) ∩ A = (A+ 3̄) ∩ A = {1̄, 2̄, 4̄} ∩ A = {1̄, 4̄},

(A1 + 4̄ + A0) ∩ A = (A+ 4̄) ∩ A = {2̄, 3̄, 5̄} ∩ A = {5̄},

(A1 + 5̄ + A0) ∩ A = (A+ 5̄) ∩ A = {0̄, 3̄, 4̄} ∩ A = {4̄}.

Thus (A1 + s̄+A0)∩A 6= ∅ for all s̄ ∈ Z6. Hence, A is an almost (1, 0)-ideal of Z6

but A is not a (1, 0)-ideal of Z6 because A is not a subsemigroup of Z6.
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From Example 3.1.3, an almost (m,n)-ideal of a semigroup S need

not be an (m,n)-ideal of S. Thus we can see that the converse of Remark 3.1.2(iii)

is not true in general. Next, we will explore some interesting properties of almost

(m,n)-ideals in semigroups.

Proposition 3.1.4. Let A be an almost (m,n)-ideal of a semigroup S. Then every

subset of S containing A is also an almost (m,n)-ideal of S.

Proof. Let B be a subset of S such that A ⊆ B and let s ∈ S. Then Am ⊆ Bm and

An ⊆ Bn, so AmsAn ⊆ BmsBn. Thus AmsAn ∩ A ⊆ BmsBn ∩ B. Since A is

an almost (m,n)-ideal of S, we have AmsAn ∩ A 6= ∅. Hence, BmsBn ∩ B 6= ∅.

Therefore, B is an almost (m,n)-ideal of S.

Corollary 3.1.5. The union of any two almost (m,n)-ideals of a semigroup S is an

almost (m,n)-ideal of S.

Proof. Let A1 and A2 be any two almost (m,n)-ideals of S. Since A1 ⊆ A1 ∪ A2

and A1 is an almost (m,n)-ideal of S, by Proposition 3.1.4, A1 ∪ A2 is an almost

(m,n)-ideal of S.

From the proof of Corollary 3.1.5, we can see that it is true ifA1 orA2

is an almost (m,n)-ideal of S. The intersection of any two almost (m,n)-ideals of a

semigroup S need not be an almost (m,n)-ideal of S as can be seen in the following

example.

Example 3.1.6. Consider a semigroup Z6 under an addition modulo 6. Let A1 =

{1, 4, 5} and A2 = {1, 2, 5}. From Example 3.1.3, we obtain that A1 is an almost

(1,0)-ideal of Z6. We have

(A1
2 + 0̄ + A0

2) ∩ A2 = (A2 + 0̄) ∩ A2 = {1̄, 2̄, 5̄} ∩ A2 = {1̄, 2̄, 5̄},

(A1
2 + 1̄ + A0

2) ∩ A2 = (A2 + 1̄) ∩ A2 = {0̄, 2̄, 3̄} ∩ A2 = {2̄},

(A1
2 + 2̄ + A0

2) ∩ A2 = (A2 + 2̄) ∩ A2 = {1̄, 3̄, 4̄} ∩ A2 = {1̄},

(A1
2 + 3̄ + A0

2) ∩ A2 = (A2 + 3̄) ∩ A2 = {2̄, 4̄, 5̄} ∩ A2 = {2̄, 5̄},

(A1
2 + 4̄ + A0

2) ∩ A2 = (A2 + 4̄) ∩ A2 = {0̄, 3̄, 5̄} ∩ A2 = {5̄},

(A1
2 + 5̄ + A0

2) ∩ A2 = (A2 + 5̄) ∩ A2 = {0̄, 1̄, 4̄} ∩ A2 = {1̄}.
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So (A1
2 + s̄+ A0

2) ∩ A2 6= ∅ for all s̄ ∈ Z6. Thus A2 is an almost (1, 0)-ideal of Z6.

Consider A1 ∩ A2 = {1, 5}. Since

({1̄, 5̄}1 + 1̄ + {1̄, 5̄}0) ∩ {1̄, 5̄} = {0̄, 2̄} ∩ {1̄, 5̄} = ∅,

A1 ∩ A2 is not an almost (1,0)-ideal of S.

Theorem 3.1.7. A semigroup S has no proper almost (m,n)-ideals if and only if for

each a ∈ S, there exists sa ∈ S such that (S − {a})msa(S − {a})n ⊆ {a}.

Proof. Assume that S has no proper almost (m,n)-ideals and let a ∈ S. Then

S − {a} is not an almost (m,n)-ideal of S. Then there exists sa ∈ S such that

[
(S − {a})msa(S − {a})n

]
∩ (S − {a}) = ∅.

Thus (S − {a})msa(S − {a})n ⊆ {a}.

Conversely, let A be a proper subset of S. Then A ⊆ S − {a} for some a ∈ S.

By assumption, there exists sa ∈ S such that (S −{a})msa(S −{a})n ⊆ {a}. Thus

[
(S − {a})msa(S − {a})n

]
∩ (S − {a}) ⊆ {a} ∩ (S − {a}).

Since {a} ∩ (S − {a}) = ∅, we have
[
(S − {a})msa(S − {a})n

]
∩ (S − {a}) = ∅.

Since A ⊆ S − {a}, we have AmsaAn ⊆ (S − {a})msa(S − {a})n, so

(AmsaA
n) ∩ A ⊆

[
(S − {a})msa(S − {a})n

]
∩ (S − {a}).

Thus (AmsaA
n) ∩ A = ∅. Hence, A is not an almost (m,n)-ideal of S. Therefore,

S has no proper almost (m,n)-ideals.

Theorem 3.1.8. Let S be a semigroup and a ∈ S. If S has no proper almost (m,n)-

ideals, then at least one of the following statements is true.

(1) a = am+n+1.

(2) a = a(m+n)3+1.

(3) a = a(m+n+1)(m+n)+1.
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Proof. Assume that S has no proper almost (m,n)-ideals. By Theorem 3.1.7, there

exists sa ∈ S such that (S − {a})msa(S − {a})n ⊆ {a}. Suppose that a 6= am+n+1.

Then am+n+1 ∈ S − {a}, so

(am+n+1)msa(a
m+n+1)n ∈ (S − {a})msa(S − {a})n ⊆ {a}.

This implies that (am+n+1)msa(a
m+n+1)n = a.

Case 1: sa = a. Then a = (am+n+1)ma(am+n+1)n = a(m+n+1)(m+n)+1.

Case 2: sa 6= a. Then sa ∈ S − {a}. This implies that

sm+n+1
a = (sa)

msa(sa)
n ∈ (S − {a})msa(S − {a})n ⊆ {a}.

So sm+n+1
a = a. Since a = (am+n+1)msa(a

m+n+1)n, we have

a =
[
(sm+n+1
a )m+n+1

]m
sa
[
(sm+n+1
a )m+n+1

]n
= s(m+n+1)(m+n+1)(m+n)+1

a

=
[
(sm+n+1
a )m+n+1

]
m+nsa

= (am+n+1)m+nsa

= a(m+n)+(m+n)2sa

= am+na(m+n)2sa.

Thus a = am+na(m+n)2sa. Since a 6= am+n+1 = am+na, we have a(m+n)2sa 6= a.

This implies that a(m+n)2sa ∈ S − {a}. Thus we have

(a(m+n)2sa)
msa(a

(m+n)2sa)
n ∈ (S − {a})msa(S − {a})n ⊆ {a},

so (a(m+n)2sa)
msa(a

(m+n)2sa)
n = a. Since sm+n+1

a = a,

a =
[
(sm+n+1
a )(m+n)2sa

]m
sa
[
(sm+n+1
a )(m+n)2sa

]n
= s(m+n+1)(m+n)3+m+n+1

a

= (sm+n+1
a )(m+n)3sm+n+1

a

= a(m+n)3a

= a(m+n)3+1.

Hence, a = a(m+n)3+1.
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Corollary 3.1.9. Let S be a semigroup and a ∈ S. If S has no proper left (or right)

almost ideals, then a = a2 or a = a3.

Proof. Assume that S has no proper left (or right) almost ideals. That is, S has no

proper almost (0, 1)-ideals (or S has no proper almost (1, 0)-ideals). By Theorem

3.1.8, a = a2 or a = a3.

3.2 Fuzzy almost (m,n)-ideals in semigroups

In this section, we give the definition and some properties of fuzzy

almost (m,n)-ideals in semigroups by using the concept of almost (m,n)-ideals.

Let f be a fuzzy subset and sα be a fuzzy point of a semigroup S. For k ∈ N, let

1. fk := f ◦ f ◦ . . . ◦ f (k copies),

2. fk ◦ sα ◦ f 0 := fk ◦ sα,

3. f 0 ◦ sα ◦ fk := sα ◦ fk, and

4. f 0 ◦ sα ◦ f 0 := sα.

Proposition 3.2.1. Let f and g be fuzzy subsets of S. If f ⊆ g, then

fn ⊆ gn for all n ∈ N.

Proof. Assume that f ⊆ g. If n = 1, then we are done. Assume that fn ⊆ gn where

n ≥ 1. We will show that fn+1 ⊆ gn+1. Let x ∈ S.

If x 6∈ S2, then fn+1(x) = (fn ◦ f)(x) = 0 ≤ gn+1(x).

If x ∈ S2, then we have

fn+1(x) = (fn ◦ f)(x)

= sup
x=ab

min{fn(a), f(b)}

≤ sup
x=ab

min{gn(a), g(b)}

= (gn ◦ g)(x)

= gn+1(x).
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Thus fn+1(x) ≤ gn+1(x) for all x ∈ S. Hence, we can conclude that fn+1 ⊆ gn+1.

Therefore, by the principle of mathematical induction, fn ⊆ gn for all n ∈ N.

Previously, we provided the definitions and some properties of fuzzy

subsets and fuzzy ideals in semigroups. Nexte, we will give the definition of fuzzy

almost (m,n)-ideals in semigroups as follows:

Definition 3.2.2. A fuzzy subset f of a semigroup S is called a fuzzy almost (m,n)-

ideal of S if (fm ◦ sα ◦ fn) ∩ f 6= 0 for all fuzzy point sα of S.

Remark 3.2.3. Let S be a semigroup. The following statements hold.

(i) A fuzzy almost (0, 1)-ideal of S is a fuzzy left almost ideal of S.

(ii) A fuzzy almost (1, 0)-ideal of S is a fuzzy right almost ideal of S.

Example 3.2.4. Consider a semigroup (Z6,+). Let f : Z6 → [0, 1] be defined by

f(0) = 0, f(1) = 0.2, f(2) = 0, f(3) = 0, f(4) = 0.5, f(5) = 0.3.

We will show that f is a fuzzy almost (1, 0)-ideal of Z6 and a fuzzy almost (1, 2)-

ideal of Z6. Let α ∈ (0, 1]. Firstly, we want to show that f is a fuzzy almost

(1, 0)-ideal of Z6. We consider the following result.

(f 1 ◦ 0̄α ◦ f 0)(1̄) = (f ◦ 0̄α)(1̄)

= sup
1̄=ā+b̄

min{f(ā), 0̄α(b̄)}

≥ min{f(1̄), 0̄α(0̄)} (since 1̄ = 1̄ + 0̄)

= min{0.2, α}.

Since min{0.2, α} 6= 0, we have (f 1 ◦ 0̄α ◦ f 0)(1̄) 6= 0. This implies that

[
(f 1 ◦ 0̄α ◦ f 0) ∩ f

]
(1̄) = min{(f 1 ◦ 0̄α ◦ f 0)(1̄), f(1̄)} 6= 0.

Hence, we can see that if there exist elements x̄, ā ∈ Z6 such that x̄ = ā + 0̄ and

f(x̄), f(ā) 6= 0, then
[
(f 1 ◦ 0̄α ◦ f 0) ∩ f

]
(x̄) 6= 0. In a similar way, we have the

following:
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5̄ = 4̄ + 1̄ where f(4̄), f(5̄) 6= 0 =⇒
[
(f 1 ◦ 1̄α ◦ f 0) ∩ f

]
(5̄) 6= 0

1̄ = 5̄ + 2̄ where f(1̄), f(5̄) 6= 0 =⇒
[
(f 1 ◦ 2̄α ◦ f 0) ∩ f

]
(1̄) 6= 0

4̄ = 1̄ + 3̄ where f(1̄), f(4̄) 6= 0 =⇒
[
(f 1 ◦ 3̄α ◦ f 0) ∩ f

]
(4̄) 6= 0

5̄ = 1̄ + 4̄ where f(1̄), f(5̄) 6= 0 =⇒
[
(f 1 ◦ 4̄α ◦ f 0) ∩ f

]
(5̄) 6= 0

4̄ = 5̄ + 5̄ where f(4̄), f(5̄) 6= 0 =⇒
[
(f 1 ◦ 5̄α ◦ f 0) ∩ f

]
(4̄) 6= 0.

Thus we can conclude that (f 1 ◦ s̄α ◦ f 0)∩ f 6= 0 for all s̄ ∈ Z6. Hence, f is a fuzzy

almost (1, 0)-ideal of Z6. Next, we will show that f is a fuzzy almost (1, 2)-ideal of

Z6. We have

(f 1 ◦ 0̄α ◦ f 2)(1̄) = sup
1̄=ā+b̄

min{(f ◦ 0̄α)(ā), (f ◦ f)(b̄)}

≥ min{(f ◦ 0̄α)(1̄), (f ◦ f)(0̄)}

= min
{

sup
1̄=x̄+ȳ

min{f(x̄), 0̄α(ȳ)}, sup
0̄=ū+v̄

min{f(ū), f(v̄)}
}

≥ min
{

min{f(1̄), 0̄α(0̄)},min{f(1̄) + f(5̄)}
}

= min{f(1̄), f(5̄), α}

= min{0.2, 0.3, α}.

Since min{0.2, 0.3, α} 6= 0, we have that (f 1 ◦ 0̄α ◦ f 2)(1̄) 6= 0. This implies that

[
(f 1 ◦ 0̄α ◦ f 2) ∩ f

]
(1̄) = min{(f 1 ◦ 0̄α ◦ f 2)(1̄), f(1̄)} 6= 0.

Thus we can see that if there are x̄, ā, b̄, c̄ ∈ Z6 such that x̄ = ā + 0̄ + (b̄ + c̄) and

f(x̄), f(ā), f(b̄), f(c̄) 6= 0, then
[
(f 1 ◦ 0̄α ◦ f 2) ∩ f

]
(x̄) 6= 0. Similarly, we can see

that

4̄ = 1̄ + 1̄ + (1̄ + 1̄) where f(1̄), f(4̄) 6= 0 =⇒
[
(f 1 ◦ 1̄α ◦ f 2) ∩ f

]
(4̄) 6= 0

5̄ = 1̄ + 2̄ + (1̄ + 1̄) where f(1̄), f(5̄) 6= 0 =⇒
[
(f 1 ◦ 2̄α ◦ f 2) ∩ f

]
(5̄) 6= 0

4̄ = 5̄ + 3̄ + (4̄ + 4̄) where f(4̄), f(5̄) 6= 0 =⇒
[
(f 1 ◦ 3̄α ◦ f 2) ∩ f

]
(4̄) 6= 0

1̄ = 1̄ + 4̄ + (1̄ + 1̄) where f(1̄) 6= 0 =⇒
[
(f 1 ◦ 4̄α ◦ f 2) ∩ f

]
(1̄) 6= 0

5̄ = 1̄ + 5̄ + (4̄ + 1̄) where f(1̄), f(4̄), f(5̄) 6= 0 =⇒
[
(f 1 ◦ 5̄α ◦ f 2)∩ f

]
(5̄) 6= 0.

This implies that (f 1 ◦ s̄α ◦ f 2) ∩ f 6= 0 for all s̄ ∈ Z6. Hence, f is a fuzzy almost

(1, 2)-ideal of Z6. Therefore, f is a fuzzy almost (1, 0)-ideal and a fuzzy almost

(1, 2)-ideal of Z6.
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From the definition of fuzzy almost (m,n)-ideals, we see that f is a

fuzzy almost (m,n)-ideal of a semigroup S if and only if for each fuzzy point sα of

S, there exists x ∈ S such that [(fm ◦ sα ◦ fn) ∩ f ](x) 6= 0, i.e., there is an element

x ∈ S such that

x = (a1a2 · · · am)s(b1b2 · · · bn)

for some a1, ..., am, b1, ..., bn ∈ S and f(x), f(a1), ..., f(am), f(b1), ..., f(bn) 6= 0.

Theorem 3.2.5. Let f be a nonzero fuzzy subset of a semigroup S. If f is a fuzzy

(m,n)-ideal of S, then f is a fuzzy almost (m,n)-ideal of S.

Proof. Let f be a fuzzy (m,n)-ideal of S and let sα be a fuzzy point of S. Since f

is a nonzero fuzzy subset of S, there is an element a ∈ S such that f(a) 6= 0. Since

f is a fuzzy (m,n)-ideal of S, we have

f(amsan) ≥ min
{
f(a), f(a), ..., f(a)︸ ︷︷ ︸

m copies

, f(a), f(a), ..., f(a)︸ ︷︷ ︸
n copies

}
= f(a).

Thus f(amsan) 6= 0. Hence, (fm ◦ sα ◦ fn∩ f)(amsan) 6= 0. Therefore, f is a fuzzy

almost (m,n)-ideal of S.

In the previous section, we give some properties of almost (m,n)-

ideals in semigroups. Next, we will illustrate these properties in fuzzy almost (m,n)-

ideals by using the same idea.

Proposition 3.2.6. Let f be a fuzzy almost (m,n)-ideal of a semigroup S. Then

every fuzzy subset g of S such that f ⊆ g is also a fuzzy almost (m,n)-ideal of S.

Proof. Let g be a fuzzy subset of S such that f ⊆ g and let sα be a fuzzy point in S.

Then fm ⊆ gm and fn ⊆ gn, so fm ◦ sα ◦ fn ⊆ gm ◦ sα ◦ gn. This implies that

(fm ◦ sα ◦ fn) ∩ f ⊆ (gm ◦ sα ◦ gn) ∩ g.

Since f is a fuzzy almost (m,n)-ideal of S, we have (fm ◦ sα ◦ fn)∩ f 6= 0. Hence,

(gm ◦ sα ◦ gn) ∩ g 6= 0. Therefore, g is a fuzzy almost (m,n)-ideal of S.
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Corollary 3.2.7. The union of any two fuzzy almost (m,n)-ideals of a semigroup S

is a fuzzy almost (m,n)-ideal of S.

Proof. Let f and g be fuzzy almost (m,n)-ideals of S. Since f ⊆ f ∪ g, by Propo-

sition 3.2.6, f ∪ g is a fuzzy almost (m,n)-ideal of S.

Note that the proof of Corollary 3.2.7 is true if f or g is a fuzzy almost

(m,n)-ideal of S.

Example 3.2.8. Consider a semigroup (Z6,+). Let f : Z6 → [0, 1] be defined by

f(0) = 0, f(1) = 0.2, f(2) = 0, f(3) = 0, f(4) = 0.5, f(5) = 0.3

and g : Z6 → [0, 1] be defined by

g(0) = 0, g(1) = 0.8, g(2) = 0.4, g(3) = 0, g(4) = 0, g(5) = 0.3.

From Example 3.2.4, f is a fuzzy almost (1, 2)-ideal of Z6. Let α ∈ (0, 1]. We have

5̄ = 1̄ + 0̄ + (2̄ + 2̄) where g(1̄), g(2̄), g(5̄) 6= 0 =⇒
[
(g1 ◦ 0̄α ◦ g2) ∩ g

]
(5̄) 6= 0

5̄ = 1̄ + 1̄ + (2̄ + 1̄) where g(1̄), g(2̄), g(5̄) 6= 0 =⇒
[
(g1 ◦ 1̄α ◦ g2) ∩ g

]
(5̄) 6= 0

5̄ = 1̄ + 2̄ + (1̄ + 1̄) where g(1̄), g(5̄) 6= 0 =⇒
[
(g1 ◦ 2̄α ◦ g2) ∩ g

]
(5̄) 6= 0

1̄ = 1̄ + 3̄ + (2̄ + 1̄) where g(1̄), g(2̄) 6= 0 =⇒
[
(g1 ◦ 3̄α ◦ g2) ∩ g

]
(1̄) 6= 0

1̄ = 1̄ + 4̄ + (1̄ + 1̄) where g(1̄) 6= 0 =⇒
[
(g1 ◦ 4̄α ◦ g2) ∩ g

]
(1̄) 6= 0

2̄ = 1̄ + 5̄ + (1̄ + 1̄) where g(1̄), g(2̄) 6= 0 =⇒
[
(g1 ◦ 5̄α ◦ g2) ∩ g

]
(2̄) 6= 0.

Then (g1 ◦ s̄α ◦g2)∩g 6= 0 for all s̄ ∈ Z6. Thus g is a fuzzy almost (1, 2)-ideal of Z6.

Consider the intersection f ∩ g : Z6 → [0, 1] of f and g defined by, for all x̄ ∈ Z6,

(f ∩ g)(x̄) = min{f(x̄), g(x̄)},

that is, (f ∩ g)(0̄) = 0, (f ∩ g)(1̄) = 0.2, (f ∩ g)(2̄) = 0,

(f ∩ g)(3̄) = 0, (f ∩ g)(4̄) = 0, (f ∩ g)(5̄) = 0.3.

We can see that for all x̄, ā, b̄, c̄ ∈ Z6 such that f(x̄), f(ā), f(b̄), f(c̄) 6= 0, we have

x̄ 6= ā+ 1̄ + (b̄+ c̄),

which implies that
[[

(f ∩ g)1 ◦ 1̄α ◦ (f ∩ g)2
]
∩ (f ∩ g)

]
(x̄) = 0 for all x̄ ∈ Z6. Thus[

(f ∩ g)1 ◦ 1̄α ◦ (f ∩ g)2
]

= 0. Hence, f ∩ g is not a fuzzy almost (1, 2)-ideal of Z6.

Example 3.2.8 shows that, the intersection of two fuzzy almost (m,n)-

ideals of a semigroup S need not be a fuzzy almost (m,n)-ideal of S.
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3.3 The relations of almost (m,n)-ideals and fuzzy al-

most (m,n)-ideals in semigroups

In this section, we study the relations of almost (m,n)-ideals and

fuzzy almost (m,n)-ideals in semigroups. Firstly, we present the following lemma.

Lemma 3.3.1. Let A be a subset of a semigroup S. Then we have

Cn
A = CAn for all n ∈ N.

Proof. Clearly, the statement is true when n = 1. Assume that Cn
A = CAn where

n ≥ 1. Let x ∈ S.

Case 1: x /∈ An+1. Then CAn+1(x) = 0, and x 6= ab for all a ∈ An and b ∈ A. Thus

Cn+1
A (x) =

(
Cn
A ◦ CA

)
(x) = (CAn ◦ CA)(x) = 0.

Hence, Cn+1
A (x) = CAn+1(x) = 0.

Case 2: x ∈ An+1. Then CAn+1(x) = 1 and x = ab for some a ∈ An, b ∈ A, so

CAn(a) = 1 and CA(b) = 1. Thus we have

Cn+1
A (x) =

(
Cn
A ◦ CA

)
(x)

= (CAn ◦ CA)(x)

= sup
x=uv

min{CAn(u), CA(v)}

≥ min{CAn(a), CA(b)}

= 1.

So Cn+1
A (x) = 1. Hence, Cn+1

A (x) = CAn+1(x). Therefore, Cn+1
A = CAn+1 . By the

principle of mathematical induction, Cn
A = CAn for all n ∈ N.

Theorem 3.3.2. Let A be a nonempty subset of a semigroup S. Then A is an almost

(m,n)-ideal of S if and only if CA is a fuzzy almost (m,n)-ideal of S.

Proof. Assume that A is an almost (m,n)-ideal of S. Let sα be a fuzzy point in S.

Then AmsAn ∩ A 6= ∅. Thus there exists x ∈ A, and x = asb for some a ∈ Am and

b ∈ An, which implies that CAm(a), CAn(b), CA(x) 6= 0. Hence,[
(CAm ◦ sα ◦ CAn) ∩ CA

]
(x) 6= 0.
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By Lemma 3.3.1, we have[(
Cm
A ◦ sα ◦ Cn

A

)
∩ CA

]
(x) 6= 0.

Therefore, CA is a fuzzy almost (m,n)-ideal of S.

Conversely, assume that CA is a fuzzy almost (m,n)-ideal of S. Let s ∈ S. Then(
Cm
A ◦ sα ◦ Cn

A

)
∩ CA 6= 0 for all α ∈ (0, 1], so there exists x ∈ S such that[(

Cm
A ◦ sα ◦ Cn

A

)
∩ CA

]
(x) 6= 0.

Thus x = asb for some a, b ∈ S and CA(x), Cm
A (a), Cn

A(b) 6= 0. By Lemma 3.3.1,

we have Cm
A (a) = CAm(a) and Cn

A(b) = CAn(b), so CAm(a) 6= 0 and CAn(b) 6= 0.

Then x ∈ A and x = asb where a ∈ Am, b ∈ An. Thus x ∈ AmsAn ∩ A. Hence,

AmsAn ∩ A 6= ∅. Therefore, A is an almost (m,n)-ideal of S.

Theorem 3.3.3. Let f be a fuzzy subset of a semigroup S. Then f is a fuzzy almost

(m,n)-ideal of S if and only if supp(f) is an almost (m,n)-ideal of S.

Proof. Assume that f is a fuzzy almost (m,n)-ideal of S. Let s ∈ S. Then for any

α ∈ (0, 1], there exists x ∈ S such that

x = (a1a2...am)s(b1b2...bn)

for some a1, ..., am, b1, ..., bn ∈ S and f(x), f(a1), ..., f(am), f(b1), ..., f(bn) 6= 0.

This implies that x, a1, ..., am, b1, ..., bn ∈ supp(f). So x ∈
(
supp(f)

)m
s
(
supp(f)

)n
and x ∈ supp(f). It follows that x ∈

((
supp(f)

)m
s
(
supp(f)

)n)∩supp(f).Hence,

supp(f) is an almost (m,n)-ideal of S.

Conversely, assume that supp(f) is an almost (m,n)-ideal of S. Let sα be a

fuzzy point in S. Then there exists x ∈
((
supp(f)

)m
s
(
supp(f)

)n) ∩ supp(f).

Thus there are a1, ..., am, b1, ..., bn ∈ supp(f) such that

x = (a1a2...am)s(b1b2...bn)

and x ∈ supp(f). This implies that f(x), f(a1), ..., f(am), f(b1), ..., f(bn) 6= 0.

Hence, we have

[(fm ◦ sα ◦ fn) ∩ f ](x) 6= 0.

Consequently, f is a fuzzy almost (m,n)-ideal of S.
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A minimal almost (m,n)-ideal of a semigroup is an almost (m,n)-

ideal which contains no other almost (m,n)-ideal. The definition of minimal fuzzy

almost (m,n)-ideals in semigroups, is defined as follows:

Definition 3.3.4. Let S be a semigroup. A fuzzy almost (m,n)-ideal f of S is called

minimal if for all nonzero fuzzy almost (m,n)-ideal g of S such that g ⊆ f , we have

supp(f) = supp(g).

Next, we consider the relationship between minimal almost (m,n)-

ideals and minimal fuzzy almost (m,n)-ideals in semigroups by the following theo-

rem.

Theorem 3.3.5. Let A be a nonempty subset of a semigroup S. Then A is a minimal

almost (m,n)-ideal of S if and only if CA is a minimal fuzzy almost (m,n)-ideal of

S.

Proof. Assume that A is a minimal almost (m,n)-ideal of S. By Theorem 3.3.2, CA

is a fuzzy almost (m,n)-ideal of S. We will show that CA is minimal. Let g be a

fuzzy almost (m,n)-ideal of S such that g ⊆ CA. Then supp(g) ⊆ supp(CA) = A.

Since g is a fuzzy almost (m,n)-ideal of S, by Theorem 3.3.3, we have supp(g)

is an almost (m,n)-ideal of S. Since A is a minimal almost (m,n)-ideal of S and

supp(g) ⊆ A, it follows that supp(g) = A = supp(CA). Hence, CA is minimal.

Therefore, CA is a minimal fuzzy almost (m,n)-ideal of S.

Conversely, assume that CA is a minimal fuzzy almost (m,n)-ideal of S. By

Theorem 3.3.2,A is an almost (m,n)-ideal of S. We want to show thatA is minimal.

Let G be an almost (m,n)-ideal of S such that G ⊆ A. Then CG is a fuzzy almost

(m,n)-ideal of S and CG ⊆ CA. Since CA is minimal, supp(CG) = supp(CA).

Thus G = A. Hence, A is minimal. Therefore, A is a minimal almost (m,n)-ideal

of S.

Corollary 3.3.6. A semigroup S has no proper almost (m,n)-ideals if and only if

supp(f) = S for all fuzzy almost (m,n)-ideal f of S.

Proof. Let f be a fuzzy almost (m,n)-ideal of S. By Theorem 3.3.3, supp(f) is an

almost (m,n)-ideal of S. Since S has no proper almost (m,n)-ideals, supp(f) = S.



31

Conversely, let A be an almost (m,n)-ideal of S. By Theorem 3.3.2, CA is a

fuzzy almost (m,n)-ideal of S. Thus, by assumption, we have supp(CA) = S, so

A = S. Hence, S has no proper almost (m,n)-ideals.

In a semigroup S, a prime almost (m,n)-ideal A of S is an almost

(m,n)-ideal such that for all x, y ∈ S, xy ∈ A implies x ∈ A or y ∈ A. An almost

(m,n)-ideal A of S is semiprime if for all x ∈ S, x2 ∈ A implies x ∈ A. The

definitions of prime fuzzy almost (m,n)-ideals and semiprime fuzzy almost (m,n)-

ideals of S are given below.

Definition 3.3.7. A fuzzy almost (m,n)-ideal f of a semigroup S is prime if

f(xy) ≤ max{f(x), f(y)} for all x, y ∈ S.

Definition 3.3.8. Let S be a semigroup. A fuzzy almost (m,n)-ideal f is semiprime

if f(x2) ≤ f(x) for all x ∈ S.

The relationship between prime (semiprime) almost (m,n)-ideals and

prime (semiprime) fuzzy almost (m,n)-ideals in semigroups is provided in the fol-

lowing theorems.

Theorem 3.3.9. A nonempty subset A of a semigroup S is a prime almost (m,n)-

ideal of S if and only if CA is a prime fuzzy almost (m,n)-ideal of S.

Proof. Assume that A is a prime almost (m,n)-ideal of S. By Theorem 3.3.2, CA is

a fuzzy almost (m,n)-ideal of S. Let x, y ∈ S.

Case 1: xy ∈ A. Then CA(xy) = 1. Since A is prime, x ∈ A or y ∈ A, so

CA(x) = 1 or CA(y) = 1. Thus max{CA(x), CA(y)} = 1 = CA(xy).

Case 2: xy 6∈ A. Then CA(xy) = 0 ≤ max{CA(x), CA(y)}.

Thus we conclude that CA(xy) ≤ max{CA(x), CA(y)}. Hence, CA is a prime fuzzy

almost (m,n)-ideal of S.

Conversely, assume that CA is a prime fuzzy almost (m,n)-ideal of S. Then A

is an almost (m,n)-ideal of S. Let x, y ∈ S such that xy ∈ A. This implies that

CA(xy) = 1. Since CA is prime, we have 1 = CA(xy) ≤ max{CA(x), CA(y)}, so

max{CA(x), CA(y)} = 1. Thus CA(x) = 1 or CA(y) = 1. Hence, x ∈ A or y ∈ A.

Therefore, A is a prime almost (m,n)-ideal of S.
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Theorem 3.3.10. A nonempty subset A of a semigroup S is a semiprime almost

(m,n)-ideal of S if and only if CA is a semiprime fuzzy almost (m,n)-ideal of S.

Proof. The proof of this theorem is similar to the proof of Theorem 3.3.9.



CHAPTER 4

Ordered almost ideals and fuzzy

ordered almost ideals in ordered

semigroups

In this chapter, we introduce the notions of ordered almost ideals,

ordered almost bi-ideals, ordered almost quasi-ideals, fuzzy ordered almost ide-

als, fuzzy ordered almost bi-ideals and fuzzy ordered almost quasi-ideals in ordered

semigroups. Moreover, some properties and the relations of them are discussed.

4.1 Ordered almost ideals in ordered semigroups

In this section, we define ordered almost ideals, ordered almost bi-

ideals and ordered almost quasi-ideals in ordered semigroups and we study some of

their properties.

Definition 4.1.1. Let (S, ·,≤) be an ordered semigroup.

1. A nonempty subset L of S is called a left ordered almost ideal of S if

(sL] ∩ L 6= ∅ for all s ∈ S.

2. A nonempty subset R of S is called a right ordered almost ideal of S if
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(Rs] ∩R 6= ∅ for all s ∈ S.

3. A nonempty subset I of S is called an ordered almost ideal of S if I is a left

ordered almost ideal and a right ordered almost ideal of S.

4. A nonempty subset B of S is called an ordered almost bi-ideal of S if

(BsB] ∩B 6= ∅ for all s ∈ S.

5. A nonempty subset Q of S is called an ordered almost quasi-ideal of S if

(sQ] ∩ (Qs] ∩Q 6= ∅ for all s ∈ S.

Example 4.1.2. Consider an ordered semigroup S = {a, b, c, d, e} under the binary

operation · and the order relation ≤ below.

· a b c d e

a a b a a a

b a b a a a

c a b c a a

d a b a a d

e a b a a e

≤:= {(a, a), (a, b), (b, b), (c, a), (c, b), (c, c), (d, a), (d, b), (d, d), (e, e)}.

Then every nonempty subset of S is an ordered almost bi-ideal of S except for {e},

and every nonempty subset of S except for {b}, {e} and {b, e} is an ordered almost

ideal and an ordered almost quasi-ideal of S.

Remark 4.1.3. Let (S, ·,≤) be an ordered semigroup.

(i) Every left ordered ideal of S is a left ordered almost ideal of S.

(ii) Every right ordered ideal of S is a right ordered almost ideal of S.

(iii) Every ordered ideal of S is an ordered almost ideal of S.
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(iv) Every ordered bi-ideal of S is an ordered almost bi-ideal of S.

(v) If Q is an ordered quasi-ideal of S and sQ ∩ Qs 6= ∅ for all s ∈ S, then Q is

an ordered almost quasi-ideal of S.

Proof. (i) Let I be a left ordered ideal of S and s ∈ S. Then sI ⊆ SI ⊆ I and

(I] = I , so (sI] ⊆ (I] = I . Since I 6= ∅, we have sI 6= ∅, so (sI] 6= ∅. This implies

that (sI] ∩ I = (sI] 6= ∅. Therefore, I is a left ordered almost ideal of S.

(ii) This can be proved in similar manner.

(iii) The proof follows (i) and (ii).

(iv) Let B be an ordered bi-ideal of S and s ∈ S. Then BSB ⊆ B and (B] = B.

SinceBsB ⊆ BSB, we haveBsB ⊆ B, so (BsB] ⊆ (B]. Thus (BsB] ⊆ B. Since

B 6= ∅, we have that (BsB] 6= ∅. Hence, (BsB] ∩B = (BsB] 6= ∅. Therefore, B is

an ordered almost bi-ideal of S.

(v) Assume that Q is an ordered quasi-ideal of S and xQ∩Qx 6= ∅ for all x ∈ S.

Let s ∈ S. Then sQ ⊆ SQ and Qs ⊆ QS, so sQ ∩ Qs ⊆ SQ ∩ QS ⊆ Q. This

implies that (sQ ∩Qs] ⊆ (Q] = Q. By assumption, sQ ∩Qs 6= ∅. Thus we have

sQ ∩Qs ⊆ (sQ ∩Qs] = (sQ ∩Qs] ∩Q ⊆ (sQ] ∩ (Qs] ∩Q.

Thus (sQ] ∩ (Qs] ∩Q 6= ∅. Hence, Q is an ordered almost quasi-ideal of S.

Example 4.1.4. From Example 4.1.2, we can see that {a, b, c} is an ordered almost

ideal, an ordered almost bi-ideal and an ordered almost quasi-ideal of S, but it is

neither an ordered ideal, an ordered bi-ideal, nor an ordered quasi-ideal of S because

(
{a, b, c}

]
= {a, b, c, d} 6= {a, b, c}.

From Example 4.1.4, in general, ordered ideals (resp. ordered bi-

ideals, ordered quasi-ideals) need not be an ordered almost ideal (resp. an ordered

almost bi-ideal, an ordered almost quasi-ideal) in ordered semigroups. Next, we will

give some interesting properties of ordered almost ideals, ordered almost bi-ideals

and ordered almost quasi-ideals in ordered semigroups.
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Proposition 4.1.5. Let (S, ·,≤) be an ordered semigroup. Then the following state-

ments hold.

(1) If L is a left ordered almost ideal of S, then every subset of S containing L is

also a left ordered almost ideal of S.

(2) If R is a right ordered almost ideal of S, then every subset of S containing R

is also a right ordered almost ideal of S.

(3) If I is an ordered almost ideal of S, then every subset of S containing I is also

an ordered almost ideal of S.

(4) If B is an ordered almost bi-ideal of S, then every subset of S containing B is

also an ordered almost bi-ideal of S.

(5) If Q is an ordered almost quasi-ideal of S, then every subset of S containing

Q is also an ordered almost quasi-ideal of S.

Proof. (1) Assume that L is a left ordered almost ideal of S. Let A be a subset

of S such that L ⊆ A and let s ∈ S. Then sL ⊆ sA, so (sL] ⊆ (sA]. Thus

(sL]∩L ⊆ (sA]∩A. Since L is a left ordered almost ideal of S, (sL]∩L 6= ∅. This

implies that (sA] ∩ A 6= ∅. Hence, A is a left ordered almost ideal of S.

(2) The proof of this statement is similar to the proof of statement (1).

(3) This statement follows from statements (1) and (2).

(4) Assume that B is an ordered almost bi-ideal of S. Let A be a subset of S

such that B ⊆ A, and let s ∈ S. Then BsB ⊆ AsA, so (BsB] ⊆ (AsA]. Thus

we have (BsB] ∩ B ⊆ (AsA] ∩ A. Since B is an ordered almost bi-ideal of S,

(BsB] ∩B 6= ∅. Hence, (AsA] ∩A 6= ∅. Therefore, A is an ordered almost bi-ideal

of S.

(5) Assume that Q is an ordered almost quasi-ideal of S. Let A be a subset of S

such that Q ⊆ A and let s ∈ S. Then sQ ⊆ sA and Qs ⊆ As, so (sQ] ⊆ (sA] and

(Qs] ⊆ (As]. Thus (sQ]∩(Qs]∩Q ⊆ (sA]∩(As]∩A. SinceQ is an ordered almost

quasi-ideal of S, (sQ] ∩ (Qs] ∩ Q 6= ∅. Hence, (sA] ∩ (As] ∩ A 6= ∅. Therefore, A

is an ordered almost quasi-ideal of S.



37

The next result follows directly from Proposition 4.1.5.

Corollary 4.1.6. Let (S, ·,≤) be an ordered semigroup.

(1) The arbitrary union of left ordered almost ideals of S is also a left ordered

almost ideal of S.

(2) The arbitrary union of right ordered almost ideals of S is also a right ordered

almost ideal of S.

(3) The arbitrary union of ordered almost ideals of S is also an ordered almost

ideal of S.

(4) The arbitrary union of ordered almost bi-ideals of S is also an ordered almost

bi-ideal of S.

(5) The arbitrary union of ordered almost quasi-ideals of S is also an ordered

almost quasi-ideal of S.

Example 4.1.7. From Example 4.1.2, we have {a, d, e} and {b, c, e} are ordered

almost ideals, ordered almost bi-ideals and ordered almost quasi-ideals of S. But

{a, d, e} ∩ {b, c, e} = {e} is neither an ordered almost ideal, an ordered almost

bi-ideal, nor an ordered almost quasi-ideal of S.

From Example 4.1.7, we can see that the arbitrary intersection of or-

dered almost ideals (resp. ordered almost bi-ideals, ordered almost quasi-ideals) in

ordered semigroups need not be an ordered almost ideal (resp. ordered almost bi-

ideal, ordered almost quasi-ideal).

Theorem 4.1.8. Let (S, ·,≤) be an ordered semigroup and |S| > 1. Then the fol-

lowing statements hold.

(1) S has no proper left ordered almost ideals if and only if for every a ∈ S, there

exists an element xa ∈ S such that
(
xa(S − {a})

]
= {a}.

(2) S has no proper right ordered almost ideals if and only if for every a ∈ S,

there exists an element ya ∈ S such that
(
(S − {a})ya

]
= {a}.
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(3) S has no proper ordered almost ideals if and only if for every a ∈ S, there

exist elements xa, ya ∈ S such that

(
xa(S − {a})

]
= {a} or

(
(S − {a})ya

]
= {a}.

(4) S has no proper ordered almost bi-ideals if and only if for every a ∈ S, there

exists an element xa ∈ S such that
(
(S − {a})xa(S − {a})

]
= {a}.

(5) S has no proper ordered almost quasi-ideals if and only if for every a ∈ S,

there exists an element xa ∈ S such that
(
xa(S−{a})

]
∩
(
(S−{a})xa

]
⊆ {a}.

Proof. (1) Assume that S has no proper left ordered almost ideals and let a ∈ S.

Then S − {a} is not a left ordered almost ideal of S. That is, there exists xa ∈ S

such that (
xa(S − {a})

]
∩ (S − {a}) = ∅.

Since
(
xa(S − {a})

]
6= ∅ and S − {a} 6= ∅, we have

(
xa(S − {a})

]
= {a}.

Conversely, let L be a proper nonempty subset of S. Then L ⊆ S−{a} for some

a ∈ S. By assumption, there exists xa ∈ S such that(
xa(S − {a})

]
= {a}.

Since xaL ⊆ xa(S − {a}), we have that (xaL] ⊆
(
xa(S − {a})

]
. Then

(xaL] ∩ L ⊆
(
xa(S − {a})

]
∩ (S − {a}) = {a} ∩ (S − {a}).

Since {a} ∩ (S −{a}) = ∅, we have (xaL]∩L = ∅. This implies that L is not a left

ordered almost ideal of S. Therefore, S has no proper left ordered almost ideals.

(2) This statement can be proved in a similar manner as the statement (1).

(3) Let a ∈ S. Assume that S has no proper ordered almost ideals. Then S has

no proper left ordered almost ideals or S has no proper right ordered almost ideals.

If S has no proper left ordered almost ideals, then by the statement (1), there

exists an element xa ∈ S such that
(
xa(S − {a})

]
= {a}.

If S has no proper right ordered almost ideals, then by statements (2), there exists

an element ya ∈ S such that
(
(S − {a})ya

]
= {a}.
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Thus we can conclude that there exist elements xa, ya ∈ S such that(
xa(S − {a})

]
= {a} or

(
(S − {a})ya

]
= {a}.

Conversely, by assumption, and statements (1) and (2), S has no proper left

ordered almost ideals or S has no proper right ordered almost ideals. Thus S has no

proper ordered almost ideals.

(4) Assume that S has no proper ordered almost bi-ideals. Then S − {a} is not

an ordered almost bi-ideal of S for all a ∈ S. Thus for each a ∈ S, there exists

xa ∈ S such that (
(S − {a})xa(S − {a})

]
∩ (S − {a}) = ∅,

so we have
(
(S − {a})xa(S − {a})

]
= {a}.

Conversely, suppose thatB is a proper ordered almost bi-ideal of S. This implies

that B ⊆ S − {t} for some t ∈ S. By Proposition 4.1.5(4), S − {t} is an ordered

almost bi-ideal of S. By assumption, there exists xt ∈ S such that(
(S − {t})xt(S − {t})

]
= {t}.

Thus
(
(S − {t})xt(S − {t})

]
∩ (S − {t}) = ∅, a contradiction. Hence, B is not

a proper ordered almost bi-ideal of S. Therefore, S has no proper ordered almost

bi-ideals.

(5) Assume that S has no proper ordered almost quasi-ideals. Let a ∈ S. Then

S − {a} is not an ordered almost quasi-ideal of S. Thus there is xa ∈ S such that(
xa(S − {a})

]
∩
(
(S − {a})xa

]
∩ (S − {a}) = ∅.

Since S − {a} 6= ∅, we obtain that(
xa(S − {a})

]
∩
(
(S − {a})xa

]
= ∅ or

(
xa(S − {a})

]
∩
(
(S − {a})xa

]
= {a}.

Thus
(
xa(S − {a})

]
∩
(
(S − {a})xa

]
⊆ {a}.

Conversely, suppose that Q is a proper ordered almost quasi-ideal of S. Then we

have Q ⊆ S − {u} for some u ∈ S. This implies that S − {u} is an ordered almost

quasi-ideal of S by Proposition 4.1.5(5). By assumption, there is xu ∈ S such that(
xu(S − {u})

]
∩
(
(S − {u})xu

]
⊆ {u}.
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Thus
(
xu(S − {u})

]
∩
(
(S − {u})xu

]
∩ (S − {u}) ⊆ {u} ∩ (S − {u}). Since

{u} ∩ (S − {u}) = ∅, we have
(
xu(S − {u})

]
∩
(
(S − {u})xu

]
∩ (S − {u}) = ∅.

This is a contradiction. Therefore, S has no proper ordered almost quasi-ideals.

Theorem 4.1.9. Let (S, ·,≤) be an ordered semigroup such that |S| > 1 and a ∈ S.

Then the following statements hold.

(1) If S has no proper left ordered almost ideals, then either a or a2 is an ordered

idempotent.

(2) If S has no proper right ordered almost ideals, then either a or a2 is an ordered

idempotent.

(3) If S has no proper ordered almost ideals, then either a or a2 is an ordered

idempotent.

(4) If S has no proper ordered almost bi-ideals, then either a or a4 is an ordered

idempotent.

(5) If S has no proper ordered almost quasi-ideals, then either a or a2 is an or-

dered idempotent.

Proof. (1) Assume that S has no proper left ordered almost ideals. By Theorem

4.1.8(1), there exists an element xa ∈ S such that

(
xa(S − {a})

]
= {a}.

Case 1: a = a2. Then a = a2 ≤ a2, so a is an ordered idempotent.

Case 2: a 6= a2. This implies that a2 ∈ S − {a}. Thus xaa2 = a.

Subcase 2.1: xa � a. That is xa ∈ S−{a}. So xaxa = a. Suppose that xaa � a.

Then xaa ∈ S − {a}, it follows that xa(xaa) = a. We have a = xaxaa = aa = a2,

a contradiction. Then xaa ≤ a, so a = xaa
2 ≤ a2. Thus a is an ordered idempotent.

Subcase 2.2: xa ≤ a. Then a = xaa
2 ≤ a3, so a2 ≤ a4. Thus a2 is an ordered

idempotent.

Thus we can conclude that a or a2 is an ordered idempotent.

(2) The proof of this statement is similar to the statement (1).
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(3) This follows from the statements (1) and (2).

(4) Assume that S has no proper ordered almost bi-ideals. By Theorem 4.1.8(4),

there exists an element xa ∈ S such that(
(S − {a})xa(S − {a})

]
= {a}.

Case 1: a = a2. Then a = a2 ≤ a2, so a is an ordered idempotent.

Case 2: a 6= a2. Then a2 ∈ S − {a}, which implies that a2xaa
2 = a.

Subcase 2.1: xa � a. Then xa ∈ S − {a}, so x3
a = a. Since xa ∈ S − {a} and

a2 ∈ S − {a}, we have that x2
aa

2 = xaxaa
2 = a. If x2

aa � a, then x2
aa ∈ S − {a},

so x2
aax

3
aa = a. Thus we have

a = x2
aax

3
aa = x2

aaaa = (x2
aa

2)a = aa = a2,

a contradiction. Thus x2
aa ≤ a, so a = x2

aa
2 = (x2

aa)a ≤ aa = a2. This implies that

a is an ordered idempotent.

Subcase 2.2: xa ≤ a. Then a = a2xaa
2 ≤ a2aa2 = a5, so a4 ≤ a8 = (a4)2.

Thus we have a4 is an ordered idempotent.

Therefore, a or a4 is an ordered idempotent.

(5) Assume that S has no proper ordered almost quasi-ideals. By Theorem

4.1.8(5), there is an element xa ∈ S such that(
xa(S − {a})

]
∩
(
(S − {a})xa

]
⊆ {a}.

Case 1: a = a2. Then a = a2 ≤ a2, so a is an ordered idempotent.

Case 2: a 6= a2. Then a2 ∈ S − {a}, so (xaa
2] ∩ (a2xa] ⊆ {a}. Suppose for the

contrary that a � xa. Then xa ∈ S − {a}, so x2
a ∈

(
x2
a

]
∩
(
x2
a

]
⊆ {a}. This implies

that x2
a = a. Thus we have a2 = ax2

a and a2 = x2
aa. We consider the following four

cases:

If a ≤ xaa and a ≤ axa, then a2 ≤ xaa
2 and a2 ≤ a2xa. This implies that

a2 ∈
(
xaa

2
]

and a2 ∈ (a2xa], so a2 ∈ (xaa
2] ∩ (a2xa] ⊆ {a}. Thus a = a2, a

contradiction.

If a ≤ xaa and a � axa, then a2 ≤ xaa
2 and axa ∈ S−{a}. Since a2 ∈ S−{a}

and axa ∈ S − {a}, we have that (xaa
2] ∩ (ax2

a] ⊆ {a}. Since a2 ≤ xaa
2 and

a2 = ax2
a, we have a2 ∈ (xaa

2] ∩ (ax2
a] ⊆ {a}, so a = a2, a contradiction.
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If a � xaa and a ≤ axa, then xaa ∈ S−{a} and a2 ≤ a2xa. Since xaa ∈ S−{a}

and a2 ∈ S−{a}, we have (x2
aa]∩ (a2xa] ⊆ {a}. Since a2 = (xa)

2a and a2 ≤ a2xa,

a2 ∈ (x2
aa] ∩ (a2xa] ⊆ {a}, so a = a2, a contradiction.

If a � xaa and a � axa, then xaa ∈ S − {a} and axa ∈ S − {a}. This

implies that (x2
aa] ∩ (ax2

a] ⊆ {a}. Since a2 = x2
aa and a2 = ax2

a, we have that

a2 ∈ (x2
aa] ∩ (ax2

a] ⊆ {a}. Thus a = a2, a contradiction.

Hence, a ≤ xa. Then a3 ≤ xaa
2 and a3 ≤ a2xa. Thus a3 ∈ (xaa

2] and a3 ∈ (a2xa].

So a3 ∈ (xaa
2] ∩ (a2xa] ⊆ {a}. Thus a = a3, so a2 = a4 ≤ (a2)2. This implies that

a2 is an ordered idempotent. Consequently, a or a2 is an ordered idempotent.

4.2 Fuzzy ordered almost ideals in ordered semigroups

In this section, we define fuzzy ordered almost ideals, fuzzy ordered

almost bi-ideals and fuzzy ordered almost quasi-ideals in ordered semigroups. Fur-

thermore, some interesting properties are provided. First of all, we give some basic

definitions and results, which are necessary for this section.

Let (S, ·,≤) be an ordered semigroup. For a fuzzy subset f of S, we

define (f ] : S −→ [0, 1] by

(f ](x) = sup
x≤y

f(y) for all x ∈ S.

Proposition 4.2.1. Let f, g and h be fuzzy subsets of an ordered semigroup (S, ·,≤).

Then the following properties hold.

(1) f ⊆ (f ].

(2) If f ⊆ g, then (f ] ⊆ (g].

(3) If f ⊆ g, then (f ◦ h] ⊆ (g ◦ h] and (h ◦ f ] ⊆ (h ◦ g].

Proof. (1) Let x ∈ S. Since x ≤ x, we have (f ](x) = sup
x≤y

f(y) ≥ f(x). Thus

f(x) ≤ (f ](x) for all x ∈ S. This implies that f ⊆ (f ].

(2) Assume that f ⊆ g. Then f(u) ≤ g(u) for all u ∈ S. Let x ∈ S. Thus

(f ](x) = sup
x≤y

f(y) ≤ sup
x≤y

g(y) = (g](x). This shows that (f ](x) ≤ (g](x) for all

x ∈ S. Hence, (f ] ⊆ (g].
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(3) Assume that f ⊆ g. By Proposition 2.4.4(1), we have f ◦ h ⊆ g ◦ h and

h ◦ f ⊆ h ◦ g. It follows from (2) that, (f ◦ h] ⊆ (g ◦ h] and (h ◦ f ] ⊆ (h ◦ g].

Proposition 4.2.2. Let f be a fuzzy subset of an ordered semigroup (S, ·,≤). Then

the following statements are equivalent.

(1) For all x, y ∈ S, x ≤ y implies f(x) ≥ f(y).

(2) (f ] = f .

Proof. First, we prove that (1) implies (2). Let x ∈ S. By assumption, we have

f(x) ≥ f(y) for all y ∈ S with x ≤ y. Then sup
x≤y

f(y) ≤ f(x), which implies that

(f ](x) ≤ f(x). Hence, (f ] ⊆ f . By Proposition 4.2.1(1), (f ] = f .

Next, we will prove that (2) implies (1). Let x, y ∈ S and x ≤ y. By assumption,

we have f(x) = (f ](x) = sup
x≤u

f(u) ≥ f(y). Thus f(x) ≥ f(y).

Next, we give definitions of fuzzy ordered almost ideals, fuzzy or-

dered almost bi-ideals and fuzzy ordered almost quasi-ideals in ordered semigroups.

Definition 4.2.3. Let f be a nonzero fuzzy subset of an ordered semigroup (S, ·,≤).

1. f is called a fuzzy left ordered almost ideal of S if (sα ◦ f ] ∩ f 6= 0 for all

fuzzy point sα of S.

2. f is called a fuzzy right ordered almost ideal of S if (f ◦ sα] ∩ f 6= 0 for all

fuzzy point sα of S.

3. f is called a fuzzy ordered almost ideal of S if f is both a fuzzy left ordered

almost ideal and a fuzzy right ordered almost ideal of S.

4. f is called a fuzzy ordered almost bi-ideal of S if (f ◦ sα ◦ f ] ∩ f 6= 0 for all

fuzzy point sα of S.

5. f is called a fuzzy ordered almost quasi-ideal of S if (sα◦f ]∩(f ◦sα]∩f 6= 0

for all fuzzy point sα of S.



44

Lemma 4.2.4. Let f be a nonzero fuzzy subset and sα a fuzzy point of an ordered

semigroup (S, ·,≤), and let x ∈ S. Then the following statements hold.

(1)
(
(sα ◦ f ] ∩ f

)
(x) 6= 0 if and only if there exists an element b ∈ S such that

x ≤ sb and f(x), f(b) 6= 0.

(2)
(
(f ◦ sα] ∩ f

)
(x) 6= 0 if and only if there exists an element a ∈ S such that

x ≤ as and f(x), f(a) 6= 0.

(3)
(
(f ◦ sα ◦ f ] ∩ f

)
(x) 6= 0 if and only if there exist elements a, b ∈ S such that

x ≤ asb and f(x), f(a), f(b) 6= 0.

(4)
(
(sα ◦ f ] ∩ (f ◦ sα] ∩ f

)
(x) 6= 0 if and only if there exist elements a, b ∈ S

such that

x ≤ as, x ≤ sb and f(x), f(a), f(b) 6= 0.

Proof. (1) Assume that
(
(sα ◦ f ] ∩ f

)
(x) 6= 0. Then min{(sα ◦ f ](x), f(x)} 6= 0,

so (sα ◦ f ](x) 6= 0 and f(x) 6= 0. Thus we have,

(sα ◦ f ](x) = sup
x≤y

(sα ◦ f)(y) 6= 0.

Then there is z ∈ S such that x ≤ z and (sα ◦ f)(z) 6= 0. This implies that

(sα ◦ f)(z) = sup
z≤uv

min{sα(u), f(v)} 6= 0.

So there exist a, b ∈ S such that z ≤ ab and min{sα(a), f(b)} 6= 0. Thus sα(a) 6= 0

(implies that s = a) and f(b) 6= 0. Hence, x ≤ z ≤ ab = sb and f(x), f(b) 6= 0.

Conversely, assume that there exists an element a ∈ S such that

x ≤ sb and f(x), f(b) 6= 0.
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Then we have

(sα ◦ f ](x) = sup
x≤y

(sα ◦ f)(y)

≥ (sα ◦ f)(x) (since x ≤ x)

= sup
x≤uv

min{sα(u), f(v)}

≥ min{sα(s), f(b)} (since x ≤ sb)

= min{α, f(b)}

6= 0.

Thus (sα ◦ f ](x) 6= 0. Since (sα ◦ f ](x) 6= 0 and f(x) 6= 0, it follows that

min{(sα ◦ f ](x), f(x)} 6= 0. Hence,
(
(sα ◦ f ] ∩ f

)
(x) 6= 0.

(2) The proof of this statement is similar to the statement (1).

(3) Assume that
(
(f ◦ sα ◦f ]∩f

)
(x) 6= 0. Then min{(f ◦ sα ◦f ](x), f(x)} 6= 0,

so (f ◦ sα ◦ f ](x) 6= 0 and f(x) 6= 0. Thus we have,

(f ◦ sα ◦ f ](x) = sup
x≤y

(f ◦ sα ◦ f)(y) 6= 0.

Then there is z ∈ S such that x ≤ z and (f ◦ sα ◦ f)(z) 6= 0. This implies that

(f ◦ sα ◦ f)(z) = sup
z≤uv

min{f(u), (sα ◦ f)(v)} 6= 0.

So there exist a, b ∈ S such that z ≤ ab and min{f(a), (sα ◦ f)(b)} 6= 0. Thus

f(a) 6= 0 and (sα ◦ f)(b) 6= 0. Since (sα ◦ f)(b) 6= 0, we get

sup
b≤u′v′

min{sα(u′), f(v′)} 6= 0.

Thus there exist a′, b′ ∈ S such that b ≤ a′b′ and min{sα(a′), f(b′)} 6= 0, so

a′ = s and f(b′) 6= 0. Hence, x ≤ z ≤ ab ≤ a(a′b′). Therefore, x ≤ asb′ and

f(x), f(a), f(b′) 6= 0.

Conversely, assume that there exist elements a, b ∈ S such that

x ≤ asb and f(x), f(a), f(b) 6= 0.
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Then we have

(f ◦ sα ◦ f ](x) = sup
x≤y

(f ◦ sα ◦ f)(y)

≥ (f ◦ sα ◦ f)(x) (since x ≤ x)

= sup
x≤uv

min{(f ◦ sα)(u), f(v)}

≥ min{(f ◦ sα)(as), f(b)} (since x ≤ (as)b)

= min
{

sup
as≤z1z2

min{f(z1), sα(z2)}, f(b)
}

≥ min
{

min{f(a), sα(s)}, f(b)
}

(since as ≤ as)

= min{f(a), α, f(b)}

6= 0.

Thus (f ◦ sα ◦ f ](x) 6= 0. Since (f ◦ sα ◦ f ](x) 6= 0 and f(x) 6= 0, we have that

min{(f ◦ sα ◦ f ](x), f(x)} 6= 0. Hence,
(
(f ◦ sα ◦ f ] ∩ f

)
(x) 6= 0.

(4) Assume that
(
(sα ◦ f ] ∩ (f ◦ sα] ∩ f

)
(x) 6= 0. Then (sα ◦ f ](x) 6= 0,

(f ◦ sα](x) 6= 0 and f(x) 6= 0. This implies that(
(sα ◦ f ] ∩ f

)
(x) 6= 0 and

(
(f ◦ sα] ∩ f

)
(x) 6= 0.

By statements (1) and (2), there exist elements a, b ∈ S such that x ≤ sb, x ≤ as

and f(x), f(a), f(b) 6= 0.

Conversely, assume that there exist elements a, b ∈ S such that x ≤ as, x ≤ sb

and f(x), f(a), f(b) 6= 0. By the converse of statements (1) and (2), we get(
(sα ◦ f ] ∩ f

)
(x) 6= 0 and

(
(f ◦ sα] ∩ f

)
(x) 6= 0,

so (sα◦f ](x) 6= 0, (f ◦sα](x) 6= 0 and f(x) 6= 0. Thus
(
(sα◦f ]∩(f ◦sα]∩f

)
(x) 6= 0.

The following theorem follows directly from Definition 4.2.3 and

Lemma 4.2.4.
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Theorem 4.2.5. Let f be a fuzzy subset of an ordered semigroup (S, ·,≤). Then the

following statements hold.

(1) f is a fuzzy left ordered almost ideal of S if and only if for each fuzzy point sα,

there exist x, b ∈ S such that

x ≤ sb and f(x), f(b) 6= 0.

(2) f is a fuzzy right ordered almost ideal of S if and only if for each fuzzy point

sα, there exist x, a ∈ S such that

x ≤ as and f(x), f(a) 6= 0.

(3) f is a fuzzy ordered almost ideal of S if and only if for each fuzzy point sα,

there exist x, y, a, b ∈ S such that

x ≤ as, y ≤ sb and f(x), f(y), f(a), f(b) 6= 0.

(4) f is a fuzzy ordered almost bi-ideal of S if and only if for each fuzzy point sα,

there exist x, a, b ∈ S such that

x ≤ asb and f(x), f(a), f(b) 6= 0.

(5) f is a fuzzy ordered almost quasi-ideal of S if and only if for each fuzzy point

sα, there exist x, a, b ∈ S such that

x ≤ as, x ≤ sb and f(x), f(a), f(b) 6= 0.

Example 4.2.6. Consider an ordered semigroup S = {a, b, c, d, e} under the binary

operation · and the order relation ≤ given below.

· a b c d e

a a b a a a

b a b a a a

c a b c a a

d a b a a d

e a b a a e
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≤:= {(a, a), (a, b), (b, b), (c, a), (c, b), (c, c), (d, a), (d, b), (d, d), (e, e}.

Define a function f : S −→ [0, 1] by

f(a) = 0, f(b) = 0.3, f(c) = 0, f(d) = 0.1 and f(e) = 0.2.

Let α ∈ (0, 1]. Then we have

• b ≤ ab and f(b) 6= 0 =⇒
[
(aα ◦ f ] ∩ f

]
(b) 6= 0,

d ≤ ba and f(b), f(d) 6= 0 =⇒
[
(f ◦ aα] ∩ f

]
(d) 6= 0,

• b ≤ bb andf(b) 6= 0 =⇒
[
(bα ◦f ]∩f

]
(b) 6= 0 and

[
(f ◦bα]∩f

]
(b) 6= 0,

• b ≤ cb and f(b) 6= 0 =⇒
[
(cα ◦ f ] ∩ f

]
(b) 6= 0,

d ≤ bc and f(b), f(d) 6= 0 =⇒
[
(f ◦ cα] ∩ f

]
(d) 6= 0,

• b ≤ db and f(b) 6= 0 =⇒
[
(dα ◦ f ] ∩ f

]
(b) 6= 0,

d ≤ bd and f(b), f(d) 6= 0 =⇒
[
(f ◦ dα] ∩ f

]
(d) 6= 0,

• e ≤ ee and f(e) 6= 0 =⇒
[
(eα◦f ]∩f

]
(e) 6= 0 and

[
(f ◦eα]∩f

]
(e) 6= 0.

This implies that (sα ◦ f ] ∩ f 6= 0 and (f ◦ sα] ∩ f 6= 0 for all s ∈ S. Thus f is a

fuzzy ordered almost ideal of S. Also, we have

b ≤ bab where f(b) 6= 0 =⇒
[
(f ◦ aα ◦ f ] ∩ f

]
(b) 6= 0,

b ≤ bbb where f(b) 6= 0 =⇒
[
(f ◦ bα ◦ f ] ∩ f

]
(b) 6= 0,

b ≤ bcb where f(b) 6= 0 =⇒
[
(f ◦ cα ◦ f ] ∩ f

]
(b) 6= 0,

b ≤ bdb where f(b) 6= 0 =⇒
[
(f ◦ dα ◦ f ] ∩ f

]
(b) 6= 0,

e ≤ eee where f(e) 6= 0 =⇒
[
(f ◦ eα ◦ f ] ∩ f

]
(e) 6= 0.

Then (f ◦ sα ◦ f) ∩ f 6= 0 for all s ∈ S, which implies that f is a fuzzy ordered

almost bi-ideal of S. Finally, we show that f is a fuzzy ordered almost quasi-ideal

of S as follows:

d ≤ ab and d ≤ ba where f(b), f(d) 6= 0 =⇒
[
(aα ◦f ]∩ (f ◦aα]∩f

]
(d) 6= 0,

b ≤ bb where f(b) 6= 0 =⇒
[
(bα ◦ f ]∩ (f ◦ bα]∩ f

]
(b) 6= 0,

d ≤ cb and d ≤ dc where f(b), f(d) 6= 0 =⇒
[
(cα ◦f ]∩ (f ◦ cα]∩f

]
(d) 6= 0,

d ≤ db and d ≤ dd where f(b), f(d) 6= 0 =⇒
[
(dα ◦f ]∩(f ◦dα]∩f

]
(d) 6= 0,
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d ≤ eb and d ≤ de where f(b), f(d) 6= 0 =⇒
[
(eα ◦f ]∩ (f ◦eα]∩f

]
(d) 6= 0.

We can conclude that (sα ◦ f ] ∩ (f ◦ sα] ∩ f 6= 0 for all s ∈ S, so f is a fuzzy

ordered almost quasi-ideal of S. Therefore, the fuzzy subset f in this example is a

fuzzy ordered almost ideal, fuzzy ordered almost bi-ideal and fuzzy ordered almost

quasi-ideal of S.

Remark 4.2.7. Let f be a nonzero fuzzy subset of an ordered semigroup (S, ·,≤).

The following statements hold.

(i) Every fuzzy left ordered ideal of S is a fuzzy left ordered almost ideal of S.

(ii) Every fuzzy right ordered ideal of S is a fuzzy right ordered almost ideal of S.

(iii) Every fuzzy ordered ideal of S is a fuzzy ordered almost ideal of S.

(iv) Every fuzzy ordered bi-ideal of S is a fuzzy ordered almost bi-ideal of S.

(v) If S is commutative, then every fuzzy ordered quasi-ideal of S is a fuzzy or-

dered almost quasi-ideal of S.

Proof. (i) Assume that f is a fuzzy left ordered ideal of S. Let sα be a fuzzy point

of S. Since f is a nonzero fuzzy subset of S, there exists an element a ∈ S such that

f(a) 6= 0. Since f is a fuzzy left ordered ideal of S, f(sa) ≥ f(a), so f(sa) 6= 0.

Let x = sa. Then x ≤ sa, f(x) 6= 0 and f(a) 6= 0. By Theorem 4.2.5(1), f is a

fuzzy left ordered almost ideal of S.

(ii) The proof of this statement is similar to the statement (i).

(iii) This statement follows from (i) and (ii).

(iv) Assume that f is a fuzzy ordered bi-ideal of S. Let sα be a fuzzy point of

S. Since f is a nonzero fuzzy subset of S, there exists an element a ∈ S such that

f(a) 6= 0. Since f is a fuzzy ordered bi-ideal of S,

f(asa) ≥ min{f(a), f(a)} = f(a),

which implies that f(asa) 6= 0. Let x = asa. Thus we have x ≤ asa and

f(x), f(a) 6= 0. By Theorem 4.2.5(4), f is a fuzzy ordered almost bi-ideal of S.
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(v) Assume that f is a fuzzy ordered quasi-ideal of S. Let sα be a fuzzy point of

S. Since f is a nonzero fuzzy subset of S, there exists a ∈ S such that f(a) 6= 0. Let

x = sa. Since S is commutative, x ≤ as and x ≤ sa. By Theorem 2.4.11,

f(x) ≥ min{f(a), f(a)} = f(a),

so f(x) 6= 0. By Theorem 4.2.5(5), f is a fuzzy ordered almost quasi-ideal of S.

The following example shows that the converse of the Remark 4.2.7

is not true.

Example 4.2.8. From Example 4.2.6, we have that f is a fuzzy ordered almost ideal,

fuzzy ordered almost bi-ideal and fuzzy ordered almost quasi-ideal of S. However,

f is neither a fuzzy ordered ideal nor a fuzzy ordered bi-ideal nor a fuzzy ordered

quasi-ideal of S because a ≤ b but f(a) = 0 ≤ 0.3 = f(b).

Next, we give some properties of fuzzy ordered almost ideals, fuzzy

ordered almost bi-ideals and fuzzy ordered almost quasi-ideals in ordered semi-

groups by using the same concepts of ordered almost ideals, ordered almost bi-ideals

and ordered almost quasi-ideals, respectively.

Proposition 4.2.9. Let (S, ·,≤) be an ordered semigroup. Then the following state-

ments are true.

(1) If f is a fuzzy left ordered almost ideal of S, then every fuzzy subset g of S

such that f ⊆ g is also a fuzzy left ordered almost ideal of S.

(2) If f is a fuzzy right ordered almost ideal of S, then every fuzzy subset g of S

such that f ⊆ g is also a fuzzy right ordered almost ideal of S.

(3) If f is a fuzzy ordered almost ideal of S, then every fuzzy subset g of S such

that f ⊆ g is also a fuzzy ordered almost ideal of S.

(4) If f is a fuzzy ordered almost bi-ideal of S, then every fuzzy subset g of S

such that f ⊆ g is also a fuzzy ordered almost bi-ideal of S.

(5) If f is a fuzzy ordered almost quasi-ideal of S, then every fuzzy subset g of S

such that f ⊆ g is also a fuzzy ordered almost quasi-ideal of S.
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Proof. Assume that f is a fuzzy left ordered almost ideal of S. Let g be a fuzzy

subset of S such that f ⊆ g and let sα be a fuzzy point of S. Then sα ◦ f ⊆ sα ◦ g

and so (sα ◦ f ] ⊆ (sα ◦ g]. Thus (sα ◦ f ] ∩ f ⊆ (sα ◦ g] ∩ g. Since f is a fuzzy left

ordered almost ideal of S, (sα ◦ f ] ∩ f 6= ∅. Hence, (sα ◦ g] ∩ g 6= ∅. Therefore, g

is a fuzzy left ordered almost ideal of S. This verifies (1). The proof of (2), (3), (4),

and (5) are similar to the proof of (1).

Corollary 4.2.10. Let (S, ·,≤) be an ordered semigroup. Then we have the following

statements hold.

(1) The arbitrary union of fuzzy left ordered almost ideals of S is also a fuzzy left

ordered almost ideal of S.

(2) The arbitrary union of fuzzy right ordered almost ideals of S is also a fuzzy

right ordered almost ideal of S.

(3) The arbitrary union of fuzzy ordered almost ideals of S is also a fuzzy ordered

almost ideal of S.

(4) The arbitrary union of fuzzy ordered almost bi-ideals of S is also a fuzzy or-

dered almost bi-ideal of S.

(5) The arbitrary union of fuzzy ordered almost quasi-ideals of S is also a fuzzy

ordered almost quasi-ideal of S.

From Corollary 4.2.10, we have the case of the arbitrary union is true,

but the case of the arbitrary intersection need not be true. The following example

gives the answer.

Example 4.2.11. Consider an ordered semigroup Z6 = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄} under the

addition modulo 6 and the order ≤:= {(ā, ā) | ā ∈ Z6}. Define functions f :

Z6 −→ [0, 1] by

f(0̄) = 0, f(1̄) = 0.3, f(2̄) = 0, f(3̄) = 0, f(4̄) = 0.2, f(5̄) = 0.1,

and g : Z6 −→ [0, 1] by

g(0̄) = 0, g(1̄) = 0.3, g(2̄) = 0.1, g(3̄) = 0, g(4̄) = 0, g(5̄) = 0.3.
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Then f and g are fuzzy left ordered almost ideals, fuzzy right ordered almost ide-

als, fuzzy ordered almost ideals, fuzzy ordered almost bi-ideals, and fuzzy ordered

almost quasi-ideals of Z6. Next, we consider a function f ∩ g : Z6 −→ [0, 1] defined

by (f ∩ g)(x̄) = min{f(x̄), g(x̄)} for all x̄ ∈ Z6, that is

(f ∩ g)(0̄) = 0, (f ∩ g)(1̄) = 0.3, (f ∩ g)(2̄) = 0,

(f ∩ g)(3̄) = 0, (f ∩ g)(4̄) = 0, (f ∩ g)(5̄) = 0.1.

Then f ∩ g is neither a fuzzy left ordered almost ideal, a fuzzy right ordered almost

ideal, a fuzzy ordered almost ideal, a fuzzy ordered almost bi-ideal, nor a fuzzy

ordered almost quasi-ideal of Z6 because for α ∈ (0, 1],(
1̄α ◦ (f ∩ g)

]
∩ (f ∩ g) = 0,(

(f ∩ g) ◦ 1̄α
]
∩ (f ∩ g) = 0,(

(f ∩ g) ◦ 0̄α ◦ (f ∩ g)
]
∩ (f ∩ g) = 0,(

1̄α ◦ (f ∩ g)
]
∩
(
(f ∩ g) ◦ 1̄α

]
∩ (f ∩ g) = 0.

4.3 The relations of ordered almost ideals and fuzzy

ordered almost ideals in ordered semigroups

In this section, some connections of ordered almost ideals and fuzzy

ordered almost ideals in ordered semigroups are discussed.

4.3.1 The relations of ordered almost ideals

Firstly, we discuss about the relations of various almost ideals as fol-

lows:

Theorem 4.3.1. Let (S, ·,≤) be an ordered semigroup. Every ordered almost ideal

of S is an ordered almost bi-ideal of S.

Proof. Let I be an ordered almost ideal of S and let s ∈ S. Since I 6= ∅, there exists

an element a ∈ I . Then asI ⊆ IsI, so (asI] ⊆ (IsI]. Thus we have

(asI] ∩ I ⊆ (IsI] ∩ I.
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Since I is an ordered almost ideal of S and as ∈ S, we have that
(
(as)I

]
∩ I 6= ∅.

This implies that (IsI] ∩ I 6= ∅. Hence, I is an ordered almost bi-ideal of S.

From the proof of Theorem 4.3.1, we can see that if I is a left ordered

almost ideal or a right ordered almost ideal of S, then I is an ordered almost bi-ideal

of S. The following corollary follows directly from Remark 4.1.3(iii) and Theorem

4.3.1.

Corollary 4.3.2. Let (S, ·,≤) be an ordered semigroup. Then every ordered ideal of

S is an ordered almost bi-ideal of S.

Theorem 4.3.3. Let (S, ·,≤) be an ordered semigroup. Every ordered almost quasi-

ideal of S is an ordered almost ideal of S.

Proof. Let Q be an ordered almost quasi-ideal of S and let s ∈ S. Then we have

(sQ] ∩ (Qs] ∩Q 6= ∅. Since (sQ] ∩ (Qs] ⊆ (sQ] and (sQ] ∩ (Qs] ⊆ (Qs],

(sQ] ∩ (Qs] ∩Q ⊆ (sQ] ∩Q and (sQ] ∩ (Qs] ∩Q ⊆ (Qs] ∩Q.

Thus (sQ]∩Q 6= ∅ and (Qs]∩Q 6= ∅. Hence, Q is a left ordered almost ideal and a

right ordered almost ideal of S. Therefore, Q is an ordered almost ideal of S.

As a consequence of Theorem 4.3.1 and Theorem 4.3.3, the relation-

ship between ordered almost bi-ideals and ordered almost quasi-ideals in ordered

semigroups is given as follows:

Corollary 4.3.4. Let (S, ·,≤) be an ordered semigroup. Every ordered almost quasi-

ideal of S is an ordered almost bi-ideal of S.

Example 4.3.5. From Example 4.1.2, the set of all ordered almost ideals of S and

the set of all ordered almost quasi-ideals of S coincide. While {b} and {b, e} are

ordered almost bi-ideals of S, they are neither ordered almost ideals nor ordered

almost quasi-ideals of S.

From Example 4.3.5, we can conclude that the converses of Theorem

4.3.1 and Corollary 4.3.4 are not true. The converse of Theorem 4.3.3 is not true

either, which can be seen in the following example.
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Example 4.3.6. Consider an ordered semigroup consisting of five elements S =

{a, b, c, d, e}, where the product · and the order relation ≤ are given below.

· a b c d e

a a a a d d

b a b c d e

c a c b d e

d d d d a a

e d d d a a

≤:= {(a, a), (b, b), (c, c), (d, d), (e, e}.

Let I = {b, d, e}. Then I is an ordered almost ideal of S, but it is not an ordered

almost quasi-ideal of S because (eI]∩ (Ie]∩ I = {a, d}∩{a, e}∩ I = {a}∩ I = ∅.

The converses of Theorems 4.3.1, 4.3.3, and 4.3.4 may be not true in

general (see in Example 4.3.5 and 4.3.6). The question is, when are the converses of

these theorems true? The theorems below give the answer.

Theorem 4.3.7. Let (S, ·,≤) be a commutative ordered semigroup. Then a subsemi-

group of S is an ordered almost ideal of S if and only if it is an ordered almost

bi-ideal of S.

Proof. Let A be a subsemigroup of S. Assume that A is an ordered almost ideal of

S. It follows from Theorem 4.3.1 that A is an ordered almost bi-ideal of S.

Conversely, assume that A is an ordered almost bi-ideal of S. Let s ∈ S. Then

(AsA] ∩ A 6= ∅. Since S is commutative and A is a subsemigroup of S,

(AsA] ∩ A = (sAA] ∩ A ⊆ (sA] ∩ A,

(AsA] ∩ A = (AAs] ∩ A ⊆ (As] ∩ A.

Thus (sA] ∩ A 6= ∅ and (As] ∩ A 6= ∅. Hence, A is a left ordered almost ideal and a

right ordered almost ideal of S. Therefore, A is an ordered almost ideal of S.
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Theorem 4.3.8. Let (S, ·,≤) be a commutative ordered semigroup. Then a nonempty

subset of S is an ordered almost quasi-ideal of S if and only if it is an ordered almost

ideal of S.

Proof. By Theorem 4.3.3, an ordered almost quasi-ideal of S is an ordered almost

ideal of S. Next, assume that I is an ordered almost ideal of S. We will show that I is

an ordered almost quasi-ideal of S. Let s ∈ S. Since S is commutative, (sI] = (Is].

Then we have (sI] ∩ I = (sI] ∩ (Is] ∩ I. Since I is an ordered almost ideal of S,

(sI]∩ I 6= ∅. Thus (sI]∩ (Is]∩ I 6= ∅. Hence, I is an ordered almost quasi-ideal of

S.

The next result follows directly from Theorem 4.3.7 and Theorem

4.3.8.

Corollary 4.3.9. Let (S, ·,≤) be a commutative ordered semigroup. A subsemigroup

of S is an ordered almost quasi-ideal of S if and only if it is an ordered almost bi-

ideal of S.

4.3.2 The relations of fuzzy ordered almost ideals

In the previous subsection, we studied the relations of ordered al-

most ideals and ordered almost bi-ideals, ordered almost ideals and ordered almost

quasi-ideals, and ordered almost bi-ideals and ordered almost quasi-ideals in ordered

semigroups. Next, we provide the relations of various fuzzy ordered almost ideals in

ordered semigroups.

Theorem 4.3.10. Every fuzzy ordered ideal of an ordered semigroup (S, ·,≤) is a

fuzzy ordered almost bi-ideal of S.

Proof. Let f be a fuzzy ordered ideal of S and let sα be a fuzzy point of S. Since f

is a nonzero fuzzy subset of S, f(a) 6= 0 for some a ∈ S. Let x = asa. Since f is a

fuzzy ordered ideal of S, we have that

f(x) = f(asa) = f
(
(as)a

)
≥ f(a).

Thus f(x) 6= 0. By Theorem 4.2.5(4), f is a fuzzy ordered almost bi-ideal of S.



56

From the proof of Theorem 4.3.10, we can see that if a fuzzy ordered

ideal is replaced by fuzzy left ordered ideal or fuzzy right ordered ideal, then the

statement still hold. The following example shows that the converse of Theorem

4.3.10 is not true.

Example 4.3.11. Consider an ordered semigroup S = {a, b, c, d, e} under the binary

operation · and the order relation ≤ below.

· a b c d e

a a b a a a

b a b a a a

c a b c a a

d a b a a d

e a b a a e

≤:= {(a, a), (a, b), (b, b), (c, a), (c, b), (c, c), (d, a), (d, b), (d, d), (e, e}.

Define a function g : S −→ [0, 1] by

g(a) = 0, g(b) = 0.5, g(c) = 0, g(d) = 0 and g(e) = 0.1.

Then for each fuzzy point sα of S, we have b ≤ bsb and g(b) 6= 0. Thus g is a fuzzy

ordered almost bi-ideal of S. But g is not a fuzzy ordered ideal of S because a ≤ b

while f(a) ≤ f(b).

Theorem 4.3.12. Let f be a fuzzy subsemigroup of an ordered semigroup (S, ·,≤).

If f is a fuzzy ordered almost ideal of S, then it is a fuzzy ordered almost bi-ideal of

S.

Proof. Assume that f is a fuzzy ordered almost ideal of S. Let sα be a fuzzy point

of S. By Theorem 4.2.5(3), there exist elements x, b ∈ S such that

x ≤ sb and f(x), f(b) 6= 0.
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Thus bx ≤ bsb and min{f(b), f(x)} 6= 0. Since f is a fuzzy subsemigroup of S,

f(bx) ≥ min{f(b), f(x)},

which implies that f(bx) 6= 0. Hence, we can conclude that bx ≤ bsb, f(bx) 6= 0

and f(b) 6= 0. By Theorem 4.2.5(4), f is a fuzzy ordered almost bi-ideals of S.

Theorem 4.3.13. Let (S, ·,≤) be an ordered semigroup. Every fuzzy ordered almost

quasi-ideal of S is a fuzzy ordered almost ideal of S.

Proof. Assume that f is a fuzzy ordered almost quasi-ideal of S. Let sα be a fuzzy

point of S. By Theorem 4.2.5(5), there are x, a, b ∈ S such that

x ≤ as, x ≤ sb and f(x), f(a), f(b) 6= 0.

By Theorem 4.2.5(1) and (2), f is a fuzzy left ordered almost ideal and a fuzzy right

ordered almost ideal of S. Therefore, f is a fuzzy ordered almost ideal of S.

We have the following result by combining Theorem 4.3.12 and The-

orem 4.3.13.

Corollary 4.3.14. If a fuzzy subsemigroup f of an ordered semigroup (S, ·,≤) is a

fuzzy ordered almost quasi-ideal of S, then f is a fuzzy ordered almost bi-ideal of S.

From the proof of Theorems 4.3.12-4.3.14, we see that if f is a fuzzy

left ordered almost ideal or a fuzzy right ordered almost ideal of S, then it is enough

to make these theorem true.

Theorem 4.3.15. Let f be a fuzzy subsemigroup of an ordered semigroup (S, ·,≤).

Then the following statements hold.

(1) f is a fuzzy ordered almost quasi-ideal of S if and only if f is a fuzzy ordered

almost ideal of S.

(2) If S is commutative, then f is a fuzzy ordered almost ideal of S if and only if f

is a fuzzy ordered almost bi-ideal of S.

(3) If S is commutative, then f is a fuzzy ordered almost quasi-ideal of S if and

only if f is a fuzzy ordered almost bi-ideal of S.
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Proof. (1) Assume that f is a fuzzy ordered almost quasi-ideal of S. By Theorem

4.3.13, f is a fuzzy ordered almost ideal of S.

Conversely, assume that f is a fuzzy ordered almost ideal of S. Let sα be a fuzzy

point of S. By Theorem 4.2.5(3), there exist elements x, y, a, b ∈ S such that

x ≤ as, y ≤ sb and f(x), f(y), f(a), f(b) 6= 0.

Thus yx ≤ yas and yx ≤ sbx. Since f is a fuzzy subsemigroup of S,

f(yx) ≥ min{f(y), f(x)},

f(ya) ≥ min{f(y), f(a)},

f(bx) ≥ min{f(b), f(x)}.

Since min{f(y), f(x)} 6= 0, min{f(y), f(a)} 6= 0 and min{f(b), f(x)} 6= 0,

f(yx), f(ya), f(bx) 6= 0. By Theorem 4.2.5(5), f is a fuzzy ordered almost quasi-

ideal of S.

(2) Let S be commutative. By Theorem 4.3.12, a fuzzy ordered almost ideal of S

is a fuzzy ordered almost bi-ideal of S. Assume that f is a fuzzy ordered almost bi-

ideal of S. Let sα be a fuzzy point of S. By Theorem 4.2.5(4), there exist x, a, b ∈ S

such that

x ≤ asb and f(x), f(a), f(b) 6= 0.

Then min{f(a), f(b)} 6= 0. Since S is commutative, asb = s(ab) = (ab)s. Since f

is a fuzzy subsemigroup of S,

f(ab) ≥ min{f(a), f(b)},

so f(ab) 6= 0. Hence, we can conclude that

x ≤ s(ab), x ≤ (ab)s and f(x), f(ab) 6= 0.

By Theorem 4.2.5(3), f is a fuzzy ordered almost ideal of S.

(3) This follows from (1) and (2).
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4.3.3 The relations of ordered almost ideals and fuzzy ordered

almost ideals

In this subsection, the relations of ordered almost ideals and fuzzy

ordered almost ideals, ordered almost bi-ideals and fuzzy ordered almost bi-ideals,

and ordered almost quasi-ideals and fuzzy ordered almost quasi-ideals in ordered

semigroups are provided.

Theorem 4.3.16. Let A be a nonempty subset of an ordered semigroup (S, ·,≤).

Then the following statements hold.

(1) A is a left ordered almost ideal of S if and only if CA is a fuzzy left ordered

almost ideal of S.

(2) A is a right ordered almost ideal of S if and only if CA is a fuzzy right ordered

almost ideal of S.

(3) A is an ordered almost ideal of S if and only if CA is a fuzzy ordered almost

ideal of S.

(4) A is an ordered almost bi-ideal of S if and only if CA is a fuzzy ordered almost

bi-ideal of S.

(5) A is an ordered almost quasi-ideal of S if and only if CA is a fuzzy ordered

almost quasi-ideal of S.

Proof. Assume A is a left ordered almost ideal of S. Let sα be a fuzzy point of S.

Then we have (sA]∩A 6= ∅. Thus there exists x ∈ S such that x ∈ A and x ∈ (sA],

so CA(x) = 1 and x ≤ sa for some a ∈ A. This implies that

x ≤ sa and CA(x), CA(a) 6= 0.

By Theorem 4.2.5(1), CA is a fuzzy left ordered almost ideal of S.

Conversely, assume that CA is a fuzzy left ordered almost ideal of S. Let s ∈ S.

By Theorem 4.2.5(1), there are elements x, a ∈ S such that

x ≤ sa and CA(x), CA(a) 6= 0,
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which implies that x, a ∈ A. Thus x ≤ sa ∈ sA, so x ∈ (sA]. Hence x ∈ (sA] ∩ A.

Therefore, A is a left ordered almost ideal of S. The same argument can be applied

to prove statements (2)-(5).

Theorem 4.3.17. Let (S, ·,≤) be an ordered semigroup. Then the following state-

ments hold.

(1) f is a fuzzy left ordered almost ideal of S if and only if supp(f) is a left ordered

almost ideal of S.

(2) f is a fuzzy right ordered almost ideal of S if and only if supp(f) is a right

ordered almost ideal of S.

(3) f is a fuzzy ordered almost ideal of S if and only if supp(f) is an ordered

almost ideal of S.

(4) f is a fuzzy ordered almost bi-ideal of S if and only if supp(f) is an ordered

almost bi-ideal of S.

(5) f is a fuzzy ordered almost quasi-ideal of S if and only if supp(f) is an ordered

almost quasi-ideal of S.

Proof. Assume that f is a fuzzy left ordered almost ideal of S. Let s ∈ S. By

Theorem 4.2.5(1), there exist elements x, b ∈ S such that

x ≤ sb and f(x), f(b) 6= 0,

so x ∈ supp(f) and b ∈ supp(f). Thus we have

x ≤ sb ∈ s(supp(f)) and x ∈ supp(f),

which implies x ∈
(
s(supp(f))

]
∩ supp(f). Hence,

(
s(supp(f))

]
∩ supp(f) 6= ∅.

Therefore, supp(f) is a left ordered almost ideal of S.

Conversely, assume that supp(f) is a left ordered almost ideal of S. By Theorem

4.3.16(1), Csupp(f) is a fuzzy left ordered almost ideal of S. Let sα be a fuzzy point

of S. By Theorem 4.2.5(1), there exist elements x, b ∈ S such that

x ≤ sb and Csupp(f)(x), Csupp(f)(b) 6= 0.
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Thus x ∈ supp(f) and b ∈ supp(f), so f(x) 6= 0 and f(b) 6= 0. Hence, f is a fuzzy

left ordered almost ideal of S. The statements (2), (3), (4) and (5) can be proved

using the semilar manner.

In the section 3.3, we consider minimal, prime, and semiprime al-

most (m,n)-ideals and minimal, prime, and semiprime fuzzy almost (m,n)-ideals

in semigroups. Next, we discuss such structures in ordered semigroups. The proof

of the following theorems are similar to the proof of Theorems 3.3.5, 3.3.6, 3.3.9 and

3.3.10, respectively.

Theorem 4.3.18. Let A be a nonempty subset of an ordered semigroup (S, ·,≤).

(1) A is a minimal left ordered almost ideal of S if and only if CA is a minimal

fuzzy left ordered almost ideal of S.

(2) A is a minimal right ordered almost ideal of S if and only if CA is a minimal

fuzzy right ordered almost ideal of S.

(3) A is a minimal ordered almost ideal of S if and only if CA is a minimal fuzzy

ordered almost ideal of S.

(4) A is a minimal ordered almost bi-ideal of S if and only if CA is a minimal fuzzy

ordered almost bi-ideal of S.

(5) A is a minimal ordered almost quasi-ideal of S if and only if CA is a minimal

fuzzy ordered almost quasi-ideal of S.

Corollary 4.3.19. Let (S, ·,≤) be an ordered semigroup.

(1) S has no proper left ordered almost ideals if and only if supp(f) = S for all

fuzzy left ordered almost ideal f of S.

(2) S has no proper right ordered almost ideals if and only if supp(f) = S for all

fuzzy right ordered almost ideal f of S.

(3) S has no proper ordered almost ideals if and only if supp(f) = S for all fuzzy

ordered almost ideal f of S.
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(4) S has no proper ordered almost bi-ideals if and only if supp(f) = S for all

fuzzy ordered almost bi-ideal f of S.

(5) S has no proper ordered almost quasi-ideals if and only if supp(f) = S for

all fuzzy ordered almost quasi-ideal f of S.

Theorem 4.3.20. Let A be a nonempty subset of an ordered semigroup (S, ·,≤).

(1) A is a prime left ordered almost ideal of S if and only if CA is a prime fuzzy

left ordered almost ideal of S.

(2) A is a prime right ordered almost ideal of S if and only if CA is a prime fuzzy

right ordered almost ideal of S.

(3) A is a prime ordered almost ideal of S if and only ifCA is a prime fuzzy ordered

almost ideal of S.

(4) A is a prime ordered almost bi-ideal of S if and only if CA is a prime fuzzy

ordered almost bi-ideal of S.

(5) A is a prime ordered almost quasi-ideal of S if and only if CA is a prime fuzzy

ordered almost quasi-ideal of S.

Theorem 4.3.21. Let A be a nonempty subset of an ordered semigroup (S, ·,≤).

(1) A is a semiprime left ordered almost ideal of S if and only if CA is a semiprime

fuzzy left ordered almost ideal of S.

(2) A is a semiprime right ordered almost ideal of S if and only ifCA is a semiprime

fuzzy right ordered almost ideal of S.

(3) A is a semiprime ordered almost ideal of S if and only if CA is a semiprime

fuzzy ordered almost ideal of S.

(4) A is a semiprime ordered almost bi-ideal of S if and only if CA is a semiprime

fuzzy ordered almost bi-ideal of S.

(5) A is a semiprime ordered almost quasi-ideal of S if and only ifCA is a semiprime

fuzzy ordered almost quasi-ideal of S.



CHAPTER 5

Almost hyperideals in

semihypergroups

In this chapter, we define almost hyperideals, almost bi-hyperideals

and almost quasi-hyperideals in semihypergroups, and give some properties of them.

Moreover, the relationships among them are established.

5.1 Almost hyperideals in semihypergroups

In this section, we introduce definitions of almost hyperideals, al-

most bi-hyperideals and almost quasi-hyperideals in semihypergroups by using the

concept of almost hyperideals, almost bi-hyperideals and almost quasi-hyperideals

in semigroups, respectively. In addition, we present some interesting properties of

them.

Definition 5.1.1. Let (H, ∗) be a semihypergroup.

1. A nonempty subset L of H is called a left almost hyperideal of H if

s ∗ L ∩ L 6= ∅ for all s ∈ H.

2. A nonempty subset R of H is called a right almost hyperideal of H if

R ∗ s ∩R 6= ∅ for all s ∈ H.
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3. A nonempty subset I of H is called an almost hyperideal of H if I is a left

almost hyperideal and a right almost hyperideal of H .

4. A nonempty subset B of H is called an almost bi-hyperideal of H if

(B ∗ s ∗B) ∩B 6= ∅ for all s ∈ H .

5. A nonempty subset Q of H is called an almost quasi-hyperideal of H if

(s ∗Q ∩Q ∗ s) ∩Q 6= ∅ for all s ∈ H .

Example 5.1.2. Let H be a semihypergroup of three elements {x, y, z} with the

following hyperoperation.

· x y z

x {x} {x, y} {x, z}

y {x} {x, y} {x, y}

z {x} {x, y} {z}

Then every nonempty subset of H is an almost bi-hyperideal of H . The almost

hyperideals and almost quasi-hyperideals of H are {x}, {x, y}, {x, z} and H .

Remark 5.1.3. Let (H, ∗) be a semihypergroup. The following statements are true.

(i) Every left hyperideal of H is a left almost hyperideal of H.

(ii) Every right hyperideal of H is a right almost hyperideal of H.

(iii) Every hyperideal of H is an almost hyperideal of H.

(iv) Every bi-hyperideal of H is an almost bi-hyperideal of H.

(v) If Q is a quasi-hyperideal of H and s ∗Q ∩Q ∗ s 6= ∅ for all s ∈ H , then Q is

an almost quasi-hyperideal of H.



65

Proof. (i) Assume that L is a left hyperideal of H and let s ∈ H. Then we have

s ∗ L ⊆ S ∗ L ⊆ L. Since L 6= ∅, it follows that s ∗ L 6= ∅. This implies that

s ∗ L ∩ L = s ∗ L 6= ∅.

Hence, L is a left almost ideal of H .

(ii) This can be proved in a similar manner as the satement (i).

(iii) This follows from (i) and (ii).

(iv) Let B be a bi-hyperideal of H and s ∈ H . Then we have B ∗ s ∗ B 6= ∅ and

B ∗H ∗B ⊆ B. Thus B ∗ s ∗B ⊆ B ∗H ∗B ⊆ B. This implies that

(B ∗ s ∗B) ∩B = B ∗ s ∗B 6= ∅.

Hence, B is an almost bi-hyperideal of H .

(v) Let s ∈ H . Then we have s ∗Q ⊆ S ∗Q and Q ∗ s ⊆ Q ∗ S, so

(s ∗Q) ∩ (Q ∗ s) ⊆ (S ∗Q) ∩ (Q ∗ S) ⊆ Q.

By assumption, (s ∗Q) ∩ (Q ∗ s) 6= ∅. This implies that

[
(s ∗Q) ∩ (Q ∗ s)

]
∩Q = (s ∗Q) ∩ (Q ∗ s) 6= ∅.

Hence, (s∗Q∩Q∗s)∩Q 6= ∅. Therefore,Q is an almost quasi-hyperideal ofH .

Example 5.1.4. From Example 5.1.2, we have {x, y} is an almost hyperideal of H .

However, it is not a hyperideal of H because

{x, y} ∗H = {x, y, z} 6⊆ {x, y}.

Example 5.1.5. From Example 5.1.2, we obtain that {y, z} is an almost bi-hyperideal

of H , but it is not a bi-hyperideal of H because

{y, z} ∗H ∗ {y, z} = {x, y, z} 6⊆ {y, z}.

Example 5.1.6. From Example 5.1.2, we can see that {x, z} is an almost quasi-

hyperideal of H . However, {x, z} is not a quasi-hyperideal of H because

(
H ∗ {x, z}

)
∩
(
{x, z} ∗H

)
= {x, y, z} 6⊆ {x, z}.



66

Examples 5.1.4, 5.1.5 and 5.1.6 show that the converse of Remark

5.1.3 is not true in general. In the previous chapters, we provided some interesting

properties of almost ideals in many algebraic structures. Next, we discuss these

properties in semihypergroups.

Proposition 5.1.7. Let (H, ∗) be a semihypergroup. Then the following statements

hold.

(1) If L is a left almost hyperideal of H , then every subset of H containing L is a

left almost hyperideal of H.

(2) If R is a right almost hyperideal of H , then every subset of H containing R is

a right almost hyperideal of H.

(3) If I is an almost hyperideal of H , then every subset of H containing I is an

almost hyperideal of H.

(4) If B is an almost bi-hyperideal of H , then every subset of H containing B is

an almost bi-hyperideal of H.

(5) If Q is an almost quasi-hyperideal of H , then every subset of H containing Q

is an almost quasi-hyperideal of H.

Proof. (1) Let L be a left almost hyperideal ofH , and let s ∈ H . Then s∗L∩L 6= ∅.

Assume that A is a subset of H such that L ⊆ A. Then s ∗L ⊆ s ∗A, which implies

that s ∗L∩L ⊆ s ∗A∩A. Thus s ∗A∩A 6= ∅. Hence, A is a left almost hyperideal

of H .

(2) This proof is similar to the proof of (1).

(3) This follows from (1) and (2).

(4) LetB be an almost bi-hyperideal of S, and let s ∈ S. Then (B∗s∗B)∩B 6= ∅.

Assume that A is a subset of H such that B ⊆ A. Thus B ∗ s ∗ B ⊆ A ∗ s ∗ A, so

(B ∗ s ∗B)∩B ⊆ (A ∗ s ∗A)∩A. This implies that (A ∗ s ∗A)∩A 6= ∅. Therefore,

A is an almost bi-hyperideal of H .
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(5) Let Q be an almost quasi-hyperideal of S, and let s ∈ S. Then we have

(s ∗ Q ∩ Q ∗ s) ∩ Q 6= ∅. Assume that A is a subset of H and Q ⊆ A. Thus

s ∗Q ⊆ s ∗ A and Q ∗ s ⊆ A ∗ s, so

s ∗Q ∩Q ∗ s ⊆ s ∗ A ∩ A ∗ s.

This implies that (s∗Q∩Q∗s)∩Q ⊆ (s∗A∩A∗s)∩A, so (s∗A∩A∗s)∩A 6= ∅.

Therefore, A is an almost quasi-hyperideal of H .

The following corollary follows directly from Proposition 5.1.7.

Corollary 5.1.8. Let (H, ∗) be a semihypergroup.

(1) The arbitrary union of left almost hyperideals of H is also a left almost hyper-

ideal of H .

(2) The arbitrary union of right almost hyperideals of H is also a right almost

hyperideal of H .

(3) The arbitrary union of almost hyperideals of H is also an almost hyperideal

of H .

(4) The arbitrary union of almost bi-hyperideals ofH is also an almost bi-hyperideal

of H .

(5) The arbitrary union of almost quasi-hyperideals of H is also an almost quasi-

hyperideal of H .

Example 5.1.9. Let H = {a, b, c, d, e} be a semihypergroup under the hyperopera-

tion ∗ defined as in the following table.

∗ a b c d e

a {b, c} {a} {a} {a} {a}

b {a} {b, c} {b, c} {b, c} {b, c}

c {a} {b, c} {b, c} {b, c} {b, c}

d {a} {b, c} {b, d} {d, e} {d, e}

e {a} {b, c} {c} {d, e} {e}
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Then we have {a, b, e} and {a, c, d} are left almost hyperideals, right almost hy-

perideals, almost hyperideals, almost bi-hyperideals, and almost quasi-hyperideals

of H . But, the intersection of them is neither a left almost hyperideal, a right al-

most hyperideal, an almost hyperideal, an almost bi-hyperideal, nor an almost quasi-

hyperideal of H because

a ∗ {a} ∩ {a} = {a} ∗ a ∩ {a} = {b, c} ∩ {a} = ∅,(
{a} ∗ b ∗ {a}

)
∩ {a} = {b, c} ∩ {a} = ∅,(

a ∗ {a}
)
∩
(
{a} ∗ a

)
∩ {a} = {b, c} ∩ {a} = ∅.

From Corollary 5.1.8, the union of almost hyperideals, almost bi-

hyperideals and almost quasi-hyperideals in semihypergroups is an almost hyper-

ideal, an almost bi-hyperideal and an almost quasi-hyperideal, respectively. But, this

is not the case for intersections of these structures as seen in Example 5.1.9.

Theorem 5.1.10. Let (H, ∗) be a semihypergroup and |H| > 1. Then the following

statements are true.

(1) H has no proper left almost hyperideals if and only if for any a ∈ H , there

exists an element ha ∈ H such that ha ∗ (H − {a}) = {a}.

(2) H has no proper right almost hyperideals if and only if for any a ∈ H , there

exists an element ha ∈ H such that (H − {a}) ∗ ha = {a}.

(3) H has no proper almost hyperideals if and only if for any a ∈ H , there exist

elements ha, ka ∈ H such that

ha ∗ (H − {a}) = {a} or (H − {a}) ∗ ka = {a}.

(4) H has no proper almost bi-hyperideals if and only if for any a ∈ H , there

exists an element ha ∈ H such that (H − {a}) ∗ ha ∗ (H − {a}) = {a}.

(5) H has no proper almost quasi-hyperideals if and only if for any a ∈ H , there

is an element ha ∈ H such that ha ∗ (H − {a}) ∩ (H − {a}) ∗ ha ⊆ {a}.
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Proof. Assume that H has no proper left almost hyperideals. Let a ∈ H . Then

H − {a} is not a left almost hyperideal of H . Then there exists ha ∈ H such that

ha ∗ (H − {a}) ∩ (H − {a}) = ∅,

which implies that ha ∗ (H − {a}) = {a}.

Conversely, let A be a proper subset of H . Then A ⊆ H − {u} for some u ∈ H .

By assumption, there exists an element ha ∈ H such that

ha ∗ (H − {u}) ∩ (H − {u}) = {a} ∩ (H − {a}) = ∅.

Since A ⊆ H − {u}, we have ha ∗ A ∩ A ⊆ ha ∗ (H − {u}) ∩ (H − {u}). Thus

ha ∗A ∩A = ∅. Hence, A is not a left almost hyperideal of H . Therefore, H has no

proper left almost hyperideals. This is the proof of the statement (1). The proof of

statements (2), (3), (4) and (5) are similar to that of the statement (1).

Theorem 5.1.11. Let (H, ·) be a semihypergroup where |H| > 1, and let a ∈ S.

Then the following statements hold.

(1) If H has no proper left almost hyperideals, then either a ∈ a2 or a ∈ a3.

(2) If H has no proper right almost hyperideals, then either a ∈ a2 or a ∈ a3.

(3) If H has no proper almost hyperideals, then either a ∈ a2 or a ∈ a3.

(4) If H has no proper almost bi-hyperideals, then either a ∈ a2 or a ∈ a5.

(5) If H has no proper almost quasi-hyperideals, then either a ∈ a2 or a ∈ a3.

Proof. (1) Let a ∈ H . Assume that H has no proper left almost hyperideals. By

Theorem 5.1.10(1), there exists an element ha ∈ H such that

ha ∗ (H − {a}) = {a}.

Assume that a /∈ a2. Then a2 ⊆ H−{a}, so we have ha∗a2 ⊆ ha∗(H−{a}) = {a}.

Thus ha ∗ a2 = {a}. Suppose that ha 6= a. Then ha ∈ H − {a}, so h2
a = {a}.

If a ∈ ha ∗ a, then a2 ⊆ ha ∗ a2 = {a}, a contradiction.
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If a /∈ ha ∗ a, then ha ∗ a ⊆ H − {a}, so h2
a ∗ a = ha ∗ ha ∗ a = {a}. Thus we

have {a} = h2
a ∗ a = a ∗ a = a2, a contradiction.

Hence, ha = a. Then we have a3 = a ∗ a2 = ha ∗ a2 = {a}. Thus a ∈ a3.

(2) This proof is similar to the proof of the statement (1).

(3) This proof follows from the statements (1) and (2).

(4) Let a ∈ H . Assume thatH has no proper almost bi-hyperideals. By Theorem

5.1.10(4), there exists an element ha ∈ H such that

(H − {a}) ∗ ha ∗ (H − {a}) = {a}.

Assume that a /∈ a2. Then a2 ⊆ H − {a}, which implies that a2 ∗ ha ∗ a2 = {a}.

Suppose that ha 6= a. Then ha ∈ H − {a}, so h3
a = {a}. Since ha ∈ H − {a} and

a2 ⊆ H − {a}, we have that h2
a ∗ a2 = {a}.

If a ∈ h2
a ∗ a, then a2 ⊆ h2

a ∗ a2 = {a}, a contradiction.

If a /∈ h2
a ∗ a, then h2

a ∗ a ⊆ H − {a}, so h2
a ∗ a ∗ h3

a ∗ a = {a}. Thus

{a} = h2
a ∗ a ∗ h3

a ∗ a = h2
a ∗ a ∗ a ∗ a = h2

a ∗ a2 ∗ a = a · a = a2.

This implies that a2 = {a}, a contradiction.

Thus ha = a. Hence, {a} = a2 ∗ ha ∗ a2 = a2 ∗ a ∗ a2 = a5. Therefore, a ∈ a5.

(5) Let a ∈ H . Assume that H has no proper almost quasi-hyperideals. By

Theorem 5.1.10(5), there exists an element ha ∈ H such that

ha ∗ (H − {a}) ∩ (H − {a}) ∗ ha ⊆ {a}.

Assume that a 6∈ a2. This implies that a2 ⊆ H − {a}. Then we have

(ha ∗ a2) ∩ (a2 ∗ ha) ⊆ {a}.

Suppose that ha 6= a. Then ha ∈ H − {a}, so h2
a = ha ∗ ha ∩ ha ∗ ha ⊆ {a}. Thus

we have h2
a = {a}. We consider the following four cases:

Case 1: a ∈ ha ∗ a and a ∈ a ∗ ha. Then a2 ⊆ ha ∗ a2 and a2 ⊆ a2 ∗ ha, which

implies that a2 ⊆ (ha ∗ a2) ∩ (a2 ∗ ha) ⊆ {a}. This is a contradiction.

Case 2: a ∈ ha ∗ a and a 6∈ a ∗ ha. Then a2 ⊆ ha ∗ a2 and a ∗ ha ⊆ H − {a}. Since

a2 ⊆ H − {a} and a ∗ ha ⊆ H − {a},

ha ∗ a2 ∩ a ∗ h2
a ⊆ {a}.
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Since h2
a = {a}, we have a2 = a ∗ h2

a. Thus a2 ⊆
(
ha ∗ a2

)
∩
(
a ∗ h2

a

)
⊆ {a}. This

is a contradiction.

Case 3: a 6∈ ha ∗ a and a ∈ a ∗ ha. This implies that ha ∗ a ⊆ H − {a} and

a2 ⊆ a2 ∗ ha. Since ha ∗ a ⊆ H − {a} and a2 ⊆ H − {a},

h2
a ∗ a ∩ a2 ∗ ha ⊆ {a}.

Since h2
a = {a}, we have a2 = h2

a ∗ a. Thus a2 ⊆ h2
a ∗ a ∩ a2 ∗ ha ⊆ {a}. This is a

contradiction.

Case 4: a 6∈ ha ∗ a and a 6∈ a ∗ ha. Then ha ∗ a ⊆ H − {a} and a ∗ ha ⊆ H − {a}.

Thus h2
a ∗ a ∩ a ∗ h2

a ⊆ {a}. Since h2
a = {a}, we have

a2 = a ∗ a ∩ a ∗ a = h2
a ∗ a ∩ a ∗ h2

a ⊆ {a},

so a2 = {a}. This is a contradiction.

Hence, ha = a. Since ha ∗ a2 ∩ a2 ∗ ha ⊆ {a}, we have

a3 = a ∗ a2 ∩ a2 ∗ a = ha ∗ a2 ∩ a2 ∗ ha ⊆ {a},

so {a} = a3. Therefore, we can conclude that a ∈ a3.

5.2 The relations of almost hyperideals in semihyper-

groups

In this section, we provide some connections of almost hyperideals

and almost bi-hyperideals, almost hyperideals and almost quasi-hyperideals, and al-

most bi-hyperideals and almost quasi-hyperideals in semihypergroups.

Theorem 5.2.1. Let (H, ∗) be a semihypergroup. Then every almost hyperideal of

H is an almost bi-hyperideal of S.

Proof. Let I be an almost hyperideal of H and s ∈ H . Since I 6= ∅, there is an

element a ∈ I . Then a∗s∗ I ⊆ I ∗s∗ I , so (a∗s∗ I)∩ I ⊆ (I ∗s∗ I)∩ I. Since I is

an almost hyperideal of H , (a ∗ s ∗ I)∩ I 6= ∅. Hence, (I ∗ s ∗ I)∩ I 6= ∅. Therefore,

I is an almost bi-hyperideal of H .
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Combining Remark 5.1.3(iii) and Theorem 5.2.1, we have the follow-

ing result.

Corollary 5.2.2. Every hyperideal of a semihypergroup (H, ∗) is an almost bi-

hyperideal of H .

Theorem 5.2.3. Let (H, ∗) be a semihypergroup. Then every almost quasi-hyperideal

of H is an almost hyperideal of H .

Proof. Assume thatQ is an almost quasi-hyperideal ofH . Let s ∈ H . Then we have

(s ∗Q ∩Q ∗ s) ∩Q 6= ∅. Since s ∗Q ∩Q ∗ s ⊆ s ∗Q and s ∗Q ∩Q ∗ s ⊆ Q ∗ s,

(s ∗Q ∩Q ∗ s) ∩Q ⊆ s ∗Q ∩Q and (s ∗Q ∩Q ∗ s) ∩Q ⊆ Q ∗ s ∩Q.

Thus s ∗Q ∩Q 6= ∅ and Q ∗ s ∩Q 6= ∅. Hence, Q is a left almost hyperideal and a

right almost hyperideal of H . Therefore, Q is an almost hyperideal of H .

If we combine Theorem 5.2.1 and Theorem 5.2.3, then the result of

the relationship between almost bi-hyperideals and almost quasi-hyperideals in semi-

hypergroups is obtained as in the following corollary.

Corollary 5.2.4. Every almost quasi-hyperideal of a semihypergroup (H, ∗) is an

almost bi-hyperideal of H .

Example 5.2.5. From Example 5.1.2, we see that an almost hyperideal and an almost

quasi-hyperideal of H are almost bi-hyperideals of H . Moreover, this shows that the

converses of Theorem 5.2.1 and Corollary 5.2.4 are not true because {y, z} is an

almost bi-hyperideal of H but it is neither an almost hyperideal nor an almost quasi-

hyperideal of H .

The following example shows that the converse of Theorem 5.2.3 is

not true.
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Example 5.2.6. Let H = {a, b, c, d, e} be a semihypergroup under the hyperopera-

tion ∗ below.

· a b c d e

a {a} {a} {a} {d} {d}

b {a} {b} {c} {d} {e}

c {a} {c} {b} {d} {e}

d {d} {d} {d} {a} {a}

e {d} {d} {d} {a} {a}

Then I = {b, d, e} is an almost hyperideal of H , but it is not an almost quasi-

hyperideal of H because

(e ∗ I) ∩ (I ∗ e) ∩ I = {a, d} ∩ {a, e} ∩ I = {a} ∩ I = ∅.

The coverses of Theorems 5.2.1, 5.2.3 and 5.2.4 can be true when

they have the same conditions as in ordered semigroups. The proofs of the following

theorems are the same as the proofs of Theorems 4.3.7, 4.3.8, and 4.3.9, respectively.

Theorem 5.2.7. If (H, ∗) is a commutative semihypergroup and A is a subsemihy-

pergroup of H , then A is an almost hyperideal of H if and only if it is an almost

bi-hyperideal of H .

Theorem 5.2.8. Let (H, ∗) be a commutative semihypergroup. Then A is an almost

quasi-hyperideals of H if and only if A is an almost hyperideals of H .

Corollary 5.2.9. Let (H, ∗) be a commutative semihypergroup. A subsemihyper-

group of H is an almost quasi-ideal of H if and only if it is an almost bi-ideal of

H .



CHAPTER 6

Conclusions and suggestions

6.1 Conclusions

In this thesis, we study a variety of almost ideals in three structures:

semigroups, ordered semigroups and semihypergroups. Additionally, various fuzzy

almost ideals in semigroups and ordered semigroups are studied.

In a semigroup, we introduce the defintions of almost (m,n)-ideals

and fuzzy almost (m,n)-ideals, and provide their properties. The relations of al-

most (m,n)-ideals and fuzzy almost (m,n)-ideals is given by using a characteristic

function and a support of fuzzy subsets. Moreover, we give the relations of minimal,

prime and semiprime almost (m,n)-ideals, and minimal, prime and semiprime fuzzy

almost (m,n)-ideals.

In an ordered semigroup, we define ordered almost ideals, ordered

almost bi-ideals, ordered almost quasi-ideals, fuzzy ordered almost ideals, fuzzy or-

dered almost bi-ideals and fuzzy ordered almost quasi-ideals. Moreover, we provide

the relations of all kinds of ordered almost ideals and fuzzy ordered almost ideals.

For example, an ordered almost ideal is an ordered almost bi-ideal, an ordered almost

quasi-ideal is an ordered almost ideal, an ordered almost quasi-ideal is an ordered al-

most bi-ideal, a fuzzy ordered almost ideal is a fuzzy ordered almost bi-ideal if it

is a fuzzy subsemigroup, and a fuzzy ordered almost quasi-ideal is a fuzzy ordered

almost ideal. For the relations of ordered almost ideals and fuzzy ordered almost ide-
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als, ordered almost bi-ideals and fuzzy ordered almost bi-ideals, and ordered almost

quasi-ideals and fuzzy ordered almost quasi-ideals in ordered semigroups, the same

idea as in semigroups can be applied.

In a semihypergroup, we define almost hyperideals, almost bi-hyper-

ideals and almost quasi-hyperideals by using the same notions as almost ideals, al-

most bi-ideals and almost quasi-ideals in semigroups, respectively. For properties

and relations of all kinds of almost hyperideals in semihypergroups, we can do the

same with ordered semigroups.

In this study, we can see that in these three structures, almost ideals

have the same definitions and properties. The definitions and properties of fuzzy

almost ideals in semigroups and ordered semigroups are the same.

6.2 Suggestions

1. Study almost ideals and fuzzy almost ideals in other algebraic structures.

2. Study fuzzy almost ideals in semihypergroups.
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