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ABSTRACT

A semigroup is an ordered pair (.5, -), where S is a nonempty set and
- is an associative binary operation. The semigroup (S, -) with a partial order < is an
ordered semigroup if t < y,thenz -2 <y-zandz-x < z-yforalz,y,z € S.
A semihypergroup (H, *) can be defined in a similar way to the semigroup, but the
operation * of the semihypergroup is a function from H x H into P*(H), where
P*(H) is a set of all nonempty subsets of H.

In this thesis, we define almost (m, n)-ideals and fuzzy almost (m, n)-
ideals in semigroups and study some of their properties. In addition, we define or-
dered almost ideals, ordered almost bi-ideals, ordered almost quasi-ideals, fuzzy or-
dered almost ideals, fuzzy ordered almost bi-ideals and fuzzy ordered almost quasi-
ideals in ordered semigroups and we give the relations of them. Moreover, we define
almost hyperideals, almost bi-hyperideals and almost quasi-hyperideals in semihy-

pergroups, and give some interesting properties and relations of them.
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CHAPTER 1

Introduction

1.1 Background and significance

The notion of almost ideals (or A-ideals) was first introduced in semi-
lattices by Grosek [5] in 1979. A later year, Satko and Grosek [23] generalized this
notion to semigroups. They discovered minimal almost ideals and the smallest al-
most ideals of semigroups in [24] and [6], respectively. In 1981, Bogdanovic [1] used
the concepts of almost ideals and bi-ideals in semigroups to define almost bi-ideals
in semigroups. Later, Wattanatripop, Chinram and Changphas [28] defined almost
quasi-ideals by using the concepts of almost ideals and quasi-ideals in semigroups,
and provided some properties of almost quasi-ideals in semigroups. In [25], Solano,
Suebsung and Chinram extended almost ideals in n-ary semigroups.

The theory of algebraic hyperstructures was introduced by Marty [20]
in 1934. He defined hypergroups under the hyperoperation that was a function into
a set, while the operation on classical algebraic structures was a function into an ele-
ment. Moreover, he studied some properties of these structures and applied these
structures to groups. In 1999, Hasankhani [7] began to study semihypergroups
and introduced the concept of ideals in semihypergroups. Moreover, he studied
the relationships between ideals and the hyper versions of Green’s relations. Hila,
Davvaz and Naka [8] introduced the notion of quasi-hyperideals in semihypergroups,

and provided (m, n)-quasi-hyperideals, n-right hyperideals and m-left hyperideals



in semihypergroups. Also, some interesting properties were investigated. In [2],
Changphas and Davvaz studied hyperideals in ordered semihypergroups, and pro-
vided their properties.

The concept of fuzzy subsets was initially introduced by Zadeh [29]
in 1965. This notion by Zadeh was adapted to groups by Rosenfeld [22]; he pro-
vided definitions of fuzzy subgroups and fuzzy ideals in groups. A fuzzy subset in a
semigroup was introduced by Kuroki [13]. He studied various kinds of fuzzy ideals
in semigroups and characterized them in [13]-[17]. In 2019, Mahboob, Davvaz and
Khan [19] defined fuzzy (m,n)-ideals, fuzzy (m,0)-ideals and fuzzy (0, n)-ideals
for all positive integers m, n in semigroups. Furthermore, Kehayopulu and Tsinge-
lis introduced the notions of fuzzy ideals, fuzzy bi-ideals and fuzzy quasi-ideals in
ordered semigroups in [11], [9], and [12], respectively. In 2018, fuzzy almost ideals
and fuzzy almost quasi-ideals in semigroups were defined by Wattanatripop, Chin-
ram and Changphas [28], using the ideas of almost ideals and almost quasi-ideals in
semigroups. With this idea, they also defined fuzzy almost bi-ideals in semigroups
in [27]. Recently, Gaketem generalized results in [27] to study interval valued fuzzy
almost bi-ideals of semigroups in [4]. In [26], Suebsung, Wattanatripop and Chin-
ram defined and studied some properties of almost ideals and fuzzy almost ideals of
ternary semigroups.

In this thesis, we define almost (m, n)-ideals and fuzzy almost (m, n)-
ideals in semigroups and we study some interesting properties. In addition, we de-
fine ordered almost ideals, ordered almost bi-ideals, ordered almost quasi-ideals,
fuzzy ordered almost ideals, fuzzy ordered almost bi-ideals and fuzzy ordered al-
most quasi-ideals in ordered semigroups, and give the relations of them. Moreover,
we define almost hyperideals, almost bi-hyperideals and almost quasi-hyperideals in

semihypergroups, and give some interesting properties and relations of them.



1.2 Objectives and scope

1. To study almost (m, n)-ideals and fuzzy almost (m, n)-ideals in semigroups.

2. To study ordered almost ideals, ordered almost bi-ideals and ordered almost

quasi-ideals in ordered semigroups.

3. To study fuzzy ordered almost ideals, fuzzy ordered almost bi-ideals and fuzzy

ordered almost quasi-ideals in ordered semigroups.

4. To study almost hyperideals, almost bi-hyperideals, and almost quasi-hyper-

ideals in hypersemigroups.

1.3 Research plan

Task 2019 2020 2021
08-12 | 01-03 | 04-06 | 07-12 | 01-03 | 04-06

Literature review * *

Write up the thesis proposal * *

Present the thesis proposal *

Work on the problems * *

Write up the thesis * * *

Present the thesis *

1.4 Expected benefits

Some new knowledge about almost ideals and fuzzy almost ideals in many algebraic

structures.



CHAPTER 2

Preliminaries

In this chapter, we present some definitions and results, which will be

used throughout this thesis.

2.1 Semigroups

In this section, we will introduce some definitions and properties of
semigroups that will be used in this thesis. First of all, the definition of a semigroup

can be defined as follows:

Definition 2.1.1. A semigroup is a pair (5, -) in which S is a nonempty set and
1. - is a binary operation, thatis, - : S x S — 5,
2. x-(y-z)=(x-y)-zforallz,y,z € S.

For simplicity, a binary operation - will be identified with a multipli-
cation of two elements, i.e., -y will be identified with zy. Let A and B be nonempty

subsets of a nonempty set S. A product A - B, commonly written as AB, is the set
AB :={ab|a € Aand b € B}.

Proposition 2.1.2. Let A, B and C' be nonempty subsets of a semigroup S. If
A C B, then AC C BC and CA C CB.

Definition 2.1.3. A nonempty subset A of a semigroup S is called a subsemigroup

of Sif AAC A.



Definition 2.1.4. Let A be a nonempty subset of a semigroup S.
1. Ais called a left ideal of S it SA C A.
2. Ais called a right ideal of S if AS C A.
3. Ais called an ideal of S if it is both a left ideal and a right ideal of S.

Definition 2.1.5. An ideal A of a semigroup S is prime if xy € A implies x € A or
y€ Aforallz,y € S.

Definition 2.1.6. Anideal A of a semigroup S is semiprime if x> € Aimpliesz € A

forallz € S.

The definition of (m,n)-ideals in semigroups was introduced by La-

jos in [18] as follows:

Definition 2.1.7. Let m and n be non-negative integers. A subsemigroup A of a
semigroup S is called an (m,n)-ideal of S if AmSA™ C A (A™ is suppressed if
m = 0).

Remark 2.1.8. Let S be a semigroup. Then the following statements hold.
(i) A leftideal of Sis a (0, 1)-ideal of S.
(ii) A rightideal of S'is a (1,0)-ideal of S.

In [23], Satko and Grosek introduced the notions of left almost ideals,

right almost ideals and almost ideals in semigroups as follows:
Definition 2.1.9. Let A be a nonempty subset of a semigroup S.
1. Ais called a left almost ideal of S if tAN A # ()forall z € S.
2. Ais called a right almost ideal of S if Ax N A # ()forall z € S.

3. A s called an almost ideal of S if it is both a left almost ideal and a right

almost ideal of S.



Example 2.1.10. Consider a semigroup S = {a, b, ¢, d, e} under the multiplication -

defined as in the following table.

al|blc|d]|e
ala|bla|ala
blalblal|al]|a
clalblclala
dia|bla|lal|d
elalblalale

We see that the left almost ideals of S are {a}, {b}, {a,b}, {a,c}, {a,d}, {a, e},
{b,c},{b,d},{b,e},{a,b,c},{a,b,d},{a,b, e}, {a,c d},{a,c e}, {a,d e}, {b c d},
{b,c,e}, {b,d,e}, {a,b,c,d}, {a,b,c, e}, {a,b,d, e}, {a,c,d e}, {bc,d e} and S.
And the right almost ideals of S are {a, b}, {a,b,c}, {a,b,d}, {a,b,e}, {a,b,c,d},
{a,b,c,e}, {a,b,d, e} and S.

Thus {a, b}, {a,b,c}, {a,b,d}, {a,b,e}, {a,b,c,d}, {a,b,c, e}, {a,b,d, e} and

S are almost ideals of S.
Remark 2.1.11. Let S be a semigroup. Then the following statements are true.
(i) Every left ideal of .S is a left almost ideal of .S.
(ii) Every right ideal of S is a right almost ideal of .S.
(iii) Every ideal of S'is an almost ideal of S.

In 1981, Bogdanovic introduced the definition of almost bi-ideals in

semigroups in [1] as follows:

Definition 2.1.12. A nonempty subset B of a semigroup S is called an almost bi-

ideal of S if BtBN B # () forallx € S.



Example 2.1.13. Consider a semigroup S = {a, b, ¢, d} with the multiplication ta-
ble:

We have that {a}, {a,b}, {a,c}, {a,d}, {a,b,c}, {a,b,d}, {a,c,d} and S are all

almost bi-ideals of S.
Remark 2.1.14. Every bi-ideal of a semigroup S is an almost bi-ideal of .S.

In [28], Wattanatripop, Chinram and Changphas defined almost quasi-
ideals in semigroups by using the concepts of almost ideals and quasi-ideals in semi-

groups.

Definition 2.1.15. Let S be a semigroup. A nonempty subset ) of S is called an
almost quasi-ideal of S if (xQ NQz)NQ # P forallx € S.

Example 2.1.16. Consider a semigroup S = {a, b, ¢, d} with the multiplication ta-
ble:

alb|cld
alal|blala
b|bla|bl|b
clalbl|d]|c
dla|b|c|d

The almost quasi-ideals of S are {a, b}, {b,c}, {b,d}, {a,b,c}, {a,b,d}, {b,c,d},
and S.



2.2 Ordered semigroups

In this section, we recall some basic notions in ordered semigroups.
Furthermore, we introduce definitions of ideals, bi-ideals and quasi-ideals (some
authors call ordered ideals, ordered bi-ideals and ordered quasi-ideals) in ordered

semigroups.

Definition 2.2.1. Let S be a nonempty set with a binary relation <. Then (.5, <) is

called a partially ordered set if < is a partial order on .5, that is, for all z,y, 2z € .5,
1. x < x (reflexive),
2. ifx <yandy < z, then x = y (anti-symmetric),
3. ifr <yandy < z, then x < z (transitive).

Definition 2.2.2. Let S be a set with a binary operation - and a binary relation <.

Then (S, -, <) is called an ordered semigroup if
1. (S,-) is a semigroup,
2. (S, <) is a partially ordered set,
3. forall x,y,z € S,ifx <y, thenrz < yzand zx < zy.

Let (.S, -, <) be an ordered semigroup. For a nonempty subset A of

S, we denote (A] .= {zr € S|z < aforsomea € A}.

Proposition 2.2.3. Let A and B be nonempty subsets of an ordered semigroup

(S, -, <). The following properties are true.
(1) AC (4]
(2) If A C B, then (A] C (B).
(3) (ANB] < (AN (B].

(4) (AUB] = (AU (B].



Definition 2.2.4. Let (.5, -, <) be an ordered semigroup. An element a € S is called

an ordered idempotent if a < a>.
Definition 2.2.5. Let A be a nonempty subset of an ordered semigroup (S, -, <).

1. Ais called a left ordered ideal of S if SA C Aand (4] = A.
2. Ais called a right ordered ideal of S if AS C A and (A] = A.

3. A s called an ordered ideal of S if A is both a left ordered ideal and a right
ordered ideal of .S

Example 2.2.6. Consider an ordered semigroup S = {a, b, ¢, d, e} under the binary

operation - and the order relation < given below.

a|blc|d]|e
ala|bla|ala
bla|blalala
cla|blclala
dlal|blalal|d
elalblalale

<= {(CL, CL), (a7b)v (ba b)v (Ca a)» (Ca b)? (07 C), (d7 CL), (dw b)7 (da d)v (676)}'

The left ordered ideals of S are {a,c,d}, {a,b,c,d}, {a,c,d,e} and S. The right
ordered ideals of S are {a, b, ¢, d} and S. The ordered ideals of S are {a, b, ¢, d} and
S.

Definition 2.2.7. Let (S, -, <) be an ordered semigroup. A subsemigroup B of S is
called an ordered bi-ideal of S if BSB C B and (B] = B.

Example 2.2.8. From Example 2.2.6, the ordered bi-ideals of S are {a, ¢, d}, {a, b, ¢, d},
{a,c,d,e} and S.

Definition 2.2.9. Let (5, -, <) be an ordered semigroup. A subsemigroup @ of S is
called an ordered quasi-ideal of S if SQ N QS C @ and (Q] = Q.

Example 2.2.10. From Example 2.2.6, we have that the ordered quasi-ideals of S
are {a,c,d}, {a,b,c,d},{a,c,d,e} and S.



10

2.3 Semihypergroups

In this section, definitions of semihypergroups and hyperideals are
introduced. Moreover, some properties of them that will be used in chapter 3 are
given. We begin this section with the definition of semihypergroups.

Let H be a nonempty set. A hyperoperation on H is a function *
from H x H into P*(H), where P*(H) is a set of all nonempty subsets of H. For

subsets A and B of H and 2 € H, we denote

Ax B = U axb, xxA={x}+xA, and Bxz=B=x{z}.

a€cA, beB

Definition 2.3.1. Let H be a nonempty set with a hyperoperation *. An ordered pair

(H, ) is called a semihypergroup if the following assertion is satisfied:
(rxy)xz=xx*(yxz) foralx,y,z€ H.

Example 2.3.2. Let H = {z,y, z} be a set of three elements and define a hyperop-

eration * on H as follows:

v | {a} | {z,y} | {z, 2}
y | {=} | {zy} | oy}
z | {z} [ {=zyr | {2}

Then (H, ) is a semihypergroup.

Proposition 2.3.3. Let A, B and C' be nonempty subsets of a semihypergroup (H, *).
IfACB,thenAxC CB+xCandCxACCx* B.

Definition 2.3.4. A nonempty subset A of a semihypergroup (H, ) is called a sub-
semihypergroup of H if Ax A C A.

The concept of ideals in semihypergroups is defined by Hasankhani
in [7]. Later, a book on semihypergroups was published by Davvaz [3], and he also

defined hyperideals in semihypergroups as follows:
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Definition 2.3.5. Let (H, %) be a semihypergroup.
1. A nonempty subset L of H is called a left hyperideal of H if H x L C L.
2. A nonempty subset R of H is called a right hyperideal of H if R x H C R.

3. A nonempty subset [ of H is called a hyperideal of H if I is a left hyperideal
and a right hyperideal of H.

Example 2.3.6. Let H = {a,b,c,d, f} be a semihypergroup under the hyperopera-
tion * defined by the following table.

x| a b c d f
a|{a} | {a} | {a} | {a} | {a}
b | {a} | {a,b} | {a} |{a,d}| {a}
¢ | {a} | {a. f} | {a,c} | {a,c} | {a [}
d | {a} | {a,b} | {a,d} | {a,d} | {a,b}
flfa} [{a, f} | {a} | {acb | {a}

We can deduce that
{a},{a,b, f},{a,c,d} and H are left hyperideals of H,
{a},{a,b,d},{a,c, f} and H are right hyperideals of H.
Thus the hyperideals of H are {a} and H.

Definition 2.3.7. A subsemihypergroup B of a semihypergroup (H, ) is called a
bi-hyperideal of H if Bx H+ B C B.

Example 2.3.8. A unit real interval numbers H = [0, 1] is a semihypergroup under

the hyperoperation * defined by
rxy=[0,zy] forall z,y € H.

Let B = [0,t] with 0 < ¢ < 1. Then B is a subsemihypergroup of H. We have
Bx H *x B = [0,t?] C [0,¢] = B. Therefore, B is a bi-hyperideal of H.

Theorem 2.3.9. Every hyperideal of a semihypergroup is a bi-hyperideal.



12
The definition of quasi-hyperideals was given by Hila, Davvaz and
Naka [8] as follows:

Definition 2.3.10. A nonempty subset () of a semihypergroup (H, ) is called a
quasi-hyperideal of H if (H + Q)N (Q * H) C Q.

Example 2.3.11. Let H = {a, b, ¢, d} be a semihypergroup under the hyperoperation

* defined as in the following table.

x| a b c d
a|{a} | {a,b} | {a,c} | H
b | {b} | {b} | {b,d} | {b,d}
cl{g [ {ed}t | {¢} [{ed}
d|{d}| {d} | {4} | {d}

The quasi-hyperideals of H are {d}, {b,d}, {c,d},{b,c,d} and H.

Theorem 2.3.12. Every quasi-hyperideal of a semihypergroup is a subsemihyper-

group.

2.4 Fuzzy subsets and fuzzy ideals

In this section, we present some definitions and results of fuzzy sub-
sets. In addition, we introduce the definition of fuzzy ideals in semigroups and or-
dered semigroups, and some interesting properties of them.

In 1965, Zadeh introduced fuzzy subsets. A function f from a set S
to the unit interval [0, 1] is a fuzzy subset of S.

For any two fuzzy subsets f and g of a nonempty set S, the union and
intersection of f and g, denoted by f U g and f N g, are fuzzy subsets of S defined
by, forall x € S,

(fUg)(x) = max{f(x), g(x)},

(f Ng)(x) = min{f(z), g(x)}.
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Let F'(S) be a set of all fuzzy subsets of a set S. A relation on F'(S) is defined by,
for all fuzzy subsets f and g of S,

fCg< f(r) < g(x)forall z € S.

For a fuzzy subset f of a set .S, a support of f is defined by

supp(f) ={x € S| f(x) # 0}.

Let A be a subset of a set S. A characteristic function C, is a function from S to
0, 1] defined by

1 ifze A,
CA<£L'>:

0 ifxé¢ A
A definition of fuzzy points was given by Pao-Ming and Ying-Ming [21]. Let s € S
and o € (0, 1]. A fuzzy point s, of a set S is a fuzzy subset of S defined by

a ifxr=s,

So(T) =
0 ifz#s.

For a nonempty set S, fuzzy subsets 1 and 0 of S are defined by
1(z) =1 and O(x) =0 forall x € S.

Proposition 2.4.1. Let A and B be nonempty subsets of a nonempty set S. If A C B,

then C'y C C5.

Next, we give products of fuzzy subsets in semigroups and ordered
semigroups. For any two fuzzy subsets f and g of a semigroup S, we define the

product of f and g by, forall x € S,

sup min{ f(a), g(b)} ifz € S?,
(fog)(x) = q==ab

0 otherwise.



14

Let (.5, -, <) be an ordered semigroup. The product of fuzzy subsets f and g of S is
defined by, for all z € S,

sup min{ f(u), g(v)} ifz € (S?,
(og)(a) = § =5

0 otherwise.

Proposition 2.4.2. Let F'(S) be a set of all fuzzy subsets of a semigroup S. Then
(F(9),0) is a semigroup.

Proposition 2.4.3. Let F'(S) be a set of all fuzzy subsets of an ordered semigroup
(S, -, <). Then (F(S), o, C) is an ordered semigroup.

Proposition 2.4.4. Let f, g and h be fuzzy subsets of a semigroup (or an ordered

semigroup). Then the following statements hold.
(1) f f Cg,then fohCgohandho f C hog.
(2) If f Cg,then fAAR CgNh.
(3) If f Cg,then fUR C gUh.

(4) If f C g, then supp(f) C supp(g).

Definition 2.4.5. A fuzzy subset f of a semigroup S is called a fuzzy subsemigroup
of Sif f(zy) > min{f(x), f(y)} forall z,y € S.

Definition 2.4.6. Let f be a fuzzy subset of a semigroup S.
1. fis called a fuzzy left ideal of S if f(xy) > f(y) forall z,y € S.
2. fiscalled a fuzzy right ideal of S if f(xy) > f(x) forall z,y € S.

3. fis called a fuzzy ideal of S if it is both a fuzzy left ideal and a fuzzy right
ideal of S, that is, f(zy) > max{f(z), f(y)} forall x,y € S.

4. fis called a fuzzy bi-ideal of S if f(xyz) > min{f(x), f(2)} forall z,y, z €
S.

5. fis called a fuzzy quasi-ideal of S'if (fo1)N (1o f) C f
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Mahboob, Davvaz and Khan defined fuzzy (m,n)-ideals, where m
and n are any positive integers, of semigroups in [19].

Definition 2.4.7. Let S be a semigroup, and m and n be positive integers. A fuzzy

subsemigroup f of S is called a fuzzy (m,n)-ideal of S if

f($1$2 I, ZY1Y2 yn) > min{f($1>7 f(ZL’g), ) f(xm)7 f(y1)7 f<y2>7 L3 f(yn)}

forall x1, 2o, ..., T, 2, Y1, Y2, s Y € S.

Next, we will introduce the defintions of a fuzzy ordered ideal, a fuzzy
ordered bi-ideal and a fuzzy ordered quasi-ideal in an ordered semigroup, which can

be defined in a similar way to a semigroup, by adding add one more condition.

Definition 2.4.8. Let (.5, -, <) be an ordered semigroup. A fuzzy subset f of S is
called a fuzzy left ordered ideal of S if for all z,y € S,

1. = < yimplies f(x) > f(y) and
2. flzy) = [(y).
A fuzzy subset f of S is called a fuzzy right ordered ideal of S if for all x,y € S,
1. = < yimplies f(x) > f(y) and
2. flzy) = f(z).

A fuzzy subset f of S is called a fuzzy ordered ideal of S if it is both a fuzzy left

ordered ideal and a fuzzy right ordered ideal of S, that is, for all x,y € S,
1. = < yimplies f(x) > f(y) and

2. f(zy) > max{f(z), f(y)}.

Definition 2.4.9. Let (.5, -, <) be an ordered semigroup. A fuzzy subset f of S is
called a fuzzy ordered bi-ideal of S if for all z,y, 2 € S,

1. x <yimplies f(z) > f(y) and

2. f(zyz) = min{f(z), f(2)}.
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Definition 2.4.10. Let (.5, -, <) be an ordered semigroup. A fuzzy subset f of S is

called a fuzzy ordered quasi-ideal of S provide that

1. if 2,y € S such that 2 < y, then f(z) > f(y), and

2. (fol)n(lof) C f.

From the definitions of fuzzy ordered bi-ideals and fuzzy ordered
quasi-ideals in ordered semigroups, the fuzzy ordered bi-ideal is defined in term of
the fuzzy subset f itself while the fuzzy ordered quasi-ideal in terms of the product
foland1o f.In[10], the fuzzy ordered quasi-ideal f can be defined in a similar

way using only the fuzzy subset f itself as in the following theorem.

Theorem 2.4.11. Let (S, -, <) be an ordered semigroup. A fuzzy subset f of S is a

fuzzy ordered quasi-ideal of S if and only if the following conditions are satisfied.
(1) If <y, then f(x) > f(y) forall z,y € 5.
(2) Ifx < aband x < cd, then f(x) > min{ f(a), f(d)} forall ,a,b,c,d € S.

In [28], Wattanatripop, Chinram and Changphas defined the notion of
almost quasi-ideals of a semigroup. Moreover, they introduced the notions of fuzzy

almost ideals and fuzzy almost quasi-ideals of a semigroup.

Definition 2.4.12. Let f be a nonzero fuzzy subset of a semigroup S.
1. fis called a fuzzy left almost ideal of S if (Cso f)N f#0foralls € S.
2. fis called a fuzzy right almost ideal of S if (f o C5) N f # O forall s € S.

3. fiscalled a fuzzy almost ideal of S if f is both a fuzzy left almost ideal and a

fuzzy right almost ideal of S.

4. fis called a fuzzy almost quasi-ideal of S if (Cso f) N (f oCs)N f # 0 for
alls € S.
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Theorem 2.4.13. Let A be a nonempty subset of a semigroup S.
(1) A s a left almost ideal of S if and only if C 4 is a fuzzy left almost ideal of S.

(2) A is a right almost ideal of S if and only if C 4 is a fuzzy right almost ideal of
S.

(2) A is an almost ideal of S if and only if C 4 is a fuzzy almost ideal of S.

(4) A is an almost quasi-ideal of S if and only if C s is a fuzzy almost quasi-ideal
of S.

Theorem 2.4.14. Let f be a fuzzy subset of a semigroup S.

(1) fisafuzzy left almost ideal of S if and only if supp(f) is a left almost ideal of
S.

(2) fis afuzzy right almost ideal of S if and only if supp(f) is a right almost ideal
of S.

(3) f is afuzzy almost ideal of S if and only if supp(f) is an almost ideal of S.

(4) f is a fuzzy almost quasi-ideal of S if and only if supp(f) is an almost quasi-
ideal of S.

In [27], Wattanatripop, Chinram and Changphas defined fuzzy almost
bi-ideals in semigroups and give some relationship between almost bi-ideals and

fuzzy almost bi-ideals of semigroups.

Definition 2.4.15. Let f be a nonzero fuzzy subset of a semigroup S. Then f is
called a fuzzy almost bi-ideal of S if (f o Cs0 f)N f # 0forall s € S.

Theorem 2.4.16. Let B be a nonempty subset of a semigroup S. Then B is an almost
bi-ideal of S if and only if Cg is a fuzzy almost bi-ideal of S.

Theorem 2.4.17. Let f be a fuzzy subset of a semigroup S. Then f is a fuzzy almost
bi-ideal of S if and only if supp(f) is an almost bi-ideal of S.



CHAPTER 3

Almost (m, n)-ideals and fuzzy almost

(m, n)-ideals in semigroups

In this chapter, definitions of almost (m, n)-ideals and fuzzy almost
(m, n)-ideals in semigroups are introduced. Moreover, we give some properties and
a relation of almost (m,n)-ideals and fuzzy almost (m,n)-ideals in semigroups.
Throughout this chapter unless stated otherwise m and n stand for non-negative in-

tegers.

3.1 Almost (m, n)-ideals in semigroups

In this section, we use the concepts of (m, n)-ideals and almost ide-
als in semigroups to define an almost (m,n)-ideal in a semigroup and study some

properties of them. Let S be a semigroup. For a, s € S and k£ € N, we denote

1. a* :=aaa...a (k copies),

0._ k

2. a*sa a”s,

3. a’sa® := sa®, and

0._

4. a’sa S.
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Let A be a nonempty subset of a semigroup S and s € S. For k € N,

we define
1. A¥:= AAA... A (k copies),
2. AFsAY = AFs,
3. A%sAF .= sAF, and
4. A%sA° .= {s}.

Firstly, we give a definition of almost (m, n)-ideals in semigroups as

follows:

Definition 3.1.1. A nonempty subset A of a semigroup S is called an almost (m, n)-

ideal of S if A"sA" N A +# () forall s € S.
Remark 3.1.2. Let S be a semigroup. The following statements hold.
(i) An almost (0, 1)-ideal of S is a left almost ideal of S.
(if) An almost (1,0)-ideal of S is a right almost ideal of S.
(iii) Every (m,n)-ideal of S is an almost (m, n)-ideal of S.

Proof. Clearly, (i) and (ii) are true. Let A be an (m, n)-ideal of S and let s € S. Then
we have A # () and A"SA" C A, so A™sA™ # () and A"sA™ C AmMSA™ C A.
Thus A™sA" N A = A"sA™ = (). Hence, A is an almost (m, n)-ideal of S. O

Example 3.1.3. Consider a semigroup (Zg, +). Let A = {1,4,5}. We see that

)
)NnA={0,2,5}nA={5},
2)NA={0,1,3} N A= {1},
J)NA={1,2,4}NA={1,4},
4H)NA=1{23,5}nA= {5},
F)NA=1{0,3,4}nA={4}.

Thus (A'+ 5+ A°) N A # ( for all 5§ € Zg. Hence, A is an almost (1, 0)-ideal of Zg

but A is not a (1, 0)-ideal of Zg because A is not a subsemigroup of Zg.
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From Example 3.1.3, an almost (m, n)-ideal of a semigroup S need
not be an (m, n)-ideal of S. Thus we can see that the converse of Remark 3.1.2(iii)
is not true in general. Next, we will explore some interesting properties of almost

(m, n)-ideals in semigroups.

Proposition 3.1.4. Let A be an almost (m, n)-ideal of a semigroup S. Then every

subset of S containing A is also an almost (m, n)-ideal of S.

Proof. Let B be a subset of .S such that A C B and let s € S. Then A™ C B™ and
A" C B™, s0 AmsA™ C B™sB"™. Thus AmsA" N A C B™sB™ N B. Since A is
an almost (m, n)-ideal of S, we have A"sA™ N A # (). Hence, B™sB™ N B # .

Therefore, B is an almost (m, n)-ideal of S. O

Corollary 3.1.5. The union of any two almost (m,n)-ideals of a semigroup S is an

almost (m, n)-ideal of S.

Proof. Let A; and A, be any two almost (m, n)-ideals of S. Since A; C A; U A,
and A; is an almost (m, n)-ideal of S, by Proposition 3.1.4, A; U A, is an almost

(m, n)-ideal of S. O

From the proof of Corollary 3.1.5, we can see that it is true if A; or A,
is an almost (m, n)-ideal of S. The intersection of any two almost (m, n)-ideals of a
semigroup S need not be an almost (m, n)-ideal of .S as can be seen in the following

example.

Example 3.1.6. Consider a semigroup Zg under an addition modulo 6. Let A; =
{1,4,5} and Ay, = {1,2,5}. From Example 3.1.3, we obtain that A; is an almost
(1,0)-ideal of Zg. We have

(A +0+ AN Ay = (A3 +0)N Ay = {1,2,5} N Ay = {1,2,5},
(AA+T+ANNA = (A +1)N Ay, ={0,2,3} N Ay = {2},
(AL 42+ AN NAy = (A +2)N Ay ={1,3,4} N Ay = {1},
(A +3+ AN Ay = (A3 +3)N Ay = {2,4,5} N Ay = {2,5},
(A +4+ AN Ay = (Ay+4)N Ay ={0,3,5} N Ay = {5},
(AL 45+ AN Ay = (Ay+5)N Ay = {0,1,4} N Ay = {1}.
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So (A} +5+ A9) N Ay # () for all 5 € Zg. Thus A, is an almost (1, 0)-ideal of Zg.
Consider A; N Ay = {1,5}. Since
({15} +1+{1,5}") n{L,5} = {0,2} N {L,5} =0,
Aq N Ay is not an almost (1,0)-ideal of S.

Theorem 3.1.7. A semigroup S has no proper almost (m, n)-ideals if and only if for
each a € S, there exists s, € S such that (S — {a})"s,(S — {a})" C {a}.

Proof. Assume that S has no proper almost (m,n)-ideals and let @ € S. Then

S — {a} is not an almost (m, n)-ideal of S. Then there exists s, € .S such that

[(S = {a})"sa(S = {a})"] N (S —{a}) = 0.

Thus (S — {a})"s,(S — {a})™ C {a}.
Conversely, let A be a proper subset of S. Then A C S — {a} for some a € S.
By assumption, there exists s, € S such that (S — {a})"s,(S — {a})" C {a}. Thus

[(S = {a})"sa(S = {a})"] N (S = {a})  {a} N (S = {a}).

Since {a} N (S — {a}) = 0, we have [(S — {a})™s.(S — {a})"] N (S — {a}) = 0.
Since A C S — {a}, we have A™s, A" C (S — {a})™s.(S — {a})", so

(A5, A") N A C [(S — {a})"sa(S — {a})"] N (S — {a}).

Thus (A™s,A™) N A = (). Hence, A is not an almost (m, n)-ideal of S. Therefore,

S has no proper almost (m, n)-ideals. O

Theorem 3.1.8. Let S be a semigroup and a € S. If S has no proper almost (m,n)-

ideals, then at least one of the following statements is true.
(1) a=a™™m*,

(2) a = a(m+n)3+1.

(3) a = a(m+n+1)(m+n)+1.
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Proof. Assume that S has no proper almost (m, n)-ideals. By Theorem 3.1.7, there
exists s, € S such that (S — {a})™s.(S — {a})" C {a}. Suppose that a # a™ "1,
Then o™+ € S — {a}, so

(™) sq (@™ ™ € (S — {a})"sa(S — {a})" C {a}.

This implies that (¢ 1)™s, (a™ 1) = q.
Case 1: s, = a. Then a = (a™+ "1 )mq(am 1) = g(mntl)(min)+1

Case 2: s, # a. Then s, € S — {a}. This implies that
ST = (5, s0(50)" € (S — {a})™sa(S — {a})" C {a}.
So s = q. Since a = (™)™ s, (@™ )", we have

a = [(Sm—i-n—&—l)m—l—n—i-l} msa [(sm—i-n—&—l)m—l-n—i-l} n
a a

— S(m+n+1) (m+n+1)(m+n)+1

— [(sm-i-n-&-l)m-i-n—i-l} m+n

a Sa

— (am+n+1)m+nsa

_ glmtn)man)?

m-+n

2
= gmtrgmtn) g

2 . 2
Thus a = a™"a™)"s,. Since a # a™*"*! = a™*"a, we have o™ s, # a.

This implies that a™*"*s, € S — {a}. Thus we have
(a0 s0) "0 (@™ s,)" € (S — {a})™sa(S — {a})" € {a},

2 2 .
so (a™+7 s, )ms, (™) s, )" = a. Since sTTH! = q,

a= [(S?+n+1)(m+n)23a} msa [(ST+n+l)(m+n)25a] !

— S(m+n+1) (m+n)34+m4n+1
a

_ (omAnt1y(m+n)® mtn+l
- (Sa ) Sa

3
= amt)g

— a(m+n)3+1 '

3
Hence, a = q(™*t™)°+1, O
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Corollary 3.1.9. Let S be a semigroup and a € S. If S has no proper left (or right)

almost ideals, then a = a® or a = a°.

Proof. Assume that S has no proper left (or right) almost ideals. That is, S has no

proper almost (0, 1)-ideals (or S has no proper almost (1,0)-ideals). By Theorem

3.1.8,a =a%ora = a’. O

3.2 Fuzzy almost (m, n)-ideals in semigroups

In this section, we give the definition and some properties of fuzzy
almost (m,n)-ideals in semigroups by using the concept of almost (m, n)-ideals.

Let f be a fuzzy subset and s, be a fuzzy point of a semigroup S. For k € N, let
1. ff:=fofo...of (kcopies),
2. fFos,of0:=fFos,,
3. fQos,o0 fF:=s,0fF and
4. fO90 5,0 f0:=s,.
Proposition 3.2.1. Let f and g be fuzzy subsets of S. If f C g, then
frC g™ foralln € N.

Proof. Assume that f C g. If n = 1, then we are done. Assume that f* C ¢" where
n > 1. We will show that f**! C g"*! Letz € S.
If v ¢ S2, then f"™(x) = (f"o f)(z) =0 < g"(x).

If x € S?, then we have

F(z) = (f" o f)()
= sup min{fn((I), f(b)}

r=ab

< sup min{g"(a), g(b)}

r=ab

= (9" o g)(x)

=g"" ().
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Thus f**1(x) < g"*1(x) for all z € S. Hence, we can conclude that "1 C g"+i,

Therefore, by the principle of mathematical induction, f™ C ¢" for alln € N. []

Previously, we provided the definitions and some properties of fuzzy
subsets and fuzzy ideals in semigroups. Nexte, we will give the definition of fuzzy

almost (m, n)-ideals in semigroups as follows:

Definition 3.2.2. A fuzzy subset f of a semigroup S is called a fuzzy almost (m,n)-

ideal of S if (f™ o s, 0 f™) N f # 0 for all fuzzy point s, of S.

Remark 3.2.3. Let S be a semigroup. The following statements hold.
(i) A fuzzy almost (0, 1)-ideal of S is a fuzzy left almost ideal of S.
(ii) A fuzzy almost (1,0)-ideal of S is a fuzzy right almost ideal of .S.

Example 3.2.4. Consider a semigroup (Zg, +). Let f : Zg — [0, 1] be defined by

F0) =0, f(1) = 0.2, f(2) =0, f(3) = 0, f(4) = 0.5, £(5) = 0.3.

We will show that f is a fuzzy almost (1, 0)-ideal of Zg and a fuzzy almost (1, 2)-
ideal of Zg. Let a € (0,1]. Firstly, we want to show that f is a fuzzy almost

(1,0)-ideal of Zg. We consider the following result.

(f1 00,0 fo)(i) = (fo Ga)(i)
= sup min{f(C_L), (_)a([_))}

> min{ f(1),0,(0)} (since 1 =1+0)

= min{0.2, a}.
Since min{0.2, a} # 0, we have (f* o 0, o f°)(1) # 0. This implies that
(£ 000 %) 0 £](1) = min{(f" 0 0 0 f)(1), F(D)} £0.

Hence, we can see that if there exist elements Z,a € Zg such that £ = a + 0 and
f(z), f(@a) # 0, then [(f' 004 0 %) N f](Z) # 0. In a similar way, we have the

following:
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5=4+1where f(4),f(5) 20 = [(flolaofO)Nf](5)#£0
1=5+2where f(1), f(5) 20 = [(f'o2,0 )N f](1)#£0
4=1+3where f(1),f(4) £0 = [(f'o3,0f)Nf](4)#0
5=T1+4dwhere f(1),f(5) #0 = [(flodaofO)N[f](5)+#0
4=5+5where f(4),f(5) #0 = [(f'obsofO)Nf](4)#0

Thus we can conclude that (f! 05,0 fO) N f # 0 for all 5 € Zg. Hence, f is a fuzzy
almost (1, 0)-ideal of Zg. Next, we will show that f is a fuzzy almost (1, 2)-ideal of
Zg. We have
(f' 0 0q0 f*)(1) = isupgmin{(f 0 04)(a), (f o £)(0)}
—a+
> min{(f 0 04)(1), (f o £)(0)}
—min { sup min{f(2),0a(5)}, sup min{f(a), /(v)}}

1=2+y 0=u+v

> min { min{ f(1),0,(0)}, min{ f(1) + f<5>}}

= min{f(1), f(5),a}
= min{0.2,0.3, a}.

Since min{0.2, 0.3, a} # 0, we have that (f' o 0, o f?)(1) # 0. This implies that

(/" 0 0u 0 £2) A1 f](1) = min{(f" 0 0 0 f)(1), f(1)} # 0.

Thus we can see that if there are 7, a, b, ¢ € Zg such that Z = a + 0 + (b + ¢) and

j’ )
f(z), f(@), f(b), f(€) # 0, then [(f* 0 04 o f2) N f](Z) # 0. Similarly, we can see
that

4=1+1+(1+1)where f(1),f(4) #0 = [(ffolao fA)N[f](4)#0
5=1+2+(1+1)where f(1), f(5) #0 = [(f'o240 )N f](5) #0
4=05+3+ (4+4) where f(4), f(5) #0 = [(fo3aof)Nf](4)#£0
1=1+4+(1+41)where f(1) #0 = [(ffodao fA)N f](1)#0
5=1+5+(4+1)where f(1), f(4),f(5) # 0= [(f*obao f2)N f](5) # 0.
This implies that (f' o 5, 0 f2) N f # 0 for all 5 € Zg. Hence, f is a fuzzy almost

(1,2)-ideal of Zg. Therefore, f is a fuzzy almost (1,0)-ideal and a fuzzy almost
(1,2)-ideal of Z.
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From the definition of fuzzy almost (m, n)-ideals, we see that f is a
fuzzy almost (m, n)-ideal of a semigroup S if and only if for each fuzzy point s, of
S, there exists = € S such that [(f™ o s, 0 f™) N f](x) # 0, i.e., there is an element
x € S such that

r = (aras - amy)s(bibg -+ by)

for some ay, ..., ay,, by, ..., b, € S and f(x), f(a1), ..., f(am), f(b1), ..., f(bn) # 0.

Theorem 3.2.5. Let f be a nonzero fuzzy subset of a semigroup S. If f is a fuzzy
(m, n)-ideal of S, then f is a fuzzy almost (m,n)-ideal of S.

Proof. Let f be a fuzzy (m,n)-ideal of S and let s, be a fuzzy point of S. Since f
is a nonzero fuzzy subset of S, there is an element a € S such that f(a) # 0. Since

f is a fuzzy (m, n)-ideal of S, we have

f(amsa™) = min{ {(a), f(a), . J(a), f(a). f(a), ... [(a) } = f(a).

VvV Vo
m copies n copies

Thus f(a™sa™) # 0. Hence, (f™ o sq0 f" N f)(a™sa™) # 0. Therefore, f is a fuzzy

almost (m, n)-ideal of S. O

In the previous section, we give some properties of almost (m,n)-
ideals in semigroups. Next, we will illustrate these properties in fuzzy almost (m, n)-

ideals by using the same idea.

Proposition 3.2.6. Let f be a fuzzy almost (m,n)-ideal of a semigroup S. Then

every fuzzy subset g of S such that f C g is also a fuzzy almost (m, n)-ideal of S.

Proof. Let g be a fuzzy subset of S such that f C g and let s,, be a fuzzy point in S.
Then f™ C g™ and f™ C g",s0 f" os,0 f* C g™ o s, 0 g". This implies that

(f"osaof")Nf S (9" osa0g”)Ny.

Since f is a fuzzy almost (m, n)-ideal of S, we have (™ o s, 0 f*) N f # 0. Hence,

(g™ 054 0g™) N g # 0. Therefore, g is a fuzzy almost (m, n)-ideal of S. ]
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Corollary 3.2.7. The union of any two fuzzy almost (m,n)-ideals of a semigroup S

is a fuzzy almost (m, n)-ideal of S.

Proof. Let f and g be fuzzy almost (m, n)-ideals of S. Since f C f U g, by Propo-
sition 3.2.6, f U g is a fuzzy almost (m, n)-ideal of S. O

Note that the proof of Corollary 3.2.7 is true if f or g is a fuzzy almost
(m, n)-ideal of S.

Example 3.2.8. Consider a semigroup (Zg, +). Let f : Zg — [0, 1] be defined by
f(0)=0,f(1) =0.2,f(2) =0, f(3) =0, f(4) = 0.5, f(5) = 0.3

and g : Z¢ — [0, 1] be defined by

From Example 3.2.4, f is a fuzzy almost (1, 2)-ideal of Zs. Let o € (0, 1]. We have
5=1+40+ (24 2) where g(1),9(2),9(5) # 0= [(9" 004 0 g*) N g](5) # 0
5=1+41+ (24 1) where g(1),9(2),9(5) #0=[(g' 0 1a0g*) Ng|(5) # 0
5=1+2+ (1+1)where g(1),9(5) #0 = [(g' 02, 00*) Ng](5) #0
1=1+3+(2+1)where g(1),9(2) #0 = [(gt 03, 0¢%) Ng](1)#0
1=1+4+ (1+1) where g(1) #0 = [(g' 0da0g*) Ng|(1) #0
2=1+5+(1+1) where g(1),g(2) #0 = [(g* 054 0% Ng](2) #0.

Then (g' 05,0¢*)Ng # 0 forall 5 € Zg. Thus g is a fuzzy almost (1, 2)-ideal of Zg.
Consider the intersection f N g : Zg — [0, 1] of f and g defined by, for all = € Zg,

(f Ng)(z) = min{f(z), 9(7)},

thatis, (fNg)(0)=0, (fng)(1)=02  (fNg)2) =0,
(fNgB3) =0, (fNg)d) =0, (fNg)(5) =0.3.
We can see that for all Z, @, b, ¢ € Zg such that f(z), f(a), f(b), f(¢) # 0, we have

T#a+ 1+ (b+e),
which implies that [[(f Ng)lolao(fNg)?IN(fN g)} (z) = 0 for all # € Zg. Thus
[(fNg)tolao(fNg)?] =0.Hence, fNgisnota fuzzy almost (1,2)-ideal of Zs.

Example 3.2.8 shows that, the intersection of two fuzzy almost (m, n)-

ideals of a semigroup S need not be a fuzzy almost (m, n)-ideal of S.
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3.3 The relations of almost (m, n)-ideals and fuzzy al-
most (m, n)-ideals in semigroups

In this section, we study the relations of almost (m,n)-ideals and

fuzzy almost (m, n)-ideals in semigroups. Firstly, we present the following lemma.
Lemma 3.3.1. Let A be a subset of a semigroup S. Then we have
C% = Cyn foralln € N.

Proof. Clearly, the statement is true when n = 1. Assume that C’} = C4» where
n>1 Letx € S.
Case 1: v ¢ A", Then Cynt1(z) = 0, and x # ab foralla € A" and b € A. Thus

O3 (@) = (T 0 Ca) (x) = (Can 0 Ca)(x) = 0.

Hence, O (1) = Cyns1(z) = 0.
Case 2: € A", Then Cynt1(x) = 1 and z = ab for some a € A", b € A, so
Cyn(a) =1 and C4(b) = 1. Thus we have

O (@) = (Ch 0 Ca) (@)
= (Can 0 Ca)(x)
= sup min{Cyn(u),Ca(v)}

> min{Cun(a),C4(b)}
= 1.
So C"'(x) = 1. Hence, Ci*(2) = Can+1 (). Therefore, O™ = Cyns1. By the

principle of mathematical induction, C} = Cy4n for alln € N. O

Theorem 3.3.2. Let A be a nonempty subset of a semigroup S. Then A is an almost

(m,n)-ideal of S if and only if C4 is a fuzzy almost (m, n)-ideal of S.

Proof. Assume that A is an almost (m, n)-ideal of S. Let s, be a fuzzy point in S.
Then A™sA™ N A # (). Thus there exists x € A, and z = asb for some a € A™ and
b € A", which implies that C'ym(a), Can(b), Cs(x) # 0. Hence,

[(Cam 0 500 Can) N Cal(x) # 0.
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By Lemma 3.3.1, we have
[(C;g 0540C%) N CA} (x) # 0.

Therefore, C4 is a fuzzy almost (m, n)-ideal of S.
Conversely, assume that C'4 is a fuzzy almost (m, n)-ideal of S. Let s € S. Then

(C05q0C%) NCy # 0 forall a € (0,1], so there exists € S such that

[(07; 0500C1) N CA} (x) # 0.
Thus = = asb for some a,b € S and Cy(z), C7'(a),C%(b) # 0. By Lemma 3.3.1,
we have C'{'(a) = Cym(a) and C%(b) = Can(b), so Cym(a) # 0 and Cyn(b) # 0.

Then x € A and x = asb where ¢ € A™, b € A™. Thus z € A™sA™ N A. Hence,
A™sA™ N A # (). Therefore, A is an almost (m, n)-ideal of S. O

Theorem 3.3.3. Let f be a fuzzy subset of a semigroup S. Then f is a fuzzy almost
(m,n)-ideal of S if and only if supp(f) is an almost (m,n)-ideal of S.

Proof. Assume that f is a fuzzy almost (m, n)-ideal of S. Let s € S. Then for any

a € (0, 1], there exists x € S such that
r = (a1as...0p,)S(b1bs...by,)

for some ay, ..., @y, by, ..., b, € S and f(z), f(a1),..., f(am), f(b1), ..., f(by) # O.
This implies that x, ay, ..., G, b1, ..., by, € supp(f). Sox € (supp(f))ms(supp(f))n

and x € supp(f). It follows that = € ((supp(f))ms (supp(f))n) Nsupp(f). Hence,
supp(f) is an almost (m, n)-ideal of S.

Conversely, assume that supp(f) is an almost (m,n)-ideal of S. Let s, be a

fuzzy point in S. Then there exists x € ((supp(f))ms(supp(f))n> N supp(f).
Thus there are ay, ..., ay, b1, ..., b, € supp(f) such that

r = (a1as...a,,)$(b1bs...y,)

and x € supp(f). This implies that f(z), f(a1), ..., f(am), f(b1), ..., f(bn) # O.

Hence, we have
[(f™ o sao f")N fl(x) # 0.

Consequently, f is a fuzzy almost (m, n)-ideal of S. O
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A minimal almost (m, n)-ideal of a semigroup is an almost (m,n)-
ideal which contains no other almost (m, n)-ideal. The definition of minimal fuzzy

almost (m, n)-ideals in semigroups, is defined as follows:

Definition 3.3.4. Let S be a semigroup. A fuzzy almost (m, n)-ideal f of S is called

minimal if for all nonzero fuzzy almost (m, n)-ideal g of S such that g C f, we have

supp(f) = supp(g).

Next, we consider the relationship between minimal almost (m, n)-
ideals and minimal fuzzy almost (m, n)-ideals in semigroups by the following theo-

rem.

Theorem 3.3.5. Let A be a nonempty subset of a semigroup S. Then A is a minimal
almost (m, n)-ideal of S if and only if Cy is a minimal fuzzy almost (m,n)-ideal of

S.

Proof. Assume that A is a minimal almost (m, n)-ideal of S. By Theorem 3.3.2, C'4
is a fuzzy almost (m, n)-ideal of S. We will show that C'4 is minimal. Let g be a
fuzzy almost (m, n)-ideal of S such that g C C'4. Then supp(g) C supp(Ca) = A.
Since ¢ is a fuzzy almost (m,n)-ideal of S, by Theorem 3.3.3, we have supp(g)
is an almost (m,n)-ideal of S. Since A is a minimal almost (m, n)-ideal of S and
supp(g) C A, it follows that supp(g) = A = supp(C4). Hence, C'4 is minimal.
Therefore, C4 is a minimal fuzzy almost (m, n)-ideal of S.

Conversely, assume that C'4 is a minimal fuzzy almost (m,n)-ideal of S. By
Theorem 3.3.2, A is an almost (m, n)-ideal of S. We want to show that A is minimal.
Let G be an almost (m, n)-ideal of S such that G C A. Then C¢ is a fuzzy almost
(m,n)-ideal of S and Ci; C C4. Since Cy is minimal, supp(Cg) = supp(Ca).
Thus G = A. Hence, A is minimal. Therefore, A is a minimal almost (m, n)-ideal

of S. OJ

Corollary 3.3.6. A semigroup S has no proper almost (m,n)-ideals if and only if
supp(f) = S for all fuzzy almost (m,n)-ideal f of S.

Proof. Let f be a fuzzy almost (m, n)-ideal of S. By Theorem 3.3.3, supp(f) is an

almost (m, n)-ideal of S. Since S has no proper almost (m, n)-ideals, supp(f) = S.
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Conversely, let A be an almost (m,n)-ideal of S. By Theorem 3.3.2, C4 is a
fuzzy almost (m,n)-ideal of S. Thus, by assumption, we have supp(C4) = S, so

A = S. Hence, S has no proper almost (m, n)-ideals. O

In a semigroup S, a prime almost (m,n)-ideal A of S is an almost
(m, n)-ideal such that for all z,y € S, zy € A implies z € A or y € A. An almost
(m,n)-ideal A of S is semiprime if for all z € S,z? € A implies x € A. The
definitions of prime fuzzy almost (m, n)-ideals and semiprime fuzzy almost (m, n)-

ideals of S are given below.

Definition 3.3.7. A fuzzy almost (m, n)-ideal f of a semigroup S is prime if

f(zy) <max{f(z), f(y)} forall z,y € S.

Definition 3.3.8. Let S be a semigroup. A fuzzy almost (m, n)-ideal f is semiprime

if f(2?) < f(z) forallz € S.

The relationship between prime (semiprime) almost (m, n)-ideals and
prime (semiprime) fuzzy almost (m, n)-ideals in semigroups is provided in the fol-

lowing theorems.

Theorem 3.3.9. A nonempty subset A of a semigroup S is a prime almost (m,n)-

ideal of S if and only if C4 is a prime fuzzy almost (m,n)-ideal of S.

Proof. Assume that A is a prime almost (m, n)-ideal of S. By Theorem 3.3.2, C4 is
a fuzzy almost (m, n)-ideal of S. Let z,y € S.

Case 1: xy € A. Then Cy(xy) = 1. Since A is prime, z € Aory € A, so
Ca(z) = 1Tor Cy(y) = 1. Thus max{Cx(z),Ca(y)} = 1 = Ca(xy).

Case 2: vy ¢ A. Then Cx(xy) = 0 < max{Ca(z),Ca(y)}.

Thus we conclude that C'4(zy) < max{C4(x),Ca(y)}. Hence, C} is a prime fuzzy
almost (m, n)-ideal of S.

Conversely, assume that C'4 is a prime fuzzy almost (m, n)-ideal of S. Then A
is an almost (m,n)-ideal of S. Let z,y € S such that zy € A. This implies that
Ca(zy) = 1. Since C}y is prime, we have 1 = Cy(zy) < max{C4(z),Ca(y)}, so
max{Ca(x),Ca(y)} = 1. Thus C4(z) = 1 or Cy(y) = 1. Hence, z € Aory € A.

Therefore, A is a prime almost (m, n)-ideal of S. O
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Theorem 3.3.10. A nonempty subset A of a semigroup S is a semiprime almost

(m, n)-ideal of S if and only if C4 is a semiprime fuzzy almost (m,n)-ideal of S.

Proof. The proof of this theorem is similar to the proof of Theorem 3.3.9. ]



CHAPTER 4

Ordered almost ideals and fuzzy
ordered almost ideals in ordered

semigroups

In this chapter, we introduce the notions of ordered almost ideals,
ordered almost bi-ideals, ordered almost quasi-ideals, fuzzy ordered almost ide-
als, fuzzy ordered almost bi-ideals and fuzzy ordered almost quasi-ideals in ordered

semigroups. Moreover, some properties and the relations of them are discussed.

4.1 Ordered almost ideals in ordered semigroups

In this section, we define ordered almost ideals, ordered almost bi-
ideals and ordered almost quasi-ideals in ordered semigroups and we study some of

their properties.
Definition 4.1.1. Let (S, -, <) be an ordered semigroup.

1. A nonempty subset L of S'is called a left ordered almost ideal of S if
(sLINL#( forallseS.

2. A nonempty subset R of S is called a right ordered almost ideal of S if
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(Rs)NR#D forallse S.

3. A nonempty subset I of S is called an ordered almost ideal of S if I is a left

ordered almost ideal and a right ordered almost ideal of S.

4. A nonempty subset B of S is called an ordered almost bi-ideal of S if
(BsBJNB #( foralls e S.
5. A nonempty subset () of S is called an ordered almost quasi-ideal of S if
(sQIN(Qs]NQ #D forallse S.

Example 4.1.2. Consider an ordered semigroup S = {a, b, ¢, d, e} under the binary

operation - and the order relation < below.

S
s
S S S S S S
S
IS
s

<:={(a,a), (a,b),(bb),(c,a),(c,b),(cc),(d a),(db),(dd),(ee)}.

Then every nonempty subset of S is an ordered almost bi-ideal of S except for {e},
and every nonempty subset of .S except for {b}, {e} and {b, e} is an ordered almost

ideal and an ordered almost quasi-ideal of .S.

Remark 4.1.3. Let (S, -, <) be an ordered semigroup.
(i) Every left ordered ideal of S is a left ordered almost ideal of S.
(ii) Every right ordered ideal of .S is a right ordered almost ideal of S.

(iii) Every ordered ideal of S is an ordered almost ideal of S.
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(iv) Every ordered bi-ideal of .S is an ordered almost bi-ideal of .S.

(v) If Q is an ordered quasi-ideal of S and sQ N Qs # ) for all s € S, then Q is

an ordered almost quasi-ideal of S.

Proof. (i) Let I be a left ordered ideal of S and s € S. Then sI C SI C [ and
(I =1,s0 (sI] C (I] = I. Since I # (), we have sI # (), so (sI] # . This implies
that (sI] N I = (sI] # (). Therefore, [ is a left ordered almost ideal of S.

(i1) This can be proved in similar manner.

(ii1) The proof follows (i) and (ii).

(iv) Let B be an ordered bi-ideal of S and s € S. Then BSB C B and (B] = B.
Since BsB C BSB, we have BsB C B, so (BsB] C (B]. Thus (BsB] C B. Since
B # (), we have that (BsB] # (). Hence, (BsB]| N B = (BsB] # (). Therefore, B is
an ordered almost bi-ideal of S.

(v) Assume that @ is an ordered quasi-ideal of S and zQ N Qx # () forall z € S.
Let s € S. Then sQQ C SQ and s C S5, s0 sQ NQPs C SQ NS C (. This
implies that (sQ N Qs] C (Q] = Q. By assumption, sQ N Qs # (. Thus we have

SQNQs C (5QNQs| = (5QN Qs NQ C (sQ]N (Qs]N Q.
Thus (sQ] N (Qs] N Q # (. Hence, @ is an ordered almost quasi-ideal of S. O

Example 4.1.4. From Example 4.1.2, we can see that {a, b, ¢} is an ordered almost
ideal, an ordered almost bi-ideal and an ordered almost quasi-ideal of .S, but it is

neither an ordered ideal, an ordered bi-ideal, nor an ordered quasi-ideal of S because

({a, b, c}} ={a,b,c,d} # {a,b,c}.

From Example 4.1.4, in general, ordered ideals (resp. ordered bi-
ideals, ordered quasi-ideals) need not be an ordered almost ideal (resp. an ordered
almost bi-ideal, an ordered almost quasi-ideal) in ordered semigroups. Next, we will
give some interesting properties of ordered almost ideals, ordered almost bi-ideals

and ordered almost quasi-ideals in ordered semigroups.
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Proposition 4.1.5. Let (5, -, <) be an ordered semigroup. Then the following state-

ments hold.

(1) If L is a left ordered almost ideal of S, then every subset of S containing L is

also a left ordered almost ideal of S.

(2) If R is aright ordered almost ideal of S, then every subset of S containing R

is also a right ordered almost ideal of S.

(3) If I is an ordered almost ideal of S, then every subset of S containing [ is also

an ordered almost ideal of S.

(4) If B is an ordered almost bi-ideal of .S, then every subset of S containing B is

also an ordered almost bi-ideal of S.

(5) If @ is an ordered almost quasi-ideal of .S, then every subset of S containing

( is also an ordered almost quasi-ideal of S.

Proof. (1) Assume that L is a left ordered almost ideal of S. Let A be a subset
of S such that L C Aandlets € S. Then sL C sA, so (sL] C (sA]. Thus
(sL]NL C (sA]N A. Since L is a left ordered almost ideal of S, (sL] N L # (). This
implies that (sA] N A # (. Hence, A is a left ordered almost ideal of S.

(2) The proof of this statement is similar to the proof of statement (1).

(3) This statement follows from statements (1) and (2).

(4) Assume that B is an ordered almost bi-ideal of S. Let A be a subset of S
such that B C A, and let s € S. Then BsB C AsA, so (BsB] C (AsA|. Thus
we have (BsB] N B C (AsA] N A. Since B is an ordered almost bi-ideal of S,
(BsB] N B # (). Hence, (AsA] N A # (). Therefore, A is an ordered almost bi-ideal
of S.

(5) Assume that () is an ordered almost quasi-ideal of S. Let A be a subset of S
such that ) C A and let s € S. Then sQ) C sA and Qs C As, so (sQ] C (sA] and
(@Qs] C (As]. Thus (sQ]N(Qs]NQ C (sA]N(As]NA. Since @ is an ordered almost
quasi-ideal of S, (sQ] N (Qs] N Q # 0. Hence, (sA] N (As] N A # (). Therefore, A

is an ordered almost quasi-ideal of .S. [l
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The next result follows directly from Proposition 4.1.5.
Corollary 4.1.6. Let (S, -, <) be an ordered semigroup.

(1) The arbitrary union of left ordered almost ideals of S is also a left ordered

almost ideal of S.

(2) The arbitrary union of right ordered almost ideals of S is also a right ordered

almost ideal of S.

(3) The arbitrary union of ordered almost ideals of S is also an ordered almost

ideal of S.

(4) The arbitrary union of ordered almost bi-ideals of S is also an ordered almost

bi-ideal of S.

(5) The arbitrary union of ordered almost quasi-ideals of S is also an ordered

almost quasi-ideal of S.

Example 4.1.7. From Example 4.1.2, we have {a,d,e} and {b,c, e} are ordered
almost ideals, ordered almost bi-ideals and ordered almost quasi-ideals of S. But
{a,d,e} N {b,c,e} = {e} is neither an ordered almost ideal, an ordered almost

bi-ideal, nor an ordered almost quasi-ideal of .S.

From Example 4.1.7, we can see that the arbitrary intersection of or-
dered almost ideals (resp. ordered almost bi-ideals, ordered almost quasi-ideals) in
ordered semigroups need not be an ordered almost ideal (resp. ordered almost bi-

ideal, ordered almost quasi-ideal).

Theorem 4.1.8. Let (S, -, <) be an ordered semigroup and |S| > 1. Then the fol-

lowing statements hold.

(1) S has no proper left ordered almost ideals if and only if for every a € S, there

exists an element x, € S such that (z,(S — {a})] = {a}.

(2) S has no proper right ordered almost ideals if and only if for every a € S,

there exists an element y, € S such that ((S — {a})ya| = {a}.
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(3) S has no proper ordered almost ideals if and only if for every a € S, there

exist elements x,,y, € S such that

(za(S = {a})] = {a} or (S — {a})ya] = {a}.

(4) S has no proper ordered almost bi-ideals if and only if for every a € S, there
exists an element x, € S such that ((S — {a})z,(S — {a})] = {a}.

(5) S has no proper ordered almost quasi-ideals if and only if for every a € S,
there exists an element x, € S such that (x,(S—{a})|N((S—{a})z.] C {a}.

Proof. (1) Assume that S has no proper left ordered almost ideals and let a € S.
Then S — {a} is not a left ordered almost ideal of S. That is, there exists z, € S

such that
(2a(8 — {a)] N (5 — {a}) = 0.
Since (z4(S — {a})] # 0 and S — {a} # 0, we have (z,(S — {a})] = {a}.
Conversely, let L be a proper nonempty subset of S. Then L C S — {a} for some

a € S. By assumption, there exists x, € S such that

(a5 — {a})] = {a}.

Since 2, L C z,(S — {a}), we have that (z,L] C (z4(S — {a})]. Then

(@ L] N L C (2a(S = {a})] N (S = {a}) = {a} N (S — {a}).

Since {a} N (S —{a}) = 0, we have (x,L] N L = (. This implies that L is not a left
ordered almost ideal of S. Therefore, S has no proper left ordered almost ideals.

(2) This statement can be proved in a similar manner as the statement (1).

(3) Let a € S. Assume that S has no proper ordered almost ideals. Then S has
no proper left ordered almost ideals or .S has no proper right ordered almost ideals.

If S has no proper left ordered almost ideals, then by the statement (1), there
exists an element z, € S such that (z,(S — {a})] = {a}.

If S has no proper right ordered almost ideals, then by statements (2), there exists

an element y, € S such that ((S — {a})y.] = {a}.
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Thus we can conclude that there exist elements z,, 3, € S such that

(za(S = {a})] ={a} or (S —{a})ya] = {a}.

Conversely, by assumption, and statements (1) and (2), S has no proper left
ordered almost ideals or .S has no proper right ordered almost ideals. Thus S has no
proper ordered almost ideals.

(4) Assume that S has no proper ordered almost bi-ideals. Then S — {a} is not
an ordered almost bi-ideal of S for all @ € S. Thus for each @ € S, there exists

z, € S such that
((S = {aDza(S = {ap] N (S — {a}) =0,

so we have ((S — {a})z,(S — {a})] = {a}.
Conversely, suppose that B is a proper ordered almost bi-ideal of S. This implies
that B C S — {t} for some ¢t € S. By Proposition 4.1.5(4), S — {t} is an ordered

almost bi-ideal of S. By assumption, there exists x; € S such that

((S = {tha(S — {t})] = {t}.

Thus ((S — {t})x(S — {t})] N (S — {t}) = 0, a contradiction. Hence, B is not
a proper ordered almost bi-ideal of S. Therefore, S has no proper ordered almost
bi-ideals.

(5) Assume that S has no proper ordered almost quasi-ideals. Let a € S. Then

S — {a} is not an ordered almost quasi-ideal of S. Thus there is x, € S such that

(za(S = {a})] N ((S = {a})za] N (S — {a}) = 0.
Since S — {a} # (), we obtain that
(2a(8 = {aD)] 0 ((S = {ah)wa] =0 or (za(S — {a})] N (S = {a})za] = {a}.
Thus (z4(S — {a})] N ((S — {a})za] < {a}.

Conversely, suppose that () is a proper ordered almost quasi-ideal of S. Then we
have @Q C S — {u} for some u € S. This implies that S — {u} is an ordered almost

quasi-ideal of S by Proposition 4.1.5(5). By assumption, there is =, € S such that

(zu(S = {uh)] N ((S = {u})z.] € {u}.
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Thus (z,(S — {u})] N ((S = {u})z.] N (S = {u}) € {u} N (S — {u}). Since
{u} N (S — {u}) =0, we have (2,(S — {u})] N ((S = {u})z.] N (S — {u}) = 0.

This is a contradiction. Therefore, S has no proper ordered almost quasi-ideals. []

Theorem 4.1.9. Let (S, -, <) be an ordered semigroup such that |S| > 1 and a € S.

Then the following statements hold.

(1) If S has no proper left ordered almost ideals, then either a or a* is an ordered

idempotent.

(2) If S has no proper right ordered almost ideals, then either a or a* is an ordered

idempotent.

(3) If S has no proper ordered almost ideals, then either a or a* is an ordered

idempotent.

4) If S has no proper ordered almost bi-ideals, then either a or a* is an ordered
( prop

idempotent.

5) If S has no proper ordered almost quasi-ideals, then either a or a® is an or-
() prop q

dered idempotent.

Proof. (1) Assume that S has no proper left ordered almost ideals. By Theorem

4.1.8(1), there exists an element x, € S such that

(2a(S — {a})] = {a}.

Case 1: a = a®. Then a = a® < a?, so a is an ordered idempotent.
Case 2: a # o?. This implies that a> € S — {a}. Thus z,a* = a.

Subcase 2.1: x, % a. Thatis z, € S—{a}. So x,x, = a. Suppose that z,a £ a.
Then z,a € S — {a}, it follows that z,(z,a) = a. We have a = z,7,a4 = aa = da?,
a contradiction. Then z,a < a, s0 a = z,a® < a®. Thus a is an ordered idempotent.

Subcase 2.2: 7, < a. Then a = z,a> < a?, so a®> < a*. Thus &2 is an ordered
idempotent.

Thus we can conclude that a or a? is an ordered idempotent.

(2) The proof of this statement is similar to the statement (1).
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(3) This follows from the statements (1) and (2).
(4) Assume that S has no proper ordered almost bi-ideals. By Theorem 4.1.8(4),

there exists an element x, € S such that

((S —{a})za(S = {a})] = {a}.

Case 1: a = a?. Then a = a® < a2, so a is an ordered idempotent.
Case 2: a # a®. Then a* € S — {a}, which implies that a*z,a* = a.
Subcase 2.1: z, £ a. Then z, € S — {a}, so 23 = a. Since z, € S — {a} and

a® € S — {a}, we have that 22a* = x,2,0*> = a. If 22a £ a, then z2a € S — {a},

3

ca = a. Thus we have

2
SO x;ax

_ .2 .3 _ 2  (202\ 2
a=ziar,a = raaa = (r;0°)a = aa = a*,

a contradiction. Thus x2a < a, s0 a = z2a® = (z2a)a < aa = a*. This implies that

a is an ordered idempotent.

Subcase 2.2: z, < a. Then a = a*z,0* < a?aa® = a°, so a* < a® = (a?)2

Thus we have a*

is an ordered idempotent.
Therefore, a or a* is an ordered idempotent.
(5) Assume that S has no proper ordered almost quasi-ideals. By Theorem

4.1.8(5), there is an element z, € S such that

(za(S = {a})] N ((S —{a})za] C {a}.

Case 1: a = a?. Then a = a® < a2, so a is an ordered idempotent.
Case 2: a # a®. Then a® € S — {a}, so (z,a®] N (a*z,] C {a}. Suppose for the
contrary that a £ z,. Then z, € S — {a}, so 22 € (2] N (z2] C {a}. This implies
that 2 = a. Thus we have a? = ax? and a* = x2a. We consider the following four
cases:

If a < x40 and a < az,, then a® < 2,0 and a® < a’z,. This implies that
a? € (2,6%] and @* € (a’z,), s0 a® € (z,a?] N (a’z,) C {a}. Thus a = a?, a
contradiction.

Ifa < z,aand a £ ax,, then a® < z,a® and az, € S —{a}. Since a* € S — {a}
and az, € S — {a}, we have that (z,a*] N (az?] C {a}. Since a* < r,a* and

a® = ax?, we have a® € (z,a% N (az?] C {a}, so a = a?, a contradiction.
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Ifa £ z,aand a < az,, thenz,a € S—{a} and a* < a’x,. Since z,a € S—{a}
and a® € S — {a}, we have (22a] N (az,] C {a}. Since a* = (z,)?a and a® < a’x,,
a® € (22a] N (ax,] C {a}, so a = a?, a contradiction.

If a £ z,a and a £ ax,, then z,a € S — {a} and ax, € S — {a}. This
implies that (z2a] N (ax?] C {a}. Since a* = z2a and a®* = ax?, we have that
a® € (z%a) N (az?] C {a}. Thus a = a?, a contradiction.

Hence, a < z,. Then a® < z,6? and a® < a*z,. Thus a® € (z,0%] and a® € (a’z,).
So a® € (z,a%] N (a*x,] C {a}. Thus a = a?, so a®> = a* < (a?)?. This implies that

a? is an ordered idempotent. Consequently, a or a? is an ordered idempotent. ]

4.2 Fuzzy ordered almost ideals in ordered semigroups

In this section, we define fuzzy ordered almost ideals, fuzzy ordered
almost bi-ideals and fuzzy ordered almost quasi-ideals in ordered semigroups. Fur-
thermore, some interesting properties are provided. First of all, we give some basic
definitions and results, which are necessary for this section.

Let (.5, -, <) be an ordered semigroup. For a fuzzy subset f of .S, we
define (f] : S — [0, 1] by

(fl(x) = sup f(y) forall z € S.

<y
Proposition 4.2.1. Let f, g and h be fuzzy subsets of an ordered semigroup (.5, -, <).

Then the following properties hold.
(1) f S (f):
(2) 1f f C g.then (] C (]
(3) If f C g.then (f o h] C (g o h] and (ho f] C (ho g).

Proof. (1) Let z € S. Since z < z, we have (f](z) = sup f(y) > f(z). Thus
<y
f(z) < (f](z) for all z € S. This implies that f C (f].
(2) Assume that f C g. Then f(u) < g(u) forallu € S. Let x € S. Thus

(fl(z) = sup f(y) < supg(y) = (9)(x). This shows that (f](z) < (g](z) for all

<y <y
x € S. Hence, (f] C (g]
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(3) Assume that f C g. By Proposition 2.4.4(1), we have f o h C g o h and
ho f C hog. It follows from (2) that, (f o h] C (9o h]and (ho f] C (hog]. O

Proposition 4.2.2. Let f be a fuzzy subset of an ordered semigroup (.5, -, <). Then

the following statements are equivalent.
(1) Forall z,y € S, x < yimplies f(x) > f(y).

(2) (f]=1.

Proof. First, we prove that (1) implies (2). Let x € S. By assumption, we have
f(x) > f(y) forall y € S with z < y. Then sup f(y) < f(x), which implies that
(fl(x) < f(x). Hence, (f] C f. By Propositioral;géﬁll(l), (fl=f.

Next, we will prove that (2) implies (1). Letz,y € S and z < y. By assumption,
we have f(z) = (f](z) = sup f(u) = f(y). Thus f(z) = f(y). O

Next, we give definitions of fuzzy ordered almost ideals, fuzzy or-

dered almost bi-ideals and fuzzy ordered almost quasi-ideals in ordered semigroups.
Definition 4.2.3. Let f be a nonzero fuzzy subset of an ordered semigroup (5, -, <).

1. f is called a fuzzy left ordered almost ideal of S if (s, o f] N f # 0 for all

fuzzy point s, of S.

2. f is called a fuzzy right ordered almost ideal of S if (f o s,] N f # 0 for all

fuzzy point s, of S.

3. f is called a fuzzy ordered almost ideal of S if f is both a fuzzy left ordered

almost ideal and a fuzzy right ordered almost ideal of .S.

4. f is called a fuzzy ordered almost bi-ideal of S if (f o s, o f] N f # 0 for all

fuzzy point s, of S.

5. fiscalled a fuzzy ordered almost quasi-ideal of S if (s, 0 f]|N(fosa|Nf #0

for all fuzzy point s, of S.
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Lemma 4.2.4. Let f be a nonzero fuzzy subset and s, a fuzzy point of an ordered

semigroup (S, -, <), and let x € S. Then the following statements hold.

(1) ((sa o f1N f)(x) # 0 if and only if there exists an element b € S such that

x <sb and f(x),f(b) #O0.

(2) ((f 084 N f) (x) # 0 if and only if there exists an element a € S such that

r <as and f(x),f(a) #0.

(3) ((fosao flNf)(x)+#0ifand only if there exist elements a,b € S such that

x < asb and f(z), f(a), f(b) # 0.

(4) ((sao f1N(fosaNf)(x) # 0 if and only if there exist elements a,b € S

such that
x < as, v <sb and f(z), f(a), f(b) # 0.

Proof. (1) Assume that ((sq o f] N f)(x) # 0. Then min{(s, o f](z), f(z)} # 0,
S0 (Sq © f](z) # 0 and f(x) # 0. Thus we have,
(80 0 fl(x) = sup(sa o f)(y) # 0.
Then there is z € S such that < z and (s, o f)(z) # 0. This implies that
(sa 0 f)(2) = sup min{sa(u), f(v)} # 0.
So there exist a,b € S such that z < ab and min{s,(a), f(b)} # 0. Thus s,(a) # 0
(implies that s = a) and f(b) # 0. Hence, x < z < ab = sband f(x), f(b) # 0.

Conversely, assume that there exists an element a € S such that

x < sband f(z), f(b) # 0.
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Then we have

(8a © f](7) = sup(sa o f)(y)

<y

> (sq 0 f)(z) (since x < )

= sup min{s,(u), f(v)}

r<uv

> min{s,(s), f(b)} (since x < sb)
= min{e, f(b)}
# 0.

Thus (s, o f](xz) # 0. Since (s, o f](z) # 0 and f(z) # 0, it follows that
min{(s, o f](z), f(z)} # 0. Hence, ((so o f]N f)(z) # 0.

(2) The proof of this statement is similar to the statement (1).

(3) Assume that ((fosq0 f]Nf)(z) # 0. Then min{(f o sq 0 f](z), f(z)} # 0,
0 (f o s, 0 f](x) # 0 and f(z) # 0. Thus we have,

(fosao fl(x) = ig};(f o540 f)(y) # 0.

Then there is z € S such that x < z and (f o s, © f)(2) # 0. This implies that

(0500 )(z) = sup min{ (w), (50 0 (@)} # 0.

So there exist a,b € S such that z < ab and min{f(a), (sa © f)(b)} # 0. Thus
f(a) # 0and (s, o f)(b) # 0. Since (s, o f)(b) # 0, we get

sup min{s,(v'), f(v')} # 0.

b<u’v’
Thus there exist a’,' € S such that b < a'b’ and min{s,(a’), f(b')} # 0, so
a = sand f(b') # 0. Hence, x < z < ab < a(da'l/). Therefore, x < asb’ and
f(z), f(a), FV') # 0.

Conversely, assume that there exist elements a, b € S such that

xz < asband f(z), f(a), f(b) # 0.
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Then we have

(f 050 0 fl(x) = sup(f o 54 © f)(y)

<y

> (fosqof)(x) (since x < x)

— sup min{(f o s4)(u), f(v)}

r<uv

> min{(f o s,)(as), f(b)} (since x < (as)b)
= min { sup min{f(), sa(2)}. f(0)}

as<zizo

> min { min{ f(a), sa(s)}, f(b)} (since as < as)
= min{f(a),a, f(b)}
£0.

Thus (f o s, o f](z) # 0. Since (f o s, o f](x) # 0 and f(z) # 0, we have that

min{(f o s, o f](z), f(z)} # 0. Hence, ((f o sa 0 f]N f)(x) # 0.
(4) Assume that ((sq © f] N (f © sa] N f)(x) # 0. Then (s, o f](z) # 0,
(f o sa](x) # 0and f(z) # 0. This implies that

((sa 0 f1N£)(x) # 0 and ((f 0 52 1 £) () #0.

By statements (1) and (2), there exist elements a,b € S such that z < sb, z < as

and f(z), f(a), f(b) # 0.

Conversely, assume that there exist elements a,b € S such that z < as,z < sb

and f(x), f(a), f(b) # 0. By the converse of statements (1) and (2), we get
((sa 0 f1N f)(x) #0and ((f o 50] N f)(2) #0,

50 (sa0](x) # 0, (fosa](x) # 0and f(x) # 0. Thus ((saof]N(fosalnf) (z) # 0.
]

The following theorem follows directly from Definition 4.2.3 and

Lemma 4.2.4.
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Theorem 4.2.5. Let f be a fuzzy subset of an ordered semigroup (S, -, <). Then the

following statements hold.

(1) f is afuzzy left ordered almost ideal of S if and only if for each fuzzy point s,

there exist x,b € S such that
x <sband f(x),f(b) #0.

(2) f is a fuzzy right ordered almost ideal of S if and only if for each fuzzy point

Sa» there exist x,a € S such that

x <as and f(x), f(a)#0.

(3) f is a fuzzy ordered almost ideal of S if and only if for each fuzzy point s,,

there exist x,y,a,b € S such that

x < as, y < sband f(x), f(y), f(a), f(b) # 0.

(4) f is a fuzzy ordered almost bi-ideal of S if and only if for each fuzzy point s,

there exist x,a,b € S such that

x < asb and f(z), f(a), f(b) # 0.

(5) [ is a fuzzy ordered almost quasi-ideal of S if and only if for each fuzzy point

Sa, there exist x,a,b € S such that
r<as, x<sband f(x),f(a), f(b) #0.

Example 4.2.6. Consider an ordered semigroup S = {a, b, ¢, d, e} under the binary

operation - and the order relation < given below.

S
IS
S S S (= S S
s
IS
s
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<:={(a,a),(a,0),(b,0),(c,a),(¢,b), (¢, ¢), (d; a), (d,]), (d, d), (¢, e}.

Define a function f : S — [0, 1] by

fla)=0,f(b)=0.3,f(c) =0, f(d) = 0.1 and f(e) = 0.2.

Let o € (0,1]. Then we have

e b<aband f(b) #0

= [(aa o fIN f](b) # 0

d < baand f(b), f(d) # 0= [(f o as] N f](d) # 0,

e b<bbandf(b) #0

e b<cband f(b) #0

= [(cao f]N f](b) #0,

d < beand f(5), (d) #0 = [(f o ca] N f](d) 0.

e b<dband f(b) #0

d < bdand f(b), f(d) #0 = [(f oda] N f](d) # 0,

e c<eeand f(e) #0

— [(da o f] N f](b) #0,

— [(baof]ﬂf](b) # 0 and [(foba]ﬂf}(b) £0,

— [(eaosIN](e) # Oand [(foea N f](e) £ 0.

This implies that (s, o f]N f # 0and (fos,] N f #O0foralls € S. Thus fisa

fuzzy ordered almost ideal of S. Also, we have

b < bab where f(b
b < bbb where f(b
b < beb where f
b < bdb where f(b

e < eee where f(e

)#£0 = [(foaaofINf](b) #0,
)#0 = [(fobao fIN[](b)#0,
)#0 = [(focao fINf](b)#0,
)#0 = [(fodao fIN[](b) #0,
)£0 = [(foeaof]N f](e) #0.

Then (f o s, 0 f) N f # 0 for all s € S, which implies that f is a fuzzy ordered

almost bi-ideal of S. Finally, we show that f is a fuzzy ordered almost quasi-ideal

of S as follows:

d < aband d < ba where f(b), f(d) # 0

b < bb where f(b) # 0

d < cband d < dc where f(b), f(d) # 0
d < dband d < dd where f(b), f(d) #0

Pl
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d < eband d < de where f(b), f(d) #0 = [(eao f]IN(foea]Nf](d) #0.
We can conclude that (s, o f]N(fos,]Nf #0forall s € S, so fisa fuzzy
ordered almost quasi-ideal of S. Therefore, the fuzzy subset f in this example is a
fuzzy ordered almost ideal, fuzzy ordered almost bi-ideal and fuzzy ordered almost

quasi-ideal of S.

Remark 4.2.7. Let f be a nonzero fuzzy subset of an ordered semigroup (.5, -, <).

The following statements hold.
(i) Every fuzzy left ordered ideal of S is a fuzzy left ordered almost ideal of S.
(i1) Every fuzzy right ordered ideal of .S is a fuzzy right ordered almost ideal of S.
(iii) Every fuzzy ordered ideal of S'is a fuzzy ordered almost ideal of .S.
(iv) Every fuzzy ordered bi-ideal of S is a fuzzy ordered almost bi-ideal of S.

(v) If S is commutative, then every fuzzy ordered quasi-ideal of S is a fuzzy or-

dered almost quasi-ideal of S.

Proof. (i) Assume that f is a fuzzy left ordered ideal of S. Let s, be a fuzzy point
of S. Since f is a nonzero fuzzy subset of .S, there exists an element a € .S such that
f(a) # 0. Since f is a fuzzy left ordered ideal of S, f(sa) > f(a), so f(sa) # 0.
Let x = sa. Then z < sa, f(x) # 0 and f(a) # 0. By Theorem 4.2.5(1), f is a
fuzzy left ordered almost ideal of S.

(i1) The proof of this statement is similar to the statement (i).

(ii1) This statement follows from (i) and (ii).

(iv) Assume that f is a fuzzy ordered bi-ideal of S. Let s, be a fuzzy point of
S. Since f is a nonzero fuzzy subset of .S, there exists an element a € S such that

f(a) # 0. Since f is a fuzzy ordered bi-ideal of S,

flasa) = min{f(a), f(a)} = f(a),

which implies that f(asa) # 0. Let x = asa. Thus we have z < asa and

f(z), f(a) # 0. By Theorem 4.2.5(4), f is a fuzzy ordered almost bi-ideal of S.
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(v) Assume that f is a fuzzy ordered quasi-ideal of S. Let s, be a fuzzy point of
S. Since f is a nonzero fuzzy subset of S, there exists a € S such that f(a) # 0. Let

x = sa. Since S is commutative, r < as and z < sa. By Theorem 2.4.11,

f(z) =2 min{f(a), f(a)} = f(a),
so f(x) # 0. By Theorem 4.2.5(5), f is a fuzzy ordered almost quasi-ideal of S. [J

The following example shows that the converse of the Remark 4.2.7

1S not true.

Example 4.2.8. From Example 4.2.6, we have that f is a fuzzy ordered almost ideal,
fuzzy ordered almost bi-ideal and fuzzy ordered almost quasi-ideal of S. However,
f is neither a fuzzy ordered ideal nor a fuzzy ordered bi-ideal nor a fuzzy ordered

quasi-ideal of S because a < bbut f(a) =0 < 0.3 = f(b).

Next, we give some properties of fuzzy ordered almost ideals, fuzzy
ordered almost bi-ideals and fuzzy ordered almost quasi-ideals in ordered semi-
groups by using the same concepts of ordered almost ideals, ordered almost bi-ideals

and ordered almost quasi-ideals, respectively.

Proposition 4.2.9. Let (5, -, <) be an ordered semigroup. Then the following state-

ments are true.

(1) If f is a fuzzy left ordered almost ideal of S, then every fuzzy subset g of S

such that f C g is also a fuzzy left ordered almost ideal of S.

(2) If f is a fuzzy right ordered almost ideal of S, then every fuzzy subset g of S

such that f C g is also a fuzzy right ordered almost ideal of .S.

(3) If f is a fuzzy ordered almost ideal of .S, then every fuzzy subset g of S such

that f C g is also a fuzzy ordered almost ideal of S.

(4) If f is a fuzzy ordered almost bi-ideal of S, then every fuzzy subset g of S

such that f C g is also a fuzzy ordered almost bi-ideal of S.

(5) If f is a fuzzy ordered almost quasi-ideal of S, then every fuzzy subset g of S

such that f C g is also a fuzzy ordered almost quasi-ideal of S.
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Proof. Assume that f is a fuzzy left ordered almost ideal of S. Let g be a fuzzy
subset of S such that f C ¢ and let s, be a fuzzy point of S. Then s, o f C s, 0g
and so (84 © f] C (84 © g]. Thus (s, 0 f] N f C (84 0g] N g. Since f is a fuzzy left
ordered almost ideal of S, (s, o f] N f # (). Hence, (s, © g] N g # 0. Therefore, g
is a fuzzy left ordered almost ideal of S. This verifies (1). The proof of (2), (3), (4),

and (5) are similar to the proof of (1). O

Corollary 4.2.10. Let (S, -, <) be an ordered semigroup. Then we have the following

statements hold.

(1) The arbitrary union of fuzzy left ordered almost ideals of S is also a fuzzy left

ordered almost ideal of S.

(2) The arbitrary union of fuzzy right ordered almost ideals of S is also a fuzzy

right ordered almost ideal of S.

(3) The arbitrary union of fuzzy ordered almost ideals of S is also a fuzzy ordered

almost ideal of S.

(4) The arbitrary union of fuzzy ordered almost bi-ideals of S is also a fuzzy or-
dered almost bi-ideal of S.

(5) The arbitrary union of fuzzy ordered almost quasi-ideals of S is also a fuzzy

ordered almost quasi-ideal of S.

From Corollary 4.2.10, we have the case of the arbitrary union is true,
but the case of the arbitrary intersection need not be true. The following example

gives the answer.

Example 4.2.11. Consider an ordered semigroup Zs = {0,1,2,3,4,5} under the
addition modulo 6 and the order <:= {(a,a) | a € Zgs}. Define functions f :
ZG — [07 1] by

f(0)=0,f(1)=03,f(2) =0, f(3) =0, f(4) =0.2, f(5) = 0.1,
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Then f and g are fuzzy left ordered almost ideals, fuzzy right ordered almost ide-
als, fuzzy ordered almost ideals, fuzzy ordered almost bi-ideals, and fuzzy ordered
almost quasi-ideals of Zg. Next, we consider a function f N g : Zg — [0, 1] defined

by (f N g)(Z) = min{f(z), g(Z)} for all T € Zg, that is

(fNg)
(fNg)

—~~
W <l
~— =
il
] ]

Then f N g is neither a fuzzy left ordered almost ideal, a fuzzy right ordered almost
ideal, a fuzzy ordered almost ideal, a fuzzy ordered almost bi-ideal, nor a fuzzy

ordered almost quasi-ideal of Zg because for a € (0, 1],

(Tao(fng]n(fng) =
(fngleln(fng) =
(fng)olao(fNng)ln(fng) =0,
(lao(fng))n((fng)ola N(fng)=0.

4.3 The relations of ordered almost ideals and fuzzy

ordered almost ideals in ordered semigroups

In this section, some connections of ordered almost ideals and fuzzy

ordered almost ideals in ordered semigroups are discussed.

4.3.1 The relations of ordered almost ideals

Firstly, we discuss about the relations of various almost ideals as fol-

lows:

Theorem 4.3.1. Let (S, -, <) be an ordered semigroup. Every ordered almost ideal
of S is an ordered almost bi-ideal of S.

Proof. Let I be an ordered almost ideal of S and let s € S. Since I # (), there exists

an element a € I. Then asl C IsI, so (asl] C (IsI]. Thus we have

(asI|NI C (IsI|N1.
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Since I is an ordered almost ideal of S and as € S, we have that ((as)I] N1 # 0.
This implies that (IsI] N I # (). Hence, I is an ordered almost bi-ideal of S. O

From the proof of Theorem 4.3.1, we can see that if [ is a left ordered
almost ideal or a right ordered almost ideal of .S, then [ is an ordered almost bi-ideal
of S. The following corollary follows directly from Remark 4.1.3(iii) and Theorem
4.3.1.

Corollary 4.3.2. Let (S, -, <) be an ordered semigroup. Then every ordered ideal of

S is an ordered almost bi-ideal of S.

Theorem 4.3.3. Let (S, -, <) be an ordered semigroup. Every ordered almost quasi-

ideal of S is an ordered almost ideal of S.

Proof. Let () be an ordered almost quasi-ideal of S and let s € S. Then we have

(sQ] N (Qs] N Q # 0. Since (sQ] N (Qs] € (sQ] and (sQ] N (Qs] € (Qs).
(sQ] N (Qs] N Q € (sQ] N Qand (sQ] N (Qs] N Q € (Qs] N Q.

Thus (sQ] N Q # () and (Qs] N Q # 0. Hence, Q is a left ordered almost ideal and a

right ordered almost ideal of S. Therefore, () is an ordered almost ideal of .S. ]

As a consequence of Theorem 4.3.1 and Theorem 4.3.3, the relation-
ship between ordered almost bi-ideals and ordered almost quasi-ideals in ordered

semigroups is given as follows:

Corollary 4.3.4. Let (S, -, <) be an ordered semigroup. Every ordered almost quasi-
ideal of S is an ordered almost bi-ideal of S.

Example 4.3.5. From Example 4.1.2, the set of all ordered almost ideals of S and
the set of all ordered almost quasi-ideals of S coincide. While {b} and {b,e} are
ordered almost bi-ideals of S, they are neither ordered almost ideals nor ordered

almost quasi-ideals of S.

From Example 4.3.5, we can conclude that the converses of Theorem
4.3.1 and Corollary 4.3.4 are not true. The converse of Theorem 4.3.3 is not true

either, which can be seen in the following example.
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Example 4.3.6. Consider an ordered semigroup consisting of five elements S =

{a,b,c,d, e}, where the product - and the order relation < are given below.

a b c d e
ala a a d d
bla b c d e
cla c d e

ISH

ISH

ISH
SUREEES TR~

Q

IS

<:={(a,a), (b,b),(c,c), (d,d), (e, e}.

Let I = {b,d,e}. Then I is an ordered almost ideal of S, but it is not an ordered

almost quasi-ideal of S because (e/]N(Ie]NI = {a,d} N{a,e} NI ={a}NI=1.

The converses of Theorems 4.3.1, 4.3.3, and 4.3.4 may be not true in
general (see in Example 4.3.5 and 4.3.6). The question is, when are the converses of

these theorems true? The theorems below give the answer.

Theorem 4.3.7. Let (S, -, <) be a commutative ordered semigroup. Then a subsemi-
group of S is an ordered almost ideal of S if and only if it is an ordered almost

bi-ideal of S.

Proof. Let A be a subsemigroup of S. Assume that A is an ordered almost ideal of
S. It follows from Theorem 4.3.1 that A is an ordered almost bi-ideal of .S.
Conversely, assume that A is an ordered almost bi-ideal of S. Let s € S. Then

(AsA] N A # (. Since S is commutative and A is a subsemigroup of .S,
(AsA]NA = (sAA]N A C (sA]N A,
(AsA]N A= (AAs]NAC (As]NA.

Thus (sA] N A # () and (As] N A # (). Hence, A is a left ordered almost ideal and a

right ordered almost ideal of S. Therefore, A is an ordered almost ideal of S. O]
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Theorem 4.3.8. Let (S, -, <) be a commutative ordered semigroup. Then a nonempty
subset of S is an ordered almost quasi-ideal of S if and only if it is an ordered almost

ideal of S.

Proof. By Theorem 4.3.3, an ordered almost quasi-ideal of S is an ordered almost
ideal of S. Next, assume that [ is an ordered almost ideal of S. We will show that [ is
an ordered almost quasi-ideal of S. Let s € S. Since S is commutative, (sI] = (Is].
Then we have (sI] NI = (sI] N (Is] N I. Since I is an ordered almost ideal of S,
(sI]N 1 # (. Thus (sI]N(Is] NI # 0. Hence, [ is an ordered almost quasi-ideal of
S. O

The next result follows directly from Theorem 4.3.7 and Theorem

4.3.8.

Corollary 4.3.9. Let (S, -, <) be a commutative ordered semigroup. A subsemigroup
of S is an ordered almost quasi-ideal of S if and only if it is an ordered almost bi-

ideal of S.

4.3.2 The relations of fuzzy ordered almost ideals

In the previous subsection, we studied the relations of ordered al-
most ideals and ordered almost bi-ideals, ordered almost ideals and ordered almost
quasi-ideals, and ordered almost bi-ideals and ordered almost quasi-ideals in ordered
semigroups. Next, we provide the relations of various fuzzy ordered almost ideals in

ordered semigroups.

Theorem 4.3.10. Every fuzzy ordered ideal of an ordered semigroup (S,-, <) is a
fuzzy ordered almost bi-ideal of S.

Proof. Let f be a fuzzy ordered ideal of S and let s, be a fuzzy point of S. Since f
is a nonzero fuzzy subset of S, f(a) # 0 for some a € S. Let x = asa. Since f is a

fuzzy ordered ideal of S, we have that

f(z) = f(asa) = f((as)a) = f(a).

Thus f(z) # 0. By Theorem 4.2.5(4), f is a fuzzy ordered almost bi-ideal of S. [
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From the proof of Theorem 4.3.10, we can see that if a fuzzy ordered
ideal is replaced by fuzzy left ordered ideal or fuzzy right ordered ideal, then the
statement still hold. The following example shows that the converse of Theorem

4.3.10 is not true.

Example 4.3.11. Consider an ordered semigroup S = {a, b, ¢, d, e} under the binary

operation - and the order relation < below.

S
Q
S S S S S S
Q
Q
Q

<:={(a,a),(a,0), (b,0),(c,a),(¢,b), (¢,¢), (d, a), (d, ), (d, d), (¢, e}.
Define a function g : S — [0, 1] by

g(a) =0,g(b) =0.5,9(c) =0,9(d) =0 and g(e) = 0.1.

Then for each fuzzy point s, of S, we have b < bsb and g(b) # 0. Thus g is a fuzzy

ordered almost bi-ideal of S. But g is not a fuzzy ordered ideal of S because a < b

while f(a) < f(b).

Theorem 4.3.12. Let [ be a fuzzy subsemigroup of an ordered semigroup (S, -, <).

If f is a fuzzy ordered almost ideal of S, then it is a fuzzy ordered almost bi-ideal of
S.

Proof. Assume that f is a fuzzy ordered almost ideal of S. Let s, be a fuzzy point

of S. By Theorem 4.2.5(3), there exist elements x,b € S such that

x < sband f(z), f(b) # 0.
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Thus bx < bsb and min{ f(b), f(z)} # 0. Since f is a fuzzy subsemigroup of .S,

f(bx) = min{f(b), f(x)},

which implies that f(bx) # 0. Hence, we can conclude that bx < bsb, f(bzx) # 0
and f(b) # 0. By Theorem 4.2.5(4), f is a fuzzy ordered almost bi-ideals of S. [

Theorem 4.3.13. Let (S, -, <) be an ordered semigroup. Every fuzzy ordered almost

quasi-ideal of S is a fuzzy ordered almost ideal of S.

Proof. Assume that f is a fuzzy ordered almost quasi-ideal of S. Let s, be a fuzzy

point of S. By Theorem 4.2.5(5), there are x, a, b € S such that
x <as,x < sband f(z), f(a), f(b) # 0.

By Theorem 4.2.5(1) and (2), f is a fuzzy left ordered almost ideal and a fuzzy right

ordered almost ideal of S. Therefore, f is a fuzzy ordered almost ideal of .S. O]

We have the following result by combining Theorem 4.3.12 and The-
orem 4.3.13.

Corollary 4.3.14. If a fuzzy subsemigroup f of an ordered semigroup (S, -, <) is a

fuzzy ordered almost quasi-ideal of S, then f is a fuzzy ordered almost bi-ideal of S.

From the proof of Theorems 4.3.12-4.3.14, we see that if f is a fuzzy
left ordered almost ideal or a fuzzy right ordered almost ideal of .S, then it is enough

to make these theorem true.

Theorem 4.3.15. Let [ be a fuzzy subsemigroup of an ordered semigroup (S, -, <).

Then the following statements hold.

(1) fis a fuzzy ordered almost quasi-ideal of S if and only if f is a fuzzy ordered

almost ideal of S.

(2) If S is commutative, then f is a fuzzy ordered almost ideal of S if and only if f

is a fuzzy ordered almost bi-ideal of S.

(3) If S is commutative, then f is a fuzzy ordered almost quasi-ideal of S if and

only if f is a fuzzy ordered almost bi-ideal of S.
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Proof. (1) Assume that f is a fuzzy ordered almost quasi-ideal of S. By Theorem
4.3.13, f is a fuzzy ordered almost ideal of S.
Conversely, assume that f is a fuzzy ordered almost ideal of S. Let s,, be a fuzzy

point of S. By Theorem 4.2.5(3), there exist elements x, y, a,b € S such that

z < as,y < sband f(z), f(y), f(a), f(b) # 0.

Thus yxr < yas and yx < sbx. Since f is a fuzzy subsemigroup of S,

flyx) = min{ f(y), f(2)},
f(ya) =z min{f(y), f(a)},
f(bx) = min{f(b), f(x)}.
Since min{ f(y), f(x)} # 0, min{f(y), f(a)} # 0 and min{f(b), f(z)} # O,
f(yx), f(ya), f(bx) # 0. By Theorem 4.2.5(5), f is a fuzzy ordered almost quasi-
ideal of S.
(2) Let S be commutative. By Theorem 4.3.12, a fuzzy ordered almost ideal of S
is a fuzzy ordered almost bi-ideal of S. Assume that f is a fuzzy ordered almost bi-
ideal of S. Let s, be a fuzzy point of S. By Theorem 4.2.5(4), there exist x,a,b € S

such that

x < asband f(z), f(a), f(b) # 0.
Then min{ f(a), f(b)} # 0. Since S is commutative, asb = s(ab) = (ab)s. Since f
is a fuzzy subsemigroup of S,
f(ab) = min{f(a), f(b)},
so f(ab) # 0. Hence, we can conclude that
z < s(ab), & < (ab)s and f(z), f(ab) # 0.

By Theorem 4.2.5(3), f is a fuzzy ordered almost ideal of S.
(3) This follows from (1) and (2). O
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4.3.3 The relations of ordered almost ideals and fuzzy ordered

almost ideals

In this subsection, the relations of ordered almost ideals and fuzzy
ordered almost ideals, ordered almost bi-ideals and fuzzy ordered almost bi-ideals,
and ordered almost quasi-ideals and fuzzy ordered almost quasi-ideals in ordered

semigroups are provided.

Theorem 4.3.16. Let A be a nonempty subset of an ordered semigroup (S, -, <).

Then the following statements hold.

(1) A is a left ordered almost ideal of S if and only if Cy is a fuzzy left ordered

almost ideal of S.

(2) Ais aright ordered almost ideal of S if and only if C 4 is a fuzzy right ordered

almost ideal of S.

(3) A is an ordered almost ideal of S if and only if C4 is a fuzzy ordered almost
ideal of S.

(4) Ais an ordered almost bi-ideal of S if and only if C 4 is a fuzzy ordered almost
bi-ideal of S.

(5) A is an ordered almost quasi-ideal of S if and only if C4 is a fuzzy ordered

almost quasi-ideal of S.

Proof. Assume A is a left ordered almost ideal of S. Let s, be a fuzzy point of S.
Then we have (sA] N A # (). Thus there exists x € S such that z € A and x € (sA],

so Ca(z) = 1 and 2 < sa for some a € A. This implies that
xr < sa and Cy(z),Cy(a) # 0.

By Theorem 4.2.5(1), C4 is a fuzzy left ordered almost ideal of S.
Conversely, assume that C'4 is a fuzzy left ordered almost ideal of S. Let s € S.

By Theorem 4.2.5(1), there are elements =, a € S such that

x < saand Cy(z),Cy(a) # 0,
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which implies that z,a € A. Thus x < sa € sA, so z € (sA]. Hence x € (sA] N A.
Therefore, A is a left ordered almost ideal of S. The same argument can be applied

to prove statements (2)-(5). O

Theorem 4.3.17. Let (S, -, <) be an ordered semigroup. Then the following state-

ments hold.

(1) fisafuzzy left ordered almost ideal of S if and only if supp(f) is a left ordered

almost ideal of S.

(2) f is a fuzzy right ordered almost ideal of S if and only if supp(f) is a right

ordered almost ideal of S.

(3) f is a fuzzy ordered almost ideal of S if and only if supp(f) is an ordered

almost ideal of S.

(4) f is a fuzzy ordered almost bi-ideal of S if and only if supp(f) is an ordered
almost bi-ideal of S.

(5) [ isafuzzy ordered almost quasi-ideal of S if and only if supp(f) is an ordered

almost quasi-ideal of S.

Proof. Assume that f is a fuzzy left ordered almost ideal of S. Let s € S. By

Theorem 4.2.5(1), there exist elements z, b € .S such that

x < sband f(z), f(b) #0,

sox € supp(f) and b € supp(f). Thus we have
x < sb € s(supp(f)) and x € supp(f),

which implies z € (s(supp(f))] N supp(f). Hence, (s(supp(f))] N supp(f) # 0.
Therefore, supp(f) is a left ordered almost ideal of S.

Conversely, assume that supp(f) is a left ordered almost ideal of S. By Theorem
4.3.16(1), Cyypp(y) is a fuzzy left ordered almost ideal of S. Let s, be a fuzzy point

of S. By Theorem 4.2.5(1), there exist elements x, b € S such that

z < sband Cyupp(p) (), Csupp(s) (b) # 0.
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Thus = € supp(f) and b € supp(f), so f(x) # 0 and f(b) # 0. Hence, f is a fuzzy
left ordered almost ideal of S. The statements (2), (3), (4) and (5) can be proved

using the semilar manner. ]

In the section 3.3, we consider minimal, prime, and semiprime al-
most (m, n)-ideals and minimal, prime, and semiprime fuzzy almost (m, n)-ideals
in semigroups. Next, we discuss such structures in ordered semigroups. The proof
of the following theorems are similar to the proof of Theorems 3.3.5, 3.3.6, 3.3.9 and

3.3.10, respectively.
Theorem 4.3.18. Let A be a nonempty subset of an ordered semigroup (S, -, <).

(1) A is a minimal left ordered almost ideal of S if and only if Cs is a minimal

fuzzy left ordered almost ideal of S.

(2) A is a minimal right ordered almost ideal of S if and only if C 4 is a minimal

fuzzy right ordered almost ideal of S.

(3) A is a minimal ordered almost ideal of S if and only if C4 is a minimal fuzzy

ordered almost ideal of S.

(4) A is a minimal ordered almost bi-ideal of S if and only if C 4 is a minimal fuzzy

ordered almost bi-ideal of S.

(5) A is a minimal ordered almost quasi-ideal of S if and only if C 4 is a minimal

fuzzy ordered almost quasi-ideal of S.
Corollary 4.3.19. Let (S, -, <) be an ordered semigroup.

(1) S has no proper left ordered almost ideals if and only if supp(f) = S for all
fuzzy left ordered almost ideal f of S.

(2) S has no proper right ordered almost ideals if and only if supp(f) = S for all
fuzzy right ordered almost ideal f of S.

(3) S has no proper ordered almost ideals if and only if supp(f) = S for all fuzzy
ordered almost ideal f of S.
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(4) S has no proper ordered almost bi-ideals if and only if supp(f) = S for all
fuzzy ordered almost bi-ideal f of S.

(5) S has no proper ordered almost quasi-ideals if and only if supp(f) = S for
all fuzzy ordered almost quasi-ideal f of S.

Theorem 4.3.20. Let A be a nonempty subset of an ordered semigroup (S, -, <).

(1) A is a prime left ordered almost ideal of S if and only if C4 is a prime fuzzy
left ordered almost ideal of S.

(2) A is a prime right ordered almost ideal of S if and only if C4 is a prime fuzzy
right ordered almost ideal of S.

(3) Aisaprime ordered almost ideal of S if and only if C 4 is a prime fuzzy ordered

almost ideal of S.

(4) A is a prime ordered almost bi-ideal of S if and only if C4 is a prime fuzzy

ordered almost bi-ideal of S.

(5) A is a prime ordered almost quasi-ideal of S if and only if C 4 is a prime fuzzy

ordered almost quasi-ideal of S.
Theorem 4.3.21. Let A be a nonempty subset of an ordered semigroup (S, -, <).

(1) Ais a semiprime left ordered almost ideal of S if and only if C 4 is a semiprime

fuzzy left ordered almost ideal of S.

(2) Aisasemiprime right ordered almost ideal of S if and only if C 4 is a semiprime

fuzzy right ordered almost ideal of S.

(3) A is a semiprime ordered almost ideal of S if and only if Cy is a semiprime

fuzzy ordered almost ideal of S.

(4) A is a semiprime ordered almost bi-ideal of S if and only if C4 is a semiprime

fuzzy ordered almost bi-ideal of S.

(5) A s a semiprime ordered almost quasi-ideal of S if and only if C 4 is a semiprime

fuzzy ordered almost quasi-ideal of S.



CHAPTER 5

Almost hyperideals in

semihypergroups

In this chapter, we define almost hyperideals, almost bi-hyperideals
and almost quasi-hyperideals in semihypergroups, and give some properties of them.

Moreover, the relationships among them are established.

5.1 Almost hyperideals in semihypergroups

In this section, we introduce definitions of almost hyperideals, al-
most bi-hyperideals and almost quasi-hyperideals in semihypergroups by using the
concept of almost hyperideals, almost bi-hyperideals and almost quasi-hyperideals
in semigroups, respectively. In addition, we present some interesting properties of

them.
Definition 5.1.1. Let (H, %) be a semihypergroup.

1. A nonempty subset L of H is called a left almost hyperideal of H if

sx LNL#( forall s € H.

2. A nonempty subset R of H is called a right almost hyperideal of H if

RxsNR#( forall s € H.
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3. A nonempty subset [ of H is called an almost hyperideal of H if [ is a left

almost hyperideal and a right almost hyperideal of H.

4. A nonempty subset B of H is called an almost bi-hyperideal of H if
(BxsxB)NB#( forall s € H.
5. A nonempty subset () of H is called an almost quasi-hyperideal of H if
(sxQNQ@x*xs)NQ #( foralls € H.

Example 5.1.2. Let H be a semihypergroup of three elements {x,y, z} with the

following hyperoperation.

x|y 2
v | {x} | {zy} | {2}
y | =y [ {z ) [ {z 4}
2 {z} [ {zy) | {2}

Then every nonempty subset of H is an almost bi-hyperideal of H. The almost

hyperideals and almost quasi-hyperideals of H are {z},{z,y},{z, 2} and H.
Remark 5.1.3. Let (H, *) be a semihypergroup. The following statements are true.
(1) Every left hyperideal of H is a left almost hyperideal of H.
(i) Every right hyperideal of H is a right almost hyperideal of H.
(ii1) Every hyperideal of H is an almost hyperideal of H.
(iv) Every bi-hyperideal of H is an almost bi-hyperideal of H.

(v) If Q is a quasi-hyperideal of H and s * Q N Q * s # () for all s € H, then Q) is

an almost quasi-hyperideal of H.
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Proof. (i) Assume that L is a left hyperideal of H and let s € H. Then we have
sx L CS* L C L. Since L # 0, it follows that s * L # (). This implies that

sxLNL=sxL#0.

Hence, L is a left almost ideal of H.

(i1) This can be proved in a similar manner as the satement (i).

(ii1) This follows from (i) and (ii).

(iv) Let B be a bi-hyperideal of H and s € H. Then we have B * s x B # () and
BxHx+«BC B.Thus Bxsx B C Bx Hx B C B. This implies that

(Bxs*B)NB=DBxsxB#.

Hence, B is an almost bi-hyperideal of H.
(v)Lets € H. Thenwehave s * Q C S*xQand Q * s C Q) x S, so

(s+ Q)N (Qxs) C(S*xQ)N(Q*5) C Q.

By assumption, (s * Q) N (Q * s) # (). This implies that

[(sxQ)N(Q*s5)]NQ=(sxQ)N(Q*5) #0.
Hence, (sx*QNQ*s)NQ # 0. Therefore, () is an almost quasi-hyperideal of H. []

Example 5.1.4. From Example 5.1.2, we have {z, y} is an almost hyperideal of H.

However, it is not a hyperideal of H because

{z,y}* H ={r,y,2}  {z,y}.

Example 5.1.5. From Example 5.1.2, we obtain that {y, z} is an almost bi-hyperideal

of H, but it is not a bi-hyperideal of H because

{y, 2}« H x{y, 2} ={x,y,2} £ {y, 2}.

Example 5.1.6. From Example 5.1.2, we can see that {x, z} is an almost quasi-

hyperideal of H. However, {x, z} is not a quasi-hyperideal of H because

(H*{z,2}) N ({z, 2} x H) = {z,y, 2} € {z,2}.
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Examples 5.1.4, 5.1.5 and 5.1.6 show that the converse of Remark
5.1.3 is not true in general. In the previous chapters, we provided some interesting
properties of almost ideals in many algebraic structures. Next, we discuss these

properties in semihypergroups.

Proposition 5.1.7. Let (H, %) be a semihypergroup. Then the following statements
hold.

(1) If L is a left almost hyperideal of H, then every subset of H containing L is a

left almost hyperideal of /.

(2) If R is aright almost hyperideal of H, then every subset of H containing R is
a right almost hyperideal of H.

(3) If I is an almost hyperideal of H, then every subset of H containing / is an

almost hyperideal of H.

(4) If B is an almost bi-hyperideal of H, then every subset of H containing B is

an almost bi-hyperideal of H.

(5) If @ is an almost quasi-hyperideal of H, then every subset of H containing )

is an almost quasi-hyperideal of H.

Proof. (1) Let L be a left almost hyperideal of H, and let s € H. Then sx LN L # ().
Assume that A is a subset of H such that . C A. Then s * L C s % A, which implies
that sx LN L C s* ANA. Thus s * AN A # (. Hence, A is a left almost hyperideal
of H.

(2) This proof is similar to the proof of (1).

(3) This follows from (1) and (2).

(4) Let B be an almost bi-hyperideal of S, and let s € S. Then (BxsxB)NB # ).
Assume that A is a subset of H suchthat B C A. Thus Bxsx B C Axsx* A, so
(Bxs+*B)NB C (AxsxA)N A. This implies that (A x sx A) N A # (). Therefore,
A is an almost bi-hyperideal of H.
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(5) Let @ be an almost quasi-hyperideal of S, and let s € S. Then we have
(sxQNQ*s)NE # (. Assume that A is a subset of H and ) C A. Thus

sxQCsxAand Q xs C Axs,s0
skQNEA*xsCsxANAxs.

This implies that (s*QNQ*s)NQ C (sx ANA*xs)NA,s0(sx ANAxs)NA#£ (.

Therefore, A is an almost quasi-hyperideal of H. ]
The following corollary follows directly from Proposition 5.1.7.
Corollary 5.1.8. Let (H, *) be a semihypergroup.

(1) The arbitrary union of left almost hyperideals of H is also a left almost hyper-
ideal of H.

(2) The arbitrary union of right almost hyperideals of H is also a right almost
hyperideal of H.

(3) The arbitrary union of almost hyperideals of H is also an almost hyperideal
of H.

(4) The arbitrary union of almost bi-hyperideals of H is also an almost bi-hyperideal
of H.

(5) The arbitrary union of almost quasi-hyperideals of H is also an almost quasi-

hyperideal of H.

Example 5.1.9. Let H = {a, b, ¢,d, e} be a semihypergroup under the hyperopera-

tion * defined as in the following table.

a|{bc} | {a} | {a} | {a} | {a}
b | {a} | {b,c} | {b,c} | {b,c} | {b,c}
c| {a} | {b,c} | {b,c} | {b,c} | {b,c}
d| {aj [{bc} | {bd} | {de}|{de}
e | fay [{bc}| {c} [{die} | {e}




68

Then we have {a,b,e} and {a,c,d} are left almost hyperideals, right almost hy-
perideals, almost hyperideals, almost bi-hyperideals, and almost quasi-hyperideals
of H. But, the intersection of them is neither a left almost hyperideal, a right al-
most hyperideal, an almost hyperideal, an almost bi-hyperideal, nor an almost quasi-

hyperideal of H because

ax{a} N{a} ={a} xan{a} ={b,c} N{a} =10,
({a} b {a}) N {a} = {b,c} N {a} =10,
(ax{a}) N ({a} xa) Nn{a} = {b,c} N {a} = 0.

From Corollary 5.1.8, the union of almost hyperideals, almost bi-
hyperideals and almost quasi-hyperideals in semihypergroups is an almost hyper-
ideal, an almost bi-hyperideal and an almost quasi-hyperideal, respectively. But, this

is not the case for intersections of these structures as seen in Example 5.1.9.

Theorem 5.1.10. Let (H, x) be a semihypergroup and |H| > 1. Then the following

Statements are true.

(1) H has no proper left almost hyperideals if and only if for any a € H, there

exists an element h, € H such that h, x (H — {a}) = {a}.

(2) H has no proper right almost hyperideals if and only if for any a € H, there

exists an element h, € H such that (H — {a}) *x h, = {a}.

(3) H has no proper almost hyperideals if and only if for any a € H, there exist

elements h,, k, € H such that

he * (H —{a}) ={a} or (H — {a}) x k, = {a}.

(4) H has no proper almost bi-hyperideals if and only if for any a € H, there
exists an element h, € H such that (H — {a}) x hy *x (H — {a}) = {a}.

(5) H has no proper almost quasi-hyperideals if and only if for any a € H, there
is an element h, € H such that h, x (H —{a}) N (H — {a}) * hy C {a}.
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Proof. Assume that [ has no proper left almost hyperideals. Let « € H. Then

H — {a} is not a left almost hyperideal of H. Then there exists h, € H such that
he  (H = {a}) N (H = {a}) =0,

which implies that h, * (H — {a}) = {a}.
Conversely, let A be a proper subset of H. Then A C H — {u} for some u € H.

By assumption, there exists an element h, € H such that
ha * (H —{u}) 0 (H = {u}) = {a} N (H —{a}) = 0.

Since A C H — {u}, wehave h, x AN A C hy, x (H— {u}) N (H — {u}). Thus
h, * AN A = (). Hence, A is not a left almost hyperideal of H. Therefore, H has no
proper left almost hyperideals. This is the proof of the statement (1). The proof of

statements (2), (3), (4) and (5) are similar to that of the statement (1). O

Theorem 5.1.11. Let (H,-) be a semihypergroup where |H| > 1, and let a € S.

Then the following statements hold.
(1) If H has no proper left almost hyperideals, then either a € a* or a € a®.
(2) If H has no proper right almost hyperideals, then either a € a® or a € a®.
(3) If H has no proper almost hyperideals, then either a € a* or a € a®.
(4) If H has no proper almost bi-hyperideals, then either a € a* or a € a®.
(5) If H has no proper almost quasi-hyperideals, then either a € a® or a € a®.

Proof. (1) Let a € H. Assume that H has no proper left almost hyperideals. By

Theorem 5.1.10(1), there exists an element h, € H such that

ha+ (H — {a}) = {a}.

Assume that a ¢ a®. Then a® C H—{a}, so we have h,xa? C hyx(H—{a}) = {a}.
Thus h, * a*> = {a}. Suppose that h, # a. Then h, € H — {a}, so h2 = {a}.

If a € hy * a, then a® C h, * a> = {a}, a contradiction.
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If a & hy *a, then hy xa C H — {a}, so h? x a = h, * hy * a = {a}. Thus we
have {a} = h? x a = a * a = a?, a contradiction.
Hence, h, = a. Then we have a® = a * a*> = h, * a®> = {a}. Thus a € a3.

(2) This proof is similar to the proof of the statement (1).

(3) This proof follows from the statements (1) and (2).

(4) Leta € H. Assume that H has no proper almost bi-hyperideals. By Theorem

5.1.10(4), there exists an element h, € H such that

(H —{a}) * ha x (H = {a}) = {a}.

Assume that a ¢ a?. Then a®> C H — {a}, which implies that a® * h, * a* = {a}.
Suppose that h, # a. Then h, € H — {a}, so h3 = {a}. Since h, € H — {a} and
a’* C H — {a}, we have that h2 x a*> = {a}.

If a € h? * a, then a®> C h? x a> = {a}, a contradiction.

Ifa ¢ h?*a,then h?> xa C H — {a},so h?*a* h3 xa = {a}. Thus

{a}y =h:xaxh?xa=h:xa*xaxa=h>+xa’*a=a-a=ad

This implies that a®> = {a}, a contradiction.
Thus h, = a. Hence, {a} = a® * hy * a* = a® x a x a*> = a®. Therefore, a € a°.
(5) Let a € H. Assume that H has no proper almost quasi-hyperideals. By

Theorem 5.1.10(5), there exists an element h, € H such that
he * (H —{a}) N (H —{a}) *x h, C {a}.
Assume that a ¢ a®. This implies that > C H — {a}. Then we have
(ha ¥ a®) N (a® % hy) C {a}.

Suppose that i, # a. Then h, € H — {a}, so h? = hy * hgy N hy * by C {a}. Thus
we have h2 = {a}. We consider the following four cases:

Casel: a € hy,*xaand a € a * h,. Then a> C h, * a® and a®> C a? x h,, which
implies that a® C (h, * a®) N (a® * h,) C {a}. This is a contradiction.

Case2: a € hy+xaanda & ax h,. Then a®> C h, xa®* and a x h, C H — {a}. Since
a>* C H—{a}andaxh, C H— {a},

he *xa*Naxh? C {a}.
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Since h2 = {a}, we have a? = a * hZ. Thus a® C (h, * @) N (a * h%) C {a}. This
is a contradiction.
Case 3: a € h, *xa and a € a * h,. This implies that h, x a C H — {a} and

a® C a® * hy. Since hg xa C H — {a} and a®> C H — {a},
h2xana®*h, C{a}.

Since h? = {a}, we have a®> = h2 x a. Thus a®> C h2 x aNa?x h, C {a}. Thisis a
contradiction.
Cased: a € hyxaanda & a* h,. Then h, xa C H — {a} anda x h, C H — {a}.

Thus h2 x a Nax h? C {a}. Since h2 = {a}, we have
a*>=axaNaxa=h2xaNaxh?C{a},

so a? = {a}. This is a contradiction.

Hence, h, = a. Since h, * a> N a® * h, C {a}, we have
a>=axa’*Na’*a=h,*a*Na**h, C{a},

so {a} = a>. Therefore, we can conclude that a € a?. O

5.2 The relations of almost hyperideals in semihyper-
groups

In this section, we provide some connections of almost hyperideals
and almost bi-hyperideals, almost hyperideals and almost quasi-hyperideals, and al-

most bi-hyperideals and almost quasi-hyperideals in semihypergroups.

Theorem 5.2.1. Let (H, ) be a semihypergroup. Then every almost hyperideal of
H is an almost bi-hyperideal of S.

Proof. Let I be an almost hyperideal of H and s € H. Since I # (), there is an
elementa € I. Thenaxsxl C Ixsx1,s0 (axsxI)NI C (I+xsxI)NI.Since I is
an almost hyperideal of H, (a*s*I)NI # (). Hence, (I * s I) NI # (). Therefore,
I is an almost bi-hyperideal of H. [
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Combining Remark 5.1.3(iii) and Theorem 5.2.1, we have the follow-

ing result.

Corollary 5.2.2. Every hyperideal of a semihypergroup (H,x) is an almost bi-
hyperideal of H.

Theorem 5.2.3. Let (H, *) be a semihypergroup. Then every almost quasi-hyperideal
of H is an almost hyperideal of H.

Proof. Assume that () is an almost quasi-hyperideal of H. Let s € H. Then we have
(sxQNQEQx*xs)NQ #D.Since s *QNQ*xsCsxQands*xQNQ*xsCQ xs,

(s+QNE*xs)NQ CsxQNQand (sxQNAQxs)NQCQ*xsNQ.

Thus s * Q N Q # P and Q * s N Q # (. Hence, Q is a left almost hyperideal and a
right almost hyperideal of H. Therefore, () is an almost hyperideal of H. [

If we combine Theorem 5.2.1 and Theorem 5.2.3, then the result of
the relationship between almost bi-hyperideals and almost quasi-hyperideals in semi-

hypergroups is obtained as in the following corollary.

Corollary 5.2.4. Every almost quasi-hyperideal of a semihypergroup (H,x) is an
almost bi-hyperideal of H.

Example 5.2.5. From Example 5.1.2, we see that an almost hyperideal and an almost
quasi-hyperideal of H are almost bi-hyperideals of H. Moreover, this shows that the
converses of Theorem 5.2.1 and Corollary 5.2.4 are not true because {y, z} is an
almost bi-hyperideal of / but it is neither an almost hyperideal nor an almost quasi-

hyperideal of H.

The following example shows that the converse of Theorem 5.2.3 is

not true.
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Example 5.2.6. Let H = {a, b, ¢, d, e} be a semihypergroup under the hyperopera-

tion * below.

a b c d e

a|{at {a} {ay {d} {d}
b | {a} {0} {c} {d} {e}
¢ {ap {c} {6} {d} {e}
d|{d}t {d} {d} {a} {a}
e | {d} {d}y {d} {fa} {a}

Then [ = {b,d,e} is an almost hyperideal of H, but it is not an almost quasi-

hyperideal of H because
(exI)N(Ixe)NI=A{a,d}N{a,e} NI ={a}NI=0.

The coverses of Theorems 5.2.1, 5.2.3 and 5.2.4 can be true when
they have the same conditions as in ordered semigroups. The proofs of the following

theorems are the same as the proofs of Theorems 4.3.7, 4.3.8, and 4.3.9, respectively.

Theorem 5.2.7. If (H, %) is a commutative semihypergroup and A is a subsemihy-
pergroup of H, then A is an almost hyperideal of H if and only if it is an almost
bi-hyperideal of H.

Theorem 5.2.8. Let (H, ) be a commutative semihypergroup. Then A is an almost

quasi-hyperideals of H if and only if A is an almost hyperideals of H.

Corollary 5.2.9. Let (H,*) be a commutative semihypergroup. A subsemihyper-
group of H is an almost quasi-ideal of H if and only if it is an almost bi-ideal of
H.



CHAPTER 6

Conclusions and suggestions

6.1 Conclusions

In this thesis, we study a variety of almost ideals in three structures:
semigroups, ordered semigroups and semihypergroups. Additionally, various fuzzy
almost ideals in semigroups and ordered semigroups are studied.

In a semigroup, we introduce the defintions of almost (m, n)-ideals
and fuzzy almost (m, n)-ideals, and provide their properties. The relations of al-
most (m, n)-ideals and fuzzy almost (m, n)-ideals is given by using a characteristic
function and a support of fuzzy subsets. Moreover, we give the relations of minimal,
prime and semiprime almost (1, n)-ideals, and minimal, prime and semiprime fuzzy
almost (m, n)-ideals.

In an ordered semigroup, we define ordered almost ideals, ordered
almost bi-ideals, ordered almost quasi-ideals, fuzzy ordered almost ideals, fuzzy or-
dered almost bi-ideals and fuzzy ordered almost quasi-ideals. Moreover, we provide
the relations of all kinds of ordered almost ideals and fuzzy ordered almost ideals.
For example, an ordered almost ideal is an ordered almost bi-ideal, an ordered almost
quasi-ideal is an ordered almost ideal, an ordered almost quasi-ideal is an ordered al-
most bi-ideal, a fuzzy ordered almost ideal is a fuzzy ordered almost bi-ideal if it
is a fuzzy subsemigroup, and a fuzzy ordered almost quasi-ideal is a fuzzy ordered

almost ideal. For the relations of ordered almost ideals and fuzzy ordered almost ide-
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als, ordered almost bi-ideals and fuzzy ordered almost bi-ideals, and ordered almost
quasi-ideals and fuzzy ordered almost quasi-ideals in ordered semigroups, the same
idea as in semigroups can be applied.

In a semihypergroup, we define almost hyperideals, almost bi-hyper-
ideals and almost quasi-hyperideals by using the same notions as almost ideals, al-
most bi-ideals and almost quasi-ideals in semigroups, respectively. For properties
and relations of all kinds of almost hyperideals in semihypergroups, we can do the
same with ordered semigroups.

In this study, we can see that in these three structures, almost ideals
have the same definitions and properties. The definitions and properties of fuzzy

almost ideals in semigroups and ordered semigroups are the same.

6.2 Suggestions

1. Study almost ideals and fuzzy almost ideals in other algebraic structures.

2. Study fuzzy almost ideals in semihypergroups.
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