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ABSTRACT

This purpose of this research was to examine the seasonal patterns and
trends of Land Surface Temperature (LST) and to investigate the predictive models
and (term lag and Normalized Difference Vegetation Index (NDVI) that related to
LST variability in the upper north of Bogota, Columbia from 2001-2020. The
observation data used in this study were obtained from the National Aeronautics and
Space Administration (NASA) website as Moderate Resolution Imaging
Spectroradiometer (MODIS) LST Data, which was collected every 8 days from
January 1, 2001 to December 27, 2020 (a total of 920 data observations) from 9
regions. In this study, cubic spline was used for seasonal patterns analysis and simple
linear regression was used for analyzing the trend of the average temperature change
for 20 years. The results showed that the average temperature in the upper north of
Bogota has been slightly decreasing, at around 0.021 degrees Celsius every year. The
data has been divided into 70%-30% proportions for training and testing data sets,
respectively. Multiple Linear Regression (MLR) methods and Random Forest (RF)
were utilized as the prediction models and factors correlated to LST variability. Root
mean square error (RMSE) and R-square were used to compare the predicting
performance among constructed models. The results showed that the most important
variable in all regions is NDVI. The RF model gained the smallest RMSE from
testing both training and testing data sets. The R- square values of MLR model were
between 23.68 % to 45.65 % while those of RF model were between 29.90% to
53.29%. However, it cannot be guaranteed that the same performance for each model

will be the same for other study areas.
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Chapter 1

Introduction

1.1 Background and rationale

Land surface temperature (LST) is regarded as a significant measure of
material exchange, energy balance, and biophysical and chemical processes on the
land surface (Guha and Govil, 2021; Hao et al., 2016). Different Land Use/Land
Cover types have different surface reflectance and roughness, which affects the LST
of different surface areas (Hou et al., 2010). Recent changes in the characteristics of
land surface types are the results of growing urbanization (Li et al., 2017). There has
also been a significant influence of natural vegetation on the distribution of LST
(Yuan et al., 2017). The Normalized Difference Vegetation Index (NDVI) has
commonly been employed in LST-related research (Guha et al., 2020; Madanian et
al., 2018). The LST-NDVI relationship is controlled by several variables, including
thick vegetation, sand dunes, water bodies, dry soil, exposed rock surface, wetland,
construction materials, etc., making it excessively complicated in nature (Qu et al.,
2014; Zhou et al., 2011).

Currently, thermal infrared remote sensing has been used to determine
the relationship between LST and NDVI in many studies (Deng et al., 2018; Ghobadi
et al., 2015). Also, most studies have focused on major cities such as Sao Paulo in
Brazil (Ogashawara et al., 2019), Bagerhat in Bangladesh (Rahman et al., 2022), Cali
in Colombia (Musse et al., 2018), California (Shivers et al., 2019), and Florence and
Naples in Italy (Guha et al., 2018). Within Colombia, Only only a few studies have

been conducted about the seasonal relationship between LST and NDVI.

Generally, spatial and temporal sensor resolution should follow surface
configurations. In any urban area, LST is highest in areas with the least number of
plants (Raynolds et al., 2008). Therefore, most thermal remote sensing methods use
the NDVI as the most important indicator of LST (Yuan et al., 2007), and it has been

used in many studies to determine the relationship between estimated LST and NDVI



(Siddique et al., 2019; Guha et al., 2018; Son et al., 2012; Sun et al., 2007). Such as
Gabriel (Parra-Henao et al., 2016), Yongming (Xu et al., 2014), and Daniel (Martnez-
Bello et al., 2018), have all completed successful research projects based on the
spatial-temporal relationship of LST-NDVI in Columbia. Several researchers have
attempted to establish the LST-NDVI correlation (Ghobadi et al., 2015). Generally,
LST has an inverse association with vegetation (Voogt and Oke., 2003). NDVI serves
as a factor of LST (Goward et al., 2002). Furthermore, the LST-NDVI correlation was
employed to examine the LST distribution pattern (Govil et al., 2019). A lot of recent
studies look at the relationship between LST and NDVI in more than one way (Hao et
al., 2019; Zhang et al., 2008).

Colombia is located in South America and is characterized as being
tropical and isothermal because it's nears the equator (Romero et al., 2020). It has
variations in all five regions depending on the altitude, temperature, humidity, winds
and rainfall (Espinoza Villar et al., 2009). Climate change could be a problem because
there isn't enough water and the land is getting worse in the high Andes mountains on
the coast (Beniston et al., 2003). Rising sea levels and floods can impact communities
and the economy. If climate change keeps going on, it's likely that the way it rains in
Colombia will change, which will cause water shortages all over the country (Leroy,
2019). Currently, climate change is wreaking havoc in certain parts of Colombia.
There have been big floods, landslides, changes in the water supply, effects on
people's health, and even more big changes (Jansky et al., 2002). The Colombian
government has been an ally in the country's adaptation to the effects of climate
change. They are currently expanding their impact to mountainous regions in
Colombia with similar social and ecological conditions to those in the capital
(McGranahan et al., 2007). From the above research studies, LST and NDVI are
important for Colombia. Climate development and is useful to those involved in
environmental development. The main aims of the study were (1) to examine the
seasonal patterns and trends of LST; and (2) to investigate the predictive models and
factors (term lag and NDVI) that are related to LST variability in the upper north of

Bogota, Columbia.



1.2 Objectives of Research

1. To examine the seasonal patterns and trends of LST between 2001 and 2020 in

the upper north of Bogota, Colombia

2. To investigate the predictive models and factors (term lag and NDVI) that
related to LST variability in the upper north of Bogota, Columbia from 2001-2020

1.3 Expected Advantages

1. Knowledge of LST's seasonal patterns and trends will be useful information for

community awareness of climate changes.

2. Information related to the factors affecting LST changes may provide important

information to environmental policy makers for promoting relevant projects.

1.4 Scope of the study

This study focused on LST change in the upper north of Bogota,
Colombia, from 2001 to 2020. The data was retrieved from the Moderate Resolution
Imaging Spectroradiometer (MODIS) terra satellite. The cubic spline function and
linear regression are methods for smoothing the spline curve and extracting seasonal
patterns and trends. Furthermore, a Multiple Linear Regression (MLR) model was
used to determine factors related to LST. Lastly, the predictive models for LST have
been developed by using MLR and Random Forest (RF) models. All statistical
analyses and appropriate plots were implemented using the R program (R Core Team,
2020).

1.5 Literature review

1.5.1 MODIS satellite data

Using satellites is a sophisticated method of monitoring the Earth's
climate. Since the 1950s, National Aeronautics and Space Administration (NASA)
satellites have studied the Earth's atmosphere, seas, land, and snow from above the
Earth's surface. Satellite-based data, such as LST and NDVI, have been widely used

in various sectors, and several studies have been conducted to examine and describe



their applicability ( Liang et al., 2019; Seto et al., 2004; Zwally et al., 2002). Data
from the MODIS Terra and Aqua sensors are often used to study climate and
environmental science because they are good at picking up environmental changes
caused by fire, plants, temperature, earthquakes, droughts, and floods on Earth.
MODIS sensors are the most comprehensive in recording Earth's vital signals. The
sensors track things like the daily percentage of Earth's surface that is cloudy, the
surface temperature once every 8 days (Wang et al., 2016) and the vegetation cover
once every 16 days (Testa et al., 2014). Therefore, this more accurate and less

erroneous data used to determine the climatic factor shift in a bigger or smaller area.

1.5.2 Land surface temperature and Normalized Difference Vegetation Index

The NDVI remains one of the first vegetation indices established for
satellite data analysis and is frequently used since it corresponds well with
photosynthesis and primary vegetation production. NDVI has been observed to
correlate with the canopy cover of riparian vegetation in the dry southwestern United
States. Furthermore, surface and groundwater availability changes can significantly
impact NDVI (Wilson et al., 2018). The NDVI1 is an indicator of vegetation often used
to study how LST affects vegetation (Julien et al., 2006). Due to the complexity of the
LST-NDVI relationship, consistent examination of such relationship is required
(Deng et al., 2018).

The combined study of NDVI and LST proved to be quite valuable in
identifying changes in land occupation and surface conditions by distinguishing
seasonal variations from changes in land occupation (Julien et al., 2006). Land surface
temperature and NDV1 behaviors have also been shown to correlate (Kaufmann et al.,
2003). LST is an excellent indication of the energy balance at the Earth's surface,
which can offer crucial information about the surface's physical attributes and climate
(Sruthi et al., 2015). Wan et al. (2004) observed changes in cover and soil moisture at
many scales, indicating that the surface temperature can rise fast with water
deficiency. As a result, the ratio of LST/NDVI increases during droughts. Urban
planning in Monte Hermoso, Argentina involved a spatial and temporal analysis of
the relationship between LST and NDVI (Ferrelli et al., 2018).



1.5.3 Statistical Methods

LST can be calculated using statistical tools and models, such as cubic
spline, to investigate LST changes. Annual LST seasonal patterns can be extracted
using a semi-parametric method that combines the cubic spline function with the
yearly periodic boundary condition and weighted least square regression (Wongsai et
al., 2017). Sharma (2018) applied linear regression model to examine the seasonal
trends and patterns of LST and found inter-annual temporal trends and intra-annual
seasonal patterns in LST over Kathmandu Valley, Nepal. Results from Kavitha et al.
(2016) indicate that linear regression models perform better at modelling LST than

time series models because the former accounts for various dependent variables.

Random forest (RF) is a popular method for machine learning that can
be used to create prediction models. Random forests were first introduced by Breiman
in 2001 (Breiman, 2001). RF consists of classification and regression trees (Speiser et
al., 2019). The formal structure of the Random Forest Regression is shown in Figure
1.1. RF models can identify complex associations between input parameters and
massive numbers of observations (Karimi et al., 2021). The heating values of solid
waste in an incinerator were predicted using four machine learning algorithms are
artificial neural network, Adaptive neuro fuzzy inference system, Support vector
machine, and RF. You et al. (2017) compared these techniques, and the RF model was
found to be the most balanced model in terms of prediction accuracy and training

time.
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Figure 1.1 The formal structure of the Random Forest Regression

1.6 Conceptual framework

The study's conceptual framework is shown in Figure 1.2 below to

illustrate the methodological processes of the investigation.
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Figure 1.2 Data analysis diagram

1.7 Organization of the thesis

This thesis comprises four chapters, and their details are described
below: Background and rationale, research objectives, expected advantages, literature
review, the scope of the study, conceptual framework, and organization of the thesis
are in chapter 1. In Chapter 2, the method is explained. These methods include the
area of study, the data used, and the analytical techniques. Chapter 3 is about the

results of modeling seasonal patterns and trends with cubic spline, linear regression,



factors related to LST, LST predictive models, and a comparison of how well the
models work. Chapter 4 presents the discussion and conclusion of the research

findings, the limits of the research, and future studies for technique improvement.



Chapter 2

Methodology

This chapter details about research methodologies used to complete
this study. It describes the study area, data sources, management, and statistical

methods.
2.1 Study area

The study area is the city in the upper north of Bogota, Colombia
(Figure 2.1), situated in the savannah biome inside the eastern mountain range of the
Andes Mountains. Most of the city's territory is flat, bounded on the east by hills and
mountains and on the west by the Bogota River and its wetlands. The entire urban
population is around 7.9 million people (Ramirez-Aguilar et al., 2019), and the local
climate is determined by two primary factors: latitude and elevation. The elevation of
Bogota is 2,600 meters above sea level. Bogota's average annual temperature is just
14.2 degrees Celsius (°C), with a mean low of 8.4 °C and a mean high of 19.7 °C. The
climate in the area is subtropical highland, which is oceanic rather than tropical
(Natarajan et al., 2015).

Latitude Countries in South America  Latitude Bogota

46

44

-20

42
-30

Argentina

-40

-50

-80 -0 -60 -50 -40 745 744 743 742 741 740 -739
Longitude Longitude

Figure 2.1 Locations of the study area
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2.2 Data source

The NASA satellites is built with a Terra sensor. MODIS LST and
NDVI products with codes MOD11A2 and MOD13Q1, respectively, are the land
product subsets of the terra platform. These were temperature and vegetation products

on its website and with its documentation.

2.2.1 Land Surface Temperature (LST) data

Two decades of LST data observations were obtained from 2001 to
2020. Daytime data with a spatial resolution of 1 km2 are included in MOD11A2 LST
products (Wang et al., 2020; Gidey et al., 2018; Zhang et al., 2014). The data values
are measured on the Kelvin scale. As LST data are 8-day average temperature
observations, thus, there are 46 observations each year and 920 observations over 20
years. For each region, the data consisted of 7x7 = 49 km? and 49 pixels, each pixel of
1x1 km? (Figure 2.2). As a data frame, each region is represented by a matrix of 49
pixels x 920 observations. The first six columns (Table 2.1) describe the data

attributes (V1 to V6), whereas the remaining columns are the LST values (t1 to t49).

Latitude Bogota

48 7km? 1 km?

—_
1 km?
é 7km?

46

44

/

42

40

38

145 744 743 742 741 740 739
Longitude

Figure 2.2 The upper north of Bogota each region



Table 2.1 Structure of LST data for a subregion from MODIS

11

) variable
Observations
V1 V2 V3 148 t49
1 MOD11A2... MOD11A2 A2000049 F F
2 MOD11A2... MOD11A2 A2000057 F 299.02
3 MOD11A2... MOD11A2 A2000065 298.08 299.34
919 MOD11A2... MOD11A2 A2020353 295.18 296.12
920 MOD11A2... MOD11A2 A2020361 297.96 298.54

2.2.2. Normalized Difference Vegetation Index) (NDVI)

The MOD13Q1 product provides the NDVI data. The data were

recorded at 16-day intervals from 2001 to 2020 over 9 regions, measuring with a
spatial resolution of 250 m? (Ruan et al., 2020; Testa et al., 2014; Jin et al., 2014).

There are 23 observations per year and 460 observations in 20 years. The data for
NDVI and LST covered different areas. Each region was 33 %33, denoted by 1,089

pixels. As a data frame for each region had a matrix of 1,089 picelsx460 observation.

And first 6 columns (Al to A7) describe the data characteristics, while the remaining
columns (V1 to V1089) were the NDVI values (Table 2.2).
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Table 2.2 Structure of NDVI data for a subregion from MODIS website

Variables
Observations

Al V1 ... V1088 V1088

1 MOD13Q1.A2000049... 0.14 0.17 0.27

2 MOD13Q1.A2000065... 0.68 ... 0.2335 0.24

3 MOD13Q1.A2000081... 0.08 ... 03275 0.30

459 MOD13Q1.A2020337... 0.63 0.26 0.31

460 MOD13Q1.A2020353... 0.48 0.28 0.28

2.3 Data management
Table 2.3 shows the LST data structure of a region after the first six
columns had been removed and 49 pixels averaged into one value per day. The data

values were converted from Kelvin to Celsius scale by subtracting 273.5

Table 2.3 The average of LST for each region

Observation | Year Day Reg.1 Reg.2 Reg.8 Reg.9
1 2001 1 27.34 27.79 | ... | 21.06 26.79

2 2001 9 27.10 2733 | ... | 23.02 28.47

3 2001 17 30.63 27.07 18.78 27.21

919 2020 353 22.88 2580 | .. | 15.09 24.55

920 2020 361 25.80 2512 | .| 12.67 20.34

The data for NDVI was in the upper north of Bogota. The data period
is the same as LST (beginning on January 1, 2001 and ending on December 19, 2020).
In managing NDVI data to match with the LST pixel, we found the right key pixel,
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which ranged from 1 to 16. In our area, pixel number 6 was identified as an
acceptable key pixel for NDVI and LST data merging (Figures 2.3), which is the
NDVI pixel, one of 16 that correspond to a LST pixel. Therefore, NDVI pixels
outside LST sub-regions are trimmed. To begin, 28x28= 784 pixels were

systematically selected from each region for analysis.

| O O L O O L
NDWVI regions (denoted by 1089 = 33x33 smaller pixels)

A black dot denotes a central NDVI

k> [
-
[
b—
b

LST regions (denoted by 49 red-coloured pixels)

Figure 2.3 LST and NDVI pixel numbers and sizes (example of central pixel)

Table 2.2 shows the NDVI data structure of a region after eliminating
the first seven columns and selecting 784 pixels as data variables for each region.
After that, we manage data by 784 pixels and choose the median value of 784 pixels
as data. Every 16 days, we only get one NDV|, so each region has 460 observations.

Table 2.3 The average of NDVI for each region

Observation | Year Day Reg.1 Reg.2 Reg.8 Reg.9
1 2001 1 0.70 0.71 0.59 0.69

2 2001 17 0.76 0.70 0.55 0.70

3 2001 33 0.69 0.66 0.50 0.69

459 2020 337 0.64 0.66 0.59 0.68

460 2020 353 0.62 0.65 0.49 0.65
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2.4 Statistical methods

The natural cubic spline with a linear function was used to examine the
trends and seasonal patterns of LST in each region using adequate number of knots,
the time series plot was generated for LST. The knot positions were fixed to smoothen

the spline curve. A cubic spline function formula is shown in the equation (2.1)

p
S, =a+bt +> C(t-t,) (2.1)

k=1

Where S, is the spline function, «, b and C, are the parameters in the model. k is
knot location, t; denotes time in average every 8 days, that is specified from 20 year,
t, <t, <...<t, are specified knots and (t —t,), means that (t, —t,) is positive for
(t;>t,) and zero otherwise. After that, the LST data were seasonally adjusted by

subtracting the fitted values from the observed LSTs using the formula in Equation
2.2 below:

Z =x-S +X (2.2)

Where, Z, is the seasonal adjusted LST at observation i, x; isthe LST observation,

S, is the fitted value from the spline model and X is the observed LST overall mean.

A linear regression model incorporating the filtered autocorrelation in
seasonally adjusted average 8-day LST was used to examine the LST from 2001 to

2020 in 9. The simple linear regression using the formula in Equation 2.3 below:

y, =a+bt (2.3)

Where, ¥, is the predictions value at the time t , a is the intercept, b is the

regression coefficient in time (average 8 day), t is the time (t=1,2,3,...,920) .
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The prediction models and parameters that correlate to LST variability
in the upper north of Bogota utilize MLR methods and RF. The MLR equation has the
same shape as the simple linear regression equation but has more terms. The formula

that follows:
y.=a+by, +by,_,+b,y, 5 +b,NDVI (2.4)

RF predictions are produced independently for each regression tree,
followed by an arithmetic average of the trees as the final forecast. The main equation
providing the final RF forecast for regression results based on constructed trees is as

follows:

3T, (X)
F(x):’:lT (25)

Where N indicates number of trees, T, represents each tree and F is a prediction at a
new point X as an averaged prediction based created trees (Hastie et al., 2009).
After obtaining the appropriate models, the predicted value is

calculated from the training and testing datasets and evaluating those models using
RMSE as shown in

Equation.

n e 2
RMSE = zw 2.6)
t=1

Where n is defined as the number of predicted data, t is defined time, vy, is
observation at time t, and Y, is predicted value. Finally, the final models were tested

using R-Squared to determine whether they fit well enough for the training dataset.
All statistical analyses and graphical presentation were carried using the R statistical

program (R Development Core, 2020).
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Chapter 3

Results

This chapter presents the results of an eight-day average land surface
temperature data analysis in Bogota. It consists of descriptive summary of the LST
data, LST seasonal patterns and trend analyses, factors that are related with LST

changes, as well as the LST predictive models, and their performance comparison.

3.1 Data Summary

Based on the 20-year LST data from Bogota over 9 regions, the
minimum average LST (16.66 °C) was observed in region 6, where the LST ranged
from 0.41 °C to 28.39 °C. The LST in region 1 ranged between 11.59 °C and 35.79
°C, with an average of 23.70 °C. The highest average LST was 38.35°C, recorded
over region 5, while the minimum average LST was 0.41 °C in region 6. Numerical

summaries of the LST in each region are shown in Table 3.1.

Table 3.1 Data summaries of average LST of each region

Mean Min Max

(°c) (°C) (°C)
1 4.712 -74.305 23.70 11.59 35.79
2 4.712 -74.188 24.48 12.16 34.05
3 4,712 -74.071 26.24 11.37 35.08
4 4.596 -74.235 24.50 9.73 33.78
5 4.596 -74.117 27.58 9.58 38.35
6
7
8
9

Region Latitude Longitude

4.596 -74.000 16.66 0.41 28.39
4.479 -74.164 19.14 1.57 33.41
4.479 -714.047 17.75 441 28.83
4.479 -73.930 24.59 8.84 35.96
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3.2 LST Seasonal pattern and trend analysis

The seasonal trends of LST averaged over 20 years in 9 regions are
shown in Figure 3.1. The temperature in °C is shown by the Y-axis while the day of
the year is represented by the X-axis. Each column of the plot represents the LST in
each region. The cubic spline function was fitted to the LST seasonal patterns. The
spline curve is shown in the red line. Besides, eight knots placed on days 10, 40, 80,
130, 240, 290, 330, and 360 were selected to fit to smoothen the spline curve. The
positions of the knots are shown with the plus (+) symbol. The adjusted r-squared (R?)
from linear regression and eight-knot cubic spline models, which measure the
goodness of seasonal components fitted to raw LST in each region, were reported.
Figure 3.1 shows that seasonal patterns are consistent throughout the year, with the
coldest period happening in the middle of the year and the hottest periods occurring in

December and March. The lowest temperature occurs in the middle of the year.

LST.Day (*C) Seasonal Patterns Bogota
Reg 1 n:789 |Lat:4.712 Lon: -74.305 | [Reg 2 n:801  Lat: 4.712 Lon: -74.188| |Reg 3 n:798 Lat: 4.712 Lon: -74.071

10
r-sq- 0.206 Avg! 23.702 rsq- 0.27 Avg- 24 481 r-sq: 0.135 Avg! 26.245
0 + - + + + + + % + o+ + + + + + 4 + + + + + + %
Reg 4 n:826 |Lat: 4.596 Lon: -74.235 | [Reg & | n:g14  Lat: 4.596 | *Lon:-74.117| |Reg 6 n:684 Lat: 4.596 Lon: -74
. deapt|alet] s

n’s .
aapitihe L
R

et el
1dld i,
LK s

rsq 0.172 Avg 24503 | ||r-sq 0.087 Avg 27112 || |rsq- 0288 ¢ T T Avg: 16.666
+ - + + + + |+ S + - + + + 4 +| o+ + + + o+

Reg 7 n:783 |Lat: 4.479 Lon:-74.164 | |Reg 8 n:71s5  Lat: 4.479 Lon: -74.047| |Reg 9 noia2 Lat4.479 Lon: -73.93

Avg: 17.751 r-sq: 0.354
+ + + |+ + +

rsq 0278 7
+| = +

Avg: 19.139 r-sq- 0.273
* + + | 4 +| +

Awg: 24 .59
£ + %

+ + + 4

139 77 134 193 248 305 362 1 39 77 134 191 248 305 362 1 39 77 134 191 248 305 362
Day of Year Day of Year Day of Year

Figure 3.1 Seasonal LST pattern in Bogota for 9 regions
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A simple linear regression model was used to observe the trend of
LST. The data were plotted, and the annual seasonal fluctuation of LST, derived from
the natural cubic spline function, was added back in and colored red to explain the
LST trend over a 20-year period. In Figure 3.2, grey dots are data plotted by year. The
increasing or decreasing trend (Inc/dec) per decade and respective p-values from
simple linear regression show how much LST has changed from 2001 to 2020. As
shown in Figure 3.2, in regions 2 and 4, the temperature increase was not statistically
significant, and the temperature decline was statistically significant in the remaining
regions. The equations of simple linear regression for 9 regions were given in Table
3.2.

LST.Day (°C) The trend of LST change Bogota

40
Regl Reg2 Reg3

30

20,

10)

Of r-sq:0.37% Inc/dec : -0.41 p:0.048 r-sq:-0.07% Inc/dec - 0.113 p:0.519 r-sq:0.55% Inc/dec : -0.473 p:0.02

4

Y Reg4 Reg 3 Reg6

30

20

10

of r-sq:0.16% Inc/dec - 0.267 p:0.129 r-sq - 0.52% Inc/dec -0.531 p:0.022 1-5q : 1.06% Inc/dec: -0.723 p:0.004

4

Y Reg7 Reg & Reg9

30

20

10)

of rsa:l357% Inc/dec : -0.827 p.0.001 1-5q:0.97% Inc/dec : -0.579 p:0.005 r-sq:1.23% Inc/dec : -0.61 p:0.001
0 2 4 6 8 10 12 14 1% 18 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

‘Year after 2000 Year after 2000 ‘Year after 2000

Figure 3.2 Trend patterns of 9 regions
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Table 3.2 The equation of simple linear regression for 9 regions

Region Equation

1 ¥y = 24.11578 — 0.00089t
Y = 24.37482 + 0.00024t
Vi = 26.72402 — 0.00102t
V: = 24.23180 + 0.00058t
Y = 27.65331 — 0.00115¢
Y = 17.40047 — 0.00157¢
Y = 20.00248 — 0.00180¢t
Y = 18.34220 — 0.00126¢
Y. = 25.20530 — 0.00132¢

© 00 N o o b~ w DN

Table 3.2 shows that the temperatures have increased in Regions 2 and 4.

Simultaneously, temperatures decreased in other regions significantly.

3.3 Factors that related to LST

The historical data of both LST and NDVI were examined to
determine variables associated with LST changes. The ARIMA model was used to
find the appropriate historical LST data. This was determined by analyzing the
Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) graph
for all regions. Figure 3.3-3.4 demonstrates that the AR(3) or lag term 3 is appropriate
to be considered for factors related to LST.
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MLR and RF were used to find factors related to LST. The equation of

MLR for 9 regions was given in Table 3.3.

Table 3.3 The equation of factors that related to LST

Region

Equation

1

© 00 N o o b~ w PN

9, = —2.12 + 0.15y,_, + 0.06y,_3 + 31.95ndvi,

$, = —1.98 — 0.12y,_; + 0.09y,_, + 0.12y,_3 + 36.29ndvi,
$, = 6.59 + 0.11y,_, + 0.08y,_5 + 20.87ndvi,

$, = 0.97 — 0.11y,_, + 0.15y,_, + 34.20ndvi,

$, = 2.54 — 0.22y,_, + 0.13y,_, + 38.51ndvi,

$, = —0.95 + 0.15y,_, + 0.14y,_; + 24.40ndvi,

$, = —2.74 — 0.15y,_, + 0.16y,_, + 0.07y,_3 + 35.86ndvi,
9, = 0.83 + 0.21y,_, + 24.30ndvi,

$, = 2.32 4 0.20y,_; + 0.21y,_, + 0.08y,_5 + 15.03ndvi,

For RF, the first step is to choose a subset of the data at random

sampling with replacement. Determine a number of trees as can be seen in Figure 3.4,

we decided to use a number of trees of 500 for this dataset. Decision tree for each data

set, we will randomly select a variable by “+/V ” (V is variable), the average chosen

prediction result the final decision.
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Figure 3.5 Set the number of trees for the RF.

Figure 3.6 explains the important measure for each variable of a factor

related to LST according to Mean Decrease Accuracy (%IncMSE). The higher the

value of the mean decrease accuracy, the greater the importance of the variable in the

model. The most important variable in all regions is NDVI.
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Figure 3.6 The important measure for each variable of factor related to LST

according to %IncMSE for 9 regions

The plots of predicted LST against original data for all regions using

the Multiple Linear Regression model and Random Forest have been presented in

Figure 3.7 and 3.8. Each blue line represents the original LST, the red line represents

the predicted LST for the training dataset and the green line represents the predicted

LST for the testing dataset.
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Figure 3.7 The plots of predicted against original values of LST using Multiple
Linear Regression for 9 regions
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Figure 3.8 The plots of predicted against original values of LST using
Random Forest for 9 regions
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3.5 Models performance comparison

To evaluate the performance of the obtained models, the results of each
model will be compared with training and testing datasets (original datasets) using R
square and RMSE as Table 3.4.

Table 3.4 The RMSE and R-squared for each region

Multiple Linear Regression Random Forest
Region R-square RMSE R-square RMSE
(%) Training  Testing (%) Training  Testing

1 46.04 2.51 3.01 40.13 1.28 3.12
2 39.70 2.38 2.60 34.65 1.19 2.66
3 23.68 291 2.93 29.90 1.36 2.98
4 39.89 2.28 2.70 34.69 1.15 2.84
5 41.01 2.85 3.25 33.00 1.46 3.39
6 40.45 3.05 3.13 41.32 151 3.39
7 45.65 3.02 3.01 42.46 1.49 3.23
8 36.54 2.69 2.56 40.36 1.29 2.60
9 43.06 2.61 2.97 53.29 1.16 2.87

Table 3.4 shows the obtained R-square and RMSE values for all
regions. It can be seen that the RF model gained the smallest RMSE from testing both
training and testing data sets. The RMSE value of the MLR model was between 2.28
and 3.05 and between 2.56 and 3.35 for the training and testing data sets, respectively.
Whereas those of the RF model were between 1.16 and 1.51 and between 2.60 and
3.39 for training and testing data sets, respectively. The R-square values of the MLR
model were between 23.68 % and 45.65 %, while those of the RF model were
between 29.90 % and 53.29 %.
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Chapter 4

Conclusions and Discussions

The last chapter concludes the overall research results by applying
statistical models and data visualization of land surface temperature in Bogota. The
discussion of the findings, limits of the research, and future studies for technique

improvement.

4.1 Discussion

This study used powerful statistical methods to investigate the seasonal
patterns and trends of average 8-day LST in the upper north of Bogota, Colombia,
from 2001 to 2020. The LST data fit well with the cubic spline function, and the
appropriate number and location of knots provided a satisfactory fit to the LST data.
This study found that all the LST had seasonal patterns similar for most regions, with
the coldest period happening in the middle of the year and the hottest periods
occurring in December and March. The lowest temperature occurs in the middle of

the year.

The cubic spline function based on this research was fitted to depict the
seasonal pattern and trend of the average 8-day LST in the upper north of Bogota
from 2001 to 2020. A similar study by Fitrahanjani et al. (2021) employed the cubic
spline on the LST data to observe the seasonal pattern and trend of the daylight data.
Another consistency by Abdulmana et al. (2022) employed the cubic spline function
to derive seasonality from the LST time series. The first and second derivatives of
fitting splines are continuous, which gives them strong stability, smoothness, and high
accuracy (Molinari et al., 2004).

A simple linear regression was employed to examine the trend of LST.
This research found that the temperature increased in regions 2 and 4. Robledo-
Buitrago et al. (2021) showed that this region is in the municipality of Facatativa, in
the condition of Cundinamarca. The average temperature was between 9.2 °C and
14.0 °C, with an increasing trend of 0.00 °C/year to the west and 0.03 °C/year to the

east.
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The multiple linear regressions used to investigate relationships
between LST and NDVI found positive correlations in all regions of Bogota. Sun and
Kafatos (2007) discovered a positive correlation between LST and NDVI. According
to Yue et al. (2007), the mean LST and NDVI values associated with different land-
use categories varied substantially. Gorgani et al. (2013) concluded that the
correlation between NDVI and LST is negative. This negative association between
NDVI and LST is useful for studying the urban climate (Yuan and Bauer, 2007).
According to Weng et al. (2004), there is a significantly higher negative association
between the vegetation fraction and LST than previously reported. However, a recent
study by Karnieli et al. (2006) found that the northern ecosystems at high latitudes
have positive relationships between LST and NDVI.

The multiple linear regression and RF methods for sorting important
LST variables showed the same results for all regions. NDVI1 is an important factor
related to LST. Sorting variables after NDVI in regions 1, 3, and 4 are lag terms 2, 3,
and 1, respectively. Regions 6, 7, 8, and 9 are lag terms 2, 1, and 3, respectively.
Region 1 includes lag terms 3, 2, and 1, respectively. Furthermore, region 5 is lag
term 1, 2, and 3, respectively. For the models' performance comparison, recent
research by Xie et al. (2021) showed that the RF model did much better than the

multiple linear regression model because it had much lower error indices (RMSE).

The results of each model were compared with the training and testing
datasets (from which they were originally derived) using R-square and RMSE to

assess the efficacy of the models that were created.

4.2 Conclusions

The objectives of this study were to analyze the trend of LST change
and investigate the predictive models and factors related to LST variability in the
upper north of Bogota, Columbia, by using RMSE and R-square as a measurement.
The 8-day observation data were obtained from the NASA website.

This study concludes that the seasonal patterns of LST in the upper

north of Bogota, Colombia had similar seasonal patterns with the highest levels
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during summer (December and March). The overall trend of LST has been decreasing
over the last 20 years of the study. It was observed that the average temperature in the
upper north of Bogota decreases slightly by 0.021 °C every year. The NDVI is one of
the most important factors that provide a role in the change of LST. Based on the
RMSE and R-square values, the random forest is the best and most accurate way to

make predictions.

4.3 Limitations and further study

There are several limitations to this study. Firstly, climate variables
provide a better understanding of how NDVI and LST patterns occur at various
locations. However, these climate variables were not available to be explored in this
study. Despite this significant limitation, this study would serve as our guide for
carrying out the research in the future. In future, it is proposed that machine learning
techniques be used to create the LST prediction model and compare its performance

to another model.
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Abstract The temperature increase is one of the indicators of global warming. Therefore, Land Surface
Temperature (LST) trends can be used to identify climate change. The objectives of this study were
(i) to analyze the trend of LST change in Chiang Mai province (ii) to investigate the suitable models
for predicting LST in Chiang Mai, Thailand. The observation data used in this study were obtained
from Moderate Resolution Imaging Spectroradiometer (MODIS) LST Data on the National Aeronautics
and Space Administration (NASA) website and referred to as LST MODIS. The data were collected
every 8 days from January 1, 2001, to December 27, 2020 (920 observations).The data were split into
70%-30% proportions for training and checking datasets, respectively. In this study, the simple linear
regression was used to analyze trends of the average LST change over 20 years. It is found that, the
average LST in Chiang Mai province has been slightly increasing around 0.0184 degrees Celsius per year.
The autoregressive integrated moving average (ARIMA) model has been applied for predicting LST,
and the Root Mean Squared Error (RMSE) and coefficient of determination (R-squared) were used to
measure the model performance. The results showed that ARIMA(2,0,0) model had the smallest RMSE
for both training and checking data sets. In addition, all fitted ARIMA models can describe the LST
with R-squared ranging from 0.6404 - 0.7871.
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1. INTRODUCTION

The changes in Land Surface Temperature (LST) on sub-continental or regional sizes
reveal distinct characteristics. In addition, the regional climate is more complex than
the global climate since it is impacted by ocean-atmospheric circulation, land cover, and
feedback processes. Thus, the regional climate is important for the environment and
economic output [1].

*Corresponding author. Published by The Mathematical Association of Thailand.
Copyright @ 2022 by TIM. All rights reserved.
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Time series analysis is used to develop mathematical models for the purpose of comput-
ing statistics from data on climatic variables using the antoregressive integrated moving
average (ARIMA) model. Since the 1970s, time series analysis has rapidly advanced in
theory and practice for the purpose of predicting and controlling various climatic factors
such as precipitation, temperature, and others [2]. In 2014, Wang et al. [1] proposed the
predictive model for monthly precipitation at the Lanzhou station in Lanzhou, China, us-
ing the enhanced ARIMA model. The findings indicated that the revised model is much
more accurate than the seasonal model, with a mean residual of 9.41 mm and a forecast ac-
curacy of 21%. Later in 2015, Bari et al. [1] forecasted monthly precipitation for Sylhet,
Bangladesh, using the ARIMA model. They discovered that the ARIMA(0,0,1)(1,1,1)
technique was the most efficient for forecasting future precipitation with a 95% confi-
dence interval. El-Mallah et al. [7] used the Box-Jenkins method to predict the annual
warming trend in 2016 and found that ARIMA(3,1,2) and ARIMA(3,2,3) were capable
of predicting non-seasonal linear and quadratic trend models with results that followed
their predicted patterns with correlation values of around 80% for both models. Morever,
in 2017 Wongsai et al. [0] presented the analysis of annual seasonality extraction using
the cubic spline function and decadal trend in temporal daytime Moderate Resolution
Imaging Spectroradiometer (MODIS) LST data. Later in 2018, Sharma et al. [7] ana-
lyzed LST data from 2000 to 2015 to determine seasonal variations in the Kathmandu
Valley of Nepal. They discovered that the patterns were significantly associated with
altitude (p-value < .01). In the same year, Ruchiraset and Tantrakarnapa [%] conducted
the study about time-series modeling of pneumonia admissions and its association with

air pollution and climate variables in Chiang Mai Province, Thailand. As Chiang Mai
Province faced with the variation of climate change, the study of trend and predicting
model for temperature wounld be considered to conduct and analyze.

Chiang Mai locates in the northern Thailand. It is one of Thailand’s major cities with
696 kilometers north of Bangkok. Its landscape is a mountain-rimmed basin [9]. Chiang
Mai is one of cities that faced with extremely air pollution. There were some studies
focused on this city. In 2012, Gou et al. [10] reported that particulate matter and ozone
are the principal ambient contaminants in Chiang Mai. Suwanprasit [11] had analyzed
the changes in land use and LST across Mueang Chiang Mai District, Thailand using
satellite photos from Landsat TM and ETM+. The findings demonstrated that during
the research period, the city’s land usage changed dramatically, the maximum LST values
found at bare ground area, and lowest LST values found at the forest, farm, and water
resource classes. The temperature difference between cities and suburbs was 1 - 2C in
1994 and 5-8C in 2014.

Chiang Mai is the top destination for domestic and foreign tourists, and the surface
temperature is one of the important factors that tourists use for making their decisions to
visit Chiang Mai. The short-term predictive model would be suggested for both tourists
and tourism agencies. Hence, this study has been conducted to analyze the trend of
LST change in Chiang Mai Province using MODIS LST from the NASA website and
investigated the suitable models for predicting short-term LST in Chiang Mai Province.
The rest of this paper is organized as follows: Section 2 explains the data and methods
used in this study. The results of this study have been presented in Section 3. Finally,
Section 4 describes our discussion and conclusion.
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2. MATERIALS AND METHODS

2.1. CONCEPTUAL FRAMEWORK

The first step in our investigation was to get LST data from the NASA website. Because
the original LST’s unit was Kelvin and there were missing values, it was necessary to
undertake data management. After that, the LST season was explored by averaging LST
on the same day of the year. Following that, a simple linear regression was used to
determine the trend of LST change in Chiang Mai. The ARIMA was used as a predictive
model to fit the original LST. Finally, the model’s performance was assessed by using the
root mean square error (RMSE) and the coefficient of determination (R-squared).
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FIGURE 1. Conceptual Framework

2.2.8TUDY AREA

Chiang Mai is the biggest city in northern Thailand. It is located at latitude 18.793867
and longitude 98.997116 and covering the area of 20,170 square kilometers. It is divided
into 25 districts. There are 1,682,164 people living in the city, with 742,489 households.
Chiang Mai has three seasons: winter (November to February), summer (March to May),
and the rainy season (June to October) [2]. In this study, 9 regions in Chiang Mai province
were selected (black dot in Figure 2). Each region comprising 49 pixels in 77 arrays as
shown in the right panel of Figure 2.

2.3. DATA COLLECTION AND EXPLORATION

The LST data were obtained from MODIS on the NASA website using MOD11A2
product, which was collected every 8 days during January 1, 2001, and December 27,
2020 (in total, 920 data observations). LST data of 9 regions have been considered for
this study. The LST units were converted to degrees Celsius by subtracting 273.15 from
the Kelvin values. Figure 2 showed the time-series plots of LST for each region over 20
years. The time series plot of the 9 regions and the overall average (of all 9 regions) have
been presented in Figure 3.
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Ficure 3. Time-series plots of LST for 9 regions and overall average LST

There are some missing values in the downloaded data. In this study, mean substitution
has been selected for dealing with missing values. To construct the predicting models, the
data have been divided into 70%-30% proportions for training and checking data sets for
the 9 regions and the overall average LST. Training dataset has been used for constructing
the predictive models, while checking dataset has been used for evaluating and validating
the predictive models by considering the RMSE and R-squared.
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2.4. METHODS

Simple linear regression was fitted to investigate the temperature trends. The simple
linear regression model takes the following form (2.1):

gy = Po+ it + €, (2.1)

where 3 is the fitted LST, fo is the intercept, 31 is the regression coefficient, ¢ is the time
(t=1,2,3,...,920) and € is the error term.

Time series models have been built using stationary variables that have the same mean
and variance across time. In principle, ARIMA models are the best models for forecasting
a time-series. However, fitting a suitable model, estimating the parameters, and validating
the model are all part of the process [12]. The best prediction model for all 9 regions
and their average turned out to be ARIMA(2,0,0) whose general equation is: as shown in
Equation 2.2.

Yo = B+ P1Ye—1 + ave—2 + €, (2.2)
where 1, is the predicted LST wvalue at observation ¢, ¢,¢2 are coeflicients of the lag
variables, y;_1 and y;_o, respectively. ¢ is the value not explained by the model.

After obtaining the appropriate models, the predicted value is calculated from the

training and checking datasets and evaluating those models using RMSE as shown in
Equation 2.3.

n — 2
RSME = |3 % (2.3)

t=1

where n is the defined as the number of predicted data, t is the defined time, y; is
the observation at time ¢, and 7; is the predicted walue. Finally, the final models were
tested using R-squared to determine whether they fit well enough for the training dataset.
Equation 2.4 shows the formula for caleulating the R-squared value.

2y Ge—w)?
R=1-3 w7 24)

where 3; is the predicted LST value at observation t, y; is LST value, 7; is the mean of
LST wvalue.

3. RESULTS
3.1. SEASONAL PATTERNS ANALYSIS

To eliminate the effect of the seasonality, the seasonal adjustment has been performed.

The stationary of LST can be checked at this process. The time series plot of original data
(blue lines) and seasonal patterns (red curve) in Chiang Mai over 20 years were shown in
Figure 4. While Figure 5 presented the time series plot of seasonal adjusted LST. After

perfoming seasonal adjustment, all data were satisfied for applying with ARIMA model.

LST increased slightly in all regions, including the overall average LST, after fitting the

basic linear regression for each location.
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FIGURE 5. Time-series plots of LST after applied seasonal adjusted.

3.2. LAND SURFACE TEMPERATURE TREND ANALYSIS

After fitting the simple linear regression for each location, it was discovered that LST
increased slightly in all regions, including the overall average LST. Each blue points
represents original LST and red linear line represents the trend of LST for each region as

showed in Figure 6.

3.3. LAND SURFACE TEMPERATURE PREDICTING MODELS

To construet the predictive models, the seasonally adjusted of training datasets will be
used to create the ARIMA model by considering the graph of Autocorrelation Funetion
(ACF') and Partial Autocorrelation Function (PACF) to determine the g and p parameters

of ARIMA model as shown in Figure 7.
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It was found that ARIMA(2,0,0) was the most suitable for dataset in all regions. The
equations of ARIMA(2,0,0) for 9 region and overall average LST was given in Table 1.
To evaluate the performance of the obtained models, the results of each model will be
compared with testing and checking datasets (original datasets) using RMSE. Table 2
showed the obtained RMSE values for all regions and overall average LST. In fact, the
obtained RMSE for training dataset for all regions varied between 1.40 and 1.96 degree
Celsius, and for checking dataset varied between 1.51 and 2.07 degree Celsius. In addition,
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all fitted ARIMA models can describe the LST with R-squared ranging from 0.6404 to
0.7871.

TaBLE 1. The equation of ARIMA (2,0,0) for each region and overall
average LST

Region Equation of ARIMA(2,0,0)

1 4;=3.8537+0.5501y, _1+0.3304y; _»
4;=3.2307+0.6108y, _1+0.2959y, _-
14¢=4.5602+0.49967; — 1 +0.3576y; 2
,=2.6698+0.6491y; _1+0.2697y; _»
14y =2.9785+0.5693y, _1+0.3380y; _»
14¢=3.0152+0.6433y: —1+0.2630y;
4;=3.2677+0.5176y, _1+0.3778y; _»
§¢=2.8779-+0.6327y, _1+0.2783y,_»

9 14;=4.1001+0.6561y, _1+0.2148y, _»
overall average LST  ,=2.669140.6440y; —1+0.2735y; 2

00 =] O L o LI b

TaBLE 2. TABLE 2 The RMSE for 9 region and overall average LST

Region RMSE R-squared
Training Checking
1.64776  1.72194 0.7023
1.57787 1.65628 0.7558
1.95550 2.07311 0.6404
1.46398  1.51291 0.7904
1.52230  1.58928 0.7533
1.63139 1.66319 0.7662
1.80424 1.92773 0.7293
1.52475  1.65968 0.7726
9 1.77237  1.95997 0.6989
Overall Average LST 1.40722  1.53105 0.7871

GO =1 @ O = LI BD =

The plots of predicted LST against original data for all regions using the ARIMA(2,0,0)
model have been presented in Figure 8. Each blue line represents original LST, the red
line represents predicted LST for training dataset and the green line represent predicted
LST for checking dataset.
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FicurE 8. The plots of predicted against original values of LST using
ARIMA(2,0,0) for region 1-9 and overall average LST

4. DISCUSSION AND CONCLUSION

The objectives of this study were to analyze the trend of LST change in Chiang Mai
Province and investigate the suitable models for predicting land surface temperature in
Chiang Mai, Thailand, by using RMSE as a measurement. The 8-day observation data
were obtained from the NASA website.

By analyzing the data used in this study, the LST in Chiang Mai showed the maximum
of 41.893 degrees Celsius, the minimum of 23.35 degrees Celsius, and the average of 32.61
degrees Celsius.

The simple linear regression had been used to analyze trend of the average LST change
over 20 years. From the analysis, it was found that the LST of all regions approximately
increase over 20 years. As an overall LST in Chiang Mai Province, the average LST has
been slightly increasing around 0.0184 degrees Celsius each year. It should be noticed
that region 2 has a greater LST than the other regions. This could be due to the fact that
it covers the Chiang Mai city area, which is densely populated with high-rise buildings
and has a high level of commuting. As a result, this research will provide evidence to
policymakers so that they are aware of the impact of climate change in Chiang Mai.

In this study, the LST observations had been divided into 2 partitions as 70%:30% for
training and checking datasets, respectively. To investigate the suitable predictive models
for the LST, the ARIMA model has been applied with training dataset. The RMSE and
R-squared were used to measure the performance of the models. The results showed
that ARIMA(2,0,0) model had the smallest RMSE while testing with both training and
checking datasets. It can be suggested that our final ARIMA(2,0,0) model was suitable
for predicting LST in Chiang Mai Province. Furthermore, the model derived from the
average of overall LST can be used to represent the entire province of Chiang Mai. Noted
that, this study assessed only LST data in Chiang Mai Province, so the finding of this
study did not provide a general conclusion for other locations. For future work, it would
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be suggested that machine learning techniques can be applied for developing the LST
predictive model to compare the performance with ARIMA.
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