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ชื่อวิทยานิพนธ ์ Performance Assessment of Global Climate Models for 
Thailand and Southeast Asia 

ผู้เขียน นางสาวสุชาดา ขำวรพันธ์ 
สาขาวิชา วิทยาศาสตร์ระบบโลก (หลักสูตรนานาชาติ) 
ปีการศึกษา 2564 

 

บทคัดย่อ 

   เอเชียตะวันออกเฉียงใต้ถือว่าเป็นภูมิภาคที่มีความเสี่ยงจากการเพิ่มความถี ่และ
ความรุนแรงของภัยพิบัติทางธรรมชาติ ประเทศไทยเป็นหนึ่งในประเทศที่ตั้งอยู่ในเอเชียตะวันออก
เฉียงใต้ ย่อมได้รับผลกระทบเป็นอย่างมากจากภัยพิบัติทางธรรมชาติเหล่านี้  แบบจำลองสภาพ
ภูมิอากาศโลก (GCM) ได้รับการพัฒนาข้ึนมาเพื่อจำลองลักษณะภูมิอากาศในอดีตและปัจจบุัน รวมทั้ง
ถูกนำมาใช้ประโยชน์ในการทำนายสภาพภูมิอากาศในอนาคต อย่างไรก็ตาม GCM ถูกสร้างขึ้นมาจาก
สถาบันทางด้านภูมิอากาศหลายแห่งทั่วโลก ส่งผลให้ผลการจำลองสภาพภูมิอากาศของแต่ละ GCM มี
ความแตกต่างกันอันเนื่องมาจากการกำหนดค่าพารามิเตอร์ที่ต่างกัน ดังนั้นจุดมุ่งหมายของการศึกษา
นี้คือเพื่อค้นหา GCM ที่มีประสิทธิภาพดีที่สุดในรุ่น Coupled Model Intercomparison Project 
Phase 5 (CMIP5) และ Coupled Model Intercomparison Project Phase 6 (CMIP6) ในการ
จำลองสภาพภูมิอากาศในเอเชียตะวันออกเฉียงใต้และประเทศไทยตามลำดับ CMIP5 GCM จำนวน 
40 รุ่น ถูกนำมาประเมินประสิทธิภาพในการจำลองอุณหภูมิและหยาดน้ำฟ้าสำหรับช่วงเวลาระยะสั้น 
(1960 - 1999) และระยะเวลาระยะยาว (1901 - 1999) ครอบคลุมพื้นที่เอเชียตะวันออกเฉียงใต้ 
ผลลัพธ์ที่ได้จากการจำลองจะถูกนำประเมินประสิทธิภาพโดยใช้ตัวช้ีวัดทางสถิติ 10 ตัวและตรวจสอบ
ความถูกต้องโดยเปรียบเทียบกับชุดข้อมูล ground-based และ reanalysis ผลการศึกษาพบว่า 
CNRM-CN5-2 คือ GCM ที่มีประสิทธิภาพดีที่สุดในการจำลองอุณหภูมิและหยาดน้ำฟ้าบริเวณเอเชีย
ตะวันออกเฉียงใต้เมื่อเปรียบเทียบกับ GCM รุ่นอื่นๆ รองลงมาคือ CNRM-CM5, BNU-ESM, CESM-
CAM5 และ CCSM4 ตามลำด ับ ในขณะที ่  CMIP6 GCMs จำนวน 13 ร ุ ่น ถ ูกนำมาประเมิน
ประสิทธิภาพในการจำลองอุณหภูมิสำหรับช่วงเวลาที่ใกล้เคียงปัจจุบัน (2000 - 2014) ครอบคลุม
พื้นที่ประเทศไทย ผลการจำลองจะถูกนำประเมินประสิทธิภาพโดยใช้ตัวชี้วัดทางสถิติ 5 ตัว และ
ตรวจสอบความถูกต้องโดยเปรียบเทียบกับชุดข้อมูล ground-based และ reanalysis ผลการศึกษา
พบว่า CNRM-CM6-1, CNRM-CM6-1-HR และ CNRM-ESM2-1 สามารถจำลองอุณหภูมิได้ดีกว่า 
GCMs รุ่นอื่นๆ โดยเฉพาะอย่างยิ่ง CNRM-ESM2-1 ในขณะเดียวกัน MIROC6 ถูกพบว่าเป็น GCM ที่
มีประสิทธิภาพแย่ที่สุดในจำลองอุณหภูมิพื้นที่ประเทศไทย 
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ABSTRACT 

    Southeast Asia is a region vulnerable to climate variability that increases 

the frequency and intensity of natural disasters. Thailand, one of the Southeast Asia 

countries, is also highly affected by these natural disasters. Global climate models 

(GCMs) are developed to simulate the past and present climatic characteristics and 

predict the climate in the future. However, there are a variety of GCMs developed by 

many climate institutes around the world and their GCMs have different performances 

due to different parameterizations. Therefore, the aim of this study is to find the best 

GCMs in CMIP5 and CMIP6 that work over Southeast Asia and Thailand, respectively. 

In Southeast Asia, temperature and precipitation simulated by 40 CMIP5 GCMs are 

evaluated for the short-term period (1960 - 1999) and the long-term period (1901 - 

1999). Simulation results are compared with ground-based and reanalysis data using 

ten statistical metrics. The results show that CNRM-CN5-2 has the best performance 

with the lowest total error, followed by CNRM-CM5, BNU-ESM, CESM-CAM5, and 

CCSM4, respectively. In Thailand, the temperatures simulated by 13 CMIP6-GCMs 

are evaluated for the near-to-current term period (2000 - 2014). The simulation results 

are compared with the ground-based and reanalysis data using five statistical metrics. 

The results show that CNRM-CM6-1, CNRM-CM6-1-HR and CNRM-ESM2-1 

perform better than the other models in temperature simulation over Thailand. In 

particular, CNRM-ESM2-1 perform best for all study cases, while MIROC6 perform 

worst for all study cases in this study area.  

 

Keywords: Global climate models, CMIP5, CMIP6, Temperature, Precipitation,   

Southeast Asia, Thailand 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Problem statement 

 

Climate change is one of the most discussed environmental issues. It not 

only increases the magnitude and frequency of natural disasters, but also seasonal 

weather changes. A number of serious events have been attributed to climate change. 

For example, 30% of glaciers at European Alps were lost between 1912 and 2003, while 

glaciers in the North Caucasus region of Russia shrank by 50% between 1998 and 2001 

(Zemp et al. 2007). The temperature in Europe reached a record 40 °C in 2003 (De 

Bono et al. 2004). Between 2000 and 2012, global mean sea level rose by 1.1 - 2.1 

mm/year compared to the 1880 – 1980 average (Dasgupta and Meisner 2009 and 

Warrick et al. 1990). In the early 2000s, the coral bleaching had been found especially 

in the tropical oceans (Wilkinson 2000). Nowadays, extreme natural events are 

becoming more frequent (Khalid et al. 2017). As a result, humanity is suffering from 

more life hazards and property damage. Understanding the changing climate on Earth 

could be a first step to curb the devastation. 

 The climate system is an interactive system that consists of the 

atmosphere, hydrosphere, cryosphere, land surface, biosphere, and solar energy (Treut 

et al. 2007). The interactions between the components make the climate system even 

more complex. Before it was affected by human activities, the climate was changing 

steadily and regularly (Cubasch et al. 2013). In 2017, the Earth's temperature was found 

to have warmed by about 1 °C more than in the pre-industrial era, primarily due to 

human activities. This leads to a change in the composition of the atmosphere 

(Trenberth et al. 1996; Hoegh-Guldberg et al. 2018). These events and historical data 

could help climate scientists understand how the climate is changing.  Research centers 

around the world are working to develop climate models, also known as global climate 

models (GCMs), not only to simulate the climate characteristics of the past and recent, 

but also to achieve another development: predicting climate in the future with high 

accuracy (Randall et al. 2007). 
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GCMs are mathematical models useful for the study of climate. They 

can demonstrate the components of the climate system of the atmosphere, oceans, 

cryosphere, biosphere, and geosphere. In addition, the new generation of GCMs adds 

more complex components such as the carbon cycle, aerosol processes, and 

atmospheric chemistry (Trenberth et al. 1996; Flato et al. 2019). Climate scientists from 

many countries have worked from 1995 to the present to develop them to simulate 

climate as closely as possible to the real climate system (Flato et al. 2019). 

Coupled Model Intercomparison Project (CMIP) is a project under the 

World Climate Research Programme (WCRP) Working Group on Coupled Modelling 

(WGCM). GCMs participating in this project are determined framework by standard 

experimental of CMIP (Haarsma et al. 2016; Stouffer et al. 2017). In 2008, twenty 

climate modeling groups agreed to the new coordinated set of GCM experiments that 

formed the framework for CMIP5 implementation.  These experiments were designed 

to focus on both the long-term (century) and short-term (10–30 years) time frames to 

represent the multi-faceted nature of climate change and variability. Moreover, they can 

highlight gaps in change in past climate as well as in future climate scenarios (Taylor 

et al. 2012; Su et al. 2013). Thus, the model results of CMIP5 provide a deeper 

understanding of the climate system. Recently, the latest phase of CMIP, CMIP6, has 

become available. Although it was developed based on CMIP5, it has improved the 

process of physical parameterization and has higher spatial resolution and more 

components of Earth system processes than CMIP5 (Fan et al. 2020). The critical 

question is whether the improvement of GCMs in CMIP6 has been sufficiently 

developed and solved to simulate the climate. Another issue is that the GCMs 

participating in the CMIP projects are produced by different climate institutes around 

the world (Taylor et al. 2012), therefore there are different physical parameterizations 

and strategies of each GCM (Hourdin et al. 2006). The fact remains that the topography 

and climate characterization of each region are different (White et al. 2010). Hence, the 

internal determinations of GCMs are the key to show the different performance of 

GCMs for different regions because it is difficult to input the topography and climate 

datasets that cover the entire globe. For this reason, researchers have evaluated the 

performance of GCMs in different regions of the world (Kumar et al. 2013; Rupp et al. 

2013; Su et al. 2013; Miao et al. 2014; Moise et al. 2015; Lovino et al. 2018; Raghavan, 
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et al. 2018). This study focuses on Southeast Asia and Thailand, areas with high climate 

sensitivity and variability (Tan et al. 2010).    

 Southeast Asia is one of the most vulnerable regions in the world. In 

recent decades, it has experienced frequent extreme natural disasters, probably due to 

climate change. For example, heat waves that occurred between 1961 and 1998 (Khalid 

et al. 2017). Drought events caused forest fires, crop failures, and water shortages in 

the period from 1997 to 1998, and the increasing frequency of cyclones and typhoons 

had caused major floods in many countries in 1990, 2000, and 2004 (Tan et al. 2010). 

Thailand is a country in Southeast Asia and highly affected by climate variability. It is 

frequently hit by floods and droughts without being prepared for them. Besides, the 

temperature in Thailand has increased by about 1.04-1.80 °C per century (Tan and 

Pereira 2010; Haraguchi and Lall 2015). These examples show that natural disasters in 

the study areas are related to the climate variables. As a result, the economies of 

Southeast Asia and Thailand are extremely affected because their principal economies 

are mainly based on agriculture and natural resources, as well as economic activities in 

coastal areas (Tan et al. 2010).  

Weather-related natural disasters that occur in the study areas are mainly 

related to the variables of temperature and precipitation (Seneviratne et al. 2012). Both 

variables are important climate factors that directly influence the occurrence of floods, 

storms, landslides, droughts and extreme temperatures (CRED and UNISDR 2015). 

These natural disasters damage human lives and property (Handmer et al. 2012). In 

addition, the increasing frequency of natural disasters has a strong impact on human 

occupations, especially agriculture, as it is mainly dependent on climate for its 

production (Nastis et al. 2012). Since agriculture is considered as one of the major 

occupations of the population of Southeast Asia, the study areas could not escape the 

impacts of these climate variability. Hence, the evaluation of GCMs of this study is 

useful because these results show the best GCMs for temperature and precipitation 

simulation in Southeast Asia and for temperature simulation in Thailand. They also 

show the changes of temperature and precipitation that occurred in the past in the study 

area. 

   Subsequently, the current CMIP is used for climate simulation at 

Southeast Asia (CMIP5 was the latest version at that time). In addition to the regional 
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level, it is further investigated whether the best GCM for the national level is still the 

same for the regional level or not. Therefore, CMIP6 (the latest version) is used for 

climate simulation, and Thailand was selected as the study area for national simulation. 

Moreover, the result of this study is a preliminary guide to support climate studies in 

Southeast Asia and Thailand.  Therefore, this work aims to evaluate and find suitable 

GCMs for climate simulation in Southeast Asia and Thailand. 

 

1.2 Research objectives 

 

• To evaluate the performance of GCMs for temperature and precipitation 

simulation over Southeast Asia and for temperature simulation over Thailand.  

• To find the best GCM for climate simulation over Southeast Asia and 

Thailand 

 

1.3 Research scope 

 

  The study evaluates the performance of 40 different global climate 

models in CMIP5 for temperature and precipitation simulations of the 20th century. 

The results of the global climate models are evaluated using observations and reanalysis 

data from University of East Anglia Climatic Research Unit (CRU) TS3.10.01, 

University of Delaware Air Temperature and Precipitation (UD) v.3.01, National 

Center for Environmental Prediction/National Center for Atmospheric Research 

Reanalysis (NCEP), European Centre for Medium-Range of Weather Forecasts 40 Year 

Re-analysis (ERA40). Besides, this study employs 13 different global climate models 

in CMIP6 for temperature simulations at the beginning of the twenty-first century 

(2000-2014). All GCMs CMIP6 results were compared with observational data from 

the University of Delaware (UD) Air Temperature V5.01, the University of East Anglia 

Climatic Research Unit Time Series (CRU TS) V4.02; also, reanalysis datasets from 

the Modern-Era Retrospective Analysis for Research Applications, Version 2 

(MERRA2), and the European Centre for Medium-Range Weather Forecasts 

(ECMWF) Interim Reanalysis (ERA-Interim) were used for model evaluation. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

2.1 Climate change 

 

 Climate is weather in the sense of the average and its variability over a 

long-term period (decade, centuries) of a place or region. Climate data are temperature, 

humidity, precipitation, clouds and wind. The climate of each place varies and depends 

on latitude, intensity of solar radiation, wind and ocean currents, distance to the sea, 

vegetation and mountains, and surface variables such as temperature and precipitation 

(IPCC, 2007; Bauer et al. 2016; Shepardsona et al. 2011; Houghton 2002). 

   United Nations Framework Convention on Climate Change (UNFCCC) 

reports that climate change is mainly caused by changes in atmospheric components 

such as carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), 

chlorofluorocarbons (CFCs), and ozone (O3). These gases are known as greenhouse 

gases and are produced to a significant extent by human activities such as fossil fuel 

burning (transportation), deforestation, heating and cooling of buildings, production of 

cement and chlorofluorocarbons, especially after the industrial revolution (Trenberth et 

al. 2000; Bitz and Marshall 2008; UNFCCC 1992; IPCC 2007). The increase in 

greenhouse gases causes the greenhouse effect, which leads to changes in the global 

system, especially an increase in global temperature.  

   Figure. 2.1 shows temperature records from NASA’s Goddard Institute 

for Space Studies (NASA), the National Oceanic and Atmospheric Administration’s 

National Climatic Data Center (NOAA), the Met Office Hadley Centre (UK), the 

Berkeley Earth research group, and Cowtan and Way’s analysis. They show a graph of 

temperature anomalies from 1880 to 2019 compared to the baseline average 

temperature for the period 1951-1980. Their records also show that past temperature 

has increased dramatically since the 1980s, especially in the last decade (NASA/NOAA 

2020). 
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Figure 2.1 Annual anomalies in global surface temperature from 1880 to 2019 recorded 

by five climate agencies (NASA /NOAA, 2020) 

 

2.2 Global climate models 

 

   General Circulation Model or Global Climate Models (GCMs) are a 

complex model developed to represent the physical, chemical, and biological processes 

in the atmosphere, oceans, land surface, and cryosphere components and their 

interactions (Figure 2.2) (Dunlea and Elfring 2012).  
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Figure 2.2 Schematic representation of the major processes and components of the 

global climate system (IPCC 2007) 

   The internal climate sub-models of the GCMs focus on simulating the 

individual components of the climate system, which consist of the atmospheric model, 

the ocean model, the land model, and the sea-ice model (Figure 2.3) (Gent 2012). To 

simulate these climate components, GCMs use mathematical equations and physical 

laws, including the conservation laws for momentum, energy, mass, and humidity, and 

the ideal gas law (Schneider 1992). These are the main equations used by GCMs to 

describe the motion of fluids and gases in the atmosphere and ocean. GCMs require 

some input data derived from observations or other modeling studies, including 

• Earth’s properties: Earth's radius and rotation period, land topography, 

ocean coastline and bathymetry, land/soils properties 

• Boundary conditions: Distribution of vegetation, topography of ice 

sheets 

• Solar influences: Monthly or annual solar radiation 

• Emissions: Monthly or annual CO2 emissions in the grid 
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• Concentrations of GHGs and aerosols: global mean time series  

(e.g., black carbon, organic carbon, CH4, sulfur) 

• Volcanic forcing: Dust and sulfur emissions 

• Ozone: Time-evolving 3d concentrations for forcing in models  

• Land use: emissions from changes in land cover 

   GCMs represent the Earth through three-dimensional spatial grids of the 

atmosphere, oceans, and land that include both horizontal and vertical grids for 

representing the most realistic climate possible (Figure 2.4). Grid boxes containing 

climate information are built in, and the resolution of the GCMs is defined by the size 

of the grid boxes (Edwards 2011; Gettelman and Rood 2016). In each grid cell, GCMs 

compute basic physical variables such as temperature, precipitation, pressure, winds, 

and humidity. In addition, GCMs produce a variety of output data, such as soil layer 

moisture content, soil moisture content, surface eastward stress, surface downward 

northward stress, surface snow thickness, surface temperature, surface air pressure, 

snowfall flux, surface upward latent heat flux, surface upward sensible heat flux, runoff 

flux, land surface snow amount, etc. (Meehl et al. 2007).  

 

 

Figure 2.3 Key components of GCMs (adapted from Gent 2012) 
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Figure 2.4 Schematic representation of physical processes and grid structure in global 

climate models (Edwards 2011) 

   GCMs are divided into 3 types, namely atmospheric general circulation 

models (AGCMs), ocean general circulation models (OGCMs), and atmosphere-ocean 

general circulation models (AOGCMs). These models can predict future climate based 

on emission scenarios that describe the amount of greenhouse gas emissions, aerosols, 

and other pollutants including land use and land cover. AOGCMs are a more complex 

calculation because this model adds sea ice and land components. Therefore, AOGCMs 

is a full version climate model and is currently used as the basis for climate models. 

GCMs are typically run on a high performance computer to simulate  past, present,  and 

future climate (Randall et al. 2007; Symon 2013). 

  In summary, GCMs are the most appropriate and useful tool to 

understand the complex climate system and climate change around the world used for 

climate simulations and projections. (Voldoir et al. 2013; Lauer et al. 2013;  Vigaud et 

al. 2009). According to Cubasch et al. (2013), GCMs have been developed over time 

with more components and higher resolutions, resulting in more complex processes in 

GCMs from 1992 to the present (Figure 2.5). Nowadays, GCMs have a spatial 
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resolution of about 100-300 km, while the temporal resolution is 1-hourly to monthly 

data. 

 

 

Figure 2.5 The development of climate models (IPCC 2013) 

 

2.3 Coupled Model Intercomparison Project (CMIP) 

 

   The World Climate Research Program (WCRP) and the World 

Meteorological Organization (WMO) build CMIP to collect GCMs from climate 

research centers around the world. CMIP phases are continuously released to develop 

the performance of GCMs (Bock et al. 2020). The experimental design of CMIP1 and 

CMIP2 is simple (Stouffer et al. 2017), while CMIP3 is increasingly complex and 

represent the first phase of atmospheric and ocean general circulation models 

(AOGCMs) (Meehl el al. 2007).  
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   CMIP5 was developed based on CMIP3, but added land and ocean 

biogeochemical processes and experiments with future climate scenarios (Stouffer et 

al. 2017). The goal of CMIP5 is set to assess the past climate of GCM as it realistically 

occurs. The experiments were designed to focus on both long-term (century) and short-

term (10–30 years) experiments to represent the multiview of climate change and 

variability as well as climate projections. Thus, the GCM results in CMIP5 have a 

deeper understanding of the climate system than in earlier phases (Taylor et al. 2012).     

   Figure 2.6 shows all CMIP5 experiments in which the length of the 

experiment portion indicates the length of the simulation. The highest priority 

experiments are in the core, while the tier 1 and tier 2 experiments are lower priority. 

The main CMIP5 experiments are divided into 4 types, including climate projections 

(blue), model understanding (yellow), model evaluation (red), carbon cycle 

experiments (green) (Jones et al. 2011). 

 

Figure 2.6 A schematic summary of the CMIP5 model experiments (Jones et al. 2011) 

   CMIP6 is the current phase. It improves the process of physical 

parameterization and higher spatial resolution; there are also more components of Earth 

system processes than in CMIP5 (Fan et al. 2020). The results of CMIP simulations are 

used to evaluate climate for several international projects, such as the 2001, 2007, and 
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2013 assessment reports of the Intergovernmental Panel at Climate Change (IPCC) 

(IPCC 2014; Taylor et al. 2012). Simulation results from CMIP6 are expected to appear 

in IPCC Sixth Assessment Report (AR6).  Figure 2.7 shows a schematic representation 

of the CMIP6 experimental design, which focuses on specific themes. The core consists 

of the standardized functions of all CMIP Diagnostic Evaluation and Characterization 

of Klima (DECK) experiments, as well as the CMIP6 historical simulation. The middle 

and outer ring consists of science questions and challenges used to determine CMIP6. 

Table 2.1 and 2.2 show the sub-model components of each CMIP5 and CMIP6 GCMs 

used in this study, respectively.       

 

Figure 2.7 Schematic representation of the CMIP6 experiment design (Stouffer et al. 

2017) 
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Table 2.1 List of climate system model for 40CMIP5 GCMs used in this study 

Model Center 
Atmosphere 

model 

Ocean 

model 

Land 

model 

Ice 

model 
Reference 

1. BCC-CSM1-1  

 

BCC/ China BCC−AGCM

2.1 

MOM4−L40v1 BCC−AVI

M1.0 

SIS Wu et al. (2014) 

2. BCC-CSM1-1-M BCC/ China BCC−AGCM

2.2 

MOM4−L40v2 BCC−AVI

M1.0 

SIS Wu et al. (2014) 

3. BNU-ESM BNU/ China CAM4 MOM4p1 CoLM CICE4.1 Ji et al. (2014) 

4. CanESM2 CCCM/ Canada CanAM4 CanOM4 CTEM CanSIM1 Lionello and Scarascia (2018) 

5. CCSM4 NCAR/ USA CAM4 POP2 CLM4 CICE4 Hurrell et al. (2013) 

6. CESM1-BGC NCAR/ USA CAM4 POP2 CLM4 CICE4 Hurrell et al. (2013) 

7. CESM1-CAM5 NCAR/ USA CAM-CHEM POP2 CLM4 CICE4 Hurrell et al. (2013) 

8. CESM1-FASTCHEM NCAR/ USA CAM4 POP2 CLM4 CICE4 Hurrell et al. (2013) 

9. CESM1-WACCM NCAR/ USA WACCM4 POP2 CLM4 CICE4 Hurrell et al. (2013) 

10. CMCC-CESM CMCC/ Italy CAM–5.2 NEMO3.4 CLM4 CICE4 Fogli and Iovino (2014) 

11. CMCC-CM CMCC/ Italy ECHAM5 OPA8.2 SILVA/PE

LAGOS 

LIM Lionello and Scarascia (2018) 

12. CMCC-CMS CMCC/ Italy ECHAM5 OPA8.2 SILVA/PE

LAGOS 

LIM Lionello and Scarascia (2018) 

13. CNRM-CM5 CNRM-

CERFACS / 

France 

ARPEGE-

Climat v5.2.1 

NEMO v3.2 ISBA GELATO 

v5.3 

Voldoire et al. (2013) 

14. CNRM-CM5-2 CNRM-

CERFACS / 

France 

ARPEGE-

Climat 

V5.2.3 

NEMO v3.2 ISBA GELATO 

v5.4 

Voldoire et al. (2013) 

15. CSIRO-Mk3-6-0 CSIRO-

QCCCE/Australia 

MK3.6 At.Co MK3.6 Oc.Co. MK3.6 Mk3.6 

Part of 

OGCM 

Rotstayn et al. (2010); Lionello 

and Scarascia (2018) 
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Table 2.1 List of climate system model for 40CMIP5 GCMs used in this study (Continued) 

Model Center 
Atmosphere 

model 

Ocean 

model 

Land 

model 

Ice 

model 
Reference 

16. EC-EARTH EC- EARTH/ 

Europe 

IFS NEMO v2 TESSEL LIM2TES

SEL 

Hazeleger et al. (2011) 

17. FGOALS-g2 LASG/ China GAMIL2 LIOCM2 CLM3 CICE4-

LASG 

Zhang and Yu (2011); Zhou et al. 

(2018) 

18. FIO-ESM FIO/ China CAM3.5 POP2 CLM CICE Qiao et al. 2013 

19. GFDL-CM3 GFDL/ USA AM3p9 MOM4p1 LM3p7 SISp2 Griffies et al. (2011) 

20. GFDL-ESM2G GFDL/ USA AM2p14 TOPAZ1p2 LM3p7 SISp2 Dunne et al. (2012) 

21. GFDL-ESM2M GFDL/ USA AM2p14 MOM4p1 LM3p7 SISp2 Dunne et al. (2012) 

22. GISS-E2-H NASA/ USA GISS-E2 HYCOM GISS HYCOM Sanderson et al. (2017) 

23. GISS-E2-H-CC NASA/ USA GISS-E2 HYCOM GISS HYCOM Sanderson et al. (2017) 

24. GISS-E2-R NASA/ USA GISS-E2 Russell GISS Russel Sanderson et al. (2017) 

25. GISS-E2-R-CC NASA/ USA GISS-E2 Russell GISS Russell Sanderson et al. (2017) 

26. HadCM3 Hadley Center/ 

UK 

HadAM3 HadOM3 MOSES1 Sea ice 

componen

t of 

HadOM3 

Collins et al. (2001) 

27. HadGEM2-AO Hadley Center/ 

UK 

HadGAM2 HadGOM2 MOSES2 Sea ice 

componen

t of 

HadOM3 

Collins et al. (2001) 

28. HadGEM2-CC Hadley Center/ 

UK 

HadGAM2 HadGOM2 JULES + 

TRIFFID 

Inspired 

from CICE 

Martin et al. (2010) 

39. HadGEM2-ES Hadley Center/ 

UK 

HadGAM2 HadGOM2 JULES + 

TRIFFID 

Inspired 

from CICE 

Martin et al. (2010) 
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Table 2.1 List of climate system model for 40CMIP5 GCMs used in this study (Continued) 

Model Center 
Atmosphere 

model 

Ocean 

model 
Land model 

Ice 

model 
Reference 

30. INMCM4 INM-CM4/Russia INM-CM4 

At.Co 

INM-CM4 

Oc.Co 

Simple model 

into 

INMCM4 

INM-CM4 

Oc.Co 

Volodin et al. (2010); 

Lionello and Scarascia 

(2018) 

31. IPSL-CM5A-LR IPSL/ France LMDZ4A v5 NEMO 

v2.3 

ORCHIDEE LIM2 Dufresne et al. (2013) 

32. IPSL-CM5A-MR IPSL/ France LMDZ4A v5 NEMO 

v2.3 

ORCHIDEE LIM2 Dufresne et al. (2013) 

33. IPSL-CM5B-LR IPSL/ France LMDZ5B NEMOv3.

2 

ORCHIDEE LIM2 Dufresne et al. (2013) 

34. MIROC5 MIROC/ Japan CCSR/NIES/FR

CGC AGCM 

COCO 

v4.5 

MATSIRO COCO v4.5 Sakamoto et al. (2012) 

35. MIROC-ESM MIROC/ Japan CCSR/NIES/FR

CGC AGCM 

COCO 

v3.4 

MATSIRO  COCO v3.4 Watanabe et al. (2011) 

36. MIROC-ESM-

CHEM 

MIROC/ Japan CCSR/NIES/FR

CGC AGCM 

COCO 

v3.4 

MATSIRO COCO v3.4 Watanabe et al. (2011) 

37. MPI-ESM-LR MPI/ Germany ECHAM6 MPI-OM JSBACH Sea ice 

component 

of MPI-OM 

Raddatz et al. (2007) 

38. MPI-ESM-MR MPI/ Germany ECHAM6 MPI-OM JSBACH  Sea ice 

component 

of MPI-OM 

Giorgetta et al. (2013) 

39. MRI-CGCM3 MRI/ Japan GSMUV MRI.CO

M3 

HAL MRI.COM3 Yukimoto et al. (2011) 

40. NorESM1-M NCC/ Norway CAM4-Oslo MICOM CLM4 CICE4 Bentsen et al. (2012) 

http://www.mpimet.mpg.de/en/science/models/mpi-esm/james-spezialausgabe/abstract-stevens.html
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Table 2.2 List of climate system model for 13CMIP5 GCMs used in this study 

Model Center Atmosphere model Ocean model Land model Ice model Reference 

1.BCC-CSM2-MR BCC-CMA/ China BCC-AGCM3-MR MOM4-L40v2 BCC-AVIM2 SISv2 Wu et al. (2019) 

2. CAMS-CSM1-0 CAMS/China ECHAM5_CAMS MOM4 CoLM 1.0 SIS1 Rong et al. (2019) 

3. CanESM5 CCCMA/Canada CanAM5 CanNEMO CLASS-CTEM LIM2 Swart et al. (2019) 

4. CESM2 NCAR/ USA CAM6 POP2 CLM5 CICE5 Danabasoglu et al. 

(2020) 

5. CNRM-CM6-1 CNRM-CERFACS / 

France 

ARPEGE‐Climat 

v6.3 

NEMO v3.6 SURFEX GELATO v6 Voldoire et al. 

(2019) 

6. CNRM-CM6-1-

HR 

CNRM-CERFACS / 

France 

ARPEGE‐Climat 

v6.3 

NEMO v3.6 SURFEX GELATO v6 Voldoire et al. 

(2019) 

7. CNRM-ESM2-1 CNRM-CERFACS / 

France 

ARPEGE‐Climat 

v6.3 

NEMO v3.6 SURFEX GELATO v6 Séférian et al. 

(2019) 

8. FGOALS-f3-L     LASG/ China FAMIL2.2 LICOM3 CLM4 CICE4 HE et al. (2019) 

9. FIO-ESM-2-0     FIO-QLNM/China CAM5 POP2 CLM4 CICE4 Bao et al. (2020) 

10. GFDL-CM4 GFDL/ USA AM4.0 LM4.0  OM4.0 SIS2 Held et al. (2019) 

11. IPSL-CM6A-LR     IPSL/France LMDZ6 NEMOv3.6 ORCHIDEE  NEMO-LIM Boucher et al. 

(2020) 

12. MIROC6     MIROC/ Japan CCSR/NIES/FRCGC 

AGCM 

COCO v4.5 MATSIRO COCO v4.5 Tatebe et al. 

(2019) 

13.MRI-ESM2-0     MRI / Japan MRIAGCM3.5 MRI. COMv4 MRIAGCM3.5 MRI. COMv4 Yukimoto et al. 

(2019) 

https://portal.enes.org/models/copy_of_nemo
http://www.umr-cnrm.fr/spip.php?article145&lang=en
http://www.umr-cnrm.fr/spip.php?rubrique225&lang=en
https://portal.enes.org/models/copy_of_nemo
http://www.umr-cnrm.fr/spip.php?article145&lang=en
http://www.umr-cnrm.fr/spip.php?rubrique225&lang=en
https://portal.enes.org/models/copy_of_nemo
http://www.umr-cnrm.fr/spip.php?article145&lang=en
http://www.umr-cnrm.fr/spip.php?rubrique225&lang=en
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2.4 Reference data for evaluating GCMs  

 

2.4.1 The Climatic Research Unit gridded Time-series  

   Climatic Research Unit gridded Time Series (CRU TS) is the monthly 

dataset of a gridded climate product with high-resolution in space and time. It was 

developed by the Climatic Research Unit (CRU) at the University of East Anglia. The 

climate sources were derived from the World Meteorological Organization (WMO). 

This is supplemented by national-level climate data from National Meteorological 

Services (NMSs). These global climate data collected from climate stations were 

interpolated in the spatial pattern 0.5° × 0.5° over the land area. To produce climate 

data without missing values, CRU TS3.10.01 used the triangulation method to 

interpolate the values, while CRU TS v4.02 used the angular-distance weighting 

(ADW) method. (Harris et al. 2014; Harris et al. 2020). The CRU TS dataset is available 

in NetCDF and ASCII formats and can be downloaded from the Centre for 

Environmental Data Analysis website. 

2.4.2 The University of Delaware Air Temperature and Precipitation (UD) 

   UD is a global air temperature and precipitation dataset produced by the 

University of Delaware. Stations records from Global Historical Climatology Network 

and Legates and Willmott are used as input data to create the UD climate dataset. The 

datasets cover the period 1901-2010 (v3.01) (Matsuura and Willmott 2012) and 1900-

2017 (v5.01) (Willmott and Matsuura 2018). The horizontal resolution of both versions 

is 0.5° × 0.5° 3 using three interpolation methods, including digital elevation model 

(DEM), assisted interpolation, traditional interpolation, climatologically aided 

interpolation (CAI) (Willmott et al. 1985; Willmott and Matsuura 1995; Willmott and 

Robeson 1995). The UD dataset can be downloaded from the Physical Sciences 

Laboratory’s website. 
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2.4.3 The National Centers for Environmental Prediction (NCEP)-National 

Center for Atmospheric Research (NCAR) 40-Year Reanalysis (called NCEP) 

 NCEP is a joint product of NCEP and NCAR. It is produced to record 

retrospective data from 40 years of global atmospheric analyses for climate research 

and monitoring. The data sources that feed into this reanalysis model are data from land 

surface, rawinsonde, ship, pibal, aircraft, satellite, and various other data, using a state-

of-the-art data assimilation system to assimilate the input data. The NCEP dataset 

includes data from 1948 to the present (Kalnay et al. 1996). The NCEP dataset is 

available on a 2.5° × 2.5° grid and can be downloaded from the Physical Sciences 

Laboratory’s website. 

2.4.4 The European Centre for Medium-Range Weather Forecasts (ECMWF) 

 ERA40 is a reanalysis dataset of meteorological observations from the 

European Centre for Medium-Range Weather Forecasts (ECMWF). Their surface 

observations are from land stations and ships, and soundings from radiosonde and pilot 

balloons. The ERA40 products also receive many observations to create the dataset, 

which consists of aircraft, buoys, satellite wind, satellite radiance, scatterometer, and 

PAOB. A data assimilation system is used to create these reanalysis datasets. This 

dataset covers the period from 1957 to 2002 (Uppala et al. 2005). The ERA40 dataset 

is available on a 2.5° × 2.5° grid and can be downloaded from the European Centre for 

Medium-Range Weather Forecasts’ website.  

   ERA-Interim is the most recent global atmospheric reanalysis produced 

by ECMWF. It covers the period from 1979 to the present and is continuously updated 

in real-time. The ERA-Interim project was to prepare a new global atmospheric 

reanalysis for the future and to replace the data of the ERA-40 reanalysis. Compared to 

ERA40 , ERA- Interim uses an improvement of some key aspects of ERA -40 , such as 

the representation of the hydrological cycle, the quality of the stratospheric circulation, 

and the treatment of biases and changes in the observing system  (Dee et al. 2011; 

Balsamo et al. 2012; Gao et al. 2012). The spatial resolution of the latest  ECMWF 

ERA-Interim model has a spectral resolution at T255 with a 0 .75° × 0 .7 5  °  latitude-
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longitude grid or about 80 km  on 60 vertical levels from the surface to uppermost level 

at 0 .1 hPa, 37 pressure levels  and uses a reduced Gaussian grid N128  )Balsamo et al. 

2012; Berrisford et al.  2011; Gao et al. 2012). The ERA40 dataset is available on a 2.5° 

× 2.5° grid and can be downloaded from European Centre for Medium-Range Weather 

Forecasts’ website.  

 

2.4.5 The Modern-Era Retrospective Analysis for Research Applications, 

Version 2 (MERRA2) 

   MERRA2 is a reanalysis product generated using the Goddard Earth 

Observing System (GEOS) data assimilation system (DAS) from NASA’s Global 

Modeling and Assimilation Office (GMAO). MERRA version 2 (MERRA2) is 

produced using version 5.12.4 of the GEOS DAS (Rienecker et al. 2011). Many types 

of observational data are used in this product, derived from various data sources, 

including land surface observations, ground-based remotely sensed, satellite-derived 

wind, satellite retrieved, radio occultation, satellite radiance (Gelaro et al. 2017). The 

MERRA2 dataset is available on a 0.5° × 0.625° grid and can be downloaded from 

National Aeronautics and Space Administration Goddard Space Flight Center’s 

website. 

 

2.5 Previous Studies of evaluation of CMIP GCMs 

 

There are several studies that have used climate variables from GCMs 

to simulate past, present and future climate trends in different regions of the world.  

   Gleckler et al. (2008) developed a set of climate model metrics to 

evaluate CMIP3 GCMs for atmospheric fields during the period 1980–1999 over 

Northern Hemispheres, the extratropical zones of the South, tropics, and globe. They 

used statistical metrics to assess the performance of the models and employed the 

relative error method to rank the models. The usefulness, limitations, and robustness of 

the metrics are evaluated by examining whether the information provided by each 

metric correlates in any way with the others. Besides, the evaluation of the metrics 

(spatial and temporal variability, RMSE, correlation coefficient, bias error) of the 



20 

 

 

performance of the model considered limitations and robustness in the correlation 

between each metric and the climate variable, and considered metrics with multiple 

factors (spatial scale, study area, time series). Their results revealed that the 

performance of each GCM evaluated is not equal in simulating the climatology of the 

annual cycle and the variance of monthly anomalies. When a multi-model ensemble is 

considered, its performance in the climatology of the annual cycle for several variables 

and regions is better than that of the individual models. 

  Yan et al. (2013) assessed twenty-five historical CMIP5 simulations of 

temperature over China. The simulation results of CMIP3 and CMIP5 are compared 

with the observations of CRUT3v and CN05. The temperature results were evaluated 

in three expressions, which include the mean, the spatial distribution of the mean, and 

spatial distribution of the linear trend. They found that the multi-model ensemble of 

CMIP5 can simulate the spatial pattern of temperature well. 

  Kumar et al. (2013) analyzed the trends and long-term persistence of 

temperature and precipitation of nineteen CMIP5 GCMs over continental areas (608S–

608N) during 1930–2004 with good agreement between simulation and observational 

results. This result shows that CCSM4.0 has the highest pattern correlation for 

temperature trends, while GFDL and MIROC models show the highest pattern 

correlation for precipitation trends. The relative performance of this study shows that 

CMIP5 models are not equally good for precipitation and temperature. They concluded 

that the best simulation of temperature trend does not necessarily provide the best 

simulation of precipitation trend. Therefore, determining the best model depends on the 

purpose of the analysis. 

  Rupp et al. (2013) evaluated the performance of forty-one CMIP5 

GCMs in simulating temperature and precipitation over the Pacific Northwest United 

States (PNW) using performance metrics. Metrics used to evaluate the GCMs consisted 

of 40-year simulations (mean, diurnal temperature range, seasonal cycle amplitude, 

seasonal correlation, and seasonal variance) and twentieth-century simulations 

(variance, trend, and ENSO related-teleconnections). GCM results were compared with 

average observations. The ranking of the models was calculated based on the total error 

score of all performance metrics. Based on the design criteria and results, CNRM-CM5 

performed best among the selected models.  
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  Su et al. (2013) assessed the performance of 24 GCMs available in 

CMIP5, which evaluated both monthly surface air temperature and precipitation over 

eastern Tibetan Plateau, and compared the model outputs with 176 meteorological 

stations for 1961–2005. When evaluating GCMs by bias metrics, the results indicate 

that GFDL-ESM2M, MPI-ESM-LR, GFDL-ESM2G, CanESM2, and CanCM4 ranked 

top in temperature, while IPSL-CM5A-LR, MRI-CGCM3, IPSLCM5A-MR, HadCM3, 

and CanESM2 led in precipitation. However, they concluded that the result of model 

performance depends on the climate variable. 

  Miao et al. (2014) used the criteria of correlation, RMSE, and amplitude 

of standard deviations to evaluate twenty-four CMIP5 GCM simulations and 

projections over Northern Eurasia which found that most of the simulations 

overestimated the annual mean T, especially in the winter season. Although most of the 

GCMs in this study can capture decadal temperature trends, their accuracy is quite low. 

When skill scores are taken into account, the results simulated by a multi-model 

ensemble method perform better than a single model. 

   Siew et al. (2014) evaluated the performance of ten CMIP5 GCMs of 

winter monsoon precipitation over Southeast Asia. All the models were evaluated in 

terms of annual cycle, spatial distribution and interannual variability. They found only 

8 GCMs simulating average annual cycle of precipitation well, while all models 

simulating winter monsoon precipitation had large biases. In addition, CNRM, IPSL 

and NorESM1 were the top 3 GCMs simulating the present climate. These GCMs were 

selected to simulate precipitation in future projections under 3 RCP scenarios (RCP2.5, 

RCP4.5, and RCP8.5). Their projection of RCP 8.5 scenario shows the most significant 

changes in winter monsoon precipitation. 

   Ahmadalipour et al. (2017) evaluated the performance of daily records 

of precipitation and temperature from 20 CMIP5 GCMs datasets over the Columbia 

River Basin (CRB) in the Pacific Northwest USA from 1970 to 2000. To select the 

appropriate model, they employed the univariate (mean, standard deviation, coefficient 

of variation, relative change (variability), Mann-Kendall trend, Kolmogorov-Smirnov 

test (KS-test), and multivariate (principal component analysis (PCA) or empirical 

orthogonal function (EOF), singular value decomposition (SVD) or maximum 

covariance analysis, canonical correlation analysis (CCA), and cluster analysis) 
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techniques. All metrics were treated equally. A ranking of GCMs based on performance 

assessed against gridded observational data at daily, monthly and seasonal levels. The 

ranking of GCMs in this study shows that their results can provide insight into climate 

variables. 

   Xu et al. (2017) evaluated the ability of 14 CMIP5 GCMs in simulating 

air T, specific humidity, geopotential height, and wind over Tibetan Plateau using 

criteria such as spatial correlation efficiency, spatial mean error, and standard deviation. 

Their ranking shows that CCSM4 and CNRM-CM5 perform better than the other 

models.  

  Xuan et al. (2017) evaluated the maximum and minimum air T, 

precipitation, wind speed, solar radiation, and relative humidity from 1971 to 2000 over 

Zhejiang Province in China using eighteen CMIP5 GCMs ranked by correlation 

coefficient, root mean square error, and percent bias of model estimation. Six variables 

of all GCMs exhibited different spatial patterns, while five variables (except wind 

speed) had similar representation of seasonal variations in most simulations.  

  Bannister et al. (2017) evaluated the change in recent and future 

temperature over the Sichuan Basin in China using forty-seven CMIP5 GCMs and 

found that most GCMs could not adequately represent temperature trends, especially 

for seasonal cases.  

  Agyekum et al. (201 8) evaluated eighteen CMIP5 GCMs in simulating 

different time scales of precipitation over Volta Basin and concluded that the ensemble 

mean of all selected models performed better than individual models in simulating at 

annual, seasonal and monthly time scales.  

  Huang et al. (2019) analyzed the vector winds for the performance 

assessment of thirty-seven CMIP5 GCMs and multi-model ensembles in the monsoon 

region Asian-Australian using mean, annual cycle and interannual variability criteria 

and found that the best performance belonged to the multi-model ensembles. 

  However, the CMIP 6  GCMs are the last release of the project. As a 

result, there are few CMIP6 evaluation.  Xin et al. (2020) simulated the summer 

precipitation of eight CMIP6 GCMs over China and the summer of East Asian during 

1961–2005; they also compared the simulations of all CMIP6 GCMs with those of eight 

previous CMIP5 GCMs.  The climatology of their study was assessed based on 
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interannual variation and linear trends. It was found that most of the CMIP6 GCMs 

were better at simulating the interannual precipitation pattern over Eastern China than 

the earlier CMIP5 GCMs. Also, their study found that the multi-model ensemble of 

CMIP6 is better than the multi-model ensemble of CMIP5 in terms of performance. 

Almazroui et al. (2020) analyzed the projected changes in temperature and precipitation 

over Africa from twenty-seven CMIP6 GCMs for the period 2030–2059 as well as for 

the period 2070–2099, comparing the two future periods with the historical climate 

(1981–2010). Under SSP5-8.5, they showed that the mean annual temperature at the 

end of 2100 will increase by 5.6 °C over the Sahara region and by 3.5 °C over Central 

East Africa.  

  Watanabe  et al. (2014) studied monsoon precipitation in Thailand, a 

tropical country, using nine CMIP5 models over Thailand and compared the projections 

of all GCMs with three reference datasets (CMAP, GPCP and APHRODITE) . They 

found that the September monthly river discharge projection of the ensemble was 60% 

to 90% higher than that of the retrospective simulation. Supharatid  (2015) analyzed the 

performance of CMIP3 and CMIP5 GCMs for simulating precipitation over Chao 

Phraya River Basin, Thailand, and found that the mean precipitation of GCMs CMIP5 

is more similar to the observed data than that of GCMs CMIP3.  

  Since the GCMs involved in the CMIPs project are generated by 

different climate institutes around the world (Taylor et al. 2012), there are different 

physical parameterizations and strategies of each GCM (Hourdin et al. 2006). 

Moreover, the topography and climate characterization of each region varies (White et 

al. 2009). The internal determinations of GCMs are the keys to the different 

performances of GCMs for different regions, because it is difficult to input the 

topography and climate datasets that cover the entire globe. For this reason, researchers 

have evaluated the performance of GCMs in different regions of the world (Kumar et 

al. 2013; Rupp et al. 2013; Su et al. 2013; Miao et al. 2014; Moise et al. 2015; Lovino 

et al. 2018; Raghavan et al. 2018).  

 



24 

 

 

CHAPTER 3 

MATERIALS AND METHODS 

 

 

3.1 Research framework 

 

 The research framework for this study is shown in Figure 3.1. The 

results of GCMs CMIP  and CMIP6 and the reference datasets evaluated in this study 

were linearly interpolated on the same grid with a resolution of 0 .15° . When it comes 

to climate analysis, the study area is a major consideration since the larger the region, 

the more time and resources are required for computation and processing. As Southeast 

Asia is the main study area in this work, the CMIP5 GCMs have been published since 

2013, which provides sufficient time for the analysis of the precipitation and 

temperature data. In the first part of the study, the historical temperature and 

precipitation data from 40 CMIP5 GCMs over Southeast Asia 1901- 1999 and 1960 -

1999 were analyzed using 9 statistical metrics. The GCMs evaluated for a long-term 

period are computed over land only, while that for the short-term is computed 

separately for land, ocean, and both land and ocean. 

  However, during the evaluating of the CMIP5 GCMs, the CMIP6 

GCMs, a new version, was released. Although the CMIP6 GCMs were released in 2017 

(Stouffer et al. 2017), few modeling organizations participated (Rivera and Arnould, 

2020). By 2020, there were a sufficient number of models that could be studied. 

Because of the limited time to analyze these recently published CMIP6 GCMs, 

Thailand was selected as the preliminary study region for assessing CMIP6 GCMs. For 

these reasons, the temperature and area of Thailand were chosen as preliminary 

variables and study areas for assessing and updating the performance of the CMIP6 

GCMs. In the second part, the history of 13 CMIP6 GCMs over Thailand for the near-

to-current term (2000 – 2014) of the early 21st century is evaluated using 5 statistical 

metrics. They are computed separately for land, ocean, and both land and ocean.  
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Figure 3.1 Research framework of this study 

 
3.2 Study Area 

 

    The study areas of this study are Southeast Asia and Thailand. Southeast 

Asia  is a group of countries located between Indian Ocean and Pacific Ocean. It has a 

total area of about 4.5 million km2, which is almost 3% of the global land area (GIIN 

2018). It can be divided into mainland and marine. The mainland covers 9 % of 

Southeast Asia, which consists of West Malaysia, Myanmar, Thailand, Laos, 

Cambodia, and Vietnam, while the marine areas account for 14 % of this region, which 

consists of Singapore, Brunei, Indonesia, East Timor, East Malaysia, Papua New 

Guinea and the Philippines. Most of the mainland is covered by extensive plains, hills 
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and high mountains, while the islands in the maritime area are covered by lowland 

plains and high mountains (Frenken 2012).  Figure 3.2 shows the topography (m) of the 

first study area. It is located between latitude 12 .75°S and 24 .25°N and longitude 

88 .25°E and 144 .75°E. The average annual  precipitation in Southeast Asia between 

1961 and 1990 is about 2,455 millimeters (UNISDR 2010), most of which is influenced 

by the southwest and northeast monsoons (Endo et al. 2009). Since most of this region 

is in the tropical climate zone, the average temperature is above 25 °C throughout the 

year (Yuen and Kong 2009). 

 

 

Figure 3.2 Topography in meters above mean sea level in the area Southeast Asia for 

evaluating the performances of 40 different CMIP5 GCMs 

    The second study area – Thailand – is located between latitude 5° S -21 

° N and longitude 96° E-107 °E (Figure 3.3). Thailand consists of land and marine 

areas. The topography of Thailand mainly consists of high mountains, a central plain, 

and a plateau. The land area is located in the middle of Southeast Asia, while the marine 

area is located between the Pacific and Indian Oceans (Tantrakarnapa 2018). The 
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annual mean temperature in Thailand between 1981 and 2007 reported by Thai 

Meteorological Department was 27.9 °C. 

 

 

Figure 3.3 Topography in meters above mean sea level over Thailand for evaluating 

the performance of 13 different CMIP6 GCMs 

 

3.3 CMIP5 and CMIP6 GCMs 

 

   In this study, GCMs of CMIP5 and CMIP6 were evaluated. A historical 

experiment of 40 CMIP5 and 13 CMIP6 GCMs was used to simulate the past climate 

characteristics. The historical experiment of the CMIP5 project covers the period from 

1850 to 2005, while that of the CMIP6 covers the period from 1850 to 2014. The 

datasets of CMIP5 and CMIP6 are free and available online from the WCRP Coupled 

Model Intercomparison Project hosted on the Earth System Grid Federation (ESGF, 

2017). 



28 

 

 

  To find the best GCM from Southeast Asia, the results of CMIP5 are 

employed to simulate temperature and precipitation for the short-term (1960-1999) and 

long-term (1901-1999) periods. The results of CMIP6 were used to simulate only 

temperature for the recent period from 2000 - 2014 (near-to-current term) to find the 

best GCMs for Thailand. In this study, the monthly dataset was used to examine the 

capability of the model simulations, which are compared with reference datasets. 

Detailed information of each GCM in CMIP5 and CMIP6 are shown in Table 3.1 and 

Table 3.2, respectively.  

Table 3.1 Details of the 40 CMIP5 GCMs used to evaluate model performance in 

Southeast Asia. 

Model Center 
Resolution 

lon x lat 

Number of 

Ensemble 

Members 

1. BCC-CSM1-1 BCC/ China 2.8 × 2.8 3 

2. BCC-CSM1-1-M BCC/ China 1.12 x 1.12 3 

3. BNU-ESM BNU/ China 2.8 × 2.8 1 

4. CanESM2 CCCM/ Canada 2.8 × 2.8 5 

5. CCSM4 NCAR/ USA 1.25 × 0.94 6 

6. CESM1-BGC NCAR/ USA 1.25 × 0.94 1 

7. CESM1-CAM5 NCAR/ USA 1.25 × 0.94 3 

8. CESM1-FASTCHEM NCAR/ USA 1.25 × 0.94 3 

9. CESM1-WACCM NCAR/ USA 2.5 × 1.89 4 

10. CMCC-CESM CMCC/ Italy 3.75 × 7.71 1 

11. CMCC-CM CMCC/ Italy 0.75 × 0.75 1 

12. CMCC-CMS CMCC/ Italy 1.88 × 1.87 1 

13. CNRM-CM5 CNRM-CERFACS / 

France 
1.4 × 1.4 10 

14. CNRM-CM5-2 CNRM-CERFACS / 

France 
1.4 × 1.4 4 

15. CSIRO-Mk3-6-0 CSIRO-QCCCE 

/Australia 
1.8 × 1.8 10 

16. EC-EARTH EC-EARTH/ Europe 1.13 × 1.12 14 

17. FGOALS-g2 LASG/ China 2.8 × 2.8 5 

18. FIO-ESM FIO/ China 2.81 × 2.79 3 

19. GFDL-CM3 GFDL/ USA 2.5 × 2.0 5 

20. GFDL-ESM2G GFDL/ USA 2.5 × 2.0 1 

21. GFDL-ESM2M GFDL/ USA 2.5 × 2.0 1 

22. GISS-E2-H NASA/ USA 2.5 × 2.0 6 

23. GISS-E2-H-CC NASA/ USA 2.5 × 2.0 1 

24. GISS-E2-R NASA/ USA 2.5 × 2.0 6 
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Table 3.1 Details of the 40 CMIP5 GCMs used to evaluate model performance in 

Southeast Asia (continued) 

Model Center 
Resolution 

lon x lat 

Number of 

Ensemble 

Members 

25. GISS-E2-R-CC NASA/ USA 2.5 × 2.0 1 

26. HadCM3 Hadley Center/ UK 3.75 × 2.5 10 

27. HadGEM2-AO Hadley Center/ UK 1.88 × 1.25 1 

28. HadGEM2-CC Hadley Center/ UK 1.88 × 1.25 3 

39. HadGEM2-ES Hadley Center/ UK 1.88 × 1.25 4 

30. INMCM4 INM-CM4/Russia 2.0 × 1.5 1 

31. IPSL-CM5A-LR IPSL/ France 3.75 × 1.8 6 

32. IPSL-CM5A-MR IPSL/ France 2.5 × 1.25 3 

33. IPSL-CM5B-LR IPSL/ France 3.75 × 1.8 1 

34. MIROC5 CCSR/ Japan 1.4 × 1.4 1 

35. MIROC-ESM CCSR/ Japan 2.8 × 2.8 3 

36. MIROC-ESM-

CHEM 

CCSR/ Japan 
2.8 × 2.8 3 

37. MPI-ESM-LR MPI/ Germany 1.88 × 1.87 3 

38. MPI-ESM-MR MPI/ Germany 1.88 × 1.87 3 

39. MRI-CGCM3 MRI/ Japan 1.1 × 1.1 5 

40. NorESM1-M NCC/ Norway 2.5 × 1.9 3 

 

Table 3.2 Details of the 13 CMIP6 GCMs used to evaluate model performance in 

Thailand 

Model Center 
Resolution 

lon x lat 

Number of 

Ensemble 

Members 

1. BCC-CSM2-MR BCC-CMA/ China 1.12° × 1.12° 1 

2. CAMS-CSM1-0 CAMS/China 1.12◦ × 1.12◦ 3 

3. CanESM5 CCCMA/Canada 2.8° × 2.8° 10 

4. CESM2 NCAR/ USA 1.25°× 0.9° 3 

5. CNRM-CM6-1 CNRM-CERFACS / 

France 
1.4° × 1.4° 10 

6. CNRM-CM6-1-HR CNRM-CERFACS / 

France 
0.5° × 0.5° 1 

7. CNRM-ESM2-1 CNRM-CERFACS / 

France 
1.4° × 1.4° 1 

8. FGOALS-f3-L     LASG/ China 1.25° × 1° 3 

9. FIO-ESM-2-0     FIO-QLNM/China 1.25°× 0.9° 3 

10. GFDL-CM4 GFDL/ USA 1° × 1.3° 3 

11. IPSL-CM6A-LR     IPSL/France 2.5°× 1.3° 20 
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Table 3.2 Details of the 13 CMIP6 GCMs used to evaluate model performance in 

Thailand (continued) 

Model Center 
Resolution 

lon x lat 

Number of 

Ensemble 

Members 

12. MIROC6     MIROC/ Japan 1.4° ×1.4° 5 

13.MRI-ESM2-0     MRI / Japan 1.12°× 1.12° 5 

 

3.4 Reference datasets 

 

  Reference datasets are employed to compare the GCMs' performance. 

They are summarized in Table 3.3. The datasets in this study can be divided into 2 

categories. 

3.4.1 The ground-based products 

  The ground-based products are widely used as measuring instruments. 

They are meteorological instruments that have high accuracy because they can directly 

detect at the station and have a high temporal frequency of measurements  (Gilewski 

and Nawalany 2019).  

  The ground-based dataset used to evaluate CMIP5 GCMs in Southeast 

Asia includes CRU TS3.10.01, with available data from 1901-2009 at a horizontal 

resolution of 0.5° × 0.5° (Harris et al. 2014), and UD v3.01, with available data from 

1901-2010 at a horizontal resolution of 0.5° × 0.5° (Matsuura and Willmot 2012).  

  In addition to the CRU and UD dataset used to evaluate CMIP6 GCMs 

in Thailand, other versions of datasets are employed. Since the version of the two 

ground-based datasets does not cover the years 2000-2014, the evaluation of CMIP6 

GCMs in Thailand is based on CRU TS v4.02, with the available data from 1901 to 

2017 and a horizontal resolution of 0.5° × 0.5° (Harris et al. 2020) and UD v5.01, with 

the available data from 1900-2017 and a horizontal resolution of 0.5° × 0.5° (Willmott 

and Matsuura 2018). All ground-based datasets used in this study are monthly datasets 

and only available over global land areas. All ground-based datasets used in this study 

are monthly datasets and only available over global land areas. 
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3.4.2 The reanalysis products  

  The climate reanalysis product is a dataset that combines observations 

and satellites through the model to create climate variables with high resolution and 

long-term data record to simulate the best climate estimation for all locations in the 

world. Furthermore, climate reanalysis products can estimate historical climate over 

several decades or more (Decker et al. 2012; Wagan et al. 2017).   

  To evaluate CMIP5 GCMs in Southeast Asia, two reanalysis datasets 

(ERA40 with data from mid-1957 to mid-2002 and a horizontal resolution of ~2.5° × 

2.5° (Uppala et al. 2005) and NCEP with data from 1948 to 2012 and a horizontal 

resolution of 2.5° ×2.5°) were used (Kalnay et al. 1996). 

   Two reanalysis datasets used to evaluate CMIP6 GCMs in Thailand are 

ERA-Interim (Dee et al. 2011), with data from 1979 to present and a horizontal 

resolution of 0.75° × 0.75° (Dee et al. 2011) and MERRA2, with data from 1979 to 

present and a horizontal resolution of 0.625°× 0.5° (Rienecker et al. 2011; Bosilovich 

and Coauthors 2015). 

Table 3.3 Reference datasets used in this study 

Area Data Resolution 

lon x lat 

Source Reference 

 CRU TS3.10.01 0.5° × 0.5° Ground-based Harris et al. 2014 

UD v.3.01 0.5° × 0.5° Ground-based Matsuura and Willmot 

2012 

ERA40 ∼2.5° × 2.5° Reanalysis Uppala et al. 2005 

NCEP 2.5° ×2.5° Reanalysis Kalnay et al. 1996 

 CRU TS v4.02 0.5° × 0.5° Ground-based Harris et al. 2020 

UD v5.01 0.5° × 0.5° Ground-based Willmott and Matsuura 

2018 

ERA-interim 0.75° × 0.75° Reanalysis Dee et al. 2011 

MERRA2 0.625°× 0.5° Reanalysis Rienecker et al. 2011 
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3.5 Performance Metrics 

 

   The evaluation of CMIP5 and CMIP6 GCMs is divided into three study 

cases: land only, sea only, and both land and sea. The reason is that the characteristics 

of endothermy and an exothermy of land and sea are different and the consideration of 

the case of separate areas is interesting. This is because the temperature of the land area 

is higher than that of the sea area during the day and decreases rapidly at night; 

therefore, the air temperature over the land area changes more rapidly than over the sea 

area (Trenberth et al. 2007). Ocean currents also affect the temperature and P value 

(Reid et al. 2009), which show apparent differences in seasonal temperature (Crespo et 

al. 2019). Therefore, the climate variable from land-atmosphere and ocean-atmosphere 

interaction is an interesting variable for this research. Each study case uses different 

reference datasets because climate data from CRU and UDEL are only available over 

land. Hence, the datasets in the ocean case are from reanalysis datasets. The reference 

datasets from each study are averaged before being used for comparison with the 

GCMs. 

   Despite the fact that GCMs can provide important climate data, there are 

always uncertainties. Hence, statistical metrics have been employed to validate the 

correctness of the results of climate simulations from different perspectives. Statistical 

metrics are usually used to assess the difference between the model simulation and the 

reference dataset, as each metric can show the relative overall performance of the 

different model simulations (Gleckler et al. 2008). Therefore, the statistical metrics are 

often used to compare climate simulation results between GCMs and reference datasets 

(Rupp et al. 2013; Miao et al. 2014; McMahon et al. 2015; Xu et al. 2017; Raghavan et 

al. 2018; Li et al. 2019; Kamworapan and Surussawadee 2019). 

3.5.1  CMIP5 in Southeast Asia 

   The first step in evaluating a model is to consider which statistical 

metric can reveal the uncertainty by comparing observed and simulated data. The 

performance metrics used in this study were selected from previous studies and are 

based on statistical reliability and the ability to analyze grid cell data from GCMs. The 
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results of each performance metric are averaged over 92,496 grid cells. The details of 

the statistical formulas used in this study are listed in Table 3.4, including  

  (1) Mean bias error (MBE) is a measure of bias that indicates positive 

and negative differences between the GCM data and the reference data. In other words, 

the GCM simulation overestimates or underestimates the mean reference data. When 

MBE = 0, it is assumed that there is no bias (Lovino et al. 2018). 

  (2) Mean diurnal temperature range (MDTR) is a measure of the 

difference between the daily maximum and minimum temperatures. 

  (3) Mean seasonal cycle amplitude (SeasonAmp) is a metric indicating 

the difference between the warmest and coldest month.  

  (4) Correlation coefficient (r) is used to check the degree of relationship 

or to assess the similarity between the spatial patterns of GCM data and reference 

data. Moriasi et al. (2007) suggested that for model performance evaluation, r ≤ 0.60 = 

not satisfactory, 0.60 < r < 0.70 = satisfactory, 0.70 ≤ r ≤ 0.75 = good, and r > 0.75 = 

very good. 

  (5) Root mean squared error (RMSE) is the measure of the error value 

of the difference between the GCM data and the reference data (magnitude). Low 

RMSE values indicate that the GCMs can simulate the reference data well, and a RMSE 

value = 0 means that the GCMs can be used 100% for simulation because the simulation 

result has no error value. Thus, the RMSE is a statistical metric for calculating the 

magnitude of the error between the GCM data and the reference data (Lovino et al. 

2018). 

  (6) Standard deviation (SD) is employed to measure the dispersion of 

individual data from their mean, which is the most detailed and reliable metric in terms 

of distribution measurements. Then, the normalization is calculated for the comparison 

of the SD between the model and the reference data (NSD). If it approaches 1, the 

meaning is that the data distribution of the GCM is very similar to the reference data. 

  (7) Variance (Var) is employed to measure the average of the dispersion 

characteristics from the mean, which is the commonly used measurement (Mishra et 

al. 2019). 

  (8) Coefficient of variation (CV) is a metric that indicates the ability of 

the GCM to measure how effective its simulation is, and is usually calculated in terms 
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of percentages (Mishra et al. 2019). The advantage of CV is that it measures dispersion 

without considering unity, which is a limitation of SD and Var. 

   (9) Linear trend (Trend) is employed to illustrate the trend of estimation 

of data with best-fit linearity to find a relationship between data and time series. 

 (10) The correlation of winter temperature and precipitat ion with 

Niño3.4 index (ENSO) is employed to verify the degree of relationship and assess the 

coupled atmosphere-ocean mode of variability on inter-annual timescales between 

GCM data and Niño3.4 index. The assessment of model performance for the Moriasi 

et al. (2007) ratings suggests that r ≤ 0.60 = unsatisfactory, 0.60 < r < 0.70 = 

satisfactory, 0.70 ≤ r ≤ 0.75 = good, and r > 0.75 = very good. 

 The performance metrics are divided into two groups. It consists of a 

group of long-term and short-term performance metrics. The first group of 

performance metrics that are sensitive to record lengths (Rupp et al. 2013) includes 

Var, CV, Trend, and ENSO (Rupp et al. 2013). These metrics consider grid-based 

statistics that compute statistics between models and observations for each grid and 

then compute the spatial mean of these statistical values. Because observation datasets 

have been available since the start of the twentieth century, metrics in this group, such 

as Var, CV, RMSE, Trend, and ENSO, have been used to analyze climate variables 

throughout the twentieth century (Harris et al. 2014; Matsuura and Willmot 2012). 

Because observation data are available since the early twentieth century, metrics in 

this group were used to analyze climate variables throughout the twentieth century to 

quantify interannual variability and trend similarities between GCMs and 

observational data for long-term climate change (long-term period). The metrics in the 

second group were used to look at spatially averaged time series (Chhin and Yoden, 

2018), such as MA, MBE, MDTR, SeasonAmp, r, NSD, RMSE. These metrics aimed 

to verify the ability of a GCM to replicate the mean annual climatology (short-term 

period). The reanalysis datasets were combined with the ground-based dataset to 

assess the climate across the study area (land and sea). However, the reanalysis 

datasets were accessible from the mid-twentieth century (Uppala et al. 2005; Kalnay 

et al. 1996). The metrics from in the second group were used to evaluate climate for a 

short-term period. 
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Table 3.4 Statistical formula of the performance metrics used to evaluate CMIP5 in 

Southeast Asia 

Performance 

metrics 
Equation References 

MA ∑ Ty
N
y=1

N
 

 Ruan et al. 2019 

MBE MAm- MAr  Su et al. 2013 

MDTR TASmax-TASmain  Rupp et al. 2013 

SeasonAmp Mmax- Mmin  Rupp et al. 2013 

r  

∑i∑j (MAmij
−  MAm

̅̅ ̅̅ ̅̅ ̅)(MArij
−  MAr

̅̅ ̅̅ ̅̅ )

√(∑i∑j(MAmij
−  MAm

̅̅ ̅̅ ̅̅ ̅)2)(∑i∑j(MArij
−  MAr)2)

 

 Russ 1994 

RMSE 

√
∑ (MAmp

− MArp
)2n

p=1

n
 

Hebeler 2020 

NSD 
SDm = √

∑ | MAmp−MA̅̅ ̅̅ ̅| 
2n

p=1 

n
 

SDr =√
∑ | MArp−MA̅̅ ̅̅ ̅| 

2n
p=1 

n
 

NSD = 
SDm

 SDr
 

 Russ 1994 

Var ∑ | 𝑀𝐴𝑝 − 𝑀𝐴̅̅̅̅̅| 
2n

p=1 

n
 

Mishra et al.2019 

CV 𝑆𝐷

𝑀𝐴
 

Mishra et al. 2019 

Trend  

Y  =ax  +b 

 

when     b=
∑ MA𝑦 ∑ T𝑦

2 - ∑ T𝑦 ∑ T𝑦𝑀𝐴𝑦

𝑁∗∑ T𝑦
2-  (∑ T𝑦)2

; 

 

a=
𝑁 ∗ ∑ 𝑇𝑦MA𝑦  - ∑ T𝑦 ∑ 𝑀𝐴𝑦

𝑁 ∗ ∑ T𝑦
2 -  (∑ T𝑦)2

 

Rahman e t  a l . 

2016 
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Note. if  Xy is   t he  annual X for year y. N is the total number of years. MAm is mean 

annual of the model. MAr is the mean annual of the reference data. Tasmin is the mean 

annual of the daily minimum temperature. Tasmax  is the mean annual of daily 

maximum temperature. Mmax  is the mean of the warmest month of the model. Mmin is 

the mean of the coldest month of the model. MAmij
 is the mean annual of the model in 

row i and column j. MArij
 is the mean annual of the reference data in row i and column 

j. MAmp
 is the mean annual of the model for a pixel p. MArp

 is the mean annual of the 

reference data for a pixel p. MAm
̅̅ ̅̅ ̅̅ ̅ is the average mean annual of the model. MAr

̅̅ ̅̅ ̅̅  is the 

average mean annual of the reference data. n is the total number of pixels. Ty is  the time 

series studied in year y. MAy is the annual mean for year y. 

  Table 3.5 shows the list of each performance metric and the reference 

datasets used in this study. 

Table 3.5 List of performance metrics 

Metric Description Reference datasets 

MBE-T-Land 

Mean annual temperature 

CRU, UD, ERA40,  

NCEP 

MBE-T-Sea ERA40, NCEP 

MBE-T-Land & Sea CRU, UD, ERA40,  

NCEP 

MBE-P-Land 

Mean annual precipitation 

CRU, UD, NCEP 

MBE-P-Sea NCEP 

MBE-P-Land & Sea CRU, UD, NCEP 

MDTR-MMM-Land  

Mean diurnal temperature range 

CRU, NCEP 

MDTR-MMM-Sea NCEP 

MDTR- MMM-Land & 

Sea 

CRU, NCEP 
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Table 3.5 List of performance metrics (Continued) 

Metric Description Reference datasets 

SeasonAmp-T-Land Mean seasonal cycle 

amplitude of temperature 

that indicates the 

difference between the 

warmest and coldest 

month. 

CRU, UD, ERA40, 

NCEP 

SeasonAmp-T-Sea ERA40, NCEP 

SeasonAmp-T-Land & Sea CRU, UD, ERA40,  

NCEP 

SeasonAmp-P-Land Mean seasonal cycle 

amplitude of precipitation 

that indicates the 

difference between wettest 

and driest month 

CRU, UD, NCEP 

SeasonAmp-P-Sea NCEP 

SeasonAmp-P-Land & Sea CRU, UD, NCEP 

r -MMM-T-Land 
Correlation coefficient 

between simulated and 

observed mean seasonal 

temperature 

CRU, UD, ERA40, 

NCEP 

r -MMM-Sea ERA40, NCEP 

r-MMM-T-Land & Sea CRU, UD, ERA40,  

NCEP 

r-MMM-P-Land Correlation coefficient 

between simulated and 

observed mean seasonal 

precipitation 

CRU, UD, NCEP 

r-MMM-P-Sea NCEP 

r -MMM-P-Land & Sea CRU, UD, NCEP 

RMSE-T-Land 

Root mean squared error 

of mean annual 

temperature 

CRU, UD, ERA40, 

NCEP 

RMSE-T-Sea ERA40, NCEP 

RMSE-T-Land & Sea CRU, UD, ERA40,  

NCEP 

RMSE-P-Land Root mean squared error 

of mean annual 

precipitation 

CRU, UD, NCEP 

RMSE-P-Sea NCEP 

RMSE-P-Land & Sea CRU, UD, NCEP40 
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Table 3.5 List of performance metrics (Continued) 

Metric Description Reference datasets 

NSD-MMM-T-Land Standard deviation between 

simulated and 

CRU, UD, ERA40, 

NCEP 

NSD  - MMM-T-Sea 

observed mean seasonal temperature 

ERA40, NCEP 

NSD  - MMM-T-

Land&Sea 

CRU, UD, ERA40,  

NCEP 

NSD  - MMM-T-Land 
Standard deviation between 

simulated and observed mean 

seasonal precipitation 

CRU, UD, NCEP 

NSD  - MMM-T-Sea NCEP 

NSD   - MMM-T- Land 

& Sea 

CRU, UD, NCEP 

Var-Land Variance of annual temperature CRU, UD 

CV-Land 
Coefficient of variation of annual 

precipitation 
CRU, UD 

RMSE-T-Land 
Root mean squared error of 

temperature 
CRU, UD 

RMSE-P-Land 
Root mean squared error of 

precipitation 
CRU, UD 

Trend-T-Land 
Linear trend of annual temperature 

over land 
CRU, UD 

Trend-P-Land 
Linear trend of annual precipitation 

over land 
CRU, UD 

ENSO-T-Land 
Correlation of winter temperature 

with Niño3.4 index 
CRU, UD 

ENSO-P-Land 
Correlation of winter precipitation 

with Niño3.4 index 
CRU, UD 

*MMM is the designation of seasn: FMA (February, March, April (, MJJASO  )May, 

June, July, August, September, October(, and NDJ )November, December, January( 
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3.5.2 CMIP6 in Thailand 

  The results of each performance metric are averaged over 7,738 grid 

cells using performance criteria similar to those used in Southeast Asia, including MBE, 

SeasonAmp, r, and RMSE. In addition, Mean Annual (MA) was added, which MA in 

this study refers to the sum of each mean annual temperature, then divided by the total 

number of years. Table 3.6 shows the list of each performance metric and the reference 

datasets used in this study. 

Table 3.6 List of performance metrics 

Metric Description Reference datasets 

MA-Land 

Mean annual temperature 

CRU, UDEL, MERRA, ERA 

MA-Sea MERRA, ERA 

MA-Land & Sea CRU, UDEL, MERRA, ERA 

MBE-Land 

Mean bias errors of mean annual 

temperature 

CRU, UDEL, MERRA, ERA 

MBE-Sea MERRA, ERA 

MBE-Land & 

Sea 

CRU, UDEL, MERRA, ERA 

SeasonAmp-

Land 
Mean seasonal cycle amplitude 

of temperature 

CRU, UDEL, MERRA, ERA 

SeasonAmp-Sea MERRA, ERA 

SeasonAmp-

Land & Sea 

CRU, UDEL, MERRA, ERA 

r -Land Correlation coefficient between 

simulated and observed mean 

annual temperature 

CRU, UDEL, MERRA, ERA 

r -Sea MERRA, ERA 

r -Land & Sea CRU, UDEL, MERRA, ERA 

RMSE-Land 

Root mean squared error of 

mean annual temperature 

CRU, UDEL, MERRA, ERA 

RMSE-Sea MERRA, ERA 

RMSE-Land & 

Sea 

CRU, UDEL, MERRA, ERA 
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3.6 Model ranking by overall performance 

 

   All GCMs are ranked based on performance metrics that identify the 

strengths and weaknesses of each model. Because of the different objects and results of 

each metric, the relative error is used to rank the overall model in this study. The model 

ranking that considers several metrics and climate variables is the most widely used 

method  (Gleckler et al. 2008 ; Waugh and Eyring 2008; Radić et al. 2011; Rupp et al. 

2013; Xu et al. 2017; Kamworapan and Surussawadee 2019).  

  The first method to determine the error for each GCM m and each 

performance metric y (E𝑚,𝑦) defined in formula 1, when W𝑟,𝑦 and W𝑚,𝑦  is the 

reference and GCMs for metric y, respectively. Next, the relative error of for each GCM 

m and each performance metric y (R𝑚,𝑦) is calculated using formula 2. Last, formula 3 

was used to calculate the sum of the relative error of GCM m (E𝑚,total)  by all 

performance metrics when N is the total number of performance metrics. 

 

 E𝑚,𝑦= | 𝑊𝑟,𝑦 − W𝑚,𝑦|                                                              (1) 

 

R𝑚,𝑦 =  
E𝑚,𝑦−min (E𝑚,𝑦)

 max(E𝑚,𝑦)−min(E𝑚,𝑦)
                 (2) 

 

    E𝑚,𝑡𝑜𝑡𝑎𝑙  = ∑ R𝑚,𝑦
𝑁
𝑦=1                                                               (3) 

 

  The GCM has a lower relative error value, making it the best model. All 

performance metrics are equally weighted, which has been used to evaluate the GCMs 

in several previous studies (Gleckler et al. 2008; Rupp et al. 2013; Kamworapan and 

Surussawadee 2019), as well as the model ranking by overall performance metrics 

(Gleckler et al. 2008; Rupp et al. 2013; Kamworapan and Surussawadee 2019). The 

robustness or confidence for ranking the performance matrices in this study is 

categorized as “highest” and “higher” as recommended by Rupp et al. (2013).  

 



41 

 

 

CHAPTER 4 

RESULTS AND DISCUSSION 

 

 

  The first part focuses on identifying the best CMIP5 GCMs for 

simulating temperature and precipitation over Southeast Asia. The second part focuses 

on identifying the best CMIP6 GCMs for simulating temperature over Thailand. In 

addition, the CMIP6 GCMs that perform best and worst in the study of the second part 

are compared with the results of the previous CMIP GCMs in the previous studies.  

 

4.1 Evaluation of CMIP5 GCMs in Southeast Asia 

 

4.1.1 Ranking of CMIP5 GCMs by all performance metrics 

   Figure 4.1 illustrates the aggregate errors of the GCMs calculated by 

performance metrics. This figure shows the ranking of the 40 GCMs in order from best 

to worst GCMs from left to right. The aggregate errors of the 40 GCMs range from 

12.37 to 40.25. CNRM-CM5-2, CNRM-CM5, BNU-ESM, CESM1-BGC, CESM-

CAM5, and CCSM4 are the best-performing groups across Southeast Asia. CNRM-

CM5-2 is the best model with the least errors. The GCMs that perform the worst are 

the GISS models from NASA center, especially GISS-E2-R, whose error is 40.25.  
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Figure 4.1 The aggregate errors of all performance metrics of 40 GCMs 

 

   Figure 4.2 shows the aggregate error of GCMs for different categories. 

CNRM-CM5 has the best performance for ocean, while it is second for land and 

temperature. Although CESM1-BGC is the best GCM for evaluating the precipitation 

category, its performance for the land and sea categories is fourth and fifth, 

respectively. There is only CNRM-CM5-2 which can perform best in more than two 

categories. It performs best for land and temperature. In addition, it ranks third for sea 

and rainfall categories.  

     None of the GCMs has the best performance for eacg category. The 

average of the multi-model ensemble is a possible approach to improve the simulation 

performance. Several studies had used multi-model ensembles to study climate in 

different regions of the world. For example, Schaller et al. (2011) created multi-model 

ensembles for global precipitation and temperature projections using the top five GCMs 

out of 24 CMIP3 GCMs. For the study of the Asian monsoon area, Bae et al. (2015) 

used multi-model ensembles of three GCMs out of nine CMIP3 GCMs.  Wang et al. 

(2016) created multi-model ensembles for simulating temperature in southeastern 

Australia using the seven best GCMs from 28 CMIP5 GCMs. Khan et al. (2018) in their 

study on Pakistan used six best GCMs out of 31 CMIP5 GCMs to create multi-model 

ensembles for precipitation, temperature, and minimum and maximum temperature. In 
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another study on Pakistan, Ahmed et al. (2018) used the top three ranked GCMs out of 

20 CMIP5 GCMs to create multi-model ensembles that simulated precipitation, while 

Ahmed et al. (2019) and Ahmed et al. (2020) created multi-model ensembles that 

simulated precipitation and minimum and maximum temperature by using the top four 

and 18 ranked GCMs out of 20 and 36 CMIP5 GCMs, respectively. In the Homsi et al. 

(2020) study on Syria, the four best-ranked GCMs out of 20 CMIP5 GCMs were 

selected to create multi-model ensembles for simulating precipitation.  

   Therefore, multi-model ensembles are evaluated to compare with single 

GCMs. Based on a review of the literature, there are no well-defined criteria for 

choosing the optimal number of GCMs for a multi-ensemble model. However, Ahmed 

et al. 2019 concluded that most studies select the best 3 to 10 GCMs to form the multi-

ensemble model. These are multi-model ensembles of the top-six GCMs that perform 

best on all performance metrics in Figure 4.1 (hereafter referred to as 6-MODEL 

ENSEMBLE) and the 40 GCMs (hereafter referred to as 40-MODEL ENSEMBLE). 

  Figure 4.3 shows the relative error of 41 performance metrics for each 

CMIP5 model, 6-MODEL ENSEMBLE, and 40-MODEL ENSEMBLE. On the left 

side of the figure are the names of GCMs and the two multi-model ensembles, each 

with the highest to lowest total relative error listed from top to bottom, respectively. At 

the top of the figure are the names of all the performance metrics used in this part. The 

performance of these GCMs is represented by the color scale. A darker red means the 

GCM is performing well on that metric, while a darker green means the GCM is 

performing poorly on that metric. When the performance metrics are dark red, it means 

that the GCM’s score on these metrics is very close to what was observed. The relative 

error results in Figure 4.3 obviously show that 6-MODEL ENSEMBLE has the best 

performance compared to the individual GCMs. While 40-MODEL ENSEMBLE 

performs better than 39 GCMs (except CNRM-CM5-2). Although the 

overall performance of CNRM-CM5-2 is lower than that of 6-MODEL ENSEMBLE, 

it is a good GCM for simulating temperature and precipitation over Southeast Asia. It 

still performs second-best and its aggregate error is only 8.78% higher than that of 6-

MODEL ENSEMBLE. Since CNRM-CM5-2, 6-GCM-ENSEMBLE, and 40-MODEL 

ENSEMBL perform quite excellently in this past study, they are selected to present the 

evaluation results of each performance metric in detail in the next section  
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Figure 4.2 The aggregate errors by performance metrics considered (a) land only and (b) sea only (c) temperature, and (d) precipitation 

of 40 GCMs 
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Figure 4.3 Relative error of 41 performance metrics (horizontal ordinate) for each CMIP5 model, 6-MODEL ENSEMBLE, and 40-

MODEL ENSEMBLE (vertical ordinate).
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4.1.2 Temperature and precipitation simulation for a short-term period of 

CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL ENSEMBLE. 

 4.1.2.1 Mean bias error (MBE) 

     The 40-year average temperature of mean reference data in the 

region Southeast Asia ranges from 16.61°C to 28.04 °C. In order to investigate the 

temperature simulation characteristics of GCMs, MBE-T is used to represent the 

direction of temperature. It can indicate that the GCMs overestimate (warm bias) or 

underestimate (cold bias) the temperature compared to the mean reference data. Figure 

4.4 shows the spatial distribution of the bias of mean annual temperature over Southeast 

Asia for mean reference data, CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-

MODEL ENSEMBLE. The bias values range from -5.54°C to 2.26°C for CNRM-

CM5-2, -4.28°C to 3.21°C for 6-MODEL ENSEMBLE, and -3.02 °C to 4.37 °C for 40-

MODEL ENSEMBLE. The numbers in each sub-picture are the MBE-T values, all of 

which have a cold bias (negative direction). They are more consistent with the red areas 

than with the blue area in Figure 4.4, indicating it indicates that the temperature 

simulations of CNRM-CM5-2 and 6-MODEL-ENSEMBLE and 40-MODEL-

ENSEMBLE are overall underestimated compared to the mean reference data. The 

mean values of MBE-T for CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL 

ENSEMBLE for the land only case are -1.02 °C, -0.72 °C, and -0.17 °C, respectively, 

while the values for the sea-only case are -0.36 °C, -0.15 °C, and -0.11 °C, respectively.  
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Figure 4.4 Spatial distribution of mean annual temperature for 1960-1999 of (a) mean 

reference data, (b) CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL, and (c) 

MBE thereof in °C. The numbers in the lower right of each dataset are the averaged 

MBE values for all pixels 

  The 40-year mean precipitation of mean reference data in the region 

Southeast Asia ranges from 874.51 mm to 5,699.00 mm.  MBE-P is used to display the 

direction of the simulated precipitation. It gives the wettest or driest than the reference 

data. Figure 4.5 shows the spatial distribution of bias of the mean annual precipitation 

for mean reference data, CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL 

ENSEMBLE. The numbers in each sub-map are the MBE-P values of spatial annual 

precipitation. The blue area on the maps means that the precipitation is underestimated, 

while the red area overestimates precipitation. Figure 4.5 demonstrates most of the red 

area covers the sea, while the blue area covers the mainland. MBE-P values of CMRN-

CM5-2 range from -2,087 mm to 3,808 mm while those of 6-MODEL ENSEMBLE 
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range from -2,102 mm to 2,883 mm and those of 40-MODEL ENSEMBLE range from 

-2,070 mm to 2,712 mm. However, the MBE-P values displayed in each sub-map of 

CMRN-CM5-2 and both multi-model ensembles show a positive direction which 

means overall precipitation simulations have higher than mean reference values. The 

mean values of MBE for CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL 

ENSEMBLE for land only case are 25.14 mm, 100.45 mm, and 144.10 mm, 

respectively, while the values for sea only case are 241.54 mm, -233.44 mm, and 363.46 

mm, respectively. 

 

Figure 4.5 Same as Figure 4.4 but for precipitation 

  According to the literature review, there are many factors that cause the 

ocean area to be overestimated more than the land area.  First, previous research has 

found that CMIP5 GCMs have difficulty simulating precipitation in the tropical west 

Pacific Ocean (Saha et al. 2014; Yang et al. 2018). Due to tropical convection, air rises 

and forms rain clouds, causing frequent rainfall and rapid decay. These rapid 
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occurrence and dissipation of rainfall may have caused the model to overestimate the 

quantity of precipitation compared to the recorded observational data (Yin et al. 2013). 

According to Pathak et al. 2019, these positive precipitation biases are primarily due to 

convective parameterizations of the atmospheric components. Meanwhile, Samanta et 

al. (2019) found that bias precipitation over the ocean is primarily influenced by 

convection and sea-surface-temperature interactions. These data support the idea that 

convection is the primary driving force behind the majority of precipitation in this area 

(Surussavadee, 2014). According to Surussavadee et al. (2014) and Maher et al. (2018), 

convective precipitation in the tropics is more difficult to simulate since cells of 

convective are small along with using a relatively short time for the precipitation 

formation over this area. Second, although GCMs are designed to simulate atmosphere 

and ocean processes, the GCMs structure clearly separates the elements of the climate 

system: the atmosphere, oceans, cryosphere, biosphere, and geosphere (Treut et al. 

2007). Hence, the GCM's internal sub-models are also designed to focus on the different 

processes of the climate system (Gent 2012). The climate simulations on land and sea 

are simulated by different sub-models; as a result, the performance of GCMs simulating 

climate on land and sea is also different. Third, the biases might be due to the 

observation dataset part inputted in the ocean-component model.  

  It is difficult to collect precipitation observation data over the ocean due 

to the scattering of measurement devices and environmental issues (e.g., strong winds) 

(Sun al. 2018). As a result, precipitation simulations over the sea of the study area are 

highly inaccurate. Last, because several GCMs utilized the same sub-component 

versions among models (Pathak et al. 2019), the bias patterns of precipitation of GCMs 

are quite similar, as shown in Figure 4.5. Therefore, it is highly possible that each 

GCMs may use the same SST data from the same source, resulting in most sea area of 

the same overestimate.  

  In summary, the bias patterns of precipitation in Figure 4.5 over the sea 

(~12°S to15°N) are much higher than those over land area due to 1). tropical 

convection, 2). sub-models to simulate ocean-atmosphere interactions, 3). difficulty in 

obtaining observational data in sea area and 4). sharing the same SST data, resulting in 

the same overestimate over the sea's area. 
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4.1.2.2 Mean diurnal temperature range (MDTR)  

   MDTR is used to present the daily change range between the 

maximum and minimum temperature. It indicates the temperature trend of each season 

by considering the variances rate. Figure 4.6 shows the spatial pattern of the mean 

diurnal temperature range in Southeast Asia for summer, rainy, and winter of mean 

reference, CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL ENSEMBLE. 

In the case of land & sea, MDTRs of mean reference, CNRM-CM5-2, 6-MODEL 

ENSEMBLE, and 40-MODEL ENSEMBLE in summer ranges from 0.86 °C to 21.15 

°C, from 0.55 to 20.14 °C, from 0.56 °C to 17.12 °C, and from 0.59 °C to 15.43 °C, 

respectively,  while that in rainy ranges from 0.78 °C to 14.84 °C, from 0.52 °C to 13.24 

°C, from 0.55 °C to 10.58 °C, and from 0.55 °C to 9.60 °C, respectively,   and that in 

winter ranges from 0.89 °C to 14.97 °C,  from 0.63°C to 16.55°C, from 0.57°C to 

14.41°C, and from 0.59°C to 12.83°C. In the case of land & sea, the mean values of 

MDTR for mean reference, CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL 

ENSEMBLE in summer are 3.10°C, 3.02 °C, 2.69°C, and 2.61 °C, while those in rainy 

are 2.64°C, 4.34°C, 2.07°C, and 2.12°C and that in winter are 2.69°C, 2.77°C, 2.42°C, 

and 2.37°C. Overall of CNRM-CM5-2 of both land & sea case can perform MDTR 

value close to mean reference more than both multi-model ensembles for all seasons. 

MDTR of CNRM-CM5-2 is only 2.64% and 8.64% lower than that of the mean 

reference in summer and rainy, respectively; meanwhile, that is only 2.89 % higher than 

the mean reference in winter. Whereas MDTR in all seasons of 6-MODEL 

ENSEMBLE and 40-MODEL ENSEMBLE jumps up to 10% and 20% that of the mean 

reference. In the case of land only, the mean values of MDTR for mean  r e f e r ence , 

CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL ENSEMBLE in summer 

are 9.42°C, 9.61 °C, 8.38°C, and 7.64 °C, while those in rainy are 7.54°C, 7.04°C, 

5.91°C, and 5.64°C and that in winter are 7.58°C, 8.55°C, 7.36°C, and 6.71°C. In the 

case of the sea only, the mean values MDTR for mean reference, CNRM-CM5-2, 6-

MODEL ENSEMBLE, and 40-MODEL ENSEMBLE in summer are 1.48°C, 1.33°C, 

1.23°C, and 1.32°C, while that in rainy are 1.44°C, 1.25°C, 1.09°C, and 1.21°C and 

that in winter are 1.39°C, 1.29 °C, 1.16°C, and 1.26°C. 
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Figure 4.6 Spatial distribution of the mean diurnal temperature range for summer (left 

column) from (a) mean reference, (b) CNRM-CM5-2, (c) 6-MODEL ENSEMBLE, 

and (d) 40-MODEL ENSEMBLE, while (e) – (h) are same as (a) – (d), but that for 

rainy (middle column), as well as (i) – (l) are same as (a) – (d), but that for winter (right 

column). Numbers at the bottom-right of each dataset are the averaged MDTR values 

for all pixels. 

4.1.2.3 Mean seasonal cycle amplitude (SeasonAmp) 

    Figure 4.7 shows the spatial distribution of the mean seasonal 

cycle amplitude of temperature (SeasonAmp-T) and precipitation (SeasonAmp-P) of 

mean reference, CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL 
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ENSEMBLE. The SeasonAmp-T and SeasonAmp-P gradient in the spatial pattern of 

CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL ENSEMBLE demonstrate 

well agreement with mean reference. 

     In the case of temperature, SeasonAmp-T is a metric that shows 

the intensity of changing temperature computing by the difference of the highest and 

lowest temperature month. All models show similar south-north gradient results. There 

are the most different temperatures throughout the northern mainland; on the other 

hand, they show a smooth gradient with a low SeasonAmp-T value in the maritime 

area, as well as the island areas. SeasonAmp-T of mean reference, CNRM-CM5-2, 6-

MODEL ENSEMBLE, and 40-MODEL ENSEMBLE range from -2.23 °C to 12.72 

°C, from -4.04 °C to 16.01 °C, from -3.67 °C to 15.76 °C, and from -3.03 °C to 15.09 

°C, respectively (Figure 4.7). The mean values of SeasonAmp-T for land and sea pixel 

for the mean reference, CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL 

ENSEMBLE are 2.20 °C, 2.22 °C, 2.23 °C, and 2.19 °C.  40-MODEL ENSEMBLE 

has the best performance, where the mean value of SeasonAmp-T is only 0.01 °C less 

than that of the mean reference. Hence, 40-MODEL ENSEMBLE is the best 

performance model to simulate the difference in the months with the highest and lowest 

temperature. The mean values of SeasonAmp-T for land pixel for the mean reference, 

CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL ENSEMBLE are 3.03°C, 

4.46°C, 4.82°C, and 4.83°C, while that for sea pixel are 1.44°C, 1.65°C, 1.68°C, and 

1.66°C. When SeasonAmp-T of the model for land only and sea only cases are 

considered, they are not much different; however, SeasonAmp-T of CNRM-CM5-2 

perform better than that of multi-model ensembles. 

    In the case of precipitation, SeasonAmp-P shows the intensity 

of changing precipitation computing by the difference of the highest and lowest 

precipitation month.  This metric in this study is calculated as a percentage of mean 

annual precipitation. The spatial pattern showing SeasonAmp-P of the mean reference 

and all models demonstrate low to high value from the south-north gradient. 

SeasonAmp-P of mean reference, CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-

MODEL ENSEMBLE range from -26.66 %  to 26.44 % , from -20.33 %  to 20.79 %, 

from -18.37 %  to 22.89 % , and from -15.48 %  to 22.95 % , respectively. Overall, all 

models have high SeasonAmp-P values over the northern part of Southeast Asia. 
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However, SeasonAmp-P over the northwest and southeast area of both multi-model 

ensembles is more similar to mean reference than CNRM-CM5-2. The mean values of 

SeasonAmp-P for 6-MODEL ENSEMBLE and 40-MODEL ENSEMBLE are only 

0.59% and 0.13 % less than that of the mean reference, respectively, while that for 

CNRM-CM5-2 is 1.57% less than the mean reference.  40-MODEL ENSEMBLE is 

the best performance model to simulate the difference in the months with the highest 

and lowest precipitation. The mean values of SeasonAmp-P for land pixel for the mean 

reference, CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL ENSEMBLE are 

3.92%, 5.32%, 7.27%, and 6.95%, while those for sea pixel are 3.35%, 2.34%,3.15 %, 

and 3.53% . Although the best model for SeasonAmp-P for land only case is CNRM-

CM5-2, that for sea only case is 40-MODEL ENSEMBLE. 
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Figure 4.7 Spatial distribution of the mean seasonal cycle amplitude of temperature 

(left column) from (a) mean reference, (b) CNRM-CM5-2, (c) 6-MODEL 

ENSEMBLE, and (d) 40-MODEL ENSEMBLE, and the mean seasonal cycle 

amplitude of precipitation (right column) from (e) mean reference, (f) CNRM-CM5-2, 

(g) 6-MODEL ENSEMBLE, and (h) 40-MODEL. Numbers at the bottom-right of 

each dataset are the averaged SeansonAmp values for all pixels  
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4.1.2.4 Correlation coefficient (r)  

 

Figure 4.8 Spatial distribution of the mean seasonal temperature for mean reference, 

CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL ENSEMBLE in summer 

(left column), in rainy (middle column), and in winter (right column)  

  Figure 4.8 shows the mean seasonal temperature for the period 1960-

1999 of mean reference, CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL 

ENSEMBLE order by summer (FMA), rainy (MJJASO), and winter (NDJ). They show 

cold temperatures over the northern part of the mainland. In addition, the mean 

reference shows the seasonal temperature over the mainland higher than that of all 

models.  
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    Table 4.1 shows r, RMSE, and NSD results of mean seasonal 

temperature and precipitation for years 1960 – 1999 for  both land & sea case  for 

CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL ENSEMBLE compared to 

the mean reference. Asterisk (*) above number in Table 4.1 is the best value for metrics 

evaluations. To evaluate temperature simulation by r, the r-T rating of all simulation 

for all seasons is a very good level, their correlations range from 0.91 to 0.97. Although 

all simulations can perform well in terms r-T metric, both multi-model ensembles are 

very close to 1 more than CNRM-CM5-2, particularly 6-MODEL ENSEMBLE. 

Furthermore, 6-MODEL ENSEMBLE is the best performance model of all seasons. In 

the case of land only, CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL 

ENSEMBLE are highly correlated to the mean reference, with r-T of 0.9993, 0.9993, 

and 0.9992 in summer, of 0.9990, 0.9993, and 0.9997 in rainy, and 0.9968, 0.9976, and 

0.9979 in winter. In the case of sea only, the mean values of r-T for CNRM-CM5-2, 6-

MODEL ENSEMBLE, and 40-MODEL ENSEMBLE are 0.9989, 0.993, and 0.9991 in 

summer, 0.9992, 0.9997, and 0.9996 in rainy, and 0.9989, 0.9994, and 0.9994 in winter. 

Their cases reveal that all simulations are very close to 1.  

Table 4.1 r, RMSE, and NSD between observations and model simulations of mean 

annual temperature and precipitation for years 1960 – 1999. They are evaluated for 

both land & sea case for summer (FMA), rainy (MJJASO), and winter (NDJ) 

Models Metrics 
Temperature Precipitation 

Summer Rainy Winter Summer Rainy Winter 

C N R M -

CM5-2 

r 0.93 0.91 0.96 0.85 0.73 0.88 

RMSE(°C) 0.86 0.90 1.59 46.04 60.44 48.76 

NSD 0.94* 1.28 1.20 1.10 0.95* 0.90 

6-MODEL  

ENSEMBLE 

r 0.95* 0.92* 0.97* 0.92* 0.84* 0.90* 

RMSE(°C) 0.75 0.60 0.96 37.36* 46.61* 37.98* 

NSD 1.09 1.16 1.22 1.07* 0.75 0.97* 

40-MODEL 

 

ENSEMBLE 

r 0.95* 0.91 0.97* 0.91 0.81 0.90* 

RMSE(°C) 0.67* 0.54* 0.78* 47.72 47.25 38.97 

NSD 1.10 1.07* 1.17* 1.23 0.74 1.05 
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Figure 4.9 Same as Figure 4.8 but for precipitation 

   Figure 4.9 shows the mean seasonal precipitation for the period 1960-

1999 for mean reference, CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL 

ENSEMBLE order by summer (FMA), rainy (MJJASO), and winter (NDJ). They show 

that low precipitation over the northern part of Southeast Asia in summer and winter 

while the southern part of that has high precipitation, especially Indonesia and Papua 

New Guinea.  To evaluate precipitation simulation by r, the r-P rating of all simulation 

for all season is good to very good. Their correlations for all seasons range from 0.73 

to 0.91. 6-MODEL ENSEMBLE is the only model that shows the best correlation for 
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all seasons, with r-T of 0.92 in summer, 0.84 in rainy, and 0.90 in winter, respectively. 

While 40-MODEL ENSEMBLE also performs best in winter, with r-P of 0.90. 

However, the mean values of r-T for CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-

MODEL ENSEMBLE show weaker than that in summer and winter. In the case of land 

only, CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL ENSEMBLE are 

highly correlated to the mean reference, with r-P of 0.96, 0.98, and 0.98 in summer, of 

0.94, 0.96, and 0.97 in rainy, and 0.98, 0.97, and 0.98 in winter. In the case of sea only, 

the mean values of r-T for CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL 

ENSEMBLE are 0.89, 0.91, and 0.89 in summer, 0.83, 0.89, and 0.75 in rainy, and 

0.89, 0.90, and 0.85 in winter. 

4.1.2.5 Root mean squared error (RMSE) 

    RMSE shows the different errors in terms of magnitude between 

models and means reference. The best RMSE value is closer to 0. To evaluate 

temperature simulation using RMSE, the mean values of RMSE-T for land & sea case 

for CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL ENSEMBLE for all 

seasons range from 0.54 °C to 1.13 °C. Their RMSE-T of almost season ( e x c ep t 

CNRM-CM5-2 in winter) have less than 1°C. 40-MODEL ENSEMBLE for all seasons 

shows very high accuracy with RMSE-T value closer to 0 than CNRM-CM5-2 and 6-

MODEL ENSEMBLE. In addition, the RMSE-T for all models shows the weakest 

performance in the winter; in contrast, they perform best in the rainy. In the case of land 

only, all of models can perform RMSE-T less than 1 °C, which they for all seasons 

range from 0.37 °C to 0.95 °C. 40-MODEL ENSEMBLE has the best performance for 

all season, with RMSE-T of 0.41°C, 0.37°C, and 0.68 °C in summer, rainy, and winter, 

respectively. In addition, all models also can perform well in rainy; on the other hand, 

their performance also perform poorly in winter. In the case of sea only, all of models 

can perform RMSE-T less than 0.7°C, which they for all seasons range from 0.35 °C to 

0.63 °C. 6-MODEL ENSEMBLE perform best for all season, with RMSE-T of 0.45, 

0.35, and 0.36 in summer, rainy, and winter, respectively.  

   To evaluate precipitation simulation using RMSE, the mean 

values of RMSE-P for CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL 

ENSEMBLE for all seasons of land & sea case range from 37.36 mm to 60.44 mm. 6-
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MODEL ENSEMBLE  is a model that performs best for all season, its RMSE-P is 

37.36 mm, 46.61 mm, and 37.98 mm in summer, rainy, and winter, respectively. While 

the mean values of RMSE-P for CNRM-CM5-2 and 40-MODEL ENSEMBLE are 

18.85% and 21.71% higher than the 6-MODEL ENSEMBLE in summer, respectively. 

Meanwhile, the mean values of RMSE-P of CNRM-CM5-2 in rainy and winter are 

21.51% and 20.51% higher than the 6-MODEL ENSEMBLE, respectively. Although 

having lower accuracy, RMSE-P of 40-MODEL ENSEMBLE is only 1.37 % and 

2.54% higher than that of 6-MODEL ENSEMBLE in rainy and winter, respectively.  

In the case of land only, all models can perform RMSE-P less than 30 mm, which their 

RMSE-P for all seasons ranges from 20.78 mm to 29.60 mm. 40 -MODEL 

ENSEMBLE also performs best in all seasons with RMSE-P of 20.78 mm, 26.70 mm, 

and 27.09 mm in summer, rainy, and winter, respectively. Besides, all models also can 

perform well in summer; on the other hand, they also perform poorly in rainy. In the 

case of the sea only, all models can perform RMSE-P less than 60 mm, which for all 

seasons range from 37.95 mm to 59.12 mm. The best performance of RMSE-P in 

summer and winter is CNRM-CM5-2, its RMSE-P is 0.37 mm and 40.65 mm, 

respectively, while that in rainy is 6-MODEL ENSEMBLE, its value is 46.74 mm. 

4.1.2.6 Normalized standard deviation (NSD) 

   NSD represents individual pixels for CNRM-CM5-2, 6-

MODEL ENSEMBLE, and 40-MODEL ENSEMBLE that distribute from its mean 

value. NSD of all models that are normalized by SD results of mean reference is 

shown in Table 4.1. The best value of NSD is closest to 1 which means low fluctuation. 

In the case of temperature, NSD-T for land & sea case for CNRM-CM5-2, 6-MODEL 

ENSEMBLE, and 40-MODEL ENSEMBLE for three seasons range from 0.94 to 1.28. 

Most of them show more than 1 which indicates that the distribution values of the 

three models are higher than the mean reference. The best performance of NSD-T in 

summer is CNRM-CM5-2, its NSD-T is 0.95. Whereas the 40-MODEL ENSEMBLE 

shows the best performance to simulate variability for rainy and winter by 1.07 and 

1.17, respectively.  Although 6-MODEL ENSEMBLE cannot perform best for all 

seasons, it can perform second-best in rainy. In the case of land only, NSD-T values of 

CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL ENSEMBLE for three 
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seasons range from 0.95 to 1.26. There is a larger NSD-T range more than land & sea 

study cases. CNRM-CM 5-2  performs best in winter. While 40- MODEL ENSEMBLE 

performs well for all seasons, especially in summer and rainy season.   However, all 

models also show the largest NSD-T in winter. It means that the temperature 

simulation in winter has a higher fluctuation than that in another season. In the case of 

sea only, NSD-T of CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL 

ENSEMBLE for three seasons range from 0.98 to 1.17. CNRM-CM5-2 is the best 

performing model in summer, while 6-MODEL ENSEMBLE and 40-MODEL 

ENSEMBLE perform best in winter and rainy, respectively. On the other hand, the 

highest fluctuation of CNRM-CM5-2 and 6-MODEL ENSEMBLE is winter, while 

that of 40-MODELENSEMBLE is summer. 

    To evaluate the simulation precipitation using NSD, the mean 

NSD-P of CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL ENSEMBLE 

for three seasons range from 0.74 to 1.23. Although 6-MODEL ENSEMBLE is not 

best performing in temperature case, it performs best in precipitation case, its NSD-P 

is closest to 1 in summer and winter. While CNRM-CM5-2 performs best in rainy, its 

NSD-P is only 0.5 mm lower than 1. The overall performance of 40 -MODEL 

ENSEMBLE is rather good because it performs second-best in rainy and winter, its 

NSD-P is 0.74 and 1.05, respectively. In the case of land only, CNRM-CM5-2 has the 

best performances in rainy, with a perfect NSD-P of 1. Moreover, it also performs best 

in winter. While 6-MODEL ENSEMBLE has the best performances in summer, its 

NSD-P is 0.99% higher than that of the mean reference. In the case of sea only, NSD-

P values of CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL ENSEMBLE 

for three seasons range from 0.75 to 1.30. All models perform less than 1 in rainy and 

winter which means variability of models less than that of the mean reference. The 

small NSD-P of CNRM-CM5-2 is 4.16% less than the mean reference in rainy, while 

that of 6-MODEL ENSEMBLE and 40-MODEL ENSEMBLE is 9.09 % higher than 

that in summer and 2.04 % less than that in winter, respectively. 
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 4.1.3 Temperature and precipitation simulation for a long-term period of 

CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL ENSEMBLE. 

 4.1.3.1 Variance (Var) 

   Table 4.2 shows  the value of the results of Var, CV, and RMSE 

performance metrics for evaluating temperature and precipitation for land only for the 

year 1901-1999.   The annual variability of temperature for 99-years evaluated by the 

standard deviation of mean reference is 0.31 °C, while that of CNRM-CM5-2 is 0.34 

°C. Whereas the standard deviations of 6-MODEL ENSEMBLE and 40-MODEL 

ENSEMBLE are 0.22°C and 0.16°C, respectively. Overall, CNRM-CM5-2 is the best 

model that shows the mean variability of temperature for 99-years in Southeast Asia 

close to the mean reference. Its standard deviation is only 8.82% higher than that of the 

mean reference. As the simulation of temperature for 99-years by the standard deviation 

of 6-MODEL ENSEMBLE and 40-MODEL ENSEMBLE are lower than men 

reference about 40.90% and 93.75%, respectively. 

Table 4.2 Var, CV, and RMSE between observations and model simulations of mean 

annual temperature and precipitation for years 1991 – 1999 

 

Models 

Temperature Precipitation 

Var 

(°C) 

RMSE 

(°C) 

Trend 

(°C 

/century -1) 

CV 

(%) 

RMSE 

(mm) 

Trend 

(%/century 

-1) 

Mean reference 0.31 - 0.16 0.13 - 5.26 

CNRM-CM5-2 0.34 * 1.56 0.35* 0.14* 246.03* 4.17* 

6-MODEL 

ENSEMBLE 
0.22 1.46 0.55 0.05 590.37 3.70 

40-MODEL 

ENSEMBLE 
0.16 1.44* 0.46 0.02 548.92 2.16 

4.1.3.2 Coefficient of variation (CV) 

     The annual variability of temperature for 99-years evaluated by 

the coefficient of variation of mean reference is 0.13, while that of CNRM-CM5-2 are 
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0.14 °C. Whereas standard deviations of 6-MODEL ENSEMBLE and 40-MODEL 

ENSEMBLE are 0.05 °C and 0.02°C, respectively. Overall, CNRM-CM5-2 is the best 

model that shows the mean variability of temperature for the long-term in Southeast 

Asia close to the mean reference. Its CV is only 7.14% h igher  t han  tha t  o f  mean 

reference. While both multi-model ensembles simulate CV value that is very different 

with quite lower than mean reference. 

4.1.3.3 Root mean squared error (RMSE) 

    In the case of temperature, the long-term RMSE averaged of 40-

MODEL ENSEMBLE is the most accurate model, with an RMSE of 1.44 °C. While 

the RMSE values of 40-MODEL ENSEMBLE and 6-MODEL ENSEMBLE are 1.56 

°C and 1.46 °C. Their values are not much different, especially the RMSE value of both 

multi-model ensembles. It is a bit different about 0.02 °C. While the RMSE value of 

the CNRM-CM5-2 is 0.12 ° C and 0.10 ° C higher than that of 40-MODEL 

ENSEMBLE and 6-MODEL ENSEMBLE, respectively. 

   On the other hand, the evaluation of the mean precipitation for 

the 20th century by RMSE shows that CNRM-CM5-2 is the most accurate model, its 

RMSE is 246.03 mm. There is lower than RMSE of both multi-model ensembles. 

RMSE of CNRM-CM5-2 is 344.34 mm and  302.89 mm lower than that of  6-MODEL 

ENSEMBLE and  40-MODEL ENSEMBLE, respectively. These RMSE results reveal 

that the CNRM-CM5-2 can be able to significantly reduce the magnitude of error more 

than that of both multi-model ensembles. 

4.1.3.4 Linear trend (Trend) 

    Figure 4.10 shows the 20th-century trend for temperature and 

precipitation of annual averaged for of mean reference, CNRM-CM5-2, 6-MODEL 

ENSEMBLE, and 40-MODEL ENSEMBLE. Trend-T and Trend-P are used to evaluate 

the overall temperature and precipitation trend as well as preliminary variability in 

Southeast Asia. In the case of temperature, the trend of mean reference has a positive 

temperature trend, its trend is 0.16 °C /century -1. CNRM-CM5-2, 6-MODEL 

ENSEMBLE, and 40-MODEL ENSEMBLE showed a positive temperature trend of 

0.34 °C /century -1, 0.55 °C /century -1, and 0.45 °C /century -1. Even though CNRM-
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CM5-2 performs best for evaluating the rate of temperature change for the 1901–1999 

period, there is a much different rate of temperature change from the mean reference. 

     In the case of precipitation, the trend of mean reference has a 

positive temperature trend, its trend is 5.26 %/century -1.  CNRM-CM5-2, 6-MODEL 

ENSEMBLE, and 40-MODEL ENSEMBLE showed a positive temperature trend of 

4.17 % /century -1, 3.70 % /century -1, and 2.16 % /century -1. CNRM-CM5-2 still 

performs best in Trend-P for evaluating the rate of precipitation change for the 1901–

1999 period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Annual averaged temperature and precipitation trend in Southeast Asia 

for years 1901-1999 of mean reference, CNRM-CM5-2, 6-MODEL ENSEMBLE, and 

40-MODEL ENSEMBLE. 
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4.1.3.5 Correlation coefficient of ENSO (ENSO) 

   Figure  4.11 shows a correlation coefficient of winter 

temperature with Niño 3.4 index (ENSO-T), and that of winter precipitation with Niño 

3.4 index (ENSO-P) for the 20th century of mean reference, CNRM-CM5-2, 6-

MODEL ENSEMBLE, and 40-MODEL ENSEMBLE.  In the spatial pattern of the 

t emper a tu r e  case ,  the CNRM-CM 5-2  can exhibit the correlation of sea surface 

temperature anomalies in the Niño 3.4 region closest to the mean reference; even 

though, ENSO-T of that show higher than the mean reference over the north-west part 

of the mainland.  Whereas 6-MODEL ENSEMBLE and 40-MODEL ENSEMBLE in 

spatial pattern show differently when compared with the mean reference. ENSO-T 

values of 6-MODEL ENSEMBLE over the island in the maritime area has higher than 

that of mean reference, while ENSO-T values of 40-MODEL ENSEMBLE over the 

study area has higher than that of mean reference. When the magnitude of ENSO-T is 

considered, ENSO-T averaged of CNRM-CM5-2 are slightly lower than in mean 

reference, its ENSO-T is only 0.09 less than mean reference. In contrast, ENSO-T 

averaged of 6- MODEL ENSEMBLE and 40- MODEL ENSEMBLE are 0.12  and 0.41  

higher than that of mean reference, respectively. 

    In the spatial pattern of the precipitation case, the CNRM-CM 5-

2  shows the correlation of sea surface temperature anomalies in the Niño 3.4 region 

closest to the mean reference. 6-MODEL ENSEMBLE shows ENSO-P value lower 

than that of mean reference over mainland; furthermore, its ENSO-P shows higher than 

that of mean reference over islands of maritime. 40- MODEL ENSEMBLE is the worst 

performance model for evaluating the model by ENSO-P and it shows ENSO-P higher 

than that of mean reference over the study area. When the magnitude of ENSO-P is 

considered, ENSO-T averaged of CNRM-CM5-2 are lower than in mean reference, its 

ENSO-T is only 0.09 less than mean reference. While  ENSO-P averaged of  6-MODEL 

ENSEMBLE and 40-MODEL ENSEMBLE   is 0.10 and  0.59 higher than mean 

reference, respectively. Therefore, CNRM-CM 5-2  is the best-performing model for 

ENSO-T and ENSO-P metrics because it performs well for evaluating the correlation 

in terms of spatial pattern and magnitude of the mean correlation coefficient. 

 

https://www.ncdc.noaa.gov/monitoring-content/teleconnections/nino-regions.gif
https://www.ncdc.noaa.gov/monitoring-content/teleconnections/nino-regions.gif
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Figure 4.11 Spatial distribution of correlation coefficient of winter temperature with 

Niño 3.4 index (left column), and that of winter precipitation with Niño 3.4 index (right 

column) for 20th century of mean reference, CNRM-CM5-2, 6-MODEL ENSEMBLE, 

and 40-MODEL ENSEMBLE. Numbers at the bottom-right of each dataset are the 

averaged of ENSO values by all pixels. 
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4.1.4 CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL ENSEMBLE 

ranking by different categories. 

  When the performances of CNRM-CM5-2, 6-MODEL ENSEMBLE, 

and 40-MODEL ENSEMBLE are considered by different categories, Figure 4.12 

shows relative errors for all performance metrics for land only, sea only cases, the 

temperature only, and precipitation only categories, respectively. The CNRM-CM5-2, 

6-MODEL ENSEMBLE, and 40-MODEL ENSEMBLE are listed on the left of each 

sub-figure, while the total relative error values are listed on the right of the sub-figure. 

The 6-MODEL ENSEMBLE showing the lowest total relative error value is listed at 

the bottom of all sub-figures. Hence, Figure 4.12 shows that 6-MODEL ENSEMBLE 

is the best performance model for all categories, where their total relative errors are 

4.95, 2.32, 7.69, and 3.68 for land only, sea only, the temperature only, and 

precipitation only, respectively.  
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Figure 4.12 Relative error of performance metrics considered (a) land only and (b) sea 

only (c) temperature, and (d) precipitation for CNRM-CM5-2, 6-MODEL 

ENSEMBLE, and 40-MODEL ENSEMBLE (vertical ordinate). 
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4.2 Evaluation of CMIP6 GCMs in Thailand 

 

 4.2.1 Temperature simulation for a near-term period of 13 CMIP6 GCMs and 

13-MODEL ENSEMBLE. 

4.2.1.1 Mean (MA) 

    The first performance metric for evaluating GCMs is MA. It is 

used to illustrate the difference in spatial temperature by comparing model outputs and 

mean reference data. For finding the best GCM, there is the overall temperature closer 

to mean reference data. Figure 4.13 shows the spatial annual temperature for mean 

reference data, 13-MODEL ENSEMBLE, and the individual 13 GCMs. Numbers in 

each sub-image are an average of spatial annual temperature of each GCM. Spatially, 

all GCMs have the temperature gradient in the same direction with a low temperature 

in the north of Thailand (especially over high mountains) and a high temperature in the 

south of Thailand. The mean temperature of 13 CMIP6 GCMs range from 26.22 °C to 

29.06 °C.  The simulation result evaluated by MA shows that GFDL-CM4 is very 

similar to mean reference data; the difference is only 0.07 °C, whereas the mean 

temperature of MIROC6 performs worst in terms both of magnitude and shape that is 

very different from the mean reference data. The temperature simulation of MIROC6 

is 2.77 °C higher than the mean reference data.  

   MA was used to assess CMIP5 GCMs over Lower Mekong 

Basin (Ruan et al. 2019) and eastern Tibetan Plateau (Su et al. 2013) during 2 periods 

(i.e., 1961 - 2004 and 1961-2005. GCM from NOAA-GFDL in this study shows the 

best performance in MA, but it was not good to perform in Ruan et al. (2019) and Su et 

al. (2013). Since GFDL-CM3 of their performance was ranked in the worst-performing 

model group. GFDL-CM3 was ranked 23 out of 34 models and 20 out of 24 models in 

Ruan et al. (2019) and Su et al. (2013), respectively (Table 4.3). Thus, the ranking 

results of both studies demonstrate that GFDL-CM3 is not an adequate ability to 

simulate the mean annual temperature over the tropical and subtropical zone. 

    The performance comparisons of temperature simulation 

between GFDL-CM3 in CMIP5 of Ruan et al. (2019) and Su et al. (2013) and GFDL-

CM4 in CMIP6 of this study, we find that is very different, although the study area of 



69 

 

 

Ruan et al. (2019) is a part of this study. MA shows that the performance of GFDL-

CM4 in this study can simulate better than the previous version in CMIP5, especially 

for simulation over the tropical zone.  The ability of GFDL-CM4 is a significant 

increase that may be caused by installing a new version of the physical climate model 

along with spatial resolution higher than double in GFDL-CM3 (res. 2.5° × 2°) (Held 

et al 2019). We believe that these updates were a key factor because GFDL-CM4 can 

express higher efficiency than the previous version. Hence, the assessment for a similar 

area of this study and Ruan et al. (2019) reveals different results between GFDL-CM3 

and GFDL-CM4 

    When considering the ranking of GCM from MIROC institution 

(the worst performance in MA), we find that the model ranking results of Ruan et al. 

(2019) and Su et al. (2013) are different to this study because MIROC5 of Ruan et al. 

(2019) and Su et al. (2013) was ranked 7 out of 34 models and 8 out of 24 models, 

respectively (Table 4.4). Thus, MIROC5 in CMIP5 was the well-performing model 

group for temperature simulation. On the other hand, MIROC6 performance which is 

the latest version from the MIROC institution under the CMIP6 project shows the worst 

performance in this study. Although MIROC6 has already determined new physical 

parameterizations in sub-modules (Tatebe et al. 2019), it has the lowest ranking score 

in this work. In addition, the horizontal resolution of MIROC6 is not higher than the 

previous version in CMIP5. Tatebe et al. (2019) reported that increasing the horizontal 

resolution of the model means that also increases computational cost; however, many 

GCMs in CMIP6 were developed in this part (Held et al. 2019; Séférian et al. 2019; 

Boucher et al. 2020; Grise and Davis 2020). 
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Figure 4.13 Mean annual temperature (MA) (°C) for years 2000-2014 of mean 

observations, 13-MODEL ENSEMBLE, and 13 GCMs. Numbers at the bottom-right 

of each dataset are the averaged MA values for all pixels. 
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Table 4.3 Ranking measures of best performance assessment of Former GCMs 

Metrics 

 

Model with the 

best 

performance 

Former studies 

CMIP6 & 

Institution 
Reference Variable Year Area CMIP & Rank 

MA 

 

GFDL-CM4 

(NOAA GFDL) 

Ruan et al. 2019 annual temperature 1961-2004 Lower Mekong Basin GFDL-CM3(23/34) 

Su et al. 2013 annual temperature 1961-2005 eastern Tibetan Plateau GFDL-CM3(20/24) 

MBE 

 

GFDL-CM4 

(NOAA GFDL) 

Rupp et al. 2013 annual temperature 1960-1999 Pacific Northwest USA GFDL-CM3(20/41) 

Miao et al. 2014 annual temperature 1901-2005 northern Eurasia GFDL-CM3(3/24) 

Xuan et al. 2017 annual maximum 

temperature 

1971-2000 Zhejiang Province in China GFDL-CM3(18/18) 

annual minimum 

temperature 

1971-2000 Zhejiang Province in China GFDL-CM3(17/18) 

Miao et al. 2014 monthly 

temperature 

1901-2005 northeastern Argentina GFDL-CM3(15/25) 

Su et al. 2013 annual temperature 1901-2005 eastern Tibetan Plateau GFDL-CM3(20/24) 

SeaSonAmp CNRM-CM6-1-

HR  

(CNRM-

CERFACS) 

Rupp et al. 2013 annual temperature 1960-1999 Pacific Northwest USA CNRM-CM5(11/41) 

CNRM-CM5-2 (13/41) 

r CNRM-CM6-1 

CNRM-CM6-1-

HR 

CNRM-ESM2-1 

(CNRM-

CERFACS) 

Ruan et al. 2019 annual temperature 1961-2004 Lower Mekong Basin CNRM-CM5 (23/34) 

Zhou and Yu 2006 annual temperature 1880-1999 Global 

Northern Hemispheric 

China 

CNRM-CM3*(9/19) 

CNRM-CM3*(9/19) 

CNRM-CM3*(3/19) 

Xu et al. 2017 annual temperature 1979–2005 Tibetan Plateau CNRM-CM5 (1/14) 
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Table 4.3 Ranking measures of best performance assessment of Former GCMs (Continued) 

Metrics 

 

Model with the 

best performance 
Former studies 

CMIP6 & 

Institution 
Reference Variable Year Area CMIP & Rank 

RMSE CNRM-ESM21 

(CNRM-

CERFACS) 

Miao et al. 2014 monthly 

temperature 

1901-2005 northeastern Argentina CNRM-CM5-2 (10/25) 

Ruan et al. 2019 annual temperature 1961-2004 Lower Mekong Basin CNRM-CM5 (6/34) 

Xuan et al. 2017 annual maximum 

temperature 

1971-2000 Zhejiang Province in China CNRM-CM5 (11/18) 

annual minimum 

temperature 

1971-2000 Zhejiang Province in China CNRM-CM5 (5/18) 

Grose et al. 2014 annual temperature 1980–1999 Pacific Ocean region CNRM-CM5-1 (8/27) 

 

Table 4.4 Ranking measures of worst performance assessment of Former GCMs 

Metrics 

 

Model with the 

best performance 
Former studies 

CMIP6 & 

Institution 
Reference Variable Year Area CMIP & Rank 

MA MIROC6 

(MIROC) 

Ruan et al. 2019 annual temperature 1961-2004 Lower Mekong Basin MIROC5 (7/34) 

Su et al. 2013 annual temperature 1961-2005 eastern Tibetan Plateau MIROC5 (8/24) 

MBE MIROC6  

(MIROC) 

Rupp et al. 2013 annual temperature 1960-1999 Pacific Northwest USA MIROC5 (22/41) 

Miao et al. 2014 annual temperature 1901-2005 northern Eurasia MIROC5 (15/24) 

Xuan et al. 2017 annual maximum 

temperature 

1971-2000 Zhejiang Province in China MIROC5 (1/18) 

annual minimum 

temperature 

1971-2000 Zhejiang Province in China MIROC5 (10/18) 
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Table 4.4 Ranking measures of worst performance assessment of Former GCMs (Continued) 

Metrics 

 

Model with the 

best performance 
Former studies 

CMIP6 & 

Institution 
Reference Variable Year Area CMIP & Rank 

  Miao et al. 2014 monthly 

temperature 

1901-2005 northeastern Argentina MIROC5 (15/25) 

Su et al. 2013 annual temperature 1961-2005 eastern Tibetan Plateau MIROC5 (8/24) 

SeaSonA

mp 

FGOALS-f3-L 

(LASG-CESS) 

Rupp et al. 2013 annual temperature 1960-1999 Pacific Northwest USA FGOALS-s2 (41/41) 

r MIROC6 

(MIROC) 

Zhou and Yu 2006 annual temperature 1960-1999 Global 

Northern Hemispheric 

China  

MIROC3.2*(10/19) 

MIROC3.2*(6/19) 

MIROC3.2*(6/19) 

Ruan et al. 2019 annual temperature 1961-2004 Lower Mekong Basin MIROC5 (5/34) 

Xu et al. 2017 annual temperature 1979–2005 Tibetan Plateau MIROC4h (6/14) 

Su et al. 2013 annual temperature 1961-2005 eastern Tibetan Plateau MIROC5 (14/24) 

RMSE MIROC6 

(MIROC) 

Xuan et al. 2017 annual maximum 

temperature 

1971-2000 Zhejiang Province in China MIROC5 (2/18) 

annual minimum 

temperature 

1971-2000 Zhejiang Province in China MIROC5 (9/18) 

Miao et al. 2014 monthly 

temperature 

1901-2005 northeastern Argentina MIROC5 (8/25) 

Ruan et al. 2019 annual temperature 1961-2004 Lower Mekong Basin MIROC5 (30/34) 

Su et al. 2013 annual temperature 1961-2005 eastern Tibetan Plateau MIROC5 (9/24) 

Grose et al. 2014 annual temperature 1980–1999 Pacific Ocean region MIRCO5 (13/27) 
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4.2.1.2 Mean bias error (MBE) 

     MBE is used to indicate the direction of temperature that models 

are overestimating (warm bias) or underestimate (cold bias).  Figure 4.14 shows the 

spatial distribution of bias of the mean annual temperature over the study area for mean 

reference data, 13-MODEL ENSEMBLE, and the individual 13 GCMs. Numbers in 

each sub-image are a bias of spatial annual temperature of each simulation. The MBE 

value of 13 CMIP6 GCMs range from -0.07°C to 2.78°C and most of CMIP6 GCMs 

show higher overestimate of mean reference values, except for GFDL-CM4 that 

underestimates temperature with the mean bias at -0.07°C (or mean bias of -3.10 %); 

moreover, GFDL-CM4 is a GCM that has the lowest bias in this study when compares 

to the other GCMs. Almost all models show which the MBE value is range ±1 °C. 

Whereas, MIROC6 is the only GCM that shows MBE above 2 ° C, and it is the highest 

MBE value for this study. MIROC6 shows a positive direction (warm bias) that it 

covers over the study area with a mean bias of 31.50 %.  

   MBE is a statistic metric that is used to assess the temperature 

simulation of GCMs over several regions by previous studies, e.g, Pacific Northwest 

USA (Rupp et al. 2013), Northern Eurasia (Miao et al. 2014), Zhejiang Province in 

China (Xuan et al. 2017), northeastern Argentina (Lovino et al. 2018), eastern Tibetan 

Plateau (Su et al. 2013) (Table 4.3). The GCMs ranking by MBE, Miao et al. (2014) 

found that GFDL-CM3 in CMIP5 was a good performance for simulation; it was ranked 

3 out of 24 models, while Kumar et al. (2013) and Lovino et al. (2018) found that it 

was moderate performance. In addition, Xuan et al. (2017) and Su et al. (2013) reported 

that GFDL-CM3 is a poor performing model for temperature variable simulation and it 

was also ranked group of worst performance models. These previous studies revealed 

interesting points that GFDL-CM3 could well simulate the temperature over the 

Temperate zone as well as the Polar zone. On the other hand, the performance of GFDL-

CM3 is extremely decreased when it simulates over the tropical and subtropical zone. 

GFDL-CM3 in CMIP5 has a limit for simulating and the simulation result might be up 

for each area study.  

    NOAA GFDL who generating the GFDL-CM group has 

interested in the development of GFDL-CM4 for better simulation of temperature over 
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the Tropical zone (Held et al. 2019). Hence, GFDL-CM4 participating in the CMIP6 

project can increase the performance for simulating the temperature over Thailand. 

    While previous models by MIROC institution (the worst 

performance in MBE), their performances were also found to differ from each region 

(Table 4.4). Rupp et al. (2013); Miao et al. (2014); Xuan et al. (2017); Ruan et al. (2019) 

and Su et al. (2013) reported that MIROC5 was good to moderate ranked by MBE. It 

had a very excellent ranking by Xuan et al. (2017) and Su et al. (2013). 

    We remarked that the study areas of well performance group in 

previous studies (GFDL-CM3 in Miao et al. (2014) and MIROC5 in Xuan et al. (2017) 

and Su et al. (2013)) was also located near to the development institution of both of 

GFDL-CM3 and MIROC5 which they are the institution of the United States and Japan, 

respectively. It might be that the physical parameters of these models were set to test 

the temperature simulation over the main development institution area. 

    Although CMIP6 models have improved their climate 

simulations compared to previous generations, they still have persistent biases and 

uncertainties, especially a warm bias over tropical regions (Kim et al. 2020). Arias et 

al. (2020) discovered that CMIP6 GCMs have limitations when simulating air surface 

temperatures in areas with complex topography. Looking at the temperature bias in 

Figure 4.14, almost all CMIP6 GCMs show a similar spatial pattern of their biases. The 

majority of the values for the bias in the study area were negative, although there were 

a few areas with a positive bias, with most of these positive biases being in the higher 

topography than the neighboring regions. In addition, values are influenced by the 

latitude of an area (Park et al. 2019). Temperaute are known to differ by latitude, with 

lower latitudes being warmer and higher latitudes being cooler. Thus, these factors 

explain why most GCMs simulate temperature in the same direction, as does a model 

with systematic bias. Hence, the overestimates and underestimates are also likely due 

to model deficiencies related to topographic parameters and geographic location 

factors. 
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Figure 4.14 Spatial distribution of bias of the mean annual temperature (MBE in °C) 

for years 2000-2014 of 13-MODEL ENSEMBLE and 13 GCMs. Numbers at the 

bottom-right of each dataset are the averaged MBE values for all pixels. 
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4.2.1.3 Mean seasonal cycle amplitude (SeasonAmp) 

    Season-Amp is used to display the severity of temperature 

changes in each area of the study domain. Figure 4.15 shows the temperature gradient 

in the spatial pattern of all simulation that they range from -5°C to 15°C. Numbers in 

each sub-image are the changes in values of spatial annual temperature of each 

simulation. Out of the 13 GCMs, all show that the northern region of Thailand has 

more temperature changes than those in the southern region; these results are 

consistent with the reality of Thailand's climate (Tan and Pereira, 2010). This study 

finds that CNRM-CM6-1-HR is best able to simulate the mean temperature change as 

close to the mean reference data in terms of magnitude and it has a higher mean 

temperature change than the mean reference data only 0.1 ° C. Although CNRM-

CM6-1-HR is the best GCM that can simulate the change of mean temperature in 

terms of magnitude (total of the area), it is not the best simulation in terms of shape. 

13-GCM-ENSEMBLE is the best simulation that shows consistency with the mean 

reference data in terms of shape which clearly shows the northern region of the study 

area and the mean change value of this simulation has only 0.35 °C lower than the 

mean reference. FGOALS-f3-L generated by LAST-ACCESS institution is GCM that 

has the highest in the change value from the mean reference data, with the change 

value of 6.29°C; it has 2.45°C higher than the mean reference 

    The season-Amp metric is grouped in the highest confidence 

categories for CMIP5 ranking over Pacific Northwest USA by Rupp et al. (2013). 

They reported that multi-model simulation can simulate the severity of temperature 

change as close to the observed data, with temperature gradient as well as temperature 

change value of the multi-models within 1 °C. In addition, they found that CNRM-

CM5 and CNRM-CM5-1 created by CNRM-CERFACS institutions were similarly 

ranked 11 and 13 out of 41 models, respectively. While FGOALS-s2 was found the 

worst performance for simulation the severity of temperature change. FGOALS-s2 

was ranked 41 out of 41 models (lowest order) that their ranking has consistency with 

the ranking of this study because FGOALS-s2 of this study also ranks in the lowest 

order too. Although the latest model from the LASG-CESS institution participating 

CMIP6 has updated both the atmospheric model and oceanic model, FGOALS-f3-L 
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still perform worst to simulate the severity of temperature change when compares with 

the other GCMs, especially over the Thailand area (Guo et al. 2020).  

 

 

Figure 4.15 Comparisons of the mean seasonal cycle amplitudes of temperature 

(SeasonAmp) for years 2000-2014 of mean observations, 13-MODEL ENSEMBLE, 

and 13 GCMs. Numbers at the bottom-right of each dataset are the averaged 

SeansonAmp values for all pixels. 
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Table 4.5 r and RMSE between observations and model simulations of mean annual 

temperature for years 2000 2014. They are evaluated for land only, sea only, and both 

land & sea 

* is the best value for each metrics' evaluations, while ** is the worst value for each 

metric's evaluations. 

 

   

 

 

 

 

Model 

Land-only Sea-only land & sea 

 

r 

 

RMSE 

(°C) 

 

r 

 

RMSE 

(°C) 

 

r 

 

RMSE 

(°C) 

1.  BCC-CSM2-MR  0.82 1.21 0.94 1.15 0.89 1.19 

2.  CAMS-CSM1-0 0.87 1.15 0.92 1.09 0.91 1.13 

3. CanESM5  0.75** 1.51 0.83 1.34 0.84 1.44 

4. CESM2  0.91 0.90 0.94 0.62 0.94 0.80 

5. CNRM-CM6-1  0.94 0.75* 0.92 0.54 0.96* 0.67 

6. CNRM-CM6-1-

HR  
0.95* 1.07 0.87 0.76 0.95 0.95 

7. CNRM-ESM2-1  0.94 0.76 0.92 0.49* 0.96* 0.66* 

8. FGOALS-f3-L  0.85 1.16 0.89 1.10 0.91 1.13 

9. FIO-ESM-2-0  0.90 1.06 0.93 0.94 0.93 1.01 

10. GFDL-CM4  0.88 1.11 0.95 0.75 0.91 0.98 

11. IPSL-CM6A-LR  0.84 1.17 0.85 0.79 0.90 1.03 

12. MIROC6  0.82 3.63** 0.14** 2.45** 0.74** 3.19** 

13. MRI-ESM2-0  0.93 1.01 0.93 1.14 0.95 1.06 

14. 13-MODEL 

ENSEMBLE 
0.92 0.88 0.96* 0.95 0.95 0.91 
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4.2.1.4 The correlation coefficient (r) 

    Table 4.5 shows r and RMSE values of mean temperature for the 

individual 13 GCMs and 13-MODEL ENSEMBLE that results of these metrics are 

computed for 3 study cases, including land-only, sea-only, and both land & sea. 

  r is used in this study for measuring the relationship level 

between model and reference data in each grid-cell. The correlation value in Table 4.5 

shows that most GCMs have correlation values in the range of “good to very good”, 

with correlation coefficients in the range of 0.70 to 0.95. Evaluation of CMIP6 GCMs 

by r found that three models from CNRM-CERFACS institution have the highest level 

of correlation between model and reference data. CNRM-CM6-1-HR is ranked as 1 

for the land-only case, while CNRM-CM6-1 and CNRM-ESM2-1 are ranked as 1 for 

both land & sea case that presents the best correlation (r =0.96). For the sea-only case, 

13-MODEL ENSEMBLE is a simulation that shows the best correlation level.  

However, only a model demonstrates correlation value as “unsatisfactory” for this 

study that is MIROC6, with the worst correlation (r =0.14).  

   Furthermore, the r metric was used to assess the performance of 

CMIP3 GCMs performance by Zhou and Yu (2006) and they found that CNRM-CM3 

had a correlation value as “good to moderate”.  it was ranked 3 to simulate the 

temperature over the whole of China with a good correlation value, but it was ranked 

9 out of 19 models over the Global and Northern Hemispheric, with a moderate 

correlation value (Table 4.3). Moreover, the r metric was used to assess the 

performance of CMIP5 GCMs performance over the Tibetan Plateau (Xu et al. 2017) 

and Lower Mekong Basin (Ruan et al. 2019). Xu et al. (2017) and Ruan et al. (2019) 

found that CNRM-CM5 created by CNRM-CERFACS institutions have correlations 

of 0.89 and 0.91, respectively that is in the range of “good”. While Xu et al. (2017) 

showed that CNRM-CM5 performed best to simulate temperature and it was ranked 1. 

Although CNRM-CM5 by Ruan et al. (2019) had a high correlation value of 0.91, 

considering in terms of ranking found it was ranked 23 out of 34 models. Hence, in 

terms of ranking the performance of temperature simulation of the previous study 

above found that the performance of GCMs created by CNRM-CERFACS under both 

CMIP3 and CMIP5 projects might depend on the study area. Moreover, previous 

versions of CNRM performed well over subtropical and temperate zone but the Lower 
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Mekong Basin where it locates in the tropical zone and being a part of this study area 

was performing not well. In this study, CNRM-CM6-1, CNRM-CM6-1-HR, and 

CNRM-ESM2-1 in CMIP6 are listed as the three highest-ranked performance by r 

metric. Séférian et al. (2019) and Voldoire et al. (2019) reported that CNRM-family 

participating CMIP6 project had a more updated atmosphere and land surface 

components. This update of CNRM-family may up the simulation performance over 

Thailand. 

   A previous version of MIROC model under CMIP3 and CMIP5 

in former studies showed quite a satisfactory ranking for Tibetan Plateau (Xu et al. 

2017), Global, Northern Hemispheric, China (Zhou and Yu 2006), and eastern Tibetan 

Plateau (Su et al. 2013); moreover, MIROC5 in CMIP5 was outstanding ranking in 

Lower Mekong Basin (Ruan et al. 2019) and it was ranked 5 out of 34 models (Table 

4.4). 

   For this study, the result of the r metric of MIROC6 performs 

worst for the sea-only case and both land &sea, along with second-worst for land. A 

major factor may be due to the design of MIROC6 that is still Atmosphere General 

Circulation Model (AGCMs), while MIROC5 in CMIP5 project is Coupled 

Atmosphere-Ocean General Circulation Model (AOGCMs). This difference may be 

the reason that climate simulation in MIROC5 is better than in MIROC6; however, 

AOGCMs have disadvantages that are using datasets and time to calculate more than 

AGCMs (Tatebe et al. 2019). Hence, MIROC6 may be a poorer performance from the 

previous version when compare with other GCMs. 

4.2.1.5 Root mean squared error (RMSE) 

   RMSE is used to compare between GCMS and reference data 

for showing the magnitude of the different error of each grid-cell. RMSE value closer 

to 0 indicates that the model has a very accurate simulation. The evaluation of GCMs 

by RMSE for 3 study reveals that   12 of 13 CMIP6 GCMs show the magnitude of 

overall error less than 2 ° C.  Two GCMs with the lowest error were CNRM-ESM2-1 

and CNRM-CM6-1 which the magnitudes of the error are less than 1 °C. CNRM-

ESM2-1 performs best for sea-only case and both land & sea case, with RMSE of 

0.49 °C and 0.66 °C, respectively, while CNRM-CM6-1 performs best for the land-
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only case, with RMSE of 0.75 °C (Table. 5). In contrast, GCMs that shows magnitudes 

of the highest error is MIROC6, with RMSE higher than 2°C. 

   GCMs ranking of Ruan et al. (2019) and Grose et al. (2014) by 

RMSE showed that CNRM-CM5 can perform on great over Lower Mekong Basin and 

Pacific Ocean region, with were ranked 6 out of 34 models and 8 out of 27 models, 

respectively, whereas Lovino et al. (2018) and Xuan et al. (2017) found that GCMs 

from CNRM-CERFACS institution performed well to moderate for temperature 

simulation. The evaluation of GCMs by RMSE by these former studies showed that 

the CNRM-CM family of models was found to be the GCM with good performance 

groups for simulating temperature over the tropical zone and moderate performance 

groups over the subtropical zone. Moreover, this study is confirmed that the 3 newly 

of GCMs generated by CNRM institution under the CMIP6 project have more 

development because they can be as ranking as 1 by SeasonAmp, r, and RMSE. 

  This study confirms that three GCMs generated by the CNRM 

institution under the CMIP6 project have high development because their ranking can 

climb up to1 when evaluate by SeasonAmp, r, and RMSE. 

   MIROC5 performed quite poorly for simulating over Lower 

Mekong Basin that it was ranked 30 out of 34 models, reported by Ruan et al. (2019). 

However, MIROC5 can perform satisfactorily that was ranked moderate ranking over 

northeastern Argentina (Lovino et al. 2018) and eastern Tibetan Plateau (Su et al. 

2013), while MIROC5 by Xuan et al. (2017) perform second best for annual maximum 

temperature over Zhejiang Province in China. Therefore, the evaluation of GCMs with 

RMSE of previous studies and in this study can indicate that the MIROC6 may not be 

suitable for simulating temperature over the Tropical zone. 

   The different performance of GCMs may depend on spatial 

resolution; besides, the performance of GCMs may depend on the areas where GCMs 

developer interest and lead to determine parametrizations of components of the 

climate system. These are just some of the remarkable point that found in this study; 

however, to find the reason to make the better or worse performance of GCMs, they 

still need to study more. 
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4.2.2 CMIP6 GCMs ranking by different categories. 

 Figure 4.16 (a)-(c) show relative errors for all performance metrics of 

land-only cases, sea-only cases, and both land & sea cases, respectively. The GCMs 

and 13-MODEL ENSEMBLE are listed on the left of each sub-figure, while the total 

relative error is listed on the right of the sub-figure. The color scale shows relative 

error values that indicate the performance of GCMs; if darker blue indicates that GCM 

performs well for that metrics, whereas darker orange indicates that GCM performs 

poorly for that metrics. Therefore, the total relative error is the sum of relative errors 

from all metrics; hence, the less total relative error value means that the simulation of 

GCM is very closer to observations. 

 

Figure 4.16 Relative error metrics of temperature variable for all performance metrics 

(horizontal ordinate) for each CMIPs models and model ensemble mean (vertical 

ordinate) for (a) land-only, (b) sea- only, and (c) both land & sea. The last column is 

the total score of relative error over 5 performance metrics 

 

   The GCMs are in order of highest to lowest total relative error from top 

to bottom, respectively. The evaluation of GCMs by 5 performance metrics shows that 

CNRM-ESM2-1 is the best GCM for evaluating all study cases, where their total 

relative errors are 0.34, 0.28, and   0.20 for land-only, sea-only, and both land & sea 
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cases. Besides, Figure 4.16 shows that the CNRM group performs satisfactorily for 

simulating temperature over Thailand because they are a high ranked for all study 

cases. The result of the CNRM group of this study is consistent with the CNRM-CM5 

evaluation results over Northwest USA of Rupp et al. 2013 and CNRM-CM5-2 over 

Southeast Asia Kamworapan and Surussawadee (2019). On the other hand, MIROC6 

performs worst for all study cases. 

   The physical core of both CNRM-ESM2-1 and CNRM-CM6-1 are 

similar but CNRM-ESM2-1 add more Earth system component, including carbon 

cycle of land and sea, aerosol, and atmosphere chemistry; moreover, CNRM-ESM2-1 

is an improvement in Interaction Soil-Biosphere Atmosphere (ISBA) (Séférian et al. 

2019). These additions could be a key reason that CNRM-ESM2-1 has better 

performance than CNRM-CM6-1 and CNRM-CM6-1-HR as well as other models to 

simulate temperature over Thailand. 
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CHAPTER 5 

CONCLUSION 

 

 

  The first part evaluates the performance of 40 CMIP5 GCMs for 

simulating temperature and precipitation over Southeast Asia for the 1960-1999 (short-

term period) and 1901-1999 (for a long-term period). Ground-based products (UD 

v.3.01 and CRU TS3.10.01) and reanalysis products (NCEP and ERA40) are used to 

evaluate the CMIP5 GCMs. GCMs ranking in this study is calculated by the sum of 

relative errors from nineteen performance metrics. Overall, model ranking by total 

relative error shows that CNRM-CN5-2 is the best performance model for simulating 

temperature and precipitation over Southeast Asia with the minimum total error and 

followed by CNRM-CM5, BNU-ESM, CESM-CAM5, and CCSM4, respectively. 

Since the multi-model ensemble approach could reduce the deficiency and improve 

performance, the top 6 GCMs (6-MODEL ENSEMBLE) and all of 40 GCMs (40-

MODEL ENSEMBLE) are averaged to compare with individual GCMs.  

    When the performances of CNRM-CM5-2, 6-MODEL ENSEMBLE, 

and 40-MODEL ENSEMBLE are ranked by all performance metrics, 6-MODEL 

ENSEMBLE is the best performance model, while CNRM-CM5-2 and 40-MODEL 

ENSEMBLE is the second-best model and third-best model, respectively. In addition, 

the performance of CNRM-CM5-2, 6-MODEL ENSEMBLE, and 40-MODEL 

ENSEMBLE is considered by different categories.  6-MODEL ENSEMBLE is the only 

model that performs best for all categories (land only, sea only, the temperature only, 

and precipitation only categories). When the mean reference, CNRM-CM5-2, 6-

MODEL ENSEMBLE, and 40-MODEL ENSEMBLE are detailed compared by each 

performance metric. CNRM-CM5-2 performs best for MBE-P, MDTR for all seasons, 

NSD-T-FMA, Var, CV, RMSE-P, Trend-T, Trend-P, ENSO-T, ENSO-P. While 6-

MODEL ENSEMBLE performs best for r-T for all seasons, r-P for all seasons, RMSE-

P for all seasons, NSD-P-FMA, NSD-P-NDJ. 40-MODEL ENSEMBLE performs best 

for MBE-T, SeasonAmp-T, SeasonAmp-P, r-T-MJJASO, r-T-NDJ, r-P-NDJ, RMSE-T 

for all seasons, NSD-T-MJJASO, NSD-T-NDJ, RMSE-T.  
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  6-MODEL ENSEMBLE and CNRM-CM5-2 are the two best models to 

simulate the temperature and precipitation over Southeast Asia. This result proves the 

effectiveness of both by performance metrics that covers the spatial field, the measure 

of temporal variability, and representation of the common model of variability temporal 

and spatial pattern. Moreover, they can perform well to study the separately different 

categories like the temperature only, precipitation only, land only, and sea only 

categories. However, choosing between 6-MODEL ENSEMBLE and CNRM-CM5-2 

are dependent on the conditions about time and computational resource because 6-

MODEL ENSEMBLE requires more time and space 6 times more than CNRM-CM5-

2.  

   The second part evaluates the performance of 13 CMIP6 GCMs for 

simulating temperature over Thailand for the 15 years of 2000-2014 (near-term). 

Ground-based products (UD v 5.01 and CRU TS v. 4.02) and reanalysis products 

(MERRA and ERA-interim) are used to evaluate the CMIP6 GCMs. GCMs ranking in 

this study is calculated by the sum of relative errors from five performance metrics. 

Most CMIP6 GCMs (except MIROC6) are able to simulate temperature over Thailand. 

However, CMIP6 GCMs (except GFDL-CM3) tend to overestimate (positive 

direction). The gap between the highest and lowest temperature of GCMs were higher 

compared to those of reference data, especially in the north part of Thailand. 12 out of 

13 models (except MIROC6) provide the high accuracy results compared to reference 

data. RMSE values show that almost all GCMs have similar performance, except 

MIROC6. The evaluation of 13 CMIP6 GCMs by 5 performance metrics indicated that 

GFDL-CM4 and CNRM group participating under the CMIP6 project are the best 

performances. In particular, GFDL-CM4 is first ranked by MA and MBE, while the 

CNRM group is first ranked by SeasonAmp, r, and RMSE. On the other hand, MIROC6 

performs worst for almost all performance (except for SeasonAmp, MIROC6 is third-

ranked out of 13 models). In summary, model ranking by total relative error shows that 

CNRM-ESM2-1 is the best performance model and followed by CNRM-CM6-1, 

CESM2, GFDL-CM4, and CNRM-CM6-1-HR, respectively, where MIROC6 is the 

worst performance model.  

   Hence, the second part reveals that CNRM-ESM2-1 are the best models 

to simulate the temperature over Thailand. This result confirms that GCM from the 
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CNRM center (the best GCM at the regional level) is also the best GCM to simulate 

temperature at the country level. In addition, it proves additional Earth system 

component of the CNRM-ESM2-1 in CMIP6 has higher performance than other GCMs.  

Although performance metrics using this part are not complex evaluation, this result is 

still the best choice to study temperature in Thailand. 

    The results of this dissertation are beneficial to climate scientists who 

study climate in regionalization. Input datasets from the best GCMs of this study could 

be downscaled with finer spatial resolution over the Southeast Asia and Thailand area 

for simulating the other climate variables (i.e., example, temperature, precipitation, 

wind), and projections of future climate. In addition, the evaluation of GCM in this 

study provides the important supportive information to select suitable GCM using the 

future scenarios of that GCM for climate projection in the future over Southeast Asia 

and Thailand. 

    For future work, this study could be extended to 1) cover other areas in 

Southeast Asia, 2) include other latest CMI6 GCMs releases, and 3) the future scenario 

of the best CMIP6 GCM will be used for climate projection over Thailand. Because 

Thailand is just a part of Southeast Asia, it cannot confirm that GCM performing the 

best evaluated by this study will also perform well in other areas in Southeast Asia. 

Also, CMI6 GCMs are currently more releasing. Therefore, evaluations of other CMIP6 

GCMs (new GCMs) in other countries are necessary to examine the result that if the 

best GCM at the regional level can also perform best at the country-level.  
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APPENDICES A 

 

Table A4.1 MBE-T and MBE-P values for years 1960 - 1999. They are evaluated for 

land only, sea only, and both land & sea 

Models 

Temperature Precipitation 

Land-

only 

Sea-

only 

Land & 

Sea 

Land-

only 
Sea-only 

Land & 

Sea 

BCC-CSM1-1 0.35 0.76 0.68 185.31 102.80 119.62 

BCC-CSM1-1-M 0.88 1.73 1.56 -414.90 93.10 -10.44 

BNU-ESM -0.10 -0.11 -0.11 -0.15 248.42 197.76 

CanESM2 0.05 0.79 0.64 -428.05 493.82 305.92 

CCSM4 -1.05 0.12 -0.12 -7.30 154.51 121.53 

CESM1-BGC -1.03 0.12 -0.12 -54.42 150.69 108.88 

CESM1-CAM5 -1.46 -0.48 -0.68 -159.05 367.80 260.42 

CESM1-

FASTCHEM 
-0.98 0.15 -0.08 0.26 143.38 114.21 

CESM1-

WACCM 
-0.35 -0.02 -0.09 -188.62 254.28 164.01 

CMCC-CESM 1.77 0.83 1.02 15.52 813.02 650.47 

CMCC-CM 0.30 0.48 0.45 -853.95 302.84 67.05 

CMCC-CMS 0.71 0.53 0.57 -550.09 427.70 228.40 

CNRM-CM5 -1.13 -0.25 -0.43 -196.79 250.35 159.21 

CNRM-CM5-2 -1.27 -0.38 -0.56 -172.12 243.56 158.83 

CSIRO-Mk3-6-0 0.74 0.18 0.29 136.40 783.69 651.76 

EC-EARTH -2.51 -2.13 -2.20 -408.78 287.23 145.36 

FGOALS-g2 -1.62 -1.27 -1.34 -116.63 112.95 66.16 

FIO-ESM 0.03 -0.01 0.00 -111.67 173.84 115.65 

GFDL-CM3 -1.02 -1.09 -1.08 -397.78 303.08 160.23 

GFDL-ESM2G -0.94 -0.86 -0.88 497.73 790.98 731.21 

GFDL-ESM2M -0.62 -0.73 -0.71 85.27 425.70 356.31 

GISS-E2-H -0.05 0.56 0.43 805.27 276.37 384.18 

GISS-E2-H-CC 0.06 0.73 0.59 942.06 260.10 399.10 

GISS-E2-R 0.05 0.70 0.57 733.79 307.02 394.00 

GISS-E2-R-CC 0.04 0.69 0.56 727.33 307.95 393.43 

HadCM3 0.30 0.92 0.80 12.70 1137.82 908.49 

HadGEM2-AO 0.89 0.67 0.72 -259.24 563.42 395.74 

HadGEM2-CC -0.18 -0.04 -0.07 -390.45 409.32 246.31 

HadGEM2-ES 0.17 0.28 0.26 -281.73 526.03 361.39 

INMCM4 -3.05 -1.36 -1.70 614.39 218.79 299.42 

IPSL-CM5A-LR -0.91 -1.23 -1.17 -135.46 253.42 174.15 

IPSL-CM5A-MR -0.24 -0.28 -0.27 25.69 312.68 254.19 
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Table A4.1 MBE-T and MBE-P values for years 1960 - 1999. They are evaluated for 

land only, sea only, and both land & sea (Continued) 

Models 

Temperature Precipitation 

Land-

only 

Sea-

only 

Land & 

Sea 

Land-

only 

Sea-

only 

Land & 

Sea 

IPSL-CM5B-LR -1.02 -1.13 -1.11 -119.77 89.31 46.70 

MIROC5 -0.11 -0.21 -0.19 -8.85 356.84 282.31 

MIROC-ESM -0.26 -0.97 -0.83 -191.94 366.33 252.54 

MIROC-ESM-

CHEM 
-0.14 -0.92 -0.76 -205.36 376.29 257.74 

MPI-ESM-LR 0.00 -0.07 -0.06 -369.83 679.09 465.29 

MPI-ESM-MR 0.18 0.10 0.11 -375.73 705.60 485.20 

MRI-CGCM3 -1.33 -0.83 -0.94 218.12 174.53 183.42 

NorESM1_M -1.43 -0.99 -1.08 -174.93 103.58 46.81 

6-MODEL 

ENSEMBLE 
-1.01 -0.16 -0.34 -98.30 235.89 167.77 

40-MODEL 

ENSEMBLE 
-0.41 -0.13 -0.18 -39.34 358.71 277.57 

 

Table A4.2 DTR values for summer, rainy, and winter for years 1960 - 1999. They are 

evaluated for land only, sea only, and both land & sea. 

Models 

Summer Rainy Winter 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

Mean 

reference 
9.42 1.48 3.10 7.54 1.39 2.64 7.58 1.44 2.69 

BCC-

CSM1-1 
6.82 0.66 1.91 4.79 0.59 1.45 5.98 0.58 1.68 

BCC-

CSM1-1-M 
7.96 0.46 1.99 6.38 0.43 1.64 7.04 0.40 1.75 

BNU-ESM 7.50 1.67 2.86 4.96 1.33 2.07 6.29 1.40 2.40 

CanESM2 8.05 1.77 3.05 5.52 1.74 2.51 7.55 1.78 2.95 

CCSM4 7.99 1.01 2.43 5.46 0.88 1.82 6.91 0.97 2.18 

CESM1-

BGC 
7.92 1.01 2.42 5.50 0.88 1.83 6.97 0.97 2.19 

CESM1-

CAM5 
7.59 1.06 2.39 5.46 0.97 1.89 6.82 1.04 2.22 

CESM1-

FASTCHE

M 

8.06 1.01 2.45 5.49 0.88 1.82 6.97 0.97 2.19 

CESM1-

WACCM 
6.11 1.00 2.04 4.46 0.91 1.64 5.28 0.90 1.80 
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Table A4.2 DTR values for summer, rainy, and winter for years 1960 - 1999. They are 

evaluated for land only, sea only, and both land & sea. (Continued) 

Models 

Summer Rainy Winter 

Land-

only 

Sea-

only 

Land 

& Sea 

Land-

only 

Sea-

only 

Land 

& Sea 

Land-

only 

Sea-

only 

Land 

& Sea 

CMCC-

CESM 
7.43 2.00 3.11 5.49 1.65 2.43 6.33 1.79 2.71 

CMCC-

CM 
9.70 1.46 3.14 7.29 1.37 2.58 8.46 1.42 2.85 

CMCC-

CMS 
8.25 1.46 2.84 5.94 1.25 2.21 6.86 1.32 2.45 

CNRM-

CM5 
9.68 1.33 3.03 7.04 1.24 2.42 8.60 1.29 2.78 

CNRM-

CM5-2 
9.61 1.33 3.02 7.04 1.25 2.43 8.55 1.29 2.77 

CSIRO-

Mk3-6-0 
9.98 1.25 3.03 8.20 1.75 3.06 8.97 1.62 3.12 

EC-

EARTH 
8.17 1.79 3.09 5.72 1.89 2.67 7.22 1.86 2.95 

FGOALS

-g2 
7.23 1.82 2.92 5.39 1.72 2.47 7.26 1.79 2.91 

FIO-

ESM 
6.27 1.26 2.28 4.28 1.06 1.72 5.51 1.11 2.00 

GFDL-

CM3 
8.48 1.45 2.88 5.59 1.20 2.10 7.26 1.33 2.54 

GFDL-

ESM2G 
7.01 1.05 2.27 4.39 0.87 1.59 6.16 0.97 2.02 

GFDL-

ESM2M 
7.52 1.19 2.48 5.09 1.02 1.85 6.54 1.13 2.23 

GISS-E2-

H 
5.61 1.49 2.33 4.43 1.40 2.02 5.28 1.48 2.26 

GISS-E2-

H-CC 
5.49 1.48 2.30 4.29 1.39 1.98 5.19 1.48 2.24 

GISS-E2-

R 
5.75 1.49 2.36 5.15 1.45 2.20 5.58 1.48 2.32 

GISS-E2-

R-CC 
5.74 1.49 2.36 5.17 1.45 2.21 5.58 1.48 2.32 

HadCM3 9.21 1.55 3.11 6.71 1.37 2.46 7.93 1.47 2.78 

HadGEM

2-AO 
8.22 1.28 2.69 5.88 1.11 2.08 6.60 1.18 2.29 

HadGEM

2-CC 
8.09 1.28 2.67 6.05 1.11 2.12 6.78 1.20 2.34 

HadGEM

2-ES 
7.72 1.23 2.55 5.80 1.08 2.04 6.43 1.16 2.23 

INMCM

4 
10.34 1.36 3.19 6.25 1.13 2.18 8.39 1.27 2.72 
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Table A4.2 DTR values for summer, rainy, and winter for years 1960 - 1999. They are 

evaluated for land only, sea only, and both land & sea. (Continued) 

Models 

Summer Rainy Winter 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

IPSL-CM5A-

LR 
6.37 1.25 2.30 6.31 1.25 2.28 6.33 1.25 2.29 

IPSL-CM5A-

MR 
6.41 1.14 2.22 6.45 1.14 2.23 6.40 1.14 2.21 

IPSL-CM5B-

LR 
6.91 1.36 2.49 6.79 1.36 2.47 6.96 1.36 2.50 

MIROC5 7.03 1.32 2.48 4.89 1.20 1.95 6.14 1.24 2.24 

MIROC-

ESM 
7.61 1.52 2.76 5.15 1.34 2.12 5.75 1.30 2.21 

MIROC-

ESM-CHEM 
7.72 1.57 2.82 5.24 1.36 2.15 5.76 1.31 2.22 

MPI-ESM-

LR 
7.92 1.50 2.81 5.62 1.27 2.16 6.52 1.29 2.35 

MPI-ESM-

MR 
7.82 1.33 2.65 5.57 1.15 2.05 6.45 1.15 2.23 

MRI-

CGCM3 
7.64 1.23 2.54 5.66 1.07 2.01 6.75 1.18 2.32 

NorESM1_M 6.80 1.07 2.24 4.85 0.95 1.74 4.85 0.95 2.00 

6-MODEL 

ENSEMBLE 
8.38 1.23 2.69 5.91 1.09 2.07 7.36 1.16 2.42 

40-MODEL 

ENSEMBLE 
7.64 1.32 2.61 5.64 1.21 2.12 6.68 1.26 2.37 

 

Table A4.3 SeasonAmp-T and SeasonAmp-P values for years 1960 - 1999. They are 

evaluated for land only, sea only, and both land & sea 

Models 

Temperature Precipitation 

Land-

only 

Sea-

only 

Land & 

Sea 

Land-

only 

Sea-

only 

Land & 

Sea 

Mean reference 3.76 1.80 2.20 6.47 3.50 4.10 

BCC-CSM1-1 4.98 1.60 2.22 7.54 3.41 4.25 

BCC-CSM1-1-M 5.35 2.18 2.62 8.80 3.90 4.87 

BNU-ESM 5.53 1.86 2.58 8.63 4.68 5.05 

CanESM2 3.93 1.38 1.77 6.09 2.12 2.84 

CCSM4 5.06 1.62 2.16 8.17 3.35 3.83 

CESM1-BGC 5.00 1.66 2.17 8.19 3.41 3.68 

CESM1-CAM5 4.41 1.68 2.06 7.63 2.84 3.39 

CESM1-

FASTCHEM 
5.10 1.65 2.18 8.52 3.44 3.95 
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Table A4.3 SeasonAmp-T and SeasonAmp-P values for years 1960 - 1999. They are 

evaluated for land only, sea only, and both land & sea (Continued) 

Models 

Temperature Precipitation 

Land-

only 

Sea-

only 

Land & 

Sea 

Land-

only 

Sea-

only 

Land & 

Sea 

CESM1-WACCM 4.16 1.45 1.77 6.94 3.33 3.46 

CMCC-CESM 4.46 1.93 2.27 1.71 6.50 6.27 

CMCC-CM 5.36 1.92 2.50 6.62 6.31 6.25 

CMCC-CMS 5.39 1.98 2.56 7.54 5.76 6.08 

CNRM-CM5 4.45 1.63 2.20 5.69 2.25 2.59 

CNRM-CM5-2 4.46 1.65 2.22 5.32 2.34 2.53 

CSIRO-Mk3-6-0 6.00 2.26 2.79 9.25 3.22 4.41 

EC-EARTH 2.94 1.09 1.27 1.61 4.28 3.32 

FGOALS-g2 5.22 1.97 2.60 8.28 2.71 3.74 

FIO-ESM 5.47 1.41 2.14 8.28 3.28 4.80 

GFDL-CM3 5.18 2.37 2.63 1.16 2.98 4.90 

GFDL-ESM2G 5.45 2.16 2.64 7.71 2.34 3.50 

GFDL-ESM2M 5.27 2.00 2.45 8.52 2.75 4.09 

GISS-E2-H 3.65 1.22 1.66 6.10 2.23 2.58 

GISS-E2-H-CC 3.78 1.12 1.59 6.38 2.48 2.90 

GISS-E2-R 1.92 0.67 0.90 3.31 1.33 1.73 

GISS-E2-R-CC 1.84 0.64 0.87 3.15 1.30 1.68 

HadCM3 5.31 1.63 2.26 7.10 2.79 3.36 

HadGEM2-AO 5.76 1.61 2.45 6.31 4.34 4.69 

HadGEM2-CC 5.35 1.57 2.17 5.82 3.14 4.49 

HadGEM2-ES 5.33 1.47 2.07 6.09 4.02 4.37 

INMCM4 5.47 0.90 1.87 7.23 1.95 2.98 

IPSL-CM5A-LR 4.60 1.74 2.32 8.55 2.35 3.40 

IPSL-CM5A-MR 4.74 1.64 2.27 8.52 1.49 2.70 

IPSL-CM5B-LR 4.86 1.85 2.46 10.48 3.69 4.92 

MIROC5 4.44 2.14 2.54 5.54 5.86 4.30 

MIROC-ESM 5.52 1.61 2.39 8.14 5.15 2.83 

MIROC-ESM-

CHEM 
5.48 1.62 2.41 7.85 5.10 4.18 

MPI-ESM-LR 5.23 1.91 2.38 8.74 5.15 4.96 

MPI-ESM-MR 5.36 1.98 2.43 9.33 5.37 5.09 

MRI-CGCM3 6.20 1.80 2.60 8.87 4.81 5.64 

NorESM1_M 5.05 1.46 2.09 8.37 3.29 4.39 

6-MODEL 

ENSEMBLE 
4.82 1.68 2.23 7.27 3.15 3.51 

40-MODEL 

ENSEMBLE 
4.83 1.65 2.19 6.95 3.53 3.97 
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Table A4.4 r-T for years 1960 - 1999. They are evaluated for land only, sea only, and 

both land & sea. 

Models 

Summer Rainy Winter 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

BCC-

CSM1-1 
1.00 1.00 0.92 1.00 1.00 0.77 1.00 1.00 0.95 

BCC-

CSM1-1-M 
1.00 1.00 0.90 1.00 1.00 0.80 1.00 1.00 0.94 

BNU-ESM 1.00 1.00 0.94 1.00 1.00 0.87 1.00 1.00 0.96 

CanESM2 1.00 1.00 0.90 1.00 1.00 0.83 1.00 1.00 0.94 

CCSM4 1.00 1.00 0.93 1.00 1.00 0.91 1.00 1.00 0.96 

CESM1-

BGC 
1.00 1.00 0.93 1.00 1.00 0.91 1.00 1.00 0.96 

CESM1-

CAM5 
1.00 1.00 0.94 1.00 1.00 0.92 1.00 1.00 0.97 

CESM1-

FASTCHE

M 

1.00 1.00 0.93 1.00 1.00 0.91 1.00 1.00 0.96 

CESM1-

WACCM 
1.00 1.00 0.93 1.00 1.00 0.88 1.00 1.00 0.95 

CMCC-

CESM 
1.00 1.00 0.85 1.00 1.00 0.59 1.00 1.00 0.93 

CMCC-CM 1.00 1.00 0.86 1.00 1.00 0.85 1.00 1.00 0.95 

CMCC-

CMS 
1.00 1.00 0.89 1.00 1.00 0.89 1.00 1.00 0.96 

CNRM-

CM5 
1.00 1.00 0.94 1.00 1.00 0.91 1.00 1.00 0.96 

CNRM-

CM5-2 
1.00 1.00 0.93 1.00 1.00 0.91 1.00 1.00 0.96 

CSIRO-

Mk3-6-0 
1.00 0.99 0.86 1.00 1.00 0.64 0.99 1.00 0.94 

EC-

EARTH 
1.00 1.00 0.93 1.00 1.00 0.88 1.00 1.00 0.96 

FGOALS-

g2 
1.00 1.00 0.95 1.00 1.00 0.84 1.00 1.00 0.96 

FIO-ESM 1.00 1.00 0.94 1.00 1.00 0.86 0.99 1.00 0.95 

GFDL-

CM3 
1.00 1.00 0.88 1.00 1.00 0.89 1.00 1.00 0.97 

GFDL-

ESM2G 
1.00 1.00 0.88 1.00 1.00 0.87 1.00 1.00 0.95 

GFDL-

ESM2M 
1.00 1.00 0.89 1.00 1.00 0.88 1.00 1.00 0.96 

GISS-E2-H 1.00 1.00 0.91 1.00 1.00 0.78 1.00 1.00 0.96 



119 

 

 

Table A4.4 r-T for years 1960 - 1999. They are evaluated for land only, sea only, and 

both land & sea. (Continued) 

Models 

Summer Rainy Winter 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

GISS-E2-H-

CC 
1.00 1.00 0.90 1.00 1.00 0.78 1.00 1.00 0.96 

GISS-E2-R 1.00 1.00 0.93 1.00 0.99 0.57 1.00 1.00 0.95 

GISS-E2-R-

CC 
1.00 1.00 0.93 1.00 0.99 0.56 1.00 1.00 0.95 

HadCM3 0.99 1.00 0.89 1.00 1.00 0.77 0.99 1.00 0.95 

HadGEM2-

AO 
1.00 1.00 0.88 1.00 1.00 0.83 0.99 1.00 0.95 

HadGEM2-

CC 
0.99 1.00 0.89 1.00 1.00 0.84 0.99 1.00 0.94 

HadGEM2-

ES 
0.99 1.00 0.90 1.00 1.00 0.84 0.99 1.00 0.94 

INMCM4 1.00 1.00 0.85 1.00 1.00 0.84 0.98 1.00 0.92 

IPSL-CM5A-

LR 
1.00 1.00 0.91 1.00 1.00 0.86 0.99 1.00 0.97 

IPSL-CM5A-

MR 
1.00 1.00 0.92 1.00 1.00 0.88 0.99 1.00 0.97 

IPSL-CM5B-

LR 
1.00 1.00 0.90 1.00 1.00 0.84 0.99 1.00 0.95 

MIROC5 1.00 1.00 0.88 1.00 1.00 0.76 1.00 1.00 0.97 

MIROC-

ESM 
1.00 1.00 0.86 1.00 1.00 0.67 1.00 1.00 0.96 

MIROC-

ESM-CHEM 
1.00 1.00 0.85 1.00 1.00 0.67 1.00 1.00 0.96 

MPI-ESM-

LR 
1.00 1.00 0.91 1.00 1.00 0.89 1.00 1.00 0.96 

MPI-ESM-

MR 
1.00 1.00 0.91 1.00 1.00 0.89 1.00 1.00 0.96 

MRI-

CGCM3 
1.00 1.00 0.94 1.00 1.00 0.86 1.00 1.00 0.97 

NorESM1_M 1.00 1.00 0.90 1.00 1.00 0.85 0.99 1.00 0.95 

6-MODEL 

ENSEMBLE 
1.00 1.00 0.95 1.00 1.00 0.92 1.00 1.00 0.97 

40-MODEL 

ENSEMBLE 
1.00 1.00 0.95 1.00 1.00 0.91 1.00 1.00 0.97 
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Table A4.5 r-P values for years 1960 - 1999. They are evaluated for land only, sea 

only, and both land & sea. 

Models 

Summer Rainy Winter 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

BCC-

CSM1-1 
0.97 0.79 0.83 0.93 0.79 0.67 0.95 0.72 0.75 

BCC-

CSM1-1-M 
0.89 0.87 0.78 0.94 0.89 0.65 0.91 0.78 0.80 

BNU-ESM 0.97 0.86 0.83 0.95 0.83 0.67 0.98 0.87 0.82 

CanESM2 0.95 0.89 0.75 0.96 0.88 0.62 0.95 0.88 0.78 

CCSM4 0.96 0.88 0.79 0.97 0.90 0.76 0.97 0.92 0.80 

CESM1-

BGC 
0.95 0.88 0.77 0.97 0.91 0.77 0.97 0.92 0.82 

CESM1-

CAM5 
0.98 0.91 0.80 0.97 0.87 0.77 0.96 0.92 0.78 

CESM1-

FASTCHE

M 

0.97 0.88 0.79 0.97 0.90 0.76 0.97 0.92 0.80 

CESM1-

WACCM 
0.95 0.90 0.77 0.96 0.90 0.74 0.96 0.90 0.75 

CMCC-

CESM 
0.95 0.82 0.77 0.90 0.76 0.51 0.98 0.75 0.77 

CMCC-CM 0.92 0.76 0.77 0.91 0.82 0.64 0.90 0.77 0.73 

CMCC-

CMS 
0.92 0.80 0.77 0.90 0.81 0.65 0.94 0.80 0.70 

CNRM-

CM5 
0.97 0.89 0.85 0.94 0.83 0.74 0.98 0.89 0.83 

CNRM-

CM5-2 
0.96 0.89 0.85 0.94 0.83 0.73 0.98 0.89 0.88 

CSIRO-

Mk3-6-0 
0.89 0.78 0.71 0.95 0.74 0.56 0.92 0.76 0.75 

EC-

EARTH 
0.95 0.85 0.73 0.94 0.81 0.61 0.97 0.87 0.77 

FGOALS-

g2 
0.98 0.89 0.80 0.89 0.78 0.61 0.98 0.80 0.69 

FIO-ESM 0.94 0.83 0.81 0.94 0.80 0.53 0.97 0.87 0.81 

GFDL-

CM3 
0.96 0.83 0.72 0.93 0.80 0.65 0.98 0.85 0.80 

GFDL-

ESM2G 
0.98 0.79 0.76 0.93 0.76 0.63 0.96 0.82 0.83 

GFDL-

ESM2M 
0.98 0.84 0.81 0.87 0.78 0.65 0.96 0.85 0.82 

GISS-E2-H 0.81 0.78 0.68 0.85 0.64 0.29 0.94 0.77 0.49 
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Table A4.5 r-P values for years 1960 - 1999. They are evaluated for land only, sea 

only, and both land & sea. (Continued) 

Models 

Summer Rainy Winter 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

GISS-E2-H-

CC 
0.80 0.78 0.66 0.84 0.59 0.21 0.95 0.75 0.46 

GISS-E2-R 0.94 0.80 0.70 0.86 0.67 0.44 0.95 0.80 0.67 

GISS-E2-R-

CC 
0.94 0.80 0.70 0.85 0.65 0.40 0.95 0.80 0.67 

HadCM3 0.98 0.83 0.65 0.95 0.76 0.24 0.98 0.86 0.74 

HadGEM2-

AO 
0.93 0.77 0.76 0.94 0.83 0.63 0.96 0.79 0.73 

HadGEM2-

CC 
0.97 0.74 0.72 0.94 0.79 0.56 0.97 0.78 0.63 

HadGEM2-

ES 
0.96 0.76 0.73 0.95 0.78 0.54 0.97 0.72 0.53 

INMCM4 0.97 0.85 0.85 0.89 0.73 0.54 0.97 0.82 0.70 

IPSL-CM5A-

LR 
0.98 0.82 0.69 0.93 0.78 0.59 0.98 0.83 0.73 

IPSL-CM5A-

MR 
0.99 0.84 0.73 0.96 0.78 0.60 0.97 0.83 0.74 

IPSL-CM5B-

LR 
0.95 0.75 0.83 0.90 0.75 0.67 0.95 0.71 0.77 

MIROC5 0.96 0.88 0.83 0.94 0.82 0.47 0.96 0.82 0.74 

MIROC-

ESM 
0.97 0.82 0.80 0.92 0.61 0.14 0.98 0.83 0.72 

MIROC-

ESM-CHEM 
0.97 0.83 0.80 0.92 0.62 0.16 0.98 0.83 0.73 

MPI-ESM-

LR 
0.93 0.87 0.75 0.94 0.81 0.43 0.88 0.82 0.73 

MPI-ESM-

MR 
0.94 0.86 0.72 0.93 0.82 0.50 0.91 0.80 0.71 

MRI-

CGCM3 
0.97 0.85 0.79 0.88 0.70 0.72 0.96 0.79 0.78 

NorESM1_M 0.88 0.84 0.79 0.95 0.88 0.71 0.97 0.88 0.79 

6-MODEL 

ENSEMBLE 
0.97 0.88 0.92 0.96 0.86 0.84 0.97 0.90 0.90 

40-MODEL 

ENSEMBLE 
0.95 0.83 0.91 0.92 0.78 0.81 0.96 0.83 0.90 
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Table A4.6 NSD-T values for years 1960 - 1999. They are evaluated for land only, 

sea only, and both land & sea 

Models 

Summer Rainy Winter 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

BCC-

CSM1-1 
1.13 1.19 1.16 1.20 0.91 1.06 1.34 1.06 1.25 

BCC-

CSM1-1-M 
1.10 1.37 1.26 1.27 1.08 1.21 1.23 1.19 1.27 

BNU-ESM 0.90 1.05 0.97 0.77 0.84 0.81 1.17 1.07 1.14 

CanESM2 0.82 0.89 0.93 1.04 1.13 1.19 1.01 0.92 1.07 

CCSM4 1.09 1.10 1.18 1.23 0.91 1.20 1.30 1.07 1.31 

CESM1-

BGC 
1.10 1.12 1.19 1.23 0.92 1.20 1.28 1.07 1.29 

CESM1-

CAM5 
1.05 1.15 1.17 1.19 0.96 1.19 1.13 1.00 1.17 

CESM1-

FASTCHE

M 

1.08 1.09 1.17 1.23 0.91 1.19 1.30 1.07 1.31 

CESM1-

WACCM 
0.93 0.87 0.94 1.12 0.79 1.00 1.12 0.85 1.06 

CMCC-

CESM 
0.99 1.41 1.14 0.92 0.92 0.81 1.14 1.18 1.07 

CMCC-CM 0.97 0.97 0.94 1.42 0.89 1.16 1.12 0.88 1.09 

CMCC-

CMS 
0.84 1.01 0.89 1.00 0.93 0.94 1.07 0.88 1.03 

CNRM-

CM5 
0.94 1.00 1.01 1.26 1.12 1.28 1.18 1.09 1.21 

CNRM-

CM5-2 
0.95 1.00 1.02 1.26 1.15 1.28 1.16 1.08 1.20 

CSIRO-

Mk3-6-0 
1.15 1.61 1.32 1.11 1.26 1.00 1.44 1.39 1.34 

EC-

EARTH 
0.84 0.67 0.80 1.16 0.56 1.05 0.94 0.66 0.91 

FGOALS-

g2 
0.96 1.13 1.04 0.97 0.80 0.97 1.14 1.21 1.14 

FIO-ESM 0.86 0.94 0.89 0.90 0.68 0.79 1.28 1.02 1.19 

GFDL-

CM3 
0.86 1.53 1.18 0.92 0.99 0.97 1.16 1.38 1.22 

GFDL-

ESM2G 
0.85 1.39 1.10 1.10 1.13 1.10 1.25 1.39 1.28 

GFDL-

ESM2M 
0.86 1.35 1.08 1.08 1.09 1.03 1.25 1.31 1.24 

GISS-E2-H 1.07 1.29 1.19 1.28 1.06 1.22 1.16 1.18 1.18 
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Table A4.6 NSD-T values for years 1960 - 1999. They are evaluated for land only, 

sea only, and both land & sea (Continued) 

Models 

Summer Rainy Winter 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

GISS-E2-H-

CC 
1.06 1.25 1.17 1.31 1.11 1.26 1.19 1.17 1.20 

GISS-E2-R 1.15 1.33 1.31 1.75 1.61 1.73 1.06 1.27 1.15 

GISS-E2-R-

CC 
1.16 1.33 1.32 1.78 1.65 1.76 1.06 1.28 1.16 

HadCM3 1.44 1.47 1.47 1.15 0.97 1.05 1.36 1.09 1.27 

HadGEM2-

AO 
1.06 1.11 1.04 1.06 0.99 0.95 1.25 1.15 1.18 

HadGEM2-

CC 
1.29 1.26 1.28 1.10 0.99 0.99 1.19 0.98 1.11 

HadGEM2-

ES 
1.29 1.22 1.26 1.08 0.96 0.96 1.17 0.97 1.10 

INMCM4 1.02 0.99 1.18 1.16 1.09 1.30 1.41 1.08 1.43 

IPSL-CM5A-

LR 
0.97 1.26 1.10 0.92 1.01 0.87 1.19 1.15 1.14 

IPSL-CM5A-

MR 
1.03 1.25 1.14 1.03 1.04 0.95 1.26 1.10 1.19 

IPSL-CM5B-

LR 
1.07 1.44 1.24 1.05 1.16 1.00 1.24 1.32 1.22 

MIROC5 0.94 1.25 1.07 1.28 1.01 1.08 1.03 1.20 1.09 

MIROC-

ESM 
0.77 1.01 0.85 0.82 0.84 0.73 1.03 0.97 1.01 

MIROC-

ESM-CHEM 
0.76 1.01 0.84 0.80 0.82 0.71 1.03 0.98 1.00 

MPI-ESM-

LR 
0.83 1.05 0.91 0.99 0.76 0.90 1.10 1.01 1.10 

MPI-ESM-

MR 
0.83 1.09 0.93 0.95 0.79 0.88 1.13 1.00 1.11 

MRI-

CGCM3 
1.06 1.26 1.18 1.26 0.93 1.08 1.29 1.25 1.30 

NorESM1_M 1.08 1.04 1.09 1.18 0.74 0.99 1.35 1.12 1.28 

6-MODEL 

ENSEMBLE 
1.00 1.07 1.09 1.16 0.98 1.16 1.20 1.06 1.22 

40-MODEL 

ENSEMBLE 
1.00 1.17 1.10 1.13 0.99 1.07 1.19 1.10 1.17 
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Table A4.7 NSD-P values for years 1960 - 1999. They are evaluated for land only, 

sea only, and both land & sea 

Models 

Summer Rainy Winter 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

BCC-

CSM1-1 
1.37 1.43 1.41 1.44 1.04 1.13 1.32 1.41 1.35 

BCC-

CSM1-1-M 
0.96 1.11 1.07 1.01 0.92 0.93 1.00 1.20 1.12 

BNU-ESM 1.19 1.25 1.23 0.97 0.76 0.79 1.13 1.08 1.10 

CanESM2 0.84 1.20 1.10 0.74 0.88 0.87 0.84 1.15 1.09 

CCSM4 1.01 1.16 1.11 0.88 0.78 0.81 1.08 1.07 1.07 

CESM1-

BGC 
0.98 1.20 1.13 0.85 0.80 0.82 1.10 1.09 1.08 

CESM1-

CAM5 
0.99 1.11 1.08 0.83 0.76 0.76 1.03 1.08 1.08 

CESM1-

FASTCHE

M 

1.02 1.18 1.12 0.89 0.80 0.84 1.11 1.10 1.09 

CESM1-

WACCM 
0.82 1.06 0.99 0.68 0.69 0.69 0.92 1.11 1.06 

CMCC-

CESM 
1.41 2.27 2.02 1.26 1.23 1.24 0.97 1.56 1.35 

CMCC-CM 0.76 1.37 1.20 0.99 1.53 1.51 0.73 1.38 1.19 

CMCC-

CMS 
0.79 1.35 1.19 1.16 1.42 1.41 0.79 1.26 1.12 

CNRM-

CM5 
1.04 1.08 1.07 0.98 0.93 0.93 0.95 0.88 0.91 

CNRM-

CM5-2 
1.08 1.12 1.10 1.00 0.96 0.95 0.93 0.87 0.90 

CSIRO-

Mk3-6-0 
1.26 1.90 1.72 1.23 1.31 1.29 1.35 1.91 1.70 

EC-

EARTH 
0.74 1.19 1.07 0.86 0.90 0.89 0.78 1.12 1.05 

FGOALS-

g2 
0.85 1.05 0.98 1.65 1.16 1.25 0.93 1.14 1.06 

FIO-ESM 1.23 1.26 1.25 0.90 0.70 0.73 1.16 1.06 1.09 

GFDL-

CM3 
0.94 1.61 1.42 0.66 0.76 0.74 0.84 1.29 1.14 

GFDL-

ESM2G 
1.41 1.67 1.58 1.15 0.99 1.01 1.36 1.55 1.46 

GFDL-

ESM2M 
1.34 1.57 1.49 1.06 0.94 0.96 1.28 1.41 1.35 

GISS-E2-H 1.48 1.60 1.58 2.51 0.99 1.44 1.46 1.54 1.48 
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Table A4.7 NSD-P values for years 1960 - 1999. They are evaluated for land only, 

sea only, and both land & sea (Continued) 

Models 

Summer Rainy Winter 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

GISS-E2-H-

CC 
1.60 1.56 1.59 2.73 1.03 1.56 1.63 1.57 1.57 

GISS-E2-R 1.43 1.38 1.41 1.65 0.96 1.12 1.35 1.43 1.38 

GISS-E2-R-

CC 
1.43 1.38 1.40 1.67 0.97 1.13 1.35 1.43 1.38 

HadCM3 1.17 1.75 1.59 0.93 1.08 1.09 1.06 1.51 1.39 

HadGEM2-

AO 
1.26 1.85 1.67 1.31 1.40 1.39 1.13 1.64 1.45 

HadGEM2-

CC 
2.13 3.17 2.86 1.12 1.17 1.17 0.84 1.32 1.14 

HadGEM2-

ES 
1.32 1.97 1.77 1.12 1.16 1.17 0.92 1.62 1.36 

INMCM4 1.64 1.30 1.45 1.30 0.92 1.05 1.38 1.20 1.27 

IPSL-CM5A-

LR 
1.22 1.35 1.31 1.09 0.99 1.00 1.08 1.34 1.23 

IPSL-CM5A-

MR 
1.42 1.37 1.39 1.44 1.06 1.12 1.19 1.29 1.24 

IPSL-CM5B-

LR 
1.56 1.72 1.66 1.25 1.22 1.21 1.28 1.66 1.49 

MIROC5 0.88 1.14 1.06 1.05 0.92 0.95 1.03 1.48 1.36 

MIROC-

ESM 
1.16 1.57 1.44 0.90 0.90 0.90 1.02 1.44 1.29 

MIROC-

ESM-CHEM 
1.16 1.56 1.43 0.89 0.88 0.88 1.01 1.45 1.30 

MPI-ESM-

LR 
0.83 1.41 1.25 0.89 1.05 1.04 0.99 1.51 1.39 

MPI-ESM-

MR 
0.79 1.53 1.35 1.14 1.13 1.14 0.95 1.56 1.42 

MRI-

CGCM3 
1.82 1.60 1.68 1.46 1.12 1.19 1.60 1.40 1.47 

NorESM1_M 0.99 1.33 1.22 0.71 0.69 0.70 1.05 1.33 1.22 

6-MODEL 

ENSEMBLE 
1.05 1.15 1.07 0.92 0.83 0.75 1.04 1.01 0.97 

40-MODEL 

ENSEMBLE 
1.18 1.47 1.23 1.16 1.00 0.74 1.10 1.34 1.05 
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Table A4.8 RMSE-T values for years 1960 - 1999. They are evaluated for land only, 

sea only, and both land & sea 

Models 

Summer Rainy Winter 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

BCC-

CSM1-1 
0.72 1.01 1.24 0.69 0.84 1.09 0.95 1.02 1.39 

BCC-

CSM1-1-M 
0.72 1.72 1.86 0.81 1.77 1.95 0.82 1.80 1.98 

BNU-ESM 0.60 0.42 0.74 0.50 0.37 0.62 0.82 0.44 0.94 

CanESM2 0.67 0.99 1.19 0.53 0.87 1.02 0.60 1.09 1.25 

CCSM4 0.80 0.60 1.00 0.52 0.36 0.63 1.08 0.60 1.24 

CESM1-

BGC 
0.80 0.61 1.01 0.52 0.36 0.63 1.05 0.57 1.19 

CESM1-

CAM5 
0.93 0.80 1.23 0.67 0.51 0.84 0.93 0.46 1.04 

CESM1-

FASTCHE

M 

0.77 0.60 0.98 0.51 0.37 0.63 1.06 0.61 1.22 

CESM1-

WACCM 
0.69 0.42 0.80 0.51 0.33 0.60 0.73 0.49 0.88 

CMCC-

CESM 
1.14 1.10 1.58 1.05 1.11 1.53 1.00 1.10 1.48 

CMCC-CM 0.97 0.80 1.26 0.59 0.67 0.89 0.60 0.78 0.98 

CMCC-

CMS 
0.91 0.77 1.19 0.56 0.62 0.83 0.58 0.69 0.90 

CNRM-

CM5 
0.57 0.56 0.80 0.64 0.53 0.83 0.92 0.59 1.09 

CNRM-

CM5-2 
0.62 0.60 0.86 0.67 0.60 0.90 0.95 0.63 1.59 

CSIRO-

Mk3-6-0 
0.78 1.24 1.46 0.84 0.84 1.19 1.10 0.97 1.46 

EC-

EARTH 
1.11 1.93 2.22 1.31 2.07 2.44 1.05 1.75 2.04 

FGOALS-

g2 
0.76 1.22 1.44 0.85 1.13 1.42 1.02 1.47 1.79 

FIO-ESM 0.58 0.45 0.73 0.49 0.40 0.63 0.94 0.52 1.07 

GFDL-

CM3 
0.50 1.67 1.74 0.56 0.89 1.05 0.89 1.26 1.54 

GFDL-

ESM2G 
0.57 1.32 1.44 0.62 0.70 0.94 1.13 1.20 1.65 

GFDL-

ESM2M 
0.53 1.19 1.30 0.52 0.65 0.84 1.01 1.04 1.45 

GISS-E2-H 0.60 1.09 1.25 0.57 0.84 1.02 0.63 0.95 1.14 
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Table A4.8 RMSE-T values for years 1960 - 1999. They are evaluated for land only, 

sea only, and both land & sea (Continued) 

Models 

Summer Rainy Winter 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

Land

-only 

Sea-

only 

Land 

& Sea 

GISS-E2-H-

CC 
0.62 1.18 1.33 0.58 0.93 1.10 0.68 1.06 1.26 

GISS-E2-R 0.68 1.03 1.23 1.11 1.38 1.77 0.53 1.00 1.13 

GISS-E2-R-

CC 
0.70 1.02 1.24 1.15 1.42 1.83 0.53 1.00 1.13 

HadCM3 1.16 1.19 1.66 0.69 1.09 1.29 0.97 1.24 1.57 

HadGEM2-

AO 
0.90 1.09 1.41 0.66 0.78 1.02 0.75 0.97 1.23 

HadGEM2-

CC 
0.91 0.89 1.27 0.47 0.52 0.70 0.74 0.72 1.03 

HadGEM2-

ES 
0.84 0.87 1.21 0.52 0.56 0.76 0.69 0.81 1.06 

INMCM4 1.55 1.23 1.98 1.31 1.48 1.97 2.03 1.33 2.42 

IPSL-CM5A-

LR 
1.02 1.72 2.00 0.64 1.67 1.79 1.13 1.82 2.14 

IPSL-CM5A-

MR 
0.74 0.98 1.23 0.40 0.90 0.98 1.00 0.95 1.38 

IPSL-CM5B-

LR 
0.91 1.38 1.66 0.50 1.08 1.19 0.96 1.35 1.66 

MIROC5 0.64 0.98 1.17 0.49 0.76 0.90 0.53 0.68 0.86 

MIROC-

ESM 
0.73 1.09 1.32 0.52 1.05 1.17 0.74 1.03 1.27 

MIROC-

ESM-CHEM 
0.76 1.05 1.30 0.52 1.00 1.13 0.71 0.99 1.22 

MPI-ESM-

LR 
0.59 0.68 0.90 0.44 0.38 0.58 0.68 0.45 0.82 

MPI-ESM-

MR 
0.58 0.68 0.90 0.49 0.42 0.65 0.68 0.45 0.82 

MRI-

CGCM3 
0.79 1.06 1.32 0.63 0.91 1.10 1.14 0.91 1.46 

NorESM1_M 1.04 1.16 1.56 0.70 0.99 1.21 1.31 0.89 1.58 

6-MODEL 

ENSEMBLE 
0.72 0.60 0.75 0.59 0.45 0.60 0.96 0.55 0.96 

40-MODEL 

ENSEMBLE 
0.79 1.01 0.67 0.66 0.85 0.54 0.89 0.94 0.78 
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Table A4.9 RMSE-P values for years 1960 - 1999. They are evaluated for land only, 

sea only, and both land & sea 

Model

s 

Summer Rainy Winter 

Land-

only 

Sea-

only 

Land 

& Sea 

Land-

only 

Sea-

only 

Land 

& Sea 

Land-

only 

Sea-

only 

Land 

& 

Sea 

BCC-

CSM1

-1 

31.72 63.09 70.61 38.74 55.61 67.77 35.61 77.73 85.50 

BCC-

CSM1

-1-M 

28.63 44.20 52.66 37.70 48.91 61.76 26.23 59.47 65.00 

BNU-

ESM 
23.82 46.34 52.11 33.54 52.32 62.15 23.71 45.98 51.73 

CanE

SM2 
24.71 54.60 59.93 39.13 47.58 61.60 30.19 49.04 57.58 

CCS

M4 
20.40 43.26 47.83 23.74 44.71 50.62 21.95 39.50 45.19 

CES

M1-

BGC 

21.67 46.34 51.16 23.93 42.90 49.12 21.82 37.96 43.79 

CES

M1-

CAM

5 

23.31 40.88 47.06 30.35 43.67 53.18 24.12 46.45 52.34 

CES

M1-

FAST

CHE

M 

20.59 44.12 48.69 23.45 44.87 50.63 21.96 39.97 45.61 

CES

M1-

WAC

CM 

22.50 39.43 45.40 29.66 44.39 53.39 24.08 49.49 55.04 

CMC

C-

CES

M 

40.37 143.44 149.01 45.47 91.67 102.32 24.93 70.70 74.97 

CMC

C-CM 
38.84 62.86 73.90 51.78 72.89 89.41 41.70 68.47 80.17 

CMC

C-

CMS 

36.53 53.06 64.42 45.08 72.27 85.18 33.65 61.97 70.52 

CNR

M-

CM5 

25.47 35.89 44.01 30.20 50.85 59.14 26.90 39.60 47.88 
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Table A4.9 RMSE-P values for years 1960 - 1999. They are evaluated for land only, 

sea only, and both land & sea (Continued) 

Model

s 

Summer Rainy Winter 

Land-

only 

Sea-

only 

Land 

& Sea 

Land-

only 

Sea-

only 

Land 

& Sea 

Land-

only 

Sea-

only 

Land 

& 

Sea 

CNR

M-

CM5-

2 

26.06 37.95 46.04 29.60 52.70 60.44 26.93 40.65 48.76 

CSIR

O-

Mk3-

6-0 

34.01 98.65 104.35 33.95 84.26 90.84 32.18 95.62 
100.8

9 

EC-

EART

H 

34.15 49.15 59.85 38.54 57.67 69.36 30.79 50.87 59.46 

FGO

ALS-

g2 

24.12 42.44 48.82 45.09 63.98 78.27 24.26 63.59 68.06 

FIO-

ESM 
25.60 49.94 56.12 38.37 63.31 74.03 21.96 47.66 52.48 

GFDL

-CM3 
31.78 70.34 77.18 35.95 51.95 63.18 24.23 47.68 53.48 

GFDL

-

ESM2

G 

36.47 82.48 90.19 38.60 61.21 72.36 30.71 65.65 72.48 

GFDL

-

ESM2

M 

29.69 70.84 76.81 37.81 53.81 65.77 25.81 54.28 60.10 

GISS-

E2-H 
56.13 86.60 103.20 80.02 85.59 117.17 57.82 88.10 

105.3
8 

GISS-

E2-H-

CC 

62.73 84.35 105.13 89.53 94.17 129.94 66.94 92.70 
114.3

4 

GISS-

E2-R 
47.60 76.93 90.46 54.49 77.85 95.03 41.40 72.05 83.10 

GISS-

E2-R-

CC 

47.35 77.22 90.58 56.12 81.53 98.98 41.21 72.02 82.98 

HadC

M3 
38.28 107.22 113.84 42.42 104.25 112.54 27.75 94.80 98.77 
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Table A4.9 RMSE-P values for years 1960 - 1999. They are evaluated for land only, 

sea only, and both land & sea (Continued) 

Mode

ls 

Summer Rainy Winter 

Land-

only 

Sea-

only 

Land 

& Sea 

Land

-

only 

Sea-

only 

Land 

& Sea 

Land-

only 

Sea-

only 

Land 

& 

Sea 

HadG

EM2-

AO 

33.76 93.07 99.00 36.03 73.08 81.48 27.99 83.60 88.16 

HadG

EM2-

CC 

79.60 229.82 243.21 38.09 69.36 79.13 33.11 73.87 80.95 

HadG

EM2-

ES 

32.97 106.47 111.46 35.67 74.05 82.19 36.16 93.11 99.88 

INMC

M4 
51.49 53.76 74.44 44.95 67.62 81.20 45.11 60.20 75.22 

IPSL-

CM5

A-LR 

38.46 62.21 73.13 42.20 59.81 73.20 32.33 56.91 65.45 

IPSL-

CM5

A-MR 

40.08 62.96 74.63 45.90 62.82 77.81 30.33 57.64 65.13 

IPSL-

CM5

B-LR 

42.49 79.05 89.75 41.74 65.81 77.94 34.07 83.26 89.96 

MIRO

C5 
19.75 38.30 43.09 32.63 68.40 75.78 25.79 77.49 81.67 

MIRO

C-

ESM 

24.01 69.56 73.59 44.64 94.17 104.22 25.68 73.96 78.29 

MIRO

C-

ESM-

CHE

M 

23.73 68.57 72.56 44.58 91.78 102.03 25.26 72.67 76.93 

MPI-

ESM-

LR 

33.64 53.79 63.44 41.44 74.47 85.23 35.75 74.51 82.64 

MPI-

ESM-

MR 

37.76 62.32 72.87 43.25 72.58 84.48 37.31 79.79 88.08 

MRI-

CGC

M3 

60.62 72.73 94.68 38.67 67.29 77.61 52.28 67.01 84.99 
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Table A4.9 RMSE-P values for years 1960 - 1999. They are evaluated for land only, 

sea only, and both land & sea (Continued) 

Mode

ls 

Summer Rainy Winter 

Land-

only 

Sea-

only 

Land 

& Sea 

Land

-

only 

Sea-

only 

Land 

& Sea 

Land-

only 

Sea-

only 

Land 

& 

Sea 

NorE

SM1_

M 

23.73 50.24 55.56 28.80 54.20 61.38 19.68 50.48 54.18 

6-

MOD

EL 

ENSE

MBL

E 

23.46 41.78 37.36 28.56 47.86 46.61 24.24 41.69 37.98 

40-

MOD

EL 

ENSE

MBL

E 

34.87 68.86 47.72 40.80 66.01 47.25 31.74 64.41 38.97 

 

Table A4.10 Var, RMSE, Trend and ENSO between observations and model 

simulations of mean annual temperature for years 1991 – 1999 

Models VAR RMSE Trend ENSO 

Mean reference 0.31 - 0.16 0.28 

BCC-CSM1-1 0.30 0.26 0.72 0.56 

BCC-CSM1-1-M 0.31 0.57 0.69 0.38 

BNU-ESM 0.41 0.60 0.69 0.40 

CanESM2 0.28 0.40 0.63 0.49 

CCSM4 0.32 3.20 0.82 0.44 

CESM1-BGC 0.40 1.49 0.75 0.31 

CESM1-CAM5 0.27 1.75 0.35 0.14 

CESM1-FASTCHEM 0.33 1.43 0.84 0.48 

CESM1-WACCM 0.40 0.84 0.77 0.30 

CMCC-CESM 0.46 1.56 0.45 -0.18 

CMCC-CM 0.44 0.33 0.49 0.21 

CMCC-CMS 0.42 0.47 0.16 0.30 

CNRM-CM5 0.18 1.42 0.35 0.12 

CNRM-CM5-2 0.34 1.56 0.35 0.19 

CSIRO-Mk3-6-0 0.18 0.68 -0.03 0.40 

EC-EARTH 0.24 2.83 0.71 0.63 

FGOALS-g2 0.24 2.00 0.61 0.17 
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Table A4.10 Var, RMSE, Trend and ENSO between observations and model 

simulations of mean annual temperature for years 1991 – 1999 (Continued) 

Models VAR RMSE Trend ENSO 

FIO-ESM 0.28 0.45 0.76 0.57 

GFDL-CM3 0.23 1.14 -0.02 0.46 

GFDL-ESM2G 0.37 1.30 0.41 0.31 

GFDL-ESM2M 0.52 1.00 0.41 0.24 

GISS-E2-H 0.16 0.36 -0.01 0.17 

GISS-E2-H-CC 0.34 0.38 0.52 0.20 

GISS-E2-R 0.16 0.28 0.35 0.62 

GISS-E2-R-CC 0.31 0.39 0.29 0.33 

HadCM3 0.20 0.20 0.42 0.50 

HadGEM2-AO 0.35 0.82 -0.06 0.29 

HadGEM2-CC 0.35 0.52 0.05 0.38 

HadGEM2-ES 0.23 0.22 -0.05 0.27 

INMCM4 0.34 3.46 0.70 0.24 

IPSL-CM5A-LR 0.27 1.30 0.77 0.72 

IPSL-CM5A-MR 0.28 0.66 0.75 0.51 

IPSL-CM5B-LR 0.31 1.32 0.47 0.40 

MIROC5 0.22 0.37 0.06 0.45 

MIROC-ESM 0.32 0.61 0.62 0.47 

MIROC-ESM-CHEM 0.46 0.57 0.60 0.35 

MPI-ESM-LR 0.34 0.45 0.72 0.49 

MPI-ESM-MR 0.33 0.34 0.72 0.52 

MRI-CGCM3 0.20 1.58 0.24 0.43 

NorESM1_M 0.21 1.70 0.30 0.31 

6-MODEL ENSEMBLE 0.32 1.67 0.55 0.27 

40-MODEL ENSEMBLE 0.31 1.02 0.46 0.37 

 

Table A4.11 Var, RMSE, Trend and ENSO between observations and model 

simulations of mean annual precipitation for years 1991 – 1999 

Row CV RMSE Trend ENSO 

Mean reference 0.13 - 5.26 -0.10 

BCC-CSM1-1 0.10 221.04 0.41 0.04 

BCC-CSM1-1-M 0.11 470.59 -1.06 0.00 

BNU-ESM 0.13 172.04 1.38 -0.04 

CanESM2 0.05 475.29 1.97 0.49 

CCSM4 0.06 145.68 -0.55 -0.02 

CESM1-BGC 0.14 199.66 0.81 -0.08 

CESM1-CAM5 0.10 194.57 13.62 -0.12 

CESM1-FASTCHEM 0.09 161.09 -1.92 0.48 

CESM1-WACCM 0.10 275.96 -0.22 -0.07 
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Table A4.11 Var, RMSE, Trend and ENSO between observations and model 

simulations of mean annual precipitation for years 1991 – 1999 (Continued) 

Row CV RMSE Trend ENSO 

CMCC-CESM 0.12 176.76 -0.57 0.26 

CMCC-CM 0.16 917.65 -2.52 0.33 

CMCC-CMS 0.16 643.69 0.71 -0.09 

CNRM-CM5 0.05 240.72 3.04 -0.21 

CNRM-CM5-2 0.14 246.03 4.17 0.19 

CSIRO-Mk3-6-0 0.06 197.17 4.09 -0.21 

EC-EARTH 0.04 497.44 -3.43 0.02 

FGOALS-g2 0.05 210.87 -0.68 -0.07 

FIO-ESM 0.08 204.85 -0.89 0.57 

GFDL-CM3 0.06 400.03 10.52 -0.03 

GFDL-ESM2G 0.14 486.37 -2.07 0.03 

GFDL-ESM2M 0.20 340.20 1.50 -0.14 

GISS-E2-H 0.04 805.62 0.97 -0.01 

GISS-E2-H-CC 0.15 970.07 3.33 0.00 

GISS-E2-R 0.03 755.46 2.65 0.62 

GISS-E2-R-CC 0.13 866.48 3.91 -0.02 

HadCM3 0.04 138.41 1.29 -0.13 

HadGEM2-AO 0.13 314.29 1.13 0.01 

HadGEM2-CC 0.13 416.84 4.70 0.38 

HadGEM2-ES 0.07 321.53 3.46 -0.12 

INMCM4 0.11 645.93 6.40 -0.04 

IPSL-CM5A-LR 0.05 216.06 -1.01 -0.01 

IPSL-CM5A-MR 0.08 146.75 -0.73 -0.05 

IPSL-CM5B-LR 0.17 234.80 -1.71 0.06 

MIROC5 0.07 123.49 6.70 0.45 

MIROC-ESM 0.06 244.25 6.17 -0.06 

MIROC-ESM-CHEM 0.10 257.47 5.78 -0.02 

MPI-ESM-LR 0.08 466.23 -3.85 -0.02 

MPI-ESM-MR 0.09 471.71 -2.44 0.52 

MRI-CGCM3 0.09 347.03 14.61 0.00 

NorESM1_M 0.08 229.58 4.18 -0.03 

6-MODEL ENSEMBLE 0.05 590.37 3.70 -0.05 

40-MODEL ENSEMBLE 0.02 548.92 2.16 0.07 
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APPENDICES B 

 

   The additional part was added to respond to the committees’ suggestion 

and comments. As there are currently over 60 GCMs in CMIP6, it would take too much 

time to use them all to evaluate their performance. Due to time constraints, the CMIP6 

GCMs, which were previously among the top three performing tropical models to be 

released in 2019-2021, were selected for climate simulation performance evaluation at 

Southeast Asia. Moreover, the CNRM-CM-2 was selected to examine its performance 

in this additional study because it was confirmed as the best model with performance 

above Southeast Asia in this thesis. Therefore, in this additional study, the performance 

of 12 GCMs (CMIP5-6) was evaluated in simulating the historical temperature and 

precipitation at Southeast Asia. The three sub-periods were studied based on the 

temperature trend between 1901 and 2014: 1901 to 1940 (P1), 1941 to 1970(P2) and 

1971 to 2014(P3), and the long-term climate from 1901 to 2014 (P4). 

    The results of these new analyzes are used to answer queries and are 

listed in the Appendices section. As a result, certain responses to analysis-related 

queries refer to the findings of this additional part.  

 

 

Figure A.1 Time series of the trend in annual mean temperature for the year 2000 to 

2014 

 



135 

 

 

  Figure A1 shows the temperature trend over the last 15 years. The annual 

mean temperature trend over Thailand for the years 2000 to 2014 is shown in the graph 

below (). The annual temperature trend of reference data is -0.005 °C/15 years, while 

all GCMs have trend values between -0.010 and 0.019 °C/15 year.  Given these trend 

values, the length of this research period is not sufficient to show a clear trend value. 

This preliminary result suggest that using trend metrics to estimate climate change in 

less than 15 years is inappropriate. 

  Second, new assessments by selecting a new group of CMIP5-6 GCMs 

that were previously among the top three GCMs in tropical areas published between 

2019 and 2021. The sub-periods of the trend were studied using the three main periods 

prone to temperature changes: 1901 to 1940, 1941 to 1970, and 1971 to 2014 (Figure 

A2). Examination of climate change at Southeast Asia using these GCM models also 

revealed that the temperature and precipitation variations in the three period are 

significantly affected by global temperature change (Figure A3 and Figure A4). Hence, 

temperature and precipitation sub-trends in Southeast Asia using these three time 

periods and these results were also examined in more details. 

 

 

 
Figure A.2 Global Average Temperature Changes (NASA/NOAA, 2020) 
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Figure A.3 The time series of mean annual temperature over the period 1901 to 2014 

for Southeast Asia. 

 

 
Figure A.4 The time series of mean annual of precipitation over the period from 1901 

to 2014 for Southeast Asia. 

   Table A1 shows trend values for both variables from 1901 to 1940, 1941 

to 1970, and 1971 to 2014. For temperature, the results in almost all GCMs indicated a 

decreasing trend from 1941 to 1970 and an increasing trend from 1901 to 1940 and 

1971 to 2014, which is consistent with the mean reference. However, although GCMs 

can capture the trend direction, the magnitude of the trend value of the GCMs differs 

significantly from the mean reference. For precipitation, the mean reference revealed 

an increasing precipitation trend during the periods 1901 to 1940 and 1941 to 1970, but 
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a decreasing precipitation trend during 1971 to 2014. Considering these sub-periods, 

the results show a significant relationship between the trends of temperature and 

precipitation at Southeast Asia. When temperature shows a decreasing trend, 

precipitation shows a significant increasing trend. The mean annual trends of 

temperature and precipitation in the different periods were shown in Figure A5 and 

Figure A6, respectively, in the Appendix.  

 From the analysis of the results for the short-term period, the larger the 

time interval for the analysis (e.g., 30 to 45 years), the better the reference data and 

GCMs capture the trends in temperature and precipitation. The findings of this 

additional study demonstrate that trend metrics can be used to analyze climatic trends 

over a short time period, but it is conceivable that a longer time period than 30 years is 

needed. 

 

Table A1 Trend-T and Trend-P mean annual temperature and precipitation for year 

1901 to 1940, 1941 to 1970, and 1971 to 2014 

Models 

Temperature (°C) Precipitation (%) 

1
9
0
1
-

1
9
4
0

 

1
9
4
1
-

1
9
7
0

 

1
9
7
1
-

2
0
1
4

 

1
9
0
1
-

1
9
4
0

 

1
9
4
1
-

1
9
7
0

 

1
9
7
1
-

2
0
1
4

 

Mean reference 0.09 -0.09 0.58 0.48 2.31 -1.36 

BCC-CSM2-MR 0.31 -0.01 0.70 -1.61 2.45 1.46 

CanESM5 0.35 -0.08 1.29 0.30 2.04 -0.13 

CanESM5-CanOE 0.27 -0.08 1.11 0.10 3.07 -0.02 

CNRM-CM6-1 0.19 -0.11 0.69 -0.99 2.79 3.18 

EC-Earth3 0.46 -0.08 0.74 0.63 2.09 0.17 

EC-Earth3-Veg 0.38 -0.15 0.72 -0.52 3.93 -0.32 

GFDL-ESM4 0.31 -0.23 0.67 0.86 1.94 4.11 

HadGEM3-GC31-MM 0.32 -0.32 1.07 -2.99 1.74 -2.24 

IPSL-CM6A-LR 0.29 0.04 0.81 -1.45 0.67 -0.08 

MIROC6 0.26 -0.08 0.45 -0.05 2.35 0.57 

MRI-ESM2-0 0.24 -0.14 0.67 -0.06 5.32 4.82 

11-MODEL ENSEMBLE 0.31 -0.11 0.81 -0.52 2.57 0.85 
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Figure A.5 Time series of mean annual temperature trend (Trend-T) for year 1901 to 

1940, 1941 to 1970, 1971 to 2014, and 1901 to 2014 of mean reference (red line) and 

individual GCMs (blue line). 
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Figure A.6 Time series of the mean annual precipitation trend (Trend-P) for the years 

1901 to 1940, 1941 to 1970, 1971 to 2014, and 1901 to 2014 of mean reference (red 

line) and individual GCMs (blue line) 

    In the additional study, the ENSO metric was used to evaluate 11 CMIP6 

GCMs for simulating temperature and precipitation in both short-term and long-term 

time periods. The ENSO values of each model for the years 1901 to 1940, 1941 to 1970, 

1971 to 2014, 1901 to 2014 are shown in Table A2. 
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Table A2 Correlation coefficient of winter temperature with Niño 3.4 index and that of 

winter precipitation with Niño 3.4 index for 1901 to 1940, 1941 to 1970, 1971 to 2014, 

1901 to 2014 

Models 

Temperature Precipitation 

1
9
0
1
-1

9
4
0

 

1
9
4
1
-1

9
7
0

 

1
9
7
1
-2

0
1
4

 

1
9
0
1
-2

0
1
4

 

1
9
0
1
-1

9
4
0

 

1
9
4
1
-1

9
7
0

 

1
9
7
1
-2

0
1
4

 

1
9
0
1
-2

0
1
4

 

Mean reference 0.28 0.35 0.23 0.23 -0.11 -0.08 -0.11 -0.09 

BCC-CSM2-MR 0.14 0.16 0.40 0.42 -0.09 -0.04 -0.05 -0.08 

CanESM5 0.51 0.24 0.65 0.70 -0.10 -0.10 -0.03 -0.12 

CanESM5-CanOE 0.25 0.23 -0.20 0.64 0.00 0.10 -0.01 -0.04 

CNRM-CM6-1 0.04 -0.20 0.46 0.43 0.04 -0.01 -0.04 -0.12 

EC-Earth3 0.58 0.53 0.78 0.74 -0.20 -0.18 -0.11 -0.29 

EC-Earth3-Veg 0.48 0.50 0.78 0.72 -0.17 -0.19 -0.10 -0.22 

GFDL-ESM4 0.42 0.45 0.60 0.52 -0.11 -0.08 -0.07 -0.11 

HadGEM3-GC31-MM 0.27 0.43 0.54 0.48 -0.04 -0.04 0.02 -0.04 

IPSL-CM6A-LR 0.40 0.46 0.78 0.86 0.03 0.10 0.12 0.13 

MIROC6 0.56 0.53 0.66 0.71 -0.03 -0.06 -0.10 -0.20 

MRI-ESM2-0 0.30 0.41 0.44 0.46 -0.07 -0.11 -0.04 -0.20 

11-MODEL ENSEMBLE 0.62 0.60 0.86 0.81 -0.07 0.02 0.00 -0.25 

  

  After considering the evaluation results, the difference in ENSO values 

between all models and the reference data of temperature evaluation for the short-term 

period of 1901 to 1940, 1941 to 1970, 1971 to 2014 ranged from 0.01 to 0.34, 0.06 to 

0.55, 0.17 to 0.63, and that for the long-term period of 1901 to 2014 ranged from 0.19 

to 0.63, respectively. Whereas the difference of ENSO values between all models and 

the reference data of precipitation evaluation for the short-term period of 1901 to 1940, 

1941 to 1970, 1971 to 2014 ranged from 0 to 0.15, 0 to 0.18, 0 to 0.23, and that for the 

long-term period of 1901 to 2014 ranged from 0.01 to 0.22, respectively. These results 

indicate that ENSO metrics can be used to assess models over a 30-year period because 

they can simulate the interaction between the atmosphere and oceans in the study area 

and the Nino 3.4 index region. 

    It was also found that the period 1971 to 2014 is the period when El 

Nino and La Nina events had an impact on climate simulations. This is due to the 

similarity in the range of ENSO values between all models and the references data for 
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the 1971 to 2014 and 1901 to 2014 periods, while ENSO values for the other sub-

periods had a smaller range. Therefore, these preliminary results from additional 

research suggest that the 20th century climate modeling errors were partially influenced 

by the El Nino and La Nina phenomena for the 1970. 
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