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Abstract

This thesis aimed to develop porous composite adsorbents for the extraction,
enrichment and determination of trace organic compounds in foods and personal care
products before analysis with chromatographic technique. This thesis consists of three
sub-projects divided by type of the adsorbent, extraction process and target analytes.

In the first sub-project, the high porous monolith adsorbent of polypyrrole
composite octadecyl silica and graphene oxide embedded in chitosan cryogel
(PPY/C18/GOx/Chi) was successfully developed and utilized as SPE sorbent for the
extraction of four carbamate pesticides including carbofuran, carbaryl, isoprocarb, and
diethofencarb in fruit juices. The sponge-like structure of chitosan cryogel adsorbent
not only can reduce back pressure in SPE cartridge but also can improve the adsorption
site of the adsorbent that help to entrap other composite materials into the pore or its
surface. The composite materials of polypyrrole, octadecyl and graphene oxide can
adsorb carbamate pesticides via hydrophobic interaction, -n interaction and hydrogen
bonding. Under the optimum conditions of HPLC system and the extraction process,
the porous composite monolith adsorbent exhibited wide linear responses from
2 to 500 pg L for isoprocarb, 1 to 500 pg L for diethofencarb and carbofuran and
0.5 to 500 pg L for carbaryl. The limit of detections (LODs) were in the range of
0.5 to 2 pug L. The recovery of PPY/C18/GOx chitosan cryogel adsorbent when
applied to extract four carbamate pesticides in apple, grape, orange, tomato and
pomegranate juices were achieved from 84 to 99% with relative standard deviations
(RSDs) lower than 6%. Moreover, it was great stability which can be reused up to 13
extraction cycles.

For the second sub-project, the doubly porous composite of polyaniline,
octadecyl-bonded silica magnetite nanoparticles and graphene oxide incorporated in
alginate beads (PANI/C18@SiO.@Fes04/GOx) was fabricated and employed as



magnetic solid phase extraction adsorbent (MSPE) for the extraction, enrichment and
determination of fluoroquinolones. Polyaniline and graphene oxide can adsorb target
fluoroquinolones via hydrogen bonding and n-n interaction and C18 can adsorb target
fluoroquinolones via hydrophobic interaction. The double porous structure of alginate
hydrogel was established by the reaction between calcium carbonate and hydrochloric
acid. It can help to enhance the surface areafor polyaniline coating which provided high
adsorption site to adsorb fluoroquinolones. The magnetic nanoparticles in alginate
beads promoted convenient and rapid separate the adsorbent from sample solution by
applying only an external magnet. Under the optimal condition, the doubly porous
alginate adsorbent provided low limit of detection from 0.001 to 0.01 pg L. The
linearity of PANI/C18@SiO@Fe304/GOx/Algi adsorbent were obtained in the range
of 0.01 to 50 pg L* for difloxacin and sarafloxacin, 0.005 to 50 pg L™ for ciprofloxacin,
enrofloxacin and norfloxacin and 0.001 to 50 pug L™ for danofloxacin. When the
PANI/C18@SiO.@Fe304/GOx/Algi adsorbent was applied to extract and pretreat
fluoroquinolones in eggs, honey and milk samples, the satisfactory recoveries were
acquired from 81 to 98%. It also provided good reproducibility with the RSDs less than
9% and good reusability which can be used to extract the target fluoroquinolones up to
7 times.

The third sub-project was the polydopamine coated porous composite materials
of metal organic framework and FesO4 nanoparticles incorporated in carrageenan beads
(PDA/MIL-101/Fes30a4/Carr) for the extraction of parabens. Carrageenan hydrogel was
utilized as biodegradable and non-toxic supporting material which can easily entrap the
composite materials and FesO4 nanoparticles. Metal organic frameworks type MIL-
101(Cr) and polydopamine were used as the main composite materials to interact with
four target parabens via hydrophobic interaction, hydrogen bonding and n-r interaction.
Various affecting factors were investigated and optimized to obtain the best extraction
efficiency. The results of PDA/MIL-101/Fe3O4/Carr adsorbent showed low limit of
detections for all parabens from 0.05 to 1.0 pg L™ and wide linear response in the range
of 2 to 100 pg L for butyl paraben and propyl paraben, 0.5 to 100 pg L* for
ethyl paraben and 0.1 to 100 pg L for methyl paraben. The good recoveries of the
PDA/MIL-101/FesO4/Carr beads for parabens extraction in mouthwash and skin

cleansers were achieved between 80 to 96% with relative standard deviations lower



than 7%. It also had good physical stability which can be used for the extraction of
parabens up to 6 cycles.

In the conclusion, the porous composite adsorbents were successfully fabricated
and utilized for the extraction and enrichment of trace organic compounds in foods and
personal care products before analysis with HPLC technique. These developed
adsorbents exhibited high extraction efficiency, good reusability and reproducibility.
There are several advantages including simple to prepare, convenient to use,
environmentally and friendly. Moreover, the developed porous composite adsorbents
can be applied for the extraction and determination of other organic compounds by

modifying to achieve the suitable extraction condition with the target compounds.
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The Relevance of the Research Work to Thailand

The purpose of this Doctor of Philosophy Thesis in Chemistry is to develop and
evaluate sample preparation techniques for the extraction, enrichment and
determination of trace organic components in foods and personal care products. These
developed adsorbents exhibited high extraction performance, simple to prepare,
convenient to use, environmentally friendly and cost effective. They can be applied for
the extraction of carbamate pesticides, fluoroquinolones and parabens in various
samples including fruit juices, eggs, honey, milk, mouthwash and skin cleansers.
Furthermore, they can be adapted as alternative method for the extraction of other
organic contaminants at trace concentration levels which may be useful for any private

sector and several government establishments in Thailand.
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1. Introduction
1.1 Background and rationale

Currently, various organic compounds such as insecticides, antibiotics and
preservative compounds have abundant utilized in several field of agriculture and
industry (Lu et al., 2021; Molognoni et al., 2019; Nalinci et al., 2021). However, some
specific properties of these organic compounds such as good stability, low
biodegradability and poorly volatility can cause residues in environment, foods and
agricultural products (da Cunha et al., 2021; Guerra et al., 2018; Yavir et al., 2021).
The primary effect of these compounds when enter into the food chain is associated
with their ability to produce adverse human health effects (Abad-Gil et al., 2021; Qiao
etal., 2021; Wang et al., 2020).

Carbamate pesticides are insecticides which widely used in agriculture
protection to control insects and fungi due to their broad-spectrum properties, well-high
effectively and approximately low cost (Bhatt et al., 2021; Chullasat et al., 2020). Their
residue in foods have potential hazard effects to human health such as headache,
vomiting, uncontrolled urination or defecation and can cause carcinogenic to human
(Changsan et al., 2021; Wang et al., 2019). Therefore, the United States Environmental
Protection Agency (US-EPA) has set some carbamate pesticides as possibly
carcinogenic to humans (EPA, 2002).

Fluoroquinolones (FQs) are synthetic antibiotics which widely used for human
and veterinary medicines due to their high oral absorption rate, broad antibacterial
activity and tissue penetration rates. They are often used for therapeutic purposes and
as feed additives to promote livestock growth (Bagheri et al., 2021; Li et al., 2021;
Mogolodi Dimpe et al., 2019). Fluoroquinolones may also enter into the food chain due
to their persist in edible tissue or foodstuff, not fully metabolized and low
biodegradability in the body. In addition, the side effect of fluoroquinolones included
disturbances in the central nervous system (CNS) and gastrointestinal tract, allergic
reactions, tendon disorders and hepatotoxicity (Ashiq et al., 2021; Wen et al., 2020;
Zhao et al., 2021). To protect consumer health, the European Union (EU) has
announced the maximum residue limits (MRLSs) for fluoroquinolones in different tissue
such as 10 pg kg™ of sarafloxacin in chicken muscles and 100 pg kg™ of ciprofloxacin

in milk or meat samples (EU, 2001).



Parabens are basic preservative compounds that often added into synthesis
process of various industry such as foodstuffs, toiletries, personal care products,
beverages and cosmetics due to the properties of large antimicrobial protection and
worthiness price (Jiang et al., 2021; Zhang et al., 2021). Their excessive usage and
good stability may cause accumulate in environment and agricultural products which
can cause health problems of the customers. The potential probability risks of paraben
are skin allergic reaction, annoy the endocrine body system and can produce the breast
cancer disease (Ariffin et al., 2019; Feng et al., 2016). To prevent the possibility of
diseases, the maximum allowed levels was eliminated by European Community (EC)
at 8 g kg* of parabens in cosmetic products (EU, 2014).

Therefore, it is necessary to develop a simple, rapid, reliable and highly
sensitive methods for the determination of carbamate pesticides, fluoroguinolones and
parabens in foods and personal care products. High performance liquid chromatography
(HPLC) coupled with various detectors include ultraviolet (UV) (Abdolmohammad-
Zadeh et al., 2020; Cheng et al., 2021), diode array detector (DAD) (Han et al., 2021;
Wu et al., 2021; Yuvali et al., 2020) and fluorescence detector (FLD) (Pang et al., 2019;
Wang et al., 2018) is normally used to determine trace organic compounds due to its
high sensitivity, good precision and can simultaneously determine several compounds
using separation column. However, the concentration of toxic organic compounds in
real samples are generally present at trace levels and usually contaminated with other
matrices. Thus, the suitable and reliable sample preparation methods are required prior
to instrumental analysis.

For the analysis of carbamate pesticides, fluoroquinolones and parabens, several
sample preparation techniques have been developed for the extraction, purification and
enrichment including liquid-liquid microextraction (LLE) (Diuzheva et al., 2019;
Fernandez et al., 2021; Yu et al., 2021), solid phase extraction (SPE) (de Oliveira et
al., 2016; Razavi et al., 2019; Wang et al., 2019), solid phase microextraction (SPME)
(Tang et al., 2017; Wang et al., 2020; Yazdi et al., 2018), magnetic solid phase
extraction (MSPE) (Jalilian et al., 2019; Li et al., 2017; Zhang et al., 2021), stir bar
sorptive extraction (SBSE) (Fan et al., 2015; Hu et al., 2013; Ramirez et al., 2011),
dispersive liquid-liquid microextraction (DLLME) (Shen et al., 2020; Szarka et al.,
2018; Yu et al., 2020), liquid phase microextraction (LPME) (Durak et al., 2020;



Dowlatshah et al., 2021; Santigosa et al., 2019), quick, easy, cheap, effective, rugged
and safe extraction (QUEChERS) (Malvar et al., 2020; Sousa et al., 2021; Zhang et al.,
2019) and single drop microextraction (SDME) (Gao et al., 2011; Chullasat et al., 2020;
Mafra et al., 2019). Among these extraction techniques, SPE is widely used due to its
convenience, easy operation and provides high extraction efficiency. However,
conventional packed SPE cartridge has the limitation of high back pressure which
cannot load the sample at high flow rate, cannot be reused and expensive
(Rattanakunsong et al., 2020). To overcome these limitations, development of a porous
structured monolith SPE sorbent is an interesting material. Chitosan cryogel is a good
choice to prepare porous monolith sorbent due to it has macro-porous structure like a
sponge pores that approximately applied to entrap other nanomaterials in the pores or
on the surfaces of chitosan cryogel (Baimenov et al., 2020; Yinetal., 2021). In addition,
it has the gainful properties of good biodegradability, cost effectively and low toxicity
(Makkliang et al., 2017). To improve the extraction efficiency of the adsorbent, the
adsorption materials with various properties are much attract attention to embed into
supporting material of the adsorbents. The composite materials not only improve the
interaction between analytes and the adsorbent but also can reduce the extraction time.
In this regards the integrating of octadecyl bonded silica, graphene oxide nanoparticles
and polymer-based materials such as polypyrrole was selected as composite materials
for the extraction of carbamate pesticides because of its high surface adsorption site and
good chemical stability (Treder et al., 2021; Mehdinia et al., 2020; Xiao et al., 2019;
Karthikeyan et al., 2021). Considering to graphene oxide particles and polypyrrole
structure, their consist of basic functional groups of carboxylic, epoxide, hydroxyl,
aromatic ring and amino groups which can provide strong adsorption for target analytes
by n-n interaction and hydrogen bonding (Eskandari et al., 2021; Yang et al., 2019).
While, long hydrocarbon chain of octadecyl can produce hydrophobic interaction as
showed in Figure 1.

Recently, magnetic solid phase extraction (MSPE) has attracted much attention
to extract and pretreat the target analytes in various samples due to the separation
process of the adsorbent from a sample solution can be performed using an external
magnet, which makes the faster and easier separation and its can be reused after basic

washing step with the suitable washing solution (Ding et al., 2021; Gopal et al., 2020).



Nevertheless, the bare magnetic nanoparticles (FesOa) are liable to aggregate, might
oxidation at low pH and low selectivity. Thus, the surface of magnetic nanoparticles
should be modified with specific ligands to improve the selectivity and dispersibility
such as the octadecyl coated magnetite nanoparticle (C18-coated SiO:@Fe304). To
achieve rapid separation of nanoparticles and enhance the efficiency of adsorbent, the
supporting materials and adsorption materials such as metal organic framework,
graphene oxide and polymer-based materials of polyaniline and polydopamine are great
necessary. Alginate and carrageenan were utilized as supporting materials to entrap the
adsorption materials such as C18-coated SiO2@Fe3O4 nanoparticles and graphene
oxide in form of composite beads which would help to improve the dispersibility of the
adsorbent in aqueous solution and easy to coat with the polymer. Metal organic
framework is a class of high porous material that synthesized from hybrid organic-
inorganic materials. It generally presented large structure cavities, uniform pattern and
high chemical and thermal stability which can adsorb organic compounds via n-n
interaction. While, polymer can interact with target analytes via m-m interaction and
hydrogen bonding (Bagheri et al., 2021; Duo et al., 2020; Mukherjee et al., 2021). The
MSPE methods in this thesis consist of two hybrid composite adsorbents of the
polyaniline composite graphene oxide and C18-coated SiO.@Fes3Os4 embedded in
alginate beads (PANI/C18@SiO2@Fe304/GOx/Algi) and the polydopamine, metal
organic framework and Fes3Os nanoparticles incorporated in carrageenan beads
(PDA/MIL-101/Fe30a4/Carr). The major interaction of the PANI/C18@SiO.@Fe304
/GOx alginate beads with fluoroquinolones and the PDA/MIL-101/Fe304 carrageenan
beads with parabens are based on n-w, hydrophobic interaction and hydrogen bonding
as shown in Figure 2 and 3, respectively.
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Figure 3 The interaction between parabens and the composite PDA/MIL-101/Fe304
carrageenan hydrogel adsorbent (Reprint from Klongklaew and coworker, 2021;

copyright with permission from Elsevier) (Klongklaew et al., 2021)

1.2 Objective

The objective of this thesis is to develop sample preparation techniques for the
extraction, enrichment and determination of trace organic compounds in foods and
personal care products. To achieve this objective, three sub-projects were performed as
follows:

Sub project I: The high porous monolith of polypyrrole composite octadecyl
silica and graphene oxide embedded in chitosan cryogel (PPY/C18/GOx/Chi)
adsorbent was developed and utilized in SPE technique for the extraction of carbamate
pesticides in fruit juices.

Sub project I1: The doubly porous composite of polyaniline, octadecyl-bonded
silica magnetite nanoparticles and graphene oxide incorporated in alginate beads
(PANI/C18@SiO2@Fes04/GOx/Algi) was fabricated and employed as magnetic solid
phase extraction adsorbent (MSPE) for the extraction and enrichment of
fluoroquinolones in eggs, honey and milk samples.

Sub project Ill: The polydopamine coated porous composite materials
between metal organic framework and FesO4 nanoparticles incorporated in carrageenan
beads (PDA/MIL-101/Fes04/Carr) was fabricated for the extraction of parabens in

mouthwash and skin cleansers.
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2. Sample preparation techniques

Sample preparation technique is an important in analytical applications which
is used to reduce sample size, pretreat the analytes and simplify matrix interferences
before analysis with analytical instrument (Moldoveanu et al., 2021; Li et al., 2021).
Recently, various sample preparation techniques were developed to obtain specific
benefits of each application such as environmental analysis (Stock et al., 2019),
forensics (Hussain et al., 2021), bioanalysis (Nazario et al., 2017) and food analysis
(Martins et al., 2021). The developed methods are normally based on environmentally
friendly, easy to synthesis, use less volume of toxic organic solvent and convenient to
use in many analytical applications. The sample preparation techniques that have been
reported for the determination of trace organic compounds including liquid-liquid
extraction (LLE) (Tehranirokh et al., 2021), solid phase extraction (SPE) (Maranata et
al., 2021), solid phase microextraction (SPME) (Lashgari et al., 2019), magnetic solid
phase extraction (MSPE) (Yin et al., 2021), dispersive liquid-liquid microextraction
(DLLME) (Heidarbeigi et al., 2021), stir bar sorptive extraction (SBSE) (He et al.,
2021), quick, easy, cheap, effective, rugged and safe extraction (QUEChERS) (Hrynko
et al., 2021), single drop microextraction (SDME) (Kailasa et al., 2021) and liquid
phase microextraction (LPME) (Chormey et al., 2020).

Among these sample preparation techniques, solid phase extraction and
magnetic solid phase extraction methods are an interesting method for the extraction,
purify and pre-concentration of trace organic compounds. These methods are easy to
operate, convenient to use, used low amount of organic solvent and simple extraction
process (Guo et al., 2021; Pang et al., 2021; Volynkin et al., 2021; Wan et al., 2021;
Wang et al., 2021).

2.1 Solid phase extraction

Solid phase extraction (SPE) is usually utilized as extractive sample preparation
technique to separate the target analytes from other components or matrix inferences in
aqueous samples by physical or chemical properties (Amiri et al., 2021; Deflaoui et al.,
2021). The typical solid phase extraction procedure involves four basic steps as
demonstrated in Figure 4. The first step is conditioning the solid adsorbent with the

appropriate solution or organic solvent to remove some impurities on surface of the
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adsorbent. Next, aqueous solution or sample is loaded passthrough SPE cartridge with
the constant flow rate. In this step, the target analytes interact with adsorption materials
on the surface of adsorbents. Then, washing the adsorbent with intermediate strength
of organic solution to eliminate some interferences in the samples. The last step is
eluting. This step, the target analytes are eluted from the adsorbent with suitable organic
solvent (Andrade-Eiroa et al., 2016; Uflyand et al., 2021). SPE method is widely used
for the extraction and pre-concentration of various organic compounds in various

samples as summarized in Table 1.

Conditioning  Sample loading Washing Eluting

-4 .
"s Analytes * Interferences

Figure 4 Solid phase extraction procedure
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Table 1 Application of solid phase extraction technique for the extraction and pre-concentration of organic compounds

Analytes Adsorbents Sample Sample volume (mL) Recovery (%)  References
Aflatoxins Silica/graphene oxide  Cereal crops 7.00 76.5-119 Yuetal., 2018
Carbamate pesticides Graphene Water 50.0 81.1-111 Shietal., 2014
Carbamate pesticides Porous organic Juice 100 82.0-110 Wang et al., 2019
polymer
Fluoroquinolones MIP Human urine 0.250 87.5-96.4 de Oliveiraetal., 2016
Fluoroquinolones MIP Milk 1.00 76.8-97.7 Wang et al., 2016
Nitroimidazoles Triazine-based porous Honey and water 150 80.3-118 Goo et al., 2021
organic polymer
Non-steroidal anti- MOF-199 based sol- Human plasma 50.0 93.6-99.6 Amiri et al., 2021
inflammatory drugs  gel coated stainless and water
steel mesh
Non-steroidal anti- Poly (HEMA-co- Water 50.0 94.0-107 Medina et al., 2020
inflammatory drugs EDMA)
Phenoxy carboxylic ~ MIL-101- Water 200 91.4-94.8 Deng et al., 2021
acids ethylenediamine
Chlorophenols Ferrocene-based NOP  Tap water, tea 100 87.6-119 Wang et al., 2019

and juice




14

2.2 Magnetic solid phase extraction

Magnetic solid phase extraction (MSPE) is a sample preparation technique
based on functionalized magnetic materials. It generally operated in form of dispersive
solid phase extraction which can improve the interfacial area of analytes and the
adsorbent when compared with conventional SPE method (Grau et al., 2021; Hassan et
al., 2021). The magnetic property of the adsorbent help to reduce the extraction time
because it is easy and rapid to isolate the adsorbent from sample solution or organic
solvent by applying the external magnet. The advantages of MSPE sorbent not only
minimizes the sophisticated step of filtration or centrifugation in traditional methods
but also can reuse the magnetic adsorbents with simple washing process (Mhd. Haniffa
etal., 2021). Therefore, the MSPE technique are widely used for the extraction and pre-
concentration of trace organic compounds in different matrix interferences (Table 2).

The magnetic extraction procedure has the main process of adsorption and
desorption between target analytes and adsorbents as shown in Figure 5. Firstly, the
magnetic adsorbents are added into aqueous solution and stir at appropriate rate with
equilibrium time to completely adsorb target analytes. Next, the magnetic adsorbents
are rapid and easy separated from aqueous solution using external magnet. Then,
appropriate volume of suitable organic solvent or the mixture of acid and solvents were
used to break the interaction of target analytes from the surface of the adsorbents. The
eluent is evaporated until dryness at boiling point of organic solvent, reconstituted and
filtrated through filter before simultaneously analysis with chromatography instrument
(Amiri et al., 2021).



Table 2 Applications of magnetic solid phase extraction technique for the extraction and pre-concentration of organic compounds

15

Analytes Adsorbents Sample Sample volume (mL)  Recovery (%) References

Fluoroquinolones Fes04@Cys@MIL125- Water 50.0 83.8-109 Lianetal., 2018
NH:2

Fluoroquinolones Fes04@COF(TpBD) Meat 10.0 82.0-110 Wen et al., 2020
@Au-MPS

Fluoroquinolones Fes04s@PDA@UPOPs  Milk, egg and 10.0 78.1-97.7 Lietal., 2021

chicken muscle

Organophosphorus  Magnetic Vegetable, fruit 10.0 83.7-98.1 Ghorbani et al., 2021

pesticides chitosan/SiO2/ZIF-67  juice, and milk

Organophosphorus  PVA@MGO Juice, and water 10.0 94.5-107 Nasiri et al., 2021

pesticides

Organophosphorus  Magnetic COF-Dt-Tb ~ Milk 5.00 80.0-105 Linetal., 2020

pesticides

Organophosphorus ~ FesOs@COF@2Zr** Vegetables 10.0 87.0-121 Lietal., 2021

pesticides

Organophosphorus  FesOs@polyphenols Vegetable, fruitand 10.0 54.0-89.0 Yadeghari et al.,

pesticides

water

2021
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Figure 5 The extraction procedure of magnetic solid phase extraction (Reprint from
Klongklaew and coworker, 2021; copyright with permission from Elsevier)
(Klongklaew et al., 2021)

3. Materials of the adsorbent

Materials of the adsorbent are referred to the compounds which have the special
properties or functional groups to adsorb target analytes (Gil et al., 2021; Liu et al.,
2020; Zhou et al., 2019). This thesis consisted of two main types of adsorbent materials
including supporting and adsorption materials.
3.1 Supporting materials

Supporting materials are used to embed other adsorption materials, increase
porosity and help to improve dispersibility of the adsorbent in MSPE technique. The
supporting materials should have some specific properties such as good thermal and
physical stability, easily and rapidly cross-linking and high porosity (Glockner et al.,
1987). The supporting materials in this thesis including chitosan cryogel, alginate and

carrageenan hydrogel.

3.1.1 Chitosan cryogel
Chitosan is polysaccharide polymer that produced from deacetylation process
of chitin. The advantage characteristics of chitosan are good biodegradability, chemical
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inertness and low toxicity. It generally consists of major functional groups of amino (-
NH2) and hydroxyl (-OH) in the molecular chains (Figure 6A) which provided high
adsorption capacity. According to these reasons, chitosan is considerable attention to
use as adsorbent materials in sample preparation techniques (Dragan et al., 2019;
Upadhyay et al., 2021). To generate high porosity of the adsorbent, chitosan cryogel
was simple fabricated using polymer cross-linked under semi-freezing condition that
call “cryogelation” process (Figure 6B). After the ice crystals were thawed at room
temperature, macro-porous network of chitosan cryogel was achieved with sponge-like
structure and high elasticity (Figure 7). The high porous structure of chitosan cryogel
can increase surface areas of the adsorbent which help to entrap the other adsorption
materials and also prevent the adsorption materials loss during the extraction process.
In addition, the high porous structure can eliminate the limitation of high backpressure

in the solid phase extraction process (Baimenov et al., 2020).

A
NH,
o N
-n
B  Monomer .
solution Cryogelation Cryogel

Freezing Thawing
-20 « 27 *C

® Composite
% materials

L Monomer . Ice crystal Pores

Figure 6 Chitosan structure (A) and cryogelation process of chitosan (B)
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Figure 7 The SEM images of chitosan cryogel 1000X (A), 20000X (B) and composite
of PPY/C18/GOx chitosan cryogel 1000X (C), 20000X (D) (Reprint from Klongklaew
and coworker, 2018; copyright with permission from Springer Nature) (Klongklaew et
al., 2018)

3.1.2 Alginate hydrogel

Alginate is eatable water-soluble polysaccharide produced from cell wall of
brown seaweed or algae which is environmentally friendly and good biodegradability
material. Other interesting properties of alginate are easy to form stable network, like
egg box structure, are anion exchange between alginic acid and divalent cations such
as Ca?* in safe and mild condition at room temperature (Figure 8) (Abasalizadeh et al.,
2020). Due to the structure of alginate generated from different sequence of 1—>4
covalent linked between B-D-mannuronate and a-L-guluronate, the alginate gels are
easily established with different pattern such as bead (Figure 9A) or fiber in high
concentration of calcium chloride salt (Gao et al., 2020; Sutirman et al., 2021). The
advantages of alginate hydrogel are high physical and thermal stability, rapidly form
hydrogelation and suitable to entrap other adsorption materials such as hydrophobic
materials, nanoparticles or large molecules (Iravani Mohammadabadi et al., 2021;
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Mokhtari et al., 2021). To improve the porosity and surface areas of alginate beads, the
doubly porous structure was fabricated from the reaction between calcium carbonate
embedded inside alginate bead and hydrochloric acid (Zhuang et al, 2017). This
reaction provided carbon dioxide bubble inside the bead which made double porous
structure (Figure 9B) according to following equation:

CaCOgs(s) + 2HCl(ag) — CaClz(g) + CO2(g) + H20
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Figure 8 Egg-box structure for alginate gelation as a result of ionic interaction between
alginate and a divalent cation (Reprint from Abasalizadeh and coworker, 2020;

copyright with permission from Springer) (Abasalizadeh et al., 2020)

Y

Figure 9 Photograph of microcomposite alginate hydrogel (A) and double porous
microcomposite hydrogel (B) (Reprint from Klongklaew and coworker, 2020;

copyright with permission from Elsevier) (Klongklaew et al., 2020)
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3.1.3 Carrageenan hydrogel

Carrageenan is sulfated anionic polysaccharides biopolymer which generally
produced from red seaweed. It basically consists of alternative linked blocks of B-d-
galactose and a-d-galactose or 3,6-anhydro-o-d-galactose which provided kappa (),
iota (1), and lambda (1) types of carrageenan depended on algae type and synthesis
method (dos Santos et al, 2015). Recently, k-carrageenan has received much great
attention due to its non-toxicity, thermal reversibility, high adsorption capacity and easy
gelling. The special hydrogelation processes of carrageenan are based on both of
temperature and gel inducing agent to form stable three-dimensional structure of
aggregation helical dimers (Figure 10) (Rhein-Knudsen, et al., 2015). Therefore,
carrageenan hydrogel is mostly performed by ionic cross linker between sulfated of
carrageenan structure and potassium ions (K*) (Kulal, et al., 2020; Pishnamazi, et al.,
2020). The form of carrageenan bead is mostly used to synthesize the adsorbent because
it is suitable to disperse in sample solution, simple to entrap the adsorption materials
and prevent the loss of adsorption materials from hydrogel adsorbent (Duman et al.,
2019; Sebeia et al., 2019).

Chitosan cryogel, alginate and carrageenan hydrogel have been widely used as
supporting materials in various applications (Table 3). In this thesis, chitosan was used
for solid phase extraction because it has broad spectrum properties, provided large
porous structure which can reduce backpressure of SPE cartridge and suitable to form
monolith sorbent. While, alginate and carrageenan were used for magnetic solid phase
extraction adsorbent due to they can be easily synthesized in bead form and can entrap

various adsorption materials inside the bead.
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Figure 10 The gelation mechanism of k-carrageenan in the presence of potassium ions
(Reprint from Rhein-Knudsen and coworker, 2015; copyright with permission from
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Table 3 The applications of chitosan, alginate and carrageenan as supporting materials

Supporting materials Applications Pore sizes (um) Pattern Analytes References
Chitosan cryogel Antifungal dressing 21-51 Monolith Fungi Dong et al., 2021
Trapping 29-54 Monolith Essential oil Dinu et al., 2021
Vortex assisted SPE - Monolith Herbicides Jiang et al., 2021
sorbent
u-SPE sorbent - Monolith Tetracycline Xu etal., 2016
Alginate hydrogel Adsorbent 0.055 Bead Endocrine disrupting Tasmia et al., 2020
compounds
Bio-sorbent ~0.080 Bead Methylene blue Mallakpour et al., 2021
Drug delivery 0.053-0.15 Bead Probiotic Kim et al., 2021
Encapsulation - Bead Humic acids Cristina et al., 2020
Carrageenan hydrogel  Adsorbent 0.0080-0.038 Bead Cationic dye Khoshkho et al., 2021
Adsorbent - Bead Methylene blue Jabli et al., 2020
Enzyme - Bead B-galactosidase Zhang et al., 2016
encapsulation
Magnetic porous 0.040-0.070 Bead - Pishnamazi et al., 2020

(CaCO0s) adsorbent
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3.2 Adsorption materials

Adsorption materials are referred to the components of adsorbent that have the
specific properties or structure to interact with target analytes. The main interactions
between adsorption materials and analytes are mostly depended on their structure,
functional groups and polarity. Appropriate material of the adsorbents should have one
or more interactions with analytes such as m-m interaction, electrostatic interaction,
hydrophobic interaction or hydrogen bonding. In this thesis, graphene oxide, octadecyl,
metal organic frameworks and polymer-based materials were used as adsorption

materials for the fabrication of composite adsorbents.

3.2.1 Graphene oxide

Graphene oxide (GOX) is carbon-based material which consists of major single-
layer atom of sp? hybridized carbon and minor atom of C-OH, epoxy, carbony! (-C=0)
and hydroxyl (-OH) groups (Figure 11) (Nasiri et al., 2021). The honeycomb-like
network of graphene oxide showed the important ability of good electricity, high
thermal stability, large specific surface areas, abundance electrons and hole mobility.
Therefore, it widely utilized and applied in various applications such as sensor (Jung et
al., 2021; Shanbhag et al., 2021), electrochemical (Chen et al., 2021; Zhao et al., 2021),
energy storage (Garcia Lebiére et al., 2021; Tokgoz et al., 2021) and sample preparation
techniques (Guo et al., 2021; Menazea et al., 2020; Mostafavi et al., 2021). According
to many functional groups of graphene oxide, it easy to react or functionalize with other
chemical. In sample preparation techniques, graphene oxide is utilized to fabricate
adsorbent due to it can interact both polar and non-polar compounds via hydrogen
bonding of oxygen atoms or -OH group, n-m and hydrophobic interaction of aromatic
ring. For example, the adsorbent based on metal-organic framework type HKUST-1
and UV-irradiated graphene oxide (UV-GOx) was developed for CO2 adsorption
(Varghese et al., 2021), the functionalized of graphene oxide and silver nanoparticles
was synthesized for phosphates removal in water samples (Vicente-Martinez et al.,
2020), the magnetic nanocomposite of amino-functionalized metal-organic framework,
graphene oxide and silica-coated cobalt ferrite was fabricated for neonicotinoid
insecticides extraction (Ghiasi et al., 2020), the magnesium-aluminum layered double

hydroxide coated on graphene oxide nanosheets was applied for parabens extraction in
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human breast milk (Manouchehri et al., 2020) and the hydroxypropyl-B-cyclodextrin-
polyurethane magnetic nanoconjugates/reduced graphene oxide was developed for
removal of chromium and lead ions (Nasiri et al., 2021).

Figure 11 The structure of graphene oxide (GOx)

3.2.2 Octadecyl

Octadecyl (C18) is long hydrocarbon chain which widely utilized as non-polar
adsorption material in solid phase extraction techniques due to it provided hydrophobic
property. To improve the stability and applicability, octadecylsilane or octadecyl
grafted silica (C18@SiO2) (Figure 12) are attend much attention because it simple to
modify with different properties of other adsorption materials. The modified
C18@SiO2 with hydrophilic material can cause strong interactions between target
analytes and the adsorbent via both hydrophobic and hydrophilic of modified part
(Bernardes et al., 2017). For example, the magnetic nanoparticles composited octadecyl
modified silica and carbon nanotubes for the extraction of pesticides (Moreno et al.,
2018). In addition, octadecyl bonded silica is also quite interesting to apply in magnetic
solid phase extraction technique such as C18 functionalized magnetic nanoparticles for
phthalic acid extraction (Guo et al., 2014) and octadecyl coated silica magnetite

nanoparticles for tetracyclines extraction (Kaewsuwan et al., 2017).

Figure 12 The structure of octadecyl bonded silica (C18@SiO2)
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3.2.3 Metal organic frameworks

Metal organic frameworks (MOFs) are hybrid organic-inorganic porous
crystalline structure carbonaceous nanomaterials which produced from coordination
bond between building blocks of metal groups and organic linker molecules (Figure
13) (Pioquinto-Garcia et al., 2021). The unique properties of MOFs are simple to
control pore sizes, consist of large active adsorption sites and high thermal stability
(Ibrahim et al., 2021; Tchinsa et al., 2021). MIL-101(Cr) is an interesting type of MOFs
because it provides large specific surface area, spacious macropore sizes and good
stable in harsh aqueous solutions (Ghiasi et al., 2020). According to the advantages of
MIL-101(Cr), it has numerous modified in various sample preparation techniques such
as ultrasonic-assisted magnetic solid phase extraction (UA-MSPE) (Ghiasi et al., 2020),
dispersive solid-phase microextraction (d-SPME) (Zhou et al., 2021) and microwave-

assisted magnetic solid-phase extraction (Wang et al., 2021).

Figure 13 The structure of metal organic frameworks (MOFs)

3.2.4 Polymer

Polymers are interesting materials for the fabrication of adsorbents because the
potent features of tunable morphologies, multipurpose functional groups, acceptable
reusability and simple to synthesize (Moradi et al., 2021; Samadi et al., 2021). The
polymeric materials such as polypyrrole (Abdeldaym et al., 2021; Chigondo et al.,
2021; Sahu et al., 2021; Stejskal et al., 2021), polyaniline (Abu Taleb et al., 2020; Arora
et al.,, 2021; Magbool et al., 2020; Park et al., 2021; Tanzifi et al., 2017) and



26

polydopamine (Chen et al., 2020; Mu et al., 2019; Qi et al., 2021; Tong et al., 2020;
Zhou et al., 2019) have been attended increasing attention for the extraction of various
target organic compounds in complex matrices of real samples.

Polypyrrole (PPY) is popular polymeric material which widely used to prepare
adsorbents for magnetic solid phase extraction (Li et al., 2020; Marsin et al., 2020;
Mollahosseini et al., 2019), solid phase extraction (Devasurendra et al., 2018; Seidi et
al., 2019; Xie et al., 2019) and solid phase microextraction (Du et al., 2020; Du et al.,
2021; Liu et al., 2012; Mametov et al., 2021) techniques due to its unique properties of
rapid for polymerization, easy to prepare, good stability, cost effectiveness and good
electrical conductivity (do Nascimento et al., 2019; Karthikeyan et al., 2021). PPY
contains aromatic ring and amino group (Figure 14A) which suitable for the adsorption
of organic compounds via m-m, hydrophobic interaction, hydrogen bonding and
electrostatic interaction (Kang et al., 2021).

Polyaniline (PANI) is conducting polymer which extensively applied in
different field of applications such as electrochemical (Benny et al., 2021; Sun et al.,
2021; Yilmaz Erdogan et al., 2020), energy (Emi Princess Prasanna et al., 2020;
Shanmugasundaram et al., 2021), environmental (Al-Zahrani et al., 2021) and
adsorption of toxic components (Imgharn et al., 2021; Zhang et al., 2021). For
adsorption application, the benzene and amino functional groups of polyaniline (Figure
14B) can adsorb various organic compounds via hydrogen bonding of -NH groups, n-
n and hydrophobic interaction of benzene rings (Chinnathambi et al., 2021; Wang et
al., 2021). For example, the magnetic graphene oxide nanocomposite modified
polyaniline was developed and used for the extraction of polycyclic aromatic
hydrocarbons (PAHs) (Manousi et al., 2021), the magnetic-polydopamine core shell
nanoparticles coated with polyaniline was synthesized for dye adsorption (Miri et al.,
2021) and copper oxide composite polyaniline for adsorption of insecticides (Alizadeh
etal., 2021).

Polydopamine (PDA) is also an interesting biopolymer for adsorption materials
in sample preparation techniques because it is simple to prepare, has multi-interaction
from quinone structure, hydrophilic hydroxyl and amine groups (Figure 14C) which
provide high adsorption capacity and low toxicity (Gonzales et al., 2021; He et al.,

2021). The special property of polymerization process of polydopamine is self-
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polymerization reaction of dopamine monomers in alkaline or buffer solution under
mild conditions (Tian et al., 2021; Zhao et al., 2021; Felfel et al., 2021). According to
the advantages of polydopamine, it was developed and applied in sample preparation
method such as core-shell composite magnetic-polydopamine nanoparticles for the
extraction of copper in foods (Yavuz et al., 2018), magnetic modified polydopamine as
dispersive solid phase extraction of sulfonylurea herbicides (Wang et al., 2019) and
composite ZIF-7 and polydopamine coated magnetic nanoparticles for PAHs extraction

(Zhang et al., 2016).
- . -
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Figure 14 The chemical structure of polypyrrole (A), polyaniline (B) and
polydopamine (C)

Various adsorption materials were utilized for the fabrication of adsorbents
depended on their structure, properties and interactions with analytes as demonstrated
in Table 4. According to the structure of carbamate pesticides, fluoroquinolones and
parabens, the possible interaction including n-mt, electrostatic, hydrophobic interaction
and hydrogen bonding. Therefore, graphene oxide, octadecyl, MIL-101(Cr) and
polymer (polypyrrole, polyaniline and polydopamine) were used for the fabrication of

composite adsorbents in this thesis.
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Table 4 Sample preparation techniques for the extraction of organic compounds

Sample Adsorbents Analytes Interactions Recovery (%)  References
preparation
techniques
SPE Crumpled graphene Chlorophenol Hydrophobic and 92.0-118 Chu et al, 2021
n-w interaction
MSPE ZnMIL-101@MGOx Cefixime Electrostatic, n-r interaction  95.7-104 Eskandari et al,
and hydrogen bonding 2021
DUSPE PVA@MGOXx Organophosphorus  Electrostatic, n-m interaction ~ 94.5-107 Nasiri et al,
pesticides and hydrogen bonding 2021
MSPE CoFe204@Si02-C18 Triclosan Hydrophobic, n-x interaction - Caon et al, 2020
and anion exchange
LPME C18-modified Triazine Hydrophobic 70.0-130 Roldan-Pijuan et
borosilicate disk herbicides al, 2013
SPE poly(C18 VIm*NapSOs~) Flavonoids Hydrophobic, n-n interaction, 83.6-114 Wang et al,
@SiO2 electrostatic and hydrogen 2019

bonding
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Sample Adsorbents Analytes Interactions Recovery (%)  References
preparation
techniques
DMSPE- MIL-101(Cr) Pantoprazole Electrostatic, n-r interaction ~ 73.2-78.5 Cai et al, 2019
DLLME-SFO
d-SPE MIL-101(Cr), MIL- Oxytetracycline, Electrostatic, n-x interaction  88.1-126 Pang et al, 2021
100(Fe) and MIL-53(Al) ~ tetracycline,
(7:1:2) chlortetracycline
and doxycycline
HF-SPE MIL-101(Cr)@GOx Diazinon and Electrostatic, n-x interaction ~ 91.0-103 Darvishnejad
chlorpyrifos and hydrogen bonding et al, 2020
Packed-fiber PPY electrospun Folic acid, Electrostatic, n-w interaction  84.9-125 Xie et al, 2019
SPE nanofibers cyanocobalamin and hydrogen bonding
and riboflavin
spin-column PA-gGOx-PPY Parabens Hydrophobic, n-r interaction  81.7-97.8 Seidi et al, 2019
mSPE electrospun nanofibers and hydrogen bonding
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Table 4 Sample preparation techniques for the extraction of organic compounds (continued)

Sample Adsorbents Analytes Interactions Recovery (%)  References

preparation

techniques

MSPE FesOs@PPY Folic acid and Electrostatic, m-w interaction 92.2-105 Kang et al, 2021
riboflavin and hydrogen bonding

D-uSp CuO nanoplate- Diazinon and Electrostatic, n-m interaction  87.0-99.0 Alizadeh et al,

polyaniline Imidacloprid and hydrogen bonding 2021

MSPE Fes04@GOx-PANI Nitrated polycyclic ~ Hydrophobic, n-n 91.6-114 Manousi et al,
aromatic interaction and electrostatic 2021
hydrocarbons

SPE MWCNTSs/ZIF-67/PANI  Polycyclic aromatic  Hydrophobic, n-n 83.4-111 Hajializadeh et
hydrocarbons interaction and electrostatic al, 2020

PT-uSPE Melamine foam@PANI  Psychotropic drug  =-m interaction, hydrogen 80.0-109 He et al, 2021

bonding and dipole-dipole
SBSE CoFe20:@PDA Nitro musks Hydrophobic and n-n 91.0-120 Grau et al, 2021

interaction
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4. Optimization of the extraction condition

The extraction efficiency of the developed methods depended on various
parameters such as amount of adsorbent, sample volume, sample pH and ionic strength,
sample flow rate or stirring rate, extraction time and desorption conditions. To achieve
the highest extraction efficiency, these parameters were optimized and evaluated in
terms of recovery.

4.1 Amount of adsorbent

The amount of adsorbent is basically affected to the extraction recovery. To
obtain the highest extraction efficiency, different amount of adsorbents were optimized.
The lowest dose of adsorbents that provided the highest recovery were selected as
optimal condition for each sub-project.

The optimal adsorbent dosage of PANI/C18@SiO@Fe304/GOx/Algi and
PDA/MIL-101/FesO4/Carr bead were 0.50 g (Paper Il1) and 0.75 g (Paper III),
respectively. In case of PPY/C18/GOx/Chi SPE sorbent (Paper 1), the amount of
sorbent was fixed at 0.50 g (Table 5).

Table 5 Effect of amount of adsorbent on the extraction recovery of carbamate

pesticides, fluoroquinolones and parabens

Adsorbents  Analytes Amount  Optimum  Recovery RSD References
of amount of (%) (%)

adsorbent  adsorbent

range (9) (9)

PPY/C18/ Carbamate - 0.50 88.1-93.6 <4.0 Paper |
GOXx/Chi pesticides

PANI/C18@  Fluoroguinolones 0.25-1.0 0.50 82.4-88.3 <5.0 Paper Il
SiOz@Fe304/

GOx/Algi

PDA/MIL-  Parabens 0.25-1.0 0.75 84.2-94.3 <4.0 Paper 111
101/F€304/

Carr
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4.2 Sample volume

The pre-concentration factor of the developed methods is directly depended on
the volume of sample solution. However, it also has limitation of adsorption capacity
of the adsorbents. Thus, sample volume is an important to be optimized. The highest
volume of sample solution which provide the highest extraction efficiency was chosen
in extraction procedure. The sample volume were 20.0 mL for Paper 1, 10.0 mL for
paper Il and I11 (Table 6). The developed porous composite adsorbents can be used to

pre-concentration of target analytes in real samples.

Table 6 Effect of sample volume on the extraction recovery of carbamate pesticides,

fluoroguinolones and parabens

Adsorbents  Analytes Range of  Optimum Recover RSD References
sample sample y (%)

volume volume (%)

(mL) (mL)
PPY/C18/ Carbamate 5.00-50.0 20.0 88.7- <6.0 Paper |
GOx/Chi pesticides 101
PANI/C18@ Fluoroquinolones 5.00-20.0 10.0 86.4- <5.0 Paper 11
SiO,@Fez04 92.3
IGOx/Algi
PDA/MIL-  Parabens 5.00-20.0 10.0 90.6- <4.0 Paper 111
101/Fe304/ 96.7
Carr
4.3 Sample pH

Sample pH significantly affect the stability and the extraction ability of the
adsorbents due to the form of analyte can change under varying the sample pH which
influence the interaction of the adsorbents and target analytes. For example, the
interaction between PANI/C18@SiO@Fe304/GOx/Algi adsorbent  and
fluoroguinolones was destroyed after the pH changed from 7.0 to 11 (Paper I1). It
might because fluoroquinolones were ionized at pH lower than 7.0 while the alkaline
condition dissociated the form of carboxylic group. However, in case of Paper | and

111, the extraction efficiency not significantly decreased because the sample pH did not
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much affect the interaction of target analytes and adsorbents. Thus, these case no need
to adjust the pH before extract the target analytes (Table 7).

Table 7 Effect of sample pH on the extraction recovery of carbamate pesticides,

fluoroguinolones and parabens

Adsorbents Analytes Range of  Optimum Recovery RSD  References
sample pH (%) (%)
pH

PPY/C18/ Carbamate 2.0-10 2.0-8.0 88.2-100 <5.0 Paperl
GOX/Chi pesticides

PANI/C18@  Fluoroguinolones 3.0-11 7.0 91.6-98.3 <6.0 Paperll
SiOz@FE304/
GOx/Algi

PDA/ MIL- Parabens 4.0-8.0 4.0-8.0 87.2-96.4 <5.0 Paperlll
101/F6304/
Carr

4.4 Sample flow rate or stirring rate

Sample flow rate and stirring rate of sample solution affect to the extraction
efficiency because the contract rate between analytes and adsorbent depended on the
appropriate time. In part of sample flow rate, higher flow rate can reduce the adsorption
time but at the same time it also impacts the contact between analytes and adsorbent.
Therefore, sample flow rate of sub-project | was studied from 0.50 to 8.0 mL min™.
The great extraction recovery with the highest sample flow rate was 5.0 mL min™as
show in Table 8 (Paper I).

The stirring rate is an important factor in MSPE method because it directly
impacted the partition of the analytes and adsorption site of the adsorbents. At low
stirring speed, mass transfer of analytes was decreased due to the adsorbents not fully
disperse in aqueous solution. On the contrary, the contact of sorbent and analytes was
too brief at high speeds. The suitable stirring rate of sample solution by
PANI/C18@SiO2@Fe304/GOx/Algi  (Paper Il) and PDA/MIL-101/FesO4/Carr
(Paper 111) adsorbents were 1000 rpm and 800 rpm, respectively (Table 8).
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Table 8 Effect of sample flow rate and stirring rate on the extraction recovery of

carbamate pesticides, fluoroquinolones and parabens

Adsorbents  Analytes Range of Optimum  Recovery RSD  References
sample values (%) (%)
flow rate or
stirring rate
PPY/C18/  Carbamate 0.50-8.0 5.0 89.1-97.8 <5.0 Paperl
GOXx/Chi pesticides (mL min?)  (mL min?)
PANI/C18  Fluoroguinolones  500-2000 1000 84.2-935 <4.0 Paperll
@Si0.@ (rpm) (rpm)
Fes04/GOx
IAlgi
PDA/MIL-  Parabens 500-1500 800 86.4-90.2 <3.0 Paperlll
101/Fe304/ (rpm) (rpm)
Carr

4.5 Extraction time

The adsorption equilibrium is generally affected by the extraction time during

the adsorption process. To achieve the highest extraction efficiency with the shortest

time, the extraction time of the developed MSPE method were investigated. The highest

recovery of the developed MSPE methods for the extraction of fluoroquinolones and

parabens were 20.0 min (Paper 1) and 10.0 min (Paper I11), respectively (Table 9).

Table 9 Effect of extraction time on the extraction recovery of carbamate pesticides,

fluoroguinolones and parabens

Adsorbents  Analytes Range of Optimum Recovery RSD References
extraction extraction (%) (%)
time (min) time (min)
PANI/C18  Fluoroquinolones 10.0-30.0 20.0 88.1-95.5 <6.0 Paperll
@Sio,@
Fe304/GOx
/Algi
PDA/MIL-  Parabens 5.00-30.0 10.0 81.4-90.2 <5.0 Paperlll
101/Fe304/

Carr
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4.6 Desorption conditions

The appropriate desorption solvent is an important key to desorb analytes from
both SPE and MSPE adsorbents. The principles selection of the desorption solvent
normally based on like dissolves like role. Thus, various organic solvent with different
polarities were considered and investigated. The moderately polar analytes of
carbamate pesticides, fluoroquinolones and parabens are suitable with rather polar
solvent of acetonitrile (Paper 1), the mixture of acetonitrile: dichloromethane: 0.1 M
acetic acid (45:45:10) (Paper I1) and the mixture of acetonitrile: ethyl acetate (1:1)
(Paper I111), respectively (Table 10). However, the interaction in case of
PANI/C18@SiO.@Fe304/GOx/Algi and fluoroquinolones (Paper 1) are quite strong
with hydrogen bonding. Therefore, acetic acid was added in desorption solvent to break
up the interaction between the adsorbent and fluoroguinolones.

To reduce the hazard from organic solvents, the volume of desorption solvents
was optimized with the criteria of the lowest volume of organic solvents that provided
the highest extraction recovery. The desorption solvent volume for PPY/C18/GOx
chitosan cryogel sorbent (Paper 1) and PANI/C18@SiO:@Fe304/GOx alginate beads
(Paper I1) were 3.0 mL. While, the mixture solvents for the developed method of
PDA/MIL-101/Fe304 carrageenan beads (Paper I11) was 2.0 mL (Table 11).
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Table 10 Effect of type of desorption solvent on the extraction recovery of carbamate pesticides, fluoroguinolones and parabens

Adsorbents Analytes Type of desorption solvent Optimum desorption solvent Recovery RSD References
(%) (%)

PPY/C18/GOx/Chi  Carbamate Methanol Acetonitrile 92.8-99.1 <6.0 Paperl
Acetone

Acetonitrile

Ethanol

Ethyl acetate

Propanol

PANI/C18@SiO.@ Fluoroquinolones  Methanol Acetonitrile:dichloromethane: 84.4-91.7 <6.0 Paper Il

Fes04/GOx/Algi Acetonitrile acetic acid 0.1 M (45:45:10)
Dichloromethane
Acetonitrile:dichloromethane
(1:1)
Acetonitrile:dichloromethane:

acetic acid 0.1 M (45:45:10)

pesticides

PDA/MIL-101/ Parabens Methanol Acetonitrile:ethyl acetate (1:1) 81.6-86.3 <5.0 Paper IlI
FesO4/Carr Acetone
Acetonitrile

Ethyl acetate
Acetonitrile:ethyl acetate (1:1)
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Table 11 Effect of volume of desorption solvent on the extraction recovery of

carbamate pesticides, fluoroquinolones and parabens

Adsorbents  Analytes Volume of Optimum  Recovery RSD  References
desorption  volume of (%) (%)
solvent solvent
(mL) (mL)
PPY/C18/  Carbamate 1.0-4.0 3.0 90.5-98.7 <7.0 Paperl
GOx/Chi pesticides
PANI/C18  Fluoroguinolones 2.0-5.0 3.0 88.2-95.5 <5.0 Paperll
@Sio,@
Fes04/GOx
IAlgi
PDA/MIL-  Parabens 1.0-4.0 2.0 90.3-94.6 <5.0 Paper Il
101/F€304/
Carr

5. Analytical performance

The analytical performances of the developed methods were evaluated
including linear dynamic range (LDR), limit of detection (LOD), limit of quantification
(LOQ), accuracy, precision, reproducibility and reusability. These terms were studied
under optimum conditions of the each developed SPE and MSPE techniques.
5.1 Linear dynamic range

Linear dynamic range (LDR) is the capability of the analytical methods which
demonstrate the concentration of target analytes in real samples. The calibration curve
of LDR is plot between the average concentration of analytes spiked in sample (x-axis)
and the response value (y-axis). The LDRs are generally operated in 3 replications with
4 or more different concentrations of spiked standard solution. The acceptable linear
regressions follow by AOAC are established at the coefficient of determination (R?)
higher than 0.99 (AOAC, 2016). The linearity in this thesis were plotted between peak
area and the concentration of carbamate pesticides, fluoroquinolones and parabens in
unit of ug LL. The LDRs of Paper I-111 showed R? higher than 0.99 (Table 12). It
indicated that the developed methods have good linear range for the determination of

target analytes at trace concentrations.
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Table 12 Linear dynamic range and coefficients of determination (R?) of the developed

methods
Adsorbent Samples  Analytes Linear R? Reference
range
(Mg L)
PPY/C18/GOx/Chi Fruit Carbamate 0.5- 500 0.9993- Paper |
juices 1.0000
PANI/C18@SiO.@ Foods Fluoroquinolones 0.001-50 0.9933- Paper Il
Fes04/GOx/Algi 0.9994
PDA/MIL-101/ Personal  Parabens 0.1-100 0.9968- Paper Il
FesOu/Carr care 0.9986

products

5.2 Limit of detection and limit of quantification

Limit of detection (LOD) is normally specified as the lowest concentration of
target analytes which can be trusty detected under optimum conditions of the analytical
methods. The limit of quantification (LOQ) is set as the lowest concentration of
analytes in sample that can be measured with acceptable precision. There are several
strategies to calculate the LODs and LOQs depended on the analytical techniques.
According to the recommendation from EURACHEM guideline, in this thesis, the
LODs and LOQs were carried out based on signal to noise ratio (S/N) or peak area of
noise to peak area of the analytes at 3 folds or higher (S/N > 3) for LODs and 10 folds
or greater (S/N > 10) for LOQs (Magnusson and Ornemark, 2014).

In this thesis, the LODs and LOQs of the developed solid phase extraction of
PPY/C18/GOx/Chi adsorbent (Paper I) and magnetic solid phase extraction techniques
of PANI/C18@SiO.@Fe304/GOx/Algi beads (Paper 1l) and PDA/MIL-101/
FesOa4/Carr beads (Paper I11) are summarized in Table 13. These results indicated that
the developed sample preparation methods can be applied for the extraction, enrichment

and determination of target analytes at trace levels.
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Table 13 The LODs and LOQs of three developed adsorbents based on solid phase
extraction and magnetic solid phase extraction techniques

Paper I: The PPY/C18/GOx chitosan cryogel adsorbent for the extraction of carbamate

pesticides from standard solution

Carbamate pesticides LODs (ug L) LOQs (ug L™
Carbofuran 1.0 4.0
Carbaryl 0.50 1.5
Isoprocarb 2.0 8.0
Diethofencarb 1.0 4.0

Paper Il: The PANI/C18@SiO2@Fe304/GOx alginate bead for the extraction of

fluoroguinolones from standard solution

Fluoroquinolones LODs (ug L) LOQs (ug L)
Ciprofloxacin 0.005 0.02
Danofloxacin 0.001 0.003
Diflxacin 0.01 0.04
Enrofloxacin 0.005 0.02
Norfloxacin 0.005 0.02
Sarafloxacin 0.01 0.04

Paper I11: The PDA/MIL-101/Fe304 carrageenan bead for the extraction of parabens

from standard solution

Parabens LODs (ug L) LOQs (ug L
Methyl paraben 0.050 0.10
Ethyl paraben 0.15 0.50
Propyl paraben 1.0 2.5

Butyl paraben 1.0 2.5
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5.3 Accuracy

The accuracy of sample preparation methods in analytical techniques are
generally measured in term of recovery with non-spiked and spiked standard solution
into sample under linear concentration levels. To study the efficiency of the developed
methods, the sample were spiked with 3 or more concentration of analytes and
replicated 3 times for each concentration. The acceptable recovery depended on
analytical methods and concentration range of the analytes. The recommendation
acceptable level by AOAC is in the rage of 60.0 to 115% for ppb level (AOAC, 2016).
The percentage recovery was calculated using the following equation.

Recovery (%) = (Ci—Cu) x 100
Ca
Where Cs is the target analytes concentration of spiked sample
Cu s the target analytes concentration of non-spiked sample

Ca is the concentration of analytes added into sample

The recoveries were evaluated at 10, 50 and 100 pg L™ for the porous composite
monolith chitosan cryogel sorbent (Paper 1), 0.1, 0.5, 1 and 10 pg kg* for doubly
porous composite in alginate beads (Paper I1) and the range of 5, 10 and 50 pg L™ for
polydopamine coated porous composite materials embedded in carrageenan beads
(Paper I11). The results indicated that the satisfactory recoveries were obtained from

80.4 to 99.5% which in the acceptable range.

5.4 Precision

The precision is defined as the closeness value of various replicative
measurement under the optimum condition. The precision is normally represented in
the term of percentage of relative standard deviation (%RSD). The acceptable precision
established by Association of Official Analytical Chemists (AOAC) is < 21% at ppb
level (AOAC, 2016). The RSD (%) can be calculated using the following equation;

RSD (%) = (SD+X) x100
Where SD is the standard deviation of measurement

X is the mean value of n measurement (n = 3)
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The developed porous composite monolith chitosan cryogel sorbent (Paper 1),
the doubly porous composite in alginate beads (Paper 1) and the polydopamine coated
porous composite materials embedded in carrageenan beads (Paper I11) exhibited RSD
(%) less than 9.0% which acceptable by AOAC. Therefore, it can be concluded that the

developed methods can be used for the extraction of target analytes with good precision.

5.5 Reproducibility

The reproducibility of developed methods is usually examined by relative
standard deviation of different preparation lots of the synthesized adsorbents under the
same preparation and extraction condition. The closeness values of individual results
are indicated to precision of the extraction process. The reproducibility of this thesis
was studied with six different lots at different times of the preparation process but used
to extract the analytes at the same condition. The relative standard deviations of the
developed adsorbents were lower than 6.0% (Paper I-111) (Table 14) which in
acceptable range by AOAC guideline (less than 16% for ppb level) (AOAC, 2016).
These results confirm that the preparation strategies of all developed adsorbents have

good reproducibility.

Table 14 The reproducibility of the developed adsorbents for the extraction of

carbamate pesticides, fluoroquinolones and parabens

Adsorbents Analytes Lots of Recovery RSD References
adsorbents (%) (%)
(Number)
PPY/C18/GOx Carbamate 6 86.4-98.2 <6.0 Paper |
/Chi pesticides
PANI/C18@ Fluoroguinolones 6 82.7-91.6 <5.0 Paper 11
SiOz@Fe304/
GOx/Algi
PDA/MIL- Parabens 6 89.3-93.2 <6.0 Paper 111
101/F€304/

Carr
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5.6 Reusability

The reusability was investigated to study the physical and chemical stability of
the developed adsorbents. The reusability is an important to reduce the time of the
extraction process and total cost of the analytical method. The composite adsorbents
were clean up with the suitable desorption solvent to remove the memory effect and
pre-treatment with deionized water before used in the next extraction cycles. The
extraction cycles of PPY/C18/GOx/Chi adsorbent (Paper 1), PANI/C18@SiO2@Fe304
/GOx/Algi beads (Paper 11) and PDA/MIL-101/FesOa4/Carr beads (Paper 111) were 13,
7 and 6 times, respectively (Table 15). The stability of the adsorbents is depended on
properties of supporting and adsorption materials and type of sample preparation
methods.

Table 15 The reusability of the developed adsorbents for the extraction of carbamate

pesticides, fluoroquinolones and parabens

Adsorbents Analytes Extraction Recovery RSD References
cycles (%) (%)
(times)
PPY/C18/ Carbamate 13 84.4-100 <7.0 Paper |
GOXx/Chi pesticides
PANI/C18@ Fluoroquinolones 7.0 82.5-98.6 <4.0 Paper Il
SiOz@FE304/
GOx/Algi
PDA/MIL- Parabens 6.0 87.3-94.5 <7.0 Paper |11
101/F6304/
Carr

6. Conclusion

The solid phase extraction and magnetic solid phase extraction sorbents were
successfully synthesized and applied for the extraction and pre-concentration of trace
organic compounds in foods and personal care products before analysis with high
performance liquid chromatography.

The first project is high porous monolith adsorbent of polypyrrole composite

octadecyl silica and graphene oxide embedded in chitosan cryogel (PPY/C18/
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GOx/Chi) based solid phase extraction technique for the extraction of carbamate
pesticides in fruit juices before analysis with HPLC-DAD (Paper 1). This developed
SPE adsorbent can solve the main problem of high backpressure using high porosity of
chitosan cryogel as supporting material. Another good reason of high porous composite
adsorbent is used less extraction time because it can flow sample solution passthrough
sorbent at high flow rate. Moreover, the composite adsorption materials of graphene
oxide, octadecyl and polypyrrole can help to adsorb carbamate pesticides with strong
interaction. It provided good extraction efficiency (extraction recovery >84%), wide
linear range responses from 0.5 to 500 pg L, low limit of detection in the range of 0.5
to 2 pug L%, good accuracy, precision and can be reused at least 13 extraction cycles.

The second project is the doubly porous composite of polyaniline, octadecyl-
bonded silica magnetite nanoparticles and graphene oxide (PANI/C18@SiO@
Fes04/GOx) incorporated in alginate beads based magnetic solid phase extraction
technique for the extraction and enrichment of fluoroquinolones antibiotics in eggs,
honey and milk before analysis with HPLC-FLD (Paper I1). Magnetite nanoparticles
in the composite hydrogel adsorbent was utilized the special key to separate the
adsorbent from aqueous sample or organic solvent which simple reaction between
external magnet and FesO4 nanoparticles. The distinctive point of this developed MSPE
adsorbent is doubly porous network which created from the reaction between CaCOs
inside alginate beads and hydrochloric acid. The double porosity of the composite
adsorbent can increase the surface area of hydrogel bead that help to improve the
adsorption site and easy to coat with polyaniline. The composite materials of graphene
oxide, polyaniline and octadecyl used to adsorb target analytes via m-m interaction,
hydrogen bonding and hydrophobic interaction. Therefore, this double porous
composite alginate hydrogel sorbent provided high extraction efficiency with recovery
higher than 80%, low limit of detection (0.001 - 0.01 ug L), good precision and
chemical stability which can be reused up to 7 times.

The last project is polydopamine coated composite materials between metal
organic framework and FesO4 nanoparticles embedded in porous carrageenan beads
(PDA/MIL-101/Fes04/Carr) for the extraction and pre-concentration of parabens in
personal care products before analysis with HPLC-DAD (Paper I11). This developed

composite adsorbent based on magnetic solid phase extraction is provides the both
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advantages of double porous hydrogel and magnetic properties. Carrageenan
supporting material are exhibited good biodegradability after colossally used, low
toxicity and environmentally friendly. In addition, polydopamine and metal organic
framework type MIL-101(Cr) are good adsorption materials to interact with parabens.
This composite PDA/MIL-101/Fe3O4 incorporated in carrageenan beads also exhibited
good extraction efficiency for parabens (recovery 80-96%), low limit of detection, good
reproducibility and reusability.

In summary, the developed SPE and MSPE adsorbents were successfully
fabricated and applied for the extraction and pre-concentration of carbamate pesticides,
fluoroquinolones and parabens in foods samples (fruit juices, eggs, honey and milk)
and personal care products. The developed methods have good extraction efficiency,
low limit of detection and good accuracy and precision. The advantages of these high
porous composite adsorbents are simple to fabricate, easy to use, can reduce the
extraction time and environmentally friendly. In addition, these developed porous
composite adsorbent may adapt to extract other organic materials in various kind of

samples.
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Abstract

A hierarchically porous structured composite monolith sorbent of polypyrrole-coated graphene oxide and octadecyl silica
incorporated in chitosan cryogel (PPY/GOx/C18/chitosan) was synthesized and used as solid-phase extraction sorbent for the
determination of carbamate pesticides. Various factors affecting the characteristics of the adsorbents (chemistry of the sorbent,
polymerization time, concentrations of graphene oxide and octadecyl silica) and the extraction efficiency using the prepared
sorbents, such as sample loading, desorption conditions, sample volume, sample flow rate, sample pH, and ionic strength, were
investigated and optimized. Under the optimal conditions of sorbent preparation and extraction, the developed composite
monolith sorbent provided wide linear responses from 1.0 to 500 pg L™ for carbofuran and diethofencarb, from 0.5 to
500 pg L' for carbaryl, and from 2.0 to 500 pug L™ for isoprocarb. The limits of detection using HPLC-UV at 203, 220, and
208 nm were in the range of 0.5-2.0 ug L™'. When the composite monolith sorbent was applied for the pre-concentration and
determination of carbamate in fruit juices, good recoveries (84.1-99.5%) were achieved. The developed sorbents were porous
and exhibited low back pressure enabling their use at high flow rates during sample loading. Extraction and clean-up were highly
efficient, and the good physical and chemical stability of the sorbent enables reuse up to 13 times.

Keywords Carbamate - Polypyrrole - Octadecyl silica - Graphene oxide - Chitosan cryogel - Monolith

Introduction

Carbamate pesticides are extensively used to control insects
and fungi in agriculture [1, 2]. Their popularity is due to
their high efficacy and low cost. However, excessive use of
these pesticides may leave residues in environmental and
agricultural products such as wine and fruit juices [3, 4].
Their residues in food could have adverse effects on human
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health such as vomiting, headache, and uncontrolled urina-
tion [5, 6]. The European Union has established a maxi-
mum permissible concentration for total pesticides of
0.5 ug L' in drinking water. Therefore, the monitoring
of carbamate pesticide residues in agricultural products is
an important aspect of food safety. The analytical tech-
niques that have been used for the analysis of carbamate
pesticides include high-performance liquid chromatography
(HPLC) [7-9], electrochemical detection [10], biosensors
[11, 12], and capillary electrophoresis (CE) [13, 14].
However, because residues of carbamate pesticides in agri-
cultural products are normally present at low concentrations
and contain various matrix interferences, a sample prepara-
tion procedure is necessary to pre-concentrate and clean-up
the samples before analysis to improve the detectability of
the analytes of interest. Several sample preparation methods
arc used for the pre-concentration and pre-treatment of car-
bamate pesticides. The techniques used include liquid-liquid
extraction (LLE) [15], solid-phase extraction (SPE) [16], solid-
phase microextraction (SPME) [17], stir bar sorptive extraction
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(SBSE) [1, 18], and dispersive liquid-liquid microextraction
(DLLME) [19, 20]. However, all these techniques have draw-
backs. LLE generally uses large volumes of toxic solvents and is
time-consuming. SPME and SBSE are time-consuming and the
fragility and expense of the fibers and stir bars needed for these
techniques are also disadvantages. The limitation of DLLME is
the importance of selecting the appropriate extraction solvent
[20]. For trace analysis in complex samples, SPE has attracted
much attention due to its convenience, easy operation, high en-
richment factors, and good extraction efficiency. To increase the
sample flow rate and reduce back pressure of SPE sorbent, an
interesting avenue is the development of an easily synthesized
porous structured monolith SPE sorbent. A good platform for
this type of sorbent is chitosan cryogel because it has a sponge-
like structure which can be used to entrap nanomaterials in the
macropores or on its surfaces [21, 22]. In addition, it is non-toxic,
low cost, and biodegradable [23]. Integrating materials with dif-
ferent properties in the porous monolith sorbent is an interesting
approach to increase the extraction efficiency of the sorbent while
maintaining a fast extraction procedure. In this regard, graphene
oxide, octadecyl silica, and polypytrole are interesting adsorption
materials due to their good chemical stability and large surface
arca [24-26]. The structure of graphene oxide presents hydroxyl,
epoxide, and carboxylic functional groups [27, 28], which can
adsorb carbamate through hydrogen bonding and 7t-rrinteraction.
Polypyrrole can also adsorb carbamate via hydrogen bonding
and 7-rrinteraction, while octadecyl silica can adsorb carbamate
via hydrophobic interaction.

This work presents a composite monolith sorbent of
graphene oxide and octadecyl silica, embedded in porous
chitosan cryogel and coated with polypyrrole. The sorbent
was prepared and used for the pre-concentration of carba-
mate pesticides for subsequent analysis by HPLC-UV in
reversed phase mode. The important parameters affecting
the extraction efficiency including the type of adsorbent,
polymerization time, amount of graphene oxide and CI18,
desorption conditions, sample volume, sample pH, sample
flow rate, and ionic strength were studied and optimized.
Finally, the analytical performance of the developed sor-
bent was validated.

Materials and methods
Chemicals and materials

Chitosan from shrimp shells, graphene oxide powder (4-10%
edge-oxidized, 15-20 sheets, octadecyl silica (C18), pyrrole,
glutaraldehyde, iron (11I) chloride hexahydrate, carbofuran,
carbaryl, isoprocarb, and diethofencarb were from Aldrich
(Steinheim, Germany). Acetonitrile, methanol, acetic acid,
and 2-propanol were from Labscan (Bangkok, Thailand).
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Deionized water was obtained from a Maxima water ultra-
purification system (Elgastat Maxima, ELGA, UK).

Instrumentals

HPLC analysis was carried out on an Agilent 1100 HPLC
system equipped with a diode array detector (Agilent
Technologies, Germany). The separation of carbamate pes-
ticides was performed on a VertiSep™ UPS C18 column
(4.6 mmx 150 mm i.d.,, 5-um particle size, Restek, USA)
at 30 °C. The mobile phase consisted of methanol and
water (63:37% v/v) and its flow rate was 0.90 mL min~".
The detection wavelength was set at 203 nm for
carbofuran, 220 nm for carbaryl, and 208 nm for isoprocarb
and dicthofencarb. The FTIR spectra were recorded with an
FTIR spectrometer from PerkinElmer (MA, USA). The
morphology of the as-prepared sorbent was examined by
JSM 5200 scanning electron microscopy (SEM) (JOEL,
Japan). The specific BET surface arcas were determined
using a Quantachrome Autosorb 1 system (Quantachrome
Instruments, USA).

Preparation of composite monolith
polypyrrole/graphene oxide/C18/chitosan cryogel
sorbent

Two grams of chitosan powder was completely dissolved in
100 mL of 0.10 M acetic acid. Then, 0.10 g of graphene
oxide was added to this chitosan solution (1.0% w/v) and
stirred at 1500 rpm for 30 min to obtain a homogeneous
solution. Next, 1.0 g of octadecyl silica was added and
stirred at 1000 rpm for 1 h. Subsequently, 1.0 mL of the
mixture solution was poured into an empty 5.0-mL poly-
propylene cartridge and 30 uL of glutaraldehyde was added
to the solution. The cartridge was vortexed for 10 s and
then placed in a freezer at —20 °C. After freezing for 12 h,
the composite monolith GOx/C18/chitosan cryogel was ob-
tained by thawing the cartridge at room temperature
(27 £ 1 °C). To further modify the composite GOx/C18/
chitosan cryogel, 2.0 mL of 2-propanol was added to the
cartridge, followed by 400 pL of pyrrole monomer and
2.0 mL of ferric chloride solution. The oxidation polymer-
ization progressed at room temperature (27 £ 1 °C) for 1 h.
At this point, the synthesis of the composite monolith PPY/
GOx/C18/chitosan cryogel sorbent was completed and the
prepared sorbent was washed with 5.0 mL of 2-propanol,
then with methanol and lastly with deionized water. Figure
1 illustrates the preparation of composite monolith PPY/
GOx/C18/chitosan cryogel sorbent. The different types of
monolith sorbents were also prepared and its chemical
composition as shown in the Electronic Supplementary
Material (ESM) Table S1.
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Fig. 1 Schematic diagram of the preparation of the composite monolith PPY/GOx/C18/chitosan cryogel sorbent

Solid-phase extraction procedure

The composite monolith PPY/GOx/C18/chitosan cryogel sor-
bent was formed within the confines of an empty SPE polypro-
pylene cartridge. Solid-phase extraction was performed using a
vacuum manifold. Before loading the sample, the developed
sorbent was activated with 1.0 mL of acetonitrile followed by
deionized water (1.0 mL). Then, 20.0 mL of sample solution was
loaded through the sorbent at a constant flow rate of
5.0 mL min~'. Afterwards, the retained analytes were eluted with
3.0 mL of acetonitrile. The eluent was then evaporated to dryness
at 55 °C and re-dissolved in 0.50 mL of methanol-water (63:37%
v/v). Finally, 20 pL of the resulting solution was injected into the
HPLC system.

Real samples

All samples were purchased from local markets in Songkhla
province, Thailand. Before loading through the developed
sorbent, the fruit juice samples were filtered through a
0.45-um filter to remove solid particles that could block the
pores of the sorbent and obstruct adsorption of the analytes.

Results and discussion

Characterization of composite monolith
polypyrrole/graphene oxide/C18/chitosan cryogel
sorbent

FTIR analysis confirmed the functional groups of the as-
prepared composite monolith sorbent. As shown in ESM
Fig. S1, the spectrum of chitosan (a) shows the characteristic
absorption band at 3430 cm ™" attributed to ~OH. The peaks at
1720 and 1590 cm ! are attributed to C=O stretching and N-H
bending vibration, respectively. The peak at 2930 cm " is due
to symmetric —CH, stretching vibration [29]. The bands at
1320 and 1070 cm ! correspond to the stretching of C-O-N
and C-O groups. The FTIR spectrum of SiO,—~C18 (b) shows
a strong absorption region at 1100 to 1200 cm ™ which corre-
sponds to the Si-O-H and Si—O-Si bonds. The absorption
peaks at 2852 and 2920 cm™ " are related to the C—H stretching
vibration of the octadecyl group [30]. The FTIR spectrum of
graphene oxide (c) shows characteristic peaks at 690 cm '
corresponding to C—H, peaks at 1505 cm ™' due to C-H bend-
ing vibration, at 1732 cm ' due to C=O stretching vibration,
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and at 3430 cm ' due to the O-H stretching vibration [31].
The FTIR spectrum of polypyrrole (d) shows absorption peaks
at 1200 and 1540 cm™ " attributed to the absorption peaks of
the pyrrole ring. The peak at 950 cm ! was attributed to C-H
wagging. The FTIR spectrum of the as-prepared composite
monolith PPY/GOx/C18/chitosan cryogel sorbent () indicat-
ed that graphene oxide, SiO,—C18 and polypyrrole were suc-
cessfully composited within the chitosan cryogel.

The morphology of the chitosan cryogel, C18/chitosan
cryogel, and composite monolith PPY/GOx/C18/chitosan
cryogel sorbent was observed by SEM. As can be seen in
Fig. 2a, b, the surface of the chitosan cryogel was smooth.
The SEM images of composite C18/chitosan cryogel (Fig.
2c¢, d) indicated that the C18 silica was entrapped in the chi-
tosan cryogel. The surface of the composite monolith PPY/
GOx/C18/chitosan cryogel had a rough surface of uniformly
distributed grains (Fig. 2¢, f). In addition, the typical intercon-
nected skeletal structure of monolith cryogels can be clearly

Fig. 2 SEM images of chitosan
cryogel x 1000 (a) and x 20,000
(b), C18/chitosan cryogel x 1000
(¢) and % 20,000 (d), and com-
posite monolith PPY/GOx/C18/
chitosan cryogel sorbent x 1000
(e) and x 20,000 (f)

A
50 pm ——

[ — soum —i|
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observed. The high porosity of composite cryogels helps to
reduce the back pressure that normally occurs in conventional
particles packed SPE cartridges.

The surface areas of the chitosan cryogel, C18/chitosan
cryogel, GOx/chitosan cryogel, PPY/chitosan cryogel,
GOx/C18/chitosan, PPY/C18/chitosan, PPY/GOX/chitosan,
and the composite monolith PPY/GOx/C18/chitosan
cryogel sorbent were calculated using BET theory as
shown in ESM Table S2. The surface area of the com-
posite monolith PPY/GOx/C18/chitosan sorbent, being sig-
nificantly larger than the surface area of the chitosan
cryogel, has more abundant adsorption sites which should
improve adsorption of the target analytes. Thus, it can be
expected that the modification of the developed composite
monolith cryogel sorbent will improve extraction efficien-
cy. In addition, the composite monolith PPY/GOx/C18/chi-
tosan cryogel sorbent allows fast diffusion of the target
analyte, achieving extraction equilibrium rapidly.
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Optimization of solid-phase extraction

To obtain the highest extraction efficiency in the shortest anal-
ysis time with the lowest solvent consumption, various impor-
tant parameters affecting extraction efficiency were opti-
mized. These parameters were as follows: the type of sorbent,
polymerization time, concentrations of graphene oxide and
octadecyl silica deposited, desorption conditions, sample vol-
ume, sample flow rate, sample pH, and ionic strength.

Comparison of different types of sorbent

The extraction efficiency of different types of monolith sor-
bents was investigated (Fig. 3). The extraction recoveries of
carbamate pesticides using chitosan cryogel, C18/chitosan,
GOx/chitosan, PPY/chitosan, GOx/C18/chitosan, PPY/C18/
chitosan, PPY/GOx/chitosan, and PPY/GOx/C18/chitosan
are summarized in ESM Table S2. The composite monolith
PPY/GOx/C18/chitosan cryogel sorbent provided the highest
extraction efficiency because it had more adsorption sites and
higher surface areas than the other sorbents. Three interactions
can occur between the composite monolith PPY/GOx/C18/
chitosan cryogel sorbent and carbamate pesticide molecules.
These are hydrogen bonding, hydrophobic, and
m-minteractions (ESM Fig. S2).

Effect of polymerization time

The polypyrrole component of the sorbent was prepared by
oxidation polymerization (ESM Scheme S1) at room temper-
ature (37 = 1 °C). The effect of the polymerization time of the
polypyrrole was investigated by varying the polymerization
time from 0.5 to 6.0 h and comparing the extraction of carba-
mate pesticides by the prepared sorbents. The recoveries of the
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Fig. 3 Extraction efficiency of different types of sorbents for carbamate
pesticides

extractions are shown in Fig. 4a. The recovery increased with
increased polymerization time from 0.5 to 1.0 h but slightly
decreased with further increments of polymerization time. The
longer polymerization times produced polypyrrole layers that
were too thick. The thickness of the polypyrrole layers re-
duced the active surface areas, leading to reduced extraction
efficiencies. Also, the long polymerization times was pro-
duced denscly packed polypyrrole particles which restricted
the interactions between the target analytes and the sorbent.
Consequently, 1.0 h was chosen for the polypyrrole
polymerization.

Effect of amount of graphene oxide and C18 silica

The amount of graphene oxide in the sorbent can affect the
sorbent’s efficiency during the extraction of carbamate pesti-
cides. Therefore, the graphene oxide content of a series of
sorbents was varied from 0.05 to 0.3% w/v and, after
extracting carbamate pesticides, the results of the extractions
with these sorbents were compared. These results are shown
in Fig. 4b. The recovery increased with the increment of
graphene oxide concentration from 0.05 to 0.10% w/v and
then remained almost constant with further increments of
graphene oxide. Therefore, the concentration of graphene ox-
ide of 0.10% w/v was chosen for further parameters. The in-
fluence of the concentration of C18-bonded silica was simi-
larly investigated from 0.30 to 2.0% w/v (Fig. 4c). The recov-
ery increased when the C18 silica concentration was increased
from 0.30 to 1.0% w/v and then stayed almost constant. Thus,
the concentration of 1.0% w/v C18 silica was selected for
further experiments.

Type and volume of desorption solvent

For the SPE method, the type of desorption solvent or eluent is
an important factor affecting the desorption efficiency. After
consideration of the properties of the sorbent and its interac-
tions with the target analytes, various desorption solvents were
chosen for investigation. These solvents were methanol, ace-
tone, acetonitrile, ethanol, ethyl acetate, propanol, dichloro-
methane, ethyl acetate + acetonitrile (1:1), ethyl acetate +
methanol (1:1), dichloromethane + acetonitrile (1:1), and di-
chloromethane + methanol (1:1). As shown in Fig. 4d, aceto-
nitrile provided the highest recoveries of all the analytes of
interest and was hence selected as the optimum desorption
solvent for the optimizations of the subsequent parameters.
The influence of the desorption solvent (acetonitrile) volume
was cvaluated between 1.0 and 4.0 mL. As shown in ESM
Fig. S3, recoveries improved as the desorption solvent’s vol-
ume increased up to 3.0 mL but the further increment of the
volume of acetonitrile, did not significantly increase recover-
ies. Therefore, 3.0 mL of acetonitrile was chosen as optimum
condition.
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Effect of sample volume and flow rate

In SPE procedure, the breakthrough volume is an important
parameter which affects the extraction efficiency and enrich-
ment factors of target analytes. For this work, different sample
volumes were loaded through to the sorbent keeping constant
the amount of pesticides. The recoveries decreased when the
sample volume was greater than 20.0 mL (ESM Fig. S4).
Therefore, the sample volume of 20 mL was chosen for further
experiment. The effect of the sample flow rate on extraction
efficiency was investigated between 0.5 and 8.0 mL min~'. As
shown in ESM Fig. S5, the extraction efficiency decreased
when the flow rate exceeded 5.0 mL min ' and therefore,
5.0 mL min ' was the chosen for future experiment.

Effect of sample pH

The sample pH is an important factor in the efficient extraction
and the stability of the sorbent. The effect of sample pH was
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investigated by varying the sample pH from 2 to 10 with HCI
or NaOH. The extraction efficiencies were not significantly
different when the sample pH was in the range from 2 to 8 but
extraction efficiency decreased at pH 10.0 (ESM Fig. S6) due
to the weak alkaline property of carbamate, which are easily
hydrolyzed in strong alkaline media. However, the pH of real
samples is normally lower than 8; thus, further extractions
were performed without adjusting the sample pH.

Effect of ionic strength

The effect of the ionic strength of the sample solution was also
investigated by adding NaCl to sample solutions in amounts
0f0,2.0,5.0, 10.0, 15.0, and 20.0% (w/v). The results showed
that the extraction efficiency of carbamate pesticides de-
creased with the increasing concentrations of NaCl (ESM
Fig. S7). Therefore, the extraction of carbamate pesticides
using the composite monolith PPY/GOx/C18/chitosan
cryogel sorbent was performed without the addition of salt.
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Analytical performances

The developed SPE sorbent was used for the extraction and
pre-concentration of carbamate pesticides prior to their anal-
ysis by HPLC. The performance of the analytical method
which includes linearity, limits of detection (LODs), and
limits of quantification (LOQs) were evaluated. The results
are shown in ESM Table S3. The method had good linearity
in the range of 1.0 to 500 pg L' for carbofuran and
diethofencarb, in the range of 0.5 to 500 pg L™" for carbaryl,
and in the range of 2.0 to 500 pg L™ for isoprocarb with
cocefficients of determination (R?) that ranged from 0.9993 to
1.0000. The LOD (based on signal to noise ratio of 3) was
0.5 pg L' for carbaryl, 1.0 pg L™ for carbofuran and
diethofencarb, and 2.0 ug L' for isoprocarb. The LOQ
(based on signal to noise ratio of 10) was 4.0 pg L™ for
carbofuran and diethofencarb, 1.5 pg L' for carbaryl, and
8.0 ug L' for isoprocarb.

Real sample analysis

The developed sorbent was applied for the determination of
carbamate pesticides in orange, grape, apple, pomegranate,
and tomato juices. The analysis detected low concentrations
of carbofuran in the pomegranate and tomato juices, while
carbaryl and isoprocarb were also detected in the tomato juice
(ESM Table S4). The accuracy of the developed sorbent was
also evaluated by spiking standard carbamate pesticides in
fruit juice at concentrations of 10, 50, and 100 pg L. As
shown in ESM Table S5, the developed sorbent obtained sat-
isfactory recoveries in the range of 84.1 to 99.5%. Figure 5
shows typical chromatograms of a juice sample and a juice
sample spiked at 10.0 pg L™
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Fig.5 Typical HPLC chromatograms of grape juice sample (a) and grape
juice sample spiked at 10 pg L' (b) after extraction using composite
monolith PPY/GOx/C18/chitosan cryogel sorbent

Reproducibility and reusability

The reproducibility of the prepared sorbent was evaluated by
comparing the extraction efficiency of six different lots pre-
pared at different times under the same conditions. The devel-
oped composite monolith sorbents produced a relative stan-
dard deviation lower than 10% (ESM Fig. S8), which indicat-
ed that the sorbent preparation had good reproducibility. The
developed sorbent was also evaluated for reusability in the
extraction of carbamate pesticides in fruit juices. After the first
use, the sorbent was washed with 2.0 mL of acetonitrile and
the carry-over was assessed by the determination of carbamate
pesticides in the washing solvent. When no carbamate pesti-
cide signal was detected, the developed sorbent was used for
the next extraction. The results show that the extraction effi-
ciency did not significantly change after 13 adsorption cycles
and was still higher than 80% (ESM Fig. S9). The slight de-
crease in efficiency thereafter was possibly due to the persis-
tence of interferences from the real samples on the active
sorbent surfaces. Interferences of this type would hinder the
interactions between the carbamate pesticides and the sorbent.
These results show that the developed composite monolith
PPY/GOx/C18/chitosan cryogel sorbent has good physical
and chemical stability and can be reused up to 13 times, which
would help to reduce sorbent preparation time and analysis
cost.

Comparison between the composite monolith
PPY/GOx/C18/chitosan cryogel sorbent
and commercial sorbent

The extraction efficiency of the developed composite mono-
lith PPY/GOx/C18/chitosan cryogel sorbent was compared
with a commercial (C18) sorbent for the determination of
carbamate pesticides. As shown in ESM Fig. S10, the devel-
oped sorbent produced a higher recovery than the commercial
SPE sorbent. The reason for this greater efficiency may be the
integration of polypyrrole, octadecyl silica, and graphene ox-
ide. These components can increase the number of the adsorp-
tion sites at which carbamate pesticides can be adsorbed
through hydrophobic interaction with octadecyl silica, hydro-
gen bonding, and 7-minteraction with polypyrrole and
graphene oxide. Further advantages of the composite mono-
lith PPY/GOx/C18/chitosan cryogel sorbent are exhibited low
back pressure and can be reused.

Comparison with other methods

The developed method was compared with methods developed
in other previous works (Table 1). The extraction efficiency and
repeatability of the developed sorbent are better than or compa-
rable to sorbents reported in other works. The detection limit
obtained in this work is sufficient for the analysis of trace
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Table 1 Comparison of the developed method with previous reported methods of carbamate pesticides analysis

Analytical Sample preparation Pesticides Sample LOD (ug L™ or  Recovery RSD  Reference
methods method amount He kg_') (%) (%)
UHPLC-MS/MS G-PT/SPE Isoprocarb, diethofencarb 3 mL (fruit  0.020-0.033 90-125 <5 [5]
Jjuice)
HPLC-MS/MS ~ MASE/SPE Carbofuran, carbaryl, isoprocarb 10 g (rice) 1.17-4.40 66-103 <9 [32]
HPLC-DAD G-MNPs/MSPE Carbofuran, isoprocarb 10 mL 1.8-2.1 90-109 <6 [33]
(tomato)
HPLC-UV MPC/MSPE Carbaryl, isoprocarb 50 mL 0.1-0.2 89-110  4-5 [34]
(apple)
HPLC-DAD Graphene-modified TiO,  Carbaryl, isoprocarb, 10 mL 2.27-3.26 84-109 2-7 6]
nanotube diethofencarb (water)
HPLC-DAD G-HF/LPME Carbaryl, isoprocarb, 20 g (fruit) 0.2-1.0 89-107  6-8 [7]
dicthofencarb
UPLC-MS/MS  SPE (GO) Carbaryl, isoprocarb, 50 mL 0.001-0.005 81-111 <6 [35]
diethofencarb (water)
HPLC-DAD MSA/DLLME Carbofuran, carbaryl, isoprocarb 5 mL (tea) 0.13-0.61 79114 48 [20]
HPLC-DAD PPY/GOx/C18/chitosan  Carbofuran, carbaryl, isoprocarb, 20 mL (fruit 0.5-2.0 84-98 <6 This
cryogel/SPE diethofencarb Jjuice) work

G-PT graphene pipette tip, SPE solid-phase extraction, MASE microwave-assisted water steam extraction, G-MNPs graphene-based magnetic nanopar-
ticles, MSPE magnetic solid-phase extraction, MPC magnetic Fe;O4-doped porous carbon, G-HF graphene reinforced hollow fiber, LPME liquid-phase
microextraction, MSA magnetic stirring-assisted, DLLME dispersive liquid-liquid microextraction

carbamate pesticides in fruit juices. Therefore, the developed
composite monolith PPY/GOx/C18/chitosan cryogel sorbent
can be used as an altemative simple and rapid sorbent for the
extraction and enrichment of carbamate pesticides in fruit juices.

Conclusions

A hierarchical porous composite monolith PPY/GOx/C18/chito-
san cryogel sorbent was developed and used as an effective SPE
sorbent for the extraction and pre-concentration of carbamate
pesticides. The developed sorbent showed a high porosity and
low back pressure which enabled its use at high flow rates during
sample loading. Applied for the pre-concentration of carbamate
pesticides from fruit juices, the optimized sorbent material
showed recoveries in the range of 84.1 to 99.5%. The pre-
concentration and clean-up procedures are performed in one sin-
gle step. In addition, the composite monolith PPY/GOx/C18/
chitosan cryogel sorbent has good physical and chemical stability
and can be reused up to 13 times, which helps to reduce analysis
cost and saves time.
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99



100

8 Carbofuran B Carbaryl @ Isoprocarb B Diethofencarb

120

Ll
> (3 =3 > > =
w -] = - o
(%) A194029y

20 50

10
Sample volume (mL)

Fig. S4 Effect of sample volume on the extraction efficiency of carbamate pesticides using

composite PPY/GOx/C18/Chitosan cryogel sorbent

B Carbofuran @ Carbaryl & lIsoprocarb @ Diethofancarb

120

100

(%) 194000y

Flow rate (mL min™)

Fig. S5 Effect of sample flow rate on the extraction efficiency of carbamate pesticides using

composite PPY/GOx/C18/Chitosan cryogel sorbent



101

Diehofencarb

@ Carbofuran @ Carbaryl @ Isoprocarb

(%) A19A009y

Sample pH

Fig. S6 Effect of sample pH on the extraction efficiency of carbamate pesticides using

composite monolith PPY/GOx/C18/Chitosan cryogel sorbent

@ Carbofuran @ Carbaryl & Isoprocarb @ Diethofencarb

120

T
=3 (=3 = =3 > >
w =] = - o

(%) £13A029Y

10 15

5
NaCl (% w/v)

Fig. S7 Effect of ionic strength on the extraction efficiency of carbamate pesticides using

composite monolith PPY/GOx/C18/Chitosan cryogel sorbent



102

120 -

® Carbofuran ® Carbaryl ®Isoprocarb ® Diethofencarb

100

60 -

Recovery (%)

20 -

1 2 3 4 5 6
Number of sorbent

Fig. S8 The reproducibility of the composite monolith PPY/GOx/C18/Chitosan cryogel

sorbent for the determination of carbamate pesticides

120 1 ® Carbofuran ® Carbaryl ®Isoprocarb ® Diethofencarb

Recovery (%) =
- (=) ® S
[—] (—] (] >

[
=]
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Extraction number

Fig. S9 The reusability of the composite monolith PPY/GOx/C18/Chitosan cryogel sorbent

for the determination of carbamate pesticides



120

100 -

Recovery (%)
N
(—]

[
=
1

Fig. S10 Comparison of the extraction efficiency of the composite monolith PPY/GOx/

C18/Chitosan cryogel sorbent and commercial sorbent (Oasis HLB and ENVI-Carb)

o
>
N 1 "

-
=
1 1 1 1

Oasis HLB @ ENVI-Carb @ PPY/GOx/C18/Chitosan

Carbofuran

& e

Carbaryl

Isoprocarb  Diethofencarb

103



104

Table S1 The chemical composition of different adsorbent

Graphene

Polymerization

Type of sorbent Chitosan : C18 time of
oxide
polypyrrole

Chitosan 2.0 % wiv - - -
C18/Chitosan 2.0 % wiv - 1.0g -
GOx/Chitosan 2.0 % wiv 0.10g - -
PPY/Chitosan 2.0 % wiv = s 1h
GOx/C18/Chitosan 2.0 % wiv 0.10g 10g -
PPY/C18/Chitosan 2.0 % wiv - 10g lh
PPY/GOx/Chitosan 2.0 % wiv 0.10g - lh
PPY/GOx/C18/Chitosan 2.0 % w/v 0.10g 1.0g 1h




Table S2 The BET surface areas and extraction recovery of different types of monolith

sorbents for the determination of carbamate pesticides
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BET surface Recovery (%) + SD
Type of sorbent 2 1

areas (M°€7)  Carpofuran  Carbaryl  Isoprocarb  Diethofencarb
Chitosan 0.57 7.4+13 13.340.8 10.8+1.6 16.4+1.3
C18/Chitosan 1.80 20.9+1.5 20.8+1.1 16.8+1.3 269+1.4
GOx/Chitosan 5.03 36.9+1.6 34.6%1.1 31.6£0.1 36.91£0.6
PPY/Chitosan 15.01 60.1+4.3 57.0+1.6 56.9+3.1 65.0+2.6
GOx/C18/Chitosan 8.10 52.143.5 50.743.6 48.6£5.3 59.1+2.2
PPY/C18/Chitosan 18.40 72.0£2.3 76.4+2.7 66.8+5.5 73.9+1.9
PPY/GOx/Chitosan 20.40 77.0£2.3 80.6+3.1 73.9+4.1 85.6+3.3
PPY/GOx/C18/Chitosan  24.27 96.5+4.4 96.1+1.9 92.6£2.5 100.3+0.8

Table S3 The analytical performance of the composite monolith PPY/GOx/C18/Chitosan

cryogel sorbent coupled with HPLC for the analysis of carbamate pesticides

Linearity ) 5 LOD LOQ
Pesticides Regression linear equation R
-1 g -1 -1
(ng L) (ngLl™)  (ugl?)
- y = (0.1521£0.0029)x +
Carbofuran 1.0-500 (0.50+0.84) 0.9993 1.0 4.0
- y = (0.3390+0.0019)x -
Carbaryl 0.5-500 (0.05:0.45) 0.9999 0.5 1.5
_ y =(0.0590+0.0001)x +
Isoprocarb 2.0-500 (0.314+0.038) 1.0000 2.0 8.0
Diethofencarb 1.0 — 500 ¥ (0172 SL001 1) - 09999 1.0 4.0

(0.38+0.32)
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Table S4 Concentration of carbamate pesticides in fruit juice samples

Juice Samples

Concentration (ug L")

Carbofuran Carbaryl Isoprocarb Diethofencarb
Orange N.D. N.D. N.D. N.D.
Grape N.D. N.D. N.D. N.D.
Apple N.D. N.D. N.D. N.D.
Pomegranate ~ 8.57+0.69 N.D. N.D. N.D.
Tomato <LOQ 3.85+0.13 <LOQ N.D.

N.D. = Not detectable



Table S5 Recovery of carbamate pesticides in spiked fruit juice

. Spiked Recovery = SD (%)

Juice concentration

samples (il L'l) Carbofuran Carbaryl Isoprocarb Diethofencarb
10 97.8+1.6 97.5+0.9 93.8+4.8 92.2+1.8

Chsnge 50 92.7+1.6 94.3+4.6 91.6+5.6 96.243.1
100 97.244.4 94.4+0.5 88.5+0.8 98.142.4
10 84.6£2.3 99.5+0.9 84.742.3 86.1+1.4

Grage 50 90.8+3.4 84.1£1.5 84.9+0.4 96.2+5.4
100 93.8+5.3 98.5+3.3 87.6+2.2 92.9+4.5
10 84.242.6 96.3+1.0 86.0+1.9 95.343.2

Apple 50 85.1+1.2 84.4+1.1 94.6:1.2 97.1£1.1
100 85.744.8 89.1+1.8 90.7+1.4 94.8+1.6
10 86.942.8 91.0+1.5 90.4+1.1 93.540.8

Roeemnale g 86.1+0.8 89.2+1.5 85.1+2.1 96.2+1.3
100 86.9+0.4 86.1+4.3 94.8+0.4 86.340.4
10 85.6+5.7 87.4+3.8 89.4+0.9 95.8+1.7

LoD 50 86.0+4.4 85.2+0.8 86.3+4.1 89.8+0.8
100 88.9+41.1 86.8+4.8 87.3£0.8 86.140.9
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Keywords:
Fluoroquinolones
Polyaniline
Graphene oxide
Octadecyl

Doubly porous
Method validation

A doubly porous microcomposite polyaniline/graphene oxide/octadecyl-bonded silica magnetite (PANI/GOx/
C18-Si0,-Fe;0,) alginate adsorbent was developed and employed to extract fluoroquinolones. The Fe;0, fa-
cilitated rapid and convenient for the separation of the adsorbent from sample solutions. The double porosity of
the alginate hydrogel enhanced the surface area of the polyaniline coating. The developed method exhibited
good linearity of 0.0010-50 ugL~* for danofloxacin; 0.0050-50 ugL~* for norfloxacin, ciprofloxacin and en-
rofloxacin; and 0.010-50 pg L~ for sarafloxacin and difloxacin, The limits of detection were between 0.001 and

HPLC 0.010pg L™ with RSD below 9.0%. The PANI/GOx/C18-Si0,-Fe;0,4 adsorbent was utilized to extract fluor-
oquinolones from honey, milk and egg samples and satisfactory extraction recoveries were achieved ranged from
80 to 98%. The developed adsorbent has good stability which can be reused up to 7 times, is simple to prepare
and convenient to use for the extraction fluoroquinolones.

1. Introduction

Fluoroquinolones (FQs) are extensively used in veterinary medicine
(Speltini et al., 2015) and as feed additives due to their broad-spectrum
antibacterial activity (Benito-Pefia, Urraca, Sellergren, & Moreno-
Bondi, 2008), good oral absorption and tissue penetration rates. Be-
cause FQs biodegrade poorly and are not fully metabolized in the body,
they pass into the environment (Tian et al., 2014; He et al., 2017). Since
residual quantities often persist in foodstuffs and edible tissues, FQs
also enter the food chain (Sun et al., 2016). Continuous exposure to
antibiotics, even at low concentrations, might produce resistant bac-
teria (Deng et al., 2017). In addition, the side effects of fluoroquinolone
antibiotics include tendon disorders, hepatotoxicity, and disturbances
of the central nervous system and gastrointestinal tract (He et al.,
2017). Thus, the European Union set the maximum residue limits
(MRLs) of sarafloxacin in chicken at 10 pg kg_l and of ciprofloxacin in
meat or milk at 100 ugkg . Consequently, fast, convenient and reli-
able methods for the monitoring of fluoroquinolones have been devel-
oped. Liquid chromatography has normally been utilized for the mon-
itoring of fluoroquinolones because it is a sensitive and precise
technique (Aufartovd et al., 2017). However, because the concentration
of fluoroquinolones in real samples is relatively low and various matric
interferences may present, an appropriate sample pretreatment proce-
dure is normally needed before instrumental determination.

* Corresponding author.

Reported extraction and pretreatment strategies for FQs determi-
nation include liquid phase extraction (LE) (Huet et al., 2006), solid
phase extraction (SPE) (Wang, Yuan, Yang, Han, & Yan, 2015), matrix
solid phase dispersion (MSPD) (lle et al., 2017), solid phase micro-
extraction (SPME) (Mitani & Kataoka, 2006; Liu et al., 2012), dispersive
liquid-liquid micro-extraction (DLLME) (H. Wang et al., 2016), super-
critical fluid extraction (SFE) (Shen et al., 2004), electrical field assisted
dispersion (Silva, Orlando, & Faria, 2016), salting-out assisted li-
quid-liquid extraction (Xia, Yang, & Liu, 2012) and microwave ex-
traction (Aufartova et al., 2017). SPE is the most extensively used be-
cause of its high extraction recovery and preconcentration factor.
However, the conventional SPE adsorbent is expensive and tedious to
use. Recently, magnetic solid phase extraction (MSPE) has become a
favored method of extracting analytes from sample solution. Using an
external magnet, separating the adsorbent from the sample solution is
simple and easy (Bunkoed & Kanatharana, 2015; Kaewsuwan,
Kanatharana, & Bunkoed, 2017). In addition, magnetic adsorbents can
be reused after washing with the appropriate solution (Anirudhan,
Christa, & Deepa, 2017; Ji et al., 2017).

However, naked magnetite nanoparticles (Fe30,) are not selective
towards complex matrices, prone to oxidation at low pH and tend to
aggregate. To improve adsorption, the magnetite nanoparticles have
been functionalized with highly specific ligands or composited with
high-affinity materials (Ji et al., 2017; Liu, Liao, & Huang, 2017). In this
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work, a hybrid microcomposite adsorbent of polyaniline/graphene
oxide/C18-Si0,-Fes04 alginate hydrogel was developed for the ex-
traction of fluoroquinolones. The graphene oxide and C18-Si0,-Fe304
magnetic nanoparticles were entrapped in an alginate hydrogel to form
a microcomposite adsorbent. A double micropore system was generated
in the hydrogel adsorbent to increase the surface area receiving the
polyaniline thin film coating. The high- affinity materials of polyani-
line, graphene oxide and octadecyl adsorbed fluoroquinolones via hy-
drogen bonding, - and hydrophobic interactions. The doubly porous
microcomposite PANI/GOx/C18-8i0,-Fe;0, alginate hydrogel was ap-
plied to extract fluoroquinolones from food samples for detection with
HPLC.

2. Experimental
2.1. Chemical and reagents

Alginic acid sodium salt, ammonium persulfate, graphene oxide
powder, iron (1) chloride tetrahydrate, iron (IIT) chloride hexahydrate
and trimethylamine were purchased from Sigma-Aldrich (Steinheim,
Germany). Hydrochloric acid and aniline were from Loba Chemie
(Mumbai, India). Ammonium hydroxide was from J.T. Baker (United
States, USA). Octadecyl dimethyl chlorosilane and phosphoric acid
were from Macron Fine Chemicals (United States, USA). Calcium
chloride, calcium carbonate, acetic acid and toluene were from Merck
(Darmstadt, Germany). Methanol, ethanol, dichloromethane and acet-
onitrile were from RCI Labscan (Bangkok, Thailand). Tetraethyl or-
thosilicate (TEOS), ciprofloxacin, danofloxacin, difloxacin, norfloxacin,
enrofloxacin and sarafloxacin were from Tokyo Chemical Industry
(Tokyo, Japan).

2.2. Instrumental and HPLC conditions

HPLC determination was performed using a Hewlett-Packard 1100
series (Agilent, Germany) with a Fortis C18 HPLC column
(4.6 x 150 mm LD., 5 um, Fortis Technologies Ltd.). The mobile phase
was 25 mM phosphoric acid (A) and acetonitrile (B). A gradient se-
paration mode was performed as follows: 0-7min, 18-22 %B;
7-12min, 22 %B; 12-15min, 22-18 %B and 15-18 min, 18 %B. The
injection volume and flow rate were 20 uL and 0.9 mL min~?, respec-
tively. Fluoroquinolones were detected at 280 and 450 nm as an ex-
citation and emission wavelengths, respectively. The surface mor-
phology of the prepared adsorbent was characterized using a scanning
electron microscope (JSM-5200, JEOL, Japan). Fluorescent Stereo
Microscopy was performed with Leica M205 FCA apparatus, Leica
Microsystems (Switzerland).

2.3. Preparation of doubly porous microcomposite PANI/GOx/C18-SiO-
Fe30,4 alginate hydrogel

The preparation procedure of the doubly porous microcomposite
PANI/GOx/C18-Si0,-Fe;0, alginate hydrogel is illustrated in Fig. 1A.
Fe304 was synthesized according to a previous method with minor
modifications (Bunkoed, Nurerk, Wannapob, & Kanatharana, 2016).
Briefly, FeCl36H,0 (5.0g) and FeCly4H,0 (1.6 g) were dissolved in
deionized water (100 mL) and stirred at 85°C. NH,OH was added
dropwise to the solution, which was then stirred for 1h to produce
Fe;04 nanoparticles. The obtained magnetic nanoparticles were col-
lected using magnet, washed with 50 mL of deionized water and dried
at 60 °C for 12 h. The Fe;04 was then coated with a silica layer in the
following sol-gel process. Fe30,4 nanoparticles were mixed with 100 mL
ethanol, 2.0 mL NH40OH (30% v/v), tetraethyl orthosilicate (2.0 mL)
and deionized water (50mL) and stirred at 50 °C for 12h. The syn-
thesized SiO,-Fe30, nanoparticles were washed with 10 mL of deio-
nized water and dried at 50 °C for 5h. To functionalize the SiO,-Fe30,4
with C18, 3.0 g of the nanoparticles were added into100 mL toluene. A
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slurry formed, which was heated to a temperature of 80 °C, at which
point trimethylamine (10 mL) and 1.0 mL octadecyl dimethyl chlor-
osilane were added. This mixture was then refluxed for 24 h. The
magnetic SiO»-Fe;04 was now functionalized with C18 and they were
washed twice with 10 mL of ethanol and deionized water and dried at
50°C for 5h.

To prepare the microcomposite PANI/GOx/C18-SiO»-Fe;04 alginate
hydrogel, 2.0% w/v alginic acid solution was prepared by dissolution in
deionized water. Once the alginic acid was dissolved, 0.10g of the
synthesized C18- SiO,-Fe,;0,4 nanoparticles, 0.10 g of GOx and 0.10 g of
CaCO; were dispersed in alginic solution (100 mL) under ultrasonica-
tion for 30 min to obtain a homogeneous colloidal suspension.

The suspension mixture was then added dropwise to 5.0% w/w
calcium chloride solution to create the microcomposite of Ca-alginate.
The GOx/C18-5i0,-Fe;0,4 hydrogel was immersed in in CaCl, solution
for 2h to form microspheres. Then, the microspheres were soaked in
100 mL HCI solution (20% w/v) for 5min. In this step, CaCOj3 in the
microcomposite reacted with HCl to produce the doubly porous net-
work (Pinsrithong & Bunkoed, 2018). The doubly porous micro-
composite GOx/C18-8i0,-Fe;0,/alginate hydrogel microspheres were
washed with deionized water until the pH of the water was nearly
neutral (6-7) and then incubated in a mixture of 10.0 mL HCIl (1.0 M)
and 0.3 mL of aniline for 30 min. The GOx/C18-SiO,-Fe;04 hydrogel
was polymerized by the addition of 10.0 mL ammonium persulfate.
After polymerization for 30 min, the obtained doubly porous micro-
composite PANI/GOx/C18-5i0,-Fe;04 alginate hydrogel microspheres
were washed with 10 mL of methanol and then with 20 mL of deionized
water.

2.4. MSPE procedure using doubly porous microcomposite PANI/GOx/
C18-5i0,-Fe304 alginate hydrogel

The MSPE procedure is shown in Fig. 1B. The doubly porous mi-
crocomposite PANI/GOx/C18-8i0,-Fe;04 alginate hydrogels (0.50 g)
were added into the sample solution (10.0 mL) and stirred for 20 min.
Then, an external neodymium magnet (3.0 cm X 1.0cm L.D.) was de-
posited at the bottom of the vial to isolate the adsorbents from the
solution. The supernatant solution was decanted and the analytes were
desorbed from the adsorbents using ultrasonication with a suitable
desorption solvent (a mixture of acetonitrile (45%), dichloromethane
(45%) and 0.10 M acetic acid (10%). The desorption solvent was eva-
porated and reconstituted with 1.0 mL of mobile phase and 20 Aul were
injected into the HPLC system. After washing with 2.0 mL of desorption
solvent and ultrapure water, the doubly porous microcomposite PANI/
GOx/C18-5i0,-Fe;0, alginate hydrogel was reused.

3. Result and discussion

3.1. Characterization of the doubly porous microcomposite PANI/GOx/
C18-Si0,-Fe304 alginate hydrogel adsorbent

The doubly porous microcomposite PANI/GOx/C18-Si0,-Fe30, al-
ginate hydrogel was characterized using scanning electron microscopy
(SEM), fluorescence stereo microscopy, FTIR spectroscopy and
Brunauer-Emmett-Teller (BET) method. The SEM images indicated that
the surface of the alginate hydrogel was smooth (Fig. 2A), while the
surfaces of the microcomposite C18-SiO,-Fe;0,4 alginate hydrogel
(Fig. 2B) and the GOx/C18-Si0,-Fe30, alginate hydrogel (Fig. 2C) were
rougher. An SEM image of the doubly porous microcomposite PANI/
GOx/C18-5i0,-Fe304 alginate hydrogel shows that the polyaniline na-
noparticles were successfully coated on the surface of the doubly porous
microcomposite hydrogel (Fig. 2D). The fabrication of the doubly
porous hydrogel was also investigated using fluorescence stereo mi-
croscopy. A photograph of alginate hydrogel microspheres without the
generated double pore network is presented in Fig. 2E. Fig. 2F presents
the microspheres after the reaction of CaCO3 and HCI which created the
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Fig. 1. The preparation procedure of a doubly porous microcomposite PANI/GOx/C18-8i0,-Fe30, alginate hydrogel (A) and the magnetic solid phase extraction

procedure (B).

double pore network. Bubbles from the reaction are visible inside the
hydrogel.

FTIR spectra were used to confirm the synthesis of the developed
adsorbent.The absorption peaks in Fig. Sla at 1634cm ' (0=C—0O
asymmetric), 1414cm ™! (0=C-0 symmetric) and 1031 em™?! (C-0)
correspond to the spectrum of alginate hydrogel (Daemi & Barikani,
2012). The absorption peak of C18-8i0,-Fe;04 appears at 3450 cm '
(—OH or Si-OH) (Fig. S1b). The peaks at 1081 em™?! (Si-0-Si) and
588cm ™! (Fe—O—Fe) are attributed to silica and magnetite, respec-
tively. The characteristic peaks at 1634cm ' (C=O stretching) and
1408 cm ' (C—H bending) (Fig. S1¢) correspond to graphene oxide.
Polyaniline (PANI) showed absorption peaks at 1630, 1401 and
1300cm ' (Fig. S1d), which were related to the C=C stretching of the
quinonoid ring, benzenoid ring and C—N of aromatic ring, respectively.
The FTIR spectrum of microcomposited PANI/GOx/C18-SiO»-Fe;04
alginate (Fig. S1e) indicated that polyaniline, graphene oxide and C18-
Si0,-Fe;04 were successfully composited into the alginate hydrogel.

The BET surface areas of alginate/Fe304 hydrogel, doubly porous
alginate/Fe304 hydrogel, doubly porous C18-SiO,-Fe;04 alginate hy-
drogel, doubly porous GOx/C18-SiO,-Fe3O, alginate hydrogel and
doubly porous PANI/GOx/C18-SiO,-Fe;0, alginate hydrogel were
4.04,7.94, 11.23, 21.70 and 27.84m> g™, respectively.

Vibrating sample magnetometry (VSM) was used to investigate the

magnetic properties of PANI/GOx/C18-8i0,-Fe30, adsorbent. The sa-
turation magnetization values was 8.03emug~! (Fig. $2). The mag-
netic strength of the PANI/GOx/C18-Si0,-Fe30,4 adsorbent was enough
for magnetic separation, and it was rapidly separated from the solution
within about 3 sec using an external magnet.

3.2. Type of adsorbents

The fluoroquinolones extraction recoveries of the adsorbent at dif-
ferent stages of preparation were determined. The extraction recoveries
of alginate, C18-Si0,-Fe;0, alginate, PANI/C18-SiO,-Fe;0, alginate,
GOx/C18-Si0,-Fe30, alginate and PANI/GOx/C18-Si0,-Fe;04 alginate
were in the range of 12.3-17.5%, 29.1-36.4%, 50.7-55.7%,
65.8-70.6% and 88.6-92.0%, respectively (Fig. $3). The doubly porous
microcomposite PANI/GOx/C18-Si0,-Fe;04 alginate hydrogel pro-
vided the highest extraction recovery due to it contained more ad-
sorption sites and more interactions could occur, including hydrogen
bonding, n-x and hydrophobic interaction (Fan, He, Wu, Chen, & Hu,
2015) (Fig. S4).

3.3. Optimization of adsorbent preparation and extraction conditions

The parameters that might affect the extraction efficiency of the

111
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Fig. 2. SEM images of alginate hydrogel microspheres (A), Composite C18-Si0,-Fe,0, alginate hydrogel (B), Composite GOx/C18-Si0,-Fe;0, alginate hydrogel (C)
and doubly porous microcomposite PANI/GOx/C18-Si0,-Fe;0, alginate hydrogel (D), Photograph of microcomposite hydrogel microspheres (E) and doubly porous

micr p hydrogel pheres (F).

double porous microcomposite PANI/GOx/C18-SiO,-Fe;0O, alginate
hydrogel were optimized. The optimization experiments were per-
formed using spiked water sample and the extraction efficiency was

determined in terms of extraction recovery (ER %).
Extraction recovery(%ER) = (CV/C,Vp) X 100

where C is analytes concentration in the reconstituted solvent (ug L™ Iy
Cy is the concentration of target analytes in spiked water (ugL™ ). V
and V, are the volume of the reconstituted solvent and water samples
(mL) respectively. Each experiment will be done in triplicate.

3.3.1. Desorption conditions

In this work, the adsorption of fluoroquinolones onto the double
porous microcomposite PANI/GOx/C18-Si0,-Fe;0, alginate hydrogel are
based on hydrogen bonding, - and hydrophobic interaction, different
desorption solvent were investigated including methanol (MET), acet-
onitrile (ACN), dichloromethane (DCM), acetonitrile + dichloromethane

(50:50 %v/v) and acetonitrile + dichloromethane + 0.1 M acetic acid
(AC) (45:45:10 %v/v). The mixture of acetonitrile and dichloromethane
in the presence of 0.1 M acetic acid provided the highest extraction re-
covery (Fig. 3A). This is due to under acidic condition fluoroquinolones
were ionized leading to the decreasing of the interaction between the
analytes and adsorbent. Therefore, a mixture of acetonitrile (45%), di-
chloromethane (45%) and 0.10 M acetic acid (10%) was used as the ap-
propriate desorption solvent and its volume was also evaluated from 2.0
to 5.0 mL. The recovery increased when the desorption solvent volume
increased from 2.0 to 3.0 mL and remained constant with further incre-
ments (Fig. 3B). Thus, 3.0 mL was used in subsequent experiments.

3.3.2. Effect of polymerization time of polyaniline

The polymerization time of polyaniline was optimized using dura-
tions of 15, 30 and 60 min. The extraction recovery increased with
increased time of polymerization from 15min to 30 min and it de-
creased after polymerization time of 60 min (Fig. 3C). Lower recovery
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Fig. 3. Effect of type of desorption solvent (A), desorption solvent volume (B), polymerization time of polyaniline (C) and amount of adsorbent (D) on the extraction
recovery of fluoroquinolones using doubly porous microcomposite PANI/GOx/C18-Si0,-Fe;0, alginate hydrogel.

was obtained after shorter polymerization time (15 min) because fewer
polyaniline nanoparticles were produced during that polymerization
time period. Recovery decreased at 60 min polymerization time perhaps
because too many polyaniline particles were present on the surfaces of
the hydrogel microspheres, which reduced the active surface area of the
adsorbent. Thus further polymerization of polyaniline was only per-
formed at room temperature for 30 min.

3.3.3. Amount of adsorbent

The effect of the amount of the microcomposite adsorbent used was
investigated from 0.25 g to 1.0 g. The extraction was performed using a
spiked sample (10.0mL) containing 10.0pugL ' of each of the fluor-
oquinolones. The extraction recovery increased as the amount of ad-
sorbent increased from 0.25 to 0.50 g and then remained almost con-
stant (Fig. 3D). Therefore, 0.50g of adsorbent was chosen as the
optimum amount.

3.3.4. Sample volume

Since the enrichment factor depends on the sample volume, a high
sample volume provides a high enrichment factor. Too large a sample
volume, however, could affect the adsorption of the analytes onto the
adsorbent, which would affect extraction efficiency. Thus, different
volumes of a spiked sample (10ugL ) (5, 10, 20 mL) were in-
vestigated (Fig. 4A). The extraction recovery decreased when sample
volume exceeded 10.0 mL. Thus, 10.0 mL was selected as the optimum
sample volume.

3.3.5. Sample pH

Sample pH is an important factor in the adsorption of fluor-
oquinolones onto the adsorbent since FQs can exist in anionic, cationic
and zwitterionic forms under different pH values. The sample pH was
adjusted with HCl or NaOH to achieve a series of pH values of 3.0, 5.0,

7.0, 9.0 and 11.0. The sample pH of 7 provided the highest extraction
recovery (Fig. 4B) because fluoroquinolones at that pH are in the
zwitterionic form which has zero charge, resulting in strong hydrogen
bonding between analytes and adsorbent (Malik et al., 2019). The ex-
traction recovery decreased at pH less than 7 because fluoroquinolones
under the acidic condition were ionized, so the interaction between
analytes and adsorbent was reduced. Extraction recovery also de-
creased at pH greater than 7 due to the dissociation of the carboxylic
group (anionic form), which could reduce the strength of hydrogen
bonding between analytes and adsorbent surface (Malik et al., 2019).
The effect of electrostatic repulsion could also reduce extraction re-
covery (Lian et al., 2018). Thus, the sample pH of 7 was chosen for
further experiment.

3.3.6. Extraction time and stirring speed

Extraction times from 10 to 30 min were investigated. Recovery
increased from 10min up to 20 min and remained constant up to
30 min (Fig. 4C). Therefore, the 20 min was selected as optimum ex-
traction time.

The extraction efficiency of the magnetic solid phase extraction
method depends on the partition rate of the analyte from the sample
solution to the adsorbent. Stirring rate is an effective way to increase
the mass transfer of analytes from the solution to the adsorbent.
Therefore, the effect of stirring speed on extraction was investigated
from 500 rpm to 2000 rpm. As expected, extraction recovery increased
as the stirring rate was increased from 500 to 1000 rpm and remained
constant at higher speeds (Fig. 4D). Thus, 1000 rpm of the stirring rate
was chosen as the optimum condition.

3.4. Analytical performances

Under the optimum conditions of the HPLC system and MSPE
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Table 1
Analytical performances of the doubly porous microcomposite PANI/GOx/C18-
Si0,-Fe;0,4 alginate hydrogel microsph for the di of fluor-
oquinolones.
Compounds Linear Regression linear R? LOD LOQ
range equation mgl™  (ugl™"
(gL™"
Norfloxacin 0.0050-50 y = 0.211x + 0.023  0.9985 0.005 0.02
Ciprofloxacin ~ 0.0050-50 .261x — 0.080  0.9983 0.005 0.02
Danofloxacin ~ 0.0010-50 787x + 0.330  0.9994 0.001 0.003
Enrofloxacin  0.0050-50 282x — 0.012  0.9986 0.005 0.02
Sarafloxacin  0.010-50 232x + 0.031  0.9933 0.01 0.04
Difloxacin 0.010-50 y = 0.249x - 0.044  0.9989 0.01 0.04

procedure. The practicality of the developed method was evaluated
including the linearity, limit of detection and limit of quantification. To
achieve the linearity of the method, the standard solution of fluor-
oquinolones at different concentration were extracted using PANI/
GOx/C18-Si0,-Fe304 adsorbent followed by HPLC. The developed
doubly porous microcomposite PANI/GOx/C18-Si0,-Fe;0,4 alginate
hydrogel provided a wide linearity from 0.001 to 50 pgL ' for dano-
floxacin; 0.005-50 ug L~! for norfloxacin, ciprofloxacin and enro-
floxacin; and 0.01-50 ugL" for sarafloxacin and difloxacin (Table 1).
The coefficient of determination (r*) was better than 0.99. The LODs
were within a range from 0.001 to 0.01 pgL~! (S/N = 3). The LOQs
were in a range from 0.003 to 0.04 ug L' (S/N = 10). A linear re-
gression analysis of the calibration curve was performed using Micro-
soft Excel 2016 software.

3.5. Reproducibility

The reproducibility of the developed doubly porous microcomposite

PANI/GOx/C18-8i0,-Fe30, alginate hydrogel i pheres was

determined in terms of lot-to-lot reproducibility. Six lots (n = 6) of the
microcomposite adsorbent were prepared and used to extract fluor-
oquinolones from spiked samples (10.0 yg L~ ') under the same extraction
condition. The RSDs for the extraction of fluoroquinolones were in the
range of 0.6-2.3% (Fig. S5). This result implied that the preparation of the
double porous microcomposite adsorbent has a satisfactory reproduci-

bility.
3.6. Reusability

The reusability of the doubly porous microcomposite PANI/GOx/
C18-Si0,-Fe30, alginate hydrogel microspheres was investigated by
repeated extraction of fluoroquinolones from spiked samples at
10.0 ugL™ 1. After each use of the adsorbent, it was washed with 2.0 mL
of desorption solvent and deionized water until there was no carry-over
effect, before reused. Then, the same sorbent was repeatedly used for
extraction of the fluoroquinolones. The developed microcomposite ad-
sorbent can be reused up to 7 times and still maintain extraction re-
coveries better than 80% (Fig. $6). The reduced extraction recovery
after 7 cycles may be due to loss of the polyaniline during repeated
extraction and desorption steps.

3.7. Comparison of the doubly porous microcomposite adsorbent with a
commercial sorbent

The performance of the doubly porous microcomposite PANI/GOx/
C18-Si0,-Fe;0,4 alginate hydrogel was compared with a Cyg packed
cartridge (Oasis HLB). The results showed that both adsorbents pro-
vided acceptable extraction recovery above 80% (Fig. S7). However,
the developed doubly porous microcomposite adsorbent exhibited
better extraction recovery than the commercial adsorbent. This was due
to the generated double porous network and integration of various
materials which can enhance the adsorption ability of the micro-
composite hydrogel.
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Fig. 5. HPLC chromatograms of honey (A), egg (B) and milk (C) samples with
extraction using the developed double micr PANI/GOx/C18-Si02-
Fe;0, alginate hydrogel adsorbent; (a) honey sample, (b) spiked honey sample,
(c) egg sample, (d) spiked egg sample, (e) milk sample and (f) spiked milk
sample.

3.8. Application of the developed adsorbent to real samples

The developed adsorbent was applied to determine fluor-
oquinolones in honey, milk and egg samples. The found concentrations
are summarized in Table S1. Relatively low amounts of fluor-
oquinolones (much lower than the MRL values) were detected. The
accuracy of the developed method was reported in terms of relative
recovery (% RR), arrived at by spiking standard fluoroquinolones into
real samples at 0.10, 0.50, 1.0, and 10.0 pgkg '. The spiked samples
were extracted and determined under the optimum conditions. Sa-
tisfactory relative recoveries were achieved in the range of 80-98%
(Table S2). These results indicate that the developed doubly porous
microcomposite PANI/GOx/C18-Si0O,-Fe;0, alginate hydrogel is
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efficient enough to be used for the extraction of fluoroquinolones in
various food samples. HPLC chromatograms of milk sample and spiked
milk sample (1.0 ug kg ~") with extraction using doubly porous micro-
composite PANI/GOx/C18-Si0O»-Fe;04 alginate hydrogel adsorbent are
showed in Fig. 5.

3.9. Comparison with other methods

The analytical performances of double porous microcomposite
PANI/GOx/C18-8i0,-Fe304 alginate hydrogel adsorbent was compared
with other methods (Table $3). The developed method produced LODs
much lower than those reported in other works (Mirzajani & Kardani,
2016; Manbohi & Ahmadi, 2015; de Oliveira et al., 2016; Wang, Yang,
Liu, Feng, & Wang, 2016; He et al., 2017; Urraca, Castellari, Barrios, &
Moreno-Bondi, 2014; He & Blaney, 2015; Fan et al., 2015; Gao et al.,
2015). Recoveries were better than (de Oliveira et al., 2016; Urraca
etal., 2014) or comparable with recoveries from some other works. The
precision (% RSD) was also acceptable and comparable with other
previous works. In addition, the PANI/GOx/C18-Si0,-Fe;04 adsorbent
can be reused for 7 cycles which reduces the analysis costs. These re-
sults implied that the developed PANI/GOx/C18-SiO,-Fe;0, alginate
hydrogel can be used as an effective adsorbent for the extraction of
fluoroquinolones in food samples.

4. Conclusion

A doubly porous microcomposite PANI/GOx/C18-Si0,-Fe;0, algi-
nate hydrogel was successfully developed and utilized as MSPE ad-
sorbent for the extraction of fluoroquinolones in food samples. The
formation of a double pore network in the microcomposite hydrogel
increased the surface area of the sorbent available for the coating of
polyaniline thin film. The incorporation of hydrophobic octadecyl and
graphene oxide in the hydrogel and the coating of polyaniline film in-
creased the number of available adsorption sites for fluoroquinolones.
Satisfactory extraction efficiency (80-98%) was obtained with low
limits of detection and good precision. The developed adsorbent has a
good chemical stability and can be reused at least 7 times. In addition,
the developed doubly porous microcomposite MSPE adsorbent is simple
to prepare, easy to use, convenient to use and cost-effective. This de-
veloped robust microcomposite adsorbent can be modified with dif-
ferent high-affinity materials to extract other toxic compounds in var-
ious sample matrices.
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Fig. S1 FTIR spectra of alginate hydrogel (a), C18-Si02-Fe304 (b), graphene oxide (c),
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Table S1 Detected concentrations of fluoroquinolones in honey, milk, and egg samples using

PANI/GOx/C18-Si02-Fe30s adsorbent coupled with HPLC-FLD (n=3)
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Concentration (ug kg")+SD

sample

Norfloxacin Ciprofloxacin  Danofloxacin  Enrofloxacin  Sarafloxacin  Difloxacin
Honey | 0.213:0.009  0.105£0.014  0.16940.007  2.14+0.19 0.18+0.06  0.21+0.02
Honey2  0.269:0.004  0.146:0.004  0.260£0.003  3.33+0.07 0.28+0.02 ND
Milk 1 ND 0.172+0.013  0.070£0.021  0.76:0.03 04002 0.1420.05
Milk 2 ND 0.12940.004  0.115£0.001  0.12+0.07 BRI e
Milk 3 ND 0.221=0.009 <LOQ 2.59+0.16 0.61+0.02 ND
Egg 1 <LOQ 0.068+0.007 <LOQ 2.05+0.08 ND ND
Egg?2 ND ND ND ND ND ND
Egg3 0.24040.002  0.0580.005  0.008+0.001 1.7240.11 ND 0.47+0.02

ND = Not detectable; <LOQ= lower than limit of quantification
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Table S2 The analysis of fluoroquinolones in spiked food samples using doubly porous

microcomposite PANI/GOx/C18-Si02-Fe304 alginate hydrogel microspheres (n=3)

Added Recovery (%) £SD
Semples (ugkg™) Norfloxacin Ciprofloxacin  Danofloxacin  Enrofloxacin  Sarafloxacin  Difloxacin
Honeyl 0.10 89.8+5.7 85.7+5.8 85.24+4.7 84.0+5.0 86.8+3.4 87.9+4.8
0.50 84.9+1.4 83.6+3.9 86.2+5.4 83.2+3.9 85.4+3.3 90.5+4.2
1.0 85.0+3.7 85.5+4.2 83.4+3.8 82.9+3.7 84.8+3.9 84.9+3.6
10.0 82.0+1.8 82.9+2.4 98.2+1.7 83.8+2.5 83.0+1.9 84.8+1.5
Honey?2 0.10 85.35.7 86.5+5.3 86.3+5.2 85.6+6.1 86.8+2.5 89.0+6.7
0.50 86.1+5.9 81.2+1.4 84.0+£3.9 82.6+2.7 842453 92.4+7.3
1.0 83.1+3.0 81.7+1.0 82.8+2.7 83.3+0.8 84.1+1.6 83.1+3.1
10.0 84.1+3.1 86.0+3.1 83.3+1.7 84.3+0.9 81.7+0.6 81.3+0.5
Milk1 0.10 87.8+£5.3 86.3+8.1 82.4+2.6 84.2+5.0 85.7+6.5 91.3+4.2
0.50 86.1+2.1 88.0+2.7 82.6+4.1 83.5+£2.3 88.0+2.2 84.0+2.1
1.0 83.0+2.3 85.2+1.6 89.1+7.1 82.4+2.3 84.1+3.1 82.6+3.1
10.0 81.1+0.3 82.6+0.8 83.443.5 81.9+1.4 85.7+2.9 83.5+1.8
Milk2 0.10 87.6+6.0 88.9+5.7 86.9+2.2 87.9+8.0 89.3+7.7 88.8+4.1
0.50 84.9+4.6 89.4+5.0 82.742.8 86.8+7.8 90.0+4.3 87.8+4.6
1.0 83.7+3.9 85.2+4.1 82.942.2 86.8+3.4 82.4+2.5 87.3+1.3
10.0 83.4+1.2 81.9+0.7 87.9+2.7 82.0+0.8 83.8+2.0 83.4+2.0
Milk3 0.10 90.9+7.6 88.1+6.1 88.4+2.3 88.3+5.1 86.4+7.2 85.6+3.5
0.50 89.0+£3.6 80.7£5.3 85.1+3.5 89.5+8.6 89.5+4.3 91.3+4 4
1.0 87.9+4.9 80.8+2.6 86.8+2.9 83.2+0.8 85.6x1.4 87.9+4.3
10.0 81.6+0.4 80.7+0.4 82.5+2.5 83.3%1.3 82.3+1.9 80.9+0.6
Eggl 0.10 89.3+4.2 85.7+4.9 84.4+2.1 88.7+6.4 88.8+5.6 85.8+6.3
0.50 86.1+5.4 90.3+2.1 83.0+1.8 87.6+7.4 85.5+4.7 90.4+4.7
1.0 85.6+4.3 83.7+4.0 91.0+4.0 84.2+4 .3 85.4+4.2 82.6+1.0
10.0 86.4+0.9 82.4+1.5 82.6+1.9 82.9+1.2 85.4+2.3 86.7£1.5
Egg2 0.10 91.9£5.3 89.8+7.7 83.6+1.2 87.7£5.9 86.0+8.4 87.1£3.5
0.50 84.6+3.0 89.1£5.5 88.8+7.3 83.9+3.3 88.2+2.9 84.9+1.9
1.0 84.3+3.8 82.4+1.8 90.2+5.0 82.8+3.4 81.5+1.4 83.7£2.8
10.0 89.7+0.7 88.5=1.0 88.242.1 88.4+1.4 86.5+1.7 82.5+0.9
Egg3 0.10 87.7+6.6 87.1%6.1 88.6+8.3 89.1+5.0 87.4+5.3 88.3+7.1
0.50 85.843.4 85.0+6.4 87.2+8.4 83.8+4.9 90.5+2.7 84.4+1.6
1.0 86.5+6.7 83.3+2.0 84.242.4 87.6+7.6 84.1+£5.9 85.5+1.4

10.0 80.8+0.5 84.4+0.9 88.4+2.2 83.1+2.6 85.5+2.0 82.0+1.7
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Table S3 Comparison of the analytical performance of the developed MSPE sorbent with
other methods

: Sample LOD
Analytical preparation  Analytes Samplec amount  (ug L'or Recovery RAD Reference
methods e (%) (%)
method ng kg)
HPLC-UV MIP-SPME Ciprofloxacin, 4 mL (Serum, 0.023- 43— Mirzajani &
Norflorxacin ~ plasma, tablet) 0.033 97-102 67 Kardani, 2016
HPLC-UV In-tube Ciprofloxacin, 15 mL (Water 5.4 Manbohi &
SPME Enrofloxacin and urine) 0.01-0.05 92-106 l4l : Ahmadi, 2015
HPLC- MIP-SPE Ciprofloxacin, 250 uL (Human 39 42-96 4.7- de Oliveira ct
DAD Enrofloxacin,  urine) 8.0 al., 2016
Norfloxacin
HPLC- MIP-SPE Ciprofloxacin, 1 mL (Milk) 10-20 77-98 <8.3  G.N. Wang,
DAD Norfloxacin, Yang, Liu, Feng,
Enrofloxacin & Wang, 2016
HPLC- DSPE Ciprofloxacin, 2 g (Bovine milk, 0.05-0.3  97-99 34 X. Heetal.,
DAD Difloxacin, chicken muscle 2017
Enrofloxacin, and egg)
Sarafloxacin
HPLC- MIP- Ciprofloxacin, 10 mL(Chicken  0.2-2.7 68-102 <7 Urraca,
FLD and MISPE Danofloxacin, muscle) Castellari,
HPLC- Enrofloxacin, Barrios, &
MS Norfloxacin, Moreno-Bondi,
Sarafloxacin 2014
HPLC- SPE Ciprofloxacin, 100 mL 0.3-1.5 79-96 <10.0 K. He & Blaney,
FLD Difloxacin, (Waste water) 2015
Enrofloxacin,
Norfloxacin,
Sarafloxacin
HPLC- SBSE Ciprofloxacin, 10 mL (chicken  0.0045- 82-113 4.6- Fan, He, Wu,
FLD Enrofloxacin, muscle and 0.0079 12.1 Chen, & Hu,
Norfloxacin liver) 2015
HPLC- MSLM Ciprofloxacin, 6 mL (milk, eggs 0.07-0.53  92-105 0.65- Gao etal., 2015
FLD Enrofloxacin, and honey) 5.28
Norfloxacin,
HPLC- PANI/GOx/ Ciprofloxacin, 10 mL (milk, 0.001- 80-98 <9 This work
FLD C18-Si02-  Danofloxacin, honey, egg) 0.01
Fe3Oas Difloxacin,
alginate- Enrofloxacin,
MSPE Norfloxacin,
Sarafloxacin

HPLC= High performance liquid chromatography; UV= Ultraviolet-Visible; DAD= Diode array detector;
FLD= Fluorescence detector; MIP= Molecular imprinted polymer; SPME= Solid-phase microextraction;
SPE= Solid phase extraction; SBSE= Stir bar sorptive extraction; MSLM= Magnetic-stirring salt-induced
liquid-liquid microextraction; MSPE= magnetic solid phase extraction; PANI=Polyaniline; GOx=Graphene

oxides
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Keywords: A polydopamine-coated microporous composite of metal-organic frameworks and magnetite nanoparticles
Polydopamine embedded in carrageenan hydrogel beads was fabricated and successfully utilized for the dispersive magnetic
Parabens

solid-phase extraction of parabens. Polydopamine and the metal organic frameworks enhanced the adsorption of
parabens on the hierarchical composite sorbent by hydrogen bonding, hydrophobic and n-r interactions. The
affecting parameters were optimized to achieve the highest extraction efficiency from rapid extraction with low
solvent consumption. The developed method provided linearity from 0.10 to 100 pg L™ of methyl parabens,
0.50-100 pg L of ethyl paraben and 2.0-100 pg L of propyl parabens and butyl paraben with low limit of
detection (0.05-1.0 pg L), When used to extract parabens in real samples, the composite adsorbent showed
good accuracy, achieved extraction recoveries in the range of 80 to 96% and had a good stability which enabled
reuse. The proposed hierarchical composite adsorbent could potentially be altered for the extraction of other
compounds in various matrices.

Metal organic frameworks
Carrageenan

Composite adsorbent
Extraction

1. Introduction

Parabens are preservatives that extend the life of products by con-
trolling the growth of micro-bacteria. Owing to their broad spectrum
antimicrobial properties, low toxicity and cost-effectiveness, they are
extensively used in personal care products, cosmetics, toiletries, bever-
ages and foodstuffs [1,2]. However, because of their stability and low
volatility, parabens can accumulate in products and the environment,
Expostre to parabens can disturb the human endocrine system, cause
skin allergies and increase the risk of breast cancer [3.4]. To protect
consumer health, the European Community (EC) has established the
maximum allowed concentration of parabens in cosmetics at 8.0 g kg '
[5]. Thus, the development of a simple, rapid and reliable method for
the determination of parabens is necessary. Various methods have been
reported for the analysis of parabens in different sample matrixes
[6-10]. Among the reported methods, high performance liquid chro-
matography (HPLC) has been extensively used due to it can be used to
simultaneously determine of many target analytes using separation
column. However, parabens in real samples are normally present at
trace level concentrations which cannot be directly detected among
matric interferences. Consequently, sample preparation is a crucial step
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to preconcentrate the analyte and remove matric interferences [11-13].

Typical sample preparation methods used to extract parabens and
remove interferences have included liquid-liquid extraction (LLE) [14],
solid-phase extraction (SPE) [3.5] and solid phase microextraction
(SPME) [15,16]. However, LLE method is time-consuming and uses
large amounts of organic solvents. Also, SPE cartridges become plugged
easily and some commercial sorbents are expensive [17]. The limitations
of SPME include the insufficient chemical stability of the coating layer
and high cost of the SPME fiber. The operational simplicity of the
dispersive magnetic solid phase extraction (d-MSPE) technique has
attracted much attention. Separation of the adsorbed analyte is
accomplished by applying an external magnet and the method is
compatible with various applications. The adsorbent used in d-MSPE can
be fabricated from a variety of materials. Carrageenan hydrogel is an
interesting supporting material which can entrap magnetite (Fez04)
nanoparticles and affinity materials. It is nontoxic, biodegradable and
easy to prepare [18]. To improve the extraction ability of the adsorbent
toward analytes, various affinity materials have been incorporated or
coated on the support. As well as carbon-based and polymer materials,
metal organic frameworks (MOFs) have been used. MOFs are a class of
hybrid organic-inorganic porous materials with large surface areas,
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uniform structure cavities and good thermal stability [19]. One type of
MOF which is an interesting material for the adsorption of parabens is
MIL-101(Cr). This high affinity material is well suited to the extraction
of target analytes since it has a cubic structure with a high surface area
and good chemical stability [20,21]. Another interesting material is
polydopamine (PDA) which can adsorb parabens via hydrogen bonding,
n-n and hydrophobic interactions. These interactions can help to
enhance adsorption.

In the present work, a composite mesoporous material was devel-
oped of Fe304 and MIL101, incorporated in carrageenan hydrogel beads
coated with PDA. The developed material was used as a d-MSPE
adsorbent for the enrichment and extraction of parabens. The developed
hierarchical composite PDA@MIL101@Fe3;04@Car hydrogel bead was
applied for the extraction of parabens in personal care products and its
extraction efficiency was compared with the performance of a com-
mercial solid phase extraction sorbent.

2. Experimental
2.1. Chemicals and reagents

Butyl 4-hydroxybenzoate (BP), ethyl 4-hydroxybenzoate (EP),
methyl 4-hydroxybenzoate (MP), propyl 4-hydroxybenzoate (PP), ter-
ephthalic acid and k-carrageenan were purchased from Tokyo Chemical
Industry Co. Ltd. (Japan). FeCls-6H20, FeClz-4H30, tris(hydroxymethyl)
aminomethane and dopamine hydrochloride were from Sigma-Aldrich,
(Germany). NH4OH was from J.T.Baker (USA). Chromium (III) nitrate
nonahydrate was purchased from HiMedia Laboratories Pvt. Ltd.
(Nashik, India). Sodium acetate anhydrous was from Merck (Germany).
Potassium chloride was from Ajax Finechem (New Zealand). Dime-
thylformamide, methanol, ethanol, acetonitrile and hydrochloric acid
were from Labscan (Thailand).

2.2, Instrumental

The analysis of parabens was carried out using an Agilent 1100 HPLC
system (Germany) coupled with a Fortis C18 reverse-phase column (5
pm, 4,6 x 150 mm I.D.) (Fortis Technologies Ltd., U.K). The diode array
detector was used to detect parabens at 254 nm. The mobile phase
consisted of water and acetonitrile (50:50 v/v) at a flow rate of 1.0 mL
min 1. The functional groups of the sorbent was investigated by Fourier
transform infrared (FTIR) spectroscope (PerkinElmer, MA, USA). The
surface morphology was examined by scanning electron microscope
(JSM 5200 JEOL, Japan). A TriStar 11 3020 surface area analyser
(Micromeritics, USA) was used to investigate BET surface areas of
composite sorbents. The bubbles inside the composite bead were
observed by fluorescence stereomicroscope (M205FCA, Leica,
Switzerland). Magnetic properties were investigated using a vibrating
sample magnetometer (in-house), calibrated with a standard reference
nickel sphere (model 730908). X-ray diffraction patterns were produced
using the X'Pert-MPD (The Netherlands).

2.3. Preparation of the composite polydopamine-coated porous
carrageenan/MIL101/magnetite nanoparticles adsorbent

The synthesis procedures of magnetite nanoparticles (Fe304) and
MIL101 were modified from previous works [22,23]. For Fez04, 1.70 g
of FeClz-4H20 and 4.70 g of FeCl3-6H20 were prepared in deionized (DI)
water (80 mL) and the mixture was transferred to a three-necked flask
and heated at 80 “C under stirring at 800 rpm. Then, 10 mL of ammo-
nium hydroxide was added into the mixture solution and heating
continued for 1 h. The obtained Fe304 were collected by applying an
external magnet. The collected Fe304 were washed with 100 mL of DI
water and dried at 60 °C for 4 h. To synthesize MIL101, 2.0 g of Cr
(NO3)3-9H20, 0.10 g of sodium acetate, 0.80 g of terephthalic acid and
25 mL of DI water were mixed and transferred to a Teflon-lined
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autoclave reactor and heated at 200 °C for 12 h. The green crystals
produced were washed with 100 mL of DI water and once with 20 mL of
dimethylformamide. The synthesized MIL101 was soaked in ethanol for
10 h to purify the product. Finally, the purified MIL101 was washed with
DI water and dried at 80 “C for 24 h.

The preparation procedure of the hierarchical polydopamine-coated
microporous MIL101@Fe30s@Car hydrogel bead is illustrated in
Fig. 1A. A carrageenan solution was prepared by dissolving 1.50 g of k-
carrageenan in 100 mL of DI water and heating the solution at 50 “C for
1 h under stirring to obtain homogeneity. Then, 0.20 g of Fe304, 2.0 g of
MIL101 and 0.50 g of CaCO3 were mixed into the carrageenan solution.
The homogeneous colloidal suspension was added dropwise into a 5.0%
w/v KCl solution to create composite hydrogel beads, which were left
immersed in the solution for 1 h to complete the formation of the
hydrogel. The composite hydrogel beads were then soaked in HCI (20%
w/v) for 3 min to produce a porous interior network which increased the
surface area available to receive a polydopamine coating. After soaking
in HCL solution, the hydrogel beads were washed with 100 mL of DI
water until for three time. The washed composite MIL101@Fe304@Car
hydrogel beads were incubated under stirring for 4 h in 100 mL of
dopamine solution (10 mM) which was prepared in Tris-HCI buffer at pH
8.5. Finally, the fabricated hierarchical composite PDA@-
MIL101@Fe304@Car hydrogel beads were separated from the dopa-
mine solution, washed with DI water and kept in KCl solution until used.

2.4. Dispersive magnetic solid phase extraction procedure

The d-MSPE procedure using the composite PDA@-
MIL101@Fe304@Car hydrogel beads is illustrated in Fig. 1B. Firstly,
0.75 g of PDA@MIL101 @Fe304@Car beads were placed in a glass bottle
containing 10.0 mL of standard or sample solution that was extracted for
10 min. The composite hydrogel beads with the adsorbed parabens were
isolated using an external magnet and the remaining solution was
poured off. The extracted parabens were desorbed from the composite
adsorbent beads with 2.0 mL of a mixture of ethyl acetate and aceto-
nitrile (50:50 v/v) under stirring for 15 min and the composite beads
were separated from the desorption solution with a magnet. The
desorption solution was evaporated at 50 “C and reconstituted with 1.0
mL of mobile phase before being injected into the HPLC-DAD system.

To obtain the highest extraction efficiency with short extraction time
and low solvent consumption, the adsorbent preparation and extraction
condition were studied. The type of sorbent, polymerization time,
desorption condition, extraction time, adsorbent dosage, sample pH,
ionic strength, stirring rate and sample volume were optimized. The
efficiency of extraction was evaluated in terms of extraction recovery
(ER), which was calculated as follows:

ER(%) = (CuV/C,V,) x 100

where Cp and Cy are the parabens concentration in reconstituted
solvent (pg L") and spiked sample, and V and V, are the volume of the
reconstituted solvent and spiked sample, respectively. The adsorption
mechanism between parabens and the developed hierarchical composite
hydrogel bead is shown in Fig. 1C.

3. Results and discussion
3.1. Characterizations of the hierarchical composite adsorbent

The fabricated hierarchical composite PDA@MIL101@Fe3;04@Car
hydrogel adsorbent was characterized using FTIR spectrophotometry,
SEM technique, FSM microscope, VSM method, BET analysis and XRD
spectroscopy. The FTIR technique was utilized to identify the functional
groups of the developed adsorbent. The spectrum of carrageenan
showed the bands of OH stretching and 0-S-O symmetric vibration at
3432 and 1285 cm™ !, respectively (Fig. S1a). A strong peak of Fe-O-Fe
was present at 586 em™! in the composite Fe;O4@Carrageenan
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Fig. 1. The schemes show the fabrication procedure of PDA@MIL101@Fe;04@Car hydrogel beads (A), the dispersive magnetic solid phase extraction procedure (B),
and the interaction between parabens and the PDA@MIL101@Fe304@Car hydrogel adsorbent (C).

spectrum (Fig. S1b). The MIL101@Fe304@Car spectrum showed peaks
at 1618 and 1430 cm ™', which due to C=C stretching of benzene and C-
O-C stretching of dicarboxylate group in the MIL101 structure (Fig. S1c).
The spectrum of the composite PDA@MIL101@Fe304@Car (Vig. S1d)
showed the peaks of Fe-O-Fe stretching of Fe304, the O-S-O symmetric
stretching and —~OH stretching of carrageenan, the C = C and C-O-C

stretching of MIL101 and NHy stretching of PDA. These results
confirmed that Fe304, MIL101 and PDA were successfully incorporated
with the carrageenan hydrogel bead.

The surface morphology of the composite adsorbent was investigated
by SEM. In SEM images, carrageenan exhibited a smooth surface
(Fig. 2A), while the MIL101 exhibited octahedral crystals (Fig. 2B). The
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Fig. 2. SEM images show carrageenan (A), MIL101 (B), and a PDA@MIL101@Fe304@Car bead at 60X (C) and 10,000X (D). The photographs show the fabricated
composite PDA@MIL101@Fe;04@Car hydrogel beads in a petri dish (E) and the beads after soaking in HCI solution (F).

SEM images of the composite PDA@MIL101@Fe304@Car hydrogel
(Fig. 2Cand D) revealed the rough surface of the bead and PDA coating.
Composite PDA@MIL101@Fe304@Car hydrogel beads were photo-
graphed unmagnified in a Petri dish (Fig. 2E). The image of hydrogel
beads (Fig. 2F) was taken after the reaction of CaCO3 and HCl which
produced the hierarchical structure and CO, bubbles were visible inside
the beads.

The magnetic properties of the composite PDA@MIL101@Fe304@-
Car hydrogel bead were studied using a VSM technique. The maximum
saturation magnetization of the composite hydrogel beads was 3.428
emu g’1 (Fig. S2A). This result confirmed that magnetite nanoparticles
were incorporated into the bead.

The surface areas of the composite Fes04@Car bead and the
PDA@MIL101@Fe;04@Car hydrogel bead were 0.9306 m? g ! and
90.5823 m? g . respectively. These results indicated that the integra-
tion of PDA and MIL101 with the hydrogel bead increased the surface
area of the adsorbent to enhance the adsorption of the target analytes.
The nitrogen adsorption—desorption isotherm of the composite

PDA@MIL101@Fe30,4@Car hydrogel beads was a type IV and exhibited
a hysteresis loop in the range of 0.8 < P/Py < 1.0 (Fig. S2B).

The XRD pattern of the composite PDA@MIL101@Fe304@Car
hydrogel adsorbent showed the specific peaks of MIL101 and Fe3O4
(Fig. 52C). These results confirmed that both Fe304 and MIL101 were
embedded in the hydrogel beads.

3.2. Optimization of composite adsorbent preparation and MSPE
condition

3.2.1. Type of sorbent

To identify the most effective formulation of the adsorbent, parabens
were extracted using the adsorbent at different stages of fabrication. The
recoveries of composite hydrogel beads of FezOs@Car, MIL101@-
Fe304@Car, PDA@Fe;04@Car and PDA@MIL101@Fe304@Car were
19-25%, 61-65%, 68-73% and 90-93%, respectively (Fig. $3). The
composite PDA@MIL101@ Fe304@Car adsorbent provided the highest
extraction recovery due to the integration of PDA and MIL101 which



P. Kilongkiaew and 0. Bunkoed

improved the adsorption of parabens on the composite adsorbent via n-1
and hydrophobic interactions and hydrogen bonding. Therefore, the
composite PDA@MIL101@ Fe304@Car hydrogel adsorbent was used for
the extraction of parabens in further tests.

3.2.2. Polymerization time

The polymerization time of PDA was an important parameter for the
fabrication of the composite adsorbent since it could affect the thickness
of the polymer layer and, in turn, the interaction between PDA and
parabens. The effect of PDA polymerization time was investigated at 2, 4
and 8 h (Fig. 54). The highest extraction recoveries were obtained with
an adsorbent with a PDA coating polymerized for 4 h. Extraction re-
coveries decreased at a polymerization time of 2 h since the PDA was not
completely self-polymerized. After the longer polymerization time of 8
h, recoveries also decreased since the PDA on the surface of sorbent was
too thick, which reduced the surface area available for the adsorption of
parabens, Thus, the fabrication of the composite PDA@ MIL101@-
Fe304@Car hydrogel beads was completed by polymerizing PDA for 4 h,

3.2.3. Desorption conditions

The desorption solvent used could affect the elution of analytes from
the composite adsorbent beads. Ethyl acetate, acetone, acetonitrile,
methanol and a mixture of ethyl acetate and acetonitrile (1:1) were
evaluated as desorption solvents. The highest recoveries were obtained
using the mixture of ethyl acetate and acetonitrile (1:1) (Fig. S5A). The
volume of this desorption solvent was optimized from 1.0 to 4.0 mL.
Recoveries of all four parabens were higher than 80% when using 2.0 mL
of desorption solvent to elute analytes from the composite PDA@-
MIL101@Fe3;04@Car adsorbent and rather constant when the volume of
desorption solvent was more than 2.0 mL (Fig. S5B). Therefore, 2.0 mL
of a mixture of ethyl acetate and acetonitrile (1:1) was used to desorb
parabens from the composite PDA@MIL101@ Fe304@Car adsorbent in
the remaining experiments.

3.2.4. Extraction times

The time required for the optimal adsorption of parabens on the
composite PDA@MIL101@ Fe304@Car adsorbent was studied from 5 to
30 min. The parabens were completly adsorbed within 10 min (Fig. 55C)
and 10 min was selected for the adsorption process in further
experiments.

3.2.5. Amount of adsorbent

The lowest dose of adsorbent beads that obtained the highest
extraction efficiency was investigated from 0.25 to 1.0 g. Extraction
recoveries increased with increments of adsorbent dose from 0.25 to
0.75 g and then remained constant (Fig. 55D). Thus, 0.75 g was chosen
for the extraction of parabens with the composite PDA@MIL101@
Fe304@Car hydrogel beads.

3.2.6. Sample pH and ionic strength

Sample pH can influence the interaction between an adsorbent and
an analyte, and also affect the stability of the adsorbent. In this work, the
pH of the parabens was adjusted incrementally from pH 4.0 to 8.0. The
extraction recoveries of parabens were not significantly different, and all
were higher than 80% (Fig. S6A). Sample pH did not affect the inter-
action between parabens and the composite adsorbent nor the stability
of the composite adsorbent. Therefore, the adjustment of sample pH was
not required. The ionic strength was also investigated for its effect on the
solubility of parabens in the sample and the stability of the carrageenan
hydrogel beads. Sodium chloride (NaCl) was applied at concentrations
ranging from 0.0 to 10.0 %w/v (Fig. S6B). There was very little differ-
ence between the extraction efficiency obtained at 2.5% w/v NaCl and
the extraction efficiency obtained without adjusting ionic strength. The
addition of NaCl above 2.5 %w/v reduced extraction efficiency due to
increased sample viscosity. Hence, the extraction of parabens with the
composite  PDA@MIL101@FezOs@Car adsorbent was performed
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without salt addition.

3.2.7. Stirring rate

The stirring rate applied to a sample solution can affect the partition
between analytes and sorbent and here it was investigated from 500 to
1500 rpm. Increasing the stirring rate from 500 to 800 rpm increased
extraction efficiency rapidly but increases from 800 to 1500 rpm
consecutively reduced extraction efficiency (Fig. S6C). At low stirring
rates, because the hydrogel bead adsorbents were not fully dispersed in
the sample solution, mass transfer of analytes was too low but at high
stirring speeds contact between analytes and adsorbent was too brief.
Consequently, the stirring speed of 800 rpm was selected for d-MSPE of
parabens sample solutions using the composite PDA@-
MIL101@Fe304@Car adsorbent.

3.2.8. Sample volume

Sample volume is an important parameter of the sample preparation
process because it affects both the extraction efficiency and enrichment
factor. A large sample volume provides a high enrichment factor but it
can cause an overload of adsorbent capacity. The sample volume in this
study was evaluated from 5.0 to 20.0 mL. Good extraction efficiencies
were obtained from sample volumes of 5.0 and 10.0 mL (Fig. S6D),
however, 10.0 mL produced a higher enrichment factor. Therefore, a
sample volume of 10.0 mL was used for the extraction of parabens using
the composite PDA@MIL101@Fe304@Car adsorbent.

3.3. Adsorption studies

The adsorption kinetics were studied to determine the reaction
mechanism driving the adsorption of parabens on the developed
adsorbent. The pseudo-first-order, pseudo-second-order and intra-
particle diffusion models were applied (Table 51). The amount of par-
abens adsorbed on the composite PDA@MIL101@Fe3;04@Car adsorbent
was calculated from the following equation:

(G- CV

m

where q. is the adsorption capacity (ug g 1), Co and G, are respec-
tively the initial concentration of parabens and the concentration of
parabens at equilibrium (ug L), V is the volume of sample (L), and m is
the amount of adsorbent (g). Of the three kinetic models (Fig. 57, 58 and
59), the correlation coefficient (R?) of the pseudo-second-order was
closest to unity, presenting the best fit. The result indicated that chem-
isorption was the mechanism by which parabens were adsorbed onto the
developed composite adsorbent.

3.4. Analytical performance

The linearity, limit of detection (LOD) and limit of quantification
(LOQ) were evaluated using the optimized conditions. The response of
the composite PDA@MIL101@Fe304@Car hydrogel beads produced a
good linearity from 0.10 to 100.0 pg L* of methyl paraben, from 0.50 to
100.0 pg 1! of ethyl paraben and from 2.0 to 100.0 pg L7 of propyl
paraben and butyl paraben. R* were higher than 0.996 (Table 1). The
LODs, based on a signal-to-noise ratio of 3, were 0.05 pg L for methyl
paraben, 0.15 pg L' for ethyl paraben, and 1.0 pg L for propyl paraben
and butyl paraben. The LOQs, based on a signal-to-noise ratio of 10,
were 0.1 pg L for methyl paraben, 0.5 pg L7 for ethyl paraben, and 2.5
ug L! for propyl paraben and butyl paraben. These results indicated that
the developed method was sufficiently sensitive to be utilized for the
determination of trace parabens in real sample matrices.

3.5. Real sample analysis

The developed composite PDA@MIL101@Fe30,@Car hydrogel
adsorbent was applied to extract and determine parabens in skin
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Table 1
The performances of the composite PDA@MIL101@Fe;04@Car hydrogel beads
in the determination of parabens.

Analytes Linear range  Regression linear R LOD LOQ
(g L") (gl (ugL
k bl
Methyl 0.1-100 y=(0.2009 = 0.0034)  0.9979 0.05 01
Paraben X+ (1.33£ 0149
Fthyl 0.5-100 y=(0.1894 = 0.0041) 09972 015 05
Paraben x + (1.67 + 0.17)
Propyl 2.0-100 y=(0.1856 = 0.0031) 09986 1.0 25
Paraben x +(1.37 £ 0.13)
Buyl 2,0-100 ¥ = (0.1906 = 0.0041)  0.9968 1.0 25
Paraben x 1 (1.23 £ 0.16)

cleansers and mouthwash. The analysis results are summarized in
Table 52, Parabens were found in some samples but the found concen-
trations were lower than the maximum concentration allowed in cos-
metics and personal care products. To evaluate the accuracy, the relative
recovery was evaluated using standard solutions of parabens spiked in
the samples at 5.0, 10.0 and 50.0 pg L. The relative recovery was
calculated based on the equation, Relative recovery (%) = (Cropa-
Csample)/ Cspiked *100, where Crotal is the total concentration of parabens
found in the real sample after spiking with the standard, Cgymple is the
original concentration of parabens in the real sample, and Cspikeq is the
concentration of parabens spiked in the real sample, Relative recoveries
from 80.4 to 95.6 with relative standard deviations < 7.1% were ach-
ieved (Table §3). The HPLC chromatograms of a real sample, a spiked
sample and a standard solution of parabens are shown in Fig. 3. The
good recoveries obtained implied that the developed composite
PDA@MIL101@Fe;04@Car hydrogel sorbent was efficient and could be
used for the extraction of parabens in various matrix interferences
before analysis by HPLC,

3.6. Reusability and reproducibility

The reusability of the composite PDA@MIL101@Fe;0,@Car
hydrogel adsorbent was evaluated after repeated extractions of parabens
from spiked samples. After the first extraction cycle, the developed
sorbent was washed with 2.0 mL of a 1:1 mixture of ethyl acetate and
acetonitrile and 5.0 mL of 2.5 %w/v KCl. No carry-over effect was
observed, The results showed that the extraction efficiency of the
adsorbent did not significantly change for six extraction cycles
(Fig. 510). Recovery decreased on the seventh cycle perhaps due to the
loss of some of the PDA layer during the desorption step. The results
implied that the developed composite PDA@MIL101@Fe3;04@Car
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Fig. 3. HPLC chromatograms of a cleansing sample (a), a spiked cleansing
sample (b) and a parabens standard (c).
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hydrogel adsorbent was sufficiently stable to allow reuse, reducing
analysis cost and time spent in adsorbent preparation.

The reproducibility of the composite PDA@MIL101@Fe304@Car
hydrogel beads was examined by preparing six different lots in the same
condition. The relative standard deviation of the recoveries of methyl
paraben, ethyl paraben, propyl paraben and butyl paraben were 1.8, 2.6,
1.2 and 1.6%, respectively (Fig. 511), which are below the acceptable
value for an AOAC standard method of<16%. The results demonstrated
that the preparation process of the developed composite adsorbent had a
good reproducibility.

3.7. Comparison with solid phase extraction sorbent and other methods

The extraction efficiency of the developed composite PDA@-
MIL101@Fe304@Car adsorbent was compared with a commercial solid
phase extraction sorbent (SPE-Oasis HLB sorbent). The recovery of the
developed adsorbent was not significantly different than the extraction
efficiency of the SPE-C18 sorbent (Fig. $12). The results supported the
use of the composite PDA@MIL101@Fe304@Car hydrogel for the
extraction of parabens in real samples with different matrix
interferences.

The performance of the developed d-MSPE method using the com-
posite PDA@MIL101@Fe304@Car hydrogel adsorbent was compared
with the performances of reported methods used for the extraction of
parabens in a variety of samples (Table 2). The analytical performances
of the developed method, including LOD, recovery, and relative stan-
dard deviation, were better or comparable with the reported methods.
However, the developed composite adsorbent is eco-friendly,
comprising substances of low toxicity and good biodegradability, and
reusable (6 cycles). In addition, d-MSPE adsorbent can easily separate
from sample solution without the filtration or centrifugation steps nor-
mally required in other sample preparation methods. The comparison of
analytical performances indicated that the composite PDA@-
MIL101@Fe304@Car beads were suitable for quantitative analysis of
parabens in highly complex matrices.

MNP@DC193C = Magnetic nanoparticles funcrionalized water sol-
uble surfactant type DC193C; MSPE = Magnetic solid phase extraction;
MNP-PTMS@CTF = Magnetic nanoparticles modified with phenyl-
trimethoxysilane functionalized with covalent triazine-based frame-
works; PPY-Ag NPs = Polypyrrole-silver nanoparticles; HF = Hollow
fiber; VMDB =  1-vinylbenzyl-3-methylimidazolium  hexa-
fluorophosphate and divinylbenzene copolymer; PIL = Polymeric ionic
liquid; prGO/Mg-Al LDH = Magnesium-aluminum layered double hy-
droxide functionalized with partially reduced graphene oxide; pSPE =
Micro solid phase extraction; CUR-MGO = Curcumin loaded magnetic
graphene oxide; MIP-OT = Molecularly imprinted polymer layer open
tubular; PA/GO/PPy = Polyamide-graphene oxide-polypyrrole; SC-
HSPE = Spin column micro SPE; SWNH = Single-walled carbon nano-
horn; ME-MB/IT = magnetism-enhanced monolith-based in-tube.

4. Conclusion

A composite adsorbent was fabricated of MIL101 and magnetic
nanoparticles embedded in carrageenan hydrogel beads that were then
coated with polydopamine. The adsorbent beads were successfully
developed for the extraction and enrichment of parabens. The magnetic
nanoparticles enabled the rapid separation of the sorbent from the
sample solution to reduce extraction time. MIL101 and polydopamine
can adsorb parabens via 7-r, hydrophobic interaction and hydrogen
bonding, which improved extraction efficiency. In addition, the com-
posite hydrogel beads were simple to fabricate in mild conditions and
the carrageenan supporting material is of low toxicity. The composite
PDA@MIL101@Fe;04@Car hydrogel sorbent exhibited good extraction
efficiency, reproducibility and reusability. The developed composite
dispersive magnetic solid-phase extraction adsorbent is environmentally
friendly, convenient to use, easy to prepare and can be applied for the
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Table 2
A comparison of the performance of the developed d-MSPE sorbent with the performances of methods previously used for the determination of parabens.

Analytical Sample preparation method Parabens Sample amount LOD(pg L'orpg  Recovery  RSD(%) Reference

method kg™ (%)

HPLC-UV MNP@DC193C/MSPE MP, EP, PP, 80 mL(Water) 2.4-6.3 86-118 0.41-15.9  [17]
BP

HPLC-UV MNP-PTMS@CTF/MSPE MP, EP, PP, 7 mL{Milk, Urine, Sunscreen cream, Herbal 0.02 86-102 2.3-5.0 [24]
BP hair tonic, Shower wastewater)

HPLC-UV PPY-Ag NPs/HF-SPML MP, EP, PP 30 mL(Water, Fruit juice, and Beer) 0.01 90-104 2431 [21

HPLC-DAD VMDB/PIL-MA-MSPE MP, EP, PP,  -(Water, Fruit juice) 0.05-0.17 83-108 21-7.8 [25]
BP

HPLC-UV PprGO/Mg-Al LDH/ jSPE MP,EP, PP -(Milk) 3.0-5.0 87-104 4.3-8.9 [26]

HPLG-DAD CUR-MGO /DMSPE MP, EP, PP, 20 mL (Toothpaste and Mouthwash) 0.4-1.0 71-120 1.9-7.7 [5]
BP

HPLC-UV Coiled MIP-OT capillary tube MP, EP, PP, 30 mL(Personal care and Cosmetic products)  0.2-0.3 91-105 21-43 [27]
BP

HPLC-UV PA/GO/PPy /SC-USPE MP, EP, PP 5 mL(Millk) 3.0-7.0 81-97 2.7-8.6 [28]

HPLC-UV SWNH-monolithic tip MP, EP, PP, 2 mL{Urine) 1.0-7.0 80-116 1.0-13.0 [29]
BP

HPLC-DAD Online ME-MB/IT-SPME PP, BP 1.2 mL{Water and Grape juice) 0.01-0.05 86-114 0.9-7.7 [30]

HPLC-DAD PDA@MIL101@Fe;0,@Car d- MP, EP, PP, 10 mL(Skin cleanser and mouthwash) 0.05-1.0 80-96 1.0-7.1 This work

MSPE BP

extraction of parabens in various matrix interferences.
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Fig. S2 VSM curve of the nanocomposite hydrogel bead (A), the nitrogen adsorption and
desorption isotherms of the composite Fe;Os@Car hydrogel (B) and the XRD diffraction
patterns (C) of MIL101 (a), Fe3O4 nanoparticle (b), composite PDA@MIL101@Fe3Os@Car

hydrogel adsorbent (c)
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Fig. S4 The chart shows the effect of polymerization time of polydopamine on the extraction

of parabens using the composite PDA@ MIL101@Fe30s@Car hydrogel beads.
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Table S1. The kinetic equation and linear plots of the three applied kinetic models

Kinetic model Equation Linear plot
Pseudo-first-order In(qe - qi) = Inge—kat In(ge - qi) Vs. t
t 1 t ¢
Pseudo-second-order PR + - = Vs. t
Intraparticle diffusion q = kat"?+¢ qt Vs. tn

qt (ug g = the adsorption capacity at time t; ki, kzand ks (min™") are the rate constants of the
pseudo-first-order, pseudo-second-order and intraparticle diffusion models, respectively; and

¢ is the intercept.
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Fig. S7 The plots were produced by applying the pscudo-first-order kinetic model to the
adsorption of methyl paraben (A), ethyl paraben (B}, propyl paraben (C) and butyl paraben (D)

on the composite PDA@MIL101(@ Fe;Os@Car hydrogel adsorbent.
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Fig. S8 The plots were produced by applying the pseudo-second-order kinetic model to the
adsorption of methyl paraben (A), ethyl paraben (B), propyl paraben (C) and butyl paraben (D)

on the composite PDA@MIL101@ Fe;O4@Car hydrogel adsorbent.
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Table S2. The determination of parabens in

real

samples  using

PDA@MIL101@Fe30a@Car hydrogel beads coupled with HPLC-DAD

11

composite

Concentration (pug mL™)

Samples

Ethyl Paraben

Methyl Paraben

Propyl Paraben

Butyl Paraben

Skin cleanser 1

Skin cleanser 2

Skin cleanser 3

Mouthwash 1

Mouthwash 2

Mouthwash 3

ND

0.051+0.020

ND

24.628+0.044

0.038+0.009

<LOQ

<LOQ

ND

ND

0.018+0.002

ND

0.022+0.001

ND

ND

ND

6.579+0.059

<LOQ

ND

0.010+0.002

ND

ND

0.010+0.008

0.026+0.017

<LOQ

ND=not detectable
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12

Table S3. The ecxtraction recoveries of parabens in spiked samples using composite

PDA@MIL101@Fe30s@Car hydrogel beads coupled with HPLC-DAD

Recovery (%
Samples (ng_(]i) v
Ethyl paraben ~ Methyl paraben  Propyl paraben  Butyl paraben
Skin cleanser 1 5 91.845.6 92.9+5.3 86.5+5.3 85.9+4.1
10 87.4+1.9 86.8+1.6 86.5+3.4 84.5+5.4
50 82.2+1.4 83.3+1.8 88.7+1.4 81.4+1.8
Skin cleanser 2 5 90.4+4.3 85.8+7.1 84.4+6.0 87.2+60.7
10 85.1%6.1 84.9+54 84.3+4.9 82.7+4.3
50 82.1+£2.0 88.3£2.3 86.2£1.8 83.0£2.0
Skin cleanser 3 5 86.9+5.5 85.5+6.0 81.8+£5.8 86.1+5.4
10 84.7+1.9 83.8=1.8 87.1+4.9 83.9+3.6
50 81.5x1.0 86.2+£2.0 85.4x1.4 84.7£2.0
Mouthwash 1 5 85.246.0 84.9£6.0 83.0+£3.5 81.2+1.5
10 91.24£3.3 88.0+£6.6 86.6+2.6 82.9+5.3
50 82.6+2.0 93.11.5 88.0+4.6 90.5+1.1
Mouthwash 2 5 80.4+4.9 86.8+2.3 83.4+3.0 85.4+5.1
10 85.4+6.4 85.4+4.8 82.0£1.6 80.9+1.7
50 95.6£2.3 91.5£2.8 91.4+2.4 92.9+1.5
Mouthwash 3 5 80.8+£5.4 83.1£3.8 83.6+6.4 85.5£5.5
10 86.7£3.7 89.2£3.2 81.5+4.9 91.9+1.1

50 86.9+1.3 89.3=2.1 92.1£1.4 91.3£3.6
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