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ABSTRACT

Let S be a I'-semigroup and « a fixed element in I". Define ab = aab
for all a,b € S. Then S is a semigroup and we denote this semigroup by S,.
Green’s relations £, R, H and D on a I'-semigroups S were defined by N. K. Saha
in the year 1987. The L-class, R-class, H-class and D-class containing the element
a of a I'-semigroup S will be written as L,, R,, H, and D,, respectively.

We study Green’s relations for ['-semigroups and give some interest-
ing properties. For example, we prove that if a and b are elements in a I'-semigroup
S such that aDb, then |L,| = |Lsy|, |Ra| = |Rs| and |H,| = |H,|. We also observe
that if a is an element in a I'-semigroup S and « € I', then H,aH, N H, = () or
H,aH, = H,. Moreover, if H,aH, = H,, then H, is a subsemigroup of S,,.

Furthermore, we study congruences for I'-semigroups and give some
connections between congruences and their quotient sets on Green’s relations. We

also define two congruences p, and p; on a I'-semigroup S as follows:

pr ={(a,b) € S x S| ayt =byt forallt € S and v € I'};

pr=A{(a,b) € S xS |tya=tybforallte S andyeTl}.

If S is a regular I'-semigroup, we obtain that p, and p; are the minimum right and

left reductive congruences on S, respectively.

v



ACKNOWLEDGEMENT

[ am greatly indebted to Asst. Prof. Dr. Ronnason Chinram, my the-
sis advisor, for his untired offering me some thoughtful and helpful advice in
preparing and writing this thesis.

I am also very grateful to Assoc. Prof. Dr. Jantana Ayaragarnchanakul,
for her many suggestions and constant support during this research. Moreover, |
would like to thank my appreciation to the chairperson and member of my com-
mittee, Asst. Prof. Dr. Sarachai Kongsiriwong and Asst. Prof. Dr. Konvika Kongkul
for their helpful comments, guidance and advice concerning this thesis.

I would like to thank all of my teachers for sharing their knowledge
and support so that I can obtain this Master degree. In addition, I am grateful to
all my friends for their helpful suggestions and friendship over the course of this
study.

Finally, I would like to offer my deepest appreciation to my parents

for their love, support, understanding and encouragement throughout my study.

Prathana Siammali



CONTENTS

ABSTRACT IN THAI

ABSTRACT IN ENGLISH

ACKNOWLEDGEMENT

CONTENTS

1 Introduction and Preliminaries
1.1 Semigroups . . . . . . ...

1.2 T-semigroups . . . . . . . . . .

2 Green’s relations for ['-semigroups
2.1 The equivalences L, R, Hand D . . .. .. .. ... ... .....
2.2 The structure of D-classes . . . . . . . .. . ... ...
2.3 Regular D-classes . . . . . . . . .. ..

2.4 Ideals of I'-semigroups and simple I'-semigroups . . . . .. ... ..

3 Congruences for ['-semigroups
3.1 Congruences for I'-semigroups . . . . . . . . .. .. ... .. ....
3.2 Quotient I'-semigroups . . . . . . . . .. .. ... ...
3.3 Reductive I'-semigroups . . . . . . . . . ... ... ...

REFERENCES

VITAE

iii

iv

vi

11
11
18
26
29

32
32
35
36

41

42

vi



CHAPTER 1

Introduction and Preliminaries

The notion of I'-semigroups was introduced by M. K. Sen in the
year 1981. Since ['-semigroups generalize semigroups, many classical notions of
semigroups have been extended to I'-semigroups. For example, in the year 1987,
N. K. Saha introduced Green’s relations for I'-semigroups analogous to Green’s
relations for semigroups. In fact, any semigroup S can be considered to be a I'-
semigroup, by define aab = ab for all a,b € S and a € I'. On the other hand, let S
be a I'-semigroup and « a fixed element in I". We define ab = aab for all a,b € S,
then we can show that S is a semigroup and we denote this semigroup by S,.

In this thesis, we study Green’s relations and congruences for I'-
semigroups, and also give characterizations for reductive congruences and reduc-
tive ['-semigroups. Moreover, we give some connections between Green’s relations

and simple I'-semigroups.

1.1 Semigroups

We will use the notation and terminology of Howie (1976) to intro-

duce the notion of semigroups.

Definition 1.1. Let S be a nonempty set and % a binary operation on S. Then

(S, x) is called a semigroup if x is associative, i.e.,

(axb)xc=ax(bxc) foralla,bceS.

We give some examples of semigroups.

Example 1.1. (N, +), (Z,+), (Z, x) and (R, x) are semigroups where + is the

usual addition and X is the usual multiplication.



Example 1.2. (Z,—) is not a semigroup since for a, b, ¢ € Z such that ¢ # 0, we

have

a—(b—-—c)=a—-b+c#a—-b—c=(a—b)—c

Example 1.3. Let X be a nonempty set and 7'(X) the set of all mappings from
X into X. Define a composition of mappings in 7'(X) by

(x)(ao f) = ((z)a)f for all x € X.

Thus for o, f € T(X), we have a o § € T,. Clearly,

(kofB)oy=ao(foy) foralla,f,veT(X).

So o is associative. Hence (T'(X), o) is a semigroup. The semigroup 7'(X) is called

a full transformation semigroup on X.

Definition 1.2. Let S be a semigroup. A nonempty subset T" of S is called a

subsemigroup of S if it is closed under the binary operation of S, i.e. if

abeT foralla,beT.

Example 1.4. (N, +) is a subsemigroup of (Z,+) and (Z, x) is a subsemigroup

of (R, x) where + is the usual addition and x is the usual multiplication.

Definition 1.3. Let S be a semigroup. An element a € S is called regular if
there exists x € S such that ara = a. The semigroup S is called regular if every

element of S is regular.

Example 1.5. Consider the semigroup (7'(X), o) in Example 1.3. To show that
(T'(X),0) is a regular semigroup, let v € T'(X). Then for each x € ran (a) there
exists a, € X such that (a,)a = z.

Define f: X — X by

a, if ze€ran (a),
()8 =

x if x¢ran (a).



Claim that o = awo # o . We must show that dom («a) = dom (a0
foa)and (a)(aofoa) = (a)a for all a € dom (). Obviously, dom (a0 foa) C
dom (a). Let y € dom (a). We have (3)(aofoa) = ((1)a)Ba = (agu)a = (¥)a,
from which it follows that dom («) C dom (a0 foa) and (y)(ao foa) = (y)a
for all y € dom (o). Hence o = a0 o o, as claimed.

We have (T'(X), o) is a regular semigroup since for o € T'(X), there
exists # € T(X) such that

a=aofoaqa.

Definition 1.4. Let S be a semigroup and a € S. An element o’ € S is called an

tnverse of a if
a=ad'a and a’ = d'ad’.
The set of all inverses of a is denoted by V' (a).

Definition 1.5. Let S be a semigroup. An element e € S is said to be an
idempotent if e = e. The set of all idempotents is denoted by E(S). A semigroup
S is called a band if S = E(95).

Definition 1.6. Let A be a nonempty set. A relation on A we mean an arbitrary

subset of A x A.

Definition 1.7. Let A be a nonempty set and p a relation on A. Then
p is called reflexive if (a,a) € p for all a € A;
p is called symmetric if for a,b € A, (a,b) € p = (b,a) € p;
p is called transitive if for a,b,c € A, (a,b) € p and (b,c) € p =

(a,c) € p.

Definition 1.8. Let A be a nonempty set. A relation p on A is called an equiva-

lence relation on A if it is reflexive, symmetric and transitive.

Example 1.6. Let p be a relation on Z defined by

apb < 4| a—b for all a,b € Z.



We have p is an equivalence relation on Z since
p is reflexive: for a € Z,4| a —a = (a,a) € p;

p is symmetric: for a,b € Z,

(a,b) e p=4|a—0b
=4r=a—-0> for some x € Z
= 4(—x) =b—a because —z € Z
=4 b—a

= (b,a) € p;
p is transitive: for a,b,c € Z,

(a,b) € pand (b,c) e p=4|a—band 4| b—c
=4r=a—0band 4y =b—c for some x,y € Z
=dr+4y=(a—0b)+ (b—¢)
=4(r+y)=a—c because x +y € Z
=4l a—c

= (a,c) € p.

Definition 1.9. The relations £, R, 'H and D on a semigroup S were introduced
by J. A. Green (1951) as the following rules:
(i) aLb if and only if S'a = S'b, where S'a = Sa U {a};
(i) aRb if and only if aS* = bS*, where aS* = aS U {a};
(i) H = LNTR;
(iv) D=LoR.
We have the relations £, R, H and D on a semigroup S are equiv-

alence relations. The equivalence relations £, R, ‘H and D are called Green’s

relations. An alternative characterization is given in the following remark:

Remark 1.1. Let a, b be elements of a semigroup S. We have



(i) aLb if and only if there exist z,y € S' such that za = b and

ii) aRb if and only if there exist z,y € S! such that az = b and
(i) y y

(ili) aHb if and only if aLb and aRb;
(iv) aDb if and only if there exists ¢ € S such that aLc and ¢Rb;

where

51 S if S has an identity element,
SU{1l} otherwise.

The following theorem shows that the relations £ and R commute.
Theorem 1.1. LoR=Ro L.

Again, we will use the notation and terminology of Howie (1976) to

introduce a congruence for semigroups as follows:

Definition 1.10. Let S be a semigroup . An equivalence relation p on S is called

a right congruence on S' if

(a,b) € p= (at,bt) € p forall a,b,t €S,

and a left congruence on S if

(a,b) € p= (ta,tb) € p forall a,b,t € S.

An equivalence relation p on S is called a congruence on S if it is both a right and

a left congruence on S.

Example 1.7. Let p be an equivalence relation on a semigroup (Z, +) defined by

apb< 4| a—b for all a,b € Z.



We have p is a right congruence on Z since for a, b, t € Z,

(a,b) e p=4la—>b
=4r=a—0b forsomexeZ
=4dr=(a+1t)— (b+1)
=4 (a+t)—(b+1)

= (a+t,b+1) €p.

A similar argument shows that p is a left congruence on Z. Hence p is a congruence

on 7.

Example 1.8. Let p be an equivalence relation on a semigroup (Z, x) defined by

apb < 4| a—b for all a,b € Z.

We have p is a right congruence on Z since for a, b, t € Z,

(a,b) e p=4|a—>b
=4r=a—b forsomexecZ
= 4ot = (a — b)t
= 4(xt) = at — bt because zt € Z
= 4| at — bt

= (at,bt) € p.

A similar argument shows that p is a left congruence on Z. Hence p is a congruence

on 7.

In 1955, G. Thierrin introduced the notions of a reductive congru-

ence and a reductive semigroup (Fattahi and Vishki, 2004: 262) as the following.

Definition 1.11. Let S be a semigroup. A congruence p is called right reductive
on S if
(at,bt) € p = (a,b) € p for all a,b,t € S,



and left reductive on S if
(ta,tb) € p = (a,b) € p for all a,b,t € S.
A congruence p on S is called reductive on S if it is both right and left reductive
on S.
Example 1.9. Consider the congruence p on (Z,+) in Example 1.7. We have p

is right reductive on Z since for a, b,t € Z,

(a+t,b+t)ep=4| (a+t)—(b+1)
=4z =(a+t)—(b+1t) forsomezecZ
=4dr=a-b>
=4l a—"b

= (a,b) € p.
A similar argument shows that p is left reductive on Z. Hence p is reductive on

Z.

Example 1.10. Consider the congruence p on (Z, x) in Example 1.8. We have p

is not right and left reductive on Z.

Definition 1.12. A semigroup S is called right (resp. left) reductive if equality
on S is a right (resp. left) reductive congruence. In other words, S is called right
reductive if

at=bt =a=0>b forallabtes,

and left reductive if

ta=tb=a=05b forallabtels.

A semigroup S is called reductive if it is both right and left reductive.

Example 1.11. Consider the semigroup (Z,+). We have (Z,+) is a reductive



semigroup since for a,b,t € Z,
a+t=0+t=a=0,

and

t+a=t+b=a=0.

Example 1.12. Consider the semigroup (Z, x). We have (Z, X) is not a right

and a left reductive semigroup.

Definition 1.13. Let A be a set of all right (resp. left) reductive congruence on
a semigroup S. A congruence p on S is called the minimum right (resp. left)

reductive if p C p/ for all p' € A.

1.2 TI'-semigroups

We first recall some definitions and examples from Sen and Saha

(1986), and Saha (1987).

Definition 1.14. Let S and [ be nonempty sets. Then S is called a I'-semigroup
if it satisfies aab € S and (aab)fec = aa(bfc) for all a,b,c € S and o, € T

We give some examples of I'-semigroups.

Example 1.13. Let Z be the set of all integers and I' = {n| n € N}. Define
aab = a+a+bforall a,b € Z and a € I where + is the usual addition. We have

Z is a I'-semigroup.

Example 1.14. Let Z be the set of all integers and I' = {n| n € N}. Define
aah = a x a x b for all a,b € Z and a € I" where x is the usual multiplication.

We have Z is a I'-semigroup.

1

Example 1.15. Let R be the set of all real numbers and I' = {—‘ n e N}. Define
n

aahb = a x a x b for all a,b € R and o € I' where X is the usual multiplication.

We have R is a I'-semigroup.



Example 1.16. Let S be a set of all negative rational numbers and

r:{—%

X is the usual multiplication. We have S is a I'-semigroup.

p is prime}. Define aab = a x a x b for all a,b € S and o € " where

Example 1.17. Let S = {42+ 3| z € Z} and I' = {4n + 1| n € N}. Define
aab =a+a+bforall a,b € S and a € I where + is the usual addition. We have

S is a I'-semigroup.

Example 1.18. For nonempty sets X and Y, let T'(X,Y) denote the set of all
mappings from X to Y. Let I' be a nonempty subset of T(Y, X). Define a mapping
TX,)Y)xI'xT(X,)Y) - T(X,Y) by ayf =aovyofforall o, € T(X,Y) and

v € T where o is the composition of functions. We have T'(X,Y) is a I'-semigroup.

Definition 1.15. Let S be a I'-semigroup. A nonempty subset 7" of S is said to
be a I'-subsemigroup of S if TTT C T where TT'T = {aab | a,b € T and a € T'}.

Example 1.19. Consider the ['-semigroups in Example 1.13. Let N be the set
of all natural numbers. We have N is a I'-subsemigroup of Z since N C Z and

NI'N € N.

Example 1.20. Consider the I'-semigroup S in Example 1.17. Let T' =
{4n —1| n € N}. We have T is a I-subsemigroup of S since T’ C S and TTT C T.

Definition 1.16. Let S be a I'-semigroup. An element a € S is said to be reqular
if there exist x € S and «, 3 € I such that a = aaxBa. The I'-semigroup S is said

to be a regular I'-semigroup if every element of S is regular.

Example 1.21. Consider the I'-semigroup Z in Example 1.13. We have Z is a
regular I'-semigroup since for a € Z, if « = m and § = n for some m,n € N,
then there exists t = —m — n — a € Z such that aaxfa =a+m+z+n-+a=

a+m+(—m—n—a)+n+a=a.

Example 1.22. Consider the I'-semigroup S in Example 1.16. Without loss of

generality, let a = ™ ¢ S where m > 0 and n < 0.
n



1
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1
nplpz,a = —— and f = ——. Then
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where p; and py are prime. Thus taking x =
a = aaxfa.

Ifm # 1, then m = pips ... p;, where p;’s are prime. Now Pibe-- Pk _

n

1 1
D1pP2 pkx(__>><#x<——>xw. Thus taking z =
n p1 D2p3 - - - Pr—1 Dk n

L,a = —— and f = ——. Then a = aazxfa.
D2pP3 - - - Pk—1 p1 Pk
Hence S is a regular I'-semigroup.

Definition 1.17. Let S be a I'-semigroup and a € S. Let b € S and o, 3 € T.

An element b of S is called an («, 3)-inverse of a if a = aabfBa and b = bFaabd.

Definition 1.18. Let S be a I'-semigroup and a € I'. An element e € S is said to

be an a-idempotent if eace = e. The set of all a-idempotents is denoted by E,(.5).
We denote U E.(S) by E(S). Any element of E(S) is called an idempotent

acl’
element of S. A T'-semigroup S is called an idempotent I'-semigroup if S = E(S).

Definition 1.19. Let S be a I'-semigroup. A nonempty subset A of S is called a
left ideal of S if STA C A, a right ideal of S if AI'S C A, and an ideal of S if it
is both a left and a right ideal of S.

Example 1.23. Consider the I'-semigroups Z in Example 1.14. Let A = {0} C
Z. We have A is a left and a right ideal of Z since ZI'A C A and AI'Z C A,

respectively. Therefore A is an ideal of Z.

Definition 1.20. Let S be a ['-semigroup. A I'-semigroup S is called left simple
if S'is the unique left ideal of S, right simple if S is the unique right ideal of S,
and simple if S is the unique ideal of S.

Example 1.24. Consider the ['-semigroups Z in Example 1.13. We have Z is left
and right simple since Z is the unique left and right ideal of Z, respectively. Also

['-semigroup Z is simple since Z is the unique ideal of Z.

Example 1.25. Consider the I'-semigroups Z in Example 1.14. By Example 1.23,
we see that Z is not left and right simple. Also Z is not simple.



CHAPTER 2

Green’s relations for I'-semigroups

Green’s relations for semigroups were introduced by J. A. Green in
the year 1951. They are equivalence relations that characterize the element of
a semigroup in term of the principal ideals they generate. They have played a
fundamental role in the development of semigroup theory. In this chapter, we
study Green’s relations for ['-semigroups and also investigate some interesting
properties of these relations.

We demonstrate this chapter in four sections. In the first section,
we introduce the notions of Green’s relations for I'-semigroups and present some
results which will be used in the next sections. Next, we point out the structure of
D-classes and generalize Green’s Theorem for semigroups to Green’s Theorem for
['-semigroups. In the third section, we focus regular D-classes. In the last section,

ideals of I'-semigroups and simple ['-semigroups are studied.

2.1 The equivalences £, R, H and D

Green’s relations £, R, H and D on a I'-semigroup S were defined
by N. K. Saha (1987) as the following rules:
(i) aLb if and only if S'T'a = S'T'b, where S'T'a = STa U {a};
(ii) aRb if and only if al'S* = I'S?, where alI'S* = aI'S U {a};
(i) H = LN R;
(iv) D = LoR.
An alternative characterization, making the aspect of these relations

more explicit, is given in the following remark:

Remark 2.1. Let a,b be elements of a ['-semigroup S. We have
(i) aLb if and only if a = b or there exist z,y € S and «, f € I' such
that a = xab and b = yfa;

11
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(ii) aRb if and only if @ = b or there exist z,y € S and o, € T’
such that a = bax and b = afy;

(iii) aHb if and only if aLb and aRb;

(iv) aDb if and only if there exists ¢ € S such that aLc and ¢Rb.

Another immediate properties of £, R,H, and D are as the follow-
ing:
Proposition 2.1. Let S be a I'-semigroup. We have L, R, H, and D are equiva-

lence relations on S.

Proof. Let a € S. Obviously, we have (a,a) € L. Hence L is reflexive.

Let a,b € S. If (a,b) € L, then S'Ta = S'T'b. Tt is easy to see that
(b,a) € L. Hence L is symmetric.

Let a,b,c € S. If (a,b) € L and (b,c) € L, then S'Ta = S'Tb and
ST = ST'c. We have S'T'a = S'Tc. Tt follows that (a,c) € L. Hence L is
transitive.

Therefore £ is an equivalence relation on S. The relation R is
proved in an analogous way.

Since the intersection of two equivalence relations is again an equiv-

alence relation, H = £ NR is an equivalence relation on S. O
For the proof of D, we must use the following theorem:
Theorem 2.2. Lo R =RoL.

Proof. Let (a,b) € Lo R. Then there exists ¢ € S such that aLc and ¢Rb.
Case 1. a = c¢. Then aRb. Since aRb and bLb, (a,b) € Ro L.
Case 2. b= c. Then aLb. Since aRa and aLlb, (a,b) € Ro L.
Case 3. a # c and b # c¢. Since aLc and c¢Rb, there exist x,y, u,v €
S and «a, 3,1, € T such that

raa=c, yBc=a, cnu=">b, buv=-c.

Let d = yBcnu. Then

anu = yPBenu = d
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and

duv = yBenupv = yBbuv = yfc = a,

from which it follows aRd. Also,

yBb = yBenu = d

and

rad = raylfenu = raanu = cnu = b,

so dLb. We deduce that (a,b) € R o L. Therefore Lo R CRo L.
Similarly, we can prove that Ro L C Lo R. O]

Now we show that D = L o R is an equivalence relation on S.

Let a € S. Since (a,a) € L and (a,a) € R, (a,a) € L o R. Hence
L oR is reflexive.

Let a,b € S such that (a,b) € Lo R. It follows that aL o Rb. Then
there exists ¢ € S such that aLc and ¢Rb. We have bRc and cLa. Thus bR o La.
Since Ro L = Lo R, bL o Ra. It follows that (b,a) € Lo R. Hence Lo R is
symmetric.

Let a,b,c € S such that (a,b) € LoR and (b, c) € LoR. Then there
exist x,y € S such that aLlx, xRb, bLy and yRc. Since Rb and bLy, xR o Ly.
Again from R o L = Lo R, thus 2L o Ry. Then there exists z € S such that 2Lz
and zRy. Since aLx and xLz, alz. Since zRy and yRec, zRe. since aLz and
ZRe, al o Re. It follows that (a,c) € Lo R. Hence £ o R is transitive.

Therefore £ o R = D is an equivalence relation on S.

Lemma 2.3. Let S be a I'-semigroup. The following statements hold.
(i) HCLCD, HCRCD.
(i) The relation L is a right congruence on S and the relation R is

a left congruence on S.
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Proof. (i) Let a,b € S. We have

(a,b) € H = (a,b) € £ and (a,b) € R
= (a,b) € L

= (a,b) € £ and (b,b) € R

= (a,b)

a,b) € D.

We have H C £ C D. Similarly, H C R C D.
We can see the proof of (ii) in chapter 3. [

The L-class (resp. R-class, H-class, D-class) containing the element

a of a T-semigroup S will be written as L, (resp. R,, Hq, D,).

Proposition 2.4. Ifa and b are elements of a I'-semigroup S such that L, N Ry #
(0, then L, "Ry = H, for all x € L, N Ry.

Proof. Let x € L,NRy. Then L, = L, and R, = R,. We have L,NR, = L,NR, =
H,. O

Lemma 2.5. If a is a regular element of a I'-semigroup S, then S'T'a = STa,

al'St = al’'S and S'T'al’S' = STal'S.

Proof. Let a € S. Then a = aaxfa for some x € S and «, 3 € I'. We have
S'Ta = S'TaazBa = (S'Taax)Ba C STa C S'Ta,
from which it follows S'I'a = STa. Similarly, we have aI'S' = aI'S. Thus

S'Tal'S" = (S'Ta)T'S* = STal'S* = ST'(al'S*) = ST(al'S) = STal'S.

The following theorem will be used variously in this chapter.

Theorem 2.6. Let S be a I'-semigroup, o € I' and e an a-idempotent. Then
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(i) ace = a for all a € L.;
(ii) eaa = a for all a € R,;
(1ii) ace = a = eaa for all a € H,;

(iv) For all a € S,|H, N E(S)| < 1.

Proof. (i) Let a € L,. Then ale. It follows that S'T'a = S'T'e. Then a = e or
there exist x € S and v € I" such that a = zve. If a = e, then aae = eae = e = a.
If a = xvye, then ace = (xye)ae = xy(eae) = xye = a.

(ii) It is similar to (i).

(iii) It follows from (i) and (ii).

(iv) Let e, f € H,NE,. Then eHf. Soelf and eRf. Then f € L,
and e € Ry. By (i) and (ii), respectively, we have fae = f and fae = e. Therefore
e = f. It follows that |H, N E,(S)] < 1. O

Lemma 2.7. If a and x are elements of a I'-semigroup S and o, 3 € I' such that

a = aaxfBa, then S'Ta = S'T'zBa and al'S* = acxT'S?.

Proof. Since S'T'a = S'TaaxBa = (S'Ta)azfa C S'Txfa = (S'Tz)Ba C S'Ta,
STa = S'T'zBa. Similarly, al'S' = aax'S*. n

Theorem 2.8. Let S be a I'-semigroup and o, 3 € I'. The following statements
hold.

(i) If a,x € S such that a = aaxfa, then aLxfa and aRaax.

(ii) For a € S, if d' is an («, 3)-inverse of a, then R, N Ly and

Ry N L, contain a B-idempotent aca’ and an a-idempotent o’ Ba, respectively.

Proof. (i) It follows from Lemma 2.7 and definitions of £ and R on S.

(ii) Let a € S and @' be an (a, B)-inverse of a. Then a = aad'fa
and o' = d/facd’. By a = aad'fa and (i), we have d/a € L, and acd’ € R,. By
a’ = d'faca’ and (i), we have aad’ € L, and a'fa € Ry. Thus aad’ € R, N Ly
and d’fa € Ry N L,. Since a = awd Ba, d' fa = d' facd fa and acad’ = acad’ Baca’.

Therefore a’(a is an a-idempotent and aaa’ is a S-idempotent. n

Immediately by Proposition 2.4, Theorem 2.6 (iv) and Theorem 2.8

(ii), we have the following theorem:
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Theorem 2.9. Let a be an element of a I'-semigroup S and o, 3 € I'. If b and ¢
are («, B)-inverses of a such that bHc, then b = c.

Proof. Let a € S. Assume that b and ¢ are (o, 3)-inverses of a. By Theorem 2.8
(ii), we have aab € R, N Ly, bfa € Ry N Ly, ace € Ry N L. and ¢fa € R, N Ly.
Since bHc and H=LNR, L, = L. and R, = R.. Thus

aab,aac € R, N Ly, bBa, cBa € Ry N L,.

By Proposition 2.4, we have Hynp = Hooe and Hyp, = Hep,. Since aab, acc € Eg
and bfa, cfa € E,, by Theorem 2.6 (iv), we have aab = aac and bfa = cfa. It
follows that

b = bBaab = bF(aab) = bB(aac) = bfaac = (bfa)ac = cfaac = c.

O

Lemma 2.10. If a is an element of a I'-semigroup S such that S'T'a = S'Te or

al’'St = eI'S* for some e € E,(S), then a is a regular element of S.

Proof. Suppose that S'T'a = S'T'e. Then a = e or there exist z,y € S and
B,n € T" such that a = zfe,e = yna. If a = e, then a = e = eaeae. If a = xfe
and e = yna, then a = zfe = (zfe)ae = aayna. Thus a is a regular element of S.

Similarly, if al'S' = eI'S?, then a is a regular element of S. O

Theorem 2.11. Let S be a I'-semigroup and o € T'. If e € E,(5) and

G.={x € S| zae = eax = x and ray = yax = e for some y € S},

then G, is a subgroup of S, where e is an identity and

G.={r eS|z eceaSNSae and e € xaS N Sax}.

Proof. Obviously, G, is a subsemigroup of S, where e is an identity. We will

show that G, is a subgroup of S, where e is an identity. Let x € G.. Then
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eaxr = rae = x and ray = yax = e for some y € S. Since eayae € S,

ea(eayae) = (eayae)ae = eayae

and

raleayae) = e = (eayae)a.

Thus eayae € G.. Therefore G, is a subgroup of S, where e is an identity.

Let H={x € S| x € ewS N Sae and e € zaS N Sazx}. We will
show that G, = H. Clearly, G, C H. Let x € H. By the definition of H, there
exist a,b,c,d € S such that

T = eaa = bae and e = xac = dox.

Then
r = eaa = eaeqa) = eax
and
x = bae = (bae)ae = zae.
Thus
za(eacae) = (rae)acae = racae = eae = e,
(eadae)ax = eada(eax) = eadaxr = eae = e
and

eacae = eaeacae = ea(dax)acae = eada(rac)ae = eadaeae = eadoe.

We can conclude that

eaxr = zae = x and za(eacae) = (eacae)ar = e.

Thus z € G,.. Hence H C G.. Therefore GG, = H, as desired. O

Theorem 2.12. If S is a I'-semigroup and o € T', then G, C H, for alle € E,(S).
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Proof. Let x € GG,. Then xae = eaxr = x and ray = yaxr = e for some y € S.
Since x = zae and e = yax, xLe. Since v = eax and e = zay, vRe. Thus

re L.NR,=H,. Hence G, C H,. O

Theorem 2.13. Let S be a regular I'-semigroup and a,b € S. The following
statements are equivalent.

(i) a € STOI'S.

(ii) There ezists ¢ € S such that aRc and ¢ € ST'b.

Proof. (i)=(ii). Assume that a € STbI'S. Then a = zabfBy for some z,y € S
and o, € I'. Since S is regular, there exist z € S and n,u € I such that
a = anzpa. Let ¢ = (anzpx)ab. Thus ¢ € STb. Since ¢ = an(zpzradb) and
a = anzpa = anzu(xabfy) = (anzpzab)By = By, aRec.

(ii)=(i). Assume that there exists ¢ € S such that aRc and ¢ € ST'b.
Since S is regular and aRe, a € al'S = cI'S C STOI'S. m

2.2 The structure of D-classes

Each D-class in a I'-semigroup is a union of L-classes and also a
union of R-classes. The intersection of L-classes and R-classes is empty or is an

H-class. In fact, by the definition of D,

aDb< RaNLy#0 & LoN Ry # 0.

It is convenient to visualize a D—class as what Clifford and Preston
(Howie, 1972: 42) have called an egg-box in which each row represents an R—class,

each column an L£—class and each cell an H—class. We can see that as follows:

d,e

From this, we have R, = Ry, Ry = R., L, = L., Ly = Ly = L., H; =
H, and D, = Dy = D, = D, = D..
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Proposition 2.14. Let a be an element in a I'-semigroup S. We have L, C D,
and R, C D,.

Proof. 1t follows from the definition of Green’s relation D. m

Theorem 2.15. Let a and b be elements in a T'-semigroup S. We have LyN Ry # ()
if and only if Dy = Dy,

Proof. Suppose that L, N Ry # 0. Let x € L, N Ry. Then z € L, € D, and
x € Ry C Dy. Thus D, N Dy, # 0. Hence D, = D,

Conversely, suppose that D, = D,. We have aDb. Since D = LoR,
there exists x € S such that aLz and 2Rb. Hence x € L, N Ry, O

The following lemma is similar to Green’s Lemma for semigroups.

Lemma 2.16. (Green’s Lemma for I'-semigroups) Let a and b be elements in a
I-semigroup S such that aRb. Then a = b or there exist s,s' € S and o, € T’
such that accs = b and bfs' = a.

If a =0, define o : Ly — S and ¢ : Ly — S by

gp:w:lLazlLb

where 1, and 1p, are identity maps on L, and Ly, respectively.

If a # b, define p: L, — S and ) : Ly — S by

(x)p =xas if x€ L,

and

(WY =yps" if ye Ly

We have the following statements hold.
(i) (La)p = Ly and (Ly) = Ly,
(ii) ot = 1, and g =1y,
(i1i) If x € L, then ((x)p)Rx and if y € Ly, then ((y)Y)Ry.
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Proof. (i) If a = b, then obviously (L,)p = L.

Assume a # b. Let x € L,. Then xLa. Thus zasLaas. So
() = xas € Laos = Lp. Hence (L,)p C Ly. Next, let y € L. We have yLb.
Then y = b or there exist ¢,t' € S and v,n € T" such that tvy = b and t'nb =y. If
y =0, then y = b=aas = (a)p € (Ly)p. If y # b, we have a = bfs’ = tvyfs =
tvt'nbBs’ = tvt'na. Then alt'na. Thus y = t'nb = t'naas = (t'na)p € (L,)e.
Hence L, C (Ly)p. Therefore (Ly)p = Ly.

Similarly, (Ly)Y = L.

(ii) If @ = b, then obviously @i = 1,,.

Assume a # b. Let x € L,. Then x = a or there exist t € S and
v € I'such that x = tra. If x = a, then (z)pY) = zasfs’ = aasfs’ = b3s' =a = x.
If z = trva, then (z)pY = zasfs’ = traasfs’ = tvbfs’ = tva = x. Therefore
oY =1y,.

Similarly, ¥ = 1;,.

(iii) Let x € L,.

Case 1. a =b. Then obviously ((z)p)Rz.

Case 2. a # b. Then (z)p = zas and x = (x)py = ((z)p)Bs’. We
have ((z)p)Rx.

Similarly, if y € L, we have ((y)¥)Ry. O

The left-right dual of Lemma 2.16 is proved in an analogous way.

Let a and b be elements in a ['-semigroup S such that aDb. By
Theorem 2.15, there exists ¢ € L, N R,. Thus L, = L. and R. = R,. Since ¢Rb,
by Lemma 2.16, we have |L.| = |Ly|. Hence |L,| = |Lp|. Similarly, if aLc, by the
dual of Lemma 2.16, we have |R,| = |R,|. We have the following corollary:
Corollary 2.17. If a and b are elements in a I'-semigroup S such that aDb, then
Lol = |Ly| and |Rq| = |R|.
Lemma 2.18. Let a and b be elements in a I'-semigroup S such that aRb. If

s € S such that aas = b for some a € I, then Hyas = Hyos for all x € Ly,.

Proof. Let x € L,. By Lemma 2.16 (i) and (iii), we have L,as = L and 2R (zas).

Thus xas € L,. Hence L., = L.
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To prove Hy,as C H,.s, let y € H,. Theny € L, = L,. By
Lemma 2.16 (iii), we have yR(yas). Thus yas € R, = R, = R..s. Hence
H,as C R,ns. Since H, € L, = L,,H,as C L,as = Ly, = L,.s. Therefore
H,as C Ryos N Lypos = Hyas, this imples Hyoas C Hyqs.

Conversely, let z € H,ns. Then z € L,os = Ly. Since L,as = Ly,
there exists w € L, such that was = z. By Lemma 2.16 (iii), we have wR(was).
Then wRz. We have w € R, = Ryns. Thus w € LN Ryos = L, N R, = H,.
Hence z = was € H,as. Therefore H,,, C H,as.

We can conclude that H,as = H,,, for all x € L,. O

The left-right dual of Lemma 2.18 is proved in an analogous way.

Theorem 2.19. Let a and c be elements in a I'-semigroup S such that aDc. Let
b € S such that aRb and bLc. Then a = b or there exist s,s' € S and o, € T’
such that acs = b,b3s’ = a and b = ¢ or there exist t,t' € S and v,n € T" such
that tvb = ¢, t'nc = 0.

Ifa="band b=c, define p: H, — S and : H. — S by

o =1 =1g, = 1g,

where 1y, and 1y, are identity maps on H, and H., respectively.

If a="b and b # ¢, define p: H, — S and v : H. — S by

(x)p =tvx if x € H,,

and
W=ty if yeH.
If a # b and b= c, define p: H, — S and v : H. — S by
(x)p =xas if x€ H,,
and

(W =yps" if yeH.
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If a #b and b # ¢, define ¢ : H, — S and ¢ : H. — S by

(x)p =tvzas if x € H,,

and

(y)y =tnyBs’ if ye H..

We have the following statements hold.
(i) (Ha)p = He and (Hc)) = H,.
(ii) ptb = 1y, and Yo = 1g,.
(iit) |Ha| = [He|.

Proof. (i) and (ii). Let z € H,.

Case 1. a =b and b= c. Then (x)p =x € H, = H, = H..

Case 2. a = b and tvb = c¢,t'nc = b. Then (x)¢ = tvr and
H, = H,. Since bLc and tvb = ¢, by the dual of Lemma 2.18, tvH, = H.. Thus
(x)p =tvx € tvH, = tvH, = H...

Case 3. aas = b,bf3s’ = a and b = c¢. Then (z)p = zas. Since aRb
and aas = b, by Lemma 2.18, H,as = Hy,. Thus (z)p = zas € Hyas = H, = H..

Case 4. aas = b,bfs’ = a and tvb = c,t'nc = b. Then (z)p =
tvras. Since aRb and aas = b, by Lemma 2.18, H,as = H,. Since bLc and
tvb = ¢, by the dual of Lemma 2.18, tvH, = H.. Thus (z)p = tvzas € tvH,as =
tv(H,as) = tvHy, = H...

Hence (H,)p C H.. Similarly, (H.)y C H,.

Next, we show that oy = 1p,.

Case 1. a =b and b = c¢. Then (z)py) = x.

Case 2. a = b and tvb = c,t'nc = b. Since v € H,, x € R, = R,.
Since bLc and x € Ry, by the dual of Lemma 2.16 (ii), we have ¢'nptvax = x. Thus
(x)pp = t'ntve = x.

Case 3. aas = b,b3s’ = a and b = ¢. Since v € H,, v € L,.
Since aRb and x € L,, by Lemma 2.16 (ii), we have zasfs’ = x. Thus (z)py =

rasfs = .
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Case 4. aas = b,bfs’ = a and tvb = c,t'nc = b. Since x € H,,
x € L, and x € R,. Since aRb, x € R, = Ry. Since aRb and = € L,, by Lemma
2.16 (ii), we have zasfs’ = x. Since bLc and = € Ry, by the dual of Lemma 2.16
(i), we have t'ntvx = x. Thus (x)py = t'ntrvrasfs’ = x.

Hence ¢ = 1p,. Similarly, ¢ = 1p_.

We have ¢ maps H, onto H. and @ maps H. onto H, . Hence
(Ha)p = He and (Hc)yp = H,.

(iii) By (ii), we have ¢ is one to one. Thus |H,| = |(H,)¢|. By (i),
we have (H,)p = H,, so |H,| = |H,|. O

The following theorem holds.
Theorem 2.20. Let a and b be elements in a I'-semigroup S. Then aab € R,N L,
if and only if (Ry N Ly) N EL(S) # 0. Moreover, if (Ry N Ly) N EL(S) # 0, then

acH, = Hyab = HyaHy = R, N Ly,

Proof. Suppose that aab € R, N L,. We have aR(aab). Then a = aab or there
exist ¢ € S and 8 € I' such that a = (aab)fBc. If a = aab, we have L, = Ly By

Lemma 2.16 (ii), we have

zab=x forall x € L,. (2.1)

Since aabLlb, Lyop = Ly. Thus L, = Loy = Lp. Since b € Ly, = L,, by (2.1), we
have bab = b € E,(S). Thus b € (R, N L) N E,(S). If a = (aab)fc, By Lemma
2.16 (i), we have LyapfBc = L,. By Lemma 2.16 (ii), we have

zabfc =1z forall x € L,. (2.2)

Since aab € Ly, b € Lgap. Hence bfc € LywfBc = L,. By (2.2), we have
(bBc)a(bBc) = bfe € E,(S). Since b € Lgap, by Lemma 2.16 (iii), (bGc)Rb.
We have bfc € Ry,. Thus bfc € (R, N Ly) N Ey(S).

Conversely, Let e € R, N L, N E,(S). Since b € R, by Theorem
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2.6 (ii), we have eab = b. Since eRb and eab = b, By Lemma 2.16 (i) and (iii),
L.ab = Ly and
(xab)Rx  for all z € L. (2.3)

Since e € Lg, a € L.. By (2.3), we have aab € R,. Since L.ab = L, and a € L.,
aab € Ly. Thus aab € R, N Ly,.

Let x € H, and y € H,. Then L, = L,, Ry, = Ry, L, = L,
and R, = R,. We have that e € (R, N L) N E,(S). By the converse of this
theorem, we have zay € R, N L, = R, N Ly, that is, H,aH, C R, N L. Since
aab € HyaH, C R, N Ly, aR(aab) and bL(aab). Since aR(aab), by Lemma 2.18,
H,ab = H,up. Since bL(aab), by the dual of Lemma 2.18, aacHy, = H,qp. Thus

accH, € Hy,aHy, € Ry, N Ly = Raap N Loay = Hoor = acH,y
and
Haab C HaaHb - Ra N Lb = Raab N Laab = Haab = Haab-
Hence aoH, = H,ob = HyaHy = Hyop = R, N L. O
The following theorem is similar to Green’s Theorem for semigroups.

Theorem 2.21. (Green’s Theorem for I'-semigroups) Let a be an element in a I'-
semigroup S and o € T'. Then HyaoH,NH, =0 or HyaH, = H,. If H,aH, = H,,

then H, is a subsemigroup of S,.

Proof. Suppose that H,aH, N H, # (). There exists © € H, such that x = yaz for
some y,z € H,. Thus x € L,NR,, by Theorem 2.20, we have H,aH, = L,N R, =
H,. m

Applying Theorem 2.21, we obtain the following corollary.

Corollary 2.22. Let e be an a—idempotent of a I'-semigroup S where o € I'. If
H.aH, = H,., then H, is a subsemigroup of S,.

For this example, we characterize the egg-box of some I'-semigroups.
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Example 2.1. Consider the I'-semigroup 7'(X,Y) in Example 1.18. Let X =
Ty z

a b b
The I'-semigroup (T'(X,Y), #) has three D—classes. The three D—classes

{a,b},Y ={x,y,z} and T' = {0} where 6 = eT(Y, X).

Dy, Dy and D3 can be enumerated in the egg box fashion as follows:

a b a b a b
Dy
T x Yy z z
a b a b a b a b
Dy
Ty Yy x Tz z T
a b
z
Dy Y
a b
Y
We have D; and D, are regular but Dj3 is not regular.
a b a b
Consider H = { }. We have HOH = H. Then H
Ty Yy x

is a subsemigroup of (T'(X,Y)).

Example 2.2. Consider the I'-semigroup T'(X,Y’) in Example 1.18. Let X =

T
{a,0},Y = {z,y} and I' = {61,05} where 6, = Y € T(Y,X) and 0, =
a b
V) e x).
a a

The I'-semigroup (T'(X,Y), #) has two D—classes. The two D—classes

Dy, and Dy can be enumerated in the egg box fashion as follows:

Dy

a b a b
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We have D; and D are regular.

a b a b
Consider H = { }. We have H01H = H. Then H

Ty y x
is a subsemigroup of (T'(X,Y))y,. However, we have HO,H N H = ().

2.3 Regular D-classes

In the year 1936, the concept of regularity was introduced by Von
Neumann in ring theory (Howie, 1972: 44). In this section, we consider some
interesting properties in regular D-classes.

Our first theorem, we have the regularity is a property of D-classes

rather than of element as the following theorem:

Theorem 2.23. If a is a reqular element of a I'-semigroup S, then every element

of D, is reqular.

Proof. Since a is regular, there exist z € S and «a,3 € I' such that a = aaxfa.
Let b € D,. So aDb. Then aLc and ¢Rb for some ¢ € S. Since aLlc, a = ¢ or there

exist u,v € S and v, € I' such that
uya = ¢ and vuc = a.

Since ¢Rb, b = ¢ or there exist z,t € S and 1,0 € I' such that
cnz = b and bit = c.

Case 1. a =cand ¢ =b. Then a = b, so b is regular.

Case 2. a = c and cnz = b and bft = c. Then
bh(tax)fb = caxfenz = acxfanz = anz = cnz = b.
Case 3. uya = c and vuc = a, and b = c. Then

ba(zfv)ub = caxfoub = uyaazrfa = uwya = ¢ = b.



27

Case 4. uya = ¢ and vuc = a, and c¢nz = b and bft = c¢. Then

bO(taxfv)ub = caxfoucnz = uyacxfanz = wyanz = cnz = b.

Therefore b is a regular element. O]

Let D be a D-class. Then either every element of D is regular or no
element of D is regular. We call the D-class regular if all its elements are regular.
Since idempotents are regular, a D-class containing an idempotent
is regular. Conversely, we can show that a regular D-class must contain at least

one idempotent as follows:

Theorem 2.24. In a regular D-class, each L-class and each R-class contains at

least one idempotent.

Proof. Let a be an element of a regular D-class D in a [-semigroup S. Then
there exist x € S and «a, 3 € T" such that a = aaxfa. Then zfa = zf(aazfa) =
(xfa)a(zfa). Thus zfa is an a-idempotent. Since a = aa(zfa), aLxPa. Simi-

larly, aax is a f-idempotent and aRaax. O

Theorem 2.25. Let a be an element of a reqular D-class D in a I'-semigroup S.
Then

(i) If a' is an (a, B)-inverse of a, then o’ € D and the two H-classes
R, N Ly and L, N Ry, contain a (-idempotent aca’ and an a-idempotent a’(Ba,
respectively;

(17) If b € D is such that R,N Ly, and L,N R, contain a F-idempotent
e and an a-idempotent f, respectively, then Hy contains an (o, (3)-inverse a* of a
such that aca™ = e and a*Pa = f;

(1ii) No H-class contains more than one (a, 3)-inverse of a for all

ordered pair (o, 5) € I' x T,

Proof. (i) Let a’ be an (a, §)-inverse of a. Then a = aad'fa and @’ = d/faca’. By

Theorem 2.8 (i), we have

al dBa, acd Ra, d Lacd, dPBaRd.
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Thus a’'Da, from which it follows that @’ € D. By Theorem 2.8 (ii), we have
R,N Ly and L, N Ry contain a S-idempotent aaa’ and an a-idempotent o’ Sa,
respectively.

(ii) Since aRe, by Theorem 2.6 (ii), efa = a. Similarly, from aLlf
we deduce that aaf = a by Theorem 2.6 (i). Again from aRe it follows that a = e
or there exist x € S and v € I" such that ayz = e.

Case 1. a=e. Let a* = ffBe. Then

aca*Ba = aa(ffe)fa = (aaf)B(efa) = afa = efa = a

and

a*Baaa” = (ffe)faa(ffe) = fB(efa)ofBe = fB(anf)Be = fB(afe) = fBe =a".

Then a* is an (o, §)-inverse of a. Moreover

aca” = aaffe = afle = efe = e.

Further, since aLf, a = f or f = yfa for some y € S and 8 € I'. If a = f, then

a*Ba = fPefa = efefe =e = f. If f = yba, then a*Ga = fPefa = ybafefe =
yba = f. It now follows easily that a* € L. N Ry = Ly N Ry = H,.
Case 2 . ayx = e. Let a* = fyxfFe. Then

aca*fa = aa(fyxpPe)Ba = (aaf)yrf(efa) = ayrfa = efla = a

and

a*faaa” = (fryzfe)fac(fryrfe) = frablefa)afyebe = fyrflaaf)yrfe =
frxflayz)fe = frapefe = fyafe = a™.

Then a* is an («, 3)-inverse of a. Moreover

aca” = aafyrfe = ayxfe = effe = e.
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Since aLf, a = f or there exist y € S and 0 € I such that f = yfa . If a = f,
then a*fBa = fyxfefa = ayxfefa = efefa = efa = a = f. If f = yba, then
a*fa = fyxPefa = yb(ayx)Pefa = yb(efe)Ba = yb(efa) = yba = f. It now
follows easily that a* € L. N Ry = Ly, N Ry = H,,.

(ili) Suppose that o’ and a* are both (a, §)-inverses of a inside the
single H-class H,. Since aca’ and aca* are S-idempotents in the H-class R, N Ly,
aca’ = aca* by Theorem 2.6(iv). Similarly, a’Ba = a*fa because both are a-

idempotents in the H-class L, N Ry. Then o' = d'faca’ = a*faca* = a*. m

2.4 Ideals of I'-semigroups and simple I'-semigroups

In this section, we give characterizations for ideals and simple I'-
semigroups. Moreover, we consider some connections between Green’s relations,

ideals and simple I'-semigroups.

Theorem 2.26. Let S be a I'-semigroup and A a nonempty subset of S. The
following statements hold.

(i) ST A is a left ideal of S.

(ii) ATS is a right ideal of S.

(iii) STAT'S is an ideal of S.

Proof. (i) Letz € S,y € 'andy € STA. Then y = zaa for some z € S, € I" and
a € A. We have zvy = zy(zaa) = (zyz)aa € STA. It follows that ST'(STA) C
ST'A. Hence ST'A is a left ideal of S.

(ii) It is similar to (i).

(iii) Let z € S,y € I" and y € STAI'S. Then y = waafz for
some w,z € S;a,f € I' and a € A. We have xyy = zy(waafz) = (zyw)aafz €
STAT'S and yyx = (waafz)yr = waaf(zyx) € STAT'S. It follows that ST (ST AL'S)
C STAT'S and (STAT'S)I'S C STAD'S. Therefore STAI'S is an ideal of S. O

Theorem 2.27. Let S be a I'-semigroup. The following statements hold.
(i) A T-semigroup S is left simple if and only if STz = S for all

res.
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(ii) A T'-semigroup S is right simple if and only if xI'S = S for all
xeSs.
(11i) A T-semigroup S is simple if and only if ST2T'S = S for all

rzes.

Proof. (i) Assume that S is a left simple I'-semigroup. Let z € S. By Theorem
2.26 (i), we have STz is a left ideal of S. Since S is left simple, STx = S.
Conversely, assume that ST’z = S for all x € S. Let L be any left
ideal of S. Then L C S. Let y € L. We have S = STy C ST'L C L. Hence L = S.
Therefore S is a left simple I'-semigroup.
(ii) It is similar to (i).

(iii) It is similar to (i). O

Theorem 2.28. Let S be a I'-semigroup. The following statements hold.
(i) S is a left simple T'-semigroup if and only if L =S x S.
(i) S is a right simple I'-semigroup if and only if R =S x S.

Proof. (i) Assume that S is left simple. Let a,b € S. Similar to Theorem 2.26 (i),
we can show that S'T'a and S'T'b are left ideals of S. Thus S'I'a = S'I'b since S
is left simple. Hence aLb. It follows that £L =5 x S.

Conversely, assume that £ =S x S. Let A be any left ideal of S.
Obviously, A C S. Let 2 € S and a € A. Then (z,a) € S x S = L. Thus zLa. It
follows that S'I'z = S'T'a. We have x € S'I'z = S'T'a C A since a € A. Hence
S = A. Therefore S is a left simple I'-semigroup.

(ii) It is similar to (i). O

Theorem 2.29. If S is a regular I'-semigroup such that every left and right ideal
of S is an ideal of S, then L ="R.

Proof. Let a € S. Then there exist x € S and a,3 € I' such that a = aaxfa.
We have ST'a = STaaxfa = STaa(zxfBa) C STal'S and al'S = aazfal'S =
(acz)Bal’S C STal'S. Since STa and al'S are left ideal and right ideal of S,
respectively, ST'a and al'S are ideals of S. Thus ST'al'S C ST'a and ST'al'S C al'S.
Hence ST'a = STal'S = al'S. Since a is a regular element of S, by Lemma 2.5,
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S'Ta = STa and al’'ST = al'S. Therefore S'T'a = al'S'. We can conclude that
STz = 2T'S* for all # € S. By definition of £ and R, we have £ = R. m



CHAPTER 3

Congruences for I'-semigroups

Congruences have been widely studied in semigroup theory. They
have played an important role in the concept of reductive semigroups, introduced
by G. Thierrin in the year 1955. Subsequently, regular reductive semigroups were
studied by A. Fattahi and H. R. E. Vishki (2004).

In this chapter, we recall from Example 1.13 and Example 1.14
that Z under I' = {n| n € N} with the usual addition and multiplication are
['-semigroups, respectively. We separate into three sections. In the first section,
we introduce the notion of congruences for I'-semigroups. Next, we give a char-
acterization for quotient I'-semigroups and also we present some of its properties.

In the last section, reductive I'-semigroups are considered.

3.1 Congruences for ['-semigroups

Let S be a I'-semigroup. An equivalence relation p on S is called a

right congruence on S if

(a,b) € p= (avt,byt) € p for all a,b,t € S and v €T,

and a left congruence on S if

(a,b) € p= (tya,tyb) € p for all a,b,t € S and v €T

An equivalence relation p on S is called a congruence on S if it is both a right and
left congruence on S.

We give some examples of congruences for ['-semigroups.

Example 3.1. Consider the ['-semigroup Z in Example 1.13. Let p be an equiv-

32
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alence relation on a I'-semigroup Z defined by

apb < 4| a—b for all a,b € Z.

We have that p is a right congruence on Z since for a,b,t € Z and v € I,

(a,b) e p=4la—>b
=4r =a—0b for some x € Z
=>dr=(a+v+t)—(b+v+1)
=4[ (a+v+1t) = (b+v+1)
= (a+vy+t,b+y+t)€p

= (avt,byt) € p.

A similar argument shows that p is a left congruence on Z. Hence p is a congruence

on Z.

Example 3.2. Consider the I'-semigroup Z in Example 1.14. Let p be an equiv-

alence relation on a I'-semigroup Z defined by

apb < 4| a—b for all a,b € Z.

We have that p is a right congruence on Z since for a,b,t € Z and v € T,

(a,b) e p=4la—>b
=4r=a—b forsomexcZ
= dz(yt) = (a = b)(1t)
= 4(xyt) = (ayt — byt) because a7yt € Z
= 4| (avyt — byt)

= (avt, byt) € p.

A similar argument shows that p is a left congruence on Z. Hence p is a congruence



34

on Z.

Now we are ready to show that the relation £ is a right congruence
on S.

Let a,b,t € S and v € I'. Assume that (a,b) € £. We have
STa = S'T'b. Then a = b or there exist x,y € S and «, 8 € I such that a = zab
and b = yfa. If a = b, then ayt = byt. We have (avt,byt) € L since L is reflexive.

If a = zab and b = yfBa, we have

a = zab and b = yfa = ayt = (xab)yt and byt = (yLa)yt
= ayt = xa(byt) and byt = yB(ayt)
= ayt € STbyt and byt € STayt
= STayt C STbyt and STbyt C STavt

= STavyt = STbt.

Since ayt = (zab)yt = (zay)Bayt € STayt, S'Tayt = STayt. Similarly, S'Tbyt =
STbvyt. Thus S'Tayt = S'T'byt. Hence (avyt,byt) € L.
Therefore L is a right congruence on S.

A similarly argument shows that the relation R is a left congruence

on S.
Theorem 3.1. Let S be a I'-semigroup and p an equivalence relation on S. Then

p s a congruence on S if and only if

apb and cpd < (aye)p(byd) for all a,b,c,d € S and v € T.

Proof. Assume that p is a congruences on S. Let a,b,c,d € S such that apb, cpd
and v € T". Since p is a right congruence on S and apb, (ayc)p(byc). Since p
is a left congruence on S and cpd, (byc)p(byd). We have (ayc)p(byd) since p is
transitive.

Conversely, assume that apb and cpd < (aye)p(byd) for all a, b, ¢, d €
S and v € I'. Let x,y,z € S such that zpy and a € I'. Since p is reflexive, zpz.
By assumption, we have (zaz)p(yaz) and (zax)p(zay). Thus p is a congruence

on S. O
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3.2 Quotient I'-semigroups

Let S be a I'-semigroup and p a congruence on S. For ap,bp € S/p
and v € I, let (ap)vy(bp) = (ayb)p. This is well-defined, since for all a,d’,b,b' € S
and vy eI,

ap=da'pand bp =bp = (a,d),(b,V) €p

= (ayb,d'vb), (a'yb,a'vb") € p
= (ayb,d'yb') € p
= (

ayb)p = (a'v')p.

Let a,b,c € S and v, u € I'. We have

(apybp)pep = ((avb)p)pcp = ((avb)puc)p = (ay(buc))p = apy(buc)p = apy(bpucp).

Then the quotient set S/p is a I'-semigroup. The I'-semigroup S/p is called a
quotient I'-semigroup of S by p.

Theorem 3.2. Let S be a I'-semigroup and p a congruence on S. Then

(1) If p C L, then for all a,b € S, aLb if and only if ap L bp in S/p;

(17) If p C R, then for all a,b € S, aRb if and only if ap R bp in
S/p;

(1i1) If p CH, then for all a,b € S, aHb if and only if ap H bp in
S/p.

Proof. (i) Let a,b € S such that aLb. Then a = b or there exist z,y € S and
a, 3 € I' such that a = zab and b = yfa.

Case 1. a ="0. Then ap = bp.

Case 2. a = xab and b = yfBa. Then ap = (zab)p = (zp)a(bp) and
bp = (yBa)p = (yp)B(ap). Therefore apLbp.

Conversely, let a,b € S. Assume that apLbp. Then ap = bp or there
exist z,y € S and o, f € I" such that ap = (zp)a(bp) and bp = (yp)B(ap).

Case 1. ap = bp. Then (a,b) € p. Since p C L, (a,b) € L. So aLb.
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Case 2. ap = (zp)a(bp) and bp = (yp)B(ap). Then ap = (xab)p
and bp = (yBa)p. Then (a,zab) € p and (b,yBa) € p. Since p C L, (a,zab) € L
and (b,yBa) € L. Then a € S'T'(zab) and b € S'T'(yBa). Thus S'Ta = S'T'b.
Hence aLb.

(i) It is similar to (i).

(iii) It follows from (i) and (ii). O

3.3 Reductive I'-semigroups

In the year 1955, the notion of reductive semigroups was introduced
by G. Thierrin. Subsequently, A. Fattahi and H. R. E. Vishki (2004) have given
a characterization for regular reductive semigroups.

In this section, we introduced the notion of reductive I'-semigroups
and also present some connections between Green’s relations and reductive I'-
semigroups.

Let S be a I'-semigroup. A congruence p on S is called right reduc-

tive on S if

(ayt,byt) € p= (a,b) € p  for all a,b,t € S and v €T,

and left reductive on S if

(tya,tyb) € p= (a,b) € p forall a,b,t € S and v €T

A congruence p on S is called reductive on S if it is both a right and left reductive
on S.

We give some examples of reductive congruences.

Example 3.3. Consider the congruence p in Example 3.1. We have p is right
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reductive on Z since for a,b,t € Z and v € T,

(avt,byt) e p=(a+y+t,b+v+1t)€p
=4 (a+v+t)—(b+v+1)
=4dr=(a+vy+t)—(b+y+t) forsomexecZ
=4r=a—-0>
=4l a—0b

= (a,b) € p.

A similar argument shows that p is left reductive on Z. Hence p is reductive on

Z.

Example 3.4. Consider the congruence p in Example 3.2. We have p is not right

and left reductive on Z.

A TI'-semigroup S is called right reductive if

ayt =byt =a="5b foralla,bte Sandyel,

and left reductive if

tva=tyb=a="5b foralla,bte Sandyel.

A T'-semigroup is called reductive if it is both right and left reductive.

We give some examples of reductive I'-semigroups.

Example 3.5. Consider the I'-semigroup Z in Example 1.13. We have Z is a

reductive ['-semigroup since for a,b,t € Z and v € T,

at+y+t=b+y+t=a=b,

and

t+y+a=t+v+b=a=0.
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Example 3.6. Consider the I'-semigroup Z in Example 1.14. We have Z is not a

right and a left reductive I'-semigroup.

Theorem 3.3. Let S be a ['-semigroup and p a congruence on S. The following
statements are true.

(1) p is a right reductive congruence on S if and only if S/p is a
right reductive I'-semigroup.

(13) p is a left reductive congruence on S if and only if S/p is a left
reductive I'-semigroup.

(13i) p is a reductive congruence on S if and only if S/p is a reductive

I'-semigroup.

Proof. (i) Let p be a right reductive congruence on S. Let ap, bp € S/p such that
(ap)y(tp) = (bp)y(tp) for all t € S and v € I'. Then (ayt,byt) € p for all t € S
and v € I'. Since p is right reductive, (a,b) € p. Hence ap = bp.

Conversely, suppose that S/p is a right reductive I'-semigroup. Let
a,b € S such that (ayt,byt) € p for allt € S and v € I'. Then (ayt)p = (byt)p for
all t € S and v € . Thus (ap)y(tp) = (bp)y(tp) for all t € S and v € T'. Since
S/p is a right reductive ['-semigroup, ap = bp. Therefore (a,b) € p.

(i) It is similar to (i).

(iii) It follows from (i) and (ii). O

Proposition 3.4. Define the equivalence relations p, and p; on a I'-semigroup S

as follows:

pr ={(a,b) € S xS |ayt =byt for allt € S and v € I'};

pr={(a,b) € S x S|tya=tyb forallt €S andy € T'}.

Then p, and p; are congruences on S.

Proof. Let a,b € S such that (a,b) € p,. Then ayt = byt for allt € S and vy € T.
Since p, is reflexive, (ayt,byt) € p,. Thus p, is a right congruence on S.
Next, we show that p, is a left congruence on S. Let a,b € S

such that (a,b) € p,. Then afc = bfc for all ¢ € S and § € I'. We have
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ty(apBc) = ty(bfe) for all ¢,t € S and v € I'. It follows that (tya)Bc = (tyb)Sc for
all c € S and g € I'. Thus (tva,tyb) € p,. Hence p, is a left congruence on S.

A similar argument shows that p; is a left congruence on S. [
The three following theorems hold.

Theorem 3.5. Let S be a I'-semigroup. Then
(1) S is a right reductive T'-semigroup if and only if p, = 1g;
(17) S is a left reductive T'-semigroup if and only if p; = 1g.

Proof. (i) Assume S is a right reductive I'-semigroup. Let a,b € S such that ap,.b.
Then ayt = byt for all t € S and v € I'. Since S is right reductive, a = b.

Conversely, suppose p,. = 1g. Let a,b € S such that ayt = byt for
all t € S and v € T'. Then (a,b) € p,. Since p, = 1lg,a = b. Hence S is a right
reductive I'-semigroup.

(ii) It is similar to (i). O

Theorem 3.6. Let S be a reqular I'-semigroup. Then
(i) pr CR;
(i) p C L.

Proof. (i) Let (a,b) € p,. Then ayt = byt for allt € S and v € I'. So aI'S = 0I'S.
Since a € al'S and b € bI'S because S is regular, al'S' = bI'S'. Therefore
(a,b) € R. Thus p, C R.

(ii) It is similar to (i). O

If Ais a set of all right (resp. left) reductive congruence on a I'-
semigroup S. A congruence p on S is called the minimum right (resp. left)

reductive if p C p/ for all p’ € A.

Theorem 3.7. Let S be a regqular I'-semigroup. Then
(1) pr is the minimum right reductive congruence on S;

(17) py is the minimum left reductive congruence on S.
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Proof. (i) Let a,b € S. Assume that (avyt,byt) € p, for allt € S and v € I'. Then
aytBt' = bytpt' for all t,¢' € S and v, € I'. Thus aat” = bat” for all t’ € S
and « € T because S is regular. So (a,b) € p,. Therefore p, is a right reductive
congruence on S.

Next, let p be any right reductive congruence on S. Let (a,b) € p,.
Then ayt = byt for all t € S and v € T'. Since p is reflexive, (ayt,byt) € p.
Therefore (a,b) € p because p is right reductive.

(ii) It is similar to (i). O
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