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ABSTRACT

Thailand supports an extremely diverse fauna and flora. Situated in the
Indo-Chinese peninsula of the Oriental region, the country has been described as a
‘zoogeographical cross roads’, which links the biotas of the Sino-Himalayan, Indo-
Burmese, Indo-Chinese and Sundaic regions. The bat fauna, with over 120 species, is
also very diverse and in this particular project, one widely distributed Rhinolophid
species was provided the study subject. It is the Intermediate horseshoe bat,
Rhinolophus affinis, which has been selected as its taxonomic status is in need of
revision and its relationship with a sibling species the Rufous horseshoe bat, R, rouxii.
In addition, R. sinicus and R. thomasi found elsewhere in southern India and
Southeast-Asia, is taxonomically unclear. The morphometric characters of R. affinis
and R. rouxii currently employed to discriminate between the two taxa are
unsatisfactory and in southern Myanmar, specimens were collected recently that
shared external and cranial characters with both R. affinis and R. rouxii. Furthermore,
within Thailand, geographical variation between populations of R. affinis, especially
when measured in terms of echolocation call variability suggest that there may be one
or more taxa included within a super-species currently described as R, affinis. The
important findings in this study as R. affinis differed R. rowuxi by some characters such
as rostal depression, zygomatic shapes, forearm length (FA), the second phalanx of
the third digit (3met2ph), palatal length (PL) and baculum morphology. X. sinicus and
R. thomasi are clearly different by size and characters. In addition, sexwual

dimorphism was found in these species, males are larger than females.
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CHAPTER 1
INTRODUCTION

1.1 Evolutionay History of The Chiroptera

Bats are one of the most diverse groups of mammals, with about 18
families, 17 subfamilies, 9 tribes and 1100 species, and are found in the majority of
the world’s habitats, with the exception of the most extreme desert and Polar Regions
(Simmons, 2005). However, they are greatly impoverished in the fossil record
(Teeling et al., 2005) since they have small, light skeletons that do not preserve well
and many live in tropical forests, where conditions are usually unfavorable for the
formation of fossils (Carrol, 1988). Thus at present, we know relatively little about the
early evolution of bats, although a range of molecular studies are starting to help us
understand the complexities of bat phylogeny (Teeling et al., 2005).

Bats are thought to have originated in the Laurasian land mass (the
supercontinent which included North America, Europe and Asia), possibly in North
America, during the early Paleocene (over 64 Mya) (Teeling ef al., 2005) or possibly
the mid/late Cretaceous (70-100 Mya.) (Jepsen, 1970). Some suggested that the
evolutionary ancestor of bats was a small, nocturnal, quadrupdal, and arboreal
insectivore type creature and some mammal teeth from the Paleocene (65 to 54.8
Mya) of France show characters of both bats and insectivores (the group including the
hedgehogs, shrews and moles of today). However, since only the teeth are known, it is
not possible to determine the structure of the rest of the animal (Carroll, 1988).

Other recent studies suggest that bats are most closely related to the
Dermoptera, a small order of mammals (two species) which includes the colugos or
"flying lemurs" of the Philippines. Colugos do not fly, but can move by using a web
of skin stretched between their arms and legs, rather like flying squirrels (to which
they are not closely related). Perhaps surprisingly, bats are also related to the
Primates, the mammal taxon that includes lemurs, monkeys, apes, and humans; and to

the Scandentia, the Asian tropical tree shrews.




Proto-bats may have begun by gliding (Jones and Genoways, 1973) or
hovering (Jepsen, 1970) from one tree to another tree catching insects, and other
activities (Fenton, 1992). Subsequently, they evolved true powered flight and
Microchiropterans also evolved a method of acoustic orientation, or echolocation,
involving the production of high frequency sounds.

The first true bat fossils appear in deposits of the Eocene epoch (54.8
to 33.7 mya) (Carroll, 1988). Some, such as Icaronycteris index (Jepsen, 1966) from
the marlstone of the Green River Formation of Wyoming, USA, have unusually
complete preservation of the whole skeleton, Others are known from the Messel
Shale of Germany (Thomas, 1997). lcaronycteris index shows specializations of the
auditory region of the skull that suggest that this bat could echolocate. It was
assigned to the Microchiroptera on account of anatomical features such as the
morphology of the upper molars, the advanced type of shoulder articulation of the
humerus and scapula, and the long tait (Thomas, 1997). |

Moreover, in the classical taxonomy of bats, there are two distinct
suborders assemblage, first, Megachiroptera and second Microchiroptera. The
Megachiroptera are represented by one family, the Pteropodidae (fruit bats), which
are restricted to the Old World tropics of Africa, Asia and Australasia (Smith, 1977).
Megachiropterans usually have a claw on the second finger of the wing and include
the largest known bats, such as Preropus vampyrus, which may have a wingspan of
nearly two metres. Fruit bats usually have longer muzzles than microbats and have
large, light-sensitive eyes for navigation and sensitive noses to determine the presence
of ripe fruits (Altringham, 1996). Megachiropterans of the genus Rousettus can also
use a primitive form of echolocation which is generated by the clicking of their
tongues.

In contrast, the Microchiropterans, or "microbats," generally navigate
by sending out pulses of high frequency sound and analysing the returning echoes.
They tend to have short faces and well-developed tails and lack a claw on the second
finger (Altringham, 1996). The modern Microchiroptera are divided into 18 families
{Simmons, 2005) and have been grouped into a number of superfamilies by a range of
researchers,  For example Smith (1977) recognised four superfamilies: the

Crasconycteridea; the Rhinolophidea, which includes the families Nycteridae,




Megadermatidae, Rhinolophidae and Hipposideridae; Phyllostomoidae, which
includes the families Noctilionidae, Mormoopidae and Phyllostomidae; and the
Vespertilionoidae, which includes the families Natalidae, Furlipteridae,
Thyropteridae, Myzopodidae, Vespertilionidae, Mystacinidea and Molossidae. A fifth
superfamily, the Palaeochiropterygoidae includes three families of fossil
microchiropterans (all extinct), the Palacochiropterygidae, Archaeonycteridae and
Icaronycteridae.

Some 52 to 50 Mya, four major microbat (echolocating) lineages
[Rhinoclophoidea, Emballonuroidea, Noctilionoidea and Vespertilionoidea)] appeared
within a narrow time frame. This coincided with a period which included a 7°C rise
in mean annual temperature, a significant increase in plant diversity and the peak of
Tertiary insect diversity. Teeling et al., (2005) suggest that microbat diversification
was in response to an increase in prey diversity and that the varied microbat
echolocation and flight strategies may have resulted from differential niche
exploitation at that time. Today, at least 13 species are known from the Eocene
period and have been classified into six families (Fenton, 1992). It is thought that the
general composition of chiropteran faunas across the world had been established by
the late Miocene to early Pliocene (Smith, 1977).

The oldest megachiropteran (flying fox or fruit bat) is Archaeopteropus
transiens (Meschinelli, [903), which is known from an early Oligocene (33.7 to 23.8
mya) site from Italy. However, the dentition of this fossil closely resembles that of
the Microchiroptera (Russell and Sigue, 1970; Slaughter and Walton, 1970) and
Smith (1976) suggested that these taxa represent an extinct clade of early
microchiropterans ("Palacochiropterygoidea). In contrast, Van Valen (1979) argued
that these fossil forms are representatives of a primitive grade ancestral to both
Megachiroptera and Microchiroptera ("Eochiroptera"). Novacek (1987) reanalyzed
morphology of Icaronycteris and Palaeochiropterx and concluded that they are more
closely related to Microchroptera than to Megachiroptera, Most recently, Simmons
and Geisler (1998) found that lcaronycteris, Archaeonycteris, Hassianycteris, and
Palaeochiropteryx represent a series of consecutive sister-taxa to extant
microchiropteran bats. The first true megachiropteran having dentition adapted to a

frugivorous diet is thought to be Propotto leakeyi from early/middle Miocene (23.8 to




5.3 mya) of Africa (Marshall, 1983). Teeling et al (2003), primatily on the basis of
molecular data, suggest that three of the four major microbat lineages are Laurasian in
origin. These include all the Old World bats. The fourth lineage is Gondwanan (the
supercontinent which included South America, Afiica, India, Australasia and
Antarctica).

Until the 1970s, the most evolutionary biologists assumed that bats
form a monophyletic group. Recently, however, several authors have questioned the
monophyly of Chiroptera (Jones and Genoways, 1970; Smith, 1976, 1977; Smith and
Madkour, 1980; Hill and Smith, 1984; Pettigrew, 1986, 1991a, 1991b; Pettigrew and
Jamieson, 1987; Pettigrew et al., 1989, Teeling et al., 2005) creating what has become
known as the “bat monophyly controversy”.

Theorems of the hypothesis that bats are diphyletic pointed out that
many similarities between Megachiroptera and Microchiroptera involve the flight
mechanism, It is therefore possible that convergent evolution of aerial movement,
rather than shared ancestry, might explain the similarities found between
megachiropteran and microchiropteran bats (Jones and Genoways, 1970). The
monophyly versus diphyly debate has flourished, as scientists on both sides of the
discussion appear to have strong evidence to corroborate their theories.

A third view has recently been advanced by Teeling et al. (2002, 2005).
They also believe in diphyly but in their concept, instead of the Mega and Micro bats
forming separate lineages, the fruit bats (Pteropodidae) are included with four families
of microbats (the Rhinolophidae, Megadermatidae, Craseonycteridae and
Rhinopomatidae) in the Yinpterochiroptera. They postulate that this group diverged
from the Yangochiroptera (which includes 12 families of New and Old World bats:
Embalionuridae, Nycteridae, Phyllostomidae, Mormoopidae, Noctilionidae,
Furipteridae, Thyropteridae, Mystacinidae, Myzopodidae, Vespertilionidae,
Molossidae and Natalidae) around 58 Mya. If this theorem is correct then bats either
developed echolocation independently in the Yinpterochiroptera and the
Yangochiroptera or echolocation was already developed prior to the division but was

subsequently lost in the Pteropodidae (Teeling et al., 2005).




1.1.1 Bat Monophyly

The classical bat monophyly hypothesis states that the Megachiroptera
and Microchiroptera are each other closest relatives in an evolutionary sense (i.e.,
they form a clade) (Wible and Novacek, 1988). This has much suppoiting evidence
from morphological, molecular and biochemical studies. If it is true, then the shared
characteristics, including the ability to fly, would have been present in their most
recent common ancestor (Simmons, 1994; 1995). Simmons (1994) noted that, ‘a large
number of derived morphological characters indicate that the Chiroptera is a
monophyletic taxon’. These characters represent diverse character systems including
dentition (Beard, 1993), the skull and cranial vascular system (Wible and Novacek,
1988; Kay et al., 1992; Beard, 1993), the post cranial musculoskeletal system (Wible
and Novacek, 1988; Thewissen and Babcock, 1991; Beard, 1993), foctal membranes
(Luckett, 1980, 1993; Wible and Novacek, 1988), and the nervous system (Johnson
and Kirsch, 1993). It has been argued that ‘the case for monophyly of bats is based
entirely on the wing’ (Pettigrew, 1991a). However, there are over 25 synapomorphies
representing many different anatomical systems (Simmons, 1994).

The Microchiroptera are  distinguished by the following
synapomorphies: a free premaxilla, only two lower premolars on each side of the jaw
and a xiphisternum with a medial keel (Simmons and Geisler, 1998). However, many
lineages within Microchiroptera have apparently secondarily evolved different
conditions. Several other soft-tissue characteristics are found in Microchiroptera, but
not in Megachiroptera. These characteristics include the presence of a tragus, a small
or absent aquaeductus cochleae, the presence of a sophisticated echolocation system,
the membrane of styloglossus originating from the ventral surface of the midpoint of
the stylohyal, the clavicle articulating with the coracoids process of the scapula, the
membrane of spinotrapesius clearly differentiated from the trapezius complex, the
membrane of acromiodeltoideus not originating from the thoracic vertebra, the angle
of the spinal cord between the dorsal horns from 0 to 25°, and the inferior colliculus
larger than the superior colliculus (Simmons and Geisler, 1998). As it has not so far
been possible to examine these features in fossil material collected, it is not known
whether they also occurred in fossils which are closely related to Microchiroptera,

Thus, these characteristics can only indirectly support microchiropteran monophyly.




In the past, molecular and biochemical analyses tended to support bat
monphyly. Such studies include albumin immunological distance data (Cronin and
Sarich, 1980), DNA-DNA hybridisation (Kilpartrick and Nunez, 1993), o~ and f-
globin amino acid sequencing (Stanhope et al.,, 1993), g- globin gene nucleotide
sequencing (Stanhope et al., 1993), interphotoreceptor retinoid binding protein gene
nucleotide sequencing (Stanhope et al., 1992, 1993), cytochrome oxidase subunit II
gene (COII} nucleotide sequencing (Adkins and Honeycutt, 1991) and 12 S rDNA
gene nucleotide sequencing {(Ammerman and Hillis, 1992). In addition, Novacek
(1994) carried out the only study combining both morphological and molecular data

(COII gene sequencing data), results of which also supported bat monophyly.

1.1.2 Bat Diphyly

The classical diphyly hypothesis states that megachiropteran and
microchiropteran bats do not form a monophyletic group but have evolved
independently from two different groups of non-flying mammals. The theorems of a
diphyletic origin for the Chiroptera believe that mammals evolved flapping powered
flight twice (Pettigrew, 1986). It has been suggested that the Megachiroptera are more
closely related to Dermoptera and Primates than to the Microchiroptera (Smith and
Madkour, 1980; Pettigrew, 1986, 1991a, 1991b, 1995; Pettigrew and Jamieson, 1987;
Pettigrew et al., 1989). The Scandentia was also included within the same clade but
with the Microchiroptera separated from the other Archontan orders. Fossil evidence
(Beard, 1990; Kay et al., 1990) has suggested a sister group relationship between
primates and Dermoptera. However, research by Thewissen and Babcock (1991) on
the flight muscles of bats has united Dermoptera with a monophyletic Chiroptera,
while research by Novacek et al. (1988) supported the unity of Dermoptera and
Chiroptera, and additionally placed them with Primates and Scandentia.

The flying primate’ hypothesis was considered to be highly
confroversial when it was first proposed by Pettigrew (1986), but does have much
suppotting evidence and has stimulated fierce debate. The first event is thought to
have taken place in the Cretacecous, when an insectivore type mammal lineage
evolved from leaping to full flight in pursuit of flying insects, so giving rise to the

Microchiroptera. The second event is thought to have occurred in the Tertiary when




an early primate began to glide in search of fruits. Some of these gliders are believed
to have evolved into the mammals now referred to the Megachiroptera (Pettigrew and
Jamieson, 1987). In this case, the characteristics common to both groups of bats either
evolved as a result of convergent evolution or are simply the result of retention of
primitive features. If bats are diphyletic, the ability to fly must have evolved once in
the Microchiroptera and again in the Megachiroptera, Although Thomas (1997)
reviewed of the Linaeus book and stated that originally placed the Megachiroptera in
the Order Primates, since that time the more traditional view of a monophyletic origin
for the Chiroptera has been followed.

Although there have been numerous of studies using biochemical,
molecular, and/or morphological data to analyze the relationship between
Megachiroptera, Microchiroptera and other taxa, diphyly has only rarely been
supported. However, Pettigrew (1986, 1991a, 1992b), Pettigrew and Jamieson
(1987), Pettigrew et al. (1989) and Johnson and Kirsch (1993) found that there are
features of the nervous system and penis which are shared by the Megachiroptera,
primates, and Dermoptera but are absent from the Microchiroptera. These findings
support a primate-megachiropteran link (Smith and Madkour, 1980). Pettigrew and
his colleagues then reported that research on neural pathways had found several
derived features of nervous system which were shared by both Primate and
Megachiroptera, but which were also lacking in Microchiroptera (Pettigrew, 1986,
1991a, 1991b; Pettigrew and Jamieson, 1987; Pettigrew et al. 1989, and Pettigrew,
1995). These included reduction and specialisation of retinotectal pathway from the
eye to the mid-brain, similarity of the cocticspinal motor pathway, the lamination
pattern of the lateral genigulate nucleus, microcircuitry in the hipocampus, the
threefold representation of the body surface in primary sensory cortices (Pettigrew,
19914a), and similarities in neocortex specialisation’s Pettigrew, 1995). In addition, an
independent series of investigations on neural pathway by Johnson, Kirsch and
colleagues also supported bat diphyly (Switzer et al., 1980; Johnson ef al., 1982a,
1982b, 1994; Kirsch, 1983; Kirsch and Johnson, 1983; Kirsch et al, 1983, and
Johnson and Kirsch, 1993).

However, biochemical and molecular studies have provided mixed

support for the ‘flying primate’ hypotheses. Analyses of P-globin amino acid




sequence data (Pettigrew ef al,, 1989; Pettigrew, 1991a) provided inconclusive, as did
haemoglobin amino acid sequence data (Pettigrew, 1991a), tDNA restriction site
mapping (Baker et al,, 1991), and 128 rDNA gene nucleotide sequencing (Springer
and Kirsch, 1993). However, Pettigrew (1994), on re-examination of the results
obtained by DNA analyses, concluded that the AT bias in both megachiropteran DNA
and microchiropteran DNA meant that results which appeared to support bat
monophyly could be dubious. De Jong et al, (1993) carried out ctA-crytalin amino
acid sequencing, results of which at first suggested that bats may be diphyletic, but the
authors concluded that the data were ‘indecisive as to the monophyletic or biphyletic
origin of Microchiroptera and Megachiroptera’. However, research on monoclonal
antibodies to serum proteins (Schreiber ef al, 1994) has provided support for bat
diphyly, showing Megachiroptera and Microchiroptera form a close sister-group
relationship. Humans were the only primate representative included in the analysis.

In contrast, monophyly has been supported in studies examining a large
and diverse set of morphological features (Smith and Madkour, 1980; Novacek, 1988;
Johnson and Kirsch, 1993; Szalay and Lucas, 1993), including those of the nervous
and reproductive systems (Luckett, 1980a, 1993; Wible and Novacek, 1988; Kay et
al., 1992; Novacek, 992, 1994; Beard, 1993; Simmons, 1993a, 1994, 1995; Simmons
and Miyamoto, 1996), DNA-DNA hybridization data (Kirsch ef a/., 1995 and Kirsch,
1996), and rejects by molecular, biochemical and morphological data (Cronin and
Sarich, 1980; Stanhope et al, 1992, 1993; Adkins and Honeycutt, 1993; Honeycuit
and Adkins, 1993; Sarich, 1993), and DNA nucleotide sequence data from
mitochondrial and nuclear genes (Adkins and Honeycutt, 1991, Ammerman and
Hillis, 1992; Stanhope et af, 1992, 1993; Honeycutt and Adkins, 1993; Novacek,
1994, Miyamoto, 1996 and Porter et al,, 1996).

1.2 Bat Behaviour
1.2.1, Echolocation

All  microbats emit echolocation calls (bisonar), which are
vocalizations produced in the larynx. Calls are emitted through the mouth or the

nostrils. Bats that emit calls through the nostrils, such as Phyllostomidae and




Rhinolophidae, often have complex folds and/or flaps surrounding the nostrils, which
may affect the signal (Simmons and Geisler, 1998).

Returning echolocation calls are analyzed by the bats to learn about the
surrounding environment. Microchiropteran bats are not the only animals that use
echolocation. Toothed whales, some insectivores (e.g., shrews), oilbirds, and some
swiftlets also use various forms of echolocation, and are low infrequency and clearly
audible to humans (Fenton, 1983). The higher frequency sounds of bats are covering a
range from 10 kHz to more than 200 kHz (Fenton, 1983), Echolocating bats typically
emit an ultrasonic pulse with a frequency in excess of 15 kHz, and analyze the
returning echo to determine the shape of, and distance to, an object (Fenton, 1992).
Most bats alternate between emitting sound and listening for returning sound. The
frequency, length of call, intensity, and degree of modulations of the emitted sound
differs between species, and there may even be differences between individuals within
a species (Fenton, 1992).

The ability to echolocate has allowed many bats to exploit flying
nocturnal insects as a food source, as well as to live in dark caves. In neither situation
can the bat successfully rely on vision alone to locate objects due to the limited
amount of light. Most likely as a result of increased reliance on echolocation,
microchiropterans have reduced vision capabilities, having lost some of the
complexity found in the eyes and brains of megachiropteran bats, While echolocation
has many benefits, it also has costs. The most pronounced is that other animals can
often hear the signals emitted by bats. Who are able to hear the sounds include other
bats, potential predators and prey? Some moths have evolved complex ears,
apparently for listening to bats. When such a moth hears the echolocation calls of an
approaching bat, it begins evasive manoeuvres. Some insects actually emit sounds in
response to bat calls. This apparently confuses the bat although it does not directly
jam the signal.

1.2.2 Dietary Systemn
The widespread distribution of bats has led to an array of eating habits,
which is nearly as broad as that found in all mammals. Although, 600 bat species are

eatting insects as the main dietary staple (Fenton, 1983). Their diet includes insects,
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pollen, fruits, flowers, flesh and blood (Gillette, 1975). Many microchiropterans are
exclusively insectivorous, while most megchiropterans are exclusively frugivorous or
nectivorous, but some bat family show a wide range of eating habits. The
Phylostomidae (Microchiroptera) is divided into six subfamilies comprising 240
species which between them exhibit all the known chiropteran feeding habits, with the
exception of piscivory (fish eating) (Gardner, 1976).

Insects are abundant throughout most of the world, and therefore an
important source of food for many vertebrates. Bats have learned to exploit dusk and
night flying insects, with 79 out of the total 169 genera of bats, including
Rhinolophus, Myotis, Pipistrellus, Eptesicus, Lasiurus, Taradida and Eumops being
specialised feeding on insects on the wing. Aerial insectivory and foliage gleaning arc
common feeding habits in both temperate and tropical regions (Wilson, 1973). Bats
can consume between one quarter and one half of their own body weight in insects
each night. Small insectivorous bat species cat at least 30 percent of their body weight
for each night and usually, most of bats drink water by flying low and dipping their
mouths into the water surface of a lake or streams, but some bats live in desert areas,
they never drink, and replying on insect prey for their water requirements (Fenton,
1983).

Carnivory is not widespread amongst bats, but certain large size
species, such as False Vampires (Megadermatidae), Slit-faced bats (Nycteridae) and
New world Leaf-nosed bats (Phyllostomidae) regularly eat other bats, smail rodents,
birds, frogs and lizards. It would appear that bats use the sounds made by their prey as
a method of detection. Carnivory is believed to be an extension of insectivory, as the
dentition of carnivorous bats is only slightly modified from that of insectivorous
species (Glass, 1970).

A further dietary specialisation of the Chiroptera is piscivory, or fish-
eating. Only a small number of bats are known to specialise in this way, these include
the Greater Bulldog bat, Nctilio leporinus (Noctilionidae) from the Caribbean and
Central and South America, and aptly named Fish-cating bat, Pizonyx vivesi
(Vespertilionidae) from Central America. These species also use echolocation call to
detect their prey, which they then scoop from the water with their enlarged, clawed

feet (Glass, 1970). They are occasionally insectivorous, and it is though that the fish
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eating behaviour may have evolved as a result of catching insects from the surface of
the water (Gillett, 1975).

Sangivory, feeding on blood, is practised solely by three species of true
vampires in the family Phyllostomidae {subfamily Desmodontinae). These species are
virtually restricted to the New World tropical and subtropical regions, with their
distribution just reachin\:g the temperate arcas of North and South America. They feed
exclusively on the blood of mammals, including human and birds, making them a
serious agriculture and public health pest. Adaptation to a blood diet has involved
specialisation of certain patts, of the body, particularly the dentition (Glass, 1970) and
the kidneys (Wimsatt and Guerriere, 1962). It is postulated that sangivory may have
involved from bats feeding on the external parasites of mammals, e.g. ticks, mites,
with the food source duality of insects and blood (as the removal of ticks usually
produces blood) ultimately being relinquished for a solely sangivorous diet (Gillett,
1975).

Frugivory and nectivory, the consumption of fiuits, flowers, nectar and
pollen, is common amongst bats inhabiting tropical and subtropical regions.
Approximately 29% of the known species of bats, the Old world fruit bat
(Pteropodidae) and many species of the family Phyllostomidae, are partially or wholly
dependant on plants as a source of food (Fleming, 1982). Frugivorous bats have a
varied diet, consuming both wild fruits and cultivated cash crops, so pollinating
(chiroptergamy) or dispersing (chiropterochory) the seeds of hundreds of species of
plants (Fleming, 1993). Through their plant interactions, bats have contributed
considerably to the diversity of angiosperms at the generic and specific level
(Fleming, 1979), and in turn the increased diversity of plant life has had a diversifying
effect on bat population (Fleming, 1982).

A frugivorous diet provides far more carbohydrate than is necessary for
body maintenance, and it is believed that this excess may be used as ‘fuel’ for long
foraging flights (Marshall, 1983). Bats that feed primarily on nectar and pollen
include members of the subfamily Macroglossinae (Pteropodiade) from the Old
World  tropics, and subfamilies Glossophaginae and  Brachyphyllinae
(Phyllostomidae) from the New World tropics. These bats are highly specialised,

being delicate and light, with slender muzzles and long, extensible tongues (Glass,
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1970). They are able to hover at the mouths of flowers while and feeding much likes
their diurnal counterparts, hummingbirds. Many plants rely on bats for pollination,
‘which has led to a change in the morphology of flowers and fruits, such as the timing
of flower and fruit production, the size of the flowers or fruit, and the nutritional
characteristics of pollen, nectar and fruits (Fleming, 1982).

It is clear the bats are in a position to exploit many of the food sources
available to them through the evolution of feeding specialisations. These abilities,
combined with the highly sophisticated echolocation system (Microchiropterans),
their ability to fly, and their ancient origins, makes the Chiroptera one of the world’s

most successful orders of mammals,

1.3 Systematics Review

The first comprehensive biological classification of plants and animals
was by Aristotle (384 — 322 B.C.E). His observations on the anatomy of octopus,
cuttlefish, crustaceans and many other marine invertebrates are remarkably accurate,
and could only have been made from first-hand experience with dissection, Aristotle
described the embryological development of a chick; he distinguished whales and
dolphins from fish (Thompson, 1994, 2000).

Aristotle's classification of animals grouped together animals with
similar characters into genera (used in a much broader sense than present-day
biologists use the term) and then distinguished the species within the genera. He
divided the animals into two types: those with blood, and those without blood (or at
least without red blood). These distinctions correspond closely to our distinction
between vertebrates and invertebrates. The blooded animals, corresponding to the
vertebrates, included five genera: viviparous quadrupeds (mammals), birds, oviparous
quadrupeds (reptiles and amphibians), fishes, and whales (which Aristotle did not
realize were mammals) (Thompson, 1994, 2000). However, he erected collective
categories on the basis of differentiating characters, such as hairy versus feathered,
bipedal versus quadrupedal and although he did not devise a fully consistent
classification animals (Mayr, 1982; Pellegrin, 1986), his way of thinking was
followed by scientists for the next 2000 years.
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Plant classification was not revised until between the 16™ and 18"
centuries with the work of Cesalpino (1519 — 1603) and Linnaeus (1707 — 1778).
Linnaeus's plant taxonomy was based solely on the number and arrangement of the
reproductive organs; a plant's class was determined by its stamens (male organs), and
its order by its pistils (female organs). This resulted in many groupings that seemed
unnatural. The sexual basis of Linnaeus's plant classification was controversial in its
day; although easy to learn and use, it clearly did not give good results in many cases
(Thompson, 1994, 2000).

While animal taxonomy was dominated in the 18™ century by the work
of Linnaeus and Buffon (1707 — 1788), the method of classification used at that time
was called downward classification, and involved the dichotomous splitting of a large
group into two smaller groups e.g. animals-with or without blood, animals with blood
that were hairy or not hairy (Mayr and Ashlock, 1991).

Zoological and most botanical taxonomic priority begin with Linnaeus:
the oldest plant names accepted as valid today are those published in Species
Plantarum (1753), while the oldest animal names are those in the tenth edition of
Systema Naturae (1758), which was the first edition to use the binomial system
consistently throughout (Thomas, 1997). Although Linnaeus was not the first to use
binomials, he was the first to use them consistently, and for this reason, Latin names
that naturalists used before Linnaeus are not usually considered valid under the rules
of nomenclature, Linnaeus was at the forefront of systematics in the 18" century, and
in addition to classifying animals, he devised identification keys, standardised
synonymies and invented a system of binominal nomenclature, which meant that a
system was applied to taxonomic practice. Nevertheless, Linnaeus's hierarchical
classification and binomial nomenclature, in a modified state, have remained standard
for over 200 years (Thomas, 1997).

The writings of Linnaeus have been studied by every generation of
naturalists, including Erasmus Darwin and Charles Darwin. The search for a "natural
system" of classification is still going on. Today however, emphasis is placed on
discovering the evolutionary relationships of taxa (Thompson, 1994, 2000).

Buffon (1707 — 1788) was not a taxonomist, but his ideas on

classification laid the foundations for the biological species concept and his emphasis
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on the importance of characters led to a new approach to taxonomy. One hundred
years before Darwin, Buffon, in his Historie Naturelle, a 44 volume encyclopedia
describing everything known about the natural world, wrestled with the similarities of
humans and apes and even talked about common ancestry of Man and apes. Although
Buffon believed in organic change, he did not provide a coherent mechanism for such
changes (Thompson, 1994, 2000). He thought that the environinent acted directly on
organisms through what he called "organic particles”. Buffon also published Les
Epoques de la Nature (1788) where he openly suggested that the planet was much
older than the 6,000 years proclaimed by the church, and discussed concepis very
similar to Charles Lyell's "uniformitarianism" which were formulated 40 years later
(Thompson, 1994, 2000). Towards mid 18" century, downward classification was
viewed as artificial and was gradually replaced by upward classification. This
involved forming a hierarchy by successively assembling taxa into groups of similar
or related species rank by rank, and was practised by many posts - Linnaean
zoologists (Thomas, 1997).

Many taxonomic progresses were made in the time between Linnaeus
and Darwin (1809-1882). Taxonomists became more specialised, working on only
one group of plants or animals. Classification became more resolved, with the
addition of extra categories including family and phylum, and more empirical.
Taxonomists began look for a ‘natural’ system, which grouped species with common
characteristics (Thomas, 1997). In 1859, Darwin published “The origin of species by
means of natural selection”, which have explained how to members of one taxa were
more similar to each other than they were to members of other taxa, a question which
had been puzzling to many taxonomists. Darwin’s theory of evolution by common
descent stated that natural groups existed because members of a natural taxon were
descendants of a common ancestor and were therefore more likely to be similar. This
theory led to much research into missing links between seemingly unrelated taxa, and
the construction of phylogenetic trees, so leading to more work in comparative
systematics, comparative morphology and comparative embryology (Thomas, 1997).

The study of intraspecific variation between populations, or population
systematics, also contributed to a change in taxonomic thinking, Studies of variation

led to the delimitation of lower taxa and categories, a re-evaluation of the species
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concept, and a biological approach to taxonomy. Other aspects of species were
considered, such as behavioural characters, ecological requirements, physiology and
biochemistry, which in turn led to more experimental techniques being used in
taxonomic research. Much of this research was concentrated at the species level,
while macrotaxonomy received little attention from the 1870’s to the 1950°s. The
development of numerous molecular techniques for testing relationships however, led
to a surge in research into higher taxonomy (Mayr and Ashlock, 1991), Although
considerable proportions of the world’s species have been described there is sill
much-undiscovered fauna, particularly from tropical and marine regions. In addition,
the higher taxonomy of the most groups of animals is unclear and it is hoped that
molecular techniques, such as protein and nucleic acid analysis, combined with
morphological studies will play a key role in clarifying some of these relationships.
Many species concepts have been proposed in an attempt to facilitate
the assembling of phena into biologically meaningful taxa at the species level. These
concepts fall into five groups; the typological species concept, the nominalistic
species concept, the biological species concept, the phylogenetic species concept and
the evolutionary species concept. The first two have only historical significance,
although they are still upheld by some current authors. The typology species concept,
or essentialism (Mayr, 1982}, relates to the philosophy of Plato, and was followed by
Linnaeus (Cain, 1958). It states that species consist of similar individuals sharing the
same cssence, that each species is separated from all others by a sharp discontinuity,
that each species is completely consistent through time, and that there are strict limits
to the possible variation within any one species (Mayr and Ashlock, 1991). The
shortcomings of this concept are that individual organisms found in nature that are
conspecific, can appear to be different due to forms of individual variation, such as
sexual dimorphism, age difference or polymorphism. In addition, there are species,
known as sibling species, which are vary similar morphologically, but which are
proven to be separated species. Therefore, degree of difference cannot be considered
decisive in the ranking of taxa as species. The second philosophy, not widely
followed today, is the nominalistic species concept, which was particularly popular in
France in the 18™ century. It states that only individuals exist in nature, while the

species is an entity invented by scientists (Mayr and Ashlock, 1991).
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As the shortcomings of these two theories were realised in the late 18™
century, a new theory, the biological species concept, began to emerge with Jordan
(1905) being the first nominalistic concepts in stating that species have independent
reality and are typified by populations of individuals, but differed by claiming the
importance of genetic cohesion within species and by stressing that species are
created by shared information received from the gene pool (Mayr and Ashlock, 1991).
Within this concept, members of a species can be seen from three different points of
view; they form a reproductive community, ensuring intraspecific reproduction, they
form an ecological unit, interacting with the other species in the same environment,
and they form a genetic unit, consisting of a large, intercommunicating gene pool. The
definition of a species as derived from this concept is “A species is a group of
interbreeding natural populations that is reproductively isolated from other such
groups” (Mayr, 1942).

In normal taxonomic practice however, it is usually morphological or
genetic differences, which define the species, rather than reproductive isolation. This
conflict between theoretical and practical application has posed many problems for
taxonomists and has been much-discussed (Sokal, 1973; Lovtrup, 1979). However,
the biological species concept is employed by many biologists, particularly ecologists,
physiologists and behavioural biologists, The strongest arguments against the
biological species concept come from phylogeneticists. The concept has been
criticised on the grounds of it not necessarily yielding monophyletic species
(Donoghue, 1985) and due to relatedness and the ability to reproduce not being as
tightly linked as many assumed and possibly varying between major taxa (Baum,
1992). In addition, many botanists due to plant hybridisation have specifically
rejected the biological species concept. Another problem with the concept is that it
can be applied with ease to sympatric populations but not so easily to genetically
isolate allopatric populations (Cracraft, 1982).

Due to the apparent failings of the biological species concept, a new
concept, the phylogenetic species concept was supported by (Cracraft, 1983). The
phylogenetic species concept and its subsequent numerous modifications, differs from
the biological species concept in that it does not consider present biological characters

directly but rather the acquisition of defining features during evolution (Donoghue,
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1985; Baum, 1992). As such, the following definition was supported: “A species is
the smallest possible group of a sexually reproducing organism that possesses at least
one diagnostic character which is present in all group members but it is absent from
all close relatives of the groups”. One of the drawbacks of this concept is that
diagnostic character can either be a plesiomorphy (the ancestral states of a character
within a group of organisms) or an autapomorphy (derived characters unique to a
single taxon). As a result, any species defined by a plesiomorphy would be
paraphyletic. It could include a common ancestor whole membership is defined by the
possession of a uniquely derived character state, but omits descendants within which
the character state has subsequently undergone one or several reversals (Quicke,
1993). Wheeler ef al. (1990) noted that the application of the phylogenetic species
concept would almost certainly give considerably larger estimates of the total number
of species than the more traditional biological species concept. Mayr (1992) illustrates
this point by reference to work by Rosen (1979) on South American poeciliid fish.
Application of the phylogenetic species concept in this case would mean that the
distinct populations of many species inhabiting almost every tributary would have to
be raised to species rank, entailing a seemingly unnecessary degree of complication.,

The evolutionary species concept was supported by Simpson (1961)
and as the term suggests, it used”evolutionary” criteria for the definition of species.
Simpson’s definition was follows: “An evolutionary species is lineage (an ancestral-
descendant sequence of populations) evolving separately from others and with its own
unitary evolutionary role and tendencies", However, Mayr (1982) noted that this is
definition of a phyletic lineage rather than species, and is equally applicable to many
isolated population or incipient species. The primary problem with the evolutionary
species concept is considered to be that the causation and maintenance of
discontinuities between contemporary species is not addressed (Mayr and Ashlock,
1991).

The concept of a subspecies or race (here considered as the same rank)
is even more complex. Mayr and Ashlock (1991) proposed the following definition
“A subspecies is an aggregate of phenotypically similar populations of species
inhabiting a geographic subdivision of the range of that species and differing

taxonomically from other populations of that species”. Problems with the subspecies
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concept with significantly reduce its usefulness include the tendency of different
characters to show independent trends of geographic variation, the independence
occutrence of similar or phenotypically indistinguishable populations in
geographically separated areas, the occurence of microgeographic races within
formally recognised subspecies and arbitrariness of the degree of difference proposed
by different scientists as justifying subspecific variation of slightly differentiated local
populations (Mayr and Ashlock, 1991). Nevertheless, although the subspecies
concept has been widely criticised (Wilson and Brown, 1953; Inger, 1961) it is
considered to be valuable tocl when applied to allopatric taxta that differ only to a
degree commonly found within interbreeding populations and parapatric taxa with a
considerable degree of hybridisation (Corbet, 1997). Ideally, subspecies would only
be formally recognised where 90% of one population was distinguishable from 90%
of the other population (Dadd, 1970), although this is ver difficult to apply in practice.
Where few specimens were available or only a few individuals differed from the local
race, the differences were commented on, but not recognised at subspecific level. This
avoided the proliferation of subspecies of doubtful credibility, which might lead to
confusion and an increased workload for future researchers.

In the 1960’s the need for a more objective taxonomy led to the
independent emergence of two new rigorous areas of systematics. Numerical
phenetics was developed and popularised by Sokal and Sneath in their classical text
‘Principles of Numerical Taxonomy’ (1963). Numerical phenetics is defined as ‘the
methodology of assembling individuals into taxa on the basic of an estimate of
unweighted overall similarity’ (Mayr and Ashlock, 1991). The primacy given to
similarity assumes that the more similar two taxa arc the more closely related they are
likely to be. The proposed theory advocated the use of a polythetic (taxa based on the
greatest number of shared characters) system for defining groups, as it was not
necessary for the numbers of the group to process all the definitive characters, This
meant that possession of some minimum number of a set of characters would justify
placement of a taxon in that group, but the taxon would not be required to display all
of the character states in the polythetic set. Pheneticists therefore proposed that higher
taxa could be defined through the use of cluster analysis such that included numbers

would on average resemble each other more than they would resemble non-numbers
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(Quicke, 1993). However, the results obtained were not intended to depict phylogeny
and could be misleading if they were interpreted in this way. The main argument
against numerical phenetics is that a method which ignores the necessity of weighting
characters and the recognition of monophyletic groups cannot lead to stable and sound
classification (Mayr and Ashlock, 1991). As such, phenetic methods lost popularity
due to the rise of cladistics.

German entomologist Willi Hennig (1913 - 1976) devised Cladistics in
1950. He asserted that classifications should reflect the evolutionary history of the
group and devised a set of principles, which would allow unambiguous genealogical
classifications to be established. His theory stated that taxa based exclusively on the
possession of shared devised characters (synapomorphies) should be recognised,
while ancestral characters (plesiomorphies) should be ignored and that every taxon
should be monophyletic thereby taking the emphasis away from similarity (Mayr and
Ashlock, 1991). Cladistics allowed the formulation of explicit, potentially testable
hypotheses for the origin of morphological, physiological or behavioural character
states (Buth, 1984; Patton and Avise, 1983).

Methodology has advanced greatly over the last 25 years with the
development of computing in taxonomy, one of the consequences being that far larger
data sets could be used in cladistic analysis. However, this also meant that characters
might be included, which were not wholly reliable indicators of phylogeny. These
incongruences, collectively termed homophasy could lead to conflicting evolutionary
hypotheses. One of the basic tenets of much of cladistic analysis is the most likely
explanation of a taxonomic data set is the one is requires the least number of
evolutionary changes, or character state transitions (Felsentein, 1978; Friday, 1982;
Farris, 1983, 1986). The trees derived from the data set which requires the fewest
character state transitions are known as the most parsimonious ones and methods used
to find these most parsimonious solutions are accordingly referred to parsimony
analysis. To date, parsimony is considered to be the best criterion for phylogenetic
analysis (Sober, 1988),

Taxonomy, particularly phylogenetic studies is fundamental and
underpins other areas of biology. Reliable phylogenctic hypotheses can be used to

generate experimentally testable predictions about the evolution of many biological
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systems from biochemical and physiological to behavioural studies, but only if the
phylogeny is accurate (McLennen ef /., 1988). Phylogenetic studies permit the
separation of potentially conflicting phylogenetic factors from studies of comparative
biology. In addition, phylogenetic hypotheses can help to construct the evolutionary
sequence involved in the development of a trait in the behaviours, which can be tested
experimentally (McLennen, 1991). This ability of independently constructed
phylogenetics to generate hypotheses about evolutionary changes in other character
systems is considered to be important feature of cladistic analysis (Quicke, 1993).

In addition to numerical techniques in taxonomy, molecular
phylogenetics has become an essential scientific discipline (Avise, 1994), However,
prior the late 1980’s, broad controversies in evolutionary biology dominated the ficld
molecular evolution and related disciplines. In brief, these concluded the classical -
balance debate on the magnitude of genetic variation, the selection — neutrality debate
on the adaptive significance of molecular variation, the phenetic — cladistic debate
concerning the interpretation of molecular or other data in a systematic context and
relative to phylogenetic utility of molecular versus morphological chavacters (Avise,
1994). While these controversies were under debate, research was carried out which
centred on the application of protein and DNA markers to problem in natural history
and evolution. In this area of research, new laboratory methods are constantly
becoming available and molecular systematics has advanced in tandem with these
new techniques. In the mid 1960’s, protein electrophoresis as applied to allozymes
and isozymes was dominant technique (Buth, 1984; Whitt, 1987) and it is still used
for generation molecular markers. In the 1970°s and 1980’s, the analysis of restriction
fragment length polymorphisms (RFLP’s) was favoured, particularly using
mitochondrial DNA (Harrison, 1989; Wilson et «l., 1985), which in turn led to the
development of the procedures known as “DNA fingerprinting” (Burke, 1989; Kirby,
1990). Currently, the introduction of polymerase chain reaction (PCR) for the
amplification of specific DNA fragments (Erlich and Arnheim, 1992) in conjunction
with the development of amplification primers (Kocher ef al., 1989) has greatly
improved methods for sequence determination (Innis et al, 1988). PCR based
methods are valuable as increased access to polygenetic information content of DNA

sequences is allowed for both nuclear and cytoplasmic genes. In addition, the PCR
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has extended molecular application as DNA segments can be amplified from tiny
amounts of starting tissue, including museum — preserved material (Higuchi et al.,
1984) and fossil material (Arnheim ef al., 1990). Other, less widespread techniques
include immunological comparisons of proteins (Wilson ef al., 1977) and DNA —
DNA hybridisation methods (Britten and Kohne, 1968).

Molecular studies can be integrated into a wide variety of biological
disciplines, such as ethnology, field ecology, comparative morphology, systematics
and palaeontology. From a systematic viewpoint, molecular and morphology
approaches have sometime been viewed in opposition, however more recently it has
been recognised that molecular and morphological data can be reciprocally
informative (Hillis, 1987, Thomas, 1997, 2000). It is believed that molecular markers
are useful most effectively when they address controversial areas or are employed to
analyse problems in natural history and evolution, which have proved to be beyond
the scope of traditional non-molecular methods. In such cases, the interaction between
these alternative lines of evidence is of greater significance than when either data
source is considered alone (Avise, 1994),

It is clearly that multiple data classes contain a greater amount of
information, and as a result analyses which capitalise on this should pave for more

studies combining molecular and morphological based systematics to be undertaken.

1.4 The Rhinolophidae

The family Rhinolophidae comprises a single genus, Lacépéde, 1799
(Simmons, 2005). It has an extensive fossil record and is known from the Eocene (54~
35 million years approx.), Oligocene (35-24 million years approx.), Miocene (24-5
million years approx.) and Pliocene (5-1 million years approx.) of Europe; the
Miocene of Australia and the Miocene and Pliocene of Africa (Savage and Russell,
1983).

It is geographically widespread Rhinolophid bats are found in a variety
of biomes throughout the temperate, subtropical and tropical regions of the Old World
from Europe to Japan, through to Africa, Southeast Asia, the Philippines, New Guinea
and Australia (Corbet and Hill, 1992). They are all insectivorous and hawk for insects

in flight from a variety of surfaces as they forage within forests or in open spaces. To
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locate insect” bats will swoop low over the surface of lakes, snap them out of the air,
and even land on the ground and pursue them on foot, but some of insectivorous bats
grab their victims directly in their mouths (Fenton, 1983). Insects may be caught in
flight, or taken from vegetation, the ground, or water surfaces in a foraging style
referred to as gleaning (Hutson ef al.,, 2001). Their 1'00§ts and associated colony sizes
are diverse and in some species vary on a seasonal basis (Nowak, 1991a; Nowak,
1991b; Vaughan, ef al., 2000). Some species prefer caves, abandoned mines and old
houses, others hollow trees and yet others have their diurnal roosts in the open, among
the branches of trees (Hill and Smith, 1984; Nowak, 1991a; Nowak, 1991b; Vaughan,
et al., 2000). |

Rhinolophid bats vary greatly in size from small to moderately large,
with a body mass. Echolocation calls are emitted through complex nasal structures,
which serve to focus the sound. The ears tend to be large and lack a tragus (Hill and
Smith, 1984; Nowak, 1991a; Nowak, 1991b; Vaughan, ef al., 2000).

1.4.1 Taxonomic Review of The Rhinolophidae Family

The Family Rhinophidae was named by Gray (1825) Subsequently
Dobson (1876) recognised the genus Rhinolphus as a distinct taxon within the
Rhinolophidae and promoted it to subfamily status. Miller (1907) considered the
Rhinolophidae to be monogeneric and other taxa formerly included in the group were
placed by him in the Hipposideridae Miller, 1907. This view was followed by
Simpson (1945), Hill (1982) and Corbet and Hill (1992) and Simmons (2005).
However, others have continued to regard the hipposiderid bats as a subfamily, the
Hipposiderinae Lydekker, 1891 of the Rhinolophidae (Ellerman and Morrison-Scott,
1951; Koopman and Jones, 1970; Koopman, 1993).

The first comprehensive review of the genus Rhinolophus was
published by Andersen in a series of papers (1905a, 1905b, 1918). In Andersen
(1905b) the genus was divided into six groups: simplex, lepidus, midas,
philippinensis, macrotis and arcuatus, Later Andersen (1918) renamed them as the
megaphylius, pusillus, hipposideros, luctus, and euryotis groups respectively. There

was no mention of the macrotis group.
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Tate and Archbold (1939) listed Andersen’s synoptic arrangement and
updated his subgroups to include species and subspecies described since 1918. The
group names were again slightly changed with the megaphyllus group becoming the
SJerrumequinum group. Although, few taxonomic changes were made, macrotis and its
allies were listed within the philippinensis group. In Tate (1943), Andersen’s
arrangement of the philippinensis group was considerably altered by dividing it into
three, namely the philippinensis, trifoliatus and luctus subgroups. R. coelophyllus was
moved from the arcuatus group to the philippinensis group, while R. pearsoni was
associated with the /uctus group. Later than Ellerman and Morrison-Scott (1951),
followed the arrangement of Tate (1943) but noted that as trifoliatus predated luctus
the philippinensis group should be known as the trifoliatus group. However, to avoid
taxonomic confusion the name Juctus was retained.

Topal (1975) reviewed the taxonomy of the Rhinolophidae with
particular reference to bacular morphology. Bogdanowicz and Owen (1992)
undertook a phylogenetic analysis of the Family and included the findings of an
electrophoretic study by Qumsiyeh ef al. (1988). The result of both studies generally
supported prior phenetic classification of the family. Corbet and Hill (1992) reviewed
the Rhinolophidae of the Indo-Malayan Region and divided them into the
philippinensis, arcuatus, fumigatus, pusillus, ferrumequinum and hipposideros
groups, Bates and Harrison (1997) discussed the taxonomy, distribution and ecology
of 16 species of Rhinolophus from the Indian Subcontinent. Koopman (1993) carried
out a further review of the genus. He included 64 species and listed distributions and
synonymies wotld-wide. Thomas (1997) undertook a taxonomic review of a number
of taxa within Corbet and Hill’s (1992) ferrumequinum group.

Most recently, Csorba et al. (2003) summarised all available
information on the Family from throughout its range. He included seventy-one
species and 15 groups. The Eurasian species were assigned to 11 groups, namely
euryale, euryofis, ferrumequinum, hipposideros, landeri, megaphyllus, pearsoni,

philippinensis, pusillus, rouxi and trifoliatus.
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1.4.2 Current Study

For the current study, four species (sensu Csorba et al., 2003) were
included. They are R. affinis Horsefield, 1823, R, rouxii Temminck, 1835, R. thomasi
Andersen, 19053, and R. sinicus (Andersen, 1905a). Until recently, they have
generally been considered to be closely related to one another (all are included in the
R. ferrumequinum group of Corbet and Hill, 1992) and prior to Thomas (2000),
sinicus was generally treated as a race of rouxii. The geographical range of the study
was restricted to the Indian Subcontinent and mainland SE Asia as this area
circumscribes the distributions of all four taxa,

Andersen (1905a and 1905b) included all four taxa in the Rhinolophus
simplex species group. Tate and Archibold (1939) also included them in the R.
simplex group, with rouxii, sinicus, and thomasi in the rouxii subgroup and affinis in
the affinis subgroup. They were included in the R. ferrumequinum group by Corbet
and Hill (1992). Bogdanowicz (1992) placed rouxii, sinicus and thomasi in the rouxii
subgroup of the megaphyllus group. He also included qffinis in the same subgroup
but indicated some element of doubt. The phylogenetic allegiances of the four species
were not clearly defined in Bogdanowicz and Owen (1992). However, Csorba et al.
(2003) placed rouxii, sinicus and thomasi in the rouxii group but moved affinis
(together with stheno) back to the megaphylius group. They belicved that the rouxii
group was different to such a magnitude that it should be included in a separate
subgenus, which they named Indorhinolophus, with the type species being R. rouxii
Temminck, 1835. Based on their molecular studies they suggested that the affinis
group had diverged from the rouxii about 12 MYA. Subsequently, Simmons (2005)
followed Csorba et al (2003) but omitted any reference to Indorhinolophus.

However, despite the findings of Csorba et al (2003), the four taxa
were chosen for study because current morphometric characters employed to
discriminate between them remain unsatisfactory and it is difficult to identify the
species with certainty. In particular, it is difficult to distinguish R. affinis from R,

rouxii (despite their inclusion in different subgenera) and R. sinicus from R. thomasi.
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1.43 Current Taxonomic Problems Within Group

Below are listed some of the taxonomic problems which will be studied

in the forthcoming chapters.

1.4.3.1 Rhinolophus affinis

(1} Problems in defining R, affinis as compared to R. rouxii. This
was recently illustrated in Tanintharyi Division, southern Myanmar, where specimens
were collected that shared some external and cranial characters with both taxa (Paul
Bates, pers, comm.),

(2) Echolocation data in Thailand suggests that there may be an

additional cryptic species present within the currently defined R. affinis.

1.4.3.2 Rhinolophus rouxii

(1) Confusion as to whether an additional cryptic species of R.
rouxii 1s present in Southern India and Sri Lanka (Thomas, 2000).

(2) Confusion as to whether R. rouxii occurs in Myammar. In
Thomas (1997), only one specimen (BMNH. 27.11.18.4) of R. rouxii is included from
Myanmar but confusingly this same specimen is also referred to R. qffinis. In Bates et
al. (2004), following Thomas (2000), this specimen is referred to R. rouxii.

3) Confusion as to whether R. rouxii occurs in Vietnam. None
was listed in Thomas (1997; 2000). It was included without comment in the checklist
of Hendrichsen et al., (2001) and tentatively included in Borissenko and Kruskop
(2003).

1.4.3.3 Rhinolophus sinicus and Rhinolophus thomasi

(1) The relationships and specific boundaries between R. sinicus
and R. rouxii and R. thomasi are not clear (Csorba et al., 2003).

(2) Specimens provisionally referred to R. sinicus from Vietnam
may prove to be a distinct taxon (Csorba et al., 2003),

(3) Rhinolophus sinicus is most easily confused with R. affinis,

from which it is best distinguished by its straight-sided lancet.
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(4 The echolocation call of R. sinicus is a long constant frequency
signal, with a brief frequency-modulated stait and tail. Frequencies with most energy
recorded from hand-held bats ranged between 80 and 88.2 kHz (n= 13). Some
evidence of males calling at lower frequencies (80-84.2 kHz) than females (84-88.2
kHz), as found in the closely related R. rouxi in Sri Lanka which calls at 73.5 - 79
kHz (Neuweiler et al. 1987). Call frequencies overlap with those used by R. sinicus,
and so is not a diagnostic feature for separating these species.

5 Echolocation call frequencies of R, sinicus overlap with those
emitted by R. gffinis.  R. affinis is also typically a larger species, though overlap
occurs with R. sinicus at forearm lengths between 50-51 mm.

(6) Rhinolophus sinicus is very similar to the smaller R, thomasi of
Myanmar, Vietnam, Lao PDR and Thailand, to which it is closely related.

@) Call frequency for R. thomasi in Lao PDR is reported as 76
kHz (Francis & Habersetzer 1998), and so the two taxa may use different call
frequencies.

To undertake the study, the current taxonomy and the diagnostic

characters of each species was reviewed on a species by species basis.




CHAPTER 2
LITERATURE REVIEWS

The current taxonomy of Rhinolophus affinis, Rhinolophus rouxii,
Rhinolophus sinicus and Rhinolophus thomasi has been study for longtime, The

synonymies are based on Csorba et al., (2003). They were described and given below:

2.1 Rhinolophus affinis Horsfield, 1823

Intermediate horseshoe bat

Rhinolophus affinis Horsetield, 1823: pt. 6; Java.

Rhinolophus andamanensis Dobson, 1872: 337, South Andaman Islands

Rhinolophus affinis himalayanus Andersen, 1905a: 103, pl.3; Mussoorie, Kumaon,
north-west India,

Rhinolophus affinis tener Andersen, 1905a: 103, pl 3; Pegu, Myanmar.

Rhinolophus affinis macrurus Andersen, 1905a: 103; Taho, Karenee, Myanmar.
Rhinolophus affinis superans Andersen, 1905a; 104; Pahang, Malaysia,

Rhinolophus affinis nesites Andersen, 1905a: 104; Bunguran Island, north Natuna
Islands,

Rhinolophus affinis princes Andersen, 1905a: 106, pl 3; Lombok, Lesser Sunda
Islands

Rhinolophus hainanus Allen, 1906: 482; Poutein, Hainan Island, China

Rhinolophus affinis was described from Java (Horsfield, 1823) and the
holotype (BMNH.79.11.21.70) deposited in the Natural History Museum, London.
Through subsequent years, 8 additional taxa have either been described as
geographical races of affinis (himalayanus, tener, macrurus, superans, nesites, and
princes) or, in the case of andamanensis and hainanus, have been referred to this
species as junior synonyms by a variety of authors, including Corbet and Hill (1992)
and Csorba et al., (2003).

27
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2,1.1 A Review of The Synonyms of Rhinolophus affinis

The holotype (BMNH.79.11.21.70) of the typical form of R. affinis
Horsefield, 1823, which was collected in Java, is damaged. However, according to
Andersen (1905a), it is possible to determine that the second phalanx of the third
metacarpal is long (15.2 mm), the horseshoe is relatively narrow (8.1 nun) but the
tibia (24 mm) is long., Upper toothrow length is 9.0 mm,

R. andamanensis Dobson (1872) was described from the Andaman
Islands (no exact locality) and the holotype (15561) is deposited in the Zoological
Survey of India, Calcutta, India (Thomas, 1997). It was considered by Dobson to
resemble R. gffinis. The description is brief but suggests that the horizontal horseshoe
shaped portion of the noseleaf is broad and flat and conceals the muzzle when viewed
from above. The posterior triangular noseleaf is long. Forearm and tail length are
given as 2.05 inches (52.3 mm) and 0.9 inches (23.0 mm) respectively, According to
Sinha (1973), R. a. andamanensis has a larger skull (23.6 - 24 mm), longer ears (22
mm) and broader horseshoe (10 mm).

Rhinofophus affinis himalayanus Andersen, 1905a was collected at
Mussoorie in north-west India. The holotype (BMNH. 79.11.21.148) is deposited in
the Natural History Museum, London. It was considered by Andersen to be large,
with a forearm length of 52 - 56 mm. However, the tail (21.8 - 25 mm) and lower leg
(tibia) (22.8 - 23.8 mm) were short, and the horseshoes narrow (8 - 8.8 mm). The
greatest length of skull (22,7 - 23.9 mm) and upper toothrow (9.7 - 10.2 mm) were of
moderate size and the nasals (15.8-16.5 mm) were narrow. Based on Sinha (1973)
who writes ‘According to Andersen (1881) this subspecies occurs in Sri Lanka, but
this was omitted by Ellerman and Momison-Scott (1951). There is however, a
specimen of this subspecies from Sri Lanka present in our collection, which confirms
its occurrence there. Recently, Kurup (1968) recorded it from Meghalaya and
Bangladesh.’

Rhinolophus affinis tener Andersen, 1905a was described from Bago
(= Pegu), in south, central Myanmar. The holotype (BMNH. 87.3.4.11) is deposited
in the Natural History Museum, London. According to Andersen, its size, with a
forearm length of 50 mm, was small. The ears (18.8 mm) were also small, the tail

short (23 mm) but the lower leg rather long (21 mm). The horseshoe was broad (9.5
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mm). The greatest length of skull (21.9 mm) and upper toothrow (8.7 mm) were short
and the braincase (9 mm) and nasal swellings (15.5 mm) narrow.

The holotype (BMNH.90.4.4.7) of Rhinolophus affinis macrurus
Andersen, 1905a was collected from Taho, Karence (=Kayah State), Myanmar and is
deposited in the Natural History Museum, London. Andersen noted that its size, with
a forearm length of 51 - 53.8 mm, was moderate. The ears were large (20 - 20.7 mm),
the horseshoe (9 - 9.8 mm) broad, the tail (26 - 29.8 mm) and lower leg (tibia) (23.9 -
25.1 mm) long. Total skull length (22.5 - 23.2 mm), width of braincase (11.2 - 11.6
mm}) and nasal swellings (15.7 - 16,7 mm) and length of upper toothrow (9.6 - 9.9
mm) were all moderate,

Rhinolophus affinis superans Andersen, 1905a was collected from
Pahang, Malaysia and the type (BMNH.0.7.3.2) is the Natural History Museum,
London, Externally, it was described as being like R, a. macrurus but with a short tail
(21.5 - 25.2 mm). The skull is long (22.8 - 23.8 mm) with broad nasal swellings (6.2 -
6.7 mm) and braincase (9.8 - 10.2 mm) and a long upper toothrow (9.0 - 9.7 mm).

The holotype (USNM.104753) of Rhinolophus affinis nesites
Andersen, 1905a was collected in Bunguran Island, north Natuna Islands of western
Sumatra, Indonesia and is deposited in the Smithsonian Institution, Washington. It
has large ears (20.2 mm), a broad horseshoe (9.8 mm) and a short tail (22 mm) and
tibiae (22.8 mm). The skull is damaged. Upper toothrow length is 9 mm.

Rhinolophus affinis princes Andersen, 1905a was described from
Lombok, Lesser Sunda Islands, Indonesia. The holotype (BMNH.97.4.18.13) is in the
Natural History Museum, London., The horseshoe (11.1 mm), skull (24.1 mm) and
nasal swellings (17.2 mm) are very broad. Upper toothrow length is 9.9 mm.

Rhinolophus hainanus Allen, 1906 was collected at Poutein, Hainan
Island, China and the holotype (AMNH.26748) is the American Museum of Natural
History, USA. It was described as having large, broad pointed ears and with a short

tail. The noseleaf was rather small.

2.1.2 Diagnostic Characters of Rhinolophus affinis
Previous authors have included (amongst others) the following

diagnosic characters for R. affinis.
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(1) Forearm length, 50.0 - 55.0 mm (Bates and Harrison, 1997),

(2) Horseshoe is 8.0 - 11.4 mm, relatively broad but not covering
the muzzle (Csorba ef al., 2003).

3) Sella is pandurate (lateral margins concave) (Andersen, 1905a).
Sella pandurate, its margin at the base arched and broader at the base of its vertical
part; a shallow notch present between the top of sella and the connecting process
(Sinha, 1973). Sella is pandurate (slightly concave) (Csorba et al., 2003).

4 Lancet is almost cuneate (Andersen, 1905a). Lancet is always
straight sided with its tip pointed (Csorba et af., 2003).

(5) Wing structure — The second phalanx of third digit is
increased in length, always more than, occasionally considerably more than, 1.5 x the
length of the first phalanx (Andersen, 1905a). Second phalanx of 3 and 4® finger
much longer (more than 160% of their first phalanx) than the second phalanx of fifth
finger (less than 110% of its first phalanx) (Sinha, 1973).

(6) Iph3met - 1* phalanx of 3™ digit is considerably less than half
length of metacarpal; the 2™ phalanx is long, about 3/4 the length of the metacarpal
(66.3 - 80.4%) (Bates and Harrison, 1997).

(7 Palatal bridge - extremely short, about 1/4 of maxillary
toothrow length or even less (Andersen, 1905a). Palate is exceedingly short, usually
less than 1/4 length of the maxillary toothrow; it is emarginated anteriotly to the level
of the parastyle of M1 and posteriorly to the mesostyle of M2 (Bates and Harrison,
1997). Palatal bridge relatively short, 23 - 20% of the upper toothrow (Csorba et al.,
2003).

® First upper premolar (P?) is always in the toothrow,
extremely small and the interspaced between the upper canine (C') and the second
upper premolar (P4) rather narrow; in 26% of specimens, it is extremely narrow, in
most cases almost fine hair (Andersen, 1905a). P? is not extruded or only very rarely
slightly displaced (Corbet and Hill, 1992). P? is smaller, sometimes absent, at most
twice upper bulk of upper incisor, tightly compressed in toothrow, slightly extruded or
external to row (Corbet and Hill, 1992). P? is small but situated in the toothrow
(Bates and Harrison, 1997). P? is small or medium and in the toothrow or only

slightly displaced. The upper canine is usually massive and not in contact with P*
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(Csorba et al.,, 2003), C' and P* are closely adjacent or in contact (Corbet and Hill,
1992). ¢! and P* are not in contact (Bates and Harrison, 1997).

9 Second lower premolar (P3): is external and extremely small,
rarely within (5%) or partly within toothrow (5%) (Andersen, 1905a). P; is usually
very small and is situated externally to the toothrow (Bates and Harrison, 1997). P is
small or very small, usually fully, rarely partly external (Csorba ef al., 2003). P, and
P4 are generally quite or almost in contact (74%) and in the remaining more distinctly
separated (Andersen, 1905a). P, and P4 are in contact (Bates and Harrison, 1997). P,

and P4 are in contact or nearly so (Csorba et al., 2003).
2.2 Rhinolophus rouxii Temminck, 1835,

Rufous horseshoe bat _

Rhinolophus rouxii Temminck, 1835: 30b; Calcutta and Pondicherry, India (confined
to Calcutta by Andersen, 1905a)

Rhinolophus rubidus Kelaart, 1850: 209; Kaduganava, Sti Lanka

Rhinolophus fulvidus Blyth, 1851: 182 (error for rubidus Kelaart)

Rhinolophus cinerascens Kelaart, 1852: 13; Fort Frederick, Sri Lanka

Rhinolophus rammanika Kelaart, 1852: 14; Anamapoora Hill, Kaduganava, Sri Lanka

Rhinolophus petersii Dobson, 1872: 337, India “precise locality not known”

2.2.1 A Review of The Synonyms of Rhinolphus rouxii

Rhinolophus rouxii Temminck, 1835 was described from Calcuita and
Pondicherry, India. The type locality was confined to Calcutta by Andersen (1905a).
There are a series of five syntypes held in the Rijksmuseum van Natuurlijke, Leiden,
Holland (RMNH.35221 [i]-RMNH.35225 [m]). According to Andersen (1905a), the
forearm measurement was 49.5 mm with the general size (excluding the forearm)
smaller than that of R. gffinis. Temminck noted that the small second lower premolar
was absent and there were three colour phases: red, dark and intermediate.

Rhinolophus rubidus was described by Kelaart, 1850 from
Kaduganava, Sri Lanka. According to Thomas (1997), the holotype is not located.
Kelaart (1852) described the taxon as being bright ferruginous brown, the ears pointed
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with a deeply emarginated external border. The tip of the ‘triangular peak’ (= lancet?)
is ‘emarginated’ (= hastate/ narrowed).

Rhinolophus fulvidus Blyth, 1851 is an error for rubidus (Kclaart).
Rhinolophus cinerascens Kelaart, 1852 was named from Fort Frederick, Sri Lanka.
The pelage is dusky or ashy brown. The noseleaf is ‘as in the last species’ (R.
rubidus). Forearm length is 45.9 mm,

Rhinolophus rammanika Kelaart, 1852: 14 was described on the basis
of a single specimen collected from Anamapoora Hill, Kaduganava, Sri Lanka. It was
prepared as a dry specimen and this made an assessment of the noseleaf impossible,
The lancet was described as ‘a small triangular peak’, which was ‘hairy superiorly’.
The tail was 25.5 mm.

Rhinolophus petersii Dobson, 1872 was described without any precise
locality. According to Andersen (1905a), the original description was ‘meagre and
vague’ and the ‘figures of the head and nose-leaves published four years later are
badly drawn’. However, Andersen confidently assigned it to R. rouxii, a decision later

supported by Sinha (1973).

2.2.2 Diagnostic Characters of Rhinolophus rouxii

Previous authors have included (amongst others) the following
diagnostic characters for R. rouxii.

(N Forearm length > 46 mm (Corbet and Hill, 1992).

2) Noseleaf small, length 11 - 13 mm, width of horseshoe 7.5 - 9.2
mm (Sinha, 1973). According to Thomas (2000), the noseleaf averages 13.6 mm in
greatest height and 8.5 mm in greatest width and Csorba et al. (2003) considered the
horseshoe to be narrow in relation to the muzzle, its breadth is 7.0 - 9.2 mm. A small
secondary leaflet is frequently present.

3) Sella is practically parallel-margined from base to summit;
occasionally a faint indication of a constriction in the mid-part; the summit is broadly
rounded off (Andersen, 1905a). This view is followed by Sinha (1973) who noted
that the sella is pandurate but the margins of the horizontal base straight and Csorba et
al. (2003) who wrote that the sella is practically parallel sided (sometimes with a

slight constriction in the middle)
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4) Lancet is hastate (abruptly narrowed in the middle), the tip
well developed and slender (not abnormally shortened) but in some individuals the
lancet is less abruptly narrowed (Andersen, 1905a). This view was followed by
Corbet and Hill (1992) who wrote ‘Lancet hastate, abruptly narrowed at the centre,
lateral margins strongly concave, and tip well developed and slender’. However,
Bates and Harrison (1997) noted that the lancet is of variable height, sometimes
triangular in shape with straight sides, sometimes with a well developed tip and
concave margins below and Thomas (2000) who wrote that the lancet is tall and
narrowly pointed with relatively straight sides. A view not followed by Csorba et al.
(2003) who described the lancet as ‘of variable height, hastate, abruptly narrowed in
the middle, the tip is well developed and slender.

%) Wing structure: the second phalanx of the third digit is almost
always less than 1.5x the length of the first phalanx. However, there are some rare
individual exceptions when the second phalanx is equal to or slightly more than 1.5x
that of the first (Andersen, 1905a). The first phalanx of the third metacarpal is less
than half the length of the metacarpal. The second phalanx is usually less than 66% of
the metacarpal (Bates and Harrison, 1997).

(6) Palatal length of upper toothrow length is more than 1/4
sometimes almost 1/3 (Andersen, 1905a). According to Bates and Harrison (1997),
palatal length is up to 1/3 of upper toothrow length in specimens from India and Sri
Lanka and Csotba et al. (2003) stated that the palatal bridge is 27-31% of the
maxillary toothrow length,

(7 First upper premolar (P?) is usually completely in the
toothrow (89%) but occasionally half extruded (11%). The size of P? and the space
between the canine and the second upper premolar (P*) are variable {Andersen,
1905a). According to Corbet and Hill (1992), P? is more than twice the bulk of the
upper incisor, it is not tightly compressed in the toothrow, from which it is slightly
extruded; the canine and the posterior upper premolar (P*) are separated by moderate
or wider interspace. Bates and Harrison (1997) stated that P? is usually situated in the
toothrow, although it may be displaced in specimens from Sri Lanka and Thomas

(2000) suggested that P is usually situated in the toothrow. Csorba ef al. (2003)
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noted that it is medium sized and situated in the toothrow or is sometimes half
external to it.

(8) Second lower premolar (P3;) is most often quite external
(63%), sometimes partially in the toothrow (32%) and occasionally absent (5%). The
cingula of the first (P2) and third premolars (P4) in contact or neatly so (68%) or
distinctly separated (32%) (Andersen, 1905a). According to Bates and Harrison
(1997), P; and P4 are sometimes in contact; P3 is usually in the toothrow (Thomas,
2000). Csorba et al. (2003) note that P3 is partly or fully external, rarely missing, P,

and P4 are sometimes in contact,

2.3 Rhinolophus sinicus Andersen, 1905

Chinese horseshoe bat

Rhinolophus rouxii sinicus Andersen, 1905a: 98; Chinteh, Anhui, China.

Rhinolophus thomasi septentrionalis Sanborn 1939: 40; Nguluko, north of Likiang,
Yunnan, China, 27°05°N, 100°15’E,

2.3.1 A Review of The Synonyms of Rhinolophus sinicus

Rhinolophus rouxii sinicus was described by Andersen (1905a) from
Chinteh, Anhui, China. The holotype (BMNH.99.3.1.6) is the Natural History
Museum, London. The forearm is 46 mm. Skull length (19.8 mm) is a little smaller
than R. rouxii, with slenderer braincase (8.7 mm) and a shorter upper toothrow (7.7
mm). Colour phase darker.

Rhinolophus thomasi septentrionalis was described by Sanborn (1939)
from Yunnan, China on account of its larger size and slightly extruded upper

premolars. The forearm length is over S0 mm,

2.3.2 Diagnostic Characters of Rhinolophus sinicus

Previous authors have included (amongst others) the following
diagnosic characters for R. sinicus.

(1) Forearm: forearm length 44.8 mm - 51.5 mm in Chinese

specimens (Csorba ef al., 2003).
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(2) Horseshoe is relatively wide (8.1-8.2 mm) (Csorba et al.,
2003). Secondary leaflet is well developed and clearly visible (Csorba ef al., 2003).

3) Sella practically parallel-sided and widely rounded off (Csorba
et al., 2003),

(4) Lancet is hastate (straight-sided) but its tip is variable in
length, sometimes very short, in other cases long (Csorba et al., 2003).

(5) Wings are relatively large (Csorba et al.,, 2003),

(6) Wing structure, Second phalanx of 3™ digit is very long, 65.0-
75.3% of the metacarpal length.

() Palatal bridge is 26-30% of maxillary toothrow (Csorba ef al.,
2003).

(& Upper canine (C") exceeds P4 in length,

(9 First upper premolar (P?) is medium sized, lying in the
toothrow or slightly extruded but the upper canine (C') and the second upper premolar
(P*) ave widely separated (Csorba et al., 2003).

(10)  Sccond lower premolar (P3;) is medium sized or small and
partly or fully extruded from the toothrow, the first (P) and third premolar (Pyy are in

contact or nearly so (Csorba et al,, 2003).
2.4 Rhinolophus thomasi Andersen, 1905

Thomas’s horseshoe bat
Rhinolophus thomasi Andersen, 1905a; 100; Karin Hills, SE Myanmar.
Rhinolophus thomasi latifolius Sanborn, 1939: 39; Muong Moun, Tonkin, Vietnam

2.4.1 A Review of The Synonyms of Rhinolophus thomasi

Rhinolophus thomasi was described by Andersen (1905a) from the
Karin Hills, SE Myanmar. The holotype (BMNM.90.4.7.10) is the Natural History
Museum, London,

Rhinolophus thomasi latifolius was described by Sanborn (1939) from
Tonkin, Vietnam.
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2.4.2 Diagnostic Characters of Rhinolophus thomasi

Previous authors have included (amongst others) the following
diagnosic characters for R. thomasi.

(1) Forearm 44.8 - 45.7 mm (Andersen, 1905a).

(2) Horseshoe is considerably narrower than rouxii (Andersen,
1905a). Horseshoe is moderately wide (7.2 - 8.9 mm) (Csorba et al., 2003). A well
developed secondary leaflet is frequently present (Csorba et al., 2003),

3) Sella is practically parallel sided and broadly rounded off at its
apex (Csorba et al., 2003).

(4) Lancet, the tip is excessively shortened, almost rudimentary,
the hastate lancet of rouxii carried to extreme (Andersen, 1905a). The lancet is shott,
its tip is sometimes almost rudimentary, in other cases better developed (Csorba ef al.,
2003).

(5) Palatal bridge is 30 - 31% of upper toothrow length {Csorba et
al., 2003).

(6) Upper canine (C') only slightly exceeds second upper
premolar (P*) in length; its basal area is usually small.

(7) First upper premolar (P?) external to the toothrow; the canine
(Cl) and second upper premolar (P*) are in contact (Andersen, 1905a), P? is small,
lying almost in the axis of the tooth row or fully external to it (Csorba et af., 2003).

(8) Second lower premolar (P3) is external and the first (P;) and
third upper premolars (P4y are in contact (Andersen, 1905a). P3 is small and external;

P, and P4 are in contact or nearly so (Csorba et al., 2003).




CHAPTER 3
MATERIALS AND METHODS

3.1 Specimen Examined

During June 2006 — March 2007, a series of bat survey was mainly
conducted throughout northern, central to southern of Thailand based on the
distribution of target species especially in forestry and limestone caves. Rhinolophus
affinis, R. rouxii R, sicnicus and R. thomasi were examined.

There are totally 285 adult specimens of Rhinolophus examined for
this study, including 170 R. affinis, 81 R. rouxii, 17 R. thomasi, and 17 R. sinicus, plus
33 of subspecies of R. affinis in 21 localities, there are 15 R. a. himalayanus, 12 R. a.
superans, 3 R. a. tener, 2 R. a. macrurus and one of R. a. princeps (Appendix 1).

Most of the specimens used in this study were primarily wet (with
some dry) skins and prepared skulls held in the collections of the Princess Maha
Chakri Sirindhorn Natural History Museum (PSUZC), Prince of Songkla University,
Hat Yai, Thailand. The Harrison Institute (HZM), Sevenoaks, United Kingdom; The
British Natural History Museum (BNHM), London, United Kingdom, and the
Institute for Ecology and Biological Resources Vietnamese Academy of Science and
technology, Hanoi, Vietnam. Some of specimens were loan from Chiang Dao
Wildlife Research Station (CDWLRS), Thailand Institute of scientific and
Technological Research (TISTR). Some specimens from India, Sri Lanka, Nepal, and
Myanmar were loan from collections of the Harrison Institute (HZM), and from
Indonesia, Malaysia and China were loan from collections of The British Natural
History Museum (BNHM), London, United Kingdom. In addition, only the thirty-six
specimens were collected personally on six field trips to Chiang Mai, Chumporn,
Ranong, Songkla, Satun and Tarutao Island in Thailand. The majority were caught in
forests and caves. The voucher specimens were deposited in the Princess Maha

Chakii Sirindhorn Natural History Museum (PSUZC), Prince of Songkla University,
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Hat Yai, Thailand. Lists of species names and specimen locality are presented in

Appendices 1.

3.2 Study Areas

This study was based on previous records of R. affinis from Thailand,
Myanmar, Vietnam, Indonesia and Malaysia. In addition, R. rouxii, R. sinicus and R.
thomasi from India, Sri Lanka, Nepal and Vietnam from the collections of the
Harrison Institute (HZM) were compared and determined in this study. However, all
of subspecies of R. affinis were determined and followed previous study and recorded
from British Natural History Museum, London.

Each locality and geographical co-ordinates are included in the
‘Distribution’ section are briefly described and given below, but only the locality
from Thailand that [ have been visited and collected of specimens. Each locality is

given briefly description and following below:

3.2.1 Thailand
My study area is mainly in Thailand and the number of specimens and
localities are higher than other country. In Thailand, survey was conducted in 30

localities, covered 11 provinces and 2 Islands.

(1) Northern
). 1 Chiang Mai Province

The study sites were included two localities, but it was only one
locality that Rhinolophus affinis was found, six individual of bats were selected for
voucher specimens from the Mae Ja cave, in of Chiang Dao Wildlife Sanctuary,
Chiang Dao District, Chiang Mai Province (19° 31'915" N 98°50'440"E; 864 m, a.s.]).
This is very large limestone cave with a large entrance; it’s surrounded by orchards
and mixed deciduous forest and bamboo forest. Inside the cave, it has a small stream
flowing throughout underground of the cave (Figure 1).

From early records from the collections of British Natural History
Museum, London (UK), three subspecies were examined in this study, there are R. a.

macrurus, R. a. superans and R. a. tener from Doi Inthanon, Chomthong district,
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Chiang Mai province. These three subspecies have no coordinate and details of

locality (collector: Somsak Pantuwatana and J.T.Mashell, November 10, 1964).

1). 2 Tak Province:

Kavackee is located in a Head quarter of East Thung Yai Naresuan
wildlife sanctuary, Tak province (15.4226"N 98.59'28"E, none of a.s.l). Thung Yai
Naresuan is wildlife sanctuary, which is much more strictly protected area than a
national park, it forms the largest protected area in mainland South-East Asia,
covering in total 622,200 ha. It was declared as a World Heritage Site by the United
Nations in 1991. There is only one specimen of R. affinis and one location that
representative for the north-western site, this site was surveyed on March 11, 2003 by
Dr. Sara Bumrungsri, the vegetation types and climatic zone in this area is tropical

zone or subtropics due to its height and surrounded by dry evergreen forest, mix

deciduous forest.

Figure 1: Agricultural land and Orchard surrounded by limestone in Mae Ja cave,

Chiang Dao district, Chiang Mai province.
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{(2) Northeast

In the northeast area, bat surveys were conducted of four sites in four

provinces: Loei, Surin, Phetchaboon and Chaiyaphum.

2). 1 Loei Province

This bat study was surveyed from 18 — 20 May 2006 at Phu Suan Sai
National Park by Charles Francis and Sara Bumrungsri and PSU team. Three R.
affinis were found in one locality, Phu Suan Sai National Park, Na Haeo district, Loei
province (17° 30'323" N 100°56'295"E, 620 m, 975 m, a.s.l). Harp trap was set across

the trail under canopy of trees and bamboo, which surrounded by bamboo forest.

2). 2 Surin Province

Specimens were collected from Ta Muen Thom located in the border of
Thailand and Cambodia and Huai Thap Than-Huay Sumran Wildlife Sanctuary, Surin
province (14.21'08"N 103, 15'54"E, none of a.s.l), it is a lush jungle between Thailand
and Cambodia, there is only one specimen that recorded and stored in the collections
of the Natural History Museum, Prince of Songkla University, Hat Yai. This site is
surrounded by mix deciduous evergreen forest and dry evergreen forest, bat was

collected by Dr, Sara Bumrungsri on January 28, 2000.

2). 3 Phetchaboon Province

On May 16, 2006 Charles Francis and Sara Bumrungsri was surveyed
bat in Nhong mae-na, Thung Salang Luang National Park, Khao Kho district,
Phetchaboon province (16°34283"N 100°52'583"E, 730 m a.s.l). One R. agffinis in
this site was selected as a voucher specimen. This location is surrounded dry

evergreen forest and mix deciduous dipterocarp forest.

2). 4 Chaiyapum Province

Dr, Sara Bumrungsri was conducted bat series survey on April 8, 2006
in Thung Kamang, Phukico Wildlife sanctuary, Khon San district, Chaiyapum
province (No data record of coordination). Only one R. affinis was caught in this site,

the climate zone in Thung Kamang is tropical savanna with plant biodiversities; it was
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surrounded by hill evergreen forest, dry evergreen forest, mix deciduous and

diptercarp species.

Figure 2: The harp trap was set across the trail in dry dipterocarp forest and Mix

deciduous forests exist in Phu Sithan Wildlife Sanctury, Kalasin provice.

(3) Southern

The studies were conducted in eighteen localities which six provinces
from southern and peninsula land, there are Chumporn, Ranong, Phang Nga, Satun,
Songkhla and Narathiwat provinces. Each locality of this study is shortly described

with coordination given for further study.

3).1. Chumporn Province: This study was conducted at three sites including:
3). 1.1. Six individuals were selected in the field for voucher specimens

from Khao Kram cave, Patiew district, Chumpron province (10° 55'131" N
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99°22'440"E, 67 m, a.s.l). This limestone cave was surveyed on October 10, 2006
with one large entrance. The harp trap was set across the entrance of the cave before
six o’clock in the evening. This cave is surrounded by a rubber plantation,

3). 1.2. A harp trap was set at the entrance of Huay Wang Cave, this
limestone cave is located at Tumbon Khao Talu, Sawi district, Chumporn province
{10° 10" 996"N 98°55'183"E, 55 m, a.s.l), one R. affinis was taken for bat collection
from this cave on January 10, 2007. The location is surrounded by mix deciduous
forest and rubber plantation.

3). 1.3. Bat survey was conducted on January 9, 2007 at Khao Plu, a
limestone outcrop cave, located in Lamae, Patiew District, Chumporn Province {09°
43' 601" N 99°06'495"E, 30 m, a.s.l). A small cave sits on middle of rubber plantation
and cultivation areas. Two harp traps were set along the trail of the outcrop areas and

two of R. affinis were selected as voucher specimens.

Figure 3: Bats root in the Khao Kram cave, Patew district, Chumporn province.
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3).2. Ranong Province: Isthmus of Kra of Thailand

The narrowest part of the Malayan Peninsula is located here at about
approximately 60 km north of Ranong Town. The scenery visible from the viewpoint
here is the “Kra Buri River”, the natural border between Thailand and Myanmar.

During the time period between 12 — 13 January, 2007, two localities
were conducted for bat study by bat team, the harp trap and hoop net were used for
catching bat and two localities of study sites are given in short description below:

3).2.1. Knad Dai cave is located in La-un district, Ranong province
(10° 01'910" N 98°55'183"E, 244 m, a.s.l). This is very large limestone caver which
include many chambers in a limestone outcrop close to a stream and villages. In front
of the cave is a small local park. Three harp traps were set inside the cave between the
first and second chamber, one was set beside the outcrop ~30 m right from the cave
entrance and another was set at a small entrance 5 m height from the ground, most of
collected specimens were captured from the second harp trap.

One specimen of R. gffinis was selected from this cave; a bat series

survey was conducted on January 12, 2007 by bat team,

Figure 4: Large entrance of limestone cave with many chambers in Ranong province.
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3).2.2. Tham Phra Khayang cave is located at Ban Lum Leang, 12 km off Kra Buri
town. It is the northernmost district of Ranong province (10°19.569°N 98°45.923’E, 3
m a.s.L.). This site was surveyed on 13 January 2007. A very large limestone cave in a
large isolated limestone outcrop surrounded by Nipah palm plantation (Nipa fruticans
Wurmb.) and some mangrove forest near by a stream connect to the sea. Two harp
traps were set across a small artificial trail surrounded the outcrop opposite the cave
entrance. Another one was set at the starting point of the trail under a projected
limestone part of the outcrop.

3).2.3. Two specimens of K. affinis from Ban Bang Non, Muang
district, Ranong province, Thailand were determined also. There is no detail of

coordinated and time recorded from this location.

3).3. Phang Nga Province

The province is located on the west side of the Thai Peninsula and
includes many islands of the Phang Nga Bay. Situated on the Andaman Sea, Phang-
Nga province is famous for its natural beauty in terms of sea, beaches, islands,
mountains and forests. The Ao Phang-Nga (Phang-Nga Bay) National Park was
established in 1981 to protect the many fascinating islands. Most of Islands are
formed limestone rock in the sea. Mu Ko Surin National Park is an archipelago of 5
islands: Ko Surin Nuea (North), Ko Surin Tai (south), Ko Ri, Ko Khai, and Ko Klang.
It was declared as a national park on July 9, 1981.

3).3.1. Three R. affinis specimens were collected from North Surin
Island on Mu Ko Surin National Park on February 2, 2006. The site is surrounded by
sandstone forest which has small trees covered by. This study site had no exactly

coordination, but just only locality name and date are presented.

3).4. Satun Province

There are a lot of number of localities of bat study are exist in Satun
province, including Tarutao Island (Tarutao National Park). Following all localities
are briefly describing below:

3).4.1. The river bank is located near the Boripatra waterfall in Ton
Nga-chang wildlife sanctuary, Songkla Province (7°00'049" N 100°08'534"E, 13 m,
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a.s.l), Harp trap was set beside the road along the river bank that flow across the road
near the entrance of the Boripatra waterfall. The site is surrounded by evergreen forest
and rubber plantations and orchard. There are nearly a hundred number of bats were
caught from this site, but only five specimens of R. affinis were collected on October
7, 2006 (Figure 5).

3).4.2. Charge Francis and Sara Bumrungsri collected one R. affinis on
May 11, 2006 from Boripatra waterfall, Ton Nga-chang Wildlife Sanctuary, Songkhla
Province (06° 59° N 100 100°08'E, none of a.s.l). The waterfall is surrounded by

3).4.3. Wang Saithong waterfall (47N 0600469, UTM0783824, none of
a.s.l) is located in Manang district of Satun province, which the place is water
cascading from the slopes of limestone mountains. The beauty of this waterfall is the
limestone in the shape of multi-petalled lotus flowers settling on the bottom of the
pools at each of its tiers, this waterfall is surrounded by evergreen forest and mix

deciduous forest.

Figure 5: Huge limestone out crop is surrounded by rubber plantation, Satun Province.
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3).4. Tarutao Island National Park, Satun Province

Tarutao Island is the largest island of the park, covering an area of 152
km?. It is the first marine national park of Thailand. Most of the areas are mountains
with a moist evergreen forest, interesting species of plants and wildlife. Some part of
the area is a mangrove forest. There are many bays, both small and large, with
beautiful beaches. The arca was declared a national park on 19 April 1974, and
ASEAN Heritage Parks and Reserves by UNESCO in 1982. The localities are
following:

3)4.1. Road to Ao Son on Tarutao Island (06° 39'541" N 99°
37'960"E, 22 m, as.l). This curve shaped bay has sandy beaches which are
interspersed with rocky beaches. It is also an egg-laying ground for sea turtles. Along
both sides of Ao son road that the harps trap was set under canopy of trees, which
surrounded by lowland evergreen forest, nearest and along the road. Two of R. affinis
were collected on March 8, 2007.

3).4.2. 2 Ao Son -Ao Chak road (6.39'38"N 99.3822"E, none of a.s.l), it
is the located on Tarutao Island, Satun province. Ao Chak is a small bay next to Ao
Phante Melaka. The harp trap was set under canopy of trees in the evergreen forest
(lowland), one of R. affinis bat were taken for voucher specimens on March 5, 2003
by Dr. Sara Bumrungsri. Three years later, the harp traps were set again close fo the
last position {(6°38'76" N 99°37'4"E, none of a.s.l) by the same collector. This survey
was conducted on August 3, 2006 and only one specimen was taken.

3).4.3. Bat survey was conducted on March 9, 2006 by Dr. Sara
Bumrungsti. One of R. affinis was collected from the km 6™ road back to the Tarutao
Island National Park office (6° 39'48" N 99°39'4"E, none of a.s.]). This study position
is surrounded by lowland evergreen forest, mix deciduous forest with some open
space of canopy.

3).4.4, One of my voucher specimens was taken from Tarutao National
Park on March 9, 2007 of Satun province, this position (06° 39'292" N 9939 '455"E,
76 m,a.s.1) is the km 7™ road from the Head office of Tarutao Island to Tarowao bay.
The environment condition areas are lowland evergreen forest and with open space of
mix deciduous forest. The harp trap was set cross small stream with the top of secured

canopy.
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3).4.5. Along the road from Talowao to Taloudang (06° 36'265" N
09°40 '518"E, 9 m, a.s.]}, harp trap was set on the trail under the canopy of trees in the
lowland dry evergreen forest, many species of bats were caught from this site, but
only one of R. affinis was selected for voucher specimen. This bat survey was carried

out on March 5, 2007.

Figure 6: Lowland dry evergreen forest, Tarutao Island National Park, Stun province.

3).5. Songkhla Province

3).5.1. One Klao Rak Kiat is located in Rattaphum district of Songkhla
province (6°38.767°N, 99°37.383’E, 100 m a.s.l). This site was surveyed on 16
December 2006. This cave is in a limestone outcrop which is surrounded by disturbed
forest and a rubber plantation. The harp traps were set on natural trail under a canopy
of the trees and a bat was captured using a hand net in the cave.

3).5.2. Three male and three female specimens were collected from
Tham Khao Tieb cave (6°59'975" N 100°17'872"E, 18 m, a.s.l}, this cave is limestone
outcrop and located in Ratthaphum district of Songkhla province. This cave is

underground limestone cave, which has a small hold down 2.5 m depth and 1.5 m
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width, This limestone cave was surveyed on October 1, 2006, and is surrounded by

evergreen forest and rubber plantation (Fig, 7).

Figure 7: Limestone outcrop and surrounded by rubber plantation

3).6. Narathiwat Province
Narathiwat is the easternmost of four southern provinces that close to
Thai-Malaysia border. Most of the area consists of primary rainforest and overgrown

mountains.

3).6.1. Hala-Bala Wildlife Sanctuary, Narathiwat, Thailand

Hala-Bala was announced as wildlife sanctuary in 1996. It demarcates
the southernmost rain forests in peninsular of Thailand with the vast territories of 434
square kilometers covering Sangalakiri Range in Narathiwat Province, extending to
the border of Malaysia. Three specimens of R. affinis from Hala - Bala wildlife
sanctuary (05° 47'54" N 101°49 '495"E, none of a.s.l) were taken on February 21,
2007 by Amorn Prajukjitr. The harp trap was set under the canopy crossing foot part.

The fertile evergreen forest supports a density of huge dipterocarp.
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(4). Unknown

Two females of R. affinis were collected from Thailand, but there have
no details of coordinate location and date of these specimens. These specimens were
caught the same time and were conducted on March 21, 2006 by Sara Bumrungsri,
Department of Biology, Faculty of science, Prince of Songkla University, Hat Yai,
Thailand. For more details of all localities and data information pieases (see in

Appendices 1, 2, 3 and 4).

3.3 Capture Methods
3.3.1 Hand Nets or Hoop Nets

Hand nets with adjustable handle lengths are particularly useful for
capturing bats in caves, mines, buildings and forests. Hand nets can be made from
heavy-duty wire, mosquito netting and almost any type of poles (Kunz, 1990). Hand
nets are made from a bag tied to a handle or to sticks (bamboos, woed, etc).

The basket is deep enough to prevent bats from escaping. In the present
study, it was about 85 cm deep and 45 ¢m in diameter. The pole varies in fength and is
lightweight to ensure the maximum manoeuvrability of the net, The angel of the hoop

is adjusted relative to handle and should be made of aluminium if available (Fig. 8).
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3.3.2 Mist Nets

Mist nets are a commonly used tool for capturing flying bats (Kunz,
1988). Generally, in this study, nylon mist nets were used in the field (Figure 9). The
mist nets used to capture flying bats are light and if treated correctly can be used

repeatedly.

However, they are prone to tearing and may be damaged by rough
treatment or by being bitten by the bats. The colour is usually black; it is suitable for
capturing bats in dark places. Mist nets are 36 mm, 70-denier/2 ply and have four
shelves. They are 2 meters high and range in length from 6 to [2 m. Mist nets

should be carefully opened to expose the end loops.

Many nets are supplied with the top loops colour-coded and with
different colours at the opposite end. Mist nets were set in early evening in front of
cave entrances where bats regularly exit to catch flying insects. In the case of larger

cave entrances, two people were hold net poles across the cave entrance. They were

also set across forest paths and over streams.

Figure 9: Mist net was set in the rubber plantation or in the forest.
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3.3.3 Harp Traps

Harp traps are used to catch free flying bats by setting them in
constricted areas (e.g. a narrow point in a forest trails). Harp traps have an advantage
over mist nets as they are stronger and require less maintenance. In the long term
they are also cheaper, as they can be used for many years and are easy to repair.

Harp traps work on the principle that the echolocation calls of bats
cannot easily detect the nylon fishing line (= wires) and the tension of the wire banks
is sufficient to stop the flight momentum of bats. A harp traps usually have four banks
of wires (Francis, 1989), each wire is attached individually to a twirl spring which is
spaced approximately 20 mm apart. The frames are 200 cm height and 180 cm width
(Fig. 10, A&B).

Four extension legs support the main frame. A cloth bag, partially lined
with polyethylene is tied underneath the trap frame to catch bats as they fall after
having been intercepted by the trap. A plastic flap is suspended inside the bag to
prevent hovering bats and other highly manoeuvrable species from escaping. When
bats are captured in harp trap, they are well protected from inclement weather and the
possibility of predators (snakes, owls, hawks, bird preys and mammalian carnivores}
(Hill and Smith, 1984; Kunz, 1988). However, harp traps have some limitations; the
surface area of the traps is limited and is not suitable for collecting bats in open spaces

and in some large entrances to caves.

3.3.4 Echolocation Record

Echolocation calls were recorded using a Pettersson 240X bat detector
and a Sony cassette tape recorder and digital recorder. Calls can be recorded from bats
in various conditions such as hand-held, in bags, and free flying, However, in this
study all calls were recorded using a standardised hand held and held inside bag
methods. The bat detector was a Pettersson ULTRASOUND DETECTOR D 240x
(Fig. 11}, which was set at 10x time expansion rate and 17 seconds max storage time.

A recorder was connected to the bat detector.
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in front of cave’s entrance; (B) Harp trap was set

mn

(A) The harp was set

.

Figure 10

across a mall trail at the mountain’s hill in dry deciduous forest.
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Figure 11: Pettersson Ultrasound Bat detector (left) and iHP-120 Recorder (right).

3.4 Specimen Preparation
3.4.1 Field Data

After bats were captured, species, sex, age status was identified (adult,
juvenile) by during filed capture period of the phalanx of metacarpal joints and
reproduction condition was identified by females. Body mass of bats were weighed
(using a Pesola balance to the nearest + 0.1g.) and recorded on data sheets in the field.

Basic external measurements (e.g. body length, forearm length, car
length, and tail length) were taken by using the digital caliper and the locations were
recordedusing the Global Position system (GPRS).

Live bats were taken to the base camp; echolocation calls of each bat
were recorded, and photographs taken of characteristic features such as the noseleaf,
lancet, and wing morphology. Then the bats selected as voucher specimens were
sacrificed using chloroform, In a small number of cases of considerable taxonomic
interest, wing punches and fresh livers were collected and kept in 100% alcohol for

DNA analysis. The information of field data was sight and given below:
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. Date of collection.

. Locality data, especially name of cave or village, district, provincial
and geographical of coordination.

. Sexual status

. Specimen number

. Habitat description

. File number of recorded echolocation call.

. File number of bat photograph

An individually numbered label was attached to the right hind foot. In
some cases specimens were then stored in 10 % Formalin to keep colour. After one
day, specimens are taken out of the formalin. They are rinsed in cold water in order to
remove as much formalin as possible. After five minutes, specimens are placed in
jars with 70% alcohol, and kept on shelves in a dark place.

However, if this technique is followed no further tissues for DNA
analysis can be taken from the specimen and other specimens that come into contact
with this material will also be contaminated. Many researchers therefore prefer to put
the voucher specimens directly into 70% alcohol.

The wet specimen labels are made from strongly paper that sealed with
plastic and tear water proof and alcohol. The wet specimen label must be written by
permanent ink or pencil (Figure 12). The details and all information of wet specimen

labels are listed below:

o Museum number

o] Sex

o  Species name

o  Call Frequency

o  Date of collection

o  Locality (briefly describe of habitat collecting)
o  Geographical coordination and altitude

o  Head and Body Length

o  Forearm Length
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o  Ear Length

o  Tail Length

o  Hindfoot Length
o  Bodymass

o Collector

o Field number

PSUZC-MMO06.89 3
Rhinolophus affinis 151.3 kHz
10/16/2006 Khao Kram Cave, Patiew District,
Chumporn Province
10°55.131°N, 99°22 440°E

HB: 42.20 Limestone cave surrounded by
FA: 35.71 Rubber Plantation. Alt. 67 m

E: 16.08 Collectors: Bat Team
T: 27.39

HF: 5,22 Field No, SB061010.6
W:36

Figure 12: Showing the labels of wet specimens and skulls: front side of label (above)
and back side of label (bottom).

3.4.2 Specimen Examined and Taxonomic Measurements
3.4.2.1 External Measurements

The external morphology of each taxon were examined and described
in details. Photographs of lancets for each taxon were taken for comparative purpose
by using a Nikon digital camera with 100 mm macro lens. The external measurements
were taken to nearest 0.01 mm using a digital calliper following Bates and Harrison
(1997).

In addition, 285 specimens were measured, which eleven external
characters were recorded from each specimen. Lancets were scored and compared of

each taxon (Fig. 13). The definitions are as fallow:
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Figure 13: External measurements of Rhinolophus affinis

HBL: Head and body length, dorsally, from the tip of snout to the base of the body

adjacent to the anus.

TATL: Tail length, from the tip of the tail to its base adjacent to the anus.

FA: Forearm length, from the extremity of the elbow to the extremity of the carpus

with the wings folded.

E: Ear length, from the lower border of the external auditory meatus to the tip of the

pinna, not including any tuft of hair.

HF: Foot length, from the extremity of the heel behind the os calcis to the extremity

of the longest digit, not including the hairs or claws.

TIBIA: Tibia length, from the knee joint to the ankle,
3 Met (MET): Third metacarpal, from the extremity of the carpus to the distal

extremity of metacarpal.
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3 Met 1ph: First phalanx of the third metacarpal-taken from the proximal to the distal

extremity of the phalanx.

3 Met 2ph: Second phalanx of the third metacarpal-taken from the proximal to the

distal extremity of the phalanx.

4 met (MET): Fourth metacarpal as for third metacarpal.

5 met (MET): Fifth metacarpal as for third metacarpal.

3.4.2.2 Wet Specimen Storage .

After the skull has been extracted, a cotton wool ball is fitted into the
head skin. The mouth is sewn up with a needle and black cotton. Wet specimens are
stored in air-tight jars. Each jar only contains one species, but may contain 1-3
specimens. Each specimen is identified and with its data inctuded on a label. The label
is attracted to the right foot. The jars contain 70% ethanol. The specimens must stay

below the level of the ethanol. The jar is kept on open shelves in a dark place

3.4.2.3 Skull Extraction

The skulls were extracted by hand, which logical method. Although, a
small blunt scalpel was used to cut the facial skin on the front of mandible, close to
the lower incisor. The facial skin was peecled from the front to the back of the
mandible by using a combination of forceps, small blunt scalpel and small sharp
scissors. The facial skin on the cranium, nearest to the upper incisors was cut and
peeled from front to back. When cutting the skin free from the nasal bone region, it is
important to avoid damaging the noseleaf. When removing the skin from the
zygomatic arches, it is important to avoid damaging the zygomata. A small blunt
scalpel is used to carefully remove the skin on each side of the skull by the ears.
When removing the skull from the body, it is necessary to cut the upper cervical spine
rather than risk cutting the occipital part of the skull. The tongue is removed by using
a pair of forceps. A temporary skull label should be attacked to the skull and the

mandible.
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3.4.2.4 Cranial and Dental Measurements

Thirteen cranio-dental measurements were taken from each specimen
using a digital calliper accurate to the nearest 0.01 mm. However, using a Wild-
Heerbrug stereo microscope with attached camera Lucida made line drawing of the
skull structure, dentition and palatal.

These measurements are illustrated in  (Fig. 14-16) and are defined
below:
GTL: greatest length of the skull: the greatest antero-posterior diameter of the skull,

taken from the most projecting point at each extremity.

CBL: condylo-basal length, from an exoccipital condyle to the alveolus of the

anterior incisor,

CCL: condylo-canine length, from an exoccipital condyle to the alveolus of the

anterior canine.

SL: skull length, from the alveolus of the anterior canine to the most posteriotly

projecting part of the skull.
Z.B: zygomatic breadth, the greatest width of the skull across the zygomatic arches.
BB: breadth of braincase, taken at the posterior roots of the zygomatic arches,

PC: postorbital constriction, the narrowest width across the constriction posterior to

the obits,

CL-M’; maxillary toothrow length, from the front of the upper canine to the back of
the crown of the third upper molar.

MP-M® Exemal. yosterior palatal width, taken across the outer borders of the third

upper molar at the widest part.
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C-M3: mandibular toothrow length, from the front of the lower canine to the back of

the crown of the third lower molar.

cl.c! Extemab. o ieatest anterior palatal width taken across the outer borders of the

upper canines at the widest part.

ML: mandible length, from the most posterior part of the condyle to the most anterior

part of the mandible, including lower incisors.

PL: Palatal length, measured from the median point of the anterior border to the

median point of the posterior border.

ax-sm,mrsn PC MB

Figure 14: Dorsal view of the skull of R. gffinis HZM. No.7.28151 from India
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Figure 16: Lateral view of Upper skull (above) and Lower tooth (bottom) of R. gffinis
HZM. No.7.28151 from India

3.4.2.5 Skull Storage
The temporary skull label is replaced by collections skull label
(permanently). The skull is stored inside a small plastic pot with a secure lid. The

skull label is attached right side of the zygomatic breadth from dorsal view. The label
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stays outside of the pot. The skull is supported on cotton wool to minimize any
damage during storage. The skull pot is kept in a plastic bag, which is kept in a box.
3.4.2.6 Sella Morphology

The horizontal sella was examined to determine if the sides were

straight or parallel sides (A), concave (B) and convex (C) see in (Figure 17).

Some specimens showed an indication of a concavity, without being as
convex as a (C) or as straight as a (A), they were assigned to a Type 1.5 or (D), it is

not included in the figure below.

Figure 17 Anterior view of sella variationsin R, qffinis from mainland Southeast-
Asia. (A) The straight or parallel sides of R. affinis No.43 from Vietnam, (B) the
concave sides of R. affinis PSUZC-M05.103 from Thailand and (C) the convex sides
of R. affinis HZM. No. 22.32195 from Vietnam

3.4.2.7 Lancet Morphology

The noseleaf of each specimen was scored in terms of its lancet
morphology since this method allows for objective comparisons between populations
within species and for a study of interspecific variation. Lancet shape was divided

into four morphotypes (Figure 18). Individuals were allotted to the ‘most similat’
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morphotype. In some cases, lancet shape was somewhat intermediate between one
and another morphotype and in these cases there was element subjectivity in the
allocation process.

The four lancet morphotypes are: (A) a triangular shaped lancet with
essentially straight sides; (B) a triangular shape lancet but with a slight concavity on
each sides below the tip; (C) a smali lancet with a domed shape lower part and a short
straight sides tip and (D) a lancet with a domed shaped lower part and a clearly

defined as elongated pointed tip.

Figure 18: Anterior view of lancet types in Rhinolophus. (A) R. affinis SB 060518.15
from Thailand; (B) R. rouxii HZM.No.55.30958 from Sri Lanka, (C) R. rowuxii
MM120 (BNHM), India and (D) R. sinicus HZM. No. 21.28153 from India

3.4.2.8 Internarial Cup
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The shape of the internarial cup was examined. Those with rounded
sides were scored as Type 1 and the minority with angular sides was assigned to be a
Type 2.
3.4.2.9 Attachment of the Secondary Foliole

Most specimens had a single supplementary foliole beneath the anterior
horseshoe. In some cases, this foliole was a thickening of the skin but without a free
edge. This was scored as a Type 1. In some specimens, the edge of the outside
border of the foliole was separate from the muzzle. These were scored as Type 2, In
some c'ases, a small proportion of the outer border was free from the muzzle, while

the remaining part of the border was still attached. They were scored as Type 1.5.

3.4.2.10 First upper premolar (Pz) size and position

The size and position of the first upper premolar (P?) was examined for
cach individual. Specimens with the smallest premolar were scored as Type 1;
intermediate were Type 2 and Type 3 for the largest. The position was scored as ‘A’
for a premolar extruded from toothrow, ‘B’ for partially extruded and ‘C’ for
positioned within the toothrow. Therefore, each tooth was given a code which
included a number (size) and letter (position). In this figure, the examples include
differences in both size and position (Fig. 19). In P? positions (toothrow position) are

an ¢xplanation below:

. md, partly ex = medium sized and partly extruded from the toothrow.
. mt, tr = minute size and situated in the toothrow

. lg, partly ext = large and partly extruded

. sm, partly ext = small and partly extruded

e mt, partly ext = minute and partly extruded

o md, tr = medium sized and situated in the toothrow

o lg, tr = large and situated in the toothrow

. sm, tr = small and situated in the toothrow




64

3.4.2.11 Second lower premolar (P3) size and position

The size and position of the second lower premolar (P;) was examined
for each individual. Size was scored as Type 0 for absent, Type 1 for the smaller,
Type 2 for larger size. Position was scored as ‘A’ for a premolar extruded from
toothrow, ‘B’ for partially extruded. Therefore, as with the first upper premolar, each
tooth was given a code which included a number (size) and letter (position). In this
figure, the examples include differences in size and position (Fig. 20). In P? positions

(toothrow position) are an explanation below:

e Absent = absent from the toothrow

e mt, partly ext = minute and partly extruded

e mt, ext (P3) = minute and extruded from the toothrow

s mt, tr = minute size and situated in the toothrow

¢ md, partly ex = medium sized and partly extruded from the toothrow
¢ nd, ext = medium sized and extruded from the toothrow

e md, tr = medium sized and situated in the toothrow

3.4.2.12 Bacular Extraction

Bacula were prepared for a number of male specimens. The penis was
carefully cut from the body of the voucher specimen. It was then heated in a test tube
of boiling water for two minutes. This was followed by a period of maceration in a
solution of 5% potassium hydroxide mixed with a very small ‘pinch’ of alizarin red
stain. Twenty four hours later, the soft tissue was removed by dissection. The
baculum was then ready for storage in glycerol (Thomas et al., 1994 and 1997).

The bacula were then examined under a Wild-Heerbrug stereo
microscope and where necessary line drawings were made by using an attached
camera Lucida. Measurements were taken using a graticule scale attached within the
eyepiece of the microscope. These included the greatest length, greatest width and

lateral width of the baculum.
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Figure 19: Intraspecific variation in the position of the first upper premolar. (A) Smallest size
and extruded from toothrow of R. sinicus, HZM.2.16292, &, Godavari, Nepal. (B)
Intermediate size and partially extruded of R. rouxii, HZM.39.28566, ¢, Ingiriya, Western
Province, Sti Lanka, and (C) Largest size and within toothrow of R. rouxii, HZM.49.29288,

¢, Pussahena Tunnel, near Ruwanwella, Sabaragamuwa, Sri Lanka,

Figure 20: Intraspecific variation in the position of the lower middle premolar. (A) Smali
size and a premolar extruded from toothrow of R, rouxii, HZM.48,29287, @, Pallama, Matale
District, Sri Lanka. (B) Larger size and partially extruded of R. rouxii, HZM.39.28566, <,
Ingiriya, Western Province, Sri Lanka,
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3.5 Data Analysis
3.5.1 Statistic Analysis

A SPSS program was used for multivariate statistical tests in order to
examine intra- and interspecific patterns in the data.

Sexual dimorphism, in order to determine whether there was sexual
dimorphism within the study taxa, geographically restricted areas were selected for
univariate and multivariate analysis. A univariate T-test and a multivariate Hotellings
T test were run on selected external, cranial and dental characters for males compared
to females for each taxon at a confidence limit of 95% using SYSTAT 6.0 for
Windows.

Geographical variation, for the investigation of geographical variation
within species, populations and each species, geographical ranges were divided into
regions, which had been noted during the morphological examination as appearing to
represent possible variation boundaries. The geographical positions of every site were
marked on a map, Descriptive statistics were calculated for each region using a set of

external, cranial and dental characters.

3.5.2 Echolocation Analysis

Calls of Rhinolophus calls were analysed with Batsound programme
(Pro-Sound Analysis Version; 3.31 programme) supplied by Pettersson Elektronik.
The definitions of the five measurements of Echolocation Calls are following.

1. Pulse duration (D): The duration of a single pulse, obtained by
measuring the pulse envelope from the spectrogram and oscillogram (Fig. 21.A).

2. Start at maximum frequency (SF, fmax, kHz): The start or
maximum frequency, measured from the spectrogram and power spectrum (Fig.
21.B).

3. End frequency (EF, fmin, kHz): The end or minimum frequency,
measured from the spectrogram and power spectrum (Fig. 21.C).

4, Maximum frequency (FMAX, kHz), measured a single pulse from
the spectrogram via a large measurement cursor placed at the top end of the

spectrogram (Fig. 21.D).
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5. Minimum frequency (FMIN, kHz), measured a single pulse from
the spectrogram via a large measurement cursor placed at the bottom end of the
spectrogram (Fig.21.E).

6. Frequency at maximum intensity (FINT, kHz); or Peak frequency

(PF, FmaxE, kHz): The frequency containing maximum energy, obtained from the

spectrogram and power spectrum (Fig. 21.F).
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Figure 21: R. affinis call and the BatSound software cursors (represented by the lines)
and measurement point (indicated by arrows) used for parameter measurements. (A)
pulse duration of call (in milliseconds), (B) SF start frequency measurement cursor;
(C) end frequency measurement cursor; (D) FMAX (maximum frequency)
measurement cursor; (B} FMIN (minimuem frequency) measurement cursor and (F)

FINT (frequency of maximum intensity).




CHAPTER 4
RESULTS

4.1 Rhinolophus sinicus and Rhinolophus thomasi
4.1.1 External Morphology Comparison
4.1.1.1 Sella Variation

The sella shape of R. sinicus is typically parallel-margined with a
widely obtuse apex (100%) (Fig.25), the majorities (55%) of the sella shapes of R
thomasi are straight or parallel margined with a blunt tip. However, a sizeable

minority have convex sides (18%) or an indication of a concavity (27%) see in Fig.22.

AEB MC#AD

Figure 22: The percentage of sella variation in R, sinicus (left, n= 15) and R. thomasi
(right, n= 11), The sella shape with parallel margined (A), concave sides (B), convex

sides (C), and undefined (D) see in Fig 17, p 62.

4.1.1.2 Lancet Variation

08
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In R. sinicus, the lancet is typically elongate-margined and with a blunt
tip or sometimes straight foreword-tip, It is always very short/or short in R. sinicus,
there are the dome shape with elongated sides (94%) and the straight sides (6%). In R,

thomasi, the lancet is short, the tip is almost simple or straightforward with elongated

sides, is completely shown the dome shape with elongated sides of lancet (100%) (Fig.
23)

R. sinicus R. thomusi

@A EB NCHD AA EB NCHD

Figure 23: High percentages of dome shape with elongated sides of lancet are
dominated in both species R. sinicus (n= 16) and R. thomasi (n= 10). Triangular
shaped with straight sides (A), the triangular shaped with concave sides (B), the dome
shaped with straight sides tip (C) and the dome shaped with elongate sides tip (D), see
in Fig. 18, p 63.

4,12 Skull Morphology
The skull of R. sinicus is bigger than R. thomasi, with CCL: 17.81 mm
in average. The rostral depression profile is narrowly convex (Fig. 49 c¢). The zygoma

is well developed and concave in shape, with high jugal projection (curve) (Fig 50 c).
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The palatal bridge is 1.62 — 2.46 mm or 27.04% in average of the maxillary toothrow
length (C-M?). In R. thomasi, the skull is a small and robust, with CCL: 16.20 mm.
The nasal swelling is high and rostal depression profile is deeper and slopping
rearward than R. sinicus (Fig. 50 d). The zygoma is slightly strong with low jugal
projection (convex) (Fig 50 d). The palatal bridge is 1.45 — 2.50 mm/27.84 % in
average of the maxillary toothrow length (C-M>).

4.1.3 Morphometries

Eleven external and ten cranial and dental character measurements of
Rhinolophus sinicus and R. thomasi were taken and compared. R. sinicus and R.
thomasi are significantly different in body sizes, external and internal characters,
accept cars and the palatal bridge. The Mann-Whitney samples test and the descriptive

statistics (Mean + SD, Min, Max and number) are presented in Table 1.

4.1.3.1 Sexual Dimorphism

Males and females of Rhinolophus sinicus and R. thomasi species are
considerable different in some characters within each species (P<0.05), but most of
them are slightly similar in morphology (P>0.05). A summary of the measurements

and statistics test are included in Table 2 and Table 3.

4.1.3.2 Wing Structure Mcasurements

The first phalanx of the third metacarpal of R, sinicus is less than half
{(43%) the average length of the third digit. The second phalanx of the third digit is
relatively short compared to R. affinis; it averages 68.9% of the length of the third
metacarpal. In addition, the average length of the second phalanx of the third digit is
mostly less than 1.60 min the length of the first phalanx of the third metacarpal.

Usually, the first phalanx of the third metacarpal of R. thomasi is less
than half of the third metacarpal; it is 44,5% of average length. The second phalanx of
the third digit is gradually more than 70.33% length in average of the third metacarpal
(Fig. 24, 25).
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Table 1: Two independent samples test (Mann-Whitney) and the descriptive statistics
showing the mean + SD, minimum-maximum (mm) for external, cranial and dental

measurements of Rhinolophus sinicus and R. thomasi.

Mann-Whitney Samples test

Characters 95% Confidence Interval of the Difference

Rhinelophus sinicits Rhinelophus thomasi Both

Mean £ SD Min Max n | Mean:SD Min Max n Sig (P)

HBL 52314265 4900 5849 1o | 46.26+1.82 43.77 4920 13 L001*
E 1763+1.53 1438 2000 17 | 1687+1.74 1445 1930 13 A78

TL 2507162 21.50 2800 17 ]2020+342 1480 2600 13 .001*
HF 8.53%0.65 1.50 9.44 17 | 7.00x0.94 5.20 9.20 13 001*
TIB 19.04 £0.68 1859 2119 17 | 1743066 1574 1832 12 | .001*
FA 4735+ 1.27 43.63 4880 17 | 43.79+1.05 4150 4510 13 001*
SMet 37.844+1.09 364 4022 {7 3353155 2931 3517 12 001%
4Met 647+£1.03 3413 3822 17 ;3285+1.64 2823 3436 12 001*
IM et 3549+ 1,44 3318 3728 17 | 3148x1l66 2683 3317 12 001*

3Metlph 15214068 1339 1617 17 {14.03+046 1341 15.11 12 H01*
3Met2ph 2436+ 120 2031 2598 17 §2246+148 1871 2443 12 001*

GTL 2078053 20.14 2193 13 1 19.04+058 1838 1995 15 001%
CCL 1781045 1729  18.87 13 { 1620037 1559 16.83 17 | .001*
SL 19.89+£045 1948 2108 14 | 1834042 {774 1923 17 [.001%
B 10.38+£0.32 9.68 1089 16 | 953£0.35 8.83 1003 17 4§ .001*
BB 9.54 +0.15 9.33 9.77 14 | 8.93+£0.23 8.60 9.35 17 1 .001%
c-m’ 7.80:40.25 7.34 8.31 17 | 7.01 £0.26 6.61 7.45 17 1 .001%
M3-M3 8.03+0.28 7.40 8.44 17 | 7.28+£0.20 6.98 7.73 b7 .001%
PL 211 +£0,19 1.62 2.46 16 | 1.95+0.30 .45 2.50 17 1.220

C-M, 834026 71.80 8.86 17 | 775+ 1.37 7.13 1298 17 i} .001*
ML 13.89+049 1255 1476 17 | 1265034 119 1313 17 | .001%

* The mean difference is significant at the 0.05 level
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Table 2: Two independent samples test (Mann-Whitney) and the descriptive statistics
(Mean £+ SD, mm) for eleven external and ten cranial and dental characters of R.

sinicus between males and females.

Mann-Whitney Samples test
Characters 95% Conﬁden.ce Interval (.)f .the Difference
Rhinolophus sinicus
Mean + SD
Males n Females n Sig (P)
HB 5285+271 8 51.76+266 8 342
E 1786 +1.86 8 1743125 9 499
TL 25.12+142 8 2503+187 9 923
HF 8.83+£048 8§ 8.26+0.68 9 099
TIB 20.07+0.58 8 1926055 9 007*
FA 4729+155 8 4740+£1.04 9 630
SMET 3795+1.02 8 37.75+£120 9 700
4MET 36.78+0.71 8 36.19+121 9 268
3MET 3594+0.69 8 35094134 9 336
SMETIPH | 1545+0.59 8 1500072 9 248
JMET2PH {24.95+£0.76 8 2384142 9 027%
GTL 21.05+£059 6 2055+038 7 086
CCL 1823+043 5 17544015 8 .003%
SL 20.18£0.57 6 1967015 8 053
7B 10.46+039 8 1030+£025 8 293
BB 9.68 £ 0.07 6 943+0.09 8 037%
Cc-m’* 7904031 8 772015 9 |.112
M3-M3 8.04 £ 0.23 8 8.01+032 9 247
PL 2.1440.25 8 2.08+0.11 8 847
C-M; 8.4540.32 8 8.24:40.15 9 038*
ML 1400£0.65 8 13.79+028 9 060

* The mean difference is significant at the 0.05 level
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Table 3: Two Independent samples test (Mann-Whitney) and the descriptive statistics
- (Mean & SD, mm) for eleven external and ten cranial and dental characters of R.

thomasi and between males and females.

Mann-Whitney Samples test
Characters 95% Confidence .Interval of the Dif'ference
Rhinolophus thomasi
Mean + SD
Males n Females n Sig (P)
HBL 46.84+136 7 4559+2.17 6 291
E 1791+138 7 1565+1.28 6 042%
TL 2134+198 7 1887440 6 415
HF 6.79 + 1.20 7 7.25+0.51 6 744
TIB 1734+ 081 7 17.55£041 5 850
FA 43464128 7 44.18+060 6 193
SMET 33.66 084 7 3335+234 5 708
4AMET 3323+£078 7 32314242 5 1.00
IMET 31.64+:0.87 7 31.24+252 5 571
JMETI1PH | 14.16+£0.54 7 1386+028 5 257
BMET2PH | 2282+ 1,19 7 21.95+183 5 571
GTL 19.44+053 6 18.78+047 9 078
CCL 1646+034 7 16014027 10 |.047*
SL 18.62+043 7 1814+£029 10 |.035*
ZB 9,79 £ 0.18 7  9.34+032 10 | .025*
BB 9,10+ 0.16 7 8.81:£0.19 10 1.317
C-M° 718+0.18 7 6.89+025 10 |.084
M3-M3 7.34+0.16 7 725+023 10 | .249
PL 2.17+0.19 7 1.79+0.26 10 | .015%
C-M; 7.64 3022 7 7.84+1.81 10 |.063
ML 12.81£0.29 7 12,53+035 10 |.110

* The mean difference is significant at the 0.05 level
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4.1.3.3 Palatal Bridge
In R. sinicus, the average length of the bony palate is about 27.40% of

maxillary upper toothrow length (25.72 - 31.30%) or even more and sometime up to
one third of maxillary toothrow length. Palate is emarginated posterioly to the level of
the mesostyle of the first upper molar (M') and anterioly to the level metacone of the
second upper molar (M?). In R. thomasi the palatal bridge averages 29.75% of
maxillary toothrow length but with a wide variation (21.9% - 34.4%). The palate is
emarginated posteriorly to the level of the mesostyle of the first upper molar M"y and
posteriorly to the middle level commissures of the second upper molar (M?) see in

Fig. 26.

4.1.3.4 First Upper Premolars (P%)

In R. sinicus, the first upper premolar is small to fairly sized, but even
though extremely tiny in some specimens and usually lying in the toothrow (88.24%),
but with a minority (11.76%) slightly extruded from the toothrow (Fig. 19, p 68). The
upper canine (CY and the second upper premolar (P4) are greatly separated,
nevertheless the cingular are both relatively close together, but not in contact.

Generally, the first upper premolar of R. thomasi is medium sized, and
is situated in the toothrow, The upper canine (C’) and second upper premolar (P*) are

not in contact (Fig. 19, p 65).
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Figure 24: The ratio of the length of the second phalanx of the third digit to the length

of metacarpal between R. sinicus and R. thomasi
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the third digit between R. sinicus and R. thomasi.




76

Figure 26: Palatal length (red line) of R, sinicus MM 86. HZM (BMZS) from India.

Scale= | mm.

4,1.3.5 Second Lower Premolars (P3)

In R, sinicus, the second lower premolar (P3) is small or very tiny. It is
partially or fully extruded from the toothrow. The first lower premolar (P3) and third
lower premolar (P4 are in contact. The second lower premolar of R, thomasi is very
small and usually partly or completely extruded from the toothrow. The first lower

premolar (P,) and the third lower premolars (Py) are in contact (Fig. 20, p 65).

4.1.3.6 Bacular Morphology

Only the baculum of R. thomasi was extracted and there is not baculum
of R. sinicus from this study because it’s relevant to the rare specimens of males of R.
sinicus. In lateral view, the baculum has a simple shaft and is usually slightly curved
towards the bluntly pointed tip. The basal cone is expanded and flattened. Average
baculum length is 1.81 mm (1.67 — 1.95 mm). The baculum of specimen from

Vietnam had a slightly more robust tip (Fig. 27).
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Figure 27: Baculum shape: Dorsal (left of each pair) and Lateral (right of each pair)
views of A: R, thomasi HZM.No0.8.32320 from Vietnam and B: R. thomasi
HZM.No.10.35115 from Vietnam. Scale = 1 mm.

4,1.4 Principal Component Analysis (PCA) of fifteen characters

Principal Component Analysis (PCA) clearly differentiated R. sinicus
from R. thomasi (Fig 28). The analysis was based on eleven specimens of R. thomasi
and thirteen of R. sinicus and included fifteen characters: FA, 5 Met, 4Met, 3Met,
3Metlph, 3Met2ph, CCL, SL, ZB, BB, PC, C-M°, M*-M®, PL and ML (for
abbreviations see in the pp 56 — 59).
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Figure 28: The principal component analysis (PCA) of twenty-five specimens of R.

sinicus (blue) and R. thomasi (red) based on fifteen metric characters.

4.1.5 Echolocation
Currently, no echolocation data are available for Rhinolophus sinicus
and R. thomasi since the study was based on existing voucher specimens held in the

collections of the Harrison Institute and the Natural History Museum (London).
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4.2 Rhinolophus rouxii from India and Rhinelophus rouxii from Sri Lanka
4.2.1 External Morphology Comparison
4.2.1.1 Sella Morphology and Variation

Sella is particularly straight-sided or parallel-margined (59%) from the
base to the apex; the apex is broadly rounded off. Sella of R. rouxii is varying in
shapes and side, sella with concave-margined of 18% of R. rouxii and occasionally, a
3% of sella with a slightly constriction at the middle part. Besides, there is other sella
shape that obtainable in R. rouxii, it is indicated to be concavity, but without being as
convex or as straight sides (Fig. 29). In addition, the sella shapes of R. rouxii from
India are more stable line with paratlel sides (73%) than R. rowuxii from Sri Lanka
(55%). Furthermore, the R. rouxii from Sri Lanka are having more variation of sella

shapes than R. rouxii from India (Fig.30).

AHEBEBIIMCED

Figure 29: The percentage of different sella shapes in Rhinolophus rouxii from
Southern India and Sti Lanka (n= 77). Sella shape with parallel margined (A), concave
sides (B) and convex sides (C) see in Fig 17, p 62.
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Figure 30: Comparison of sella shapes between Rhinolophus rouxii from India (left)
and Sri Lanka (right). Sella shape with parallel margined (A), concave sides (B) and
convex sides (C) see in Fig 17, p 62.

4.2.1.2 Lancet Morphology and Variation

In general, R. rouxii have had a high variation of lancet morphology. In
this study, R. rouxii showed a discrepancy in lancet shapes (lancet-margin). There are
three types of lancet, 36% of straight-margined or cuneate shape with the tip with
rounded off (A), 46% of hastate shape with slender tip as concave sided (pagoda-
shaped or B), the 14% of dome shapes with straight sided (C) and 4% of the last lancet
margins are parallel with dome shape (D) see in Fig. 31.

Indeed, both R. rouxii from India and Sri Lanka typically vary in lancet
shapes and the higher percentage of concave sides of lancet was found in the
specimens from Sri Lanka. In contrast, the specimens from India have higher

percentage of dome shape with straight side’s lancet (Fig. 32).
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Figure 31: The percentage of different lancet shapes of R, rouxii from India and Sri
Lanka (n= 77). Straight sides with triangular shaped (A), the triangular shaped with
concave sides (B), the dome shaped with straight sides tip (C) and the dome shaped
with elongate sides tip (D), see in Fig. 18, p 63.

4.2.2 Morphometrics
Eleven external and ten cranial and dental character measurements of
Rhinolophus rouxii were compared and determined. The Descriptive statistic (Mean £

SD, Minimum, Maximum and Number) were presented in Table 4.

4.2.2.1 Sexual Dimorphism

Males and females of R. rouxii were tested for variation in size of
eleven external and ten cranial and dental characters. From the results, there was
significantly different in size between males and females in both countries (India and
Sri Lanka). Some characters were significantly different between males and females
such as the external characters, forearm length (FA), tibia length (TIB) and all of the

cranial and dental characters (Table 4),
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Figure 32: Comparison of lancet shape in R. rouxii from India (left) and R. rouxii from
Sri Lanka (right). Straight sides with triangular shaped (A), the triangular shaped with
concave sides (B), the dome shaped with straight sides tip (C) and the dome shaped
with elongate sides tip (D), sce in Fig. 18, p 63.

4.2.2,2 Wing Structure Measurement

The second phalanx of the third digit is more than 1.50 length of the
first phalanx of third digit (in average length 1.532; N= 65). The first phalanx of the
third metacarpal is always less than half the length of the third metacarpal, it is about
40%, and the second phalanx of the third metacarpal is on average less than 61% in

length of the third metacarpal (Fig. 33).

4.2.2.3 Palatal Bridge
Palatal length is rather long, up to 1/3 of maxillary toothrow length or
even more. Average length of palate is 2.30 mm, which is especially longer than R.

affinis and R. sinicus, it is emarginated anteriorly to the level of the parastyle of the
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first upper molar (M') and posteriorly to the metacone of second upper molar (M%),

Palatal bridge is relatively long, 26.94% - 28.11% of the upper toothrow.

4.2.2.4 First Upper Premolars (Pz)

First upper premolar is usually medium sized and completely in the
toothrow (81.49%) but occasionally partly extruded (18.51%). P? of specimens from
Sri Lanka and four specimens from Tamil Nadu, south India are partly extruded from
the toothrow (Fig. 19, A, B, C; p 66).The size of P? and the gap between the canine

(C") and the second upper premolar (P‘*) are unstable.

4.2.2.5 Second Lower Premolars (P3)

The second lower premolar is mostly external (66.68%), sometimes
partially in the toothrow (25.92%), and occasionally is absent {1.23%). Additionally, a
few specimens (6.17%) have second lower premolar within toothrow. The cingular of
the first lower premolar (P;) and third lower premolars (P4) are mostly in contacted,

but some specimens are nearly so or distinctly separated (Fig. 20, A, B; p 66).

4.2,2.6 Bacular Morphology

Baculum is parallel-sided; the basal is expanded and near the tip is
bent. The lengths of bacular are 2.07 — 2.70 mm, and average length is 2.25 mm. The
greatest widths are 0.42 — 0.85 mm, and the mean of greatest width 0.58 mm.
However, the baculum of R, rouxii (HZM. No.13.27453) from Sri Lanka is especially
longer {(2.70 mm) than other specimens of R, rouxii and the shape is different
(slender). It is very similar in length to bacular of R. affinis, which is bigger and
heavier than those Sri Lanka and India. These measurements and shape characters are

new evidences to propose that R. affinis might be existed in Sri Lanka (Fig. 34).
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Figure 33: Wing structure comparing (% length) between the second phalanxes of the
third digit divided by the first phalanx of the third digit (above} and the ratio length of
the second phalanxes of the third digit (bottom).
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Figure 34: Baculum morphologies of R, rouxii: (A) Dorsal (left of each pair) and
lateral (right of each pair) views of R. rouxii HZM. 13. 27453 from Sri Lanka and (B)
Dorsal (left) and lateral (right) views of R. rouxii HZM. 22. 28754 from India. Scale =

I mm.

4,23 Principal Component Analysis (PCA) of Seventeen Characters

Fifty-seven individuals of R. rouxii from India (n=15) and Sri Lanka
{n=42) were group together. Normally, R. rouxii from India and Sri Lanka could be
divided into two big groups, but there is still overlap in both external and internal
characters, However, the cranial and dental characters seem to be less overlapping
than external characters. In fact, K. rouxii from India can be possibly divided into
three subgroups and R. rouxii from Sri Lanka could be divided into two subgroups

(Fig. 35).

4.2.4 Analysis of variance (ANOVA) Test

One-way ANOVA was applied to examine the variation between these
two countries (India and Sri Lanka) of single species. Tukey HSD post hoc test was
applied to test the both twenty-one external and cranial and dental characters that used

in the PCA with maximum eighty-one individuals. There were twelve characters,
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which were significantly (P<0.05) /different, there are considerably different in

cranial and dental characters, but similarity of external characters (Table 5).

Figure 35: The Principal Component Analysis of external characters (Top), cranial
and dental characters (middle) and external, cranial and dental characters (bottom) of

R. rouxii from India (red square) and Sti Lanka (blues speckle).
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4,2,5 Echolocation

In this study, there is no echolocation call recorded for R. rouxii.
Because most voucher specimens were loan from the collections of the Harrison

Institute (HZM) and the British Natural History Museum (London).

Table 5: Geographical variation in size of external, skuil and cranial characters

between R. rouxii from India and Sri Lanka

One-way ANOVA for Equality of means
95% confidence interval of the difference

Characters N |Minimum{Maximum|Mean + SD|  Sig (P)
HBL 70 48.17 66.00 |[53.87+3.69 A19
E 70 14.50 19.93 [17.87¢1.15 813
TAIL 70 12.80 29.00 [23.08+2.89 071
HF 70 7.20 12.80 | 9.75+0.95 JA11
TIB 69 19.05 24.10  [21.69£1.03 001*
FA 75 45.09 5230 |48.70+£1.55 007*
SMet 74 35.55 41.18 |38.84+1.09 059
4Met 74 34.69 41.59 |[38.56+1.12 284
3Met 74 33.48 39.74 [37.27+£1.22 150
3Metlph 74 12.93 16.45 {14.81+0.69 705
3Met2ph 74 18.67 26.18 ]22.63+1.38 219
GTL 59 20.93 23.61 |[22.28+0.67 001%
CCL 69 17.08 20.33  |19.02+0.72 001*
SL 67 19.85 22.81 |21.47+£0.72 001*
ZB 71 10.14 11.76  [10.95+0.40 001%
BB 70 9.60 10.68 ]10.17+£0.24 001*
CM3UP 73 7.99 9.35 | 8.66+0.33 001%
M3M3 73 7.45 8.79 | 8.03%£0.25 010%
PL 73 2.07 290 | 2.42+0.15 012%
CM3LOW 73 8.48 10.06 | 9.29+0.31 001*
ML 73 13.65 16.35 |15.11+£0.59 001*

* The mean difference is significant at the 0.05 level
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4.3 Rhinolophus affinis from India and Rhinolophus affinis from Southeast-Asia
versus R. affinis from Java

4.3.1 External Morphology Comparison
4.3.1.1 Sella Morphology and Variation

R. affinis showed some variation in sella shapes, but the highest
percentage is typically sides’ concave (61%), its side at the base arched and broader at
the base of its vertical angle 18% of parallel sides (Fig. 36). Other component, there is
undefined in sella shape (21%) because in some specimens showed an indication of a
concavity, without being as convex as a (C) or as straight as a (A), it is not included in

the figure below,

EAEB MC #AD

Figure 36: The charge is showing the sella variation in R. affinis (n=114) in southeast-
Asia. The sella shape with parallel margined (A), concave sides (B) and convex sides

(C) see in Fig 17, p 62.

4.3.1.2 Lancet Morphology and Variation

In R. gffinis, lancet is almost wedge-shaped (Cuneate), the leaves with
broad abruptly pointed apex and tapering to the base. Lancet is always straight sides
(98%) and only small numbers (2%) of the concave sides that presented. Although,

most of R. affinis lancet’ shapes were not different in lancet shapes between
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specimens from southeast-Asia, India and Java (Type specimen), but three specimens
of R. affinis from Nala Pania cave, south and 7 km to Mussoorie, north India showed

the difference in lancet shapes, it is the concave sides (2%), see in Fig, 37.

2%

ZA EHB NC ED

Figure 37: Variation in lancet shapes from K. affinis from India, southeast-Asia and
Java, Indonesia (Type specimen). Straight sides with triangular shaped (A), the
triangular shaped with concave sides (B), the dome shaped with straight sides tip (C)
and the dome shaped with elongate sides tip (D), see in Fig. 18, p 63.

4.3.2 Morphometrics

Ten external and eleven cranial and dental character measurements of
Rhinolophus affinis from India, Southeast-Asia and Java, Indonesia were taken and
compared. Even thought, R. affinis from India and Southeast-Asia are mostly not
significantly different in external, cranial and dental character measurements with R,
affinis from Java, Indonesia, but some external, cranial and dental characters are

statistically significantly different (Table 6).
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Table 6: Mean £ SD, minimum-maximum (mm) and P-value (Mann-Whitney samples
test) of external, cranial and dental characters of R. affinis from India, Southeast-Asia

and Indonesia (Java)

India Southeast-Asia and Java
Characters | N | Min | Max [ Mean+SD| N | Min | Max |Mean + SD|Sig (P)
HBL 14{49.00{66.00] 55.754+4.89] 96| 49.00] 72.15] 56.80+4.77;0.60
TAIL 14120.00129.00{ 24.10+2.87[ 97| 16.53] 32.00; 23.81+2.94(0.38
HE 14/10.00{12.50{ 11.00+0.63f 96{ 8.00{ 12.00| 10.26+0.73{0.13
TIB 14{21.08125.21; 23.53+1.08] 96| 21.84| 26.27| 24.29+1.01{0.22
FA 14§51.00§55.00f 53.58+1.06| 97]|46.72| 54.55{ 50.88+1.50(0.15
SMet 14(41.44|44.32| 43.00+0.99 96; 37.71; 44.26| 41.15+1.43]0.27
4Met 14{40.05{43.20] 41.67+1,01| 96| 36.92} 44.14] 40.044:1.46[0.56
3Met 14{38.50{42.02] 39.90+1.01| 96} 35.84| 42.67; 38.64+1.38/0.82

3Metlph | 14{14.82{16.45} 15.73£0.51 96| 14.10{ 16.70;15.37+ 0.62]0.48
3Met2ph | 14|27.45{31.87] 29.76+1.20} 96| 24.00} 31.37| 27.16+1.38{0.09

GTL 15{22.17;24.28; 23.37+0.48} 101 21.61| 24.70] 23.28+0.65(0.01*
CCL 15i19.53120.53; 19.80+0.24| 111] 17.55{ 21.05] 19.72+0.57|0.17
SL 15{22.25(23.23] 22.49+0.26{ 111} 20.101 23.64) 22.39+0.59[0.30
ZB 15{11.00;11.76; 11.39+0.18| 114| 1.74] 11.97; 11.07+0.94(0.10
BB 14; 9.12{ 9.61] 9.37+0.15] 102| 8.59{ 11.14; 9.58+0.49(0.01%

CM3UP 15 8.68] 9.61] 9.05+0.20] 115} 7.58] 9.60] 8.91+0.32{0.21
M3M3 15| 829 9.15; 8.85%0.20; 115] 7.30{ 9.25 8.48+0.28/|0.18

PL 15{ 1.96{ 2.31} 2.17x0.11] 114] 1.81] 2.57] 2.22:+0.16|0.97
CM3LOW | 15; 9.17;10.05; 9.65+0.22| 115; 7.85] 10.10| 9.42+0.34]0.54
ML 15:15.18{16.72] 15.85%0.33 115; 13.67} 16.45| 15.54+0.5310.01*
PC 15| 1.74; 2.35] 2.08+0.16] 115 1.80| 2.76] 2.19+0.20(0.61

* The mean difference is significant at the 0.05 level

4.3.2.1 Sexual Dimorphism
Statistically, males and females of Rhinolophus affiis from India and
Southeast-Asia are different in size of cranial and dental characters (P<0.,05). Even

though, Mann-Whitney test of R. affinis from Java, Indonesia, there are no different
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(significance) in both characters (P>0.05). A summary of the measurements and

statistics test are included in Table 7 and Table 8.

Table 7: Independent samples test (mean £ SD, minimum-maximum and P-value) of

external, cranial and dental characters of R. affinis from India and Southeast-Asia.

India Southeast-Asia
Characters | N | Min | Max {Mean+ SD | N | Min | Max |Mean  SD|Sig (P)
HBL 14149.00{66.00{ 55.75+4.89] 95 | 49.00{ 72.15| 56.83+4.79| 0.44
E 14{14,00i23.00f 17.1242.21] 96 1 15.27] 24.10| 19.87+1.57| 0.67
TAIL 14i20.00:29.000 24.10+2.87] 96 | 16.53} 32.00| 23.8342.95 0.35
HF 14{10,00{12.50{ 11.00+0.63] 95 { 8.00} 12.00{ 10.27+0.72] 0.32
TIB 14121.08|25.21} 23.53+£1.08| 95 | 21.84] 26.27| 24.30+1.01] 0.07
FA 14151.00{55.00; 53.58+1.06| 96 | 46.72; 54.55| 50.91:1.49] 0.19
SMet 14|41.44144.32) 43.00+0.99] 95 | 37.71| 44.26} 41.16+1.44} 0.24
4Met 14140.05/43.20| 41.67+1.01] 95 | 36.92| 44.14{ 40.05t1.46| 0.28
3Met 14138.50142.02| 39.90+1.01} 95 | 35.84| 42.67; 38.64+:1.38| 0.46

3Metlph | 14[14.82}16.45| 15.73£0.51} 95 | 14.10{ 16.70| 15.37£0.62| 0.78
3Met2ph | 14(27.45{31.87] 29.76+1.20( 95 | 24.00; 31.37| 27.19£1.37{ 0.62

GTL 15{22.17(24.28] 23.37+0.48| 93 | 21.61| 24.70] 23.23+£0.62| 0.01*
CCL 15{19.53{20.53] 19.86+0.24( 97 | 17.55] 20.87{ 19.69+0.56| 0.01*
SL 15122.25{23.23] 22.49+0.26] 97 {20.10| 23.64| 22.37+0.58| 0.01*
ZB 15/11.06{11.76] 11.3940.18] 98 | 10.01] 11.74] 11.12+0.32( 0.01%
BB 14] 9.12; 9.617 9.37+0.15] 87 § 8.59{ 9.98} 9.42+0.27| 0.57

CM3UP 15] 8.68] 9.61] 9.05+0.20f 98 { 7.58{ 9.54| 8.89+0.31{ 0.03%
M3M3 15} 8.29; 9.15; 8.85+0.20| 98 | 7.72{ 9.09| 8.46+0.25] 0.12

PL 15 1.96; 231} 2.17+0.11 98 | 1.81} 2.55| 2.22+0.16} 0.01*
CM3LOW | 15f 9.17:10.058 9.65+0.22] 98 | 7.85; 10.04] 9.42+0.34( 0.01%
ML 15{15.18{16.72} 15.85+0.33] 98 | 13.67| 16.45] 15.58+0.51| 0.01%
PC 15i 1.74| 2.35] 2.08+0.16] 98 | 1.80{ 2.76; 2.19+0.21| 0.71

* The mean difference is significant at the 0.05 level
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Table 8: Mann-Whitney samples test and descriptive statistics (Mean + SD,
minimum-maximum, and P-value) of cranial and dental characters of R. gffinis from

Java, Indonesia.

Mann-Whitney test for Equality of Means

95% Confidence Interval of the Difference
Characters N Mean £ SD |[Minimum {Maximum|] Sig (P)
GTL 8 23.89+0.69 22.35 24.68] 513
CCL 14 19.91+0.67 18.74 21.05; .983
SL 14 22.54+0.66 21.13 23.50p .273
ZB 16 10.75+2.43 1.74 1197, .037*
BB 15 10.55+0.33 9.85 11.14f 470
c-M? 17 9.01+0.34 8.38 9.60; .958
M3-M3 17 8.57+0.43 7.30 9.25| 429
PL 16 2.23+0.17 1.92 2.57  .543
C-M3 17 9.41+0.37 8.78 10.10y 492
ML 17 15.25+0.58 13.77 16.11f .833
PC 17 2.14+0.90 1.90 231 334

* The mean difference is significant at the 0.05 level

4.3.2,2 Wing Structure Measurements

The second phalanx of the third metacarpal is long about three fourth
the length of the third metacarpal (71%, 64% — 79%, n= 112}, see in the (Fig. 38).
First phalanx of third digit is less than half length of metacarpal (about 40% length of
the third metacarpal (37% - 43%, n=112).

The second phalanx of third digit is always more than 1.59 mm lengths
the first phalanx of the third digit (1.78, 1.59 mum — 2.07 mm, n= 112) see in Fig. 39.
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Figure 38: The comparison of the length of wing structures of R. affinis between the
second phalanx of the third digit and the third metacarpal (n= 122).
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Figure 39: Variation of wing structure measurements within R. qffinis (n= 112} from

India, Southeast-Asia and Indonesia,

4.3.2.3 Palatal Bridge
Palatal bridge is relatively short, about one fourth (24.84%, 21.43% -

28.19%, n= 109) of maxillary upper toothrow length or even less. Palate bridge is
especially short; it is emarginated anteriorly to the level of the parastyle of the first

upper molar (M*) and middle to the mesostyle of second upper molar (M?).
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4.3.2.4 First Upper Premolars (Pz)

The position and size of the first upper premolars are mostly medium
sized and situated in the toothrow. First upper premolar is medium sized and partly
extruded from the toothrow, in 16.47% of specimens, while 1,67% of specimens there
are small and sitvated in the toothrow. However, in 2.35% of specimens, there are
large size and situated in toothrow of the first upper premolars. The upper canine (Cl)
is typically enormous and not in contact with the second upper premolar (P*). See in

the (Fig. 19: A, B, C; p 65).

4.3.2.5 Second Lower Premolars (P3)

Second lower premolar is exterior and extremely small, rarely within or
partly within toothrow 12.35% of specimens. Pj is usually minute and extruded from
the toothrow (83.54% of specimens). P; is small or very tiny, usually fully situated in
toothrow (4.11%). P, and P4 are generally in contact or more distinctly separated. But

some specimens, P, and P4 are not in contact, but nearly so (Fig. 20: A, B; p 65).

4.3.2.6 Bacular Morphology

The average length of baculum is 2.71 mm (2.45 — 3.00 mm, n= 5).
The greatest width of baculum is 0.87 - 0.90 mm, and average of the greatest is width
0.894 mm in lateral profile. In addition, all of five baculum seem to be similar in size
and length, the dorsal view, the shaft of baculum is long and parallel-margined, the
basal cone is expanded and deeply emarginated. The basal cone is expanded with

angled ventrally in lateral view and bended the tip (Fig. 40).
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Figure 40: Dorsal (left) and lateral (right) views of baculum shapes of R. affinis CP2,
Hala Bala Wildlife Sanctuary, Narathiwat, Thailand. Scale = 1 mm.

4.3.3 Principal Component Analysis (PCA) of Ten Cranial and dental
Characters

Only ten cranial and dental character measurements of R. affinis were
examined by principal component analysis (PCA). Because the specimens from Java
that deposited in the British Natural History Museum, London is damage.

Ten cranial and dental characters were CCL, SL, ZB, BB, PC, C-M3,
M3-M3, PL, C-M3 and ML (see abbreviation in pp.59 - 60). From PCA, R. affinis
from India, Southeast-Asia and Java (Indonesia) could be separated from each other

(Fig. 41).
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Figure 41: The principal component analysis (PCA), R. affinis from India and

Southeast-Asia (blues speckle) versus R. affinis from Java, Indonesia (red square).

4.3.4 Analysis of variance (ANOVA) Test

Geographical variations between the R. affinis from these two regions

(Indian, Southeast-Asia land versus Indonesian land) were examined. Only three

characters were significantly different between two regions (Table 9).

4.3.5 Echolocation

Recent studies, six parameters (D, SF, EF, FINT and MF, see the

abbreviation in pp 67 - 68) of echolocation calls of 66 R. affinis were examined.

Based on the recent collection, only echolocation calls from Thailand were analyzed.

There is variation in call frequency; it ranges from 65.5 kHz — 77.3 kHz, Noteworthy
the call from Tarutao Island is rather low 65. 5 kHz - 67 kHz. In contrast, the

echolocation calls of R, affinis from Chiang Mai province is ranging from 75.8 kHz -

77.3 kHz, in the southern of Thailand 66.5 — 71.5 kHz (Fig. 42).
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Table 9: One-way ANOVA test of the ten metric characters used in the Principal

Component Analysis (PCA) between R. affinis from India, Southeast-Asia and

Indonesia (Java)

India Southeast-Asia and Java
Characters { N | Min | Max { Mean+:SD | N ; Min | Max {Mecan + SD|{Sig (P)
HBL 14149.00166.00{ 55.75+4.89] 961 49.00| 72.15| 56.80:+4.77(0.57
TAIL 14120.00]29.00] 24.10£2.87| 97| 16.53| 32.00] 23.81:+:2.94(0.50
HF 14;10.00112.50; 11.00+£0.63| 96{ 8.00; 12.00{ 10.26+0.7310.10
TIB 14121.08{25.211 23.53+1.08] 96| 21.84} 26.27| 24.29+1.01{0.35
FA 14{51.00§55.00| 53.58::1.06] 97| 46.72| 54.55| 50.88+1.50/0.12
5Met 14{41.44|44,32} 43.00£0.99| 96| 37.71] 44.26] 41.15+1.43(0.37
4Met 14140.05]43.20| 41.67+1.01] 96] 36.92| 44.14} 40.04+1.46(0.57
3Met 14138.50{42.02} 39.90+1.01] 96} 35.84| 42.67| 38.64+1.38|0.84
3Metlph |14114.82{16.45] 15.73+£0.51] 96} 14.10{ 16.70[15.37+ 0.62/0.54
3Met2ph | 14§27.45|31.87} 29.76+1.20 96| 24.00| 31.37] 27.16+1.38j0.09
GTL 15122.17124.28] 23.37+0.48| 101{ 21.61} 24.70] 23.28+0.65(0.01*
CCL 15119.53{20.53| 19.86:+0.24; 111} 17.55| 21.05{ 19.72+0.57|0.20
SL 15122.25{23.23| 22.49+0.26( 111] 20.10] 23.64] 22,39+0.59{0.35
ZB 15{11.06{11.76{ 11.39+0.18| 114} 1.74} 11.97} 11.07:£0.94/0.09
BB 14| 9.12| 9.61} 9.37+0.15] 102} 8.59{ 11.14] 9.58+0.49|0.01%
CM3UP 15] 8.68] 9.61] 9.05+0.20| 115; 7.58| 9.60} 8.91+0.32{0.23
M3M3 15; 8.29| 9.15/ 8.85+0.20| 115| 7.30{ 9.25] 8.48+0.28|0.48
PL 15; 1.96y 2.31F 2.17+0.11] 114} 1.81%1 2.57] 2.22+0.160.83
CM3LOW |15} 9.17110.05] 9.65+0.22) 115] 7.85/10.10] 9.42+0.34|0.59
ML 15{15.18}16.72| 15.85+0.33| 115] 13.67| 16.45] 15.54+0.53{0.01*
PC 15| 1.74; 2.35{ 2.08+0.16| 115} 1.80] 2.76] 2.19+0.20/0.39

* The mean difference is significant at the 0.05 level
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Figure 42: The relationship of call frequency of two groups between the southern-

Tarutao Island and northern-northeast of R, affinis in Thailand.

4.4 Rhinolophus affinis from India versus Rhinolophus rouxii from India
4.4.1 External Morphology Comparison
4.4.1.1 Sella Morphology and Variation

The sella shapes of R. affinis from India are normally concave sides
(77%), but some other shapes were exist as well, there are parallel/straight sides (8%)
and undefined/or without convex and straight sides (15%), see in the Fig 43 (left).
Whether, a similarity of R. affinis from India and R. rouxii were determined. It was
found that the straight or/parallel sides of sella was mainly presented in R. rouxii

(62%) and 38% were concave sides, see in Fig. 43 (right).
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Figure 43: Sella variations in R. affinis (n=13) from India (left) and R. rouxii (n=13)
from India (right). The sella shape with parallel margined {A), concave sides (B),
convex sides (C), and undefined (D) see in Fig 17, p 62.

4.4.1.2 Lancet Morphology

Fourteen individuals of R. affinis were determined of the lancet
characters. Most lancet is characteristically triangular shape with concave sides (79%)
and 21% of the triangular shape with straight sides was also presented (Fig, 44, left).
However, in R. rouxii, lancet shape highly varied, but the majority was the dome
shape with straight sides tip (58%). Another, three types of lancet shapes were exist in
R. rouxii, there was triangular shape with concave sides (21%), triangular shaped with

concave sides (7%) and dome shape with clongate sides 14% (Fig. 44, right).
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R. affinis R. rouxii
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Figure 44: The comparison of lancet shape of R, gffinis and R. rouxii from India.
Triangular shape with straight sides (A), the triangular shape with concave sides (B},
the dome shape with straight sides tip (C) and the dome shape with elongate sides tip
(D), see in Fig. 18, p 63. |

4.4.2 Skull Morphology

In R. affinis, the skull is modurate to large size, with CCL: 19.79 mm
in average. The rostal profile is always deepped as U shape (Fig 49 a). The zycoma is
modurate and a well developed, with a high jugal projection and curvature (Fig 50 a).
However, the skull of R. rouxii is smaller than the skull of the R. affinis. The rostal
profile is shallow and slopping forward (Fig. 49 b). The zygoma is slightly low
rearfard of jugal with strongly built (Fig. 50 b).

4.4.3 Morphometrics

Fifteen Rhinolophus affinis and twenty-five R. rouxii from India were
examined of eleven external, eleven cranial and dental characters. Statistically, many
characters were significantly (P<0.05) different between both species. Including, TIB,
FA, 5Met, 4Met, 3Met, 3Met2ph, GTL, CCL, SL, PC, M*-M?®, PL and C-M; (sce the

abbreviation in pp. 57- 60). This result was summarized in the Table 10 below.
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4.4,3.1 Sexual Dimorphism
Generally, sexual dimorphism was not found in both species, but only
one cranial character, the mandible length (P<0.05). The statistic tests of both species

were concluded in the Table 11.

Table 10: Comparison of external, cranial and dental characters of Rhinolophus affinis

and R. rouxii from India

R. rouxii R. affinis Sig
Characters Min Max Mean + Std n Min Max Mean + Std n (P)
HBL 4978  66.00 56.83+£527 16 | 49.00 66.00  55.75+4.89 14 | 0.61
E 14,50 19.80 17.52+1.33 16 14.00 2300 17.12+%2.21 14 | 0.16
TAIL 22,00 28.50 2500x1.94 16 | 20.00 29.00 24.1042.87 14 | 0.26
HF 720 12.80 10.29+1.53 16 10.00 12,50 11.00£0.63 14 | 0.27
TIB 2091 2410 22794091 16 | 21.08 2521  23.53x1.08 14 | 0.02%
FA 48,03 5230 50.43+1.24 19 | 51.00 5500  53.58£1.06 14 | 0.01%
SMET 37.80 41.18 3976092 19 | 4144 4432 43,00£0.99 14 | 0.01%
4MET 3722 4159 39.04x1.12 19 | 40.05 4320 41.67+1.01 14 | 0.01*
3MET 35.58 3074 37944105 19 | 3850 42.02 39.90+1.01 14 | 0.01%

3METI1ph 1421 1645 1540058 19 14.82 1645  15.73+0.51 14 | 0.11
3IMET2ph 21.10  26.18 24.19+1.39 19 | 2745 31.87 29.76+1.20 14 | 0.01*

GTL 21,54 2361 22.65:0.69 15 | 22.17 2428  23.37:+048 15 | 0.01%
CCL 17.08 2033  19.33+0.82 21 | 1953 2053 19.86£0.24 15 | 0.04%
SL 20,59 22,81 21.86+0.71 21 | 22.25 2323  2249£0.26 15 | 0.01*
ZB 1034 1176 11294039 21 | 11.06 1176 11.39£0.18 15 | 0.70
BB 859 970 935:026 15 ] 9.12  9.61 9.3740.15 14 | 0.74
PC 198 283 2433024 21 174 235 2.08+0.16 15 | 0.01%
c-M? 812 935 8831036 21 8.68  9.61  9.05£0.20 15 | 0.16
M-M? 7.83 879 8324022 21 829 915 8.85:0.20 15 | 0.01%
PL 2,18 276  249:0.15 21 196 231 2174011 15 | 0.01%
c-M? 8.62 1006 9.40:041 21 9.17  10.05  9.65:0.22 15 | 0.04*
ML 13.88 1635 15.41+0.65 21 | 1518 1672  15.85:0.33 15 | 0.08

* The mean difference is significant at the 0.05 level
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4.4.3.2 Wing Structure Measurements

The percentage of second phalanx of the third metacarpal compared to
the third metacarpal of R. gffinis and R. rouxii are considerably different. The second
phalanx of the third metacarpal is usually more than 75% (70% -79%, n= 14) of the
third metacarpal in R. affinis, in R. rouxii it is shorter than 64% (56% - 71%, n=16) of
the third metacarpal (Fig. 45). In terms of ration between the second phalanxes of the
third metacarpal to the record on R. gffinis is more than 1,71 mm in average (1.71 —
2.01). In other hand, this ration of R. rouxii is shorter than 1.72 (1.44 — 1.72 mm,
n=16), see in the Fig. 40.

o .
%

. 50 - /

;--: 30 - ] % Z UR rouxii
. / / % R. affinis
10 % % %

o , /é % %

% lenght of matacarpal

Figure 45: Percentage of the length of the second phalanx of the third metacatpal to
the third metacarpal of R. affinis and R. rouxii from India.
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Figure 46: The ration of R. affinis (cross column) and R, #ouxii (open column) from India.

4.4.2.3 Palatal Bridge

In K. affinis, the palatal bone is less than one fourth of maxillary upper
toothrow length (average 22.48%); it is about 1.96 — 2,31 mm (2.17 mm). Conversely,
the palatal bridge R. rouxii is more than one fourth of the maxillary upper toothrow
length (average 26.52%) and range 2.18 — 2.76 mm (2.49 mm), see in above of the
Table 10,

4.4.2.4 First Upper Premolar (Pz)

Both species are very similar in size and position of the first upper
premolars. In R, affinis, most 64% of the first upper premolars are medium size and
lying in the troothrow and the rest 36% partly extruded of the toothrow (n=14)} (Fig.
19, p 68). In R. rouxii, it is medium size and 73% situated in the toothrow, and 27%
partly extruded from the toothrow (n=21) (Fig. 19, p 66). The upper canine (Y and

second upper premolar (Pd) of these species are not in contact.




106

4.4.2.5 Second Lower Premolars (P3)

In R. affinis, the second lower premolars are mostly medium sizes
(79%), but in some cases, the minute size (21%) was present. The positions of the
second lower premolars are typically extruded from the toothrow {93%), but there is
small number of partly extruded from the toothrow (7%). Conversely, in R. rouxii the
second lower premolars are mostly minute sizes (87%) and medium sizes (13%), but
its position is similar to R. affinis 69% extruded from the toothrow, 19% situated in
toothrow and 12% partly extruded from the toothrow. For the size and position with

explanation see Fig. 20, p 66,

4.4,2.6 Bacular Morphology

The baculum of R. rouxii from India was determined, there are three
bacular of R. rouxii were extracted. There is nearly the same length, but one of them
was motphologically different (Fig. 47: A-C). In this study, there is no baculum of R.
affinis from India, but only the baculum of R. affinis from Thailand was extracted and
compared, it is a similarity in length of R. rowuxii and different in morphology/shapes
(Fig.47: D - E). The baculum of R. affinis from Thailand is expanded in basal cone
with angled ventrally in lateral view and bended the tip, and in overall it is fatter than

those India baculum.
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Figure 47: The comparison of the baculaum series of Rhinolophus species, dorsal
view (left) and lateral view (right) of each pair. Three specimens from India, (A) R.
rouxii HZM. No. 26.28158, (B) R. rouxii HZM. No. 25.28157, (C) R. rouxii HZM.
No. 2228574 and two specimens of R. affinis from Thailand, (D) R. affinis

SB.07038.5 and (E) R. gffinis CP. 2 from Hala Bala wildlife sanctuary, Thailand.
Scale: 1 mm.
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4.4.4 Principal Component Analysis (PCA) of Sixteen Characters

Sixteen metric characters included external, cranial and dental
characters of R. affinis (n=14) and R. rouxii (n=15) were included in PCA. The result
showed that they are completely separated from each other. In R. rouxii group, it
seems to has three small populations inside, it is only one populations are from the

same location (green square), see in the Fig. 48.

Prald

Figure 48: Principle component analysis of sixteen characters of R. gffinis (red
square) and R. rouxii (blue speckle). There are three sub groups inside the
R. rouxii, and only one population are present the same locality (green

squatre).
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4.4.5 Analysis of Statistics (Mann-Whitney Samples Test)

Twenty-two external, cranial and dental character measurements were
examined for interspecific variation between R. affinis and R, rouxii, The wing
structures were the highly different between two these cryptic species, and also seven
cranial and dental characters (P<0.05). The results of the PCA and Mann-Whitney test

were similar separated from each (Table 11),

4.4.6 Echolocation

The echolocation calls of R. affinis and R. rouxii from India are
unavailable in this study. However, most voucher specimens from India were loan
from the Harrison Institute, England and some from the Natural History Museum,

London.

4.5 The Comparison and Principal Component Analysis (PCA) of R. affnis, R.
rouxii, R. sinicus and R. thomasi from India and Southeast-Asia.

4.5.1 Cranial and Dental Characters Coparison

In R. affinis, the skull is modurate to large size, with CCL: 19.79 mm
in average. The rostal profile is always deep U-shape (Fig 49 a). The zygoma is
modurate and well developed, with a high jugal projection and curvature (Fig 50 a).
However, the skull of R. rouxii is smaller than the skull of the R. affinis. The rostal
profile is shallow and slopping forward (Fig. 49 b). The zygoma is slightly low
rearward and jugal bone is robust (Fig. 50 b). The skull of R. sinicus is bigger than R.
thomasi, with CCL: 17.81 mm in average. The rostral depression profile is narrowly
convex (Fig. 49 ¢). The zygoma is well developed and concave in shape, with high
jugal projection (curve) (Fig 50 ¢). The palatal bridge is 1.62 — 2.46 mm or 27.04% in
average of the maxillary toothrow length (C-M>). In R. thomasi, the skull is a small
and robust, with CCL: 16.20 mm. The nasal swelling is high and rostal depression
profile is deeper and slopping rearward than R. sinicus (Fig. 50 d). The zygoma is
slightly strong with low jugal projection (convex) (Fig 50 d). The palatal bridge is
1.45 - 2.50 mm/27.84 % in average of the maxillary toothrow length (C-M3).
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Figure 49: The differentiation of the rostal depression shapes of R. affinis (a), R.rouxii
(b), R. sinicus (c) and R. thomasi (d).

G
Vi

Figure 50; The differentiation of the zygomata shapes of R. affinis (a), R.rouxii (b),

R. sinicus (¢} and R, thomasi (d).

4,52 Principal component analysis of R.affinis, R, rouxii, R. sinicus and R.
thomasi from India and southeast-Asia
121 specimens of four species, R. affnis (63), R. rouxii (33), R. sinicus

(13) and R. thomasi (12) from India and southeast-Asia, with fifteen external, cranial
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and dental characters were examined. The principal component analysis showed an

overlap between K. affinis and R. rouxii, but R. sinicus and R. thomasi were clearly

distinguished from the others (Fig 51).
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Figure 51: The principal component analysis (PCA) of fifteen external, cranial and

dental characters of R, affinis (blue speckles), R. rouxii (red squares), R. sinicus (green

trangle) and R. thomasi (pink elongates).
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4.6 Systematics Summary
The information of four species in this study and all character
measurements were described and stated below, base on species list that collected in

hand with some photograph available.

4.6.1 Rhinolophus affinis Horsfield, 1823

Intermediate horseshoe bat

External characters

R. affinis is generally large sized horseshoe bat than R. rouxii, with
having an average forearm length of 51.43 mm (46.72 — 55.00 mm). The cars are also
longer than, in average 19.53 mm. The lower lip has three grooves. The horseshoe
morphology is rounded in anterior section and roughly horseshoe shaped, the
horseshoe being relatively broad, but does not cover the muzzle. The lancet is mostly
cuneate shape with straight margins (98%) and well developed and only small number
is concave margins (see in the variations). Sella is variable in margins ranging from
concave (61%) to parallel (18%) and undefined (21%) because in some specimens
showed an indication of a concavity, without being as convex or paralle! margins, In
general, the forearm length is 51.22 mm (46,72 — 55.00 mm) average longer than
those three species from this study. In the wing structure is differs significantly to R,
rouxii, R. sinicus and R. thomasi. The second phalanx of the third metacarpal is long
about three fourth the length of the third metacarpal (71%, 64% — 79%). First phalanx
of third digit is less than half length of metacarpal {about 40% length of the third
metacarpal (37% - 43%). The second phalanx of third digit is always more than 1.59
mm lengths the first phalanx of the third digit (1.78, 1.59 mm — 2.07 mm). The pelage

colour is typically grayish brown and occasionally bright orange.

Cranial and dental characters

The skull is medium and slightly bigger than R. rouxii with an average
condylo-cranine length (CCL) of 19.73 mm (17.55-21.05 mm). The zygomata are
usually greater than mastoid width. Palatal bridge is relatively short, about one fourth

(24.84%, 21.43% - 28.19%) of maxillary upper toothrow length or even less. Palate
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bridge is especially short; it is emarginated anteriorty to the level of the parastyle of

the first upper molar (M') and middle to the mesostyle of second upper molar (M?).

Dentition

The Upper toothrow length (C-M?) average 8.93 mm (7.58 - 9.61 mm)
in length. The position and size of the first upper premolars are mostly medium sized
and situated in the toothrow. The upper canine (C') is typically enormous and not in
contact with the second upper premolar (P4). Second lower premolar is exterior and
extremely small, rarely within or partly within toothrow 12.35% of specimens. P; is
usually minute and extruded from the toothrow (83.54% of specimens). P is small or
very tiny, usually fully situated in toothrow (4.11%). P> and P4 are generally in

contact or more distinctly separated.

Baclular morphology

The average length of baculum is 2.71 mm (2.45 — 3.00 mm). The
greatest width of baculum is 0.87 - 0.90 mm, and average of the greatest is width
0.894 mum in lateral profile. In addition, all of five baculum seem to be similar in size
and length, the dorsal view, the shape of baculum is long and parallel-margined, the
basal cone is expanded and deeply emarginated. The basal cone is expanded with

angled ventrally in lateral view and bended the tip.

Echolocation

Based on this study, six parameters (D, SF, EF, FINT and MF, sce the
abbreviation in pp 68 - 69) of echolocation calls of 66 R. affinis were examined.
Based on the recent collection, only echolocation calls from Thailand were analyzed.
There is variation in call frequency; it ranges from 65.5 kHz — 77.3 kHz. Noteworthy
the call from Tarutao Island is rather low 65. 5 kHz — 67 kHz. In contrast, the
echolocation calls of R. affinis from Chiang Mai province is ranging from 75.8 kHz -
77.3 kHz, in the southern of Thailand 66.5 - 71.5 kHz, Other studies had reported that
80 kHz in Malaysia (Csorbar ef @l. 2003). There has no significant in sexual variation

in echolocation calls.
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Geographical distribution and conservation status

In the recent study, R affinis has wide distribution; it ranges from
India to south China, Vietnam, Cambodia, Myanmar to Thailand, Malaysia and Java,
Indonesia (Bates and Harrison, 1997). This (Fig. 52) below shows the additional
record from literatures and recent specimens collected of specimen examined for this
study and the geographical distribution of R. affinis. Status of R. affinis in the TUCN
2003 and TUCN/SSC Action Plan (2001) is Lower Risk and least concern {Simmons,
2005).

Figure 52: The additional records from literature and new localities record of

geographical distribution of Rhinolophus affinis in this study.
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4.6.2 Rhinolophus rouxii Temminck, 1835

Rufous horseshoe bat

External characters

Rhinolophus rouxii is variable in body size, but considerably a medium
size and having an average forearm length 48.70 mm (45.09 — 52.30 mm). The
noseleaf is broader and the emargination of horseshoe is slightly dark or darken. The
ears are also longer than, in average 17.87 mm (14.50 — 19.93 mm). In general, R.
rouxii have had a high variation of lancet morphology. In this study, R. rouxii showed
a discrepancy in lancet shapes (lancet-margin). There are two types of lancet shapes,
concave sides and straight sides. Sella of R. rouxii is varying in shapes and side, Sella
is particularly straight-sided or parallel-margined {59%) from the base to the apex; the
apex is broadly rounded off. The pelage colour is normally dark orange to buffy
brown or rufous. The morphology of wings are vary and notably to the R. affinis. The
second phalanx of the third digit is more than 1.50 length of the first phalanx of third
digit (in average length 1.53). On the other hand, there are some taxa shows less
numbers 1.50 length of the first phalanx (about 40%). The first phalanx of the third
metacarpal is always less than half length of the third metacarpal, it is about 40%, and
the second phalanx of the third metacarpal is typically less than 61% in average length
of the third metacarpal.

Cranial and dental characters

The skull is medium and considerably with the condylo-cranine length
(CCL) ranging from 17.08 — 20.33 mm (an average 19.02 mm}. The zygomatic width
is slightly greater or subequal to mastoid width. Palatal length is rather long and tends
to be up to 1/3 of maxillary toothrow length or even more. Palate is especially longer
than R. affinis and R. sinicus in average length 2.30 mm, it is emarginated anteriorly
to the level of the parastyle of the first upper molar (Ml) and posteriorly to the
metacone of second upper molar (Mz). Palatal bridge is relatively long 26.94% -

28.11% of the upper toothrow.
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Dentition

Upper toothrow length (C-M?) average 8.66 mm (7.99 — 9.35 mm),
First Upper premolars (P?): is usually medium sized and completely in the toothrow
(81.49%) but occasionally partly of extruded (18.51%). The size of P? and the gap
between the canine (C') and the second upper premolar (P*) are unstable. P? is usually
medium sized and situated in the toothrow, although it slightly partly extruded from
the toothrow in specimens from Sri Lanka and four specimens from Tamil Nadu,
south India, comprise in a medium sized and partly extruded from the toothrow.
Second Lower premolars (P3): second lower premolar is most regularly rather external
or fully external (66.68%), sometimes partially in the toothrow (25.92%), and
occasionally is absent (1.23%). Additionally, a few specimens showed 6.17% of
position of the second lower premolar within toothrow. The cingular of the first
lower premolar (P;) and third lower premolars (P4) are mostly in contacted, but

sometime of specimens are nearly so or distinctly separated.

Baclular moxphology

The shape of the baculum is parallel-sided of the baculum shape; the
basal is expanded and near the tip is bent. The lengths of bacular are 2.07 — 2.70 mm,
and average length is 2.25 mm. The greatest widths are 0.42 — 0.85 mm, and the mean
of greatest width 0.58 mm. However, the baculum of R. rouxii (HZM. No.13.27453)
from Sri Lanka is special longer than each specimens of R. rowxii, but the shape
character is different (very thin} and it is very similarity length to bacular of R, gffinis
when it is examined, which bigger and fatter than specimens from India. Although,
these measurements and shape characters, it supports for new evidence to propose of

R. affinis that might be existed in Sri Lanka.

Geographical distribution and conservation status

From additional record of literature studies, R. rouxii ranges India, Sri
Lanka to southern China and Vietnam (Bates and Harrison, 1997). However, in recent
study, R. rouxii are ranging from western India to Sri Lanka and jump across to
Myanmar (Fig. 53). Status of R. rouxii in the [UCN 2003 and [UCN/SSC Action Plan
(2001) is Lower Risk and least concern (Simmons, 2005).
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Figure 53: Recent species examined record of geographical distribution of

Rhinolophus rouxii.

4.6.3 Rhinolophus sinicus Andersen, 1905

Chinese Rufous Horseshoe bat

External characters

The horseshoe morphology of R. sinicus is moderately wide, but it does
not cover the snout or muzzle and the whole horseshoe is slightly dark. Usually, well
developed secondary leaflet is clearly present on noseleaf. R. sinicus is generally
bigger than R. thomasi by size with an average forearm length is 47.53 mm (46,20 —
48.80 mm). The ear is ranging from 14.38 — 20.00 mm (an average 17.63 mm). In R.
sinicus, the lancet is typically elongate-margined and with a blunt tip or sometimes
straight foreword-tip. It is always very short/or short in R. sinicus, there are the dome
shape with elongated sides (94%) and the straight sides (6%). However, the sella
shape of R. sinicus is typically parallel-margined with a widely obtuse apex (100%).
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The first phalanx of the third metacarpal of R. sinicus is less than half (43%) the
average length of the third digit. The second phalanx of the third digit is relatively
short compared to R. affinis; it averages 68.9% of the length of the third metacarpal.
In addition, the average length of the second phalanx of the third digit is mostly less
than 1.60 mm the length of the first phalanx of the third metacarpal. The pelage

colour is typically greyish brown to dark brown and occasionally bright foxy orange.

Cranial and dental characters

The skull is modulated size considerably with the condylo-cranine
length; it is ranging from 17.29 — 18.87 mm (an average 17. 80 mm). The zygomatic
width is slightly greater than mastoid width. In R, sinicus, the average length of the
bony palate is about 27.40% of maxillary upper toothrow length (25.72 - 31.30%) or
even more and sometime up to one third of maxillary toothrow length. Palate is
emarginated posterioly to the level of the mesostyle of the first upper molar (M) and

anterioly to the level metacone of the second upper molar (M?).

Dentition

In Rhinolophus sinicus, the upper toothrow length (C-M>) average is
7.83 mm (7.52 - 8.31 mm). The first upper premolar is small to fairly sized, but even
though extremely tiny in some specimens and usually lying in the toothrow (88.24%),
but with a minority (11.76%) slightly extruded from the toothrow. The upper canine
(C") and the second upper premolar (P*) are greatly separated, nevertheless the
cingular are both relatively close together, but not in contact, In R. sinicus, the second
lower premolar (P3) is small or very tiny. It is partially or fully extruded from the
toothrow. The first lower premolar (P2) and third lower premolar (Psy are fully in
contacted. Although, the average length of the bony palate is about 27.40% of
maxillary upper toothrow length (25.72 - 31.30%) or even more and sometime up to

one third of maxillary toothrow length,

Geographical distribution and conservation status
From the current study, R. sinicus is known range from northern India

to central Nepal through eastern Myanmar, Vietnam and southern China (Fig. 54).
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Status of R. sinicus in the IUCN 2003 and IUCN/SSC Action Plan (2001) is Lower

Risk /least concern (Simmons, 2005).

Figure 54; Geographical distribution of Rhinolophus sinicus from recent record,

4.6.4 Rhinolophus thomasi Andersen, 1905
Thomas’s horseshoe bat

External characters

In Rhinolophus thomasi is small size and smallest size than R. affinis,
R. rouxii and R, sinicus. The forearm length ranges from 41.50 — 45.10 mm (an
average 43.81 mm). Tthe horseshoe shape is narrower than R, rouxii and R. sinicus, it
is abroad, but does not cover the complete muzzle and the second leaflet is well
developed and clearly presented on the noseleaf. The ears are 19.53 mm in average
(14.45 -19.30 mm). In R. thomasi, the lancet is short, the tip is almost simple or
straightforward with elongated sides, is completely shown the dome shape with
elongated sides of lancet (100%). R. thomasi is very variable in sella morphologies,
the majorities (55%) of the sella shapes of R. thomasi are straight or parallel margined

with a blunt tip. However, a sizeable minority have convex sides (18%) or an
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indication of a concavity (27%). The pelage colour is typically dark brown to buffy

and occasionally bright orange.

Cranial and dental characters

The skull is small, the zygomatic width is slightly greater or usually
subequal to mastoid width. The condylo-canine length is averages 16,25 mm (15.59 -
16.83 mm). Palatal is fairly lengthening about 29.75% of maxillary toothrow length or
even less. Palate is emarginated posterioly to the level of the mesostyle of the first
upper molar (M1) and posteriorly to the middle level commissures of the second
upper molar (M2). Palatal bridges are rather long 21.94 — 34.44% of the upper
toothrow.
Dentition

The upper toothrow length (C-M>) average 7.06 mm (6.73 — 7.44 mm).
Generally, the first upper premolar of R. thomasi is medium sized, and is situated in
the toothrow. The upper canine (C') and second upper premolar (P") are not in
contacted. The second lower premolar of R. thomasi is very small and usually partly
or completely extruded from the toothrow. The first lower premolar (P3) and the third

lower premolars (P4 are in contact.

Baclular morphology

In lateral view, the baculum has a simple shaft and is usually slightly
curved towards the bluntly pointed tip. The basal cone is expanded and flattened.
Average baculum length is 1.8] mm (1.67 — 1.95 mm). The baculum of specimen

from Vietnam had a slightly more robust tip.

Echolocation

Based on this study, there is no echolocation data are available for
Rhinolophus sinicus and R. thomasi since the study was based on existing voucher
specimens held in the collections of the Harrison Institute and the Natural History

Museum (London).




121

Geographical distribution and conservation status

From additional literature and current study, R. thomasi is ranging from
Myanmar to Thailand and Vietnam (Fig. 55). There are very poor of information and
specimen record in Southeast Asia. Status of R. thomasi in the TUCN 2003 and
IUCN/SSC Action Plan (2001) is Lower Risk and near threatened (Simmons, 2005).

Figure 55: Geographical distribution of Rhinolophus thomasi from additional

literature and recent record.




CHAPTER 5
DISCUSSION

5.1 General Comparisons

In this study, four cryptic species had been evaluated of their
taxonomic characters and interspecific comparison was undertaken. R. affinis, R.
sinicus and R. thomasi can be distinguished from each other by external morphology,
cranial and dentition characters. However, R. rouxii is very complicated and it is
similar in body size and morphology to R. affinis which made their species
identification very difficult. Previously, these two rhinolophid bats were reported to
be differentiated by their forearm length, which is ranging from 41 - 55 mm, and wing
bone measurements (the second phalanx of the third metacarpal) (Bates and Harrison,
1997, Csorba et al., 2003). Lancet shapes is very variable (Bates and Harrison, 1997),
but palatal length (Csorba et al, 2003) and skull morphologies including dentition
characters can be used to distinguish between species (Bates and Harrison, 1997).
Therefore, the results from this study confirmed and provide additional supported
previous authors and strengthen of using some characters to separate R, affinis from
R. rouxii.

Regularly, the external morphology is not useful character for
identification of the cryptic species because there can be high intraspecific variation
of some taxonomic characters such as sella shapes and lancet morphology. Some
studies apply echolocation call to identify cryptic species (Soisook et al, 2008).
Unfortunately, only the echolocation call of R. affinis was available and lack of
information in echolocation calls of R. rouxii, R. sinicus and R. thomasi in the present
study. Geographical variation was found from this study, including a gradual
integration of characters and body sizes from south to north such as in R, affinis. In
these taxa, individuals from southern Thailand and Java, Indonesia are smaller than
those from northern Thailand and Myanmar, and India. Generally, the forearm length

is very useful character to identify species such as R. affinis from India which has the
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longest forearm length (average forearm length 53,59 mm) than other species, while
R. thomasi has the shortest one from this study. Furthermore, the specimens of R.
affinis from Vietnam are slightly smaller than Indian one, but bigger (51.07 mm) than
specimens from Myanmar. Overall, a specimen of R. gffinis from Cambodia 47.44
mm is smallest of all R. affinis from this study. In this study, morphological and
morphometric measurements approach is quite useful in defining taxa. Although, R.
affinis and R. rouxii are very analogous in external morphology, skull morphology
and dentition characters, they can be differentiated since R. gffinis has longer average
length of the second phalanx of the third metacarpal and bigger skull than R. rouxii,
but the palatal bridge of R. rouxii is longer than R, affinis. Furthermore, the tiny bone
of bacular (Bates and Harrison, 1997, Csorba ef al, 2003) of both species is
completely different in length (Table 11) and morphology. It is very interesting to
note that, the bacular of R. rouxii from Sri Lanka is similar in length to bacular of R.
affinis, but it is thinner than those R. affinis and different in shape from baculum of R.
affinis,

R. rouxii and R. sinicus are also analogous in morphology and size, but

considerably different in length of the first and the second of the third metacarpal. R,

rouxii is shorter than R. sinicus and the lancet shape in R. rouxii is triangular shape
with concave sides, but dome shape with elongate margined in R. sinicus. The cranial
and dental characters of R. rouxii are completely bigger than R. sinicus, and palatal
length is longer. Evidentially, the baculum of R. rouxii was clearly described in this
study, this organ was used to differentiate between this species and others, and its
shape is identical within species. Unfortunately, the baculum R. sinicus was missed
and it is not cleared to separate between R. rouxii and R. sinicus. R, thomasi was
completely distinguished from R. sinicus by its smaller size, and they are different in
some characters, such as sella shape, lancet morphology and wing measurements. The
relationships and specific boundaries between R. sinicus and R. rouxii and R. thomasi
are clearly distinguished by size. However, Rhinolophus sinicus is very similar to the
smaller R. thomasi of Myanmar, Vietnam, Lao PDR and Thailand, to which it is
closely related, but they are sapalately by character measurements. Note that, these
two species showed sexual dimorphism (male is general larger than female). The

result from this study is strongly supported the view of Csorba et al., (2003) who
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proposed that the type specimen of R. sinicus is larger than the type specimen of R.

thomasi.

5.2 Taxonomic Notes

In this study, the populations of R. rouxii from India are absolutely
differed from those Sri Lanka populations by sizes. This result was supported Thomas
(1997) who suggested that R, rouxii from southern India is relatively larger than R,
rouxii from Sri Lanka. This species has widely distribution and ranging from India to
Sri Lanka and spread to northern Myanmar (Bates and Harrison 1997). From the
result, it is not different between R. rouxii from Myanmar and Sri Lanka. This species
is not found in Thailand yet; it is not clear why its distribution is limited there.
Similarity, Hipposideros ater was also limited only in Myanmar (Douangboubpha et
al. submitted).

R. affinis has wide distribution; it ranges from India to south China,
Laos, Vietnam, Cambodia, Myanmar to Thailand, Malaysia and Indonesia (Bates and
Harrison, 1997), In current study, the call frequency of R. affinis from the north and
northeast of Thailand are similar in range, it is about 70 - 77 kHz, However, the lower
call frequency of R. affinis was found in mainland southern Thailand (69 - 73 kHz)
and the lowest is from Tarutao Islands (65 - 69 kHz)., However, R. affinis from
Tarutao Islands are similar to R. gffinis from mainland southern Thailand by size and
morphology. In case of this relationship, it may suggest that disjunction pattern was
occurred after its separation, these two populations are geographically isolated and
showed evidence of echolocation call variation between them. The molecular study
for R. affinis in Thailand is recommended, as this country covers relatively high
latitudinal variation and shows considerably geographical variation of echolocation
call from the north to the south. It is interesting to make a note that R. affinis was not
found in central part of Thailand during this study. Thus, survey should be conducted
for R. affinis in central part of Thailand in both rainy and dry seasons.

Further DNA study of R.rouxii and R. sinicus are recommended,
especially specimens from Myanmar, Thailand and Laos. Because their geographical
distritbutions are slightly spreadout from Sri Lanka, to southern India through

northern Myanmar, it may exist in northern Thailand since if is similar in
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environmental conditions. The echolocation call of R. sinicus is a long constant
frequency signal, with a brief frequency-modulated start and tail, Frequencies with
most energy recorded from hand-held bats ranged between 80 and 88.2 kHz (n= 13).
Some evidence of males calling at lower frequencies (80-84.2 kHz) than females (84~
88.2 kHz), as found in the closely related R. rouxi in Sri Lanka which calls at 73.5 -
79 kHz (Neuweiler et al. 1987). Call frequencies is not overlap with those used by R.
sinicus, so it is a diagnostic feature for separating these species. An echolocation call
frequency of R. sinicus is not overlap with those emitted by R. affinis. R. affinis is
also typically a larger species, though overlap occurs with R. sinicus at forearm
lengths between 50-51 mm. Call frequency for R. thomasi in Lao PDR is reported to
be 76 kHz (Francis & Habersetzer 1998), and so the two taxa may use different call
frequencies. Echolocation calls of these species can thus be used to separate them

since it is species specific,
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