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ABSTRACT 

 
Cell counting is one of the most important, common tasks in experiments that 

deal with cell.  Traditionally, manual cell counting uses hemocytometer which is the gold 

standard for cell counting for biomedical research. However, manual cell counting is time 

consumed; this may also lead to inaccurate counting results, especially if the counting 

operators have many samples to analyze over a short period of time. In particular, computer-

assisted programs can reduce time consumption, as well as avoiding manual artifact about cell 

counting. Furthermore, it can diminish the variation of counting results among the counting 

operators which sometimes is related to personal judgment. For this study, input data are 

microscopic images that are stained with Trypan Blue dye. The main objectives of this study 

are to propose a computer-assisted cell counting approach based on image processing 

techniques and to improve the accuracy and reliability of cell counting, especially dead cells 

counting. The proposed computer-assisted cell counting algorithm works in four stages. First, 

image denoising is applied by using image guided filter, since original microscopic staining 

images have background noise and small debris. Secondly, a thresholding method is used to 

extract background and foreground objects, and then the third stage is to apply the 

morphological operations for image analysis. The final stage is to analyze and identify live 

and dead cells by using object analysis. There are two approaches in this study: the first cell 

counting algorithm by using morphological operations of digital image approaches and image 
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segmentation and the second algorithm by using the detection of live and dead cell based on 

adaptive K-means clustering. The first approach gave 83±6% and 63±10% for the accuracy of 

live cell counting and dead cell counting respectively when compared with the experts. The 

results show that the performance of the second approach using an adaptive K-means 

clustering reaches 89±4% of live cells from three experts, showing a good likelihood in 

clusters of live cells and 61±23% for dead cells accuracy, whereas ImageJ obtained 49±1% 

for total counting cells only compared with manual counting. 

The correlation coefficients between the counting results from the first 

approach and the experts were 0.99 and 0.74 for the living cells and dead cells. The second 

counting algorithm also displayed the highest correlation (r = 0.99, r=9.09, r=0.99) with three 

manual counting for live cells while the ImageJ did not correlate well with manual counting 

(r=0.91, r=0.92, r=0.91). In addition, the second approach has a good correlation with manual 

counting for dead cells (r=0.93, r=0.80, r=0.85) which is higher than the first approach. 

Therefore, both proposed computer-assisted show that the reliability and accuracy of counting 

are increased, especially live cells when compared with the experts. Finally, Graphical user 

interface (GUI) is developed to make this a user-friendly application for Trypan Blue stained 

microscopic image cell counting. 
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Chapter 1 

Introduction 

 
In cancer drug discovery researches, the effects of novel drug treatment on cancer 

cells have been studied in many aspects including morphological change, cellular structure 

and drug response(1-3). A simple investigation to evaluate the efficacy of cancer drug 

treatment is the identification of apoptotic cells and live cells(4). Apoptosis is a 

programmable cell death, which categorically observed from cell morphological changes. 

Counting apoptotic cells or dead cells per total cells after in vitro drug treatment is a common 

work for biologists and biomedical researchers to evaluate the drug efficiency. The counting 

of cells in biological research is mostly carried out by microscope-based counting and the 

Neubauer, Burker and Fuchs-Rosenthal chambers are widely-recognized methods of counting 

cells and cell densities in matter (31). Manual cell counting by the expert with a tally counter 

is a conventional method which is an individual dependence, tedious and laborious. To 

overcome the drawbacks of manual cell counting task, many automated visual analyses have 

been developed such as ImageJ, Fiji, CellProfiler
TM

, CellC, Image-Pro Plus and MetaMorph
®
 

which are available software packages for cell analysis(5-11). However, some of these 

methods are based on open-source softwares and are designed for use with images of a wide 

variety of biological objects so sometimes do not meet the requirements of a specific purpose. 

Computer-aided methods can solve this problem by employing image segmentation 

which whilst fundamental to cell counting applications, is a difficult problem from a 

programming perspective. These methods rely on cell images with a high contrast between 

cells and their background and the problem of analyzing images which do not naturally 

present such a high contrast is described as the dark field cell identification issue. Several 
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image filters and segmentation methods have been proposed for use in cell identification and 

counting in microscope-based images, such as the watershed transform-based method (34). 

Additionally, computer-assisted cell counting using image processing and analysis 

has been continuously developed and improved to provide the requirements of high 

reliability, specificity and sensitivity due to different cell types and test protocols. For 

example, Sui et al. developed cell counting method for host cells in the bright field for insect 

cells by using nonlinear transformed sliding band filter. They obtained a low error rate and a 

high accuracy when compared their proposed method with manual counting (12). The cell 

counting method for white blood cells has been developed with Matlab to evaluate the 

hematic pathologies in terms of numbers, sizes and types of white blood cells(13). They 

applied image enhancement and image segmentation as pre-processing steps and neural 

network for classification. Piccinini et al. has used a fully automated mosaicing method to 

improve the reliability and reproducibility of live and dead cell counting(14). Moreover, 

Mouelhi and colleagues also described automatic image segmentation with active contour for 

stained nuclei in breast cancer tissue which could segment touching nuclei to get a total 

number of breast cancer nuclei(15).   

Quality of light microscopy digital images taken from hemocytometry significantly 

influences the visual analysis including cell counting. Therefore, most light microscopy 

digital images need to do a pre-processing before performing cell segmentation. Noise 

filtering is one of the pre-processing steps in every digital image processing technique. 

Median filter is a popular noise filter which is used to remove salt and pepper noise in digital 

images(16-19). It has been reported that impulse noise removal in high-density noisy images 

is effectively removed by using an improved algorithm such as decision based adaptive 

neighborhood median filter(20). Mahmood and Mansor used morphological tool with Hough 

transform technique to detect and estimate the number of red blood cells in the blood sample 

image(21).  Liew et al. applied image processing methods to develop a prototype for cell 
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detection algorithm using circular Hough transform detecting the number of cells in bee comb 

from digital images(22). Although there are many methods for cell detection and cell 

counting, computer-assisted cell counting methods are still increasingly developed to improve 

the accuracy and to match with the applications.  

In general, image analysis requires the image to be pre-processed to enhance its 

quality and to make it suitable for the following steps of image analysis. Image pre-processing 

usually consists of noise removal, contrast enhancement, region separation and the conversion 

of color images to gray scale (36) or HSV images (37,38). Further, image segmentation is 

used to separate objects from the background and there are many segmentation methods used, 

such as histogram thresholding, Otsu thresholding, global thresholding, the Hough transform 

and watershed transform algorithms as well as by K-means clustering. The Circular Hough 

Transform (CHT) is a frequently used method for detecting circular objects in an image. 

However, it often suffers from degradation in performance, especially in terms of speed, 

because of the large amount of edges presented by a complex background or texture. Some 

applications use segmentation to classify abnormalities in cells. In the analysis of white blood 

cells, some techniques used are gradient vector flow , the snake algorithm and Zack 

thresholding which can be used for segmenting the nuclei of cells (39). Methods based on 

morphological operators, gray-level threshold based methods (33) contour or region-based 

methods (35) and artificial neural networks (ANN) have been proposed. 

   Image post-processing includes feature extraction and morphological operations to 

identify objects, which include dilation, erosion, granulometry and morphological filtering. 

Further, a closing operation is used to fill holes and gaps and an opening operation is used to 

smoothen an image (40). Feature extraction determines the features that contain quantitative 

information about objects of interest. Shape features frequently used in biological images are 

geometric parameters like cell area, cell perimeter and the ratio of the nucleus to the overall 

cell area, the boundary of the nucleus and the circularity index (39).  
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Circular Hough Transform (CHT) is a technique used in image analysis to detect 

objects in a circular form (41). Classifiers like nearest neighbor , k-nearest neighbor , 

Bayesian analysis, support vector machines , neural networks  (36),local linear maps , fuzzy 

cellular neural networks  are methods which can be included in feature extraction and are 

often used to classify blood cells.  

 Therefore, a combination of suitable pre-processing and post-processing techniques 

can improve the efficiency of cell detection and cell counting. The robust and reliable systems 

are required to enable biotechnologists to handle larger cell-image data sets. Moreover, 

providing a user-friendly interface and counting record report are important considerations in 

automatic cell counting applications.  

 The objective of this work was to develop algorithms that improve the counting 

efficiency of live cells and dead cells from Trypan Blue stained microscopic digital images 

and to create a graphical user interface (GUI) for this automatic cell counting algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

Chapter 2 

Materials and Methods 

 

2.1 Sample preparation and image acquisition 

 
Human breast cancer cell line ( MDA-MB-231) purchased from American 

Type Culture Collection (ATCC, Canada) was used as an example in this study.  The 

procedure of the sample preparation is overviewed in Figure 2.1.  

 

 

Figure 2.1 Trypan Blue stained MDA-MB-231 cells in hemocytometer 

 

The sample preparation was performed according to the procedure stated in 

the work of Piccinini et al.(14) In brief, the cells were detached from the flask by shortly 

exposure to trypsin/EDTA, washed in the culture media by centrifugation and resuspended 
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in 10 mL of DMEM medium. After trypsinization, cells were stained with Trypan Blue 

solution and then the 20 µL of this mixture were distributed inside the counting chamber of 

hemocytometer.   

Images of the stained cells were obtained by an inverted Olympus IX51 

microscope equipped with a digital Olympus DP72 camera with 2/3-inch CCD. The images 

were acquired in the bright field by using Olympus UPLanFL N 10x0.13 as a standard 

objective lens. An example of digital images of Trypan blue stained cells was shown in 

Figure 2.2. 

 

Figure 2.2 An example of original image of Trypan Blue stained 

 

 The image was cropped to a 16-square grid and then the image processing 

was performed to the image as shown in the flowchart of our cell counting approach 

presented in Figure 2.3. 
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Figure 2.3 Overview of the image processing for live and dead cells counting 

 
2.2 Image processing approaches for cell counting 

2.2.1 Approach 1: Image segmentation and morphological operations 

2.2.1.1 Image filtering 

In our study, it is noticed that there are small debris (dark spot) in Trypan 

Blue stained microscopic images of hemocytometer which can cause the artifacts of cells as 

shown in Figure 2.2. In order to solve this problem, the guided image filter was applied and 

spatially distributed the filtering strengths with low-level features to the image to smooth and 

remove the small debris from background (23, 24). Furthermore, the guided image filter 

maintains the edge features of image, better content-specific visual effects and introduce less 

artifacts.  The  filtering  process  need  constraints from the  input  p  to  determine  the linear 

coefficients (ak , bk).  The filtering output q is a linear transform of the guidance I in a window 
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k centered at the pixel k since the input p needs to subtract some unwanted components n 

such as noise/textures as follows: 

qi = akI i + bk, ik                                  (i) 

qi = pi − ni                                                  (ii) 

The function of guided image filtering is similar to other filtering operations, 

which reduces noise and maintains the edge without blurring. This noise filtering algorithm 

uses the image correlation to function the features of the filtering mask over the image and 

adaptively resizes the mask according to the noise levels of the mask. Furthermore, the 

guided image f ilter needs neighborhood size around each pixel as a scalar or two-element 

vector, [M, N] of positive integers. In this study, neighborhood radius s ize  [M, N] =  [30, 

30] to remove small debris in the background.  

2.2.1.2 Color space and grayscale conversion 

 
There are several color spaces such as RGB (red, green, blue), HSV (hue, 

saturation, value) and HSL (hue, saturation, and luminance) for color images. The purpose of 

color model or color space is to simplify the specifications of colors in some standard. The 

most common color space is RGB in which color space can be obtained by the sum of three 

primary colors: red, green and blue. The original Trypan Blue stained image is represented by 

the RGB color space in the RGB model. In this study, a color space of the Trypan Blue 

stained images which was originally RGB color images was converted by applying HSV 

color space. The HSV color space is quite similar to the way in which humans perceive color. 
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The colors used in this space can be clearly defined by human perception, which is not always 

the case with RGB. These characteristics make the HSV color space more suitable for image 

segmentation and analysis than the RGB model. The original RGB images were also 

converted to grayscale for dead cells detection. The segmentation is based on histogram 

thresholding and morphological operations, and then counting is based on the labelling of 

binary image. The histogram of Trypan Blue stained gray scale images was studied, and it 

was found out the best thresholding value to extract dead cells. After cells separation, each 

image is preprocessed using morphological operators to obtain the area of dead cells using 

labelling. 

2.2.1.3 Image segmentation 

 
 Before image segmentation, the brightness of a converted image was adjusted  

for a better contrast. It is necessary to separate a digital image into multiple regions or clusters 

i.e. objects and background. Based on the color space converted image, it was noticed that 

only live cells were appear clearly. This approach utilized Otsu’s thresholding method to 

extract foreground (live cells) from the background and to turn the image to black and 

white(25).  As the Trypan Blue stained microscopic images still contained counterfeit 

structures in the nuclei, these caused the difficulty for the extraction and segmentation. 

Therefore, the operations based on the morphological reconstruction were applied to 

overcome this drawback. Opening by reconstruction can remove the disconnected bright 

objects that are smaller than the structuring element (SE)(26).  Similarly, dilatation by 

reconstruction can remove the disconnected dark objects smaller than the SE. These two 
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operators were applied in a sequence to our images. A disk shape SE with radius “n” was 

assigned in the algorithm. The amount of detail presented in the image depends on the size of 

the SE which relates to the size of nuclei and the resolution of the image. Furthermore, the 

effective threshold value from the histogram of a grayscale image was applied to obtain only 

dead cells in the black and white image. 

2.2.2 Approach 2: Adaptive K-mean clustering 

The general concept of the proposed algorithm is presented in Figure 2.4. 

 

Figure 2.4 Illustration of concept for cell counting algorithm 
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2.2.2.1 Pre-processing  

 
  Pre-processing of an image was to convert a RGB image into a gray scale 

image. A weighted average of three different color components i.e., red, green and blue 

values are converted to equal gray scale values. The weighted gray scale average value is 

defined by gray in the following equation.  

fgray (Gray Image) = 0.29R + 0.59G + 0.11B       (iii) 

The morphological concepts and methods have been proposed to constitute a powerful set of 

tools for separating features from an image. The basic operators of erosion, dilation, and 

reconstruction defined for both binary and gray scale image processing can be done with in 

sequence to represent an extended range of tasks. Morphological techniques can be applied 

for image segmentation. Furthermore, they play a significant part in algorithm for image 

information. Morphological opening, erosion occasionally was used in order to eliminate 

small objects, and the consequent dilation tends to reconstruct the pattern of the objects that 

remain. Nevertheless, the efficiency of this reconstruction depends on similarity between the 

shapes of cell and the radius of structuring element. The morphological opening by 

reconstruction of an image G using structuring element B, is defined as RG (GΘB) in this 

study, the image extraction was performed from the stained image that involves living and 

dead cells. Both “opening” of morphological operations and reconstruct the “opening” pixel 

by erosion in common, we performed that step beginning, applying a ‘disk’ structuring 

element. Thus, the live and dead cells were reconstructed correctly. “Opening” suppresses 

bright detail smaller than the structuring element; in the meanwhile “Closing” suppresses dark 
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features smaller than the structuring element. Opening can be used to compensate for 

nonuniform background illumination. By subtracting this background from the original 

image, we could form an image of the live and dead cells with a reasonably smoothly 

background.  

2.2.2.2 Clustering technique (Adaptive K-means Clustering)  

 
 In this step, the live and dead cells of stained image were extracted by using 

adaptive k-means clustering algorithm. Algorithm for adaptive K-means clustering composes 

of 5 steps. First, K elements are selected from the input data set. Second, the distance between 

a given element and a cluster is computed. Third, the distance between two data elements E1 

= {E11, E12, E1n} and E2 = {E21, E22, E2n} is given by 

√         
           

             
2 

Fourth, the distance of each cluster 

from every other cluster is determined and this value is stored in a 2D array as a triangular 

matrix. Lastly, a distance between any two clusters Cm1 and Cm2 is minimized as well as the 

identification of these two closest clusters. In this study, k=3 was assigned to group the 

clustering objects in images. There are 3 clusters can be separated as dead cells, total cells and 

live cells. Therefore, we choose the cluster 1 and cluster 3 to process for dead and live cell 

counting, respectively.  

2.2.2.3 Post-processing  

 
   The segmented image for live cells from adaptive k-means (Cluster 3) was 

used as an input for Hough transform process. Hough transform approach is to distinct live 
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cells from dead cells and background. The Hough transform has been identified as 

particularly robust tool for the detection of parametric curves in images. It achieves a voting 

process that maps image edge points into manifolds in an approximately defined parameter 

range. The circular Hough transform, one of the Hough transform techniques, concentrates to 

locate circular patterns within an image. The circle Hough transforms is intended to obtain a 

curve characterized by a center point (0, 0).  

(x-x0) 
2
+ (y-y0) 

2
= r

2
    (iv) 

Where, x0 and y0 are the coordinates of the center and r is the radius of circle. Corresponding 

to the sequence from the adaptive k-means segmented image (Cluster 1) which is dead cells 

area, the most suitable method used for counting in this study, was connected component 

labeling. Therefore, counting of dead cells was accomplished by identifying the number of 

connected components in segmented image of adaptive k-means clustering (Cluster 1) and the 

counted the connected objects in a segmented image. 

2.2.3 Cell counting 

 
To count live and dead cells, a label technique was applied to the binary 

images after thresholding to distinguish objects from the background and then measured the 

geometric properties using centroid and boundaries to select live cells from labeled regions.   
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2.3 Accuracy Verification  

 
In this study, three experts counted thirty-six Trypan Blue stained images to evaluate 

the accuracy of program and ImageJ counting. We used ImageJ which is open source 

software to count the cells. CellContingMacro2 v1-01plugin in ImageJ was used to count the 

cells in Trypan Blue stained images. Furthermore, the correlation between two methods was 

determined.   

 

2.4 Graphic User Interface (GUI)  

 
  GUI was developed to make the algorithms easier to use and more 

convenient for cell counting. The features of this GUI are composed of loaded images, 

parameter setting, live cell counting and dead cell counting. The percentage of cell death 

showed on GUI is computed from the ratio of dead cells per total cells. 
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Chapter 3 

Results 

3.1 Image segmentation and morphological operations  

  Thirty six Trypan blue stained microscopic images were obtained and used to 

test in this study. The debris in the image (Figure 3.1a) was removed after the image guided 

filtering as shown in Figure 3.1b. As we performed color space conversion, the images based 

on HSV channels are shown in Figure 3.2.  It can be noticed that an image with the saturation 

channel (Figure 3.2b) gave a better contrast of live cells compared to other channels. Then 

after brightness adjustment, the live cells became clearly extracted from the background as 

shown in Figure 3.3. 

 

Figure 3.1 Examples of (a) original image and (b) image after guided image filter process 
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Figure 3. 2 Images after HSV color space conversion: (a) Hue channel image, (b) Saturation 

channel image and (c) Value channel image 

 

 

 
 

Figure 3.3 Saturation channel image after brightness adjustment showing better contrast of 

live cells from the background 
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 Otsu’s thresholding was performed to segment the live cells from the 

background and the nuclei of live cells are opened and dilated after thresholding. The result of 

segmentation step is demonstrated in Figure 3.4 for live cells as white spots. Our approach 

provided a very similar counting result of live cells to the experts’ counting result as a high 

correlation coefficient (r=0.99) whereas a correlation coefficient in case of the dead cell 

counting is 0.74 (Figure 3.5). In comparison with the experts, the average accuracy 

percentages of cell counting from thirty six images were also determined. The accuracy of 

live cell counting and dead cell counting were 89±10% and 67±24%, respectively. 

 

 

Figure 3.4 Image after applying Otsu’s method showing a black and white image 
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Figure 3.5 Correlation plots between the counting results by the first approach and experts for 

(a) live cells and (b) dead cells 

 

 

 After that the image was processed with counting algorithm to identify and 

count both live and dead cells. The final images showing the live and dead cells identification 

are respectively presented in Figure 3.6 and Figure 3.7. 

 

 

Figure 3.6 Example of image showing the live cells detection 
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Figure 3.7 Example of image showing the dead cells detection 

 
 

3.2 Adaptive K-mean clustering 

Using the second approach, Figure 3.8 depicts the conversion of the original of one of 

the 36 Trypan Blue stained images used in this work to assess the cell counting program, to a 

gray-scale image.  

 

Figure 3.8 Example of original RGB to Gray converted image 
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As the opening and closing reconstruction of the morphological operations were 

applied at the beginning of a disk-structuring element, the live and dead cells were 

reconstructed perfectly as shown in Figure 3.9. Figure 3.10 illustrates the three clusters, dead 

cells, total cells and live cells from which cluster 1 and cluster 3 were used to count the dead 

and live cells, respectively, using the Hough transform technique which was applied after 

segmentation from the adaptive K-means clustering, to extract the live cells from the dead 

cells and the background as showed in Figure 3.11.  

 

 

Figure 3.9 Example of morphological reconstruction of Trypan blue stained image 
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Figure 3.10 Adaptive K-means Clustering: (a) dead cells, (b) total cells and (c) live cells 

 

 

 

Figure 3.11 Example of Hough transform for living cell detection 
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Figure 3.12 Example of labeling for dead cell detection 

 

 
Since the counting of the dead cells is accomplished by finding a number of 

connected components in the segmented image of the adaptive K-means clustering (cluster 1) 

and identifies the connected objects in an image, the result obtained was that presented in 

Figure 3.12. ImageJ was used to measure the accuracy of the live- and dead-cell counts. 

However, ImageJ cannot classify live and dead cells automatically from the original image as 

shown in Figure 3.13. 
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Figure 3.13 Example of comparison of Manual, ImageJ and Proposed 

 

 
The findings of this study show that the results of counting the live cells consistently 

fit a regression line based on the counts conducted by the three experts as shown in Fig.3.14 

and Fig.3.15 that is indicated for dead cell counting. Therefore, these results suggest that the 

results of the count of live cells can reasonably be accepted as accurate. Fig.3.16 shows the 

linear correlation of ImageJ and three experts for live cell counting. 
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Figure 3.14 Accuracy verification: (a) (b) (c) linear correlation of program and three experts 

for live cell counting 
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Figure 3.15 Accuracy verification: (a) (b) (c) linear correlation of program and three experts 

for dead cell counting 

 

 

(a) (b) 

(c) 
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Figure 3.16 Accuracy verification: (a) (b) (c) linear correlation of ImageJ and three experts 

for live cell counting 

 
  

Finally, a GUI was developed to provide a user-friendly screen display during cell 

counting which is presented in Figure 3.17. Figure 3.18 showed an example of loading input 

image into application. Figure 3.19 demonstrated the crop section of hemocytometer by 

manually and Figure 3.20 showed the result of counting in our cell counting program. 

(a) (b) 

(c) 
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Figure 3.17 Graphical User Interface (GUI) of cell counting program: (i) Load image,              

(ii) Report document and (iii) Result box for total cell counting 

 

 

 

Figure 3.18  Example of load images in GUI 
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Figure 3.19 Example of cropped image section of original Trypan Blue stained image with 

grid lines in GUI 

 

 

 
 

Figure 3.20 Example of cell counting results in from the program 
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Chapter 4 

Discussion 

This study presented the image analysis technique to count live and dead 

cells obtained from Trypan Blue stained microscopic images. As our results, the accuracy of 

live cells counting was very high (>85%) due to the good contrast between foreground and 

background after a saturated channel selection and the improvement from image noise 

reduction with a guided image filter. We experienced this high accuracy of live cells counting 

using similar sample images in our previous work using K-mean clustering technique(27). 

However, this new proposed method provided a higher accuracy. As the brightness of live 

cells is clearly different from the image background, this is the advantage for image 

thresholding for live cells detection. Piccinini and colleagues presented a high accuracy of 

live cells counting using an automated image mosaicing for A549 and KKP cell lines(14). 

The high accuracy of live cell counting in both their results and ours particularly relates to a 

clearly distinguishable shape of live cells and a good contrast to the background.  

The number of dead cells from our counting approach was considerably less 

than the expert’s counting as our high false negative. This might be caused by the 

ineffectiveness of dead cell segmentation. It should be noted that a segmentation result 

depends on the quality of preparation and the coloring of Trypan Blue stained microscopic 

images. Over staining and poor digitization could adversely affect the segmentation result 

(28, 29). These quandaries infrequently occur and can be remedied with a more rigorous 
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quality control during the sample preparation and image acquisition. Moreover, dead cells 

from apoptosis presented in fragments can lead to over counting (30). Therefore, counting on 

dead cells still has erroneous results much more than live cells counting. For example, the 

approach using automated image mosaicking had false positive results on dead cell counting 

compared to the experts much more than the live cells counting(14).  This is quite a challenge 

to improve the accuracy of dead cells counting by improve either the image noise reduction or 

the image segmentation.  

  In the first approach, however, there are several limitations which effect on 

the counting accuracy. For example, we assumed that the cell diameters in all images are 

about the same size. In fact, the dead cells in our study had various diameters especially when 

cells became fragments from apoptosis. Therefore, some images had the number of dead cells 

counting by our approach greater than the results counted by the expert. Furthermore, the 

qualities of image such as the brightness of the image background and the image contrast can 

influence on the image processing and leads to lower accuracy of cell counting. As the 

Trypan Blue stained microscopic images had a dark background, the color of dead cells is 

quite similar to the background which requires several trials for the dead cells segmentation. 

Moreover, we applied the mean threshold value based on 36 images for dead cells 

segmentation. Therefore, it is necessary to recalculate the mean threshold value if the number 

of images or image background is changed. In addition, employing a large SE can 

oversimplify the image, while using too small SE does not always produce desirable results as 

many of the substructures within the large nuclei remain, affecting the segmentation 
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performance. Moreover, our cell counting program using the first approach is still needed to 

improve the accuracy for dead cells. By calculating the areas of all dead cells and assign the 

largest area of dead which is main dead cell and summation of other fragmented cells areas. 

 Furthermore, the second approach has been developed to improve the 

accuracy of cell counting from the first approach. In this approach, the cell segmentation and 

counting techniques for detecting live and dead cells of Trypan Blue stained microscopic 

images were investigated. The adaptive K-means clustering technique was applied to classify 

live and dead cells. It was found that adaptive K-means clustering required an accurate pre-

processing process in order to obtain a highly accurate cell classification (42). If adequate pre-

processing steps such as gray-scale conversion and morphological operations to remove grid 

lines are provided then an adequate classification is produced. ImageJ was used to count the 

Trypan Blue stained images of the cell line (MDA-MB-231) tested in this study (43). It was 

also found that the morphological operations structuring element  was able to analyze the 

original image although if either larger or smaller pixels were used in the image the 

segmentation quality might be affected (44) . However, ImageJ lacks the ability to detect dead 

cells despite being a user-friendly image processing tools and the cell counter plug-in was not 

able to fully detect all live and dead cells nor could it distinguish dead cells from live cells 

and the background. 

 It was assumed that the cell diameters in all the images were approximately 

the same and most of the parameters used were standard for a Hough transform. Therefore, 

we set the minimum cell range (Rmin) to 20 pixels, and the maximum (Rmax) to 80 pixels in 
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order to ensure that the maximum radius covered a complete cell. However, these minimum 

and maximum radius pixel values can be adjusted according to cell types. The method used in 

this study currently takes about 20 seconds to count the cells in each image, which compares 

with manual counting which took approximately 2 minutes for one image. The cell counting 

program developed can therefore significantly reduce the time required for expert cell 

counting while providing high accuracy. 

In spite of our counting program has accuracy, this second approach has some 

limitations. Adaptive K-means clustering algorithm operates by pre-processing steps such as 

gray scale and morphological operations, creating them affected to removing hemocytometer 

grid lines and invalid clustering. 
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Chapter 5 

 

Conclusion 

 
In this study, we presented a computer-assisted cell counting approach on 

Trypan Blue stained microscopic images of breast cancer cell line. The stained cell counting 

results indicated that the counting of Trypan Blue stained microscopic images using our 

approaches offers a remarkable accuracy, especially live cells counting. Our simple method 

can identify overlapping cells and count them quite correctly. The first approach focused on 

morphological operation of digital image processing and image segmentation while the 

second approach based on adaptive K-mean clustering algorithm which involved 

thresholding. Even there are several limitations from image itself and pre-processing and 

post-processing techniques but both automated counting approaches result in very time 

effectiveness to biologists and biomedical researchers. Furthermore, a graphic user interface 

(GUI) was created to provide a useful interface tool for biologists and biomedical researchers 

who are not familiar with image processing methods. However, the future work is still aiming 

to develop cell counting algorithm for higher accuracy for dead cells and other kinds of cell 

lines in cell culturing experiments.  
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Appendix A 

 

MATLAB CODE 

 

function varargout = untitled2(varargin) 

% UNTITLED2 MATLAB code for untitled2.fig 

%      UNTITLED2, by itself, creates a new UNTITLED2 or raises the existing 

%      singleton*. 

% 

%      H = UNTITLED2 returns the handle to a new UNTITLED2 or the handle to 

%      the existing singleton*. 

% 

%      UNTITLED2('CALLBACK',hObject,eventData,handles,...) calls the local 

%      function named CALLBACK in UNTITLED2.M with the given input arguments. 

% 

%      UNTITLED2('Property','Value',...) creates a new UNTITLED2 or raises the 

%      existing singleton*.  Starting from the left, property value pairs are 

%      applied to the GUI before untitled2_OpeningFcn gets called.  An 

%      unrecognized property name or invalid value makes property application 

%      stop.  All inputs are passed to untitled2_OpeningFcn via varargin. 

% 

%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 

%      instance to run (singleton)". 

% 

% See also: GUIDE, GUIDATA, GUIHANDLES 

 

% Edit the above text to modify the response to help untitled2 

 

% Last Modified by GUIDE v2.5 09-May-2017 16:02:15 

 

% Begin initialization code - DO NOT EDIT 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

                   'gui_Singleton',  gui_Singleton, ... 

                   'gui_OpeningFcn', @untitled2_OpeningFcn, ... 

                   'gui_OutputFcn',  @untitled2_OutputFcn, ... 

                   'gui_LayoutFcn',  [] , ... 

                   'gui_Callback',   []); 

if nargin && ischar(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end 

 

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 

    gui_mainfcn(gui_State, varargin{:}); 

end 

% End initialization code - DO NOT EDIT 
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% --- Executes just before untitled2 is made visible. 

function untitled2_OpeningFcn(hObject, eventdata, handles, varargin) 

% This function has no output args, see OutputFcn. 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

% varargin   command line arguments to untitled2 (see VARARGIN) 

 

% Choose default command line output for untitled2 

handles.output = hObject; 

% handles.initial_parameter=varargin{1}; 

% handles.counter=0; 

% Update handles structure 

guidata(hObject, handles); 

 

% UIWAIT makes untitled2 wait for user response (see UIRESUME) 

% uiwait(handles.figure1); 

 

 

% --- Outputs from this function are returned to the command line. 

function varargout = untitled2_OutputFcn(hObject, eventdata, handles)  

% varargout  cell array for returning output args (see VARARGOUT); 

% hObject    handle to figure 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Get default command line output from handles structure 

varargout{1} = handles.output; 

 

 

% --- Executes on button press in pushbuttonLoad1. 

function pushbuttonLoad1_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbuttonLoad1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

global I1 

 

[filename pathname] = uigetfile('*.jpg;*.tif;*.png;*.gif','All Image Files'); 

complete = strcat(pathname,filename); 

 

if pathname ~= 0 

    I1 = imread(complete); 

    handles.current_data1 = I1;  

    axes(handles.axes1); 

    image(I1); 

    axis off 

end 

handles.output = hObject; 

guidata(hObject, handles); 
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function cells1_Callback(hObject, eventdata, handles) 

% hObject    handle to cells1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of cells1 as text 

%        str2double(get(hObject,'String')) returns contents of cells1 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function cells1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to cells1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

% --- Executes on button press in pushbuttonAdd. 

function pushbuttonAdd_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbuttonAdd (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

add1 = get(handles.add_cells1,'String'); 

if isempty(add1) 

    add1 = 0; 

else  

    add1 = str2double(add1); 

end 

cells1 = str2double(get(handles.cells1,'String'))+ add1; 

total = cells1; 

set(handles.total_cells,'String',total) 

%  

 

add2 = get(handles.add_cells3,'String'); 

if isempty(add2) 

    add2 = 0; 

else  

    add2 = str2double(add2); 

end 

cells3 = str2double(get(handles.cells3,'String'))+ add2; 

total = cells3; 
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set(handles.total_cells,'String',total) 

%  

 

add3 = get(handles.add_cells5,'String'); 

if isempty(add3) 

    add3 = 0; 

else  

    add3 = str2double(add3); 

end 

cells5 = str2double(get(handles.cells5,'String'))+ add3; 

total = cells5; 

set(handles.total_cells,'String',total) 

%  

add4 = get(handles.add_cells7,'String'); 

if isempty(add4) 

    add4 = 0; 

else  

    add4 = str2double(add4); 

end 

cells1 = str2double(get(handles.cells1,'String'))+ add1; 

cells3 = str2double(get(handles.cells3,'String'))+ add2; 

cells5 = str2double(get(handles.cells5,'String'))+ add3; 

cells7 = str2double(get(handles.cells7,'String'))+ add4; 

 

 

total_living = cells1 + cells3 + cells5 + cells7; 

              

set(handles.total_cells,'String',total_living) 

 

concentration = (total_living*10000)/4; 

set(handles.cell_concentration,'String',concentration) 

 

 

function add_cells1_Callback(hObject, eventdata, handles) 

% hObject    handle to add_cells1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of add_cells1 as text 

%        str2double(get(hObject,'String')) returns contents of add_cells1 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function add_cells1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to add_cells1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 
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if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function total_cells_Callback(hObject, eventdata, handles) 

% hObject    handle to total_cells (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of total_cells as text 

%        str2double(get(hObject,'String')) returns contents of total_cells as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function total_cells_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to total_cells (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function cells2_Callback(hObject, eventdata, handles) 

% hObject    handle to cells2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of cells2 as text 

%        str2double(get(hObject,'String')) returns contents of cells2 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function cells2_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to cells2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 
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end 

 

 

 

function add_cells2_Callback(hObject, eventdata, handles) 

% hObject    handle to add_cells2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of add_cells2 as text 

%        str2double(get(hObject,'String')) returns contents of add_cells2 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function add_cells2_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to add_cells2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

% --- Executes on button press in pushbuttonAddDead. 

function pushbuttonAddDead_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbuttonAddDead (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

add1 = get(handles.add_cells2,'String'); 

if isempty(add1) 

    add1 = 0; 

else  

    add1 = str2double(add1); 

end 

cells2 = str2double(get(handles.cells2,'String'))+ add1; 

total = cells2; 

set(handles.total_dead_cells,'String',total) 

%  

 

add2 = get(handles.add_cells4,'String'); 

if isempty(add2) 

    add2 = 0; 

else  

    add2 = str2double(add2); 

end 

cells4 = str2double(get(handles.cells4,'String'))+ add2; 

total = cells4; 
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set(handles.total_dead_cells,'String',total) 

%  

 

add3 = get(handles.add_cells6,'String'); 

if isempty(add3) 

    add3 = 0; 

else  

    add3 = str2double(add3); 

end 

cells6 = str2double(get(handles.cells6,'String'))+ add3; 

total = cells6; 

set(handles.total_dead_cells,'String',total) 

%  

add4 = get(handles.add_cells8,'String'); 

if isempty(add4) 

    add4 = 0; 

else  

    add4 = str2double(add4); 

end 

cells2 = str2double(get(handles.cells2,'String'))+ add1; 

cells4 = str2double(get(handles.cells4,'String'))+ add2; 

cells6 = str2double(get(handles.cells6,'String'))+ add3; 

cells8 = str2double(get(handles.cells8,'String'))+ add4; 

 

 

total = cells2 + cells4 + cells6 + cells8; 

              

set(handles.total_dead_cells,'String',total) 

 

 

 

function total_dead_cells_Callback(hObject, eventdata, handles) 

% hObject    handle to total_dead_cells (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of total_dead_cells as text 

%        str2double(get(hObject,'String')) returns contents of total_dead_cells as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function total_dead_cells_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to total_dead_cells (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 
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end 

 

 

 

function SampleName_Callback(hObject, eventdata, handles) 

% hObject    handle to SampleName (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of SampleName as text 

%        str2double(get(hObject,'String')) returns contents of SampleName as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function SampleName_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to SampleName (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

% --- Executes on button press in pushbuttonSave. 

function pushbuttonSave_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbuttonSave (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

global cells1 

global cells3 

global cells5 

global cells7 

global total_living 

global concentration  

 

file = 'TrypanBlueDye.xlsx'; 

 

Name = get(handles.SampleName,'String'); 

 

 

N={Name, cells1, cells3, cells5, cells7, total_living, concentration}; 

 

 

%Read excel file return data on it and dimension 

[coef, texte]=csvread(file,1); % old xlsread cannot use on mac use csvread for mac 
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%return the number of lines already used 

[l, c]=size(texte); 

  

%define the line we must right on  

d=[char('A'),num2str(l+1)]; 

  

%right the new data in this line 

csvwrite(file,N,1,d); 

 

set(handles.Saved,'String','Data Saved !') 

 

 

 

 

function cells4_Callback(hObject, eventdata, handles) 

% hObject    handle to cells4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of cells4 as text 

%        str2double(get(hObject,'String')) returns contents of cells4 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function cells4_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to cells4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function add_cells4_Callback(hObject, eventdata, handles) 

% hObject    handle to add_cells4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of add_cells4 as text 

%        str2double(get(hObject,'String')) returns contents of add_cells4 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function add_cells4_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to add_cells4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function cells6_Callback(hObject, eventdata, handles) 

% hObject    handle to cells6 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of cells6 as text 

%        str2double(get(hObject,'String')) returns contents of cells6 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function cells6_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to cells6 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function add_cells6_Callback(hObject, eventdata, handles) 

% hObject    handle to add_cells6 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of add_cells6 as text 

%        str2double(get(hObject,'String')) returns contents of add_cells6 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function add_cells6_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to add_cells6 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 
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%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function cells8_Callback(hObject, eventdata, handles) 

% hObject    handle to cells8 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of cells8 as text 

%        str2double(get(hObject,'String')) returns contents of cells8 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function cells8_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to cells8 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function add_cells8_Callback(hObject, eventdata, handles) 

% hObject    handle to add_cells8 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of add_cells8 as text 

%        str2double(get(hObject,'String')) returns contents of add_cells8 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function add_cells8_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to add_cells8 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 
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    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function edit29_Callback(hObject, eventdata, handles) 

% hObject    handle to edit29 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of edit29 as text 

%        str2double(get(hObject,'String')) returns contents of edit29 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function edit29_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit29 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

% --- Executes on button press in pushbutton7. 

function pushbutton7_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbutton7 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

 

 

function cells3_Callback(hObject, eventdata, handles) 

% hObject    handle to cells3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of cells3 as text 

%        str2double(get(hObject,'String')) returns contents of cells3 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function cells3_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to cells3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 
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% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function add_cells3_Callback(hObject, eventdata, handles) 

% hObject    handle to add_cells3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of add_cells3 as text 

%        str2double(get(hObject,'String')) returns contents of add_cells3 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function add_cells3_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to add_cells3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function cells5_Callback(hObject, eventdata, handles) 

% hObject    handle to cells5 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of cells5 as text 

%        str2double(get(hObject,'String')) returns contents of cells5 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function cells5_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to cells5 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 
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if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function add_cells5_Callback(hObject, eventdata, handles) 

% hObject    handle to add_cells5 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of add_cells5 as text 

%        str2double(get(hObject,'String')) returns contents of add_cells5 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function add_cells5_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to add_cells5 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function cells7_Callback(hObject, eventdata, handles) 

% hObject    handle to cells7 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of cells7 as text 

%        str2double(get(hObject,'String')) returns contents of cells7 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function cells7_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to cells7 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 
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end 

 

 

 

function add_cells7_Callback(hObject, eventdata, handles) 

% hObject    handle to add_cells7 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of add_cells7 as text 

%        str2double(get(hObject,'String')) returns contents of add_cells7 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function add_cells7_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to add_cells7 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function cell_concentration_Callback(hObject, eventdata, handles) 

% hObject    handle to cell_concentration (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of cell_concentration as text 

%        str2double(get(hObject,'String')) returns contents of cell_concentration as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function cell_concentration_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to cell_concentration (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 
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% --- Executes on button press in pushbuttonLoad2. 

function pushbuttonLoad2_Callback(hObject, eventdata, handles) 

global I2 

 

[filename pathname] = uigetfile('*.jpg;*.tif;*.png;*.gif','All Image Files'); 

complete = strcat(pathname,filename); 

 

if pathname ~= 0 

    I2 = imread(complete); 

    handles.current_data2 = I2;  

    axes(handles.axes2); 

    image(I2); 

    axis off 

end 

 

handles.output = hObject; 

guidata(hObject, handles); 

 

% --- Executes on button press in pushbuttonLoad3. 

function pushbuttonLoad3_Callback(hObject, eventdata, handles) 

global I3 

 

[filename pathname] = uigetfile('*.jpg;*.tif;*.png;*.gif','All Image Files'); 

complete = strcat(pathname,filename); 

 

if pathname ~= 0 

    I3 = imread(complete); 

    handles.current_data3 = I3;  

    axes(handles.axes3); 

    image(I3); 

    axis off 

end 

 

handles.output = hObject; 

%Analysis(handles.I); 

%Update  hndles  structure 

guidata(hObject, handles); 

% --- Executes on button press in pushbuttonLoad4. 

function pushbuttonLoad4_Callback(hObject, eventdata, handles) 

global I4 

 

[filename pathname] = uigetfile('*.jpg;*.tif;*.png;*.gif','All Image Files'); 

complete = strcat(pathname,filename); 

 

if pathname ~= 0 

    I4 = imread(complete); 

    handles.current_data4 = I4;  

    axes(handles.axes4); 

    image(I4); 

    axis off 

end 
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handles.output = hObject; 

guidata(hObject, handles); 

 

% --- Executes during object creation, after setting all properties. 

function pushbuttonLoad2_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to pushbuttonLoad2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

 

% --- Executes on slider movement. 

function initial_value_Callback(hObject, eventdata, handles) 

valor=get(hObject,'Value'); 

set(handles.edit33,'String',valor); 

 

 

% --- Executes during object creation, after setting all properties. 

function initial_value_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to initial_value (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: slider controls usually have a light gray background. 

if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor',[.9 .9 .9]); 

end 

 

% --- Executes on slider movement. 

function total_value_Callback(hObject, eventdata, handles) 

valor=get(hObject,'Value'); 

set(handles.edit34,'String',valor); 

 

        

 

% --- Executes during object creation, after setting all properties. 

function total_value_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to total_value (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: slider controls usually have a light gray background. 

if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor',[.9 .9 .9]); 

end 

 

 

 

function edit33_Callback(hObject, eventdata, handles) 

% hObject    handle to edit33 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of edit33 as text 

%        str2double(get(hObject,'String')) returns contents of edit33 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function edit33_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit33 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function edit34_Callback(hObject, eventdata, handles) 

% hObject    handle to edit34 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of edit34 as text 

%        str2double(get(hObject,'String')) returns contents of edit34 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function edit34_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit34 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

% --- Executes on button press in new_count. 

function new_count_Callback(hObject, eventdata, handles) 

% hObject    handle to new_count (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

rmin = get(handles.edit33,'String'); 
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% if isempty(rmin) 

%     rmin = 0; 

% else  

%     rmin = str2double(rmin); 

% end 

% new_rmin1 = str2double(get(handles.new_rmin1,'String'))+rmin; 

new_rmin1=str2double(rmin); 

set(handles.total_cell1,'String',new_rmin1) 

 

rmax = get(handles.edit34,'String'); 

% if isempty(rmax) 

%     rmax = 0; 

% else  

%     rmax = str2double(rmax); 

% end 

% new_rmax1 = str2double(get(handles.new_rmax1,'String'))+ rmax; 

new_rmax1=str2double(rmax); 

% set(handles.total_radius2,'String',new_rmax1) 

global I1 

 global I2 

 global I3 

 global I4 

 

  

  

grayImage=rgb2gray(I1); 

Iobrcbr=grayImage; 

imData=reshape(Iobrcbr,[],1); 

imData=double(imData); 

[IDX, nm]=adaptcluster_kmeans(imData); 

imIDX=reshape(IDX,size(Iobrcbr)); 

 

axes(handles.axes1); 

imshow(I1); 

axis off 

% title('Living and Dead Cells','FontSize',fontSize); 

[centersAll, radiiAll] = imfindcircles(imIDX==3,[new_rmin1 

new_rmax1],'ObjectPolarity','dark'); 

viscircles(centersAll, radiiAll,'EdgeColor','b');  

% viscircles(centersAll, radiiAll,'LineStyle','--'); 

length([centersAll, radiiAll]); 

total_radius1 = length([centersAll, radiiAll]); 

 

set(handles.total_cell1,'String',total_radius1) 

 

grayImage=rgb2gray(I2); 

Iobrcbr=grayImage; 

imData=reshape(Iobrcbr,[],1); 

imData=double(imData); 

[IDX, nm]=adaptcluster_kmeans(imData); 

imIDX=reshape(IDX,size(Iobrcbr)); 
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axes(handles.axes2); 

imshow(I2); 

axis off 

% title('Living and Dead Cells','FontSize',fontSize); 

[centersAll, radiiAll] = imfindcircles(imIDX==3,[new_rmin1 

new_rmax1],'ObjectPolarity','dark'); 

viscircles(centersAll, radiiAll,'EdgeColor','b');  

% viscircles(centersAll, radiiAll,'LineStyle','--'); 

length([centersAll, radiiAll]); 

total_radius1 = length([centersAll, radiiAll]); 

 

set(handles.total_cell2,'String',total_radius1) 

 

grayImage=rgb2gray(I3); 

Iobrcbr=grayImage; 

imData=reshape(Iobrcbr,[],1); 

imData=double(imData); 

[IDX, nm]=adaptcluster_kmeans(imData); 

imIDX=reshape(IDX,size(Iobrcbr)); 

 

axes(handles.axes3); 

imshow(I3); 

axis off 

% title('Living and Dead Cells','FontSize',fontSize); 

[centersAll, radiiAll] = imfindcircles(imIDX==3,[new_rmin1 

new_rmax1],'ObjectPolarity','dark'); 

viscircles(centersAll, radiiAll,'EdgeColor','b');  

% viscircles(centersAll, radiiAll,'LineStyle','--'); 

length([centersAll, radiiAll]); 

total_radius1 = length([centersAll, radiiAll]); 

 

set(handles.total_cell3,'String',total_radius1) 

 

grayImage=rgb2gray(I4); 

Iobrcbr=grayImage; 

imData=reshape(Iobrcbr,[],1); 

imData=double(imData); 

[IDX, nm]=adaptcluster_kmeans(imData); 

imIDX=reshape(IDX,size(Iobrcbr)); 

 

axes(handles.axes4); 

imshow(I4); 

axis off 

% title('Living and Dead Cells','FontSize',fontSize); 

[centersAll, radiiAll] = imfindcircles(imIDX==3,[new_rmin1 

new_rmax1],'ObjectPolarity','dark'); 

viscircles(centersAll, radiiAll,'EdgeColor','b');  

% viscircles(centersAll, radiiAll,'LineStyle','--'); 

length([centersAll, radiiAll]); 

total_radius1 = length([centersAll, radiiAll]); 
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set(handles.total_cell4,'String',total_radius1) 

 

 

% % axis off 

 

function edit35_Callback(hObject, eventdata, handles) 

% hObject    handle to edit35 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of edit35 as text 

%        str2double(get(hObject,'String')) returns contents of edit35 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function edit35_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to edit35 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

% --- Executes on button press in pushbuttonLoad2. 

function pushbutton12_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbuttonLoad2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

 

% --- Executes on button press in pushbuttonLoad3. 

function pushbutton13_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbuttonLoad3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

 

% --- Executes on button press in pushbuttonLoad4. 

function pushbutton14_Callback(hObject, eventdata, handles) 

% hObject    handle to pushbuttonLoad4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

 

% --- Executes on button press in pushbuttonCrop. 



60 

 

function pushbuttonCrop_Callback(hObject, eventdata, handles) 

handles.output = hObject; 

guidata(hObject, handles); 

 

 global I1 

 global I2 

 global I3 

 global I4 

  

num_crop = 4; 

 crop_imge = cell(1,4); 

 crop_imge{1} = I1; 

 crop_imge{2} = I2;  

 crop_imge{3} = I3; 

 crop_imge{4} = I4;  

 

 for n = 1:num_crop 

    figure,imshow(crop_imge{n}),title('image') 

    image_crop = imcrop(crop_imge{n});  

    crop_image{n} =  image_crop; 

    clear  image_crop 

    close ; 

 end 

    I1 = crop_image{1}; 

    I2 = crop_image{2}; 

    I3 = crop_image{3}; 

    I4 = crop_image{4}; 

     

axes(handles.axes1); 

image(I1); 

axis off 

 

axes(handles.axes2); 

image(I2); 

axis off 

 

axes(handles.axes3); 

image(I3); 

axis off 

 

axes(handles.axes4); 

image(I4); 

axis off 

     

%  save  mydata1.mat crop1 crop2 crop3 crop4 

  clear img imag_crop crop_image num_crop 

% % The blanks filled with the number of Viable Cells counted 

 

 

% --- Executes on button press in pushbuttonProcessed. 

function pushbuttonProcessed_Callback(hObject, eventdata, handles) 
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handles.output = hObject; 

guidata(hObject, handles); 

 

% set(handles.Saved,'String','') 

 

 global I1 

 global I2 

 global I3 

 global I4 

  

 global cells1 

 global cells3 

 global cells5 

 global cells7 

 global total_living 

 global concentration 

  

  

grayImage=rgb2gray(I1); 

Iobrcbr=grayImage; 

imData=reshape(Iobrcbr,[],1); 

imData=double(imData); 

[IDX, nm]=adaptcluster_kmeans(imData); 

imIDX=reshape(IDX,size(Iobrcbr)); 

% figure,imshow(imIDX,[]),title('Index Image'); 

%  

% figure,imshow(imIDX==1,[]);title('Cluster 1'); 

% figure,imshow(imIDX==2,[]);title('Cluster 2'); 

% figure,imshow(imIDX==3,[]);title('Cluster 3'); 

 

% figure 

% imshow(grayImage,[]), title('Gray') 

% handles.output=hObject; 

% guidata(hObject, handles); 

% axes(handles.axes2); 

% axis off 

 

 

axes(handles.axes1); 

imshow(I1); 

axis off 

% title('Living and Dead Cells','FontSize',fontSize); 

[centersAll, radiiAll] = imfindcircles(imIDX==3,[20 80],'ObjectPolarity','dark'); 

viscircles(centersAll, radiiAll,'EdgeColor','b');  

viscircles(centersAll, radiiAll,'LineStyle','-'); 

length([centersAll, radiiAll]); 

cells1 = length([centersAll, radiiAll]); 

 

set(handles.cells1,'String',cells1) 

%  

BW2 = bwareaopen(imIDX==1, 400); 
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% figure,imshow(BW2,[]);title('Remove noise'); 

 

[L1,num1]=bwlabel(BW2); 

STATS = regionprops(L1,'Centroid','Area'); 

auxA=zeros(num1,1); 

radius=zeros(num1,1); 

% figure;  

% axes(handles.axes2); 

% imshow(cropImage);title('result'); hold on; 

% imshow(cropImage); 

for k=1:num1 

    aux=STATS(k).Centroid; 

    text(aux(1),aux(2),num2str(k),'FontSize',14,'Color','w'); 

    auxA(k,1)=STATS(k).Area; 

    radius(k,1)= sqrt(auxA(k,1)/pi); 

end 

% imcontour(BW2,'Color','g'); 

% figure,imshow(cropImage); title('original'); 

% [(1:num1)' radius] 

 

handles.output=hObject; 

guidata(hObject, handles); 

cells2 = numel(STATS); 

 

set(handles.cells2,'String',cells2) 

 

 

grayImage=rgb2gray(I2); 

Iobrcbr=grayImage; 

imData=reshape(Iobrcbr,[],1); 

imData=double(imData); 

[IDX, nm]=adaptcluster_kmeans(imData); 

imIDX=reshape(IDX,size(Iobrcbr)); 

% figure,imshow(imIDX,[]),title('Index Image'); 

%  

% figure,imshow(imIDX==1,[]);title('Cluster 1'); 

% figure,imshow(imIDX==2,[]);title('Cluster 2'); 

% figure,imshow(imIDX==3,[]);title('Cluster 3'); 

 

% figure 

% imshow(grayImage,[]), title('Gray') 

% handles.output=hObject; 

% guidata(hObject, handles); 

% axes(handles.axes2); 

% axis off 

axes(handles.axes2); 

imshow(I2); 

axis off 

% title('Living and Dead Cells','FontSize',fontSize); 

[centersAll, radiiAll] = imfindcircles(imIDX==3,[20 80],'ObjectPolarity','dark'); 



63 

 

viscircles(centersAll, radiiAll,'EdgeColor','b');  

viscircles(centersAll, radiiAll,'LineStyle','-'); 

length([centersAll, radiiAll]); 

cells3 = length([centersAll, radiiAll]); 

 

set(handles.cells3,'String',cells3) 

 

BW2 = bwareaopen(imIDX==1, 400); 

 

% figure,imshow(BW2,[]);title('Remove noise'); 

 

[L1,num1]=bwlabel(BW2); 

STATS = regionprops(L1,'Centroid','Area'); 

auxA=zeros(num1,1); 

radius=zeros(num1,1); 

% figure;  

% axes(handles.axes2); 

% imshow(cropImage);title('result'); hold on; 

% imshow(cropImage); 

for k=1:num1 

    aux=STATS(k).Centroid; 

    text(aux(1),aux(2),num2str(k),'FontSize',14,'Color','w'); 

    auxA(k,1)=STATS(k).Area; 

    radius(k,1)= sqrt(auxA(k,1)/pi); 

end 

% imcontour(BW2,'Color','g'); 

% figure,imshow(cropImage); title('original'); 

% [(1:num1)' radius] 

 

handles.output=hObject; 

guidata(hObject, handles); 

cells4 = numel(STATS); 

set(handles.cells4,'String',cells4) 

grayImage=rgb2gray(I3); 

Iobrcbr=grayImage; 

imData=reshape(Iobrcbr,[],1); 

imData=double(imData); 

[IDX, nm]=adaptcluster_kmeans(imData); 

imIDX=reshape(IDX,size(Iobrcbr)); 

% figure,imshow(imIDX,[]),title('Index Image'); 

%  

% figure,imshow(imIDX==1,[]);title('Cluster 1'); 

% figure,imshow(imIDX==2,[]);title('Cluster 2'); 

% figure,imshow(imIDX==3,[]);title('Cluster 3'); 

 

% figure 

% imshow(grayImage,[]), title('Gray') 

% handles.output=hObject; 

% guidata(hObject, handles); 

% axes(handles.axes2); 

% axis off 
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axes(handles.axes3); 

imshow(I3); 

axis off 

% title('Living and Dead Cells','FontSize',fontSize); 

[centersAll, radiiAll] = imfindcircles(imIDX==3,[20 80],'ObjectPolarity','dark'); 

viscircles(centersAll, radiiAll,'EdgeColor','b');  

viscircles(centersAll, radiiAll,'LineStyle','-'); 

length([centersAll, radiiAll]); 

cells5 = length([centersAll, radiiAll]); 

 

set(handles.cells5,'String',cells5) 

% %  

BW2 = bwareaopen(imIDX==1, 400); 

 

% figure,imshow(BW2,[]);title('Remove noise'); 

 

[L1,num1]=bwlabel(BW2); 

STATS = regionprops(L1,'Centroid','Area'); 

auxA=zeros(num1,1); 

radius=zeros(num1,1); 

% figure;  

% axes(handles.axes2); 

% imshow(cropImage);title('result'); hold on; 

% imshow(cropImage); 

for k=1:num1 

    aux=STATS(k).Centroid; 

    text(aux(1),aux(2),num2str(k),'FontSize',14,'Color','w'); 

    auxA(k,1)=STATS(k).Area; 

    radius(k,1)= sqrt(auxA(k,1)/pi); 

end 

% imcontour(BW2,'Color','g'); 

% figure,imshow(cropImage); title('original'); 

% [(1:num1)' radius] 

grayImage=rgb2gray(I4); 

Iobrcbr=grayImage; 

imData=reshape(Iobrcbr,[],1); 

imData=double(imData); 

[IDX, nm]=adaptcluster_kmeans(imData); 

imIDX=reshape(IDX,size(Iobrcbr)); 

% % % figure,imshow(imIDX,[]),title('Index Image'); 

%  

% figure,imshow(imIDX==1,[]);title('Cluster 1'); 

% figure,imshow(imIDX==2,[]);title('Cluster 2'); 

% figure,imshow(imIDX==3,[]);title('Cluster 3'); 

 

% figure 

% imshow(grayImage,[]), title('Gray') 

% handles.output=hObject; 

% guidata(hObject, handles); 

% axes(handles.axes2); 

% axis off 
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axes(handles.axes4); 

imshow(I4); 

axis off 

rmin=20; 

rmax=80; 

% title('Living and Dead Cells','FontSize',fontSize); 

[centersAll, radiiAll] = imfindcircles(imIDX==3,[rmin rmax],'ObjectPolarity','dark'); 

viscircles(centersAll, radiiAll,'EdgeColor','b');  

viscircles(centersAll, radiiAll,'LineStyle','-'); 

length([centersAll, radiiAll]); 

cells7 = length([centersAll, radiiAll]); 

 

set(handles.cells7,'String',cells7) 

% %  

% % BW2 = bwareaopen(imIDX==1, 300); 

 

% figure,imshow(BW2,[]);title('Remove noise'); 

 

[L1,num1]=bwlabel(BW2); 

STATS = regionprops(L1,'Centroid','Area'); 

auxA=zeros(num1,1); 

radius=zeros(num1,1); 

% figure;  

axes(handles.axes2); 

% imshow(cropImage);title('result'); hold on; 

% imshow(cropImage); 

for k=1:num1 

    aux=STATS(k).Centroid; 

    text(aux(1),aux(2),num2str(k),'FontSize',14,'Color','w'); 

    auxA(k,1)=STATS(k).Area; 

    radius(k,1)= sqrt(auxA(k,1)/pi); 

end 

% imcontour(BW2,'Color','g'); 

% figure,imshow(cropImage); title('original'); 

% [(1:num1)' radius] 

 

handles.output=hObject; 

guidata(hObject, handles); 

cells8 = numel(STATS); 

 

set(handles.cells8,'String',cells8) 

total_living = cells1 + cells3 + cells5 + cells7; 

set(handles.total_cells,'String',total_living) 

 

concentration = (total_living*10000)/4; 

set(handles.cell_concentration,'String',concentration) 

function [lb,center] = adaptcluster_kmeans(im) 

 

% This code is written to implement kmeans clustering for segmenting any 

% Gray or Color image. There is no requirement to mention the number of cluster for 

% clustering.  
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% IM - is input image to be clustered. 

% LB - is labeled image (Clustered Image). 

% CENTER - is array of cluster centers. 

% Execution of this code is very fast. 

% It generates consistent output for same image. 

 

% Written by Ankit Dixit. 

% January-2014. 

 

if size(im,3)>1 

   [lb,center] = ColorClustering(im); % Check Image is Gray or not. 

else 

    [lb,center] = GrayClustering(im);  

end 

 

 

function [lb,center] = GrayClustering(gray) 

gray = double(gray); 

array = gray(:); % Copy value into an array. 

% distth = 25; 

i = 0;j=0; % Intialize iteration Counters. 

% tic 

while(true) 

    seed = mean(array); % Initialize seed Point. 

    i = i+1; %Increment Counter for each iteration. 

    while(true) 

        j = j+1; % Initialize Counter for each iteration. 

        dist = (sqrt((array-seed).^2)); % Find distance between Seed and Gray Value. 

        distth = (sqrt(sum((array-seed).^2)/numel(array)));% Find bandwidth for Cluster Center. 

        %         distth = max(dist(:))/5; 

        qualified = dist<distth;% Check values are in selected Bandwidth or not. 

        newseed = mean(array(qualified));% Update mean. 

         

        if isnan(newseed) % Check mean is not a NaN value. 

            break; 

        end 

         

        if seed == newseed || j>10 % Condition for convergence and maximum iteration. 

            j=0; 

            array(qualified) = [];% Remove values which have assigned to a cluster. 

            center(i) = newseed; % Store center of cluster. 

            break; 

        end 

        seed = newseed;% Update seed. 

    end 

     

    if isempty(array) || i>10 % Check maximum number of clusters. 

        i = 0; % Reset Counter. 

        break; 

    end 
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end 

% toc 

 

center = sort(center); % Sort Centers. 

newcenter = diff(center);% Find out Difference between two consecutive Centers.  

intercluster = (max(gray(:)/10));% Findout Minimum distance between two cluster Centers. 

center(newcenter<=intercluster)=[];% Discard Cluster centers less than distance. 

 

% Make a clustered image using these centers. 

 

vector = repmat(gray(:),[1,numel(center)]); % Replicate vector for parallel operation. 

centers = repmat(center,[numel(gray),1]); 

 

distance = ((vector-centers).^2);% Find distance between center and pixel value. 

[~,lb] = min(distance,[],2);% Choose cluster index of minimum distance. 

lb = reshape(lb,size(gray));% Reshape the labelled index vector. 

 

 

function [lb,center] = ColorClustering(im) 

 

im = double(im); 

red = im(:,:,1); green = im(:,:,2); blue = im(:,:,3); 

 

array = [red(:),green(:),blue(:)]; 

% distth = 25; 

i = 0;j=0; 

tic 

while(true) 

     

    seed(1) = mean(array(:,1)); 

    seed(2) = mean(array(:,2)); 

    seed(3) = mean(array(:,3)); 

     

    i = i+1; 

    while(true) 

        j = j+1; 

         

        seedvec = repmat(seed,[size(array,1),1]); 

         

        dist = sum((sqrt((array-seedvec).^2)),2); 

         

         distth = 0.25*max(dist); 

        qualified = dist<distth; 

         

        newred = array(:,1); 

        newgreen = array(:,2); 

        newblue = array(:,3); 

         

        newseed(1) = mean(newred(qualified)); 

        newseed(2) = mean(newgreen(qualified)); 

        newseed(3) = mean(newblue(qualified)); 
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        if isnan(newseed) 

            break; 

        end 

         

        if (seed == newseed) | j>10 

            j=0; 

            array(qualified,:) = []; 

            center(i,:) = newseed; 

            %             center(2,i) = nnz(qualified); 

            break; 

        end 

        seed = newseed; 

    end 

     

    if isempty(array) || i>10 

        i = 0; 

        break; 

    end 

     

end 

toc 

centers = sqrt(sum((center.^2),2)); 

[centers,idx]= sort(centers); 

 

 

while(true) 

newcenter = diff(centers); 

intercluster =25; %(max(gray(:)/10)); 

a = (newcenter<=intercluster); 

% center(a,:)=[]; 

% centers = sqrt(sum((center.^2),2)); 

centers(a,:) = []; 

idx(a,:)=[]; 

% center(a,:)=0; 

if nnz(a)==0 

    break; 

end 

 

end 

center1 = center; 

center =center1(idx,:); 

% [~,idxsort] = sort(centers) ; 

vecred = repmat(red(:),[1,size(center,1)]); 

vecgreen = repmat(green(:),[1,size(center,1)]); 

vecblue = repmat(blue(:),[1,size(center,1)]); 

 

distred = (vecred - repmat(center(:,1)',[numel(red),1])).^2; 

distgreen = (vecgreen - repmat(center(:,2)',[numel(red),1])).^2; 

distblue = (vecblue - repmat(center(:,3)',[numel(red),1])).^2; 

 



69 

 

distance = sqrt(distred+distgreen+distblue); 

[~,label_vector] = min(distance,[],2); 

lb = reshape(label_vector,size(red)); 

 

 

 

function new_rmin1_Callback(hObject, eventdata, handles) 

% hObject    handle to new_rmin1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of new_rmin1 as text 

%        str2double(get(hObject,'String')) returns contents of new_rmin1 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function new_rmin1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to new_rmin1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function new_rmax1_Callback(hObject, eventdata, handles) 

% hObject    handle to new_rmax1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of new_rmax1 as text 

%        str2double(get(hObject,'String')) returns contents of new_rmax1 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function new_rmax1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to new_rmax1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 
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function total_cell1_Callback(hObject, eventdata, handles) 

% hObject    handle to total_cell1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of total_cell1 as text 

%        str2double(get(hObject,'String')) returns contents of total_cell1 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function total_cell1_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to total_cell1 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function total_radius2_Callback(hObject, eventdata, handles) 

% hObject    handle to total_radius2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of total_radius2 as text 

%        str2double(get(hObject,'String')) returns contents of total_radius2 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function total_radius2_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to total_radius2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 
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function new_rmin2_Callback(hObject, eventdata, handles) 

% hObject    handle to new_rmin2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of new_rmin2 as text 

%        str2double(get(hObject,'String')) returns contents of new_rmin2 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function new_rmin2_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to new_rmin2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function new_rmax2_Callback(hObject, eventdata, handles) 

% hObject    handle to new_rmax2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of new_rmax2 as text 

%        str2double(get(hObject,'String')) returns contents of new_rmax2 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function new_rmax2_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to new_rmax2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function total_cell2_Callback(hObject, eventdata, handles) 

% hObject    handle to total_cell2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of total_cell2 as text 

%        str2double(get(hObject,'String')) returns contents of total_cell2 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function total_cell2_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to total_cell2 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function total_radius4_Callback(hObject, eventdata, handles) 

% hObject    handle to total_radius4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of total_radius4 as text 

%        str2double(get(hObject,'String')) returns contents of total_radius4 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function total_radius4_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to total_radius4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

function new_rmin3_Callback(hObject, eventdata, handles) 

% hObject    handle to new_rmin3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of new_rmin3 as text 

%        str2double(get(hObject,'String')) returns contents of new_rmin3 as a double 
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% --- Executes during object creation, after setting all properties. 

function new_rmin3_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to new_rmin3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function new_rmax3_Callback(hObject, eventdata, handles) 

% hObject    handle to new_rmax3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of new_rmax3 as text 

%        str2double(get(hObject,'String')) returns contents of new_rmax3 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function new_rmax3_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to new_rmax3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function total_cell3_Callback(hObject, eventdata, handles) 

% hObject    handle to total_cell3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of total_cell3 as text 

%        str2double(get(hObject,'String')) returns contents of total_cell3 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function total_cell3_CreateFcn(hObject, eventdata, handles) 
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% hObject    handle to total_cell3 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function total_radius6_Callback(hObject, eventdata, handles) 

% hObject    handle to total_radius6 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of total_radius6 as text 

%        str2double(get(hObject,'String')) returns contents of total_radius6 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function total_radius6_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to total_radius6 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function new_rmin4_Callback(hObject, eventdata, handles) 

% hObject    handle to new_rmin4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of new_rmin4 as text 

%        str2double(get(hObject,'String')) returns contents of new_rmin4 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function new_rmin4_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to new_rmin4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 
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% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function new_rmax4_Callback(hObject, eventdata, handles) 

% hObject    handle to new_rmax4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of new_rmax4 as text 

%        str2double(get(hObject,'String')) returns contents of new_rmax4 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function new_rmax4_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to new_rmax4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function total_cell4_Callback(hObject, eventdata, handles) 

% hObject    handle to total_cell4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of total_cell4 as text 

%        str2double(get(hObject,'String')) returns contents of total_cell4 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function total_cell4_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to total_cell4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 
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if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

 

function total_radius8_Callback(hObject, eventdata, handles) 

% hObject    handle to total_radius8 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'String') returns contents of total_radius8 as text 

%        str2double(get(hObject,'String')) returns contents of total_radius8 as a double 

 

 

% --- Executes during object creation, after setting all properties. 

function total_radius8_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to total_radius8 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: edit controls usually have a white background on Windows. 

%       See ISPC and COMPUTER. 

if ispc && isequal(get(hObject,'BackgroundColor'), 

get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor','white'); 

end 

 

 

% --- Executes on slider movement. 

function slider4_Callback(hObject, eventdata, handles) 

% hObject    handle to slider4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    structure with handles and user data (see GUIDATA) 

 

% Hints: get(hObject,'Value') returns position of slider 

%        get(hObject,'Min') and get(hObject,'Max') to determine range of slider 

 

 

% --- Executes during object creation, after setting all properties. 

function slider4_CreateFcn(hObject, eventdata, handles) 

% hObject    handle to slider4 (see GCBO) 

% eventdata  reserved - to be defined in a future version of MATLAB 

% handles    empty - handles not created until after all CreateFcns called 

 

% Hint: slider controls usually have a light gray background. 

if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 

    set(hObject,'BackgroundColor',[.9 .9 .9]); 
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Abstract 

Cell counting is a required procedure in biological and biomedical experiments and drug 

testing. Using a hemocytometer for cell counting has many advantages because it is simple 

and inexpensive. However, manual cell counting performed with a hemocytometer is time 

consuming and individual dependence. This study reports on the development of a computer-

assisted program for Trypan Blue stained-cell counting using digital image analysis. Images 

of Trypan Blue-stained breast cancer cells of cell line MDA-MB-231 were obtained by 

microscope with a digital camera. Undesired noise and debris were removed by applying a 

guided image filter. Color space HSV (Hue, Saturation and Value) conversion and grayscale 

conversion were performed for distinguishing between live and dead cells.  Image 

thresholding and morphological operators were applied for image segmentation. Live and 

dead cells were counted after image segmentation and the results were compared with manual 

counting by well-experienced counters. The computer-assisted cell counting from thirty-six 

Trypan Blue-stained microscopic images had a high correlation coefficient with the live cell 

results of the experts (r=0.99). The correlation coefficient of the number of dead cells 

comparing the computer-assisted count and the experts’ count was 0.74. Furthermore, we 

found that our automated approach obtained false positives on the live cells count and false 

negatives on the dead cells count. Our approach offers high accuracy (>85%) on counting 

live cells from Trypan Blue-stained microscopic images compared with the experts’ counting. 

This automated cell counting approach can assist biologists and biomedical researchers for 

time effectiveness in cell counting. 

 

Keywords: Cell counting; Guided image filter; Color space; Image segmentation; 

Morphological operator  
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1.  Introduction 

  In cancer drug discovery researches, many aspects of novel drug treatments on cancer 

cells have been studied, including morphological and cellular structure changes, and drug 

response.(Fang et al., 2016, Fesik, 2005, Kondo et al., 2005) One simple investigation to 

evaluate the efficacy of cancer drug treatments is the identification of apoptotic cells and live 

cells.(Lowe and Lin, 2000) Apoptosis is a programmable cell death, which can be 

categorically observed from cell morphological changes. Counting viable cells or live cells 

per total cells after in vitro drug treatment is a common task for biologists and biomedical 

researchers when they evaluate the efficacy. Manual cell counting by a biomedical expert 

with a tally counter is a conventional method but the counting result is an individual 

dependence, and it is tedious and time-consuming. To overcome the drawbacks of manual 

cell counting, many automated visual analysis tools have been developed such as ImageJ, 

Fiji, CellProfilerTM, CellC, Image-Pro Plus and MetaMorph®, which are available as software 

packages for cell analysis.(Blatt et al., 2004, Carpenter et al., 2006, Grishagin, 2015, Narayan 

et al., 2007, Schindelin et al., 2012, Selinummi et al., 2005, Vayrynen et al., 2012)  

  Computer-assisted cell counting using image processing and analysis has been 

continuously developed and improved to provide the requirements of high reliability, 

specificity and sensitivity for different cell types and test protocols. For example, Sui et al. 

developed a cell counting method for host cells in a bright field for insect cells by using a 

nonlinear transformed sliding band filter. They obtained a low error rate and a high accuracy 

when comparing their method with manual counting. (Sui et al., 2014) A cell counting 

method for white blood cells was developed using Matlab to evaluate hematic pathologies in 

terms of numbers, sizes and types of white blood cells.(Nazlibilek et al., 2014) They applied 

image enhancement and image segmentation as pre-processing steps and used a neural 

network for classification. Piccinini et al. used a fully automated mosaicing method to 
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improve the reliability and reproducibility of live and dead cell counting.(Piccinini et al., 

2014) Mouelhi and colleagues also described automatic image segmentation with active 

contour for stained nuclei in breast cancer tissue which could segment touching nuclei to get 

the total number of breast cancer nuclei.(Mouelhi et al., 2013)  

 The quality of light microscopy digital images taken from hemocytometry 

significantly influences visual analysis, including cell counting. Therefore, most light 

microscopy digital images need to undergo a pre-processing step before cell segmentation is 

performed. Noise filtering is one of the pre-processing steps in every digital image processing 

technique. A median filter is a popular noise filter which is used to remove salt and pepper 

noise in digital images.(Soni and Rathor, 2015, Sun et al., 2015, Zeng et al., 2012, Zhu and 

Huang, 2012) It has been reported that impulse noise in high-density noisy images can be 

effectively removed by using an improved algorithm such as a decision based adaptive 

neighborhood median filter.(Samantaray and Mallick, 2015) Mahmood and Mansor used a 

morphological tool with the Hough transform technique to detect and estimate the number of 

red blood cells in blood sample images.(Mahmood and Mansor, 2012) Liew et al. applied 

image processing methods to develop a prototype for a cell detection algorithm using circular 

Hough transform to detect the number of cells in bee combs from digital images.(Liew et al., 

2010) Although there are many methods for cell detection and cell counting, computer-

assisted cell counting methods are still being developed to improve the counting accuracy and 

to match with new applications. Furthermore, there is few automated counting software for 

Trypan Blue stained cells in biomedical research. 

 In this paper, we developed an automated counting approach for Trypan Blue-stained 

cells relied on simple digital image processing techniques including image noise reduction, 

image enhancement, image segmentation and image morphological operations. To evaluate 

the effectiveness of our approach, both live and dead cells were quantified using this 
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proposed method and compared with manual counting by three well-experienced counters 

and ImageJ, open source software.  

 

2. Materials and Methods 

2.1 Sample preparation and image acquisition 

 A human breast cancer cell line ( MDA-MB-231) purchased from the American Type 

Culture Collection (ATCC, Canada) was used as an example in this study. An overview of 

the study procedure is shown in Fig.1. The sample preparation generally followed the 

procedure of Piccinini et al.(Piccinini et al., 2014) In brief, the cells were detached from the 

flask by short exposure to trypsin/EDTA, washed in the culture media by centrifugation and 

re-suspended in 5 mL of fresh medium. After trypsinization, the cells were stained with 

Trypan Blue solution and then 20 µL of this mixture was placed in a hemocytometer counting 

chamber.  

 Images of the stained cells were obtained by an inverted Olympus IX51 microscope 

equipped with a digital Olympus DP72 camera with 2/3-inch CCD. The images were 

acquired in the bright field by using Olympus UPLanFL N 10x0.13 as a standard objective 

lens. An example of digital Trypan Blue-stained cell images is shown in Fig. 2. The images 

were cropped to a 16-square grid and then image processing analysis was performed as 

shown in the cell counting approach flowchart as presented in Fig. 3. 

2.2 Image filtering 

 In our study, there are small debris (dark spots) in Trypan Blue-stained microscopic 

images from the hemocytometer which can cause cell artifacts as shown in Fig.2. We applied 

a guided image filter that spatially distributed the filtering strengths with low-level features to 

the image to smooth and remove the small debris from background including maintaining 

the edge features of image and introducing less artifacts.(Hao et al., 2016, He et al., 2013) 
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The filtering process needs constraints from the input p to determine the linear coefficients 

(ak , bk). The f i l t e r i n g  output q is a linear transform of the guidance I in a  window 

k  centered at  the pixel  k  since the input p needs to subtract some unwanted 

components  n such as noise/textures as follows: 

qi = akI i + bk, ik                      (1) 

qi = pi − ni                                     (2)  

  Furthermore,  the neighborhood size around each pixel as a scalar or 

two-element vector, [M, N] was [30, 30] to remove small debris in the background.  

2.3 Color space and grayscale conversion 

 In our study, we converted a color space of the Trypan Blue stained images which 

was originally RGB color images by applying HSV color space. The HSV color space is 

quite similar to the way in which humans perceive color and more suitable for image 

segmentation and analysis than the RGB model. The HSV converted images were then used 

to perform for live cells segmentation. Furthermore, the original RGB images were also 

converted to grayscale for dead cells detection.  

2.4 Image segmentation 

 The segmentation step is very crucial because the accuracy of the subsequent 

processes mainly depends on the correct segmentation. Prior to image segmentation, the 

brightness of a HSV converted image is adjusted for getting the better contrast. Our approach 

utilized Otsu’s thresholding method to extract foreground (live cells ) from the background 

and to turn the image to black and white.(Otsu, 1975) As our Trypan Blue-stained 

microscopic images still contained counterfeit structures in the nuclei, however, which 

caused difficulty for extraction and segmentation. To eliminate this drawback, two operations 
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based on morphological reconstruction were used:  opening by reconstruction and dilation by 

reconstruction. The first operation removes the disconnected bright objects that are smaller 

than the structuring element. (Veta et al., 2013) Similarly, the second one removes the 

disconnected dark objects smaller than the structuring element. A disk-shaped structuring 

element with radius “n” was assigned in the algorithm. The amount of detail presented in the 

image depends on the size of the structuring element with radius “n”.  Furthermore, we 

applied the effective threshold value from the histogram of a grayscale image to obtain only 

dead cells in the black and white image. 

2.5 Cell counting 

 The process of counting the cells was achieved by applying the labeling technique to 

the binary images after thresholding to distinguish objects from the background and then we 

measured the geometric properties using a centroid and a boundary to select live cells from 

labeled regions. Furthermore, the counting results by our approach were compared to the 

manual counting by three experts as well as comparing to automatic cell counting with 

ImageJ using Trypan Blue exclusion plugin (open-source software). Then the correlation 

between the counting results of two methods was determined. 

3. Results  

   The testing was carried out using thirty six Trypan Blue-stained microscopic images. 

The debris in the images was removed after image-guided filtering as shown in Fig. 4. As we 

performed color space conversion, the images based on HSV channels are shown in Fig. 5. It 

can be seen that the image with the saturation channel (Fig. 5b) gave a better contrast of live 

cells as compared to other channels. Then after brightness adjustment, the live cells became 

clearly extracted from the background as shown in Fig. 6. As we used Otsu’s thresholding to 

segment the live cells from the background and the nuclei of live cells were opened and 

dilated after the thresholding, the result of segmentation step for live cell is demonstrated in 
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Fig. 7a. The image segmentation of dead cells after using the histogram thresholding is 

presented in Fig. 7b. After the image segmentation, the image was processed with the 

counting algorithm to identify and count both live and dead cells. The final images showing 

the live and dead cells identification are respectively presented in Fig. 8 and Fig. 9. The live 

cells are marked with yellow circles while the dead cells are marked as blue circles. As 

shown in Fig. 8, it was noticed that some live cells could not be detected and counted due to 

their nondistinctive nuclei. Fig. 10 shows the plot of the number of live and dead cells 

counted by our approach against the averaged results from manual counting. Our approach 

provided a very similar counting result of live cells to the experts’ counting result with a high 

correlation coefficient (r=0.99) whereas a correlation coefficient in case of the dead cells 

counting is 0.74. In comparison with the experts, the average accuracy percentages of cell 

counting from 36 images were determined. We obtained 83±6% and 63±10% for the 

accuracy of live cell counting and dead cell counting respectively. We also show the time 

consumption from 15 images by each expert and our approach as illustrated in Fig.11. Our 

approach consumed shorter time than manual counting by experts and gave less variation on 

time consumption compared to manual counting. The average number of dead cells from our 

counting approach was considerably 11% less than the experts’ counting, resulting in our 

higher false negative as illustrated in Fig.12. Fig.13 demonstrates the average number of live, 

dead and total cells from manual, ImageJ and proposed approach. 

4. Discussion 

 In this study, we presented and tested the digital image analysis with counting 

algorithm based on simple image processing techniques for live and dead cells obtained from 

Trypan Blue-stained microscopic images. We showed that the guided image filtering 

provided smooth edge maintenance to our objects, leading to a better quality input image for 

our approach (He et al., 2013) . As our results, the accuracy of live cells counting, for each 
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image, was very high (>83%) due to the good contrast between foreground and background 

after preprocessing with the image noise reduction using a guided image filter and a saturated 

channel. (Choudhry, 2016) We experienced a similar high accuracy of live cells counting 

using similar sample images in our previous work using a K-mean clustering 

technique.(Chobngam et al., 2012) However, this new simple method provided a higher 

accuracy. With this approach, the brightness of live cells is clearly different from the image 

background, which is a distinct advantage for image thresholding for live cells detection. 

Piccinini and colleagues presented a high accuracy of live cells counting using an automated 

image mosaicing technique for A549 and KKP cell lines.(Piccinini et al., 2014) The high 

accuracy of live cell counting in both their results and ours particularly relates to the clearly 

distinguishable shape of live cells and a good background contrast. However, we have 

addressed that some images we could not completely detect all live cells because there was 

neither structure in nucleus nor smaller structure than our value of structuring element’s 

radius in nucleus. This caused some images got an accuracy less than 90%. Furthermore, our 

approach did not require manual thresholding adjustment therefore it reduced time 

consuming.  

 Our approach provided less number of dead cells compared to manual counting by the 

experts. This might have been caused by the ineffectiveness of dead cell segmentation. It 

should be noted that segmentation results depend on the quality of preparation and the 

coloring of Trypan Blue-stained microscopic images. Overstraining and poor digitization can 

adversely affect segmentation results.(Osman et al., 2010, Yagi and Gilbertson, 2005) These 

quandaries infrequently occur and can be remedied with a more rigorous quality control 

during the sample preparation and image acquisition. Moreover, dead cells from apoptosis 

presented in fragments can lead to over-counting.(Choi and Yoo, 2012) Therefore, the 

counting of dead cells still has erroneous results much more than live cells counting. For 
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example, the approach using automated image mosaicking had false positive results on dead 

cell counting compared to the experts much more than the live cells counting.(Piccinini et al., 

2014) It remains a challenge to improve the accuracy of dead cells counting by improving 

either image noise reduction or image segmentation as well as counting logic for fragmented 

dead cell.  

 Comparing the results of cell counting between our approach and ImageJ with 

automatic cell counting plugin, our approach could give the number of both live cells and 

dead cells whereas ImageJ could detect only live cells. This indicates that the ImageJ plugin 

for automatic cell counting does not serve our Trypan Blue stained images and requirements. 

It seems ImageJ could automatically count cells with good contrast between cells and 

background therefore dead cells in our images are quite difficult to be detected. It might be 

necessary to do an image preprocessing for our images before analyzing with ImageJ.  On the 

other hand, our approach already included the image preprocessing such as noise filtering and 

contrast enhancement to improve the image quality in the algorithm.  

 In our approach, there were several limitations which affected the counting accuracy. 

For example, we assumed that the cell diameters in all images were about the same size, 

while in fact the dead cells in our study had various diameters, especially when the cells 

counted by our approach greater than the results counted by the experts. Furthermore, the 

qualities of the image, such as the brightness of the image background and the image became 

fragmented from apoptosis. Therefore, some images had the number of dead cells contrast, 

can influence the image segmentation and lead to lower accuracy of cell counting. As our 

Trypan Blue-stained microscopic images have a dark background, the color of the dead cells 

is quite similar to the background, which requires several trials for dead cells segmentation. 

Moreover, we applied a mean threshold value based on 36 images for dead cells 

segmentation, thus it is necessary to recalculate the mean threshold value if the number of 
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images or image background is changed. In addition, employing a large structuring element 

can oversimplify the image, while using too small a structuring element does not always 

produce desirable results as many of the substructures within the large nuclei remain, 

affecting the segmentation performance. Therefore, optimum parameters should be 

determined such as threshold value and radius of structuring element.      

5. Conclusion 

In this study, we present a computer-assisted cell counting approach on Trypan Blue-stained 

microscopic images of a breast cancer cell line. The stained cell counting results of the 

Trypan Blue-stained microscopic images using our approach offers a remarkable accuracy, 

especially in counting the number of live cells. Our simple method could identify overlapping 

cells and count them correctly. This automated counting approach is very time effective for 

biologists and biomedical researchers. The future development for this work will include the 

accuracy of dead cells counting by taking into account for the image noise reduction or the 

image segmentation. 
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Figure legends 

Figure 1. Trypan Blue-stained MDA-MB-231 cells in the hemocytometer 

Figure 2. An example of an original Trypan Blue–stained image  

Figure 3. Overview of the image processing for live and dead cells counting 

Figure 4. Examples of (a) original image and (b) image after guided image filter process 

Figure 5. Images after HSV color space conversion: (a) Hue channel image, (b)   

Saturation channel image and (c) Value channel image 

Figure 6. Saturation channel image after brightness adjustment showing better contrast of live 

cells from the background 

Figure 7. Image after applying Otsu’s method showing a black and white image with live 

cells 

Figure 8. Example of image showing live cells detection 

Figure 9. Example of image showing dead cells detection 

Figure 10. Correlation plots between the counting results by the new approach and experts for 

(a) live cells and (b) dead cells 

Figure 11. Time consumption for cell counting measured by three experts and our proposed 

approach 
 

Figure 12. A plot of average number of dead cells by manual counting and our proposed 

approach 
 

Figure 13. A plot of the average number of live, dead and total cells counted by manual 

counting, ImageJ and our approach 
 

 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure1 Click here to download Figure Figure  1 Cell culturing_600.tif 

http://www.editorialmanager.com/mvap/download.aspx?id=128135&guid=5d08b637-96b0-4a37-b38b-7293e1649172&scheme=1
http://www.editorialmanager.com/mvap/download.aspx?id=128135&guid=5d08b637-96b0-4a37-b38b-7293e1649172&scheme=1


Figure2 Click here to download Figure Figure 2new_600.tif 

http://www.editorialmanager.com/mvap/download.aspx?id=128136&guid=4314931a-4376-4447-bf3c-3e3e4ea644c7&scheme=1
http://www.editorialmanager.com/mvap/download.aspx?id=128136&guid=4314931a-4376-4447-bf3c-3e3e4ea644c7&scheme=1


Figure3 Click here to download Figure Figure 3 Diagram for image processing_600.tif 

http://www.editorialmanager.com/mvap/download.aspx?id=128137&guid=9b3b0c9a-6088-4de2-94ce-d81bbc5b2685&scheme=1
http://www.editorialmanager.com/mvap/download.aspx?id=128137&guid=9b3b0c9a-6088-4de2-94ce-d81bbc5b2685&scheme=1


Figure4 Click here to download Figure Figure 4_600 newx.tif 

http://www.editorialmanager.com/mvap/download.aspx?id=128138&guid=08a65d51-ec58-4941-89d7-94d13c389414&scheme=1
http://www.editorialmanager.com/mvap/download.aspx?id=128138&guid=08a65d51-ec58-4941-89d7-94d13c389414&scheme=1


Figure5 Click here to download Figure Figure 5HSV_600.tif 

http://www.editorialmanager.com/mvap/download.aspx?id=128139&guid=00a4b25f-16c6-4e14-8df6-6ddd1e115e6c&scheme=1
http://www.editorialmanager.com/mvap/download.aspx?id=128139&guid=00a4b25f-16c6-4e14-8df6-6ddd1e115e6c&scheme=1


Figure6 Click here to download Figure Figure 6_600.tif 

http://www.editorialmanager.com/mvap/download.aspx?id=128140&guid=e6092717-9bf0-4313-9d4d-c5fec9ef9260&scheme=1
http://www.editorialmanager.com/mvap/download.aspx?id=128140&guid=e6092717-9bf0-4313-9d4d-c5fec9ef9260&scheme=1


Figure7 Click here to download Figure Figure 7_new600x.tif 

http://www.editorialmanager.com/mvap/download.aspx?id=128141&guid=c2163712-feaf-4eb6-adbf-69f3f90568de&scheme=1
http://www.editorialmanager.com/mvap/download.aspx?id=128141&guid=c2163712-feaf-4eb6-adbf-69f3f90568de&scheme=1


Figure8 Click here to download Figure Figure 8Live cell detect_600.tif 

http://www.editorialmanager.com/mvap/download.aspx?id=128142&guid=72c9a9ea-875b-4037-aa22-53b931e0f2ef&scheme=1
http://www.editorialmanager.com/mvap/download.aspx?id=128142&guid=72c9a9ea-875b-4037-aa22-53b931e0f2ef&scheme=1


Figure9 Click here to download Figure Figure 9 Dead cell detection_600.tif 

http://www.editorialmanager.com/mvap/download.aspx?id=128143&guid=830cfe68-8c8c-436f-9079-31f95c2821b4&scheme=1
http://www.editorialmanager.com/mvap/download.aspx?id=128143&guid=830cfe68-8c8c-436f-9079-31f95c2821b4&scheme=1


Figure10 Click here to download Figure Figure 10 new_600.tif 

http://www.editorialmanager.com/mvap/download.aspx?id=128144&guid=01b14b2c-ebe0-4f63-97cf-a68cbf09e1c0&scheme=1
http://www.editorialmanager.com/mvap/download.aspx?id=128144&guid=01b14b2c-ebe0-4f63-97cf-a68cbf09e1c0&scheme=1


Figure11 Click here to download Figure Figure 11_600.tif 

http://www.editorialmanager.com/mvap/download.aspx?id=128145&guid=492c3c5a-e611-4819-a1cc-23d69a7319b9&scheme=1
http://www.editorialmanager.com/mvap/download.aspx?id=128145&guid=492c3c5a-e611-4819-a1cc-23d69a7319b9&scheme=1


Figure12 Click here to download Figure Figure 12_600.tif 

http://www.editorialmanager.com/mvap/download.aspx?id=128146&guid=8eaa8984-7464-432b-ac03-95669d7fd987&scheme=1
http://www.editorialmanager.com/mvap/download.aspx?id=128146&guid=8eaa8984-7464-432b-ac03-95669d7fd987&scheme=1


Figure13 Click here to download Figure Figure 13_600.tif 

http://www.editorialmanager.com/mvap/download.aspx?id=128147&guid=8c17dca0-60f6-4872-bc1a-636b2d13ecfe&scheme=1
http://www.editorialmanager.com/mvap/download.aspx?id=128147&guid=8c17dca0-60f6-4872-bc1a-636b2d13ecfe&scheme=1


107 

 

Appendix C 

Counting results from the first approach 
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Table C.1 Results of live and dead cells counting from three experts and 

first proposed application 

 
Image Expert1 

(Live) 

 

Expert2 

(Live) 

 

Expert3 

(Live) 

 

Proposed 

(Live) 

Expert1 

(Dead) 

 

 

Expert2 

(Dead) 

 

Expert3 

(Dead) 

 

Proposed 

(Dead) 

1 389 470 417 396 12 25 13 18 
2 393 407 376 380 11 23 13 11 
3 351 385 337 359 6 28 7 13 
4 419 429 378 391 9 25 12 8 
5 106 66 95 119 4 25 0 2 
6 74 76 73 93 8 12 3 1 
7 106 112 75 120 10 11 5 11 
8 72 72 68 84 7 9 4 9 
9 69 69 66 67 4 4 2 1 
10 83 81 79 91 8 8 3 3 
11 56 59 64 63 4 83 0 5 
12 79 83 79 80 7 12 5 8 
13 133 132 134 138 14 17 8 12 
14 123 119 124 136 15 16 10 14 
15 93 93 95 100 10 13 7 9 
16 123 122 122 145 13 12 7 11 
17 81 85 77 71 10 10 5 24 
18 134 132 129 147 16 25 10 17 
19 131 130 122 131 19 24 16 26 
20 173 164 159 183 14 23 6 19 
21 55 46 40 60 15 16 4 17 
22 45 38 41 50 12 17 6 12 
23 76 65 62 77 19 19 6 11 
24 41 31 31 45 11 13 4 14 
25 57 55 59 66 23 40 20 27 
26 58 43 50 68 38 46 25 21 
27 69 57 75 96 35 56 25 31 
28 64 61 67 64 25 50 17 25 
29 52 50 46 50 26 35 22 13 
30 54 42 39 69 34 45 19 18 
31 54 54 50 71 34 36 18 46 
32 38 33 31 47 25 42 17 17 
33 136 137 127 147 6 11 3 7 
34 206 204 188 208 12 25 8 6 
35 154 154 139 154 10 17 5 4 
36 179 179 174 214 11 22 7 18 
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