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ABSTRACT

This thesis aimed to develop a nanooptosensor of molecularly imprinted
polymer coated quantum dots composited with polypyrrole (PPy-QDs-MIP) for the
determination of ampicillin. The integration of good fluorescence intensity of QDs,
high selectivity of MIP and high affinity of PPy exhibited high sensitivity and selective
recognition and facilitated the adsorption capability for trace ampicillin analysis. Under
the optimal conditions, the fluorescence intensity of the developed nanocomposite
probe was effectively quenched linearly with the concentration of ampicillin over two
linear ranges of 0.10 to 25.0 ug L™t and 25.0 to 100.0 pg L% The limit of detection is
0.05 pg L. The developed method was successfully applied for the determination of
ampicillin in milk and meat samples and gave satisfactory recoveries between 81.7 and
98.7% and the relative standard deviations were less than 5%. The results were in good
agreement with HPLC method. The advantages of developed PPy-QDs-MIP
nanooptosensor were simple to operate, rapid for detection, high sensitivity and good
selectivity. This developed strategy can be applied for the detection of other compounds

in various samples.
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THE RELEVANCE OF THE RESEARCH WORK TO THAILAND

The purpose of this Master of Science Thesis in Chemistry (Analytical
chemistry) was to develop an optosensor which composited of polypyrrole, quantum
dots and molecularly imprinted polymer for the detection of ampicillin.

This developed optosensor provided a high sensitivity, good selectivity and
simple to use. It can be applied for the determination of ampicillin in food samples. In
addition, it can help to decrease analysis cost, analysis time and several government
organizations in Thailand that can use the outcome of this work including the Ministry
of Public Health, Ministry of Industry, Ministry of Environment and the Ministry of
Education.
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1. Introduction
1.1 Background and rationale

Ampicillin is a B-lactam antibiotic which is normally used for the treatment
of bacterial infection both Gram-positive and Gram-negative bacteria in humans and
animals (Grant, 1980; Rafailidis et al., 2007; Beltran et al., 2008). It can residue in meat
and milk which cause stomach cramps, diarrhea, dizziness, nausea, rash and peeling of
the skin (Shrivas et al., 2017). The maximum residue limits (MRLs) for ampicillin in
milk and meat have been set by the European Union at 40 and 50 ug kg, respectively.
Therefore, the development of a convenient, rapid, sensitive, selective and reliable
method for the detection of ampicillin in food samples is important.

Various analytical techniques have been reported for the determination of
ampicillin including chromatography (Sun et al., 2016), electrophoresis (Paul et al.,
2018) and electrochemistry (Wang et al., 2017; Yu et al., 2018). Although, these
techniques provide accurate results, they still have some drawbacks. They are time-
consuming, use large volumes of toxic organic solvent and require expensive
instruments. To overcome these limitations, fluorescence spectroscopy is employed for
because of simplicity, rapidity and cost-effective equipment (Liu et al., 2018).
However, the relatively low fluorescence intensity of ampicillin which cannot be
directly detected at trace levels. The sensitivity of this method can be improved by
exploiting the good optical properties of fluorescent probes. Quantum dots (QDs) are
an interesting choice of fluorescent probe due to their high fluorescence intensity and
good photochemical stability (Zhang et al., 2011). To enhance the specificity of the
analytical method, QDs can be modified with highly specific ligands or incorporated
with specific materials such as molecularly imprinted polymer (MIP). MIP shows high
specificity to target analytes (Carrasco et al., 2016; Canfarotta et al., 2018) and has
good physical and chemical stability under demanding conditions of temperature, pH
and pressure, using a variety of acids, bases and organic solvents (Urraca et al., 2007;
Sunayama et al., 2016; Panjan et al., 2018). The MIP is synthesized by a
copolymerization reaction using ampicillin as the template. The resulting MIP interacts
with a functional monomer and cross-linker to form a polymer layer (Gao et al., 2007,
Panahi et al., 2018). After removal of template, the MIP layer contains specific binding
cavities complementary in functional groups, shape and size to the target molecule (Gao



et al., 2007). MIP has been used as a chemosensor (Dabrowski et al., 2018), adsorption
material (Sorribes-Soriano et al., 2018) and biosensor (Ekomo et al., 2018). Fluorescent
probes using MIP coated on QDs have engaged interest for the determination of target
analytes such as amoxicillin (Chullasat et al., 2018), chloramphenicol (Amjadi et al.,
2016) and salbutamol (Raksawong et al., 2017). To enhance the adsorption ability or
affinity binding of ampicillin to the fluorescent probe, the addition of polypyrrole
during preparation of a nanocomposite fluorescent probe is an interesting strategy.
Polypyrrole contains a w-structure which can adsorb aromatic compounds through n-nt
interaction (Nezhadali et al., 2018). Moreover, polypyrrole has good chemical stability
(Meng et al., 2011).

In this thesis, a nanooptosensor was fabricated using a composite fluorescent
probe of polypyrrole and quantum dots incorporated in a molecularly imprinted
polymer (PPy-QDs-MIP). The nanooptosensor was characterized and the analytical
performances were evaluated and compared with the results of a conventional
chromatographic method (HPLC). The method was then used to detect ampicillin in

food samples.

1.2 Objective
To develop a nanooptosensor of molecularly imprinted polymer coated
quantum dots composited with polypyrrole for the determination of ampicillin in food

samples.

1.3 Quantum dot nanoparticles

Quantum dots (QDs) are spherical particles with diameters in the range
between 1 and 10 nm (Drbohlavova et al., 2009). They are prepared using atoms from
groups 11-VI, 1I-V or IV-VI in the periodic table and ultimately become many different
types of QDs as shown in Table 1.1 (Yu et al., 2003; Sharon et al., 2010; Tang et al.,
2013; Zhou et al., 2017).



Table 1.1 Different types of quantum dot nanoparticles

Type Quantum dots
-VI CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, PbS, PbSe
-V GaAs, InP, InAs

v Si, Ge

The structure of QDs consists of a core and a shell which can improve
stability and dispersibility in water or buffer solution as shown in Figure 1.1.

Shell Ligands
3
-2
—— — e,
o
Core Core-Shell Core-Shell QDs with ligands

Figure 1.1 Basic structure of quantum dots (QDs)

QDs have two energy bands including valence and conduction bands. The
higher energy level of valence band is occupied by electron at room temperature
whereas the electrons are not occupied in the lower energy of conduction band. The
electron is promoted from the valence band to conduction band by photo absorption,
leading to a positively charged hole in the valence band. The different energy level is
defined as band gap energy (Figure 1.2) (Reshma and Mohanan, 2019; Xu and Zheng,
2019).
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Figure 1.2 The energy band structure of QDs

The energy band gap depends on the size of QDs. The smaller size of QDs
which has wider energy band gap, requires higher energy level, resulting in shorter
wavelength (blue). While the larger size of QDs leads to longer wavelength (Figure 1.3)
(Brus, 1984).

Conduction
Band

~
>

Energy
gap

ra
<

Valance
Band

Energy

Quantum dots Bulk particle

Figure 1.3 The size tunable optical properties of QDs illustrating increase in

emission wavelength with increasing QDs size



QDs have attracted considerable interest due to their high fluorescence
efficiency, size-dependent emission wavelengths, narrow symmetric emission and
excellent photochemical stability (Bruchez et al., 1998; Chan and Nie, 1998). To
enhance the stability and solubility of QDs in the solution, their surfaces have been
modified with capping molecules such as thioglycolic acid (TGA) (Nurerk et al., 2016;
Zhou et al., 2017), mercaptopropionic acid (MPA) (Bunkoed and Kanatharana, 2015),
cysteamine (Chen et al., 2007; Ding et al., 2015) and glutathione (GSH) (Adegoke et
al., 2012).

QDs are applied as a fluorescent probe for the highly sensitive detection of
some target analytes such as perfluorooactanoic acid (Liu et al., 2015), copper ion
(Boonmee et al., 2016), 2,4,6-trinitrotoluene (TNT) (Qian et al., 2016), ceftriaxone
(Samadi and Narimani, 2016). In this thesis, TGA-capped CdTe QDs were used to
fabricate the fluorescence probe because they are easily synthesized under mild
conditions and water soluble. The structure of TGA-capped CdTe QDs is shown in

Figure 1.4.

OH

HO o &

OH
& S
2.8
'v; ‘_‘s
HO\(\S S o
o]
0 OH
HO

Figure 1.4 Structure of thioglycolic acid-capped CdTe QDs

1.4 Molecularly imprinted polymer (MIP)

Molecularly imprinted polymer is the attractive strategy for high binding
selectivity of target analytes (Xu et al., 2004; Chen et al., 2016). MIP is synthesized via
a copolymerization of functional monomers and cross-linkers in the presence of
template molecules (target analyte). After removal of the templates, highly specific
recognition sites that are complementary to the template in size, shape and functional

groups are obtained (Sellergren and Allender, 2005; Lv et al., 2013). The molecular



imprinting strategy is shown in Figure 1.5. MIP has many advantages such as ease of
preparation, good chemical stability and low cost (Xu et al., 2004; Tse Sum Bui and
Haupt, 2010; Vasapollo et al., 2011; Huang et al., 2015).

Recently, surface of MIP has been successfully applied as recognition
cavities in sensors and exhibited high selectivity for detection of trace contaminants
(Shahar et al., 2017; Uzun and Turner, 2016). After surface functionalization of QDs
with molecular imprinting, the molecularly imprinted polymer coated quantum dots
(QDs-MIP) exhibits a high selectivity to target molecules and excellent fluorescence
properties (Chantada-Vazquez et al., 2016). In this thesis, QDs embedded in MIP
composite with polypyrrole (PPy-QDs-MIP) were prepared using ampicillin as a
template, 3-aminopropyltriethoxysilane (APTES) as a functional monomer and

tetraethoxysilane (TEQOS) as a cross-linker.

Self-assembly \L\ F
f I
&_Y\

Polymerization \

+\L\ + \

Template Monomer  Cross-linker

\ R 1 of 1 “_\ F
r ) emoval of template
&J + f \:‘{

Rebinding of template
Figure 1.5 The preparation of molecularly imprinted polymer

1.5 Polypyrrole

Polypyrrole (PPy) is a conductive polymer which have been widely used in
many fields due to its ease of preparation and good chemical stability (Luo et al., 2010;
Meng et al., 2011; Tang et al., 2017). It can be easily synthesized via polymerization
of pyrrole monomer (Navale et al., 2014). The structure of PPy contains n-conjugated

structure (Figure 1.6) which can absorb aromatic compounds through =- & interaction.



The PPy nanoparticles were composited in fluorescent probe to improve the adsorption
ability of ampicillin (Nezhadali et al., 2018).

Figure 1.6 Structure of polypyrrole

2. Results and discussion
2.1 Synthesis of TGA-capped CdTe quantum dots

The TGA-capped CdTe QDs were synthesized by modification from a
previous work as shown in Figure 2.1 (Ortiz et al., 2016). Briefly, 5.0 mg of tellurium
and 4.0 mg of sodium borohydride were mixed with 1.5 mL of deionized water in a
centrifuge tube (2.0 mL) to produce a sodium hydrogen telluride (NaHTe) solution.
Meanwhile, 45.0 mg of cadmium chloride and 30 puL of TGA were added to 100 mL
deionized water and adjusted to pH 11.5 with sodium hydroxide (1.0 M). The mixture
solution was deaerated with N2 gas for 10 min in a three-necked flask, then heated to
90 °C and 1.0 mL of NaHTe was injected into the solution and continuously stirred for
15 min. Finally, the synthesized TGA-capped CdTe QDs were precipitated with 20 mL

of ethanol and centrifuged at 8000 rpm for 5 min.
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Figure 2.1 The synthesis of TGA-capped CdTe quantum dot nanoparticles

2.2 Characterization of TGA-capped CdTe quantum dots

The fluorescence spectrum of TGA-capped CdTe QDs was narrow and
symmetric (Figure 2.2) and the particle size was about 2.25 nm which was calculated
from the maximum absorption wavelength at 548 nm. The particle sizes of TGA-capped
CdTe QDs were determined from the adsorption maximum of the UV-Vis spectrum
following up equation (1) (Yu et al., 2003):

D = (9.8127 x 107)2% — (1.7147 x 10°3) A2 + (1.0094) — 194.84 1)

Where D (nm) is the size of the CdTe QDs and A (nm) is the wavelength of
the first excitonic absorption peak. The concentrations of the TGA-capped CdTe QDs
were calculated by Lambert-Beer’s law; A = eCL. Where, A is the absorbance of the
first excitonic absorption peak, C is the concentration (mol L?) of the TGA-capped
CdTe QDs, L is the path length (cm) of the radiation beam used for recording the
absorption spectrum and ¢ is the extinction coefficient per mole of TGA-capped CdTe

QDs which could be obtained with formula & = 10043 (D)?*? (Yu et al., 2003).
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Figure 2.2 UV-Vis spectrum (dot line) and fluorescence emission spectrum
(solid line) of TGA-capped CdTe QDs

2.3 Synthesis of molecularly imprinted polymer coated quantum dots composite
with polypyrrole fluorescent probe

The molecularly imprinted polymer coated quantum dots composite with
polypyrrole (PPy-QDs-MIP) were synthesized via a one-step copolymerization. First,
40 uL of APTES (functional monomer)was mixed with 3.0 mM of ampicillin (5.0 mL)
and stirred for 1 h. Next, 10 mL of TGA-capped CdTe QDs were added to the mixture
solution and continuously stirred for 1 h. Then, 120 uL of TEOS as a cross-linker,
150 pL of NHz3 (25% wi/v) as a catalyst and 20 uL of polypyrrole particles were added
and stirred for 6 h. Polypyrrole particles were prepared by mixing 13.0 mg of FeClsand
400 pL of pyrrole in a 2.0 mL centrifuge tube and stirring for 1 h. APTES, template,
TGA-capped CdTe QDs and PPy self-assembled via hydrogen bonding and then
formed nanocomposite particles in the presence of the cross-linker (TEOS) and
ammonia (catalyst) as shown in Figure 2.3. For template removal, the synthesized
nanocomposites were washed three times with 10 mL of ethanol, after which no
template molecules presented in the washing solution. The PPy-QDs-MIP nanoparticles
were centrifuged at 7500 rpm for 10 min and dried in an oven at 60 °C. The
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nanocomposite non-printed polymer (PPy-QDs-NIP) fluorescent probes were prepared

under the same experimental condition without ampicillin (template molecule).

Ampicillin 9

HO, H O Py ) D
. Zf\i)_o PPy-QDs-MIF
SR p:s =
S| D
: of HO'
i d b CdTe QDs
LI
H TR (AL N
g N | W),
HaC /\Oors' ~ N, Polypyrrole
CH3
APTES
@ cdre QDs
& Ampicillin

A Polypyrrole

Figure 2.3 Synthesis of nanocomposite PPy-QDs -MIP fluorescent probe for

ampicillin detection

The fluorescence emission intensity of PPy-QDs-MIP before removal of the
template was about 60% the intensity of the emission of PPy-QDs-NIP (Figure 2.4).
After removal of the template, the fluorescence emission was restored to the same
intensity as PPy-QDs-NIP. The result confirmed that the PPy-QDs-MIP was
successfully prepared and the template had been completely removed from the MIP
layer. The method is a single-step copolymerization under soft conditions at room
temperature. A photograph of nanocomposite PPy-QDs-MIP in the presence and

absence of ampicillin under UV light is shown in Figure 2.5.
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Figure 2.4 Fluorescence emission spectra of nanocomposite PPy-QDs-NIP (a), PPy-
QDs-MIP without template molecule (b), PPy-QDs-MIP with template
molecule (c)

Figure 2.5 Photographs of nanocomposite PPy-QDs-MIP with (a) and without (b)
ampicillin under UV light
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2.4 Characterization of nanocomposite PPy-QDs-MIP fluorescent probe

The morphologies of TGA-capped CdTe QDs were investigated using TEM
technique. As can be seen from Figure 2.6a, the TGA-capped CdTe QDs showed good
distribution and a smooth surface. As shown in Figure 2.6b, the SEM image showed
PPy-QDs-MIP of uniform spherical shape with a diameter of 200-250 nm. The TEM
image of PPy-QDs-MIP indicated that TGA-capped CdTe QDs and polypyrrole
particles were distributed in spherical nanocomposites and MIP was cross-linked

around the QDs as shown in Figure 2.6c.

Figure 2.6 TEM image of TGA-capped CdTe QDs (a), SEM image of PPy-QDs-
MIP (b) and TEM image of PPy-QDs-MIP fluorescent probe (c)

The nanocomposite PPy-QDs-MIP fluorescent probe was characterized by
FTIR spectroscopy. The spectrum of TGA-capped CdTe QDs (Figure 2.7a) showed
characteristic peaks at 1375 and 1566 cm™, which are due to the symmetric and
asymmetric stretching of the carboxylate group (COO"). The bands at 1229 and
3415 cm™ are due to C-O and -OH stretching vibration. The FTIR spectrum of
ampicillin (Figure 2.7b) showed peaks at 1690 cm™ and 1774 cm™ due to the C=0
stretching of carboxylic and carbonyl groups. The peak at 3515 cm™ is due to N-H
stretching (primary amine). The peaks at 1385 and 1494 cm™ are attributed to C-N
stretching and N-H plane bending. The characteristic peaks of ampicillin also appeared
in the FTIR spectrum of the nanocomposite PPy-QDs-MIP optosensor (Figure 2.7c).
After template removal (Figure 2.7d), the absorption peaks corresponding to ampicillin
disappeared. The peaks at approximately 455 and 768 cm™ are due to Si-O vibration
(Soledad-Rodriguez et al., 2017). The bands around 1560 and 1650 cm™ are due to the
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C=C stretching of polypyrrole (Figure 2.7e). The results showed that the
nanocomposite PPy-QDs-MIP probe was successfully synthesized for specific

recognition of ampicillin.

Transmittance

1560
4000 3600 3200 2800 2400 2000 1600 1200 800 400

Wavenumber (cm™)
Figure 2.7 FTIR spectra of TGA-capped CdTe QDs (a), ampicillin (b), PPy-QDs-
MIP before removal of ampicillin (template) (c), PPy-QDs-MIP after

removal of ampicillin (template) (d) and polypyrrole (e)
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The relative quantum yield (QY) was calculated according to equation (2)
(Khalilzadeh et al., 2009). Rhodamine 6G was used as the fluorescent standard. QYs
of TGA-capped CdTe QDs, QDs-MIP and PPy-QDs-MIP were 0.90, 0.68 and 0.55,
respectively.

F-Agiqgn?

QY =QVYsu - )

Fsta-ANeq

Where F and Fstq are the fluorescent areas under the fluorescent curves of
the ampicillin in the sample and the reference, respectively. A and Aswq are the
absorbance of the sample and the reference, and n and nsw are the refraction index of
solvents used for the sample and reference, respectively.

The BET measurements of the specific surface areas of PPy-QDs-MIP and
PPy-QDs-NIP were 22.2 m? g and 16.7 m? g}, respectively. The PPy-QDs-MIP
nanooptosensor displayed greater surface area than PPy-QDs-NIP, possibly due to the
presence of specific cavities of ampicillin.

2.5 Optimization of the experimental condition

During fabrication of the developed fluorescent probe, several factors can
affect the sensitivity and analysis time. Consequently, effects of the ratio of template to
monomer to cross-linker, the amount of polypyrrole particles, the incubation time and

the pH of composite probe solution were optimized.

2.5.1 Ratio of template to monomer to cross-linker

Since it is a factor that significantly affects the number of specific binding
sites and quality of MIP structure (Karaseva et al., 2019), the ratios of template (T) to
monomer (M) to cross-linker (C) were investigated. A molar ratio of 1: 6: 20 (T: M: C)
provided the highest sensitivity as shown in Figure 2.8. In the reaction with template
molecules, a small component of APTES (T: M = 1: 3) did not provide enough
functional groups (-NH>) to produce the necessary number of specific cavities on the
MIP layer. The result was a nanoprobe of low sensitivity. On the other hand, the
sensitivity was also low when the ratio of APTES to template was high (T: M = 1: 10)

because the excess functional monomer led to the formation of non-imprinted
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molecules within the polymer layer that inhibited binding between ampicillin and
specific recognition sites. In addition, the low number of recognition sites may have
been due to self-condensation of excess monomer (Amjadi and Jalili, 2017). The
sensitivity was also low when using a low amount of TEOS (T: C = 1: 10). The
composite PPy-QDs-MIP particles were so weak that TGA-capped CdTe QDs were
easily detached during the template removal process (The Huy et al., 2014). When more
TEOS was used (T: C = 1: 30), the sensitivity was also low because the specific cavities
in the polymer were extremely hard and rigid. When too much cross-linker is present,
monomer mobility is reduced, making interaction with the template difficult. Thus, the

ratio for T: M: C (ampicillin: APTES: TEOS) of 1: 6: 20 was selected for further
experiment.
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Figure 2.8 The effect of template to monomer (APTES) to cross-linker (TEOS)

ratio on the fluorescence quenching of PPy-QDs-MIP fluorescent probe
for ampicillin detection

2.5.2 Effect of incubation time
The incubation time of PPy-QDs-MIP with ampicillin was studied by
varying the adsorption times from 1 to 30 min. The results as shown in Figure 2.9, the

fluorescence quenching efficiency of PPy-QDs-MIP increased with the increments of
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adsorption time up to 9 min and remained approximately constant at longer adsorption
times. The adsorption time was rapid because polypyrrole enhanced the affinity
between the target analyte (ampicillin) and recognition sites. Thus, the fluorescence
intensity was determined after 9 min incubation of PPy-QDs-MIP and ampicillin or

sample solution.
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Figure 2.9 The effect of incubation time on the fluorescence quenching of QDs-MIP

and PPy-QDs- MIP fluorescent probe for ampicillin detection

2.5.3 Amount of polypyrrole particles

The effect of PPy content in the PPy-QDs-MIP fluorescent probe was
investigated at volumes of 20, 40, 60 and 80 uL. As can be seen from Figure 2.10,
40 uL of polypyrrole gave the highest quenching efficiency. The sensitivity decreased
when the lower amount of polypyrrole was used. This result may be due to the
incomplete binding between PPy-QDs-MIP and ampicillin within the incubation time
of 9 min. At the higher volumes of polypyrrole, the sensitivity of the probe was also
reduced, possibly because polypyrrole particles disturbed the formation of recognition
sites and destroyed the polymer structure. Thus, 40 uL was selected as the appropriate

amount of polypyrrole for the fabrication of the probe.



18

0.035

0.030 -

727
0.025 -

=

%

=

0.020 h Py

7

L, 7,

N

0.015 +

Sensitivity (L pg™)

0.010 -

0.005 -

N
N

.
20 40 60 80

24

N

i

0.000

Volume of polypyrrole (pL)

Figure 2.10 The effect of volume of polypyrrole on the fluorescence quenching of
PPy- QDs-MIP fluorescent probe for ampicillin detection

2.5.4 Effect of pH

Since pH affects the binding of PPy-QDs-MIP and target molecules, the
effect of pH was investigated by dispersing nanocomposite fluorescent probes in
phosphate buffer at pH ranging from 5.0 to 8.0. The results as shown in Figure 2.11,
buffer at pH 7.0 provided the highest sensitivity. At lower pH, the sensitivity decreased
due to the protonation of the amine groups of the functional monomer in MIP particles
and ampicillin (Ren and Chen, 2015). This alteration disturbed hydrogen bonding
between ampicillin and specific binding sites. The sensitivity also decreased at buffer
pH higher than 7.0, possibly because of deprotonation of the template molecule under
the alkaline condition (Hou et al., 2016). Also in alkaline solutions, silica in the MIP
layer was ionized and could damage binding sites (Li et al., 2017), which could affect
interaction between template molecules and the PPy-QDs-MIP probe (Figure 2.12).
Therefore, a phosphate buffer at pH 7.0 was used for the preparation of the PPy-QDs-

MIP solution.
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Figure 2.11 The effect of pH on the fluorescence quenching of PPy-QDs-MIP

fluorescent probe for ampicillin detection
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Figure 2.12 Speciation of ampicillin under different pH

2.6 Effect of different fluorescent probes for the determination of ampicillin

The quenching efficiency of the different fluorescent probes, QDs-NIP, PPy-
QDs-NIP, QDs-MIP and PPy-QDs-MIP were compared. QDs-NIP exhibited the lowest
quenching efficiency in the detection of ampicillin as shown in Table 2.1 and Figure
2.13. This result was due to the absence of specific recognition sites to bind with the
target analyte. The PPy-QDs-MIP fluorescent probe provided the highest sensitivity
because polypyrrole increased quenching efficiency during ampicillin detection by
enhancing the adsorption of ampicillin on the probe via hydrogen bonding and =-nt

interaction. While, MIP helped to enhance specific binding.
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Figure 2.13 The sensitivity of various fluorescent probes for ampicillin detection
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2.7 Fluorometric determination of ampicillin

To study the quenching efficiency of PPy-QDs-MIP during ampicillin
detection, a series of different concentrations of ampicillin solutions were used to
evaluate the quantitative analysis. The fluorescence emission of PPy-QDs-MIP
fluorescent probes decreased according to the ampicillin concentration (Figure 2.14)
and slightly decreased for PPy-QDs-NIP (Figure 2.15). The quenching of fluorescence
in the presence of ampicillin is due to the energy transfer from QDs when ampicillin
binds with amino groups of APTES on the surface of QDs. The fluorescence quenching
efficiency of PPy-QDs-MIP is described by the Stern-Volmer according to equation (3)
(Wang et al., 2009):

FO/F =1 + Ky [C], 3

where FO and F are the fluorescence intensity without and with ampicillin,
respectively, Ksv is the Stern-Volmer quenching constant and [C] is the ampicillin

concentration.
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Figure 2.14 The fluorescence emission spectra of nanocomposite PPy-QDs-MIP

fluorescent probe
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Figure 2.15 The fluorescence emission spectra of nanocomposite PPy-QDs-NIP

fluorescent probe

2.8 Analytical performance of PPy-QDs-MIP fluorescent probe for the detection
of ampicillin

The analytical characteristics of the PPy-QDs-MIP probe investigated under
the optimum conditions were linearity, limit of detection (LOD) and limit of
quantification (LOQ). As shown in Figure 2.16, the nanocomposite PPy-QDs-MIP
fluorescent probe exhibited two linear ranges for ampicillin detection: 0.10 to 25.0
ng Lt and 25.0 to 100.0 pg L. The LOD and LOQ were 0.05 and 0.12 pg L7,
respectively, following the IUPAC criteria; 3o/k and 10c/K, respectively, where o is
the standard deviation of blank measurement (n = 20) and k is the slope of the
calibration curve. However, the fluorescence intensity of PPy-QDs-NIP was not
significantly different at different concentrations of ampicillin. The specificity of PPy-
QDs-MIP fluorescent probe was evaluated in terms of imprinting factor (IF), which
was calculated using the ratio of Ksy,mip and Ksy,nip as shown in equation (4) (Hou et al.,
2016). In this work, the imprinting factor (IF) of ampicillin was 7.5.
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_Ksymip

IF (4)

Ksy NIP

Where IF is the imprinting factor, while Ksvmip and Ksynip is the Stern-

Volmer constant of MIP and NIP, respectively.
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Figure 2.16 The linearity for the detection of ampicillin in the concentration range
of 0.10-100.0 pg L*

2.9 Selectivity of PPy-QDs-MIP fluorescent probe for the detection of ampicillin
The selectivity of the PPy-QDs-MIP probe for the determination of
ampicillin was investigated by applying the probe to detect structural analogs of
ampicillin, which were amoxicillin, cephalexin, penicillin G, chloramphenicol and
thiamphenicol. The PPy-QDs-MIP probe exhibited much higher sensitivity for
ampicillin than for its analogs, while PPy-QDs-NIP probe exhibited similar sensitivities
for ampicillin and the analog structures (Figure 2.17). The results indicated that the MIP
layer contained specific recognition sites for ampicillin which were complementary in
shape, size and functional groups but the PPy-QDs-NIP probe had no specific
recognition sites to bind with ampicillin. The specificity of PPy-QDs-MIP was verified
by a competitive binding study, which varied the ratio of ampicillin to amoxicillin

(Campicintin/ Camoxicinin). As shown in Figure 2.18, the sensitivities were not significantly
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different when the ratio of Campicilin/Camoxicitin Was increased. The result confirmed that
the synthesis of the PPy-QDs-MIP florescent probe produced binding sites that were
highly specific to ampicillin.
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Figure 2.17 The selectivity of PPy-QDs-MIP probe and PPy-QDs-NIP probe for

ampicillin detection
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Figure 2.18 The competitive binding between ampicillin and amoxicillin

2.10 Reproducibility and stability of nanocomposite PPy-QDs-MIP fluorescent
probe

The reproducibility of PPy-QDs-MIP fluorescent probe was investigated by
synthesizing six different batches under the optimum conditions for the determination
of ampicillin at 10 ug L. The RSD was 3.2% which indicated that the synthesis of
PPy-QDs-MIP had a good reproducibility. The stability of the fluorescent probe was
also investigated and there was no significant difference in the fluorescence intensity
of PPy-QDs-MIP within 360 min (response>90%), as shown in Figure 2.19. The result
confirmed the good stability of the PPy-QDs-MIP fluorescent probe.
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Figure 2.19 Stability of nanocomposite PPy-QDs-MIP fluorescent probe in 10 mM
phosphate buffer (pH 7.0)

2.11 The analysis of ampicillin in food samples

Milk and meat samples were collected from local markets in Hat Yali,
Songkhla, Thailand. The pretreatment procedure of milk samples was adapted from a
previous report (Wu et al., 2016). To precipitate the protein and fat, milk (5.0 mL) was
added into a polypropylene tube, mixed with 15 mL of acetonitrile and centrifuged for
10 min. Then, the clear top phase was collected and evaporated to dryness at 60 °C. The
extractant was re-dissolved with 5.0 mL of phosphate buffer (pH 7.0) and mixed with
PPy-QDs-MIP for the analysis of ampicillin.

The pretreatment procedure of meat samples (pork and chicken) was also
adapted from a previous report (Luo et al., 1997). Briefly, 15 mL of phosphate buffer
(10 mM) at pH 5.0 was added to 5.0 g of blended meat samples and centrifuged for 15
min. The clear top phase solution was mixed with 2.0 mL of acetic acid (5% w/v),
vortexed for 3 min and centrifuged at 6500 rpm for 15 min. The supernatant was filtered
through a 42 Whatman filter and diluted ten times with phosphate buffer (pH 7.0). Then,

the extractant was mixed with the PPy-QDs-MIP for the determination of ampicillin.
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The developed fluorescent probe was applied to detect ampicillin in milk
and meat samples and the results are summarized in Table 2.2. Low amounts of
ampicillin were found in milk (0.76-2.18 pg kg™?) and meat (1.16-1.23 pg kg™). The
detected concentrations were lower than the MRL values set by the EU: 40 ug kg in
milk and 50 ug kg in animal tissue. The accuracy of the nanooptosensor was also
investigated by the detection of ampicillin in milk and meat samples spiked at 0.5, 2.0,
4.0 and 10.0 pg kg™. Satisfactory recoveries were obtained in a range of 81.7 to 98.7%
and RSDs were lower than 5%. The results of the developed nanooptosensor was
compared with the HPLC techniques. The HPLC conditions for the analysis of
ampicillin are shown in Table 2.3. The spiked samples were analyzed by both the
nanooptosensor and HPLC. The chromatograms of ampicillin in real samples (milk)
are shown in Figure 2.20. A good correlation between the PPy-QDs-MIP
nanooptosensor and the HPLC method is shown in Figure 2.21. The determination
coefficient (R?) was 0.9985. These results indicate that the developed nanooptosensor
can be used as an accurate analytical method to determine ampicillin in milk and meat

samples.
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Table 2.2 The analysis of ampicillin in milk and meat samples (n = 6)

Ampicillin (ug kg?)

0 0,
Sample ~dod ——" Recovery (%) RSD (%)
0.0 1.05 - -
05 1.53 96.3 4.0
Milk 1 2.0 2.95 94.8 2.8
4.0 5.00 98.7 0.8
10.0 10.23 91.8 0.9
0.0 0.76 - -
0.5 1.23 95.8 3.7
Milk 1l 2.0 2.69 96.6 3.2
4.0 4,68 97.9 1.7
10.0 10.58 98.2 1.9
0.0 1.74 - -
0.5 2.17 86.3 3.8
Milk 111 2.0 2.62 94.0 0.2
4.0 5.06 83.7 1.7
10.0 10.05 83.1 1.1
0.0 2.18 - -
0.5 2.65 93.9 3.2
Milk IV 2.0 3.96 88.9 2.6
4.0 6.06 97.0 2.4
10.0 11.59 94.1 1.9
0.0 1.23 - -
0.5 1.76 87.7 2.6
Pork 2.0 3.26 96.9 1.3
4.0 427 85.0 3.7
10.0 11.10 97.7 2.5
0.0 1.16 - -
0.5 1.59 86.0 0.1
Chicken 2.0 2.79 81.7 2.4
4.0 4.82 91.5 4.4
10.0 10.78 96.2 0.4
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Table 2.3 HPLC condition for the analysis of ampicillin

Parameters Conditions

Column VertiSep™ UPS C18 column (4.6 x 150 mm, 5 pm)
Flow rate 1.0 mL min™t

Mobile phase Acetonitrile:10 mM NaH2PO4 (20:80% v/v)
Detector Diode array detector (A= 220 nm)

Injection volume

Column temperature

20 uL

30°C
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Figure 2.20 HPLC chromatograms of spiked milk sample at 2.0 (a), 4.0 (b) and
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Figure 2.21 The correlation between the nanooptosensor using PPy-QDs- MIP
fluorescent probe and HPLC technique for ampicillin detection in

milk sample
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2.12 Comparison of PPy-QDs-MIP nanooptosensor with other previous works
The analytical performance of the nanooptosensor for ampicillin detection
was compared with previous methods as shown in Table 2.4. The PPy-QDs-MIP probe
exhibited a wide linear range and LOD was lower than in the other works (Luo et al.,
1997; Khalilzadeh et al., 2009; Xie et al., 2012; Shrivas et al., 2017; Soledad-Rodriguez
et al., 2017), while the recovery and precision were comparable to other methods
(Khalilzadeh et al., 2009; Wu et al., 2016; Soledad-Rodriguez et al., 2017; Wang et al.,
2017). The comparison confirmed that the nanooptosensor using the PPy-QDs-MIP
fluorescent probe was highly sensitive for the determination of ampicillin. In addition,
this work required shorter analysis time and had a cheaper analysis cost than the

chromatographic techniques.
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Table 2.4 Analytical performances of nanooptosensor using PPy-QDs-MIP fluorescent

probes and other previous works for ampicillin detection

Analytical method Samples Hnear - op Recovery RSD  References
P Ly ) )
(ug L™
HPLC-FLD Eggs 5.0- 0.4 77.6-820 6.3- (Xieetal,
800.0 8.7 2012)
HPLC-FLD Bovine milk 0294 0.2 87.0-916 16- (Luoetal,
3.8 1997)
HPLC-UV Milk and blood  5.0- 0.05 92.1-107.6 1.4- (Wuetal,
200.0 4.6 2016)
MIP/HPLC-UV Milk 100.0- 10.7 >95.0 <7.0 (Soledad-
500.0 Rodriguez
etal., 2017)
Spectrophotometry  Urine 25.0- 10.0 92.5-95.0 3.8-  (Shrivas
1200.0 5.7 etal., 2017)
Electrochemical Pharmaceutical 0.4- 0.1 81.2-95.0 0.9- (Khalilzadeh
capsule and 105.8 2.6 et al., 2009)
urine
PPy-QDs-MIP Milk and meat  0.10- 0.05 81.7-98.7 <5.0 Thiswork
spectrofluorometry 25.0
25.0-
100.0

HPLC = high performance liquid chromatography; FLD = fluorescence detector; UV =

ultraviolet-visible detector
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3. Concluding remarks

A nanooptosensor using PPy-QDs-MIP fluorescent probe was successfully
fabricated and utilized for ampicillin detection. Integrating the good optical property
of QDs, the high specificity of MIP and the high affinity of polypyrrole, the sensor
exhibited high sensitivity, selective recognition and provided a rapid method for trace
ampicillin analysis. The nanooptosensor detected ampicillin in milk and meat samples
with good accuracy (recoveries of 81.7-98.7%). The analytical results of this
nanooptosensor also agreed well with the results of a HPLC detection method. Other
advantages of the nanooptosensor included a simple, rapid procedure and cost-
effective equipment. The simple developed strategy can be modified for the

determination of other organic compounds in various matrix interferences.
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Abstract

A fluorometric method is described for the detection of ampicillin. A polypyrrole containing fluorescent CdTe quantum dots was
incorporated into a silica-based molecularly imprinted polymer. The composite MIP displays good fluorescence (with excitation/
emission maxima at 355/548 nm), and high selectivity and affinity for ampicillin due to the use of polypyrrole. Ampicillin is
found to quench the fluorescence of composite much more strongly than the emission of a non-imprinted polymer. The imprint-
ing factor of 7.5 implies that the nanocomposite probe contains specific binding sites. The MIP probe has two linear response
ranges, one from 0.10 to 25 g L' of ampicillin, and one from 25 to 100 ug L™". The limit of detection is 0.05 ug L. The
method was applied to the determination of ampicillin in (spiked) milk and meat samples and gave recoveries between 81.7 and
98.7%. The results agreed well with HPLC techniques.

Keywords Nanoprobe - Fluorescence - Quenching - Optical - Composite - CdTe - Emission - Template - Monomer - Cross-linker

Introduction

Frequent use of ampicillin leaves residues in meat and milk
which can cause stomach cramps, diarrhea, dizziness, nausea,
rash and peeling of the skin when consumed by humans [1].
The maximum residue limits (MRLs) for ampicillin in milk
and meat have been set by the European Union at 40 and
50 ng kg™, respectively. Therefore, the development of a
convenient, rapid, sensitive, selective and reliable method
for the detection of ampicillin in food samples is important.
Various analytical techniques have been reported for the
determination of ampicillin including chromatography [2],
electrophoresis [3] and electrochemistry [4, 5]. Although,
these techniques provided accurate results, they still had some
drawbacks. They used large volumes of toxic organic solvent,
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were time consuming and required expensive instruments. To
overcome these limitations, fluorescence spectroscopy was
employed for its technical simplicity, high sensitivity, rapidity
and cost-effective equipment [6]. However, the relatively low
fluorescence intensity of ampicillin which cannot be detected
at trace levels. The sensitivity of this method can be improved
by exploiting the good optical properties of fluorescence
probes. Quantum dots (QDs) were an interesting choice of
fluorescence probe due to their high fluorescence intensity
and good photochemical stability [7]. To enhance the speci-
ficity of the analytical method, QDs can be modified with
highly specific ligands or incorporated with specific materials
such as molecularly imprinted polymers (MIP). MIP showed
high specificity to target analytes [8, 9] and had good physical
and chemical stability under demanding conditions of temper-
ature, pH and pressure, using a variety of acids, bases and
organic solvents [10-12]. The MIP was synthesized by a co-
polymerization reaction using ampicillin as the template. The
resulting MIP interacts with a functional monomer and cross
linker to form a polymer layer [13]. After removal of template,
the MIP layer contained specific binding cavities complemen-
tary in functional groups, shape and size to the target molecule
[14]. MIPs have been used as a chemosensor [15], adsorption
material [16] and biosensor [17]. Fluorescence probes using
MIPs coated on QDs have engaged interest for the

@ Springer
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determination of target analytes such as amoxicillin [18],
chloramphenicol [19] and salbutamol [20]. To enhance the
adsorption ability or affinity binding of ampicillin to the fluo-
rescence probe, the addition of polypyrrole during preparation
of a nanocomposite fluorescence probe is an interesting strat-
egy. Polypyrrole contains a 7t structure which can adsorb aro-
matic compounds through 7t-7t interactions [21]. Moreover,
polypyrrole had good chemical stability [22].

In this work, a nanooptosensor was fabricated using a com-
posite fluorescence probe of polypyrrole and quantum dots
incorporated in a molecularly imprinted polymer (PPy-QDs-
MIP). The method was then used to detect and analyze ampi-
cillin in food samples. The nanooptosensor was characterized
and the analytical performances were evaluated and compared
with the results of a conventional chromatographic method.

Experimental
Chemicals and materials

Ampicillin trihydrate and tetraethoxyl orthosilicate (TEOS)
were from Tokyo Chemical Industry Co. Ltd. (Tokyo, Japan,
https://www.tcichemicals.com). Thioglycolic acid (TGA),
sodium borohydride, cadmium chloride (CdCl,.2H,0),
tellurium (99.8%), pyrrole and 3-aminopropyltriethoxysilane
(APTES) were from Sigma-Aldrich (MO, USA, https://www.
sigmaaldrich.com). Iron (III) chloride was purchased from
VWR Prolabo Chemical (Leuven, Belgium, https://www.be.
vwr.com). Sodium dihydrogen orthophosphate (NaH,PO;.
2H,0) and disodium hydrogen orthophosphate
dodecahydrate (Na,HPO,4.12H,0) were from Univar
Chemical (Washington, USA, https://www.univar.com).
Sodium hydroxide, ethanol (>98.0%) was from RCI
Labscan (Bangkok, Thailand, http://www.rcilabscan.com).

Instrumental

A RF-5301PC spectrofluorophotometer (Shimadzu, Japan,
https://www.shimadzu.com) was used for fluorescence
measurement. UV-Vis absorption was measured with an
Avaspec 2048 spectrometer (Avantes, Netherlands, https://
www.avantes.com). Fourier transform infrared (FTIR) spec-
troscopy was performed using a BX FTIR spectroscope
(PerkinElmer, USA, http://www.perkinelmer.com).
Transmission electron microscope (JEM-2010) and scanning
electron microscope (JSM-5200) JEOL, Japan, https://www.
jeol.co.jp) were used for morphological investigation. The
Brunauer-Emmett-Teller (BET) surface areas of PPy-QDs-
MIP and PPy-QDs-NIP fluorescence probes were investigated
using the ASAP 2460 system, (Micromeritics, USA, https://
www.micromeritics.com).

@ Springer

Synthesis of CdTe quantum dots nanoparticles

The CdTe QDs were synthesized by modifying a previous
work [23]. Briefly, 5.0 mg of tellurium and 4.0 mg of sodium
borohydride were mixed in 1.50 mL of deionized water in a
centrifuge tube (2.0 mL) to produce a sodium hydrogen tellu-
ride (NaHTe) solution. 45.0 mg of cadmium chloride and
30 uL of TGA were added to 100 mL deionized water and
adjusted to pH 11.5 with sodium hydroxide (1.0 M). The
mixture solution was deaerated with N, gas for 10 min in
a three-necked flask, then heated to 90 °C and 1.0 mL of
NaHTe was injected into the solution and continuously
stirred for 15 min. Finally, the synthesized CdTe QDs
were precipitated with 20 mL of ethanol and centrifuged
at 8000 rpm for 5 min.

Synthesis of PPy-QD-MIP and PPy-QD-NIP fluorescent
probes

The PPy-QDs-MIP were synthesized via a one-step copoly-
merization. First, 40 puL of APTES (functional monomer)
were mixed with 3.0 mM of ampicillin (5.0 mL) and stirred
for 1 h. Then, 10 mL of CdTe QDs were added to the mixture
and continuously stirred for 1 h. Then, 120 L of TEOS asa
cross-linker, 150 uL of NH; (25% w/v) as a catalystand 20 uL
of polypyrrole particles were added and stirred for 6 h.
Polypyrrole particles were prepared by mixing 13.0 mg of
FeCl; and 400 pL of pyrrole in a 2.0 mL centrifuge tube
and stirring for 1 h. For template removal, the synthesized
nanocomposites were washed three times with 10 mL of eth-
anol, after which no template molecules presented in the
washing solution. The PPy-QDs-MIP were centrifuged at
7500 rpm for 10 min and dried in an oven at 60 °C. The
PPy-QDs-NIP fluorescence probes were prepared under the
same experimental condition without ampicillin (template
molecule).

Fluorescence quenching studies

Fluorescence intensity was measured by setting the slit widths
at 10 nm for the excitation and emission. The wavelength for
excitation was set at 355 nm and fluorescence emission was
recorded from 400 to 700 nm. PPy-QDs-MIP or PPy-QDs-
NIP fluorescence probe solutions (6.0 g L™') were prepared
by dispersion in phosphate buffer (10 mM) at pH 7.0. The
300 pL of PPy-QDs-MIP or PPy-QDs-NIP solution were
mixed with ampicillin solution or sample (100 pL). Then,
the mixture was incubated under gentle rotation for the appro-
priate time. The measurement of fluorescence emission was
carried out with and without ampicillin and recorded as F and
FO, respectively.
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Sample preparation of milk and meat

Milk and meat samples were collected from local markets in
Hat Yai, Songkhla, Thailand. The pretreatment procedure of
milk samples was adapted from a previous report [24]. To
precipitate the proteins and fats, milk (5.0 mL) was added into
a polypropylene tube, mixed with 15 mL of acetonitrile and
centrifuged for 10 min. Then, the clear top phase was collected
and evaporated to dryness at 60 °C. The extractant was re-
dissolved with 5.0 mL of phosphate buffer (pH 7.0) and mixed
with PPy-QDs-MIP for the analysis of ampicillin.

The pretreatment procedure of meat samples (pork and
chicken) was also adapted from a previous report [25].
Briefly, 15 mL of phosphate buffer (10 mM) at pH 5.0 was
added to 5.0 g of blended meat samples and centrifuged for
15 min. The clear top phase solution was mixed with 2.0 mL
of acetic acid (5% w/v), vortexed for 3 min and centrifuged at
6500 rpm for 15 min. The supernatant was filtered through a
42 Whatman filter and diluted ten times with phosphate buffer
(pH 7.0). Then, the extractant was mixed with the PPy-QDs-
MIP for the determination of ampicillin.

Results and discussion
Choice of materials

In this work, nanocomposite PPy-QDs-MIP fluorescence
probe was developed for the detection of trace ampicillin.
QDs was chosen as sensing material due to their high fluores-
cence intensity and good photochemical stability. MIP was
used to improve the selectivity of composite probe. While,
polypyrrole can help to improve the adsorption ability which
can interact with ampicillin via 7t-interaction and hydrogen
bonding.

Characterization of CdTe quantum dots (QDs)
and nanocomposite PPy-QD-MIP fluorescent probe

The fluorescence spectrum of CdTe QDs was narrow and
symmetric (Fig. S1) and the particle size was about 2.25 nm
which was calculated from the maximum absorption wave-
length at 505 nm [26].

The nanocomposite PPy-QDs-MIP fluorescence probe was
synthesized via a co-polymerization process using ampicillin
as the template, APTES as a monomer and TEOS as a cross-
linker. APTES, template, TGA-CdTe QDs and PPy self-
assembled via hydrogen bonding and then formed nanocom-
posite particles in the presence of the cross-linker (TEOS) and
ammonia (catalyst) (Fig. 1). The fluorescence emission inten-
sity of PPy-QDs-MIP before removal of the template was
about 60% the intensity of the emission of PPy-QDs-NIP
(Fig. S2). After removal of the template, the fluorescence

emission was restored to the same intensity as PPy-QDs-
NIP. The result confirmed that the PPy-QDs-MIP was
successfully prepared and the template had been
completely removed from the MIP layer. The method is
a single-step copolymerization under soft conditions at
room temperature (25+2 °C).

The morphologies of CdTe QDs were investigated using
TEM (Fig. 2a). The QDs showed good distribution and a
smooth surface. The SEM (Fig. 2b) and TEM (Fig. 2¢) images
shows PPy-QDs-MIP of uniform spherical shape with a diam-
eter of 200250 nm.

The nanocomposite PPy-QDs-MIP fluorescence probe was
characterized by FTIR spectroscopy. The spectrum of TGA-
CdTe QDs (Fig. S3a) shows characteristic peaks at 1375 and
1566 cm™, which are due to the symmetric and asymmetric
stretching of the carboxylate group (COO™). The bands at
1229 and 3415 cm™ are due to C-O and -OH stretching vi-
bration. The FTIR spectrum of ampicillin (Fig. S3b) shows
peaks at 1690 cm™ and 1774 cm™ due to the C=0 stretching
of carboxylic and carbonyl groups. The peak at 3515 cm™ is
due to N-H stretching (primary amine). The peaks at 1385 and
1494 cm™ were attributed to C-N stretching and N-H plane
bending. The characteristic peaks of ampicillin also appeared
in the FTIR spectrum of the nanocomposite PPy-QDs-MIP
optosensor (Fig. S3c). After removal of template (Fig. S3d),
the absorption peaks comresponding to ampicillin disappeared.
The peaks at approximately 455 and 768 cm™" are due to Si-O
vibration [27]. The bands around 1560 and 1650 cm™ are due
to the C=C stretching of polypyrrole (Fig. S3e). The results
showed that the nanocomposite PPy-QDs-MIP probe was
successfully synthesized for specific recognition of ampicillin.

The quantum yield (QY) was calculated according to a
previous work [28]. Rhodamine 6G was used as the fluores-
cence standard. QY's of CdTe QDs, QDs-MIP and PPy-QDs-
MIP were 0.90, 0.68 and 0.55, respectively. The BET mea-
surements of the specific surface areas of PPy-QDs-MIP and
PPy-QDs-NIP were 22.2 m” g " and 16.7 m” g, respectively.
The PPy-QDs-MIP nanooptosensor displayed greater surface
area than PPy-QDs-NIP, possibly due to the presence of spe-
cific cavities of ampicillin.

Optimization of method

During the fabrication of the fluorescent probe, several factors
can affect the sensitivity and analysis time of the probe. The
following parameters were optimized: (a) ratio of template to
monomer and cross-linker; (b) incubation time; (¢) amount of
PPy particles, (d) pH of composite probe solution; Respective
data and Figure are given in the Electronic Supporting
Material. The following experimental conditions were found
to give the best results: (Fig. S4a) best ratio of template to
monomer to cross-linker: 1: 6: 20; (Fig. S4b) optimal
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Fig.1 Synthesis of nanocomposites PPy-QDs-MIP fluorescent probe for ampicillin detection

incubation time: 9 min; (Fig. S4c) amount of PPy particles:
40 pL and (Fig. S4d) pH of composite probe solution: pH 7.

Effect of different fluorescent probes
for determination of ampicillin

The quenching efficiency of the different fluorescence probes,
QDs-NIP, PPy-QDs-NIP, QDs-MIP and PPy-QDs-MIP, were
compared. QDs-NIP exhibited the lowest quenching efficien-
cy in the detection of ampicillin (Fig. 3). This result was due to
the absence of specific recognition sites to bind with the target
analyte. The PPy-QDs-MIP fluorescence probe provided the
highest sensitivity because polypyrrole increased quenching
efficiency during ampicillin detection by enhancing the ad-
sorption of ampicillin on the probe via hydrogen bonding
and 7t-interaction. MIP helped to enhance specific binding.

| D ) -
3 5 2.9 ¢

@ Springer

Fig.2 TEM images of TGA-CdTe QDs (a), SEM image of PPy-QDs-MIP (b) and TEM images of PPy-QDs-MIP fluorescence probe (c)

Fluorometric determination of ampicillin

To study the quenching efficiency of PPy-QDs-MIP during
ampicillin detection, a series of different concentrations of
ampicillin solutions were used to evaluate the quantitative
analysis. The fluorescence emission of PPy-QDs-MIP fluores-
cence probes decreased according to the ampicillin concentra-
tion (Fig. 4a) and slightly decreased for PPy-QDs-NIP (Fig.
4b). The quenching of fluorescence in the presence of ampi-
cillin is due to the energy transfer from QDs when ampicillin
binds with amino groups of APTES on the surface of QDs.
The fluorescence quenching efficiency of PPy-QDs-MIP is
described by the Stem-Volmer equation [29]:

FO/F = 1 +K,, [C],

where Fy and F are the fluorescence intensity without
and with ampicillin, respectively, K, is the Stern-
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Fig. 3 The sensitivity of various fluorescence probes for the detection of
ampicillin with excitation/emission maxima at 355/548 nm

Volmer quenching constant and [C] is the ampicillin
concentration.

The analytical characteristics of the PPy-QDs-MIP probes
investigated under the optimum conditions were linearity,
limit of detection (LOD) and limit of quantification (LOQ).
The nanocomposite PPy-QDs-MIP fluorescence probe ex-
hibited two linear ranges for ampicillin detection: 0.10 to
25 ug L7" and 25 to 100 pg L™' (Fig. 4c). The LOD and
LOQ were 0.05 and 0.12 pg L™, respectively, following the
IUPAC criteria. The fluorescence intensity of PPy-QDs-NIP,
however, was not significantly different at different concen-
trations of ampicillin. The specificity of PPy-QDs-MIP

fluorescence probes were evaluated in terms of imprinting
factor (IF), which was calculated using the ratio of K.y yp
and K, In this work, the imprinting factor (IF) of ampi-
cillin was 7.5. A photograph of nanocomposite PPy-QDs-
MIP in the presence and absence of ampicillin is shown in
Fig. 4d.

Selectivity

The selectivity of the PPy-QDs-MIP for the determination of
ampicillin was investigated by applying the probe to detect
structural analogs of ampicillin, which were amoxicillin,
cephalexin, penicillin G, chloramphenicol and thiamphenicol.
Figure 5a indicates that the PPy-QDs-MIP probe exhibit-
ed a much higher sensitivity for ampicillin than for its
analogs, while PPy-QDs-NIP exhibited similar sensitivi-
ties for ampicillin and the analog structures. The results
indicate that the MIP layer contained specific recognition
sites for ampicillin which were complementary in shape,
size and functional groups but the PPy-QDs-NIP probe
had no specific recognition sites to bind with ampicillin.
The specificity of PPy-QDs-MIP was verified by a com-
petitive binding study, which varied the ratio of amoxicil-
lin to amplcﬂlm (Camoxicillin/C:unpicillin)- The sensitivities
were not significantly different when the ratio of
Camoxicillin/Campicitin Was increased (Fig. 5b). The result
confirmed that the synthesis of the PPy-QDs-MIP flores-
cence probe produced binding sites that were highly spe-
cific to ampicillin.

Fig.4 The fluorescence emission -~ 600 a = 600 b
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Reproducibility and stability

The reproducibility of PPy-QDs-MIP fluorescence probe was
investigated by synthesising six different batches under the
optimum conditions for the determination of ampicillin at
10 pg L. The RSD was 3.2% which indicated that the syn-
thesis of PPy-QDs-MIP had a good reproducibility. The sta-
bility of the fluorescence probe was also investigated and there
was no significant difference in the fluorescence intensity of
PPy-QDs-MIP within 360 min (response>90%), as shown in
Fig. S5. The result confimed the good stability of the PPy-
QDs-MIP fluorescence probe.

Analysis of food samples

The PPy-QDs-MIP fluorescence probe was applied to detect
ampicillin in milk and meat samples and the results are summa-
rized in Table S1. Low amounts of ampicillin were found in milk
(0.76-2.18 ugkg ") and meat (1.16-1.23 pg kg™). The detected
concentrations were lower than the MRL values set by the EU:
40 pg kg™ inmilk and 50 pg kg™ in animal tissue. The accuracy
of the nanooptosensor was also investigated by the detection of
ampicillin in milk and meat samples spiked at 0.5, 2.0, 4.0 and
10.0 pg ke Satisfactory recoveries were obtained in a range of

81.7 to 98.7% and RSDs were lower than 5%. The results of the
nanooptosensor was compared with the HPLC techniques. The
spiked samples were analyzed by both the nanooptosensor and
HPLC. The chromatograms of ampicillin in real samples (milk)
is shown in Fig. S6a. A good comrelation between the PPy-QDs-
MIP nanooptosensor and the HPLC method is shown in Fig.
S6b. The determination coefficient (R?) was 0.998. These results
indicate that the nanooptosensor can be used as an accurate an-
alytical method to determine ampicillin in milk and meat
samples.

Comparison of the PPy-QD-MIP nanooptosensor
with previous works

The analytical performance of the nanooptosensor for ampi-
cillin detection was compared with previous methods
(Table 1). The PPy-QDs-MIP probe exhibited a wide linear
range and LOD was lower than in other works [1, 30-33],
while the recovery and precision were comparable to other
methods [4, 24, 32, 33]. The comparison confirmed that the
nanooptosensor using the PPy-QDs-MIP fluorescence probe
is highly sensitive for the determination of ampicillin. In ad-
dition, this work required shorter analysis time and had a
cheaper analysis cost than chromatographic techniques.

Table1  Analytical performances of nanooptosensor using PPy-QDs-MIP fluorescence probes and other previous works for ampicillin detection
Analytical method Samples Linear range (ng L") LOD (ng L™ b} Recovery (%) RSD (%) References
HPLC-FLD Eggs 5.0-800 0.4 77.6-82.0 63-8.7 [30]
HPLC-FLD Bovine milk 0.2-94 0.2 91.6-87.0 1.6-3.8 [31]
HPLC-UV Milk and blood 5.0-200 0.05 92.1-1076  14-4.6 [24]

MIP sorbentHPLC-UV Milk 100-500 10.7 >95.0 <70 [32]
Spectrophotometry Urine 25-1200 10.0 92.5-95.0 3.8-5.7 [1]
Electrochemical Milk 0.00035-1.75 0.00013 95.5-105.5 5.1 [4]
Electrochemical Pharmaceutical capsule and urine 0.4-106 0.1 81.2-95.0 09-2.6 [33]
PPy-QDs-MIP Spectrofluorimetry Milk and meat 0.10-25 25-100 0.05 81.7-98.7 <50 This work
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MIP without template molecule (b) and PPy-QDs-MIP with template molecule (c).
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(template) and (e) polypyrrole.
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Ratio of template to monomer to cross-linker

Since it is a factor that significantly affects the number of specific binding sites
and quality of MIP structure [1], the ratios of template (T) to monomer (M) to cross-
linker (C) were investigated. A molar ratio of 1:6:20 (T: M: C) provided the highest
sensitivity (Fig. S4a). In the reaction with template molecules, a small component of
APTES (T: M=1: 3) did not provide enough functional groups (-NH>) to produce the
necessary number of specific cavities on the MIP layer. The result was a nanoprobe of
low sensitivity. On the other hand, the sensitivity was also low when the ratio of APTES
to template was high (T: M=1: 10) because the excess functional monomer led to the
formation of non-imprinted molecules within the polymer layer that inhibited binding
between ampicillin and specific recognition sites. In addition, the low number of
recognition sites may have been due to self-condensation of excess monomer [2]. The
sensitivity was also low when using a low amount of TEOS (T: C= 1: 10). The
composite MIP-QD particles were so weak that QDs were easily detached during the
template removal process [3]. When more TEOS was used (T: C=1: 30), the sensitivity
was also low because the specific cavities in the polymer were extremely hard and rigid.
When too much cross-linker is present, monomer mobility is reduced, making
interaction with the template difficult. Thus, the ratio for T: M: C (ampicillin: APTES:

TEOS) of 1: 6: 20 was selected for further experiment.

Effect of incubation time

The incubation time of PPy-QDs-MIP with ampicillin was studied by varying
the adsorption times from 1 to 30 min. The fluorescence quenching efficiency of PPy-
QDs-MIP increased with increments of adsorption time up to 9 min and remained

approximately constant at longer adsorption times (Fig. S4b). The adsorption time was
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rapid because polypyrrole enhanced the affinity between the target analyte (ampicillin)
and recognition sites. Thus, the fluorescence intensity was determined after 9 min
incubation of PPy-QDs-MIP and ampicillin solution or sample.
Amount of polypyrrole particles

The effect of PPy content in the PPy-QDs-MIP fluorescence probe was
investigated at volumes of 20, 40, 60, and 80 uL. A volume of 40 uL of polypyrrole
gave the highest quenching efficiency (Fig. S4c). The sensitivity decreased when the
lower amount of polypyrrole was used. This result may be due to incomplete binding
between PPy-QDs-MIP and ampicillin within the incubation time of 9 min. At the
higher volumes of polypyrrole, the probe’s sensitivity was also reduced, possibly
because polypyrrole particles disturbed the formation of recognition sites and destroyed
the polymer structure. Thus, 40 puL was selected as the appropriate amount of
polypyrrole for the fabrication of the probe.
Effect of pH

Since pH affects the binding of PPy-QDs-MIP and target molecules, we
investigated the effect of pH by dispersing nanocomposite fluorescence probes in
phosphate buffer at pH ranging from 5.0 to 8.0. Buffer at pH 7.0 provided the highest
sensitivity (Fig. S4d). At lower pH, sensitivity decreased due the protonation of the
amine groups of the functional monomer in MIP particles and ampicillin [4]. This
alteration disturbed hydrogen bonding between ampicillin and specific binding sites.
The sensitivity also decreased at buffer pH higher than 7.0, possibly because of
deprotonation of the template molecule under the alkaline condition [5]. Also in
alkaline solutions, silica in the MIP layer was ionized and could damage binding sites,

which could affect interaction between template molecules and the PPy-QDs-MIP
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probe. Therefore, a phosphate buffer at pH 7.0 was used for the preparation of the PPy-

QDs-MIPs solution.
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Fig. S4 Effect of template to monomer (APTES) to cross-linker (TEQS) ratio (a),
incubation time (b), volume of polypyrrole (c) and pH of PPy-QDs-MIP solution (d)
on the fluorescence quenching of PPy-QDs-MIP fluorescence probe for ampicillin

detection.
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Fig. S5 Stability of nanocomposite PPy-QDs-MIP fluorescence probe in 10 mM

phosphate buffer (pH 7.0).
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Fig. S6 HPLC chromatograms of spiked milk sample at 2.0 (1), 4.0 (lI) and 10.0
mg kg (111) (a), and the correlation between the developed nanooptosensor using PPy-
QDs-MIP fluorescence probe and HPLC technique for ampicillin detection in food

samples (b).
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HPLC analysis

HPLC analysis was performed on the 1100 series HPLC apparatus (Agilent
Technologies Inc., Germany). The analytical column was a VertiSep™ pHendure C18
column (4.6x150 mm, 5um) and the column temperature was controlled at 30 °C with
an injection volume of 20 uL. The mobile phase was acetonitrile (20% v/v) and 10 mM
NaH,PO4 (80% v/v) with a flow rate of 1.0 mL mint. The detection of ampicillin was

220 nm.
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Table S1. The analysis of ampicillin in milk and meat samples (n = 6)

Ampicillin (ug kg?)

0 0
Sample o] —— Recovery (%) RSD (%)
0.0 1.05 - -
0.5 1.53 96.3 4.0
Milk 1 2.0 2.95 94.8 2.8
4.0 5.00 98.7 0.8
10.0 10.23 91.8 0.9
0.0 0.76 - -
0.5 1.23 95.8 3.7
Milk 1l 2.0 2.69 96.6 3.2
4.0 4.68 97.9 1.7
10.0 10.58 98.2 1.9
0.0 1.74 - -
0.5 2.17 86.3 3.8
Milk 111 2.0 2.62 94.0 0.2
4.0 5.06 83.7 1.7
10.0 10.05 83.1 1.1
0.0 2.18 - -
0.5 2.65 93.9 3.2
Milk 1V 2.0 3.96 88.9 2.6
4.0 6.06 97.0 2.4
10.0 11.59 94.1 1.9
0.0 1.23 - -
0.5 1.76 87.7 2.6
Pork 2.0 3.26 96.9 1.3
4.0 4.27 85.0 3.7
10.0 11.10 97.7 2.5
0.0 1.16 - -
0.5 1.59 86.0 0.1
Chicken 2.0 2.79 81.7 24
4.0 4.82 91.5 4.4

10.0 10.78 96.2 0.4
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