Flavonoid Glycosides from *Dendrophthoe pentandra* L. and Isoflavonoid Glycosides from *Derris scandens* Benth

Yaowapa Sukpondma

	policia del la companya de la companya del companya de la companya del companya de la companya del la companya de la compa
A section of	191911 CD 38.5 736 2001 C.2.
Andrew Co.	Bib Key 211216
	2 5 21 8 2544

Master of Science Thesis in Organic Chemistry
Prince of Songkla University
2001

Thesis Title

Flavonoid Glycosides from Dendrophthoe pentandra L. and

Isoflavonoid Glycosides from Derris scandens Benth

Author

Miss Yaowapa Sukpondma

Major Program

Organic Chemistry

Academic Year

2000

Advisory committee

Examining committee

V. Ruhachaisinhul. Chairman

V. Puhachaisin hul. Chairman

(Assoc. Prof. Dr. Vatcharin Rukachaisirikul) (Assoc. Prof. Dr. Vatcharin Rukachaisirikul)

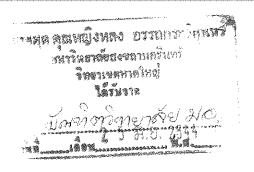
C. Karaler

C. Varaler.

(Asst. Prof. Dr. Chatchanok Karalai)

(Asst. Prof. Dr. Chatchanok Karalai)

K Pawthong Committee


(Dr. Kanda Panthong)

(Dr. Anuchit Plubrukarn)

The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirement for the Master of Science degree in Organic Chemistry.

(Assoc. Prof. Dr. Piti Trisdikoon)

Dean of the Graduate School

Thesis Title Flavonoid Glycosides from Dendrophthoe pentandra L. and

Isoflavonoid Glycosides from Derris scandens Benth

Author Miss Yaowapa Sukpondma

Major Program Organic Chemistry

Academic Year 2000

Abstract

Part I Flavonoid Glycosides from Dendrophthoe pentandra L.

Chemical investigation of constituents of *Dendrophthoe pentandra* was divided into two parts. The first part involved isolation, purification and structure elucidation of compounds from its leaves while the second part dealed with the compounds isolated from twigs. Upon chromatographic separation, the crude extract of leaves yielded three flavone rhamnosides: quercetin 3-*O*-α-rhamnoside (**DW1**), kaempferol 3-*O*-α-rhamnoside (**DW2**) and isorhamnetin 3-*O*-α-rhamnoside (**DW3**) while the crude extract of twigs afforded three known compounds: one steriod [sitosterol (**DT1**)] and two aromatic compounds [4-hydroxy-3-methoxybenzaldehyde (**DT5**) and methyl 4-hydroxy-3-methoxybenzoate (**DT6**)], one new oleanolic acid derivative [oleanoyl palmitate (**DT4**)] and two unidentified compounds [**DT2** and **DT3**].

Part II Isoflavonoid Glycosides from Derris scandens Benth

Phytochemical studies of the crude *n*-butanol extract from stems of *Derris* scandens led to isolation of two known benzoic acid derivatives [4-hydroxy-3-methoxybenzoic acid (YS9) and 4-hydroxy-3,5-dimethoxybenzoic acid (YS12)], one known isoflavone [7,8-dihydroxy-4'-methoxyisoflavone (YS15)], four glucosyl isoflavones: one new glucosyl isoflavone [7-hydroxy-4'-methoxyisoflavone 8-O- β -glucopyranoside (YS8)] and three known ones [4',7-dimethoxyisoflavone 8-O- β -glucopyranoside (YS1), formonetin 7-O- β -glucopyranoside (YS13) and 4',8-dimethoxyisoflavone 7-O- β -glucopyranoside (YS14)] and eight rhamnosyl-(1 \rightarrow 6)-glucosyl isoflavones: four new compounds [4',6-dimethoxyisoflavone 7-O-[α -rhamnopyranosyl-(1 \rightarrow 6)]- β -glucopyranoside (YS6), 5-hydroxy-4',6-dimethoxy-

isoflavone 7-O-[α -rhamnopyranosyl-(1 \rightarrow 6)]- β -glucopyranoside (YS7), 8-hydroxy-4'-methoxyisoflavone 7-O-[α -rhamnopyranosyl-(1 \rightarrow 6)]- β -glucopyranoside (YS10) and 4',7-dimethoxyisoflavone 8-O-[α -rhamnopyranosyl-(1 \rightarrow 6)]- β -glucopyranoside (YS11)] and four known ones [4',8-dimethoxyisoflavone 7-O-[α -rhamnopyranosyl-(1 \rightarrow 6)]- β -glucopyranoside (YS2), 4'-methoxyisoflavone 7-O-[α -rhamnopyranosyl-(1 \rightarrow 6)]- β -glucopyranoside (YS3), 4',5-dihydroxyisoflavone 7-O-[α -rhamnopyranosyl-(1 \rightarrow 6)]- β -glucopyranoside (YS4) and 4'-hydroxyisoflavone 7-O-[α -rhamnopyranosyl-(1 \rightarrow 6)]- β -glucopyranoside (YS5)]. Most compounds were isolated and identified as their corresponding acetate derivatives except for YS1, YS2, YS4, YS9 and YS12.

All structures were determined using 1D and 2D NMR spectroscopic data.

DW1 : R = OH

DW2 : R = H

 $DW3 : R = OCH_3$

DT4

DT1

DT5 : $R_1 = CHO, R_2 = H$

DT6: $R_1 = CO_2CH_3$, $R_2 = H$

 $YS9 : R_1 = CO_2H, R_2 = H$

YS12: $R_1 = CO_2H$, $R_2 = OCH_3$

(4)

соон"

 $YS1 : R = OCH_3$

YS8 : R = OH

YS13 : R = H

 $YS14 : R = OCH_3$

 $YS2 : R_1 = OCH_3, R_2 = R_3 = H$

YS3: $R_1 = R_2 = R_3 = H$

YS6: $R_1 = R_3 = H$, $R_2 = OCH_3$

YS7: $R_1 = H$, $R_2 = OCH_3$, $R_3 = OH$

YS10: $R_1 = OH$, $R_2 = R_3 = H$ COCH₃

$$\mathbf{YS4} : \mathbf{R} = \mathbf{OH}$$

$$\mathbf{YS5} : \mathbf{R} = \mathbf{H}$$

ชื่อวิทยานิพนธ์ ฟลาโวนอยด์ ใกลโคซายน์ จากกาฝากชนิด Dendrophthoe pentandra L.

และใอโซฟลาโวนอยค์ ใกลโคซายน์ จากเถาวัลย์เปรียง (Derris scandens

Benth)

ผู้เขียน

นางสาวเยาวภา สุขพรมา

สาขาวิชา

เคมีอินทรีย์

ปีการศึกษา

2543

บทคัดย่อ

ตอน 1 ฟลาโวนอยด์ ใกลโคซายน์ จากกาฝากชนิด Dendrophthoe pentandra L.

การศึกษานี้แบ่งเป็น 2 ส่วน คือ ส่วนแรกศึกษาส่วนสกัดหยาบจากใบของกาฝากชนิด Dendrophthoe pentandra L. เมื่อทำการแยกและทำให้บริสุทธิ์ด้วยวิธีทางโครมาโทกราฟี ได้ สารประเภทฟลาโวน แรมโนซายน์ (flavone rhamnoside) จำนวน 3 สาร [quercetin 3-O-a-rhamnoside (DW1) kaempferol 3-O-a-rhamnoside (DW2) และ isorhamnetin 3-O-a-rhamnoside (DW3)] และส่วนที่สองทำการศึกษาส่วนสกัดหยาบจากกิ่งของกาฝากชนิดนี้ หลัง จากแยกและทำให้บริสุทธิ์ด้วยวิธีทางโครมาโทกราฟี ได้สารจำนวน 6 สาร ซึ่งเป็นสารประเภท สเตียรอยด์ (steroid) จำนวน 1 สาร [sitosterol (DT1)] สารประเภทอะโรมาติก (aromatic compounds) จำนวน 2 สาร [4-hydroxy-3-methoxybenzaldehyde (DT5) และ methyl 4-hydroxy-3-methoxybenzoate (DT6)] สารใหม่ซึ่งเป็นอนุพันธ์ของกรดโอเลโนลิก (oleanolic acid) จำนวน 1 สาร [oleanoyl palmitate (DT4)] และสารประกอบที่ไม่ทราบโครงสร้างจำนวน 2 สาร [DT2 และ DT3]

ตอน 2 ไอโซฟลาโวนอยด์ ใกลโคซายน์ จากต้นเถาวัลย์เปรียง (Derris scandens)

ส่วนสกัดหยาบบิวทานอลของลำต้นเถาวัลย์เปรียง เมื่อทำการแยกและทำให้บริสุทธิ์ด้วยวิธี
ทางโครมาโทกราฟี ได้สารจำนวน 15 สาร ซึ่งเป็นสารประเภทอนุพันธ์ของกรดเบนโซอิก
(benzoic acid) จำนวน 2 สาร [4-hydroxy-3-methoxybenzoic acid (YS9) และ 4-hydroxy3,5-dimethoxybenzoic acid (YS12)] สารประเภทใจโซฟลาโวน (isoflavone) จำนวน 1 สาร
[7,8-dihydroxy-4 -methoxyisoflavone (YS15)] สารประเภทใจโซฟลาโวน กลูโคซายน์
(isoflavone glucoside) จำนวน 4 สาร [4 ,7-dimethoxyisoflavone 8-O-β-glucopyranoside

(YS1), 7-hydroxy-4 -methoxyisoflavone 8-O-β-glucopyranoside (YS8), formonetin 7-O-β-glucopyranoside (YS13) และ 4 ,8-dimethoxyisoflavone 7-O-β-glucopyranoside (YS14)] โดย YS8 จัดเป็นใจโซฟลาโวน กลูโดซายน์สารใหม่ นอกจากนี้ได้สารประเภทแรมโน ซิล-(1→6)-กลูโดซิลไจโซฟลาโวน (rhamnosyl-(1→6)-glucosyl isoflavone) จำนวน 8 สาร : สารใหม่จำนวน 4 สาร [4 ,6-dimethoxyisoflavone 7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside (YS6), 5-hydroxy-4 ,6-dimethoxyisoflavone 7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside (YS7), 8-hydroxy-4 -methoxyisoflavone 7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside (YS10) และ 4 ,7-dimethoxyisoflavone 8-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside (YS11)] และสารที่ทราบโครงสร้างจำนวน 4 สาร [4 ,8-dimethoxyisoflavone 7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside (YS2), 4 -methoxyisoflavone 7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside (YS3), 4 ,5-dihydroxyisoflavone 7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside (YS4) และ 4 -hydroxyisoflavone 7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside (YS4) และ 4 -hydroxyisoflavone 7-O-[α-rhamnopyranosyl-(1→6)]-β-glucopyranoside (YS5)] สารบริสุทธิ์ที่แยกใต้ส่วนใหญ่ ศึกษาในรูปอนุพันธ์อะซิเดด (acetate derivative) ยกเว้น สาร YS1 YS2 YS4 YS9 และ YS12

โครงสร้างสารประกอบ วิเคราะห์โดยใช้เทคนิคทางสเปกโทรสโกปี อันได้แก่ 1D และ 2D NMR สเปกโทรสโกปี

DW1:
$$R = OH$$

$$DW2: R = H$$

$$DW3: R = OCH_3$$

DT5: $R_1 = CHO, R_2 = H$

DT6: $R_1 = CO_2CH_3$, $R_2 = H$

YS9: $R_1 = CO_2H$, $R_2 = H$

YS12: $R_1 = CO_2H$, $R_2 = OCH_3$

$$YS1 : R = OCH_3$$

YS8 : R = OH

$$YS13 : R = H$$

 $YS14 : R = OCH_3$

YS2:
$$R_1 = OCH_3$$
, $R_2 = R_3 = H$

$$YS3 : R_1 = R_2 = R_3 = H$$

YS6:
$$R_1 = R_3 = H$$
, $R_2 = OCH_3$

YS7:
$$R_1 = H$$
, $R_2 = OCH_3$, $R_3 = OH$

YS10:
$$R_1 = OH$$
, $R_2 = R_3 = H$

$$YS4 : R = OH$$

$$YS5 : R = H$$

ACKNOWNEDGEMENTS

I wish to express my deepest and sincere gratitude to my supervisor, Associate Professor Dr. Vatcharin Rukachaisirikul, for her valuable instructions, expert guidance, excellent suggestions and kindness which are more than I can describe here. Everything will always be in my mind.

My sincere thanks are expressed to my co-advisor, Assistant Professor Dr. Chatchanok Karalai, and Dr. Kanda Panthong for their kindness and valuable advice. Special thanks is also to Professor Dr. Wal Taylor for providing 400 MHz NMR spectral data. In addition, I would like to thank Professor Dr. Stephen Pyne for providing MS spectra and Miss Dusanee Langjae for recording 500 MHz NMR spectral.

I am very grateful to Associate Professor Dr. Chaweewan Jansakul for providing the crude *n*-butanol extract of *Derris scandens* and Mr. Assadawut Hiranrat for collecting *Dendrophthoe pentandra*. Many thanks go to the staff of the Department of Chemistry, Faculty of Science, Prince of Songkla University for making this thesis possible.

This research was made possible by a scholarship from the Institute for the Promotion of Teaching Science Technology (IPST), Higher Education Development Project: Postgraduate Education and Research Program in Chemistry, funded by The Royal Thai Government (PERCH) and the Graduate School for supporting materials.

Finally, none of this would have been possible without love and encouragement of my family and friends. I thank them for their understanding during all of the times when I could not be with them and their steady love that supports me.

All of these are deeply seated in my mind forever.

Yaowapa Sukpondma

CONTENTS

	Page
ABSTRACT (in English)	(3)
ABSTRACT (in Thai)	(7)
ACKNOWNLEDGEMENTS	(11)
CONTENTS	(12)
LISTS OF TABLES	(15)
LISTS OF ILLUSTRATIONS	(19)
ABBREVIATIONS	(26)
PART I Flavonoid Glycosides from Dendrophthoe pentandra L.	
CHAPTER 1.1 INTRODUCTION	1
1.1.1 Introduction	1
1.1.2 Objectives	3
CHAPTER 1.2 EXPERIMENTAL	4
1.2.1 Instruments and chemicals	4
1.2.2 Plant material	5
1.2.3 Isolation and extraction	5
1.2.4 Chemical constituents from leaves of	5
D. pentandra L.	
Investigation of the crude methanol extract	5
Investigation of the crude <i>n</i> -butanol extract	17
1.2.5 Chemical constituents from twigs of	27
D. pentandra L.	
CHAPTER 1.3 RESULTS AND DISCUSSION	55
1.3.1 Structural determination of compounds isolated	55
from leaves of D. pentandra L.	
Compound DW1	55
Compound DW2	57
Compound DW3	59

CONTENTS (continued)

	Page
1.3.2 Structural determination of compounds isolated	61
from twigs of D. pentandra L.	
Compound DT1	61
Compound DT4	61
Compound DT5	66
Compound DT6	67
PART II Isoflavonoid Glycosides from Derris scandens Benth.	
CHAPTER 2.1 INTRODUCTION	68
2.1.1 Introduction	68
2.1.2 Structures of compounds isolated from	81
Derris species	
2.1.3 Objectives	99
CHAPTER 2.2 EXPERIMENTAL	100
2.2.1 Instruments and chemicals	100
2.2.2 Plant material	101
2.2.3 Isolation and extraction	101
2.2.4 Chemical investigation	101
CHAPTER 2.3 RESULTS AND DISCUSSION	168
2.3.1 Benzoic acid derivatives	168
Compound YS9	168
Compound YS12	169
2.3.2 Isoflavone	170
The diacetate of YS15 (AcYS15)	170
2.3.3 Glucosyl isoflavones	170
The tetraacetate of YS13 (AcYS13)	170
The tetraacetate of YS8 (AcYS8)	173
Compound YS1	175
The tetraacetate of YS14 (AcYS14)	177

CONTENTS (continued)

		Page
2	2.3.4 Rhamnosyl-(1→6)-glucosyl isoflavones	179
	The heptaacetate of YS5 (AcYS5)	179
	The hexaacetate of YS3 (AcYS3)	182
	The heptaacetate of YS10 (AcYS10)	185
	Compound YS2	188
	The hexaacetate of YS11 (AcYS11)	190
	The hexaacetate of YS6 (AcYS6)	193
	The hexaacetate of YS7 (AcYS7)	196
	Compound YS4	199
APPENDIX		202
BIBLIOGRAPHY		382
VITAE		302

LISTS OF TABLES

Table		Page
1	Solubility of the crude methanol extract of leaves	5
2	Fractions obtained from the crude methanol extract by column	6
	chromatography over silica gel	
3	Fractions obtained from C by column chromatography over silica	14
	gel	
4	Fractions obtained from D by column chromatography over silica	17
	gel	
5	Fractions obtained from E by column chromatography over silica	19
	gel	
6	Fractions obtained from F by column chromatography over silica	21
	gel	
7	Fractions obtained from F2 by column chromatography over silica	22
	gel	
8	Fractions obtained from F2.4 by column chromatography over silica	22
	gel	
9	Fractions obtained from F2.5 by column chromatography over silica	23
	gel	
10	Fractions obtained from the crude <i>n</i> -butanol extract by flash column	25
	chromatography over silica gel	
11	Fractions obtained from fraction 2 by chromatotron	25
12	Solubility of the crude methanol extract of twigs	28
13	Fractions obtained from G by column chromatography over silica	29
	gel	
14	Fractions obtained from G1 by column chromatography over silica	29.
	gel	
15	Fractions obtained from H by column chromatography over silica	32
	oel	

LISTS OF TABLES (continued)

Table		Page
16	Fractions obtained from H2 by column chromatography over silica	32
	gel	
17	Fractions obtained from H3 by column chromatography over silica	35
	gel	
18	Fractions obtained from portion 1 by chromatotron	36
19	Fractions obtained from I by column chromatography over silica gel	39
20	Fractions obtained from H4 by column chromatography over silica	41
	gel	
21	Fractions obtained from J by column chromatography over silica gel	43
22	Fractions obtained from J4 by column chromatography over silica	45
	gel	
23	Fractions obtained from J5 by column chromatography over silica	48
	gel	
24	Fractions obtained from J5.5 by column chromatography over silica	49
	gel	
25	Fractions obtained from J5.6 by column chromatography over silica	51
	gel	
26	The NMR spectral data of DW1	56
27	The NMR spectral data of DW2	58
28	The NMR spectral data of DW3	59
29	The NMR spectral data of DT4	62
30	The ¹³ C NMR spectra of DT4 and oleanolic acid	65
31	Compounds isolated from Derris species	69
32	Fractions obtained from A by column chromatography over acid-	102
	washed silica gel	
33	Fractions obtained from B by chromatotron	103
34	Fractions obtained from C by chromatotron	107
35	Fractions obtained from D by chromatotron	112

LISTS OF TABLES (continued)

Table		Page
36	Fractions obtained from D6 by chromatotron	113
37	Fractions obtained from E by column chromatography over acid-	114
	washed silica gel	
38	Fractions obtained from F by column chromatography over	117
	reversed-phase silica gel	
39	Fractions obtained from F1 by column chromatography over	117
	reversed-phase silica gel	
40	Solubility of the crude <i>n</i> -butanol extract	122
41	Fractions obtained from the crude n-butanol extract by column	123
	chromatography over silica gel	
42	Fractions obtained from H by column chromatography over	124
	reversed-phase silica gel	
43	Fractions obtained from I by column chromatography over reversed-	127
	phase silica gel	
44	Fractions obtained from J by column chromatography over	129
	reversed-phase silica gel	
45	Fractions obtained from J2 by column chromatography over	130
	reversed-phase silica gel	
46	Fractions obtained from J5 by column chromatography over	131
	reversed-phase silica gel	
47	Fractions obtained from J8 by column chromatography over silica	133
	gel	
48	Fractions obtained from J8.4 by column chromatography over silica	135
	gel	
49	Fractions obtained from J9 by column chromatography over silica	142
	gel	
50	Fractions obtained from J9.5 by column chromatography over silica	143
	gel	

LISTS OF TABLES (continued)

Table		Page
51	Fractions obtained from J10 by column chromatography over silica gel	145
52	Fractions obtained from K by column chromatography over reversed-phase silica gel	147
53	Fractions obtained from K6 by column chromatography over reversed-phase silica gel	150
54	Fractions obtained from L by column chromatography over silica gel	156
55	Fractions obtained from L14 by column chromatography over silica gel	162
56	Fractions obtained from fraction 6 by column chromatography over silica gel	165
57	The NMR spectral data of AcYS13	172
58	The NMR spectral data of AcYS8	174
59	The NMR spectral data of YS1	176
60	Comparison of ¹ H NMR data of AcYS1 and AcYS14	178
61	The NMR spectral data of AcYS14	178
62	The NMR spectral data of AcYS5	181
63	The NMR spectral data of AcYS3	183
64	The NMR spectral data of AcYS10	186
65	The NMR spectral data of YS2	189
66	The NMR spectral data of AcYS11	192
67	The NMR spectral data of AcYS6	195
68	The NMR spectral data of AcYS7	197 ·
69	The NMR spectral data of YS4	200

LISTS OF ILLUSTRATIONS

Fi	gure	Page
1	Dendrophthoe pentadra L.	2
2	UV (CH ₃ OH) spectrum of DW1	203
3	IR (KBr) spectrum of DW1	204
4	¹ H NMR (400 MHz) (CDCl ₃ + DMSO- d_6) spectrum of DW1	205
5	13 C NMR (100 MHz) (CDCl ₃ + DMSO- d_6) spectrum of DW1	206
6	DEPT (135°) (CDCl ₃ + DMSO- d_6) spectrum of DW1	207
7	2D HMQC spectrum of DW1	208
8	2D HMBC spectrum of DW1	209
9	UV (CH ₃ OH) spectrum of DW2	210
10	IR (neat) spectrum of DW2	211
11	¹ H NMR (400 MHz) (CDCl ₃ + DMSO- d_6) spectrum of DW2	212
12	13 C NMR (100 MHz) (CDCl ₃ + DMSO- d_6) spectrum of DW2	213
13	DEPT (135°) (CDCl ₃ + DMSO- d_6) spectrum of DW2	214
14	2D HMQC spectrum of DW2	215
15	2D HMBC spectrum of DW2	216
16	UV (CH ₃ OH) spectrum of DW3	217
17	IR (neat) spectrum of DW3	218
18	¹ H NMR (500 MHz) (CD ₃ OD) spectrum of DW3	219
19	¹³ C NMR (125 MHz) (CD ₃ OD) spectrum of DW3	220
20	DEPT (135°) (CD ₃ OD) spectrum of DW3	221
21	2D HMQC spectrum of DW3	222
22	2D HMBC spectrum of DW3	223
23	IR (KBr) spectrum of DT1	224
24	¹ H NMR (500 MHz) (CDCl ₃) spectrum of DT1	225
25	¹³ C NMR (125 MHz) (CDCl ₃) spectrum of DT1	226
26	DEPT (135°) (CDCl ₃) spectrum of DT1	227
27	¹ H NMR (500 MHz) (CDCl ₃) spectrum of DT2	228
28	IR (neat) spectrum of DT3	229
29	¹ H NMR (500 MHz) (CDCl ₃) spectrum of DT3	230

RINGS OF SONGKLA SHIVERSIVE

Fig	gure	Page
30	IR (neat) spectrum of DT4	231
31	¹ H NMR (500 MHz) (CDCl ₃) spectrum of DT4	232
32	¹³ C NMR (125 MHz) (CDCl ₃) spectrum of DT4	233
33	DEPT (135°) (CDCl ₃) spectrum of DT4	234
34	¹ H- ¹ H COSY spectrum of DT4	235
35	NOEDIFF spectrum of DT4 after irradiation at $\delta_{\rm H}$ 2.82	236
36	2D HMQC spectrum of DT4	237
37	2D HMBC spectrum of DT4	238
38	UV (CHCl ₃) spectrum of DT5	239
39	IR (neat) spectrum of DT5	240
40	¹ H NMR (500 MHz) (CDCl ₃) spectrum of DT5	241
41	¹³ C NMR (125 MHz) (CDCl ₃) spectrum of DT5	242
42	NOEDIFF spectrum of DT5 after irradiation at δ_H 3.96	243
43	UV (CHCl ₃) spectrum of DT6	244
44	IR (neat) spectrum of DT6	245
45	¹ H NMR (500 MHz) (CDCl ₃) spectrum of DT6	246
46	¹³ C NMR (125 MHz) (CDCl ₃) spectrum of DT6	247
47	NOEDIFF spectrum of DT6 after irradiation at $\delta_{\rm H}$ 3.94	248
48	NOEDIFF spectrum of DT6 after irradiation at $\delta_{\rm H}$ 3.88	249
49	Derris scandens Benth.	68
50	UV (CH ₃ OH) spectrum of YS9	250
51	IR (neat) spectrum of YS9	251
52	¹ H NMR (500 MHz) (CD ₃ COCD ₃) spectrum of YS9	252
53	¹³ C NMR (125 MHz) (CD ₃ COCD ₃) spectrum of YS9	253
54	NOEDIFF spectrum of YS9 after irradiation at $\delta_{\rm H}$ 3.90	254
55	UV (CH ₃ OH) spectrum of YS12	255
56	IR (neat) spectrum of YS12	256
57	¹ H NMR (500 MHz) (CD ₃ COCD ₃) spectrum of YS12	257

Fig	gure	Page
58	¹³ C NMR (125 MHz) (CD ₃ COCD ₃) spectrum of YS12	258
59	UV (CHCl ₃) spectrum of AcYS15	259
60	IR (neat) spectrum of AcYS15	260
61	¹ H NMR (500 MHz) (CDCl ₃) spectrum of AcYS15	261
62	¹³ C NMR (125 MHz) (CDCl ₃) spectrum of AcYS15	262
63	UV (CHCl ₃) spectrum of AcYS13	263
64	IR (neat) spectrum of AcYS13	264
65	¹ H NMR (500 MHz) (CDCl ₃) spectrum of AcYS13	265
66	¹³ C NMR (125 MHz) (CDCl ₃) spectrum of AcYS13	266
67	DEPT (135°) (CDCl ₃) spectrum of AcYS13	267
68	NOEDIFF spectrum of AcYS13 after irradiation at $\delta_{\rm H}$ 3.85	268
69	2D HMQC spectrum of AcYS13	269
70	2D HMBC spectrum of AcYS13	270
71	UV (CHCl ₃) spectrum of AcYS8	271
72	IR (neat)spectrum of AcYS8	272
73	¹ H NMR (400 MHz) (CDCl ₃) spectrum of AcYS8	273
74	¹³ C NMR (100 MHz) (CDCl ₃) spectrum of AcYS8	274
75	DEPT (135°) (CDCl ₃) spectrum of AcYS8	275
76	NOEDIFF spectrum of AcYS8 after irradiation at $\delta_{\rm H}$ 6.98	276
77	2D HMQC spectrum of AcYS8	277
78	2D HMBC spectrum of AcYS8	278
79	UV (CH ₃ OH) spectrum of YS1	279
80	IR (KBr) spectrum of YS1	280
81	¹ H NMR (500 MHz) (CD ₃ OD) spectrum of YS1	281
82	1 H NMR (400 MHz) (CDCl ₃ + DMSO- d_{6}) spectrum of YS1	282
83	13 C NMR (100 MHz) (CDCl ₃ + DMSO- d_6) spectrum of YS1	283
84	DEPT (135°) (CD ₃ OD) spectrum of YS 1	284
85	NOEDIFF spectrum of YS1 after irradiation at δ_H 3.84	285

Fig	ure	Page
86	NOEDIFF spectrum of YS1 after irradiation at $\delta_{\rm H}$ 4.02	286
87	2D HMQC spectrum of YS1	287
88	2D HMBC spectrum of YS1	288
89	UV (CHCl ₃) spectrum of AcYS1	289
90	IR (neat) spectrum of AcYS1	290
91	¹ H NMR (500 MHz) (CDCl ₃) spectrum of AcYS1	291
92	¹³ C NMR (125 MHz) (CDCl ₃) spectrum of AcYS1	292
93	DEPT (135°) (CDCl ₃) spectrum of AcYS1	293
94	UV (CHCl ₃) spectrum of AcYS14	294
95	IR (neat) spectrum of AcYS14	295
96	¹ H NMR (500 MHz) (CDCl ₃) spectrum of AcYS14	296
97	¹³ C NMR (125 MHz) (CDCl ₃) spectrum of AcYS14	297
98	DEPT (135°) (CDCl ₃) spectrum of AcYS14	. 298
99	NOEDIFF spectrum of AcYS14 after irradiation at $\delta_{\rm H}$ 3.85	299
100	NOEDIFF spectrum of AcYS14 after irradiation at $\delta_{\rm H}$ 3.96	300
101	2D HMQC spectrum of AcYS14	301
102	2D HMBC spectrum of AcYS14	302
103	UV (CHCl ₃) spectrum of AcYS5	303
104	IR (neat) spectrum of AcYS5	304
105	¹ H NMR (500 MHz) (CDCl ₃) spectrum of AcYS5	305
106	¹³ C NMR (125 MHz) (CDCl ₃) spectrum of AcYS5	306
107	DEPT (135°) (CDCl ₃) spectrum of AcYS5	307
108	¹ H- ¹ H COSY spectrum of AcYS5	308
109	2D HMQC spectrum of AcYS5	309
110	2D HMBC spectrum of AcYS5	310
111	UV (CHCl ₃) spectrum of AcYS3	311
112	IR (neat) spectrum of AcYS3	312
113	¹ H NMR (500 MHz) (CDCl ₂) spectrum of AcVS3	313

Figu	ıre	Page		
114	¹³ C NMR (125 MHz) (CDCl ₃) spectrum of AcYS3	314		
115	DEPT (135°) (CDCl ₃) spectrum of AcYS3	315		
116	¹ H- ¹ H COSY spectrum of AcYS3	316		
117	2D HMQC spectrum of AcYS3	317		
118	2D HMBC spectrum of AcYS3	318		
119	Mass spectrum of AcYS3	319		
120	¹ H NMR (500 MHz) (CD ₃ OD) spectrum of YS10	320		
121	UV (CHCl ₃) spectrum of AcYS10	321		
122	IR (neat) spectrum of AcYS10	322		
123	¹ H NMR (500 MHz) (CDCl ₃) spectrum of AcYS10	323		
124	¹³ C NMR (125 MHz) (CDCl ₃) spectrum of AcYS10	324		
125	DEPT (135°) (CDCl ₃) spectrum of AcYS10	325		
126	126 ¹ H- ¹ H COSY spectrum of AcYS10			
127	NOEDIFF spectrum of AcYS10 after irradiation at $\delta_{\rm H}$ 3.84			
128	28 2D HMQC spectrum of AcYS10			
129	29 2D HMBC spectrum of AcYS10			
130	130 UV (CH ₃ OH) spectrum of YS2			
131	IR (KBr) spectrum of YS2	331		
132	¹ H NMR (400 MHz) (CDCl ₃ + DMSO- d_6) spectrum of YS2	332		
133	13 C NMR (100 MHz) (CDCl ₃ + DMSO- d_6) spectrum of YS2	333		
134	DEPT (135°) (CDCl ₃ + DMSO- d_6) spectrum of YS2	334		
135	¹ H- ¹ H COSY spectrum of YS2	335		
136	36 2D HMQC spectrum of YS2			
137	2D HMBC spectrum of YS2	337		
138	Mass spectrum of YS2	338		
139	UV (CHCl ₃) spectrum of AcYS2	339		
140	IR (neat) spectrum of AcYS2	340		
141	¹ H NMR (500 MHz) (CDCl ₃) spectrum of AcYS2	341		

Figu	ıre	Page	
142	(ob oly) opolitain of field		
143	UV (CHCl ₃) spectrum of AcYS11	343	
144	IR (neat) spectrum of AcYS11	344	
145	¹ H NMR (500 MHz) (CDCl ₃) spectrum of AcYS11	345	
146	¹³ C NMR (125 MHz) (CDCl ₃) spectrum of AcYS11	346	
147	DEPT (135°) (CDCl ₃) spectrum of AcYS11	347	
148	¹ H- ¹ H COSY spectrum of AcYS11	348	
149	2D NOESY spectrum of AcYS11	349	
150	2D HMQC spectrum of AcYS11	350	
151	2D HMBC spectrum of AcYS11	351	
152	UV (CHCl ₃) spectrum of AcYS6	. 352	
153	IR (neat) spectrum of AcYS6	353	
154	¹ H NMR (500 MHz) (CDCl ₃) spectrum of AcYS6	354	
155	¹³ C NMR (125 MHz) (CDCl ₃) spectrum of AcYS6	355	
156	DEPT (135°) (CDCl ₃) spectrum of AcYS6	356	
157	¹ H- ¹ H COSY spectrum of AcYS6	357	
158	2D NOESY spectrum of AcYS6	358	
159	2D HMQC spectrum of AcYS6	359	
160	2D HMBC spectrum of AcYS6	360	
161	UV (CHCl ₃) spectrum of AcYS7	361	
162	IR (neat) spectrum of AcYS7	362	
163	¹ H NMR (400 MHz) (CDCl ₃) spectrum of AcYS7	363	
164	¹³ C NMR (100 MHz) (CDCl ₃) spectrum of AcYS7	364	
165	DEPT (135°) (CDCl ₃) spectrum of AcYS7	365	
166	¹ H- ¹ H COSY spectrum of AcYS 7	366	
167	2D HMQC spectrum of AcYS7	367	
168	2D HMBC spectrum of AcYS7	368	
169	UV (CH ₃ OH) spectrum of YS4	369	

Figu	re	Pag
170	IR (KBr) spectrum of YS4	370
171	¹ H NMR (400 MHz) (CDCl ₃ + DMSO- d_6) spectrum of YS4	371
172	13 C NMR (100 MHz) (CDCl ₃ + DMSO- d_6) spectrum of YS4	372
173	DEPT (135°) (CDCl ₃ + DMSO- d_6) spectrum of YS4	373
174	¹ H- ¹ H COSY spectrum of YS4	374
175	2D HMQC spectrum of YS4	375
176	2D HMBC spectrum of YS4	376
177	Mass spectrum of YS4	377
178	UV (CHCl ₃) spectrum of AcYS4	378
179	IR (neat) spectrum of AcYS4	379
180	¹ H NMR (500 MHz) (CDCl ₃) spectrum of AcYS4	380
181	¹³ C NMR (125 MHz) (CDCl ₃) spectrum of AcYS4	381

ABBREVIATIONS

S singlet d doublet ŧ triplet dddoublet of doublet ddd doublet of doublet of doublet dq doublet of quartet m multiplet brs broad singlet δ chemical shift J coupling constant g gram mg milligram $_{\rm ml}$ milliliter cm^3 cubic centimeter mmmillimeter $[\alpha]_D$ specific rotation λ wavelength molar extinction coefficient **EIMS** Electron Impact Mass Spectra IR Infrared UV Ultraviolet-Visible UV-S Ultraviolet-Visible-short wavelength MS Mass Spectroscopy m/za value of mass divided by charge $^{\rm o}C$ degree celcius cm⁻¹ wavenumber TLC Thin-layer Chromatography $R_{\mathbf{f}}$ Retention factor Anisaldehyde in sulfuric acid ANH **NMR** Nuclear Magnetic Resonance

ABBREVIATIONS (continued)

2D NMR = Two Dimensional Nuclear Magnetic Resonance

Hz = hertz

MHz = megahertz

ppm = part per million

DEPT = Distortionless Enhancement by Polarization Transfer

COSY = Correlation spectroscopy

NOEDIFF = Nuclear Overhauser Effect Difference Spectroscopy

NOESY = Nuclear Overhauser Enhanced Spectroscopy

HMQC = Heteronuclear Multiple Quantum Coherence

HMBC = Heteronuclear Multiple Bond Coherence

PART I

FLAVONOID GLYCOSIDES
FROM *DENDROPHTHOE PENTANDRA* L.

CHAPTER 1.1

INTRODUCTION

1.1.1 Introduction

Dendrophthoe is one of the genera of the Loranthaceae. Plants of this family have long been recognized as aerial stem-parasitic shrubs. The genus Dendrophthoe is found in tropical Africa, southern Asia and southeastwards to Australia about 38 species. In southeast Asia, its distribution in Malesia is about 21 species.

$\bullet D$	clemen	tis
·	CICITION	

• D. constricta

• D. curvata

• D. flosculosa

• D. gangliiformis

• D. gjellerupii

• D. glabrescens

• D. hallieri

• D. incarnata

• D. lanosa

• D. locellata

• D. longituba

• D. mearnsii

• D. odontocalyx

• D. pauciflora

• D. pentandra

• D. praelonga

• D. quadrifida

• D. timorana

• D. trichanthera

• D. xrimituba

Dendrophthoe pentandra L. is an aerial stem-parasitic shrub. Its leaves are scattered or subopposite, narrowly to broadly elliptic 6-13 cm long and 3-8 cm wide. Inflorescence contains 6-12 flowers, mostly green or yellow or orange, at the node (Barlow, 1997).

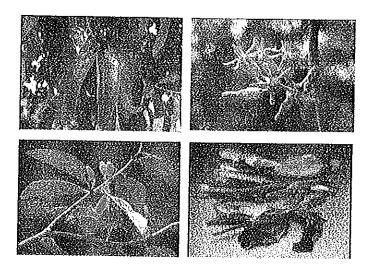


Figure 1 Dendrophthoe pentandra L. (รุ่งระวี เค็มศิริฤกษ์กุล และ ชาติชาย สันสนียชีวิน, 2541)

Dendrophthoe pentandra L. is found on various trees such as mango, orange and rose apple trees. It is used in folk medicine as it possesses antihypertensive activity. Preliminary examination of methanol extract of its leaves indicated that this crude extract showed a significant hypotensive activity (Jansakul, 1999). According to NAPRALERT database, there was no report on chemical constituents isolated from Dendrophthoe species as well as their biological activities. However, the Dictionary of Natural Products has reported isolation of neritaloside from D. faleata.

1.1.2 Objectives

Based on NAPRALERT database, there has been no phytochemical examination on *D. pentandra* L. This prompted us to investigate its chemical constituents in order to provide additional information of the plants in this genus. This research involved isolation, purification and structure elucidation of the chemical constituents from both leaves and twigs of *D. pentandra* L.

CHAPTER 1.2

EXPERIMENTAL

1.2.1 Instruments and chemicals

Melting points were recorded in °C and were measured on a digital Electrothermal 9100 Melting Point Apparatus. Infrared spectra were recorded using FTS165 FT-IR spectrometer. Major bands (v) were recorded in wave numbers (cm⁻¹). Ultraviolet (UV) absorption spectra were recorded using UV-160A spectrophotometer (SHIMADZU). Principle bands (λ_{max}) were recorded as wavelengths (nm) and log ε in methanol or chloroform solution. Nuclear magnetic resonance spectra were recorded on either 400 MHz Brueker AMX 400 spectrometer or 500 MHz Varian UNITY INOVA spectrometer. Spectra were recorded using deuterochloroform, tetradeutero-methanol or hexadeutero-dimethyl sulphoxide solution and were recorded as δ value in ppm downfield from TMS (internal standard δ 0.00). Optical rotation was measured in methanol or chloroform solution with sodium D line (590 nm) on an AUTOPOLR II automatic polarimeter. Solvents for extraction and chromatography were distilled at their boiling point ranges prior to use except for petroleum ether (bp. 40-60 °C), diethyl ether and ethyl acetate which were analytical grade reagents. Quick column chromatography was performed on silica gel 60 GF₂₅₄ (Merck). Column chromatography was performed on silica gel (Merck) type 100 (70-230 mesh ASTM). Precoated TLC plates of silica gel 60 F₂₅₄ or reversed-phase C₁₈ were used for analytical purposes.

1.2.2 Plant material

Leaves and twigs of *D. pentandra* L. were collected from Nakorn Si Thammarat and Songkhla Provinces in Thailand. The plant was identified by Professor Puangpen Sirirugsa, Department of Biology, Faculty of Science, Prince of Songkla University.

1.2.3 Isolation and extraction

Leaves (1,600 g) and twigs (3,825 g) of *D. pentandra* L. were individually extracted with methanol (12 L) over the period of 7 days at room temperature for 3 times. The filtered solution was then evaporated to dryness under reduced pressure to afford crude methanol extracts as green viscous liquid in 104.33 and 273.49 g, respectively. In addition, leaves (3.0 kg) of *D. pentandra* L. was simmered in hot water for three hours. The solution was then extracted with *n*-butanol. The *n*-butanol phase was evaporated under reduced pressure to yield a crude *n*-butanol extract as a yellow solid in 15.00 g.

1.2.4 Chemical constituents from leaves of D. pentandra L.

Investigation of the crude methanol extract

The crude methanol extract of *D. pentandra* L. was tested for solubility in various solvents. The results were shown in Table 1.

Table 1 Solubility of the crude methanol extract of leaves

Solvent	Solubility at room temperature
Petroleum ether	+ yellow solution
CH ₂ Cl ₂	+ yellow solution
Ether	++ green-yellow solution mixed with white solid
CHCl ₃	++ green-yellow solution mixed with white solid

Table 1 (continued)

Solvent	Solubility at room temperature
EtOAc	++ green-yellow solution mixed with white solid
Acetone	++ green solution mixed with white solid
CH₃OH	+++ green solution
H ₂ O	++ yellow solution
10%HCl	++ green-yellow solution
10%NaHCO ₃	+++ red-brown solution
10%NaOH	+++ yellow-green solution

⁺ partially soluble ++ moderately soluble +++ well-soluble

It was concluded, based on the solubility results, that the major components in the crude methanol extract was polar and acidic.

The First Investigation

The methanol extract (0.48 g) was chromatographed on silica gel using ethyl acetate, ethyl acetate-methanol gradient and finally pure methanol to afford twenty six fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford ten fractions as shown in Table 2.

 Table 2 Fractions obtained from the crude methanol extract by column

 chromatography over silica gel

Fraction	Weight (g)	Physical appearance
1	0.013	Yellow liquid
2	0.048	Green viscous liquid

Table 2 (continued)

Fraction	Weight (g)	Physical appearance
3	0.030	Green viscous liquid
4	0.018	Dark green viscous liquid
5	0.024	Green viscous liquid
6	0.062	Brown-green viscous liquid
7	0.375	Brown viscous liquid
8	0.206	Brown viscous liquid mixed with yellow solid
9	0.161	Green viscous liquid mixed with yellow solid
10	0.280	Green viscous liquid mixed with yellow solid

Fraction 1 Chromatogram characteristics on normal phase TLC with 10% methanol-ethyl acetate showed one spot under UV-S and vapor of iodine with R_f value of 0.82. Because of low quantity of this fraction, it was not further investigated.

Fraction 2 Chromatogram characteristics on normal phase TLC with 10% methanol-ethyl acetate showed one green spot with R_f value of 0.82. It was not further investigated because it was expected to be chlorophyll.

Fraction 3 Chromatogram characteristics on normal phase TLC with 10% methanol-ethyl acetate demonstrated two well-separated spots with $R_{\rm f}$ values of 0.77 and 0.83. No further purification was performed because this fraction was obtained in low quantity.

Fraction 4 Chromatogram characteristics on normal phase TLC with 10% methanol-ethyl acetate showed one pale spot under UV-S with R_f value of 0.77. It was therefore not further investigated.

Fraction 5 Chromatogram characteristics on normal phase TLC with 10% methanol-ethyl acetate showed two major UV-active spots with R_f values of 0.39 and 0.71. It was not further investigated because it was obtained in low quantity.

Fraction 6 Chromatogram characteristics on normal phase TLC with 10% methanol-chloroform (4 runs) showed two major UV-active spots with R_f values of 0.10 and 0.22. Further separation with precoated TLC on silica gel plates with 10% methanol-chloroform (5 runs) as a mobile phase afforded four bands.

Band 1 was obtained as a yellow viscous liquid in 25.2 mg. Chromatogram characteristics on normal phase TLC with chloroform showed one UV-active spot with $R_{\rm f}$ value of 0.67. From $^{1}{\rm H}$ NMR spectroscopic data, It was found to be plasticizer. It was not further investigated.

Band 2 was obtained as a yellow viscous liquid in 3.0 mg. Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform showed one UV-active spot with R_f value of 0.20. Because this fraction was obtained in low quantity, it was not further investigated.

<u>Band 3</u> was obtained as a yellow viscous liquid in 23.4 mg. Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform showed none of well-separated spots under UV-S. Therefore, no further purification was carried out.

Band 4 was obtained as a brown solid in 8.4 mg. Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform showed none of well-separated spots under UV-S. It was not further investigated.

Fraction 7 Chromatogram characteristics on normal phase TLC with 10% methanol-ethyl acetate showed three major spots under UV-S and vapor of iodine with $R_{\rm f}$ values of 0.15, 0.24 and 0.45. No further investigation was performed.

Fraction 8 Chromatogram characteristics on normal phase TLC with 10% methanol-chloroform (4 runs) and 20% methanol-chloroform (1 run) showed one oval yellow spot with R_f value of 0.34. This fraction (90.9 mg) was further acetylated with acetic anhydride (2.5 ml) and pyridine (0.5 ml). The mixture was stirred at room temperature for 24 hours. The reaction mixture was extracted with ethyl acetate (3×20 ml). The ethyl acetate layer was consecutively washed with 10% hydrochloric acid (3×20 ml) and 10% sodium bicarbonate (3×20 ml). The aqueous bicarbonate layer was then acidified with 10% hydrochloric acid, extracted with ethyl acetate (3×40 ml) and then washed with water. The second ethyl acetate layer was dried over anhydrous sodium sulfate, filtered and evaporated under reduced pressure to yield a brown viscous liquid in 14.6 mg. Chromatogram characteristics on normal phase TLC with 10% methanol-chloroform showed many unseparated UV-active spots. It was therefore not further investigated.

The first ethyl acetate layer was further washed with water (3×20 ml) to give two portions.

The organic portion was obtained as a yellow solution. It was dried over anhydrous sodium sulfate, filtered and evaporated under reduced pressure to yield a brown viscous liquid in 75.8 mg. Chromatogram characteristics on normal phase TLC with 10% methanol-chloroform showed three well-separated yellow spots with R_f values of 0.45, 0.56 and 0.69. Further acetylation with acetic anhydride (1.5 ml) and pyridine (0.5 ml) was performed. The mixture was stirred at room temperature for 24 hours. The reaction mixture was worked up using the above procedure to afford three fractions.

Fraction 1 was obtained as a yellow viscous liquid in 2.6 mg. Chromatogram characteristics on normal phase TLC with 10% methanol-chloroform showed four well-separated yellow spots with R_f values of 0.35, 0.40, 0.50 and 0.59. Because of low quantity of this fraction, it was not further investigated.

Fraction 2 was obtained as a yellow viscous liquid in 59.2 mg. Chromatogram characteristics on normal phase TLC with 10% methanol-chloroform showed three yellow spots with R_f values of 0.50, 0.59 and 0.67 and the other spot with R_f value of 0.83 under UV-S. It was further separated by precoated TLC on silica gel plates with 3% methanol-chloroform as a mobile phase to afford four bands.

Band 2.1 was obtained as a yellow viscous liquid in 9.7 mg. Chromatogram characteristics on normal phase TLC with 50% dichloromethane-petroleum ether indicated the presence of plasticizer. It was not further investigated.

Band 2.2 was obtained as a yellow viscous liquid in 3.1 mg. Chromatogram characteristics on normal phase TLC with 5% methanol-chloroform showed one major yellow spot with R_f value of 0.27.

Band 2.3 was obtained as a yellow viscous liquid in 18.5 mg. Chromatogram characteristics on normal phase TLC with 5% methanol-chloroform showed one oval UV-active spot with the same R_f value as that of the band 2.2. They were then combined together and separated by precoated TLC on silica gel plates with 5% methanol-chloroform as a mobile phase to afford four bands.

Band 1 was obtained as a yellow viscous liquid in 5.9 mg. Chromatogram characteristics on normal phase TLC with 5% methanol-chloroform demonstrated one yellow spot with R_f value of 0.23. The 1H NMR spectrum indicated that it was a triacetate derivative of DW1.

¹H NMR (CDCl₃) (δ ppm) 7.47 (s, 1H), 7.31 (dd, J = 8.4, 1.5 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.37 (s, 1H), 6.26 (d, J = 1.5 Hz, 1H), 5.64 (s,1H), 5.59-5.57 (m, 1H), 5.30 (dd, J = 9.9, 3.0 Hz, 1H), 4.94 (t, J = 9.9 Hz, 1H), 3.50 (dq, J = 9.9,

0.92 (d, J = 6.5 Hz, 3H)

6.5 Hz, 1H), 2.13 (s, 3H), 2.03 (s, 3H), 2.00 (s, 3H),

Band 2 was obtained as a yellow viscous liquid in 4.0 mg. Chromatogram characteristics on normal phase TLC with 5% methanol-chloroform demonstrated one major yellow spot with R_f value of 0.24. No further purification was performed because this fraction was obtained in low quantity.

Band 3 was obtained as a yellow viscous liquid in 2.0 mg. Chromatogram characteristics on normal phase TLC with 5% methanol-chloroform showed one major yellow spot with $R_{\rm f}$ value of 0.19. It was not further investigated because of low quantity.

Band 4 was obtained as a yellow viscous liquid in 2.0 mg. Chromatogram characteristics on normal phase TLC with 5% methanol-chloroform demonstrated none of well-separated spots under UV-S. No attempted purification was carried out.

Fraction 3 was obtained as a yellow viscous liquid in 7.3 mg. Chromatogram characteristics on normal phase TLC with 10% methanol-chloroform demonstrated none of well-separated spots under UV-S. It was not further investigated.

The aqueous portion was obtained as a green solution. It was extracted with n-butanol (2×20 ml) and evaporated under reduced pressure to yield a yellow viscous liquid in 55.3 mg. Chromatogram characteristics on normal phase TLC with 10% methanol-chloroform showed one major yellow spot with R_f value of 0.69 and pale spots under UV-S. No further investigation was performed because of limitation of time.

Fraction 8 (106.6 mg) was acetylated under the same reaction conditions as previously mentioned. Upon working up, two fractions were obtained.

Fraction 1 was obtained as a brown-yellow viscous liquid in 90.3 mg. Chromatogram characteristics on normal phase TLC with chloroform showed two major yellow spots with R_f values of 0.17 and 0.29 and two minor spots under UV-S

with R_f values of 0.67 and 0.73. Further separation with precoated TLC on silica gel plates with 2% methanol-chloroform as a mobile phase afforded seven bands.

Band 1 was obtained as a yellow viscous liquid in 9.1 mg. Chromatogram characteristics on normal phase TLC with chloroform (2 runs) indicated that it was a plasticizer. It was therefore not further investigated.

Band 2 was obtained as a yellow solid in 6.5 mg. Chromatogram characteristics on normal phase TLC with chloroform (2 runs) showed two major yellow spot with R_f values of 0.24 and 0.36. Because this fraction was obtained in low quantity, it was not further investigated.

Band 3 was obtained as a yellow viscous liquid in 13.4 mg. Chromatogram characteristics on normal phase TLC with chloroform (2 runs) showed two well-separated yellow spots with R_f values of 0.15 and 0.24. No further purification was carried out because of low quantity of this fraction.

Band 4 was obtained as a colorless viscous liquid in 1.9 mg. Chromatogram characteristics on normal phase TLC with 5% methanol-chloroform demonstrated one yellow spot with $R_{\rm f}$ value of 0.59. Because of low quantity, it was not further investigated.

Band 5 was obtained as a yellow viscous liquid in 4.5 mg. Chromatogram characteristics on normal phase TLC with 5% methanol-chloroform demonstrated one major yellow spot with R_f value of 0.49. No further investigation was carried out because this fraction was obtained in low quantity.

Band 6 was obtained as a yellow-white solid in 8.7 mg. Chromatogram characteristics on normal phase TLC with 5% methanol-chloroform demonstrated two UV-active spots with R_f values of 0.45 and 0.31. From 1H NMR spectroscopic data, it contained a hexaacetate derivative of DW1 as a major component.

¹H NMR (CDCl₃) (δ ppm) 7.73 (dd, J = 8.5, 2.0 Hz, 1H), 7.66 (d, J = 2.0 (500 MHz) Hz, 1H), 7.35 (d, J = 8.5 Hz, 1H), 6.59 (d, J = 2.0 Hz, 1H), 5.66 (dd, J = 3.5, 1.5 Hz, 1H), 5.56 (d, J = 1.5 Hz, 1H), 5.22 (dd, J = 10.0, 3.5 Hz, 1H), 4.93 (t, J = 10.0 Hz,

1H), 3.36 (*dq*, *J* = 10.0, 6.0 Hz, 1H), 2.41 (*s*, 3H), 2.33 (*s*, 3H), 2.31 (*s*, 3H), 2.12 (*s*, 3H), 1.99 (*s*, 3H), 1.98 (*s*, 3H), 0.91 (*d*, *J* = 6.0 Hz, 3H)

Band 7 was obtained as a yellow viscous liquid in 8.9 mg. Chromatogram characteristics on normal phase TLC with 5% methanol-chloroform demonstrated three well-separated spots with $R_{\rm f}$ values of 0.19, 0.24 and 0.28. It was not further investigated because of low quantity.

Fraction 2 was obtained as a yellow viscous liquid in 37.1 mg. Chromatogram characteristics on normal phase TLC with chloroform demonstrated four well-separated spots under UV-S with $R_{\rm f}$ values of 0.34, 0.39, 0.46 and 0.50. No attempted purification was performed because this fraction was obtained in low quantity.

Fraction 9 Chromatogram characteristics on normal phase TLC with 10% methanol-chloroform (4 runs) showed the same pattern as that of fraction 8. Therefore, no further purification was performed.

Fraction 10 Chromatogram characteristics on normal phase TLC with 10% methanol-ethyl acetate showed none of well-separated spots under UV-S. It was therefore not further investigated.

The Second Investigation

Attempted purification either by direct chromatography of the crude extract or chromatography of acetate derivatives was unsatisfactory. Only the **triacetate** and **hexaacetate derivatives of DW1** were obtained. The crude extract (0.58 g) was therefore treated with 10% sodium hydroxide (30 ml) and extracted with ethyl acetate (5×60 ml) to give two fractions.

Fraction A (ethyl acetate fraction) was obtained as a yellow viscous liquid in 0.14 g. Chromatogram characteristics on normal phase TLC with 10% methanol-chloroform showed no major UV-active spots. It was therefore not further investigated.

Fraction B (aqueous fraction) was neutralized with 10% hydrochloric acid and then extracted with ethyl acetate (5×60 ml) to provide two subfractions.

Subfraction B1 (ethyl acetate fraction) was obtained as a green viscous liquid in 0.13 g. Chromatogram characteristics on normal phase TLC with 10% methanol-chloroform showed none of well-separated spots under UV-S. No further purification was performed.

Subfraction B2 (aqueous fraction) was acidified with 10% hydrochloric acid and then extracted with ethyl acetate (5×60 ml) into two subfractions.

Subfraction B2.1 (ethyl acetate fraction) was obtained as a brown viscous liquid in 0.26 g. Chromatogram characteristics on normal phase TLC with 10% methanol-chloroform showed none of well-separated spots under UV-S. It was therefore not further investigated.

Subfraction B2.2 (aqueous fraction) was extracted with *n*-butanol (4×50 ml). The *n*-butanol layer was evaporated under reduced pressure to yield a brown viscous liquid in 0.03 g. Chromatogram characteristics on normal phase TLC with 10% methanol-chloroform showed none of well-separated spots under UV-S. No further investigation was performed.

The Third Investigation

The crude methanol extract (2.11 g) was separated into two fractions by dissolving in acetone.

Acetone-soluble fraction was obtained as a green viscous liquid in 1.16 g. Chromatogram characteristics on normal phase TLC with 10% methanol-chloroform (2 runs) showed one major UV-active spot with R_f value of 0.19 and the other pale spot with R_f value of 0.33.

Acetone-insoluble fraction was obtained as a brown viscous liquid in 0.38 g. Chromatogram characteristics on normal phase TLC with 10% methanol-chloroform (2 runs) showed one major UV-active spot with R_f value of 0.19 which was identical to DW1.

The Fourth Investigation

The methanol extract (C, 570 mg) was dissolved with water 40 ml. The resulting mixture was extracted with n-butanol (3×60 ml). The n-butanol layer was evaporated under reduced pressure to yield a green viscous liquid in 491.5 mg. Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform demonstrated two major yellow spots with R_f values of 0.14 and 0.20. Further separation with column chromatography over silica gel was performed. Elution was conducted initially with chloroform, chloroform-methanol gradient and finally pure methanol to give twenty six fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness in vacuo to afford six fractions as shown in Table 3.

Table 3 Fractions obtained from C by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
C1	0.032	Dark green viscous liquid
C2	0.008	Dark green viscous liquid
C3	0.019	Green viscous liquid
C4	0.012	Green viscous liquid
C5	0.067	Green viscous liquid
С6	0.312	Dark green viscous liquid

Fraction C1 Chromatogram characteristics on normal phase TLC with 50% chloroform-petroleum ether showed many UV-active spots. Because of low quantity of this fraction, it was not further investigated.

Fraction C2 Chromatogram characteristics on normal phase TLC with 50% chloroform-petroleum ether showed one green spot with $R_{\rm f}$ value of 0.09. No further purification was performed.

Fraction C3 Chromatogram characteristics on normal phase TLC with 50% chloroform-petroleum ether showed none of well-separated UV-active spots. It was therefore not further investigated.

Fraction C4 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform demonstrated two well-separated spots under UV-S with $R_{\rm f}$ values of 0.23 and 0.45. No attempted purification was carried out because this fraction was obtained in low quantity.

Fraction C5 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform showed one yellow spot with $R_{\rm f}$ value of 0.21 and the other spot at $R_{\rm f}$ value of 0.33 under UV-S. Further separation with precoated TLC on silica gel plates with 20% methanol-chloroform as a mobile phase afforded two bands.

Band 1 (DW2) was obtained as a yellow solid in 8.5 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed one pure UV-active spot with $R_{\rm f}$ value of 0.32.

$\left[\alpha\right]_{D}^{25}$	-104.09°
	$(c = 9.6 \times 10^{-3} \text{ g/}100 \text{ cm}^3, \text{ CH}_3\text{OH})$
IR (neat) v (cm ⁻¹)	3368 (OH stretching),
	2930 (CH stretching),
	1657 (C=O stretching),
	1611, 1509 (C=C stretching)
UV (CH ₃ OH) λ_{max} (nm) (log ε)	213 (4.49), 266 (4.51), 348 (4.34)
$^{\mathrm{I}}\mathrm{H}\mathrm{NMR}\left(\mathrm{CDCl_{3}}+\mathrm{DMSO}\text{-}d_{6}\right)\left(\delta\mathrm{ppm}\right)$	12.60 (s, 1H), 7.75 (d, $J = 8.7$ Hz, 2H),
(400 MHz)	6.93 (d , J = 8.7 Hz, 2H), 6.36 (d , J = 2.1
	Hz, 1H), 6.22 (d , J = 2.1 Hz, 1H), 5.45
	(d, J = 1.8 Hz, 1H), 4.23 (dd, J = 3.4, 1.8)
	Hz, 1H), 3.72 (dd, $J = 9.2$, 3.4 Hz, 1H),
	3.30-3.20 (m, 1H), 3.25-3.20 (m, 1H),
	0.92 (d, J = 6.0 Hz, 3H)
$^{-13}$ C NMR (CDCl ₃ + DMSO- d_6) (δ ppm)	177.95, 164.31, 161.66, 160.01, 157.28
(100 MHz)	156.74, 134.42, 130.43, 120.88, 115.48
	104.56, 101.57, 98.91, 93.75, 71.77, 71.02
	70.41, 70.18, 17.30
DEPT (135°) (CDCl ₃ + DMSO- d_6) CH	130.43, 115.48, 101.57, 98.91, 93.75,

71.77, 71.02, 70.41, 70.18 CH₃ 17.30

 $\underline{\mathrm{Band}\ 2}$ (DW1) was obtained as a yellow solid in 52.8 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed one yellow spot with R_f value of 0.21.

Melting point	178-182 °C
$[\alpha]_{D}^{25}$	-119.04°
	$(c = 8.4 \times 10^{-3} \text{ g/}100 \text{ cm}^3, \text{CH}_3\text{OH})$
IR (KBr) ν (cm ⁻¹)	3300 (O-H stretching),
	1651 (C=O stretching)
	1600, 1560 (C=C stretching)
UV (CH ₃ OH) λ_{max} (nm) (log ε)	213 (4.33), 257 (4.32), 347 (4.20)
¹ H NMR (CDCl ₃ + DMSO- d_6) (δ ppm)	12.70 (s, 1H), 7.33 (d, $J = 2.4$ Hz, 1H),
(400 MHz)	7.28 (dd , J = 8.4, 2.4 Hz, 1H), 6.90 (d , J
	= 8.4 Hz, 1H), 6.42 (d, J = 2.4 Hz, 1H),
	6.22 (d , J = 2.4 Hz, 1H), 5.38 (d , J = 1.8
	Hz, 1H), 4.24 (dd , $J = 3.4$, 1.8 Hz, 1H),
	3.77 (dd, J = 9.4, 3.4 Hz, 1H), 3.38-3.32
	(m, 1H), 3.47-3.41 (m, 1H), 0.85 (d, J =
12	6.1 Hz, 3H)
13 C NMR (CDCl ₃ + DMSO- d_6) (δ ppm)	177.46, 163.88, 161.00, 157.04, 156.19
(100 MHz)	148.12, 144.87, 133.93, 120.85, 120.49
	115.37, 115.17, 103.83, 101.48, 98.43
	93.38, 70.92, 70.28, 70.10, 69.76, 17.14
DEPT (135°) (CDCl ₃ + DMSO- d_6) CH	120.85, 115.37, 115.17, 101.48, 98.43,
	93.38, 70.92, 70.28, 70.10, 69.76
CH ₃	17.14

Fraction C6 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform showed one major yellow spot of **DW1**.

Investigation of the crude n-butanol extract

The First Investigation

The crude n-butanol extract (5.01 g) was recrystallized several times in a mixture of methanol-chloroform to afford three fractions.

Fraction 1 was obtained as a yellow solid in 300 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of **DW1** as a pure component.

Fraction 2 was obtained as a brown solid. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed **DW1** as a major component and the other component with R_f value of 0.37. This fraction (**D**, 217.5 mg) was separated by column chromatography over silica gel. Elution was conducted initially with 5% methanol-chloroform and gradually enriched with pure methanol to give twenty nine fractions. All fractions were examined by TLC, combined on the basis of chromatogram characteristics and then evaporated to dryness under reduced pressure to afford four fractions as shown in Table 4.

Table 4 Fractions obtained from D by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
D1	0.007	Yellow solid
D2	0.008	Yellow solid
D3	0.039	Yellow solid
D4	0.187	Yellow-brown solid

Fraction D1 Chromatogram characteristics on normal phase TLC with chloroform showed one pale spot under UV-S with R_f value of 0.42. It was therefore not further investigated.

Fraction D2 Chromatogram characteristics on normal phase TLC with chloroform showed none of well-separated spots under UV-S. No further purification was performed.

Fraction D3 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated that this fraction contained DW2. Further separation

with precoated TLC on silica gel plates with 20% methanol-chloroform as a mobile phase afforded three bands.

Band 1 was obtained as a yellow viscous liquid in 8.4 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed the presence of **DW2** as a major component. Chromatography on reversed-phase TLC with 70% methanol-water as a mobile phase afforded two bands.

Band 1.1 was obtained as a yellow viscous liquid in 2.6 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of **DW2** as a pure component.

Band 1.2 was obtained as a yellow viscous liquid in 1.1 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed one pure spot under UV-S with R_f value of 0.28. Because of low quantity of this fraction, it was not further investigated.

Band 2 was obtained as a yellow viscous liquid in 5.0 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of **DW1**.

Band 3 was obtained as a yellow solid in 11.0 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed one major yellow spot with the same R_f value as that of DW1.

Fraction 3 The brown filtrate was evaporated to dryness under reduced pressure to afford a brown viscous liquid. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform demonstrated many well-separated spots and contained **DW2** as a component. This fraction (166.4 mg) was purified by precoated TLC on silica gel plates with 20% methanol-chloroform as a mobile phase to afford seven bands.

Band 1 was obtained as a yellow viscous liquid mixed with a brown solid in 2.9 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed the absence of UV-active spots. It was not further investigated.

Band 2 was obtained as a brown viscous liquid in 4.0 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform demonstrated pale spots under UV-S. No attempted purification was performed.

Band 3 was obtained as a brown viscous liquid in 6.0 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed none of well-separated spots under UV-S. No further investigation was performed.

<u>Band 4</u> was obtained as a yellow viscous liquid in 23.4 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of **DW2**.

Band 5 was obtained as a brown viscous liquid in 7.0 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed two major spots under UV-S which were identical to **DW1** and **DW2**.

Band 6 was obtained as a yellow-brown viscous liquid in 25.7 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed one major spot with the same R_f value as that of DW1.

Band 7 was obtained as a red-brown viscous liquid in 68.2 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated that it contained DW1 and the other component with R_f value of 0.09.

In order to obtain enough **DW2** for structural determination. The crude n-butanol extract (E, 1.06 g) was purified by column chromatography over silica gel. Elution was conducted initially with 5% methanol-chloroform and gradually enriched with methanol to give forty seven fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford seven fractions as shown in Table 5.

Table 5 Fractions obtained from E by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
E1	0.010	Brown-yellow viscous liquid
E2	0.003	Brown-yellow viscous liquid
E3	0.007	Brown viscous liquid
E4	0.013	Yellow-brown viscous liquid

Table 5 (continued)

Fraction	Weight (g)	Physical appearance
E5	0.276	Yellow solid
E6	0.446	Yellow solid
E7	0.280	Dark brown viscous liquid

Fraction E1 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed many UV-active spots. No attempted purification was carried out.

Fraction E2 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed none of UV-active spots. Therefore, no further purification was performed.

Fraction E3 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed one pale spot under UV-S with R_f value of 0.32. Its ¹H NMR (500 MHz) showed the absence of aromatic proton signals. It was therefore not further investigated.

Fraction E4 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of **DW1** and **DW2** as major components and the other brown spot with R_f value of 0.28. Because of low quantity of this fraction, it was not further investigated.

Fraction E5 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed two major spots with R_f values of 0.35 and 0.19, indicating the presence of DW1 and DW2.

Fraction E6 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of **DW1** as a major component.

Fraction E7 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform demonstrated **DW1** as a major component and a brown spot near baseline. It was separated into two fractions by dissolving in methanol.

Methanol-soluble fraction afforded a yellow-brown solid in 246.2 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated that it contained **DW1** as a major component.

Methanol-insoluble fraction afforded a brown solid mixed with a red-brown viscous liquid in 54.1 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed no spot from baseline. Its ¹H NMR spectrum showed none of aromatic-proton signals. No further purification was carried out.

The Second Investigation

All fractions obtained from recrystallization of the crude *n*-butanol extract were combined together. Further purification of combined fraction (**F**, 1.04 g) by column chromatography over silica gel was performed. Elution was conducted initially with 1% methanol-chloroform and gradually enriched with methanol to afford thirteen fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to give three fractions as shown in Table 6.

Table 6 Fractions obtained from F by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
F1	0.012	Yellow viscous liquid
F2	0.784	Yellow viscous liquid
F3	0.304	Yellow viscous liquid

Fraction F1 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed none of major spots. It was therefore not further investigated.

Fraction F2 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of **DW1** and **DW2** as major components. It was further purified by column chromatography over silica gel. Elution was conducted initially with 20% methanol-chloroform and gradually enriched with pure methanol to give twelve fractions. All fractions were examined by TLC, combined on the basis of chromatogram characteristics and evaporated to dryness under reduced pressure to afford five fractions as shown in Table 7.

Table 7 Fractions obtained from F2 by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
F2.1	0.009	Yellow viscous liquid
F2.2	0.012	Yellow viscous liquid
F2.3	0.045	Yellow viscous liquid
F2.4	0.480	Yellow solid
F2.5	0.289	Brown-yellow viscous liquid

Fraction F2.1 Chromatogram characteristics on normal phase TLC with chloroform showed two well-separated spots under UV-S with R_f values of 0.26 and 0.73. Because this fraction was obtained in low quantity, no further investigation was carried out.

Fraction F2.2 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform demonstrated one yellow spot with the same R_f value as that of DW2.

Fraction F2.3 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of DW1 and DW2 as major components. This fraction was further investigated together with F2.5.

Fraction F2.4 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed two major spots belonging to DW1 and DW2. It was further separated by the same procedure as F2 to give seventeen fractions. All fractions were examined by TLC, combined on the basis of chromatogram characteristics and evaporated to dryness *in vacuo* to afford four subfractions as shown in Table 8.

Table 8 Fractions obtained from F2.4 by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
F2.4-a	0.013	Yellow viscous liquid
F2.4-b	0.006	Yellow viscous liquid

Table 8 (continued)

Fraction	Weight (g)	Physical appearance
F2.4-c	0.143	Yellow viscous liquid
F2.4-d	0.286	Yellow viscous liquid

<u>Subfraction F2.4-a</u> Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed no major spots under UV-S. It was therefore not further investigated.

Subfraction F2.4-b Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of **DW2** as a major component.

Subfraction F2.4-c Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of **DW1** and **DW2** as major components. It was further purified together with **F2.5-c**.

Subfraction F2.4-d Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed **DW1** as a major component.

Fraction F2.5 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of DW1 as a major component and DW2 as a minor component. Therefore, it was combined with F2.3 and further separated by the same procedure as F2 to give nineteen fractions. All fractions were examined by TLC, combined on the basis of chromatogram characteristics and then evaporated to dryness under reduced pressure to afford four subfractions as shown in Table 9.

Table 9 Fractions obtained from F2.5 by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
F2.5-a	0.016	Yellow viscous liquid
F2.5-b	0.009	Yellow viscous liquid
F2.5-c	0.043	Yellow viscous liquid
F2.5-d	0.363	Yellow viscous liquid

<u>Subfraction F2.5-a</u> Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed no major UV-active spots. It was therefore not further investigated.

Subfraction F2.5-b Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of **DW2** as a major component. It was further purified together with **fraction 3**.

<u>Subfraction F2.5-c</u> Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform was similar to **F2.4-c**. They were then combined and further purified by precoated TLC on silica gel plates with 20% methanol-chloroform as a mobile phase afforded two bands.

Band 1 was obtained as a yellow solid in 3.5 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of **DW2** as a major component. It was further investigated together with fraction 3.

Band 2 was obtained as a yellow viscous liquid in 122.0 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform demonstrated two major spots of DW1 and DW2.

Subfraction F2.5-d Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of **DW1** as a major component.

Fraction F3 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of **DW1** as a major component. It was crystallized in a mixture of methanol-chloroform to yield a yellow solid (**DW1**) in 100 mg.

The Third Investigation

The crude *n*-butanol extract (5.0 g) was purified by flash column chromatography over silica gel. Elution was conducted initially with chloroform, followed by increasing amount of methanol in chloroform and finally with pure methanol to afford fourteen fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford four fractions as shown in Table 10.

Table 10 Fractions obtained from the crude *n*-butanol extract by flash column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
1	0.020	Red-brown viscous liquid
2	0.880	Yellow solid mixed with yellow viscous liquid
3	3.300	Brownish-yellow solid
4	0.360	Red-brown solid

Fraction 1 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed one pale spot under UV-S. It was therefore not further investigated.

Fraction 2 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of **DW1** and **DW2** as major components. Further purification by chromatotron with silica gel plate (4 mm thickness). Elution was conducted initially with chloroform, followed by increasing amount of methanol in chloroform and finally with pure methanol to give eleven fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford two fractions as shown in Table 11.

Table 11 Fractions obtained from fraction 2 by chromatotron

Fraction	Weight (g)	Physical appearance
2.1	0.478	Yellow-brown solid
2.2	0.111	Yellow viscous liquid

Fraction 2.1 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of DW1 as a major component.

Fraction 2.2 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of DW1 and DW2 as major components. Further purification by chromatotron with silica gel plate (1 mm thickness) was

performed. Elution was conducted initially with chloroform and gradually enriched with methanol to afford two fractions.

Fraction 2.2a was obtained as a yellow viscous liquid in 15.5 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of **DW2** as a major component.

Fraction 2.2b was obtained as a yellow viscous liquid in 15.5 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of **DW1** as a major component.

Fraction 3 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of **DW1** and **DW2** as major components. It was purified by chromatotron with silica gel plate (2 mm thickness). Fractions containing **DW2** were combined and evaporated to dryness to yield a yellow solid in 97.3 mg. It was then combined with other previously fractions which contained **DW2** as a major component. Further separation of the mixture (168.6 mg) by chromatotron with silica gel plate (2 mm thickness) yielded two fractions.

Fraction 3.1 was obtained as a yellow viscous liquid in 116.9 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of **DW2** as a major component. It was further purified by precoated TLC on silica gel plates with 15% methanol-chloroform (9 runs) to yield four bands.

Band 1 was obtained as a yellow solid in 1.0 mg. Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform showed no major spots under UV-S. It was therefore not further investigated.

Band 2 (DW3) was obtained as a yellow viscous liquid in 2.4 mg. Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform showed one pure yellow spot with $R_{\rm f}$ value of 0.20.

[
$$\alpha$$
]_D²⁹ -20.41° (c = 4.9 x 10⁻² g/ 100 cm³, CH₃OH)
IR (neat) ν (cm⁻¹) 3419 (OH stretching), 2927 (CH stretching), 1652 (C=O stretching), 1599 (C=C stretching)
UV (CH₃OH) λ_{max} (nm) (log ε) 213 (4.05), 265 (3.90), 348 (3.77)

¹ H NMR (CD ₃ OD) (δ ppm)	7.45 (d , $J = 2.0$ Hz, 1H), 7.42 (dd , $J = 8.5$, 2.0
(500 MHz)	,	Hz, 1H), 6.96 (d , J = 8.5 Hz, 1H), 6.41 (d , J = 2.0
		Hz, 1H), 6.22 (d , J = 2.0 Hz, 1H), 5.40 (d , J = 1.7
		Hz, 1H), 4.20 (dd , $J = 3.6$, 1.7 Hz, 1H), 3.95 (s ,
		3H), 3.74 (dd , $J = 9.1$, 3.6 Hz, 1H), 0.92 (d , $J =$
		6.0 Hz, 3H)
13 C NMR (CD ₃ OD) (δ ppm)		159.40, 158.80, 150.95, 149.00, 136.40, 124.22,
(125 MHz)		123.20, 116.50, 113.45, 106.00, 103.40, 100.00,
		95.26, 73.12, 72.12, 72.00, 71.85, 56.74, 17.69
DEPT (135°) (CD ₃ OD)	СН	124.22, 116.50, 113.45, 103.40, 100.00, 95.26,
		73.12, 72.12, 72.00, 71.85
	CH ₃	56.74, 17.69

Band 3 was obtained as a yellow solid in 35.0 mg. Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform showed one pure yellow spot with R_f value of 0.18 (DW2).

Band 4 was obtained as a yellow viscous liquid in 3.6 mg. Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform showed none of well-separated spots under UV-S. It was therefore not further investigated.

Fraction 4 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform indicated the presence of DW1 as a major component.

1.2.5 Chemical constituents from twigs of D. pentandra L.

The First Investigation

Twigs (675 g) of *D. pentandra* L. were extracted with methanol (3 L) over the period of 7 days at room temperature for 3 times. The filtered solutions were combined and evaporated to dryness under reduced pressure to afford a green viscous liquid in 22.55 g. The crude methanol extract was tested for solubility in various solvents. The results were shown in Table 12.

Table 12 Solubility of the crude methanol extract of twig	gs
---	----

Solvent	Solubility at room temperature
Petroleum ether	-
CH ₂ Cl ₂	-
Ether	+ yellow solution
CHCl ₃	+ yellow solution
EtOAc	+ yellow solution
Acetone	++ yellow-brown solution
СН₃ОН	+++ yellow-brown solution
H ₂ O	++ brown solution

insoluble
 partially soluble
 moderately soluble
 well-soluble

Chromatogram characteristics of the crude methanol extract dissolved in ethyl acetate and methanol on normal phase TLC with dichloromethane and ethyl acetate as eluants showed none of well-separated spots. However, the crude methanol extract which was partially soluble in ether showed one well-separated spot with R_f value of 0.61. Therefore, the crude methanol extract (6.04 g) was separated in two parts by dissolving in ether.

Ether-insoluble part was obtained as a brown solid in 5.72 g. Chromatogram characteristics on normal and reversed-phase TLC with 50% methanol-chloroform and 50% methanol-water, respectively, showed none of well-separated spots under UV-S. It was therefore not further investigated.

Ether-soluble part (G) was obtained as a yellow-brown liquid in 0.32 g. Chromatogram characteristics on normal phase TLC with chloroform showed three well-separated spots under UV-S with R_f values of 0.55, 0.61 and 0.67. Further separation with column chromatography over silica gel was performed. Elution was conducted initially with chloroform and gradually enriched with pure methanol to give fourteen fractions. All fractions were examined by TLC, combined on the basis

of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford three fractions as shown in Table 13.

Table 13 Fractions obtained from G by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
G1	0.306	Dark green viscous liquid
G2	0.085	Yellow-brown viscous liquid
G3	0.070	Yellow-brown viscous liquid

Fraction G1 Chromatogram characteristics on normal phase TLC with 80% chloroform-petroleum ether (3 runs) showed four major spots with R_f values of 0.67, 0.72, 0.82 and 0.86. It was further separated by column chromatography over silica gel. Elution was conducted initially with 50%chloroform-petroleum ether and gradually enriched with pure chloroform to give twenty three fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford six subfractions as shown in Table 14.

Table 14 Fractions obtained from G1 by column chromatography over silica gel

Fraction	ction Weight (g) Physical appearance	
G1.1	0.031	Yellow viscous liquid
G1.2	0.055	Pale yellow solid
G1.3	0.032	Yellow viscous liquid
G1.4	0.002	White solid
G1.5	0.132	Green viscous liquid
G1.6	0.054	Green solid

Subfraction G1.1 Chromatogram characteristics on normal phase TLC with 50% chloroform-petroleum ether showed three pale well-separated spots under UV-S

with R_f values of 0.41, 0.51 and 0.65. Because of limitation of time, it was not further investigated.

Subfraction G1.2 Chromatogram characteristics on normal phase TLC with 50% chloroform-petroleum ether showed many pale spots under UV-S. No further purification was carried out.

Subfraction G1.3 Chromatogram characteristics on normal phase TLC with 50% chloroform-petroleum ether demonstrated one pale UV-active spot with $R_{\rm f}$ value of 0.26. No attempted purification was carried out.

Subfraction G1.4 Chromatogram characteristics on normal phase TLC with 80% chloroform-petroleum ether showed one UV-active spot with R_f value of 0.42 and the other spot with R_f value of 0.36 as a violet spot after dipping in ANH and subsequently heating the TLC plate. Because of low quantity of this fraction, it was not further investigated.

Subfraction G1.5 Chromatogram characteristics on normal phase TLC with 50% chloroform-petroleum ether showed one major UV-active spot with R_f value of 0.14. Further separation with precoated TLC on silica gel plates with 50% chloroform-petroleum ether as a mobile phase afforded four bands.

Band 1 was obtained as a colorless viscous liquid in 16.9 mg. Chromatogram characteristics on normal phase TLC with 80% chloroform-petroleum ether showed one UV-active spot with R_f value of 0.39 and a violet spot with R_f value of 0.66 after dipping in ANH and subsequently heating the TLC plate. It was shown by 1 H NMR spectrum to be a mixture of compounds.

Band 2 was obtained as a yellow viscous liquid in 5.2 mg. Chromatogram characteristics on normal phase TLC with 80% chloroform-petroleum ether demonstrated one spot under UV-S with R_f value of 0.35 and the other spot with R_f value of 0.27 as a violet spot after dipping in ANH and subsequently heating the TLC plate. Because of low quantity of this fraction, no further purification was carried out.

Band 3 was obtained as a yellow solid in 16.7 mg. Chromatogram characteristics on normal phase TLC with 80% chloroform-petroleum ether showed one major violet spot with $R_{\rm f}$ value of 0.20 after dipping in ANH and subsequently heating the TLC plate.

Band 4 was obtained as a green viscous liquid in 33.0 mg. Chromatogram characteristics on normal phase TLC with 80% chloroform-petroleum ether showed two well-separated spots under UV-S with $R_{\rm f}$ values of 0.25 and 0.44. Because of low quantity, it was not further investigated.

Subfraction G1.6 Chromatogram characteristics on normal phase TLC with 50% chloroform-petroleum ether showed none of well-separated spots under UV-S. Therefore, no further purification was performed.

Fraction G2 Chromatogram characteristics on normal phase TLC with 50% chloroform-petroleum ether showed no major spots under UV-S. It was therefore not further investigated.

Fraction G3 Chromatogram characteristics on normal phase TLC with 50% chloroform-petroleum ether showed none of well-separated spots. No attempted investigation was carried out.

The Second Investigation

Twigs (3,150 g) of *D. pentandra* L. were extracted with methanol (3 L) over the period of 7 days at room temperature for 3 times. The filtered solutions were combined and evaporated to dryness under reduced pressure to afford a green viscous liquid in 72.95 g. It was combined with the remainder of the first crude extract (15.51 g) and then separated into two fractions by dissolving in ether.

<u>Ether-insoluble fraction</u> was obtained as a brown solid in 58.37 g. No further investigation was performed.

Ether-soluble fraction (H) was obtained as a green viscous liquid in 12.15 g. Further separation with column chromatography over silica gel was performed. Elution was conducted initially with 50% chloroform-petroleum ether, gradually enriched with chloroform and followed by increasing amount of methanol in chloroform and finally with pure methanol to give thirty eight fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford seven fractions as shown in Table 15.

Table 15 Fractions obtained from H by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance	
H1	0.380	Orange-yellow liquid	
H2	1.920	Green viscous liquid	
Н3	2.700	Green viscous liquid	
H4	0.430	Green viscous liquid	
H5	2.010	Green viscous liquid	
Н6	1.490	Yellow-brown viscous liquid	
H7	0.850	Brown viscous liquid	

Fraction H1 Chromatogram characteristics on normal phase TLC with chloroform showed many yellow spots. No further purification was carried out.

Fraction H2 Chromatogram characteristics on normal phase TLC with 70% chloroform-petroleum ether showed three major spots under UV-S with R_f values of 0.24, 0.37 and 0.48. It was separated by column chromatography over silica gel. Elution was conducted initially with 50% chloroform-petroleum ether, gradually enriched with chloroform and finally with pure chloroform to give thirty two fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford nine subfractions as shown in Table 16.

Table 16 Fractions obtained from H2 by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
H2.1	0.360	Orange-yellow liquid
H2.2	0.062	Orange-yellow solid
H2.3	0.141	Red-violet solid
H2.4	0.213	Orange-yellow solid
H2.5	0.229	Orange-red viscous liquid

Tak	ıle	16	(cont	inued)
1 41 1	,,,	TO	COIR	шисиј

Fraction	Weight (g)	Physical appearance
H2.6	0.146	Yellow-orange viscous liquid
H2.7	0.109	Yellow-green viscous liquid
H2.8	0.729	Green viscous liquid
H2.9	0.036	Green viscous liquid

Subfraction H2.1 Chromatogram characteristics on normal phase TLC with 20% chloroform-petroleum ether showed no spots under UV-S. It was therefore not further investigated.

Subfraction H2.2 Chromatogram characteristics on normal phase TLC with 50% chloroform-petroleum ether demonstrated three pale spots under UV-S with R_f values of 0.34, 0.41 and 0.48 and the other spot with R_f value of 0.65 which appeared as a blue spot after dipping in ANH and subsequently heating the TLC plate. Because of low quantity of this fraction, it was not further investigated.

Subfraction H2.3 Chromatogram characteristics on normal phase TLC with 50% chloroform-petroleum ether demonstrated one violet spot with R_f value of 0.29, one UV-active spot with R_f value of 0.36 and one spot with R_f value of 0.51 which appeared as a violet spot after dipping in ANH and subsequently heating the TLC plate. Because of limitation of time, it was not further investigated.

Subfraction H2.4 Chromatogram characteristics on normal phase TLC with 50% chloroform-petroleum ether demonstrated many spots under UV-S. Its ¹H NMR spectroscopic data showed majority of signals at high field. No attempted purification was performed.

Subfraction H2.5 Chromatogram characteristics on normal phase TLC with 50% chloroform-petroleum ether showed many spots under UV-S. However, this fraction gave majority of signals at high field in ¹H NMR spectrum.

Subfraction H2.6 Chromatogram characteristics on normal phase TLC with 60% chloroform-petroleum ether demonstrated one major spot under UV-S with $R_{\rm f}$ value of 0.19. It was further separated by precoated TLC on silica gel plates with 60% chloroform-petroleum ether as a mobile phase to afford three bands.

Band 1 was obtained as a violet solid in 3.0 mg. Chromatogram characteristics on normal phase TLC with 60% chloroform-petroleum ether (3 runs) showed one violet spot with R_f value of 0.24. Because of low quantity, it was not further investigated.

Band 2 was obtained as a yellow viscous liquid in 27.9 mg. Chromatogram characteristics on normal phase TLC with 60% chloroform-petroleum ether (3 runs) showed one major UV-active spot with $R_{\rm f}$ value of 0.13 and many spots after dipping in ANH and subsequently heating the TLC plate. It was therefore not further investigated.

Band 3 was obtained as a yellow solid in 4.3 mg. Chromatogram characteristics on normal phase TLC with 60% chloroform-petroleum ether (3 runs) showed two major UV-active spots with $R_{\rm f}$ values of 0.08 and 0.15. Because this fraction was obtained in low quantity, it was not further investigated.

Subfraction H2.7 Chromatogram characteristics on normal phase TLC with 60% chloroform-petroleum ether demonstrated one major UV-active spot with R_f value of 0.19. Further purification by precoated TLC on silica gel plates with 60% chloroform-petroleum ether as a mobile phase afforded three bands.

Band 1 was obtained as a yellow viscous liquid in 27.1 mg. Chromatogram characteristics on normal phase TLC with 60% chloroform-petroleum ether (3 runs) showed one major UV-active spot with $R_{\rm f}$ value of 0.11 which was identical to DT3.

Band 2 was obtained as a yellow viscous liquid in 4.2 mg. Chromatogram characteristics on normal phase TLC with 60% chloroform-petroleum ether (3 runs) showed two well-separated spots under UV-S with $R_{\rm f}$ values of 0.05 and 0.13. No further investigation was performed because it was obtained in low quantity.

Band 3 was obtained as a yellow viscous liquid in 2.2 mg. Chromatogram characteristics on normal phase TLC with 60% chloroform-petroleum ether (3 runs) showed one major yellow spot with $R_{\rm f}$ value of 0.07. No attempted purification was carried out because of low quantity.

Subfraction H2.8 Chromatogram characteristics on normal phase TLC with 80% chloroform-petroleum ether showed two green spots with R_f values of 0.14 and 0.41. It was therefore not further investigated.

Subfraction H2.9 Chromatogram characteristics on normal phase TLC with 80% chloroform-petroleum ether showed one green spot with R_f value of 0.15. ¹H NMR (60 MHz) spectrum demonstrated majority of signals at high field. Therefore, no further purification was carried out.

Fraction H3 Chromatogram characteristics on normal phase TLC with 70% chloroform-petroleum ether demonstrated many well-separated spots under UV-S. Further separation with column chromatography over silica gel was performed. Elution was conducted initially with 50% chloroform-petroleum ether, gradually enriched with chloroform and followed by increasing amount of methanol in chloroform and finally with pure methanol to give sixty four fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford nine fractions as shown in Table 17.

Table 17 Fractions obtained from H3 by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
H3.1	0.034	Yellow viscous liquid
H3.2	0.041	Yellow viscous liquid
H3.3	0.012	Yellow solid
H3.4	0.113	Red-violet solid
H3.5	0.061	Yellow solid
H3.6	0.364	Orange-yellow viscous liquid
H3.7	0.465	Green viscous liquid
H3.8	0.845	Green viscous liquid
H3.9	0.813	Green viscous liquid

Subfraction H3.1 Chromatogram characteristics on normal phase TLC with 50% chloroform-petroleum ether showed two pale spots under UV-S with R_f values of 0.58 and 0.72. It was therefore not further investigated.

Subfraction H3.2 Chromatogram characteristics on normal phase TLC with 50% chloroform-petroleum ether showed one pale spot under UV-S with R_f value of 0.48. Therefore, no further purification was carried out.

Subfraction H3.3 Chromatogram characteristics on normal phase TLC with 50% chloroform-petroleum ether (3 runs) showed many spots under UV-S. Because of low quantity of this fraction, it was not further investigated.

Subfraction H3.4 Chromatogram characteristics on normal phase TLC with 50% chloroform-petroleum ether (3 runs) showed one UV-active and one violet spot with R_f values of 0.51 and 0.47, respectively. Therefore, no further investigation was performed because of limitation of time.

Subfraction H3.5 Chromatogram characteristics on normal phase TLC with 60% chloroform-petroleum ether showed one major spot under UV-S with R_f value of 0.37. It was not further investigated because of limitation of time.

Subfraction H3.6 Chromatogram characteristics on normal phase TLC with 60% chloroform-petroleum ether showed one UV-active spot with R_f value of 0.26. This fraction became solid upon standing at room temperature. It was then washed with methanol to afford two portions.

Portion 1 (MeOH-insoluble fraction) was obtained as a white solid in 205.2 mg. Chromatogram characteristics on normal phase TLC with 70% chloroform-petroleum ether (3 runs) showed one UV-active spot with R_f value of 0.27 and the other component with R_f value of 0.21 as a blue spot after dipping in ANH and subsequently heating the TLC plate. It was further separated by chromatotron with silica gel plate (2mm thickness). Elution was conducted with 1% methanol-chloroform to 10% methanol-chloroform to afford three fractions as shown in Table 18.

Table 18 Fractions obtained from portion 1 by chromatotron

Fraction	Weight (g)	Physical appearance
1.1	0.012	White solid
1.2	0.182	Pale yellow solid
1.3	0.005	Pale yellow solid

Fraction 1.1 (DT3) Chromatogram characteristics on normal phase TLC with chloroform (3 runs) showed one pure spot under UV-S with R_f value of 0.29.

IR (neat) v (cm ⁻¹)	3451 (OH stretching), 2935 (CH stretching),
	1676 (C=C stretching)
1 H NMR (CDCl ₃) (δ ppm)	5.74 (m, 1H), 2.47-2.35 (m, 3H), 2.29 (ddt, J =
(500 MHz)	15.0, 4.0, 2.0, 1H), 2.07-2.00 (m, 2H), 1.91-1.83
	(m, 2H), 1.74-1.68 (m, 2H), 1.68-1.58 (m, 3H),
	1.58-1.50 (m, 3H), 1.50-1.40 (m, 1H), 1.40-1.34
	(m, 2H), 1.34-1.21 (m, 3H), 1.20 (s, 3H), 1.18-
	1.10 (m, 4H), 1.10-1.00 (m, 3H), 1.00-0.90 (m,
	1H), 0.94 (d , $J = 6.3$ Hz, 3H), 0.88 (d , $J = 2.1$
	Hz, 3H), 0.84 (d, $J = 4.2$ Hz, 3H), 0.82 (s, 3H),
	0.72 (s, 3H)

Fraction 1.2 (DT1) Chromatogram characteristics on normal phase TLC with chloroform (3 runs) showed one blue spot with $R_{\rm f}$ value of 0.26 after dipping in ANH and subsequently heating the TLC plate.

Melting point	135.0-136.0 °C
IR (neat) v (cm ⁻¹)	3286 (OH stretching), 2943 (CH stretching),
	1664 (C=C stretching)
1 H NMR (CDCl ₃) (δ ppm)	5.35 (m, 1H), 3.56-3.49 (m, 1H), 2.30 (ddd, J =
(500 MHz)	12.9, 5.3, 2.1 Hz, 1H), 2.28-2.21 (m, 1H), 2.05-
	1.95 (m, 3H), 1.88- 1.82 (m, 2H), 1.70-1.62 (m,
	3H), 1.60-1.41 (m, 11H), 1.30-1.04 (m, 11H),
	1.02 (s, 3H), 0.94 (d, $J = 6.5$ Hz, 3H), 0.86 (d, J
	= 2.2 Hz, 3H), 0.84 (d , J = 4.4 Hz, 3H), 0.82 (s ,
	3H), 0.70 (s, 3H)
13 C NMR (CDCl ₃) (δ ppm)	141.51, 139.01, 129.98, 122.32, 72.17, 57.10,
(125 MHz)	56.40, 50.45, 46.12, 42.56, 40.02, 37.49, 36.72,
	36.36, 34.17, 32.11, 31.86, 29.37, 28.41, 26.30,
	24.45, 23.23, 21.23, 19.93, 19.50, 19.17, 18.90,
	12.06, 11.94

DEPT (135°) (CDCl ₃)	CH	122.32, 72.17, 57.10, 56.40, 50.45, 46.12, 36.36,
		31.86, 29.37
	CH_2	42.56, 40.02, 37.49, 34.17, 32.11, 29.37, 26.30,
		24.45, 23.23, 21.23
	CH_3	19.93, 19.50, 19.17, 18.90, 12.06, 11.94

Fraction 1.3 Chromatogram characteristics on normal phase TLC with chloroform (3 runs) showed none of well-separated spots under UV-S. No attempted purification was performed.

<u>Portion 2</u> (MeOH soluble fraction) was obtained as a yellow-white solid. Chromatogram characteristics on normal phase TLC with 70% chloroform-petroleum ether (3 runs) indicated the presence of **DT1** and **DT3** as major components.

Subfraction H3.7 Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform (2 runs) showed none of well-separated spots under UV-S. It was therefore not further investigated.

Subfraction H3.8 Chromatogram characteristics on normal phase TLC with 4% methanol-chloroform showed many well-separated spots under UV-S. Further separation with column chromatography over silica gel was carried out. Elution was conducted initially with 50% chloroform-petroleum ether, gradually enriched with chloroform and followed by increasing amount of methanol in chloroform and finally with 10% methanol-chloroform to give fifteen fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford two subfractions.

Subfraction 1 was obtained as a green-yellow viscous liquid in 11.4 mg. Chromatogram characteristics on normal phase TLC with 2% methanol-chloroform showed one green spot with R_f value of 0.52 which was expected to be chlorophyll. It was therefore not further investigated.

Subfraction 2 (I) was obtained as a green viscous liquid in 913.4 mg. Chromatogram characteristics on normal phase TLC with 2% methanol-chloroform showed three well-separated spots under UV-S with R_f values of 0.32, 0.41 and 0.75. Further separation with column chromatography over silica gel was performed. Elution was conducted with chloroform and gradually enriched with 10% methanol-

chloroform to give eighty nine fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford eight subfractions as shown in Table 19.

Table 19 Fractions obtained from I by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
I1	0.015	Green viscous liquid
12	0.028	Green viscous liquid
I3	0.062	Green viscous liquid
I4	0.002	Dark green solid
I5	0.108	Green solid
I6	0.066	Green solid
17	0.140	Green solid
18	0.384	Dark green viscous liquid

Subfraction I1 Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform (2 runs) showed many spots under UV-S. It was therefore not further investigated.

Subfraction I2 Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform (2 runs) demonstrated many spots without major spots under UV-S. No further purification was performed.

Subfraction I3 Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform (2 runs) showed two major spots under UV-S with R_f values of 0.16 and 0.39. Further purification by precoated TLC on silica gel plates with 1% methanol-chloroform as a mobile phase afforded two bands.

Band 1 was obtained as a green solid in 30.4 mg. Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform (2 runs) showed one major UV-active spot with R_f value of 0.48 and the other component with R_f value of 0.54 as a green spot after dipping in ANH and subsequently heating the TLC plate. It was not further investigated because of limitation of time.

Band 2 was obtained as a yellow viscous liquid in 11.3 mg. Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform (2 runs) showed one major spot with R_f value of 0.20 under UV-S and as a brown spot after dipping in ANH and subsequently heating the TLC plate. Because this component was obtained in low quantity, it was not further investigated.

407 (OH stretching),
923, 2852 (CH stretching),
667 (C=O stretching),
530, 1602 (C=C stretching)
2.8
.00 (s, 1H), 7.55 (dd, $J = 8.5$, 7.5 Hz, 1H),
04 (d , J = 7.5 Hz, 1H), 7.00 (d , J = 8.5 Hz,
H), $4.64-4.57$ (m , 2 H), 1.52 (d , J = 6.2 Hz, 3 H)
8.42, 162.04, 141.11, 136.86, 117.85, 116.16,
6.65, 79.90, 69.18, 31.91, 22.67, 17.91

Subfraction I4 Chromatogram characteristics on normal phase TLC with 2% methanol-chloroform showed one green spot. It was not further investigated.

Subfraction I5 Chromatogram characteristics on normal phase TLC with 2% methanol-chloroform (2 runs) showed under UV-S one major spot with R_f value of 0.35 and other two spots with R_f values of 0.08 and 0.15. Because of limitation of time, no further purification was performed.

Subfraction I6 Chromatogram characteristics on normal phase TLC with 2% methanol-chloroform (2 runs) showed one major spot with the same R_f value as that of I5. It was not further investigated.

Subfraction I7 Chromatogram characteristics on normal phase TLC with 2% methanol-chloroform (2 runs) showed two well-separated spots under UV-S with R_f values of 0.30 and 0.40. It was separated by precoated TLC on silica gel plates with 2% methanol-chloroform as a mobile phase to yield two bands.

Band 1 was obtained as a green viscous liquid in 22.6 mg. Chromatogram characteristics on normal phase TLC with 2% methanol-chloroform

(2 runs) showed one major spot under UV-S with $R_{\rm f}$ value of 0.44. No further investigation was carried out.

Band 2 was obtained as a green viscous liquid in 14.3 mg. Chromatogram characteristics on normal phase TLC with 2% methanol-chloroform (2 runs) showed one major UV-active spot with $R_{\rm f}$ value of 0.36. No further investigation was performed.

Subfraction I8 Chromatogram characteristics on normal phase TLC with 2% methanol-chloroform showed none of well-separated spots under UV-S. Therefore, no further purification was carried out.

Subfraction H3.9 Chromatogram characteristics on normal phase TLC with 2% methanol-chloroform and 4% methanol-chloroform demonstrated none of well-separated spots under UV-S. No attempted purification was carried out.

Fraction H4 Chromatogram characteristics on normal phase TLC with chloroform showed one major yellow spot under UV-S with R_f value of 0.27. Further purification by column chromatography over silica gel was carried out. Elution was conducted with chloroform and gradually enriched with methanol in chloroform and finally with pure methanol to give twenty eight fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford five subfractions as shown in Table 20.

Table 20 Fractions obtained from H4 by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
H4.1	0.013	Green-yellow viscous liquid
H4.2	0.008	Green viscous liquid
H4.3	0.037	Brown-green viscous liquid
H4.4	0.030	Yellow-green solid
H4.5	0.428	Brown-yellow viscous liquid

Subfraction H4.1 Chromatogram characteristics on normal phase TLC with chloroform showed no major spots under UV-S. It was therefore not further investigated.

Subfraction H4.2 Chromatogram characteristics on normal phase TLC with chloroform showed one major green spot. It was therefore not further investigated.

Subfraction H4.3 Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform demonstrated three well-separated spots under UV-S with R_f values of 0.08, 0.18 and 0.38. Further separation with precoated TLC on silica gel plates with 1% methanol-chloroform afforded four bands.

 $\underline{\mathrm{Band}\ 1}$ (DT2) was obtained as a yellow viscous liquid in 7.8 mg. Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform (2 runs) showed one yellow spot with R_{f} value of 0.38. However, It was decomposed at room temperature.

¹H NMR (CDCl₃) (
$$\delta$$
 ppm) 6.83 (s , 1H), 6.30 (s , 1H), 5.28 (m , 2H), 4.10 (d , J = (500 MHz) 6.0 Hz, 2H), 3.45 (d , J = 8.0 Hz, 2H), 3.81 (s , 3H), 1.84 (s , 3H), 1.83 (s , 3H), 1.77 (s , 3H), 1.69 (s , 3H)

Band 2 was obtained as a yellow solid in 0.8 mg. Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform (2 runs) showed one UV-active spot with $R_{\rm f}$ value of 0.18. Because it was obtained in low quantity, it was not further investigated.

Band 3 was obtained as a yellow viscous liquid in 3.0 mg. Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform (2 runs) showed one UV-active spot with $R_{\rm f}$ value of 0.08. No further investigation was carried out because of low quantity of this fraction.

Band 4 was obtained as a yellow viscous liquid in 1.1 mg. Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform (2 runs) showed no major spots under UV-S. It was not further investigated.

Subfraction H4.4 Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform (2 runs) showed three pale spots under UV-S with R_f values of 0.26, 0.30 and 0.36. Because of low quantity of this fraction, it was not further investigated.

Subfraction H4.5 Chromatogram characteristics on normal phase TLC with 2% methanol-chloroform (2 runs) showed none of well-separated spots under UV-S. No attempted purification was performed.

Fraction H5 Chromatogram characteristics on normal phase TLC with 4% methanol-chloroform showed three major spots under UV-S with $R_{\rm f}$ values of 0.02, 0.04 and 0.12. Because of limitation of time, it was not further investigated.

Fraction H6 Chromatogram characteristics on normal phase TLC with 5% methanol-chloroform demonstrated three major spots under UV-S with $R_{\rm f}$ values of 0.02, 0.14 and 0.21. No further purification was carried out because of limitation of time.

Fraction H7 Chromatogram characteristics on normal phase TLC with 5% methanol-chloroform showed none of well-separated spots under UV-S. It was not further investigated because of limitation of time.

The Third Investigation

The crude methanol extract (127.86 g) was dissolved with ether. The ethersoluble fraction (J) was evaporated to dryness under reduced pressure to yield a green viscous liquid in 23.00 g. Further separation with column chromatography over silica gel was performed. Elution was conducted with 50% chloroform-petroleum ether, gradually enriched with chloroform and followed by increasing amount of methanol in chloroform and finally with 40% methanol-chloroform to give thirty eight fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford eight subfractions as shown in Table 21.

Table 21 Fractions obtained from J by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
J1	2.880	Orange-yellow liquid
J2	1.260	Red-orange viscous liquid
J3	0.440	Orange viscous liquid

Table 21 (continued)

Fraction	Weight (g)	Physical appearance
J4	0.960	Yellow-orange viscous liquid
J5	2.260	Yellow-orange viscous liquid
Ј6	8.890	Yellow-orange viscous liquid
J7	1.340	Green viscous liquid
J8	2.330	Black-green viscous liquid

Fraction J1 Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform showed one major UV-active spot with R_f value of 0.68 and a violet spot with R_f value of 0.76 after dipping in ANH and subsequently heating the TLC plate. It was therefore not further investigated because of limitation of time.

Fraction J2 Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform showed one major spot under UV-S with R_f value of 0.52 and a violet spot with R_f value of 0.32 after dipping in ANH and subsequently heating the TLC plate. No further purification was carried out because of limitation of time.

Fraction J3 Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform showed one UV-active spot with R_f value of 0.62 and other two spots with R_f values of 0.38 as a violet spot and 0.68 as a blue spot after dipping in ANH and subsequently heating the TLC plate. It was therefore not further investigated.

Fraction J4 Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform demonstrated three UV-active spots with R_f values of 0.36, 0.46 and 0.60. In addition, it showed other three spots with R_f values of 0.25 (violet), 0.38 (violet) and 0.45 (yellow) after dipping in ANH and subsequently heating the TLC plate. Further separation with column chromatography over silica gel was performed. Elution was conducted initially with 10% ethyl acetate-petroleum ether and gradually enriched with 15% ethyl acetate-petroleum ether to give eleven fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford six subfractions as shown in Table 22.

Fraction	Weight (g)	Physical appearance	
J4.1	0.183	Yellow-viscous liquid	
J4.2	0.150	Red-orange viscous liquid	
J4.3	0.069	Red-orange viscous liquid	
J4.4	0.036	Yellow viscous liquid	
J4.5	0.111	Pale yellow solid	
J4.6	0.004	Yellow viscous liquid	

Table 22 Fractions obtained from J4 by column chromatography over silica gel

Subfraction J4.1 Chromatogram characteristics on normal phase TLC with 15% ethyl acetate-petroleum ether (2 runs) showed three UV-active spots with R_f values of 0.64, 0.72 and 0.78. In addition, it showed other two spots with R_f values of 0.62 (yellow) and 0.75 (violet) after dipping in ANH and subsequently heating the TLC plate. No further purification was carried out because of limitation of time.

Subfraction J4.2 Chromatogram characteristics on normal phase TLC with 15% ethyl acetate-petroleum ether (2 runs) was similar to that of J4.1. It showed two additional spots with R_f values of 0.56 (violet) and 0.68 (violet) after dipping in ANH and subsequently heating the TLC plate. It was not further investigated because of limitation of time.

Subfraction J4.3 Chromatogram characteristics on normal phase TLC with 15% ethyl acetate-petroleum ether (2 runs) demonstrated one UV-active spot with R_f value of 0.65. In addition, it showed other two spots with R_f values of 0.49 (violet) and 0.58 (violet) after dipping in ANH and subsequently heating the TLC plate. Because of low quantity, no further purification was performed.

Subfraction J4.4 Chromatogram characteristics on normal phase TLC with 15% ethyl acetate-petroleum ether (2 runs) showed two UV-active spots with R_f values of 0.46 and 0.51. In addition, it showed other two spots with R_f values of 0.34 (violet) and 0.58 (violet) after dipping in ANH and subsequently heating the TLC plate. Because of low quantity, no further purification was performed.

Subfraction J4.5 Chromatogram characteristics on normal phase TLC with 15% ethyl acetate-petroleum ether (2 runs) showed one UV-active spot with R_f value

of 0.28. In addition, it showed other two spots with R_f values of 0.35 and 0.75 as violet after dipping in ANH and subsequently heating the TLC plate. Further separation with precoated TLC on silica gel plates with 10% ethyl acetate-petroleum ether (3 runs) as a mobile phase afforded three bands.

Band 1 was obtained as a yellow viscous liquid in 4.0 mg. Chromatogram characteristics on normal phase TLC with 15% ethyl acetate-petroleum ether (2 runs) showed one UV-active spot with R_f value of 0.26 and the other spot with R_f value of 0.33 as a blue spot after dipping in ANH and subsequently heating the TLC plate.

<u>Band 2</u> was obtained as a yellow viscous liquid in 11.1 mg. Chromatogram characteristics on normal phase TLC with 15% ethyl acetate-petroleum ether (2 runs) indicated the presence of **DT1** as a pure component.

Band 3 (DT4) was obtained as a yellow viscous liquid in 36.9 mg. Chromatogram characteristics on normal phase TLC with 15% ethyl acetate-petroleum ether (2 runs) showed one pure spot with $R_{\rm f}$ value of 0.79 which appeared as a blue-violet spot after dipping in ANH and subsequently heating the TLC plate.

$[\alpha]_{\scriptscriptstyle \mathrm{D}}^{^{29}}$	$+29.85^{\circ}$ (c = 13.4 x 10^{-2} g/100 cm ³ , CHCl ₃)
IR (neat) v (cm ⁻¹)	2920 (CH stretching),
	1727, 1694 (C=O stretching)
1 H NMR (CDCl ₃) (δ ppm)	5.28 (t , J = 4.5 Hz, 1H), 4.50 (dd , J = 10.0, 7.0
(500 MHz)	Hz, 1H), 2.82 (dd , $J = 14.0$, 4.5 Hz, 1H), 2.28 (t ,
	J = 7.0 Hz, 2H, 2.00-1.95 (m, 2H), 1.94-1.83 (m, 2H)
	2H), 1.82-1.70 (m, 1H), 1.75-1.64 (m, 1H), 1.67-
	1.55 (m, 2H), 1.66-1.56 (m, 1H), 1.66-1.54 (m,
	2H), 1.64-1.52 (m, 2H), 1.62-1.51 (m, 2H), 1.62-
	1.52 (m, 1H), 1.57-1.47 (m, 1H), 1.50-1.40 (m;
	1H), 1.44-1.32 (m, 1H), 1.40-1.28 (m, 1H), 1.32-
	1.30 (m, 1H), 1.30-1.21 (m, 2H), 1.28-1.24 (m,
	2H), 1.26-1.18 (m, 1H), 1.25 (brs, 20H), 1.20-
	1.10 (m, 1H), 1.14-1.02 (m, 1H), 1.13 (s, 3H),
	0.94 (s, 3H), 0.93 (s, 3H), 0.91 (s, 3H), 0.90-0.78

		(m, 1H), 0.88 (t, J = 7.0 Hz, 3H), 0.86 (s, 3H), 0.85 (s, 3H), 0.76 (s, 3H)
13 C NMR (CDCl ₃) (δ pp	m)	183.75, 173.83, 143.69, 122.67, 80.66, 55.40,
(125 MHz)		47.65, 46.64, 45.93, 41.66, 41.05, 39.39, 38.17,
		37.84, 37.09, 34.97, 33.89, 33.16, 32.64, 32.53,
		32.04, 30.77, 29.82, 29.80, 29.78, 29.77, 29.75,
		29.70, 29.59, 29.48, 29.37, 29.29, 28.16, 27.77,
		26.02, 25.29, 23.68, 23.66, 23.50, 23.00, 22.81,
		18.28, 17.23, 16.83, 15.48, 14.23
DEPT (135°) (CDCl ₃)	CH	122.67, 80.66, 55.40, 47.65, 41.05
	CH_2	45.93, 38.17, 34.97, 33.89, 32.64, 32.53, 32.04,
		29.82, 29.80, 29.78, 29.77, 29.75, 29.70, 29.59,
		29.48, 29.37, 29.29, 27.77, 25.29, 23.66, 23.50,
		23.00, 22.81, 18.28
	CH_3	33.16, 28.16, 26.02, 23.68, 17.23, 16.83, 15.48,
		14.23

Subfraction J4.6 Chromatogram characteristics on normal phase TLC with 15% ethyl acetate-petroleum ether (2 runs) showed two violet spots with R_f values of 0.56 and 0.70 after dipping in ANH and subsequently heating the TLC plate. Because of low quantity of this fraction, it was not further investigated.

Fraction J5 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane showed five well-separated spots under UV-S with R_f values of 0.44, 0.50, 0.58, 0.65 and 0.73. In addition, it showed the other spot with R_f value of 0.34 as a violet spot after dipping in ANH and subsequently heating the TLC plate. Further separation with column chromatography over silica gel was performed. Elution was conducted with 1% methanol-dichloromethane to afford eleven fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford ten subfractions as shown in Table 23.

Table 23 Fractions obtained from J5 by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance	
J5.1	0.007	Yellow viscous liquid	
J5.2	0.023	Green viscous liquid	
J5.3	0.030	Red-violet viscous liquid	
J5.4	0.058	Brown-green viscous liquid	
J5.5	0.374	Brown-green viscous liquid	
J5.6	0.258	Yellow-green viscous liquid	
J5.7	0.656	Yellow solid	
J5.8	0.300	Green viscous liquid	
J5.9	0.137	Brown-green viscous liquid	
J5.10	0.008	Yellow viscous liquid	

Subfraction J5.1 Chromatogram characteristics on normal phase TLC with chloroform showed one violet spot with R_f value of 0.83 after dipping in ANH and subsequently heating the TLC plate. Because of low quantity of this fraction, it was not further investigated.

Subfraction J5.2 Chromatogram characteristics on normal phase TLC with chloroform showed two violet spots with R_f values of 0.73 and 0.86 after dipping in ANH and subsequently heating the TLC plate. Therefore, no further purification was carried out.

Subfraction J5.3 Chromatogram characteristics on normal phase TLC with chloroform showed one oval violet spot with R_f value of 0.64 after dipping in ANH and subsequently heating the TLC plate. It was therefore not further investigated.

Subfraction J5.4 Chromatogram characteristics on normal phase TLC with chloroform showed three pale UV-active spots with R_f values of 0.45, 0.51 and 0.60. The highest R_f spot became a violet spot when TLC plate was dipped in ANH and subsequently heated. No attempted purification was carried out.

Subfraction J5.5 Chromatogram characteristics on normal phase TLC with 15% ethyl acetate-petroleum ether demonstrated two UV-active spots with R_f values of 0.21 and 0.59. In addition, TLC plate showed other violet spot with R_f value of

0.54 after dipping in ANH and subsequently heating the TLC plate. It was further purified by column chromatography over silica gel. Elution was conducted with 10% ethyl acetate-petroleum ether to 40% ethyl acetate-petroleum ether afforded forty eight fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford ten subfractions as shown in Table 24.

Table 24 Fractions obtained from J5.5 by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance			
J5.5.1	0.018	Green viscous liquid			
J5.5.2	0.040	Yellow viscous liquid			
J5.5.3	0.129	Orange viscous liquid			
J5.5.4	0.047	Orange viscous liquid			
J5.5.5	0.027	Brown viscous liquid			
J5.5.6	0.039	Green viscous liquid			
J5.5.7	0.012	Green viscous liquid			
J5.5.8	0.022	Green viscous liquid			
J5.5.9	0.013	Green viscous liquid			
J5.5.10	0.020	Green viscous liquid			

Subfraction J5.5.1 Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether showed one major UV-active spot with $R_{\rm f}$ value of 0.63. It was not further investigated because of limitation of time.

Subfraction J5.5.2 Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether demonstrated one pale UV-active spot with $R_{\rm f}$ value of 0.55. It was not further investigated because of limitation of time.

Subfraction J5.5.3 Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether showed one pale UV-active spot with $R_{\rm f}$ value of 0.50. It was not further investigated because of limitation of time.

Subfraction J5.5.4 Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether showed one pale UV-active spot with R_f value of 0.55. It was not further investigated because of limitation of time.

Subfraction J5.5.5 Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether showed two pale UV-active spots with $R_{\rm f}$ values of 0.50 and 0.54. It was not further investigated because of limitation of time.

Subfraction J5.5.6 Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether showed one pale UV-active spot with R_f value of 0.50. It was not further investigated because of limitation of time.

Subfraction J5.5.7 Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether showed two pale UV-active spots with $R_{\rm f}$ values of 0.19 and 0.26. It was not further investigated because of limitation of time.

Subfraction J5.5.8 (DT6) Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether demonstrated one major UV-active spot with R_f value of 0.23 and the other green spot with R_f value of 0.39. It was further purified by precoated TLC on silica gel plates with 20% ethyl acetate-petroleum ether (2 runs) to yield a yellow viscous liquid in 6.2 mg. Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether showed one UV-active spot with R_f value of 0.38.

IR (neat) v (cm ⁻¹)	3413 (OH stretching), 2954 (CH stretching),			
	1714 (C=O stretching),			
	1597, 1515 (C=C stretching)			
UV (CHCl ₃) λ_{max} (nm) (log ε)	304 (2.97)			
1 H NMR (CDCl ₃) (δ ppm)	7.64 (dd , $J = 7.7$, 1.4 Hz, 1H), 7.55 (d , $J = 1.4$ Hz,			
(500 MHz)	1H), 6.93 (<i>d</i> , <i>J</i> = 7.7 Hz, 1H), 6.00 (<i>brs</i> , 1H), 3.94 (<i>s</i> ,			
	3H), 3.88 (s, 3H)			
13 C NMR (CDCl ₃) (δ ppm)	166.98, 150.10, 146.25, 124.30, 122.39, 114.16,			
(125 MHz)	111.82, 56.21, 52.08			

Subfraction J5.5.9 Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether showed one major UV-active spot with R_f

value of 0.19. Further separation with precoated TLC on silica gel plates with 20% ethyl acetate-petroleum ether (2 runs) afforded a yellow-green viscous liquid in 1.8 mg. Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether showed one pale spot under UV-S with $R_{\rm f}$ value of 0.38. It was not further investigated because it was obtained in low quantity.

Subfraction J5.5.10 Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether showed one major UV-active spot with $R_{\rm f}$ value of 0.15. It was therefore not further investigated because of limitation of time.

Subfraction J5.6 Chromatogram characteristics on normal phase TLC with 15% ethyl acetate-petroleum ether showed two UV-active spots with R_f values of 0.14 and 0.23. In addition, it revealed a mixture of DT1, DT3 and DT4 as major components after dipping in ANH and subsequently heating the TLC plate. Further separation with column chromatography over silica gel was performed. Elution was conducted initially with 15% ethyl acetate-petroleum ether and gradually enriched with 40% ethyl acetate-petroleum ether to give sixty nine fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford ten subfractions as shown in Table 25.

Table 25 Fractions obtained from J5.6 by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance	
J5.6.1	0.006	Yellow viscous liquid	
J5.6.2	0.080	Yellow viscous liquid	
J5.6.3	0.024	Yellow viscous liquid	
J5.6.4	0.022	Yellow viscous liquid	
J5.6.5	0.038	Yellow viscous liquid mixed with white solid	
J5.6.6	0.010	Colorless viscous liquid	
J5.6.7	0.008	Yellow viscous liquid	
J5.6.8	0.036	Green viscous liquid	
J5.6.9	0.019	Green viscous liquid	
J5.6.10	0.012	Yellow viscous liquid	

Subfraction J5.6.1 Chromatogram characteristics on normal phase TLC with 15% ethyl acetate-petroleum ether showed a few pale UV-active spots. Therefore, no further purification was performed.

<u>Subfraction J5.6.2</u> Chromatogram characteristics on normal phase TLC with 15% ethyl acetate-petroleum ether indicated the presence of **DT3** as a major component.

Subfraction J5.6.3 Chromatogram characteristics on normal phase TLC with 15% ethyl acetate-petroleum ether showed three major spots after dipping in ANH and subsequently heating the TLC plate with R_f values of 0.44 (violet), 0.51 (pink) and 0.58 (UV-active) indicating that it was a mixture of **DT1** (R_f value of 0.44) and **DT3** (R_f value of 0.58).

Subfraction J5.6.4 Chromatogram characteristics on normal phase TLC with 15% ethyl acetate-petroleum ether showed one major UV-active spot (violet) with R_f value of 0.49 and it became a violet spot when TLC plate was dipped in ANH and subsequently heated. Because of limitation of time, it was not further investigated.

Subfraction J5.6.5 Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether showed three major spots with $R_{\rm f}$ values of 0.42 as a violet spot, 0.51 as a blue spot and 0.73 as a violet spot after dipping in ANH and subsequently heating the TLC plate. Therefore, no further purification was carried out.

Subfraction J5.6.6 Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether demonstrated one major component with R_f value of 0.73 as a violet spot after dipping in ANH and subsequently heating the TLC plate. Because of low quantity of this fraction, no further purification was performed.

Subfraction J5.6.7 Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether showed one pale UV-active spot with R_f value of 0.27. It was not further investigated.

<u>Subfraction J5.6.8</u> Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether indicated the presence of **DT4** as a major component.

Subfraction J5.6.9 Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether indicated the presence of **DT4** as a major component and the other yellow spot with R_f value of 0.18. Further separation with precoated TLC on silica gel plates with 20% ethyl acetate-petroleum ether (2 runs) as a mobile phase afforded two bands.

Band 1 was obtained as a yellow viscous liquid in 4.6 mg. Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether indicated the presence of **DT4** as a pure component.

Band 2 (DT5) was obtained as a yellow-white solid in 5.1 mg. Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether showed one yellow spot with $R_{\rm f}$ value of 0.15.

IR (neat) v (cm ⁻¹)	3362 (OH stretching), 2849 (CH stretching),		
	1674 (C=O stretching),		
	1592, 1515 (C=C stretching)		
UV (CHCl ₃) λ_{max} (nm) (log ε)	324 (2.85)		
1 H NMR (CDCl ₃) (δ ppm)	9.80 (s, 1H), 7.43 (dd, J = 8.5, 1.5 Hz, 1H), 7.42		
(500 MHz)	(d, J = 1.5 Hz, 1H), 7.04 (d, J = 8.5 Hz, 1H), 6.20		
	(brs, 1H), 3.96 (s, 3H)		
13 C NMR (CDCl ₃) (δ ppm)	190.87, 151.65, 147.12, 129.89, 127.53, 114.35,		
(125 MHz)	108.72, 56.11		

Subfraction J5.6.10 Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether showed no spots under UV-S and after dipping in ANH and subsequently heating the TLC plate. It was not further investigated.

Subfraction J5.7 and J5.8 Chromatogram characteristics on normal phase TLC with 15% ethyl acetate-petroleum ether showed two major spots of DT1 and DT4.

Subfraction J5.9 Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform showed two major spots with $R_{\rm f}$ values of 0.65 and 0.78 as violet spots after dipping in ANH and subsequently heating the TLC plate. It was therefore not further investigated.

Subfraction J5.10 Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform showed no major spots under UV-S and after dipping in ANH and subsequently heating the TLC plate. Therefore, no attempted further purification was carried out.

Fraction J6 Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform demonstrated many spots under UV-S. No attempted investigation was performed.

Fraction J7 and J8 Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform showed no spots from baseline. It was not further investigated.

CHAPTER 1.3

RESULTS AND DISCUSSION

Chemical investigation of *Dendrophthoe pentandra* was divided into two parts. The first part involved isolation, purification and structure elucidation of compounds from its leaves while the second part dealed with the compounds isolated from its twigs. Upon chromatographic separation, the crude extract of leaves yielded three known flavone rhamnosides (**DW1**, **DW2** and **DW3**) while the crude extract of twigs afforded three known compounds: one steroid (**DT1**) and two aromatic compounds (**DT5** and **DT6**), one new oleanolic acid derivative (**DT4**) and two unidentified compounds (**DT2** and **DT3**). **DT2** was decomposed upon standing at room temperature while **DT3** was a mixture of a triterpene and stigmasterol. The structures were established by spectroscopic evidence, especially 1D and 2D NMR spectral data. The ¹³C NMR signals were assigned from DEPT, HMQC and HMBC spectra.

1.3.1 Structural determination of compounds isolated from leaves of D. pentandra L.

Compound DW1

DW1 was obtained as a yellow solid, melting at 178-182 °C with $[\alpha]_D^{25}$ –119.04°. The UV spectrum (Figure 2) with absorption bands at 347, 257 and 213 nm was typical for a compound of flavone type (Markham, 1982). The IR spectrum (Figure 3) exhibited absorption bands for a hydroxyl functional group (3300 cm⁻¹), a conjugated and chelated carbonyl group (1651 cm⁻¹) and an aromatic ring (1600, 1560 cm⁻¹). The aromatic region of the ¹H NMR spectrum (Table 26) (Figure 4) showed an ABX system at δ_H 7.33 (d, J = 2.4 Hz, H-2′), δ_H 6.90 (d, J = 8.4 Hz, H-5′) and δ_H 7.28 (dd, J = 8.4 and 2.4 Hz, H-6′) and an AX system at δ_H 6.22 (d, J = 2.4 Hz, H-6) and δ_H 6.42 (d, J = 2.4 Hz, H-8). It also revealed the presence of the chelated hydroxyl group at δ_H 12.70 (5-OH). The proton chemical shifts and splitting patterns of

aromatic protons indicated the presence of 3', 4', 5, 7-tetraoxyflavone moiety while the characteristic *doublet* signal at $\delta_{\rm H}$ 0.85 together with five oxymethine protons [$\delta_{\rm H}$ 5.38 (d, J = 1.8 Hz, 1H), 4.24 (dd, J = 3.4, 1.8 Hz, 1H), 3.77 (dd, J = 9.4, 3.4 Hz, 1H), 3.47-3.41 (m, 1H) and 3.38-3.32 (m, 1H)] revealed the presence of one rhamnose unit. A *doublet* with coupling constant of 1.8 Hz at $\delta_{\rm H}$ 5.38 was attributed to the H-1" of the rhamnose unit. Furthermore, this small coupling constant for the anomeric proton suggested α -configuration for the rhamnose unit (Agrawal, 1992).

Table 26 The NMR spectral data of DW1

Position	δ_{H}	$\delta_{\rm C}$	Type of C	HMBC
2	-	157.04	С	
3	-	133.93	С	
4	-	177.46	С	
4a	_	103.83	С	
5	-	161.00	С	
6	6.22 (d, 2.4)	98.43	СН	C-4, C-5, C-7, C-8, C-8a
7	-	163.88	С	
8	6.42 (d, 2.4)	93.38	СН	C-4, C-4a, C-6, C-7, C-8a
8a	-	156.19	С	
1	-	120.49	С	
2	7.33 (d, 2.4)	115.37	СН	C-2, C-3', C-4', C-6'
3	-	144.87	С	
4	-	148.12	С	1
5'	6.90 (d, 8.4)	115.17	СН	C-2, C-2', C-3', C-4', C-6'
6	7.28 (dd, 8.4, 2.4)	120.85	СН	C-2, C-2', C-3', C-4'
Rha-1"	5.38 (d, 1.8)	101.48	СН	C-3, C-3", C-5"
2"	4.24 (dd, 3.4, 1.8)	70.10	СН	
3"	3.77 (dd, 9.4, 3.4)	69.76	СН	`
4"	3.38-3.32 (m)	70.92	СН	C-2", C-4"
5"	3.47-3.41 (m)	70.28	СН	
6"	0.85 (d, 6.1)	17.14	CH ₃	C-4", C-5"
5-ОН	12.70 (s)	-	-	

The HMBC data (Table 26) (Figure 8) showed a correlation of the H-1" ($\delta_{\rm H}$ 5.38) of the rhamnose unit with the C-3 ($\delta_{\rm C}$ 133.93) of the flavone moiety, indicating that the rhamnose unit was linked to the hydroxyl group on the C-3. **DW1** was therefore assigned as quercetin 3- α -rhamnoside which was isolated from blue flowers of *Nymphaea caerulea* (Fossen, *et al.*, 1999).

Compound DW2

DW2 was obtained as a yellow solid with $[\alpha]_D^{25}$ –104.09°. The UV spectrum (Figure 9) with absorption bands at 348, 266 and 213 nm was characteristic of a flavone skeleton (Markham, 1982). The IR spectrum (Figure 10) exhibited absorption bands for a hydroxy functional group (3368 cm⁻¹), a conjugated and chelated carbonyl group (1657 cm⁻¹) and an aromatic ring (1611, 1509 cm⁻¹). The aromatic region of the ¹H NMR spectrum (Table 27) (Figure 11) showed an AA'XX' system at δ_H 7.75 (*d*, *J* = 8.7 Hz, H-2', H-6') and δ_H 6.93 (*d*, *J* = 8.7 Hz, H-3', H-5') and an AX system at δ_H 6.36 (*d*, *J* = 2.1 Hz, H-8) and δ_H 6.22 (*d*, *J* = 2.1 Hz, H-6) in accordance with a kaempferol derivative. The sugar region in the ¹H NMR spectrum was similar to that of the α-rhamnosyl region of **DW1**. The presence of the α-rhamnose unit was confirmed by a *doublet* signal of the 6"-methyl proton at δ_H 0.92 and a *doublet* signal of the anomeric H-1" at δ_H 5.45 (*J* = 1.8 Hz).

Table 27 The NMR spectral data of DW2

Position	$\delta_{\! ext{H}}$	$\delta_{ m c}$	Type of C	HMBC
2	-	157.28	С	
3	-	134.42	С	
4	-	177.95	С	1
4a	-	104.56	С	
5	-	161.66	С	
6	6.22 (d, 2.1)	98.91	СН	C-4, C-4a, C-5, C-7, C-8, C-8a
7	-	164.31	С	
8	6.36 (d, 2.1)	93.75	СН	C-4, C-4a, C-6, C-7, C-8a
8a	<u>-</u>	156.74	С	
1	-	120.88	С	
2,6	7.75 (d, 8.7)	130.43	СН	C-2, C-3, C-1', C-2', 6', C-3', 5', C-4'
3', 5'	6.93 (d, 8.7)	115.48	СН	C-2, C-1', C-2', 6', C-3', 5', C-4'
4	-	160.01	С	
Rha-1"	5.45 (d, 1.8)	101.57	СН	C-3, C-2", C-3", C-5"
2"	4.23 (dd, 3.4, 1.8)	70.18	СН	C-1", C-3", C-4"
3"	3.72 (dd, 9.2, 3.4)	71.02	CH	C-4", C-5"
4"	3.30-3.20 (m)	71.77	СН	C-2", C-3", C-5"
5″	3.25-3.20 (m)	70.41	СН	C-1", C-3", C-4"
6"	0.92 (d, 6.0)	17.30	CH ₃	C-4", C-5"
5-OH	12.60 (s)	-	<u>-</u>	

The connectivity between the kaempferol and the rhamnose unit was established by HMBC spectral data (Figure 15) as shown in Table 27 to be attached to the hydroxyl group on the C-3, the same position as found in **DW1**. Thus, **DW2** was assigned as kaempferol 3-O- α -rhamnoside. This compound has previously been isolated from the blue flowers of *Nymphaea caerulea* (Fossen, *et al.*, 1999).

Compound DW3

DW3 was obtained as a yellow solid with $[\alpha]_{D}^{29}$ –20.41°. The UV spectrum (Figure 16) showed absorption bands at 348, 265 and 213 nm which were typical of a flavone type (Markham, 1982). The IR spectrum (Figure 17) exhibited absorption bands for a hydroxy functional group (3419 cm⁻¹), a conjugated and chelated carbonyl group (1652 cm⁻¹) and an aromatic ring (1599 cm⁻¹). The aromatic region of the ¹H NMR spectrum (Table 28) (Figure 18) showed an ABX system in B ring at $\delta_{\rm H}$ 7.45 (d, J = 2.0 Hz, H-2′), $\delta_{\rm H}$ 6.96 (d, J = 8.5 Hz, H-5′) and $\delta_{\rm H}$ 7.42 (dd, J = 8.5 and 2.0 Hz, H-6′) and an AX system in A ring at $\delta_{\rm H}$ 6.41 (d, d = 2.0 Hz, H-8) and $\delta_{\rm H}$ 6.22 (d, d = 2.2 Hz, H-6) which were similar to those of **DW1**. However, an additional signal of methoxy proton at $\delta_{\rm H}$ 3.95 was observed. A *doublet* signal of the 6″-methyl group at $\delta_{\rm H}$ 0.92 with coupling constant of 6.0 Hz and a *doublet* of the anomeric proton (H-1″) at $\delta_{\rm H}$ 5.40 with coupling constant of 1.7 Hz revealed the presence of one α -rhamnose unit.

Table 28 The NMR spectral data of DW3

Position	δ_{H}	$\delta_{\rm C}$	Type of C	НМВС
2		159.40	- C	
3	-	136.40	С	
4	_	**	С	
4a	-	106.00	С	
5	-	**	С	
6	6.22 (d, 2.0)	100.00	СН	C-4a
7	-	**	С	

Table 28 (continued)

Position	$\delta_{H}\left(C_{n}\right)$	$\delta_{\mathbb{C}}\left(\mathbb{C}_{\mathfrak{n}}\right)$	Type of C	НМВС
8	6.41 (d, 2.0)	95.26	СН	C-4a, C-6, C-8a
8a	-	158.80	С	
1	-	123.20	С	
2	7.45 (d, 2.0)	113.45	СН	C-2, C-4, C-6
3	-	149.00	С	
4	-	150.95	С	
5	6.96 (d, 8.5)	116.50	СН	C-1', C-3'
6	7.42 (dd, 8.5, 2.0)	124.22	СН	C-2', C-4'
Rha-I"	5.40 (d, 1.7)	103.40	СН	C-3, C-3"
2" ·	4.20 (dd, 3.6, 1.7)	71.85	СН	
3"	3.74 (dd, 9.1, 3.6)	72.12	СН	
4"	*	73.12	СН	
5"	*	72.00	СН	
6"	0.92 (d, 6.0)	17.69	CH ₃	C-4", C-5"
3'-OMe	3.95 (s)	56.74	CH ₃	

^{*} appeared at the same position as methanol in CD₃OD

The location of rhamnose unit was established by HMBC correlation data (Table 28) (Figure 22). The anomeric proton (H-1") of rhamnose residue showed a cross peak with the C-3 ($\delta_{\rm C}$ 136.40) of the aglycone, indicating that the rhamnose unit was attached to the hydroxyl group on the C-3, the same position as found in **DW1** and **DW2**. The methoxy proton at $\delta_{\rm H}$ 3.95 showed a HMBC correlation with the C-3' ($\delta_{\rm C}$ 149.00). From these data, **DW3** was identified as 5,7,4'-trihydroxy-3'-methoxyflavone 3-O- α -rhamnoside isolated from *Cicer mogoltavicum* (Yuldashev, 1998).

^{**} not observed due to the low concentration of the NMR sample

1.3.2 Structural determination of compounds isolated from twigs of D. pentandra L.

Compound DT1

DT1 was obtained as a white solid with melting point 135.0-136.0 °C. The IR spectrum (Figure 23) showed absorption bands at 3286 (O-H stretching) and 1664 cm⁻¹ (C=C stretching). The 1 H and 13 C NMR spectra (Figures 24 and 25) were identical to those of β -sitosterol. **DT1** was then identified as β -sitosterol.

Compound DT4

DT4 was obtained as a colorless viscous liquid with $[\alpha]_D^{29}$ +29.85°. The IR spectrum (Figure 30) showed absorption bands at 1727 and 1694 cm⁻¹ for carbonyl groups of ester and carboxylic acid, respectively. The presence of the carbonyl carbons at δ_C 173.83 and 183.75 in the ¹³C NMR spectrum (Figure 32) supported the IR spectral results. The ¹H NMR spectrum (Table 29) (Figure 31) consisted of seven *singlet* methyl groups at δ_H 1.13, 0.94, 0.93, 0.91, 0.86, 0.85 and 0.76, one *triplet*

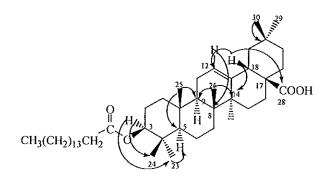
methyl group at $\delta_{\rm H}$ 0.88 (J=7.0 Hz), one oxymethine proton at $\delta_{\rm H}$ 4.50 (dd, J=10.0 and 7.0 Hz) and one olefinic proton at $\delta_{\rm H}$ 5.28 (t, J=4.5 Hz). The 13 C NMR spectrum (Table 29) (Figure 32) showed forty six carbon atoms which were classified by DEPT experiment (Figure 33) to be eight methyl carbons, twenty four methylene carbons, five methine carbons, seven quaternary carbons and two carbonyl carbons. These data indicated that **DT4** should have an amyrin skeleton which consisted of eight tertiary methyl groups. It was then concluded that one of the eight methyl groups generally present in the amyrin moiety was converted to a carboxyl group. Furthermore, the DEPT data supported that the olefinic proton at $\delta_{\rm H}$ 5.28 also belonged to a trisubstituted double bond.

 $R = Me : \beta$ -amyrin

R = COOH: Oleanolic acid

Table 29 The NMR spectral data of DT4

Position	$\delta_{ m H}$	$\delta_{ m C}$	Type of C	¹ H- ¹ H COSY	НМВС
1	1.50-1.40 (m)	32.64*	CH ₂		C-6
	1.32-1.30 (m)				
2	1.67-1.55 (m)	23.66	CH ₂	H-3	C-31
3	4.50 (dd, 10.0, 7.0)	80.66	СН	H-2	C-23, C-24, C-31
4	-	37.84	С		
5	0.90-0.78 (m)	55.40	СН		
6	1.57-1.47 (m)	18.28	CH ₂		
	1.44-1.32 (m)				
7	1.64-1.52 (m)	38.17	CH ₂		C-14
8	-	39.39	С		
9	1.62-1.52 (m)	47.65	СН		
10	-	37.09	С		
11	1.94-1.83 (m)	23.50	CH ₂	H-12	C-12, C-13


Table 29 (continued)

Position	δ_{H}	δ_{C}	Type of C	¹ H- ¹ H COSY	НМВС
12	5.28 (t, 4.5)	122.67	СН	H-11	C-9, C-14
13	_	143.69	С		
14	-	41.66	С		
15	1.75-1.64 (m)	27.77	CH ₂	H-16	
	1.14-1.02 (m)				
16	2.00-1.95 (m)	23.00	CH₂	H-15	C-28
17	-	46.64	С		
18	2.82 (dd, 14.0, 4.5)	41.05	СН	H-19	C-12, C-13, C-14, C-17,
					C-28
19	1.66-1.56 (m)	45.93	CH ₂	H-18	C-20, C-29, C-30
	1.20-1.10 (m)				
20	-	30.77	С		
21	1.82-1.70 (m)	32.53*	CH ₂	H-22	
	1.62-1.51 (m)				
22	1.40-1.28 (m)	33.89	CH ₂	H-21	C-16, C-20, C-30
	1.26-1.18 (m)				
23	0.86 (s)	28.16	CH_3		C-4, C-5, C-6, C-24
24	0.85 (s)	16.83	CH_3		C-3, C-23
25	0.94 (s)	15.48	CH ₃		C-5, C-9, C-10
26	0.76 (s)	17.23	CH ₃		C-8, C-9, C-14
27	1.13 (s)	26.02	CH_3		C-8, C-14, C-15
28	<u>.</u>	183.75	С		
29	0.91 (s)	33.16	CH ₃		C-19, C-20
30	0.93 (s)	23.68	CH ₃	•	C-22
31	-	173.83	C		
32	2.28 (t, 7.0)	34.97	CH ₂		C-31, C-34
33	1.62-1.51 (m)	32.04	CH_2		C-3
	1.28-1.24 (m)				
34	1.66-1.54 (m)	25.29	CH ₂		C-31
35-44	1.25 (brs)	29.82,	10xCH ₂		
		29.80,			
		29.78,		,	
		29.77,	į		
		29.75,			

Table 29 (continued)

Position	δ_{H}	$\delta_{\rm C}$	Type of C	'H-'H COSY	НМВС
• •		29.70,			
		29.59,		 	
		29.48,			
		29.37,			
		29.29			
45	1.67-1.55 (m)	23.66	CH ₂		
46	0.88 (d, 7.0)	14.23	CH ₃		

^{*} Assignments with the same superscripts may be interchanged.

The location of the carboxyl group at the C-17 and the trisubstituted double bond at C-12/C-13 were established as shown using HMBC correlation data (Table 29) (Figure 37) starting from the observed correlations between H-3 ($\delta_{\rm H}$ 4.50) and the Me-23 ($\delta_{\rm C}$ 28.16) and the Me-24 ($\delta_{\rm C}$ 16.83). These suggested that **DT4** contained an oleanolic acid moiety. The similarity of its ¹³C NMR spectral data with those of the oleanolic acid (Maillard, *et al.*, 1992) (Table 30) supported this conclusion. In addition, the H-3 of **DT4** was assigned to have the same spatial rearrangement as an oleanolic acid due to its appearance as a *doublet of doublet* with large coupling constant of 10.0 and 7.0 Hz.

Table 30	The	¹³ C NMR	spectra	of DT4	and	oleanolic a	icid
----------	-----	---------------------	---------	--------	-----	-------------	------

C _n	DT4	Oleanolic acid	C _n	DT4	Oleanolic acid
1	32.64*	38.5	16	23.00	23.4
2	23.66	27.4	17	46.64	46.6
3	80.66	78.7	18	41.05	41.3
4	37.84	38.7	19	45.93	45.8
5	55.40	55.2	20	30.77	30.6
6	18.28	18.3	21	32.53 [*]	33.8
7	38.17	32.6	22	33.89	32.3
8	39.39	39.3	23	28.16	28.1
9	47.65	47.6	24	16.83	15.6
10	37.09	37.0	25	15.48	15.3
11	23.50	23.1	26	17.23	16.8
12	122.67	122.1	27	26.02	26.0
13	143.69	143.4	28	183.75	181.0
14	41.66	41.6	29	33.16	33.1
15	27.77	27.7	30	23.68	23.6

^{*} Assignments with the same superscripts may be interchanged.

The chemical shift of the H-3 at $\delta_{\rm H}$ 4.50 together with the signal of the carbonyl carbon of an ester at $\delta_{\rm C}$ 173.83 suggested the presence of an ester functionality at the C-3. In the HMBC spectrum (Table 29) (Figure 37), a cross peak between the methylene proton, H-34, of the ester chain with the oxymethine carbon, C-3, also supported the attachment of ester functionality at the C-3. As the ¹³C NMR spectra (Table 29) (Figure 32) contained, apart from the carbon skeleton of oleanolic acid, an additional fourteen methylene carbons ($\delta_{\rm C}$ 34.97, 32.04, 29.82, 29.80, 29.78, 29.77, 29.75, 29.70, 29.59, 29.48, 29.37, 29.29, 25.29 and 23.66), one methyl carbon ($\delta_{\rm C}$ 14.23) and a carbonyl carbon ($\delta_{\rm C}$ 173.83). The ester moiety was therefore derived from palmitic acid, a natural fatty acid.

Only the relative stereochemistry between the H-18 ($\delta_{\rm H}$ 2.82) and Me-30 ($\delta_{\rm H}$ 0.93) was found to *cis* by the NOEDIFF results as the enhancement of the Me-30 was observed after irradiation at the H-18 (Figure 35). A 2D NOESY experiment will be

required in order to establish completely relative stereochemistry. However, it is believed that the triterpene moiety of DT4 possessed the same relative stereochemistry as oleanolic acid. Thus, DT4 was assigned as oleanoyl palmitate, a new natural product.

Compound DT5

DT5 was obtained as a yellow viscous liquid. The UV spectrum (Figure 38) showed an absorption band at 324 nm. Its IR spectrum (Figure 39) contained strong absorption bands at 3362 cm⁻¹ (a hydroxyl group), 1674 cm⁻¹ (a carbonyl group of an aromatic aldehyde) and 1592, 1515 cm⁻¹ (an aromatic ring). The ¹H NMR spectrum (Figure 40) showed two *singlets* of an aldehyde proton at $\delta_{\rm H}$ 9.80 and a methoxyl group at $\delta_{\rm H}$ 3.96. Its also showed aromatic proton signals of 3,4-dioxybenzaldehyde as a doublet of doublet at δ_H 7.43 (J = 8.5, 1.5 Hz, H-6) and two sets of doublet at $\delta_{\rm H}$ 7.42 (J=1.5 Hz, H-2) and $\delta_{\rm H}$ 7.04 (J=8.5 Hz, H-5). An additional broad singlet signal at $\delta_{\rm H}$ 6.20 was assigned to be a hydroxy proton. The $^{13}{\rm C}$ NMR spectrum (Figure 41) revealed the presence of the carbonyl carbon of an aldehyde at $\delta_{\rm C}$ 190.87. In NOEDIFF experiment, irradiation of the methoxy proton at $\delta_{\rm H}$ 3.96 (Figure 42) enhanced only the aromatic proton signal at $\delta_{\rm H}$ 7.42 (H-2). This result indicated the attachment of the methoxyl group at the C-3 which was ortho to the aromatic proton 4-hydroxy-3-H-2 4-hydroxyl Therefore, and the group. DT5 was methoxybenzaldehyde.

Compound DT6

DT6 was obtained as a yellow viscous liquid. The UV spectrum (Figure 43) showed an absorption band at 304 nm. Its IR spectrum (Figure 44) showed an absorption bands at 3413 cm⁻¹ (a hydroxyl group), 1714 cm⁻¹ (a carbonyl group of an ester) and 1597, 1515 cm⁻¹ (an aromatic ring). The aromatic region of the ¹H NMR spectrum (Figure 45) displayed three aromatic protons at $\delta_{\rm H}$ 7.64 (dd, J=7.7, 1.4 Hz, H-6), $\delta_{\rm H}$ 7.55 (d, J=1.4 Hz, H-2) and $\delta_{\rm H}$ 6.93 (d, J=7.7 Hz, H-5) which were characteristic signals of a 3,4-dioxysubstituted benzene. In addition, its showed signals of two methoxyl groups and one hydroxyl group at $\delta_{\rm H}$ 3.94, 3.88 and 6.00, respectively. The ¹³C NMR spectrum (Figure 46) exhibited a carbonyl carbon of an ester group at & 166.98. These indicated that DT6 was a methyl benzoate derivative. NOEDIFF data established the location of the other methoxyl group at the C-3 because irradiation of the methoxy proton at $\delta_{\rm H}$ 3.94 (Figure 47) enhanced only the aromatic proton signal at $\delta_{\rm H}$ 7.55 (H-2) while irradiation of the methyl proton of an ester group at $\delta_{\rm H}$ 3.88 (Figure 48) enhanced both ortho-proton signals at $\delta_{\rm H}$ 7.55 (H-2) and 7.64 (H-6). Thus, DT6 was identified as methyl 4-hydroxy-3methoxybenzoate.

PART II
ISOFLAVONOID GLYCOSIDES FROM DERRIS SCANDENS

CHAPTER 2.1

INTRODUCTION

2.1.1 Introduction

Derris scandens Benth., a plant belonging to the Leguminosae family, is a wide-climbing shrub. Leaves are leaflets 9-18 obtuse or acute equal at the base. Flowers are small white and in very long racemes with distant nodes. About 40 species of the genus Derris are abundant in tropical area of the world (Hooker, 1879).

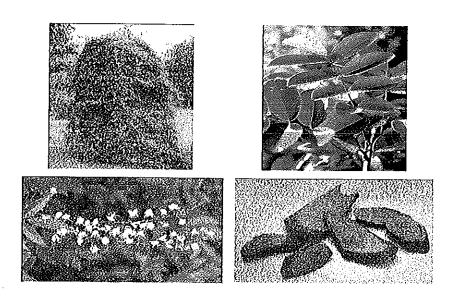


Figure 49 Derris scandens Benth. (รุ่งระวี เต็มศิริฤกษ์กุล และ ชาติชาย ศันสนียชีวิน, 2541)

D. scandens has various local names in Thai: "Thao-Wan-Priang" (เถารัลย์เปรียง) in middle part region, "Yan-Mho" (ย่านเหมาะ) in Nakhon Si Thammarat and "Khrua-Ta-Pla" (เครื่อดาปลา) in Nakhon Ratchasima (วุฒิธรรมเวช, 2540).

D. scandens is a medicinal plant. Its dried stem is used in Thai traditional medicine as expectorant, antitussive, diuretic, antidysentery and for the treatment of muscle ache and pain, while the root is used as a fish poison (Chavalittumrong, et al., 1999). Ĭt was recently found that warangalone, robustic acid, 8-7,7dimethylallylwighteone, 3'- γ , γ -dimethylallylwighteone and nallanin, isolated from D. scandens, were selective and potent inhibitors of rat liver cyclic AMP-dependent protein kinase catalytic subunit (cAK) (Wang, et al., 1997). In addition, 50% ethanolic extract of D. scandens showed marked in vitro immunomodulating activity in mouse splenic lymphocytes (Chuthaputti, et al., 1998) while the n-butanol extract had hypotensive activity in the rats (Jansakul, et al., 1997). Phytochemical investigation of stem and root of D. scandens revealed the isolation of various compounds as summarized in Table 31.

Information from NAPRALERT database, Chemical Abstracts and Dictionary of Natural Products indicated that several types of compounds have been isolated from plants belonging to *Derris* genus, as shown in Table 31.

Table 31 Compounds isolated from *Derris* species

Scientific name	Part	Compound	Structure	Bibliography
Derris sp.	·-	Alpinumisoflavone	12a.1	Rocha and
		Alpinumisoflavone -4'-methyl-	12a.3	Zoghbi, 1982
·		ether 4'-O-Dimethylallylalpinum- isoflavone	12b	
		α-Amyrin	17d.1	Zoghbi, et al.,
	1	Coumestrol	5m	1988
	1	α-Toxicarol	7d	
	Roots	6a, 12a-Dehydrodeguelin	12c.1	Clark and
		Dehydrotoxicarol	17c	Keenan, 1933

Table 31 (continued)

Scientific	Part	Compound	Structure	Bibliography
name				
D. amazonica	Wood	(6aS, 11aS)-Demethylhomo-	13b	Braz Filho,
		pterocarpin		et al., 1975b
		(3S)-2'-O-methylvestitol	9b	
		Lupenone	17a	
		Lupenol	17b	
		Rotenone	7g	Moretti and
				Grenand, 1982
D. araripensis	Roots	Methylenedioxy-(3, 4)-2'-	4a	Nascimento and
		hydroxy-5', 6'-dimethoxy-		Mors, 1981
		furano-(3', 4', 2", 3")-dihydro-		
		chalcone		·
		3, 6-Dimethoxy-6", 6"-	10a	
		dimethylchromeno-		
		(7, 8, 2", 3")-flavone		
	·	Methylenedioxy-(3, 4)-3, 6-	10b	
		dimethoxy-6", 6"-dimethyl-		
		chromeno-(7, 8, 2", 3")-		
	•	flavone		
		3, 5, 6-Trimethoxyfurano-	10d	
		(7, 8, 2", 3")-flavone		
	•	Methylenedioxy-(3', 4')-3, 5, 6-	10e	,
		trimethoxyfurano-(7, 8, 2", 3")-		
		flavone		
		Methylenedioxy-(3', 4')-5, 6-	10f	
		dimethoxyfurano-(7, 8, 2", 3")-		
		flavone		

Table 31 (continued)

Scientific	Part	Compound	Structure	Bibliography
name	!			
		Methylenedioxy-(3', 4')-5-	8a	
		hydroxy-6-methoxyfurano-		:
•		(7, 8, 2", 3")-flavanone		
		3, 5, 6-Trimethoxyfurano-	8b	:
		(7, 8, 2", 3")-flavanonol		
		3, 4, 5, 6-Tetramethoxyfurano-	9a	
		(7, 8, 2", 3")-flavan		
D. brevipes	Stems	Damnacanthal	2a	Desai, et al.,
		Rotenone	7g	1977
		β -Sitosterol	15a	
D. elliptica	Leaves	2S-Carboxy-4R, 5S-dihydroxy-	1a	Marlier, et al.,
		piperidine		1976
		2S-Carboxy-4S, 5S-dihydroxy-	1b	; }
		piperidine		
		2, 5-Dihydroxymethyl-3, 4-	1c	Welter, et al.,
		dihydroxypyrrolidine		1976
	Roots	Deguelin	7a	Kodama, et al.,
		6a, 12a-Dehydrorotenone	12d.1	1980
		Elliptinol	7f	Ahmed, et al.,
		Elliptone	7e	1989
		Tephrosin	7b	
		eta-Tubaic acid	18.1a	Obara, et al.,
		Tubaic acid	18.1b	1976
		(+)-Maackiain	13c	Obara and
		(-)-Maackiain	13c	Matsubara, 1981
		Rotenone	7g	Crombie, et al.,
		α-Toxicarol	7d	1968a ; 1968b

Table 31 (continued)

Scientific name	Part	Compound	Structure	Bibliography
D. ferruginea		6a, 12a-Dehydrorotenone	12d.1	
D. floribunda	Roots	Derricidin	4h	Braz Filho,
·		3, 4-Dihydroxylonchocarpin	4c	et al., 1975b
		5, 7-Dihydroxy-6-prenyl-	8j	
	į	flavanone	İ	
		3, 5-Dimethoxy-4-prenyl-	16b	
		stilbene		
		Isobavachromene	4d	
		Isocordoin	4f	
		Lonchocarpin	4e	
		3, 4', 5-Trimethoxy-4-prenyl-	16c	
		stilbene		
D. glabrescens	Seeds	Derrusnin	5a	Delle Monache,
		Glabrescin	5b	et al., 1977
		Glabrescione A	12e	
		Glabrescione B	12f	
D. laxiflora	Roots	β-Amyrin	17d.2	Lin, <i>et al.</i> , 1991a
		Flemichapparin B	13d	; 1992
		Isolaxifolin	10o	
		Laxifolin	10n	
		Lupenol	17b	
		Lupinifolin	8d	
		3'-Methoxylupinifolin	8c	
		Derrichalcone	4k	Lin, et al., 1992
		Derriflavanone	8e or 8f	
		Epiderriflavanone	8f or 8e	
		Laxichalcone	4i	
:		Prunetin	12g.1	

Table 31 (continued)

••				
Scientific	Part	Compound	Structure	Bibliography
name				
	Twigs	Laxiflorin	80	Kim, et al., 1995
	and	6, 8-Diprenyleriodictyol	8i	
	leaves	Hiravanone	8g	- -
		Lonchocarpol A	8h	
		Lupinofolin	8d	
D. malaccensis	Roots	Rotenone	7g	Yoxopeus, 1952
D. mollis	Roots	Betulinic acid	17e	Lyra, et al.,
				1979
		3, 4'-Dimethoxyfurano-	10m	\$
		(4", 5", 8, 7)-flavone		
		Karanjin	10i	·
		Lanceolatin B	10h	
		Lupenol	17b	
		4'-Methoxyfurano-(4", 5", 8, 7)-	101	
		flavone		
,		Pongaglabrone	10j	
		Pongapin	10k	
D. negrensis	Entire	6a, 12a-Dehydrorotenone	12d.1	Vasconcelos,
	plant	Rotenone	7g	et al., 1976
D. nicou	_	Rotenone	7g	Mors, et al.,
				1973
D. oblonga	Roots	6a, 12a-Dehydro-α-toxicarol	12c.2	Lin and Kuo,
		Derricarpin	13a	1993a
		6a, 12a-Dehydro-β-toxicarol	12w	
		Villosol	12d.2	
		12-Deoxo-12α-acetoxy-	7j	Lin, et al.,
		elliptone	;	1993b

Table 31 (continued)

Scientific	Part	Compound	Structure	Bibliography
name				
		Oblongin	6a	Lin and Kuo,
		Oblonginol	6b	1993c
		β -Amyrin	17d.2	Lin and Kuo,
		8-Methoxycoumestrol	5n	1995
		Daidzein	12v.1	-
		6a, 12a-Dehydrodeguelin	12c.1	
		Emodin	2b	
		Formononetin	12v.2	
		Lupenol	17b	
		Lupenone	17a	
		Maackiain	13c	
		12a-Hydroxyrotenone	7h	
		6a, 12a-Dehydrorotenone	12d.1	
		Sucrose	<u>-</u>	
		Sumatrol	7i	
		Tephrosin	7b	
		11-Hydroxytephrosin	7c	
		Toxicarol isoflavone	12h	
		6-Oxo-6a, 12a-Dehydro-α-	12c.4	
		toxicarol		
		6-Hydroxy-6a, 12a-Dehydro-	12c.3	
		α-toxicarol		,
		Physcion	2c	
). obtusa	Roots	3', 4'-Methylenedioxyfurano-	3d	Nascimento,
	barks	(6, 7, 2", 3")-aurone		et al., 1976
		4-Hydroxyfurano-(6, 7, 2", 3")-	3b	
		aurone		

Table 31 (continued)

Scientific	Part	Compound	Structure	Bibliography
name				
		4-Methoxyfurano-(6, 7, 2", 3")-	3c	
		aurone		
		5-Hydroxy-6", 6"-dimethyl-	10c	:
		chromeno-(7, 8, 2", 3")-		
		flavone		
		3, 6-Dimethoxy-6", 6"-dimethyl-	10a	
		chromeno-(7, 8, 2", 3")-		
		flavone		
	Ī	Furano-(6, 7, 2", 3")-aurone	3a	
		Methylenedioxy-(3, 4)-5'-	4b	: -
		hydroxy-2'-methoxyfurano-		
		(3', 4', 2", 3")-chalcone		
		Derriobtusone A	3e	
		Derriobtusone B	3f	
		Heptacosan-1-ol	18.2c	
		β -Sitosterol	15a	
D. rariflora	Wood	β-Sitosterol	15a	Braz Filho,
		5, 7-Dihydroxy-6-prenyl-	8j	<i>et al.</i> , 1975a
		flavanone		
		3, 5-Dimethoxy-4-prenyl-	16b	
		stilbene		
		5-Hydroxy-7-methoxy-6-	8k	
		prenylflavanone		
D. reticulata	Stems	2"', 3"'-Epoxylupinifolin	81	Mahidol, et al.,
	3	Dereticulatin	8m	1997
		Lupinifolin	8d	

Table 31 (continued)

Scientific	Part	Compound	Structure	Bibliography
name		1		Bronography
D. robusta	Seed	Robustigenin	12i.1	Chibber and
	shells	Ü	1 - 1 - 1	Sharma, 1979a
		Derrugenin	12i.3	Chibber and
			121.5	Sharma, 1979b;
 				Tsukayama,
				et al., 1980
		Rubone	4 j	Chibber, et al.,
		radono	T)	1979c
		5-Hydroxy-7-methoxy-	12g.2	Chibber and
		isoflavone	12g.2	Sharma, 1979d
	<u> </u>	Robustigenin-5- <i>O</i> -methyl ether	12i.2	Chibber and
		reobusingerim-5-0-memyr emer	121.2	
		O, O-Dimethylalpinum-	12a.2	Sharma, 1979e Chibber and
		isoflavone	128.2	
			112.	Sharma, 1980a
	}	Daucosterol	11.3a	
		Derrusnin	5a	
		Robustin methyl ether	5c	
		Robustone	12j.1	
•		Robustone methyl ether	12j.2	
		β-Sitosterol	15a	
	Li	Derrone-4'-O-methyl ether	121.2	Chibber, et al.,
	ĺ			1981
		4'-Hydroxy-3', 5, 6', 7-tetra-	10g	Gupta, et al.,
		methoxyflavone		1998
		6-Hydroxy-2', 4', 7-trimethoxy-	12x	
		isoflavone		

Table 31 (continued)

Scientific	Part	Compound	Structure	Bibliography
name				
		23-Hydroxyoctacos-5-ene-3-	18.2a	Gupta, et al.,
		one		1999
		Octacosan-3-one	_	
	Roots	Robustin	5d	Johnson and
				Pelter, 1966b
		Robustic acid	5e	Johnson and
	Í	Robustic acid methyl ether	5f	Pelter, 1966c
		Derrubone	12k.1	East, <i>et al.</i> , 1969
		Derrusnin	5a	
		Derrustone	12k.2	
		Robustin	5d	
		Robustin methyl ether	5c	
		Robustone	12j.1	
		Robustone methyl ether	12j.2	
	į	Derrone	121.1	Chibber and
			!	Sharma, 1980b
D. scandens	Roots	Scandenin	5g	Johnson, et al.,
		Lonchocarpic acid	5i	1966a
		Osajin	12m.1	Pelter, et al.,
	1			1966
		Scandenone	12n.1	
		Scandinone	12m.2	
		Lonchocarpic acid	5i	
		Chandalone	12n.2	Falshaw, et al.,
		Lonchocarpenin	5j	1969
		Scandenin	5g	Sengupta, et al.,
		Lupenol	17b	1971

Table 31 (continued)

Scientific	Part	Compound	Structure	Bibliography
name				! !
		Dehydrotoxicarol	17c	Rao, et al., 1994
		β -Sitosterol	15a	<u> </u>
		3'-7,7-Dimethylallylwighteone	12p.2	
		Robustic acid	5e	
		4, 4'-Di-O-methyl scandenin	5h	
	Stems	Derrisisoflavone A	12p.3	Sekine, et al.,
		Derrisisoflavone B	12r.1	1999
		Derrisisoflavone C	12s	
		Derrisisoflavone D	12q.1	
		Derrisisoflavone E	12q.2	
		Derrisisoflavone F	12t	
		Erysenegalensein E	12q.3	
		Lupinisol A	12r.3	
		Lupalbigenin	12r.2	
		Lupinisoflavone G	12u	
		Scandinone	12m.2	
		5, 7, 4'-Trimethoxy-6, 8-	12g.3	
		diprenylisoflavone		
		Derriscanoside A	11.2a	Dianpeng, et al.,
		Derriscanoside B	11.2b	1999
		Genistein-7-O-rhamnosyl-	11.2c	Suwannaroj,
		(1→6)-glucoside		et al., 2000
		Daidzein-7-O-rhamnosyl-	11.2d	
		(1→6)-glucoside		
	[Orobol-7-O-rhamnosyl-	11.2e	
		(1→6)-glucoside		

Table 31 (continued)

Scientific	Part	Compound	Structure	Bibliography
name				
D. sericea	Root	Lonchocarpin	4e	Nascimento,
	barks	Isolonchocarpin	8n	et al., 1970
	ī	2'-Hydroxy-3'-dimethylallyl-	4f	
•		4'-methoxychalcone		
		Derricidin	4h	Nascimento,
		Derricin	4g	et al., 1972
D. spruceana	Roots	Deguelin	7a	Menichini, et al.,
		Rotenone	7g	1982
		12a-Hydroxyrotenone	7h	
	Į	Tephrosin	7b	
		2, 4-Dimethoxy-2", 2"-	16a	Garcia, et al.,
		dimethylchromeno-		1986
		(5", 6", 3', 4')-stilbene		
		3-Methylenedioxy-(3', 4')-	5k	
		phenyl-4-hydroxy-5-methoxy-		
		2", 2"-dimethylchromeno-	:	
;		(5", 6", 7, 8)-coumarin		
		3-Methylenedioxy-(3', 4')-	51	·
		phenyl-4, 5-dimethoxy-		
	:	2", 2"-dimethylchromeno-		
		(5", 6", 7, 8)-coumarin		
		Methylenedioxy-(3', 4')-	121.3	
		5-hydroxy-2", 2"-dimethyl-		
		chromeno-(5", 6", 7, 8)-		
	=	isoflavone		
		Scandenin	5g	
		Sitosterol	15a	

Table 31 (continued)

Scientific	Part	Compound	Structure	Bibliography
name	-			
D. trifoliata	Leaves	Ceryl alcohol	18.2b	Sudachan, 1967
		β-Sitosterol	15a	Ī
		Lupenol	17b	
3		α-Amyrin	17d.1	Ghosh, et al.,
		β -Amyrin	17d.2	1985
		Campesterol	15b	
		Cholesterol	15c	
	ļ	Stigmasterol	15e	
		Stigmast-7-en-3- β -ol	15d	
	<u> </u>	Quercetin-3- <i>O</i> -β-neohes-	11.1b	Nair and
		peridoside		Seetharaman,
		Rhamnetin-3- <i>O</i> -β-neohes-	11.1a	1986
		peridoside		
D. uliginosa	Roots	Rotenone	7g	Milsum, 1938;
·				Petard, 1951;
:				Gaudin and
				Vacherat, 1938
		Lupenol	17b	Bose, et al., 1976
·	ļ	6a, 12a-Dehydrorotenone	12d.1	
D. urucu	Roots	12a-Hydroxyrotenone	7h	Braz Filho, et al.,
	;	Flemichapparin B	13d	1975b
		6a, 12a-Dehydrorotenone	12d.1	
		Rotenone	7g	
		Tephrosin	7b	;; :
	}	Derrissaponin	14a	Parente and
				Mors, 1980

2.1.2 Structures of compounds isolated from Derris spieces

1. Alkaloids

1a: 2S-Carboxy-4R,5S-dihydroxypiperidine 1b: 2S-Carboxy-4S,5S-dihydroxypiperidine

HOH₂C N CH₂OH

1c: 2,5-Dihydroxymethyl-3,4-dihydroxypyrrolidine

2. Anthraquinones

2a: Damnacanthal

2b: R = OH: Emodin 2c: R = OMe: Physcion

3. Aurones and auronols

$$CH$$
 R_1
 R_2
 R_3

3a : $R_1 = R_2 = R_3 = H$: Furano-(6, 7, 2, 3)-aurone

3b: $R_1 = OH$, $R_2 = R_3 = H$: 4-Hydroxyfurano-(6, 7, 2, 3)-aurone

 $3c: R_1 = OMe, R_2 = R_3 = H: 4-methoxyfurano-(6, 7, 2, 3)-aurone$

3d : $R_1 = H$, $R_2 + R_3 = O-CH_2-O: 3', 4'-Methylenedioxyfurano-(6, 7, 2'', 3')-aurone$

$$O \longrightarrow O \longrightarrow R_1$$

 $3e: R_1 = R_2 = H: Derriobtusone A$ $3f: R_1 + R_2 = O-CH_2-O: Derriobtusone B$

4. Chalcones

4a: Methylenedioxy-(3, 4)-2-hydroxy-5, 6-dimethoxyfurano-(3, 4, 2, 3)-dihydrochalcone

4b: Methylenedioxy-(3, 4)-5'-hydroxy-2'-methoxyfurano-(3, 4, 2, 3')-chalcone

 $\begin{array}{lll} 4c & : & R_1=R_2=OH: 3, & 4-Dihydroxylonchocarpin \\ 4d & : & R_1=H, \ R_2=OH: Isobavachromene \\ 4e & : & R_1=R_2=H: Lonchocarpin \end{array}$

4f: $R_1 = H$, $R_2 = OMe$: 2-Hydroxy-3-dimethyl allyl-4-methoxychalcone

 $4g : R_1 = OMe, R_2 = H : Derricin$

4h: Derricidin

4i: Laxichalcone

4j: Rubone

4k: Derrichalcone

5. Coumarins

5a : R = OMe : Derrusnin

5b: Glabrescin

5c: R = OMe: Robustin methyl ether

5d : R = OH : Robustin

OMe R OMe

5e: R = OH: Robustic acid

5f: R = OMe: Robustic methyl ether

OMe OH R

5g : R = OH : Scandenin

5h : R = OMe : 4,4-Di-O-methylscandenin

5i: R = OH: Lonchocarpic acid 5j: R = OMe: Lonchocarpenin

5k: R = OH: 3-Methylenedioxy-(3, 4)-phenyl-4-hydroxy-5-methoxy-2, 2, -dimethylchromeno-

(5, 6, 7, 8)-coumarin

51: R = OMe: 3-Methylenedioxy-(3', 4')-phenyl-4, 5-dimethoxy-2', 2'-dimethylchromeno-

(5, 6, 7, 8)-coumarin

5m : R = OH : Coumestrol

5n : R = OMe : 8-Methoxycoumestrol

6. Coumaronochromones

$$\begin{array}{c|c} HO & O & O \\ \hline R_1 & O & R_2 \\ \hline \end{array}$$

6a : $R_1 = H$, $R_2 = OMe$, $R_3 = OH$: Oblongin 6b : $R_1 = OH$, $R_2 = OH$, $R_3 = OMe$: Oblonginol

7. Dihydroisoflavones and Dihydroflavones

 $7a : R_1 = R_2 = H : Deguelin$

7b: $R_1 = H$, $R_2 = OH$: Tephrosin 7c: $R_1 = R_2 = OH$: 11-Hydroxytephrosin 7d: $R_1 = OH$, $R_2 = H$: a-Toxicarol

7e : R = O : Elliptone

7f : R = H, α -OH : Elliptinol

ÓAc OMe OMe

 $\begin{array}{l} 7g \ : \ R_1=R_2=H : Rotenone \\ 7h \ : \ R_1=OH, \ R_2=H : 12a\text{-Hydroxyrotenone} \\ 7i \ : \ R_1=H, \ R_2=OH : Sumatrol \end{array}$

7j : R = OAc : 12-Deoxo-12a-acetoxyelliptone

8. Flavanones

$$MeO$$
 R_2
 O
 R_1

8a : $R_1 = H$, $R_2 = OH$: Methylenedioxy-(3', 4')-5-hydroxy-6-methoxyfurano-(7, 8, 2', 3')-flavanone

8b : $R_1 = R_2 = OMe : 3, 5, 6$ -Trimethoxyfurano-(7, 8, 2, 3)-flavanonol

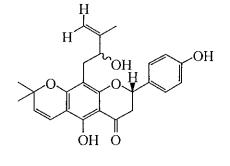
8c : R = OMe : 3-Methoxylupinifolin

8d: R = H: Lupinifolin

8e: Derriflavanone 8f: Epiderriflavanone

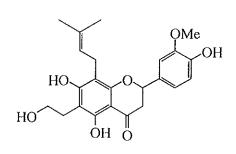
8g : R = OMe : Hiravanone

8h : R = H : Lonchocarpol A


8i : R = OH : 6,8-Diprenyleriodictyol

он о

8j: R = OH: 5,7-Dihydroxy-6-prenylflavanone


8k : R = OMe : 5-Hydroxy-7-methoxy-6-prenylflavanone

81:2,3-Epoxylupinifolin

8m: Dereticulatin

8n: Isolonchocarpin

80: Laxiflorin

9. Flavan and isoflavan

9a : 3, 4, 5, 6-Tetramethoxyfurano-(7, 8, 2 , 3)-flavan

9b: (3S)-2-O-Methylvestitol

10. Flavones

$$R_3$$
 R_1
 R_2
 R_3
 R_1
 R_2

10a: $R_1 = R_4 = R_5 = H$, $R_2 = R_3 = OMe$: 3, 6-Dimethoxy-6", 6"-dimethylchromeno-(7, 8, 2", 3")-flavone 10b: $R_1 = H$, $R_2 = R_3 = OMe$, $R_4 + R_5 = O-CH_2-O$: Methylenedioxy-(3, 4)-3, 6-dimethoxy-6", 6"-dimethyl-chromeno-(7, 8, 2", 3")-flavone

10c: $R_1 = OH$, $R_2 = R_3 = R_4 = R_5 = H$: 5-Hydroxy-6, 6-dimethylchromeno-(7, 8, 2, 3)-flavone

$$R_1$$
 R_2
 MeO
 R_3

10d : $R_1 = R_2 = H$, $R_3 = OMe$: 3, 5, 6-Trimethoxyfurano-(7, 8, 2", 3")-flavone

10e : $R_1 + R_2 = O-CH_2-O$, $R_3 = OMe$: Methylenedioxy-(3, 4)-3, 5, 6-trimethoxyfurano-(7, 8, 2, 3)-flavone

10f: $R_1 + R_2 = O-CH_2-O$, $R_3 = H$: Methylenedioxy-(3, 4)-5, 6-dimethoxyfurano-(7, 8, 2, 3)-flavone

10g: 4-Hydroxy-3, 5, 6, 7-tetramethoxyflavone

$$\bigcap_{O} \bigcap_{R_1} R_2$$

10h : $R_1 = R_2 = R_3 = H$: Lanceolatin B

10i : $R_1 = OMe$, $R_2 = R_3 = H$: Karanjin

10j : $R_1 = H$, $R_2 + R_3 = O-CH_2-O$: Pongaglabrone

10k : $R_1 = OMe$, $R_2 + R_3 = O-CH_2-O$: Pongapin

101 : $R_1 = R_2 = H$, $R_3 = OMe : 4-Methoxyfurano-(4, 5, 8, 7)-flavone$

10m: $R_1 = OMe$, $R_2 = H$, $R_3 = OMe$: 3,4-Dimethoxyfurano-(4, 5, 8, 7)- flavone

10n : Laxifolin

10o: Isolaxifolin

11. Glycosides

11.1 Flavone glycosides

11.1a : Rhamnetin -3-O- β - neohesperidoside

11.1b: Quercetin-3-O- β - neohesperidoside

11.2 Isoflavone glycosides

11.2a : R = H : Derriscanoside A 11.2b : R = OMe : Derriscanoside B

11.2c : $R_1 = OH$, $R_2 = H$: Genistein-7-O-rhamnosyl-(1 \longrightarrow 6)-glucoside 11.2d : $R_1 = R_2 = H$: Daidzein-7-O-rhamnosyl-(1 \longrightarrow 6)-glucoside 11.2e : $R_1 = R_2 = OH$: Orobol-7-O-rhamnosyl-(1 \longrightarrow 6)-glucoside

11.3 Steriod glycosides

11.3a: Daucosterol

12. Isoflavones

$$R_1$$
 R_2

12a.1 : $R_1 = R_2 = OH$: Alpinumisoflavone

 $12a.2 : R_1 = R_2 = OMe : O, O-Dimethylalpinumisoflavone$

12a.3 : $R_1 = OH$, $R_2 = OMe$: Alpinumisoflavone-4-methyl ether

12b: 4-O-Dimethylallylalpinumisoflavone

12c.1 : $R_1 = H$, $R_2 = H_2$: 6a, 12a- Dehydrodeguelin 12c.2 : $R_1 = OH$, $R_2 = H_2$: 6a, 12a-Dehydro-*a*-toxicarol 12c.3 : $R_1 = OH$, $R_2 = H$, OH: 6-Hydroxy-6a, 12a-Dehydro-*a*-toxicarol 12c.4 : $R_1 = OH$, $R_2 = O$: 6-Oxo-6a, 12a-Dehydro-*a*-toxicarol

12d.1 : R = H : 6a, 12a- Dehydrorotenone

12d.2 : R = OH : Villosol

12e: Glabrescione A

12f: Glabrescione B

$$R_1$$
 R_3
 OH
 OH
 OH
 R_2

12g.1 : $R_1 = OMe$, $R_2 = OH$, $R_3 = H$: Prunetin

12g.2 : $R_1 = OMe$, $R_2 = R_3 = H$: 5-Hydroxy-7-methoxyisoflavone

12g.3 : $R_1 = OH$, $R_2 = OH$, $R_3 = isoprenyl : 5, 7, 4-Trihydroxy-6, 8-diprenylisoflavone$

12h: Toxicarol isoflavone

12i.1 : $R_1 = OH$, $R_2 = OMe$: Robustigenin 12i.2 : $R_1 = R_2 = OMe$: Robustigenin-5-O-methyl ether 12i.3 : $R_1 = R_2 = OH$: Derrugenin

12j.1 : R = OH : Robustone

12j.2: R = OMe : Robustone methyl ether

$$R_1$$
 R_2 C C C

12k.1 : R_1 = isoprenyl, R_2 = OH, R_3 = OH : Derrubone 12k.2 : R_1 = H, R_2 = R_3 = OMe : Derrustone

$$O$$
 O
 O
 R_1
 R_2

121.1 : $R_1 = H$, $R_2 = OH$: Derrone

121.2 : $R_1 = H$, $R_2 = OMe$: Derrone-4-O-methyl ether

121.3 : $R_1 + R_2 = O - CH_2 - O : 3$, 4-Methylenedioxy-5-hydroxy-2, 2-dimethylchromeno-(5, 6, 7, 8)-isoflavone

12m.1 : R = OH : Osajin

12m.2 : R = OMe : Scandinone

12n.1 : R_1 = isoprenyl, R_2 = H : Scandenone 12n.2 : R_1 = H, R_2 = isoprenyl : Chandalone

12o: Eturunagarone

$$R_1$$
 R_2
 O
 R_3
 OH

12p.1 : R_1 = isoprenyl, R_2 = OH, R_3 = H : 8- γ , γ -Dimethylallylwighteone 12p.2 : $R_1 = H$, $R_2 = OH$, $R_3 = isoprenyl$: $3'-\gamma,\gamma$ -Dimethylallylwighteone

12p.3 : R_1 = isoprenyl, R_2 = OMe, R_3 = H : Derrisisoflavone A .

12q.1 : $R_1 = b$, $R_2 = a$, $R = CH_3$: Derrisisoflavone D 12q.2 : $R_1 = a$, $R_2 = b$, $R = CH_3$: Derrisisoflavone E 12q.3 : $R_1 = a$, $R_2 = b$, R = H: Erysenegalensein E

$$a = H_2C$$

CH:

$$b = \begin{array}{c} HO \\ CH_2 \\ H_2C \\ CH_3 \end{array}$$

$$\begin{matrix} HO & O & \\ R_1 & OH & O \end{matrix} \qquad \begin{matrix} R_2 & \\ OH & O \end{matrix}$$

 $12r.1 : R_1 = a, R_2 = b : Derrisisoflavone B$

 $12r.2 : R_1 = R_2 = a : Lupalbigenin$ 12r.3 : $R_1 = b$, $R_2 = a$: Lupinisol A

$$a = H_2C$$
 CH_2

$$b = \begin{array}{c} HO \\ CH_2 \\ H_2C \\ CH_3 \end{array}$$

12s: Derrisisoflavone C

12t : Derrisisoflavone F

12u: Lupinisoflavone G

12v.1 : R = OH : Daidzein

12v.2 : R = OMe : Formononetin

12w: 6a, 12a-Dehydro-β-toxicarol

12x: 6-Hydroxy-2', 4', 7-trimethoxyisoflavone

13. Pterocarpan

13a : Derricarpin

13b: 6aS,11aS-Demethylhomopterocarpin

13c : Maackiain

13d : Flemichapparin B

14. Saponin

14a: Derrissaponin

15. Steroids

15a : β-Sitosterol

15b: Campesterol

15c: Cholesterol

15d : Stigmast-7-en-3- β -ol

15e: Stigmasterol

16. Stilbenes

16a: 2,4-Dimethoxy-2,2-dimethylchromene-(5,6,3,4) stilbene

16b : R = H : 3,5-Dimethoxy-4-prenylstilbene

16c : R = OMe : 3,4',5-Trimethoxy-4-prenylstilbene

17. Triterpenes

17a : R = O : Lupenone 17b : R = β-OH, H : Lupenol 17c: Dehydrotoxicarol

17d.1 : α -3-OH : α -Amyrin 17d.2 : β -3-OH : β -Amyrin

HOCOOH

17e: Betulinic acid

18. Miscellaneous

18.1a: β -Tubaic acid

18.1b: Tubaic acid

$$\operatorname{CH}_2$$
)₁₆ CH_2)₄ Me

18.2a: 23-Hydroxyoctacos-5-ene-3-one

HO-(CH₂)₂₅Me

 $CH_3(CH_2)_{25}CH_2OH$

18.2b: Ceryl alcohol

18.2c: Heptacosan-1-ol

2.1.3 Objectives

This research work involved chemical investigation of stems of *Derris* scandens. As demonstrated in **Table 31**, the stem of *Derris scandens* consisted of mainly non-polar constituents which were separated from either chloroform or ethanol extract. However, *D. scandens* has been used in Thai folk medicine in the form of decoction. In addition, *n*-butanol extract, obtained by extracting its stem decoction with *n*-butanol, showed marked decrease in blood pressure and heart rate in a dosedependant manner (Jansakul, *et al.*, 1997) Thus, it is of interest to isolate, purify and structural elucidation of polar chemical constituents from the crude *n*-butanol extract of the stems.

CHAPTER 2.2

EXPERIMENTAL

2.2.1 Instruments and chemicals

Melting points were measured in centigrade (°C) on a digital Electrothermal 9100 Melting Point Apparatus. Infrared spectra were recorded using FTS165 FT-IR spectrometer. Major band (v) were recorded in wave numbers (cm⁻¹). Ultraviolet (UV) absorption spectra were recorded using UV-160A spectrophotometer (SHIMADZU). Principle bands (λ_{max}) were recorded as wavelengths (nm) and log ε in methanol or chloroform solution. Nuclear magnetic resonance spectra were recorded on either 400 MHz Brueker AMX 400 spectrometer or 500 MHz Varian UNITY INOVA spectrometer. Spectra were recorded using deuterochloroform, tetradeutero-methanol or hexadeutero-dimethyl sulphoxide solution and δ value in ppm downfield from TMS (internal standard δ 0.00). Optical rotation was measured in methanol or chloroform solution with sodium D line (590 nm) on an AUTOPOL^R II automatic polarimeter. Solvents for extraction and chromatography were distilled at their boiling point ranges prior to use except for petroleum ether (bp. 40-60 °C), diethyl ether and ethyl acetate which were analytical grade reagent. Quick column chromatography was performed on silica gel 60 GF₂₅₄ (Merck). Column chromatography was performed on silica gel (Merck) type 100 (70-230 mesh ASTM) or reversed-phase C₁₈. Precoated TLC plates of silica gel 60 F₂₅₄ or reversed-phase C_{18} were used for analytical purposes.

2.2.2 Plant material

Stems of *Derris scandens* Benth. were collected from Phang-nga province in Thailand. Proper identification was made by Professor Puangpen Sirirugsa, Department of Biology, Faculty of Science, Prince of Songkla University, and the specimen deposited at the Prince of Songkla University Herbarium.

2.2.3 Isolation and extraction

Stems of D. scandens were chopped into small pieces and air dried. Dried stem of the plant ($\approx 10 \text{ kg}$) was simmered in hot water twice for a three hour period. Clear solution of the two extracts was mixed, simmered at 50 °C to reduced volume to 50%, and followed by partition extraction with water-saturated n-butanol. The n-butanol phase was evaporated to dryness under reduced pressure to give 170 g of a yellow powder.

2.2.4 Chemical investigation

The First Investigation

Previous studies on the stems of *D. scandens* by Miss Morakot Kaewpet (Kaewpet, 2000) led to the isolation of compounds which showed hypotensive activity. Examination of remaining fractions obtained from above investigation on both silica gel and reversed-phase TLC indicated that these fractions contained many UV-active compounds. Therefore, the preliminary investigation involved the purification of these remaining fractions:

Fraction A Chromatogram characteristics on normal phase TLC revealed the presence of high polar compounds which were previously obtained in low quantity by silica gel column chromatography. To avoid loss of these compounds on silica gel column chromatography, A (126.2 mg) was chromatographed on acid-washed silica gel. Elution was conducted initially with chloroform, followed by increasing amount of methanol in chloroform and finally with methanol, afforded fifty fractions. All fractions were examined by TLC, combined on the basis of their chromatogram

characteristics and evaporated to dryness under reduced pressure to afford four fractions as shown in following Table 32.

 Table 32 Fractions obtained from A by column chromatography over acid-washed silica gel

Fraction	Weight (g)	Physical appearance
A1	0.019	Yellow viscous liquid
A2	0.036	Yellow viscous liquid
A3	0.042	Yellow viscous liquid
A4	0.019	Brown-yellow solid

Fraction A1 Chromatogram characteristics on normal phase TLC (20% methanol-chloroform) and reversed-phase TLC (50% methanol-water) showed one spot under UV-S with different $R_{\rm f}$ values of 0.40 and 0.67, respectively. No further investigation was performed.

Fraction A2 Chromatogram characteristics on normal phase TLC (20% methanol-chloroform) and reversed-phase TLC (50% methanol-water) showed one major UV-active spot with R_f values of 0.29 and 0.57, respectively. Therefore, no further investigation was performed.

Fraction A3 Chromatogram characteristics on normal phase TLC (20% methanol-chloroform) and reversed-phase TLC (50% methanol-water) showed two major UV-active spots with R_f values of 0.12, 0.22 and 0.34, 0.48, respectively. No attempted purification was carried out because of low quantity of this fraction.

Fraction A4 Chromatogram characteristics on normal phase TLC (20% methanol-chloroform) and reversed-phase TLC (50% methanol-water) showed one major spot under UV-S with different R_f values of 0.26 and 0.56, respectively. No further investigation was performed.

Fraction B It (455.3 mg) was separated by chromatotron. Elution was conducted initially with chloroform and gradually with methanol to give twenty eight fractions. All fractions were examined by TLC with normal and reversed phase silica

gel, combined on the basis of their chromatogram characteristics and evaporated to dryness *in vacuo* to afford ten fractions as shown in Table 33.

Table 33 Fractions obtained from B by chromatotron

Fraction	Weight (g)	Physical appearance
B1	0.008	Brown viscous liquid
B2	0.022	Yellow viscous liquid
В3	0.026	White solid mixed with yellow viscous liquid
B4	0.049	White solid mixed with yellow viscous liquid
B5	0.028	Yellow viscous liquid
В6	0.056	Pale yellow solid
В7	0.112	Pale yellow solid
В8	0.051	Yellow viscous liquid
В9	0.036	Yellow viscous liquid
B10	0.062	Yellow viscous liquid

Fraction B1 Chromatogram characteristics on normal phase TLC (20% methanol-chloroform) and reversed-phase TLC (50% methanol-water) showed none of well-separated spots under UV-S. It was therefore not further investigated.

Fraction B2 Chromatogram characteristics on normal phase TLC (20% methanol-chloroform) and reversed-phase TLC (50% methanol-water) showed no major spots. It was therefore not further investigated.

Fraction B3 Chromatogram characteristics on normal phase TLC (20% methanol-chloroform) and reversed-phase TLC (50% methanol-water) showed only one spot with different R_f values of 0.41 and 0.28, respectively. It was recrystallized in a mixture of methanol-chloroform. White solid (YS1), melting at 199.4-201.0 °C, was obtained in 3 mg.

$[\alpha]_{D}^{29}$		-16.81° (c = 11.9 x 10^{-2} g/100 cm ³ , CH ₃ OH)
IR (KBr) ν (cm ⁻¹)	• `	3426 (OH stretching),
		2937 (CH stretching),
		1617 (C=O stretching),
UV (CH ₃ OH) λ _{max} (nm)	$(\log \varepsilon)$	1605 (C=C stretching)
		254 (4.10), 209 (3.91)
1 H NMR (CD ₃ OD) (δ pp	om)	8.24 (s, 1H), 8.00 (d, $J = 9.0$ Hz, 1H), 7.49
(500 MHz)		(d, J = 9.0 Hz, 2H), 7.27 (d, J = 9.0 Hz, 1H),
		6.99 (d , J = 9.0 Hz, 2H), 5.17 (d , J = 7.5 Hz,
		1H), 4.02 (s, 3H), 3.84 (s, 3H), 3.83 (dd, J =
		12.0, 2.5 Hz, 1H), 3.64 (dd , $J = 12.0$, 5.5 Hz,
		1H), 3.57 (<i>dd</i> , $J = 9.0$, 7.5 Hz, 1H), 3.46 (t , J
		= 9.0 Hz, 1H), 3.41 (t , J = 9.0 Hz, 1H), 3.25
		(ddd, J = 9.0, 5.5, 2.5 Hz, 1H)
¹³ C NMR (CDCl ₃ + DMS	$(O-d_6)$ (δ ppm)	175.50, 159.28, 155.80, 152.79, 150.50,
(100 MHz)		133.00, 129.97, 124.08, 123.57, 121.74,
		118.80, 113.69, 110.47, 103.95, 76.80,
		72.50, 74.23, 70.25, 61.59, 56.66, 55.14
DEPT (135°) (CD ₃ OD)	СН	152.79, 129.97, 121.74, 113.69, 110.47,
		103.95, 76.80, 72.50, 74.23, 70.25
	CH ₂	61.59
	CH ₃	56.66, 55.14

The yellow filtrate was shown to contain YS1 by normal and reversed-phase TLC. Purification with precoated TLC on silica gel plates with 10% methanol-chloroform afforded an additional YS1 (3.3 mg).

Fraction B4 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water revealed the presence of YS1 together with a compound with R_f value of 0.34. No further purification was performed.

Fraction B5 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed one major spot under UV-S with $R_{\rm f}$ value of 0.24 which was expected to be YS2.

Fraction B6 This fraction crystallized at room temperature to yield a white solid (YS2) in 28.5 mg, melting at 205-207 $^{\circ}$ C. Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed one pure spot under UV-S with R_f values of 0.17 and 0.24, respectively.

 $[\alpha]_{D}^{29}$ -84.07° $(c = 22.6 \times 10^{-2} \text{ g/}100 \text{ cm}^3, \text{CH}_3\text{OH})$ 3407 (OH stretching), IR (KBr) ν (cm⁻¹) 2944, 2886 (CH stretching), 1621 (C=O stretching), 1605, 1578 (C=C stretching) 255 (4.58) UV (CH₃OH) λ_{max} (nm) (log ε) ¹H NMR (CDCl₃+ DMSO- d_6) (δ ppm) 8.24 (s, 1H), 7.88 (d, J = 8.8 Hz, 1H), (400 MHz) 7.50 (d, J = 8.8 Hz, 2H), 7.29 (d, J = 8.8Hz, 1H), 6.95 (d, J = 8.8 Hz, 2H), 5.40 (d, J = 5.4 Hz, 1H, 5.13 (d, J = 2.7 Hz, 1H),5.11 (d, J = 1.8 Hz, 1H), 5.00 (d, J = 7.2Hz, 1H), 4.65 (s, 1H), 4.59 (d, J = 5.4 Hz, 1H), 4.53 (d, J = 3.6 Hz, 1H), 4.39 (d, J =

 13 C NMR (CDCl₃+ DMSO- d_6) (δ ppm) (100 MHz)

175.16, 159.19, 154.08, 152.80, 150.27, 137.34, 129.99, 123.96, 123.68, 120.62, 119.89, 114.19, 113.60, 101.18, 100.63, 76.90, 75.91, 73.29, 72.36, 71.17, 70.49, 69.92, 68.28, 66.56, 61.42, 55.06, 17.71

5.9 Hz, 1H), 4.01 (s, 3H), 4.00-3.98 (m,

1H), 3.82 (s, 3H), 3.78-3.73 (m, 1H),

3.62-3.55 (m, 1H), 3.58-3.53 (m, 1H),

3.55-3.51 (m, 1H), 3.54-3.48 (m, 2H),

3.43 (t, J = 8.4 Hz, 1H), 3.31 (t, J = 8.4

Hz, 1H), 3.30-3.25 (m, 1H), 1.16 (d, J =

6.1 Hz, 3H)

DEPT (135°) (CDCl₃ + DMSO- d_6) CH 152.80, 129.99, 120.62, 114.19, 113.60, 101.18, 100.63, 76.90, 75.91, 73.29, 72.36, 71.17, 70.49, 69.62, 68.28 CH₂ 66.56 CH₃ 61.42, 55.06, 17.71 EIMS m/z (% relative intensity) 298 (33), 283 (5), 255 (5), 166 (5), 138 (31), 123 (42), 117 (19), 89 (28), 73 (18), 60 (61), 44 (100)

Chromatogram characteristics of the yellow filtrate on normal and reversedphase TLC indicated the presence of YS2 as a major component.

Fraction B7 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform and reversed-phase TLC with 50% methanol-water were similar to that of A3.

Fraction B8 It consisted of YS4 as a major component and two minor components with $R_{\rm f}$ values of 0.49 and 0.35 according to chromatogram characteristics on reversed-phase TLC with 50% methanol-water.

Fraction B9 Chromatogram characteristics on normal phase and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed two UV-active spots with R_f values of 0.11, 0.42 and 0.30, 0.63, respectively.

Fraction B10 Chromatogram characteristics on normal phase and reversed-phase TLC with above mobile phases demonstrated two spots under UV-S with R_f values of 0.14, 0.21 and 0.34, 0.64, respectively.

Fraction C It (607.4 mg) was further separated by chromatotron using silica-gel plate with 2 mm thickness. Elution was conducted initially with chloroform and finally with methanol to give thirty eight fractions. All fractions were examined by TLC with normal and reversed-phase silica gel plates, combined on the basis of their chromatogram characteristics and evaporated to dryness under reduced pressure to afford eight fractions as shown in Table 34.

C8

Fraction	Weight (g)	Physical appearance
C1	0.014	Yellow viscous liquid
C2	0.037	Yellow viscous liquid
C3	0.009	Yellow solid
C4	0.055	White solid
C5	0.064	Yellow viscous liquid
C6	0.085	Yellow viscous liquid
C7	0.264	Yellow viscous liquid

Table 34 Fractions obtained from C by chromatotron

0.103

Fraction C1 Chromatogram characteristics on normal phase and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed no definite spots on the TLC plate. No further purification was performed.

Yellow viscous liquid

Fraction C2 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water were identical to A3.

Fraction C3 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water and normal phase TLC with 20% methanol-chloroform showed one major spot under UV-S with $R_{\rm f}$ values of 0.29 and 0.15, respectively.

Fraction C4 It was recrystallized in a mixture of methanol-chloroform to give a white solid (YS4). Chromatogram characteristics on normal phase (20% methanol-chloroform) and reversed-phase (50% methanol-water) showed one spot under UV-S with R_f values of 0.09 and 0.43, respectively.

Melting point	195.5-198.5 °C
$\left[\alpha\right]_{D}^{29}$	-52.63°
	$(c = 3.8 \times 10^{-2} \text{ g/}100 \text{ cm}^3, \text{CH}_3\text{OH})$
IR (KBr) ν (cm ⁻¹)	3369 (OH stretching),
	2902 (CH stretching)
	1655 (C=O stretching),

UV (CH₃OH) λ_{max} (nm) (log ε)

¹H NMR (CDCl₃ + DMSO- d_6) (δ ppm)

(400 MHz)

1609, 1572 (C=C stretching) 261 (4.58), 210 (4.28)

12.85 (s, 1H), 9.45 (s, 1H), 8.25 (s, 1H), 7.38 (d, J = 8.8 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 6.70 (d, J = 2.2 Hz, 1H), 6.43 (d, J = 2.2 Hz, 1H), 5.45 (d, J = 3.5 Hz, 1H), 5.17 (d, J = 5.0 Hz, 1H), 5.16 (d, J = 3.0 Hz, 1H), 4.93 (d, J = 7.8 Hz, 1H), 4.64 (d, J = 5.0 Hz, 1H), 4.62 (s, 1H), 4.54 (d, J = 4.0 Hz, 1H), 4.43 (d, J = 6.0 Hz, 1H), 4.00 (d, J = 9.8 Hz, 1H), 3.80-3.76 (m, 1H), 3.70-3.64 (m, 1H), 3.62-3.52 (m, 1H), 3.58-3.50 (m, 1H), 3.45-3.38 (m, 1H), 3.45-3.36 (m, 2H), 3.27 (dd, J = 9.1, 4.9 Hz, 1H), 3.23 (t, J = 8.4 Hz, 1H), 1.19 (d, J = 6.0 Hz, 3H)

 13 C NMR (CDCl₃ + DMSO- d_6) (δ ppm) (100 MHz)

180.65, 162.87, 161.71, 157.55, 157.39, 154.17, 129.96, 122.80, 121.17, 115.20, 106.49, 100.68, 100.41, 99.96, 94.64, 76.84, 75.90, 73.06, 72.48, 71.08, 70.36, 70.15, 68.34, 66.60, 17.79

DEPT (135°) (CDCl₃ + DMSO- d_6) CH

CH 154.17, 129.96, 115.20, 100.68, 100.41, 99.96, 94.64, 76.84, 75.90, 73.06, 72.48, 71.08, 70.36, 70.15, 68.34

CH₂ 66.60

CH₃ 17.79

EIMS m/z (% relative intensity)

298 (10), 270 (62), 254 (3), 241 (8), 213 (4), 153 (59), 135 (55), 124 (52), 118 (72), 96 (23), 89 (57), 69 (100), 60 (63), 43 (68)

YS4 (19.3 mg) was acetylated with acetic anhydride (0.5 ml) in the presence of pyridine (0.2 ml). The mixture was stirred at room temperature overnight. The

reaction mixture was extracted with ethyl acetate (3×20 ml). The ethyl acetate layer was consecutively washed with 10% hydrochloric acid (2×20 ml), 10% sodium bicarbonate (3×20 ml) and water (2×20 ml). The organic phase was dried over anhydrous sodium sulfate, filtered and evaporated to dryness *in vacuo* to yield a white solid in 29.8 mg. Further separation with precoated TLC on silica gel plates with 45% ethyl acetate-petroleum ether (5 runs) as a mobile phase afforded two bands.

Band 1 was obtained as a colorless viscous liquid in 4.5 mg. Chromatogram characteristics on normal phase TLC with 8% acetone-chloroform showed two UV-active spots with $R_{\rm f}$ values of 0.34 and 0.42. Because of low quantity of this band, it was not further investigated.

Band 2 (AcYS4) was obtained as a colorless viscous liquid in 22.0 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (3 runs) showed one pure UV-active spot with R_f value of 0.46.

IR (neat) v (cm ⁻¹)	2940 (CH stretching)
	1755, 1653 (C=O stretching),
	1633, 1569 (C=C stretching)
1 H NMR (CDC $^{\dagger}_{3}$) (δ ppm)	7.89 (s, 1H), 7.50 (d, $J = 8.5$ Hz, 2H), 7.14 (d, J
(500 MHz)	= 8.5 Hz, 2H), 6.96 (d, J = 2.7 Hz, 1H), 6.66 (d, J = 2.7 Hz, 1H)
	J = 2.7 Hz, 1H), 5.34 (d, $J = 9.0 Hz$, 1H), 5.32
	(dd, J = 3.5, 1.8 Hz, 1H), 5.30 (d, J = 7.5 Hz,
	1H), 5.26 (<i>dd</i> , <i>J</i> = 10.0, 3.5 Hz, 1H), 5.21 (<i>d</i> , <i>J</i> =
	7.5 Hz, 1H), 5.09 (dd , $J = 10.0$, 9.0 Hz, 1H),
	5.05 $(t, J = 10.0 \text{ Hz}, 1\text{H}), 4.73 (d, J = 1.8 \text{ Hz},$
	1H), 3.95 (<i>ddd</i> , <i>J</i> = 10.0, 7.0, 2.5 Hz, 1H), 3.83
	(dd, J = 9.5, 6.0 Hz, 1H), 3.76 (dd, J = 12.0, 2.0)
	Hz, 1H), 3.62 (dd , J = 12.0, 7.0 Hz, 1H), 2.40 (s ,
	3H), 2.31 (s, 3H), 2.09 (s, 3H), 2.08 (s, 3H),
	2.06 (s, 3H), 2.05 (s, 6H), 1.97 (s, 3H), 1.19 (d,
	J = 6.5 Hz, 3H

 13 C NMR (CDCl₃) (δ ppm) (125 MHz)

174.27, 170.14, 169.96, 169.89, 169.73, 169.65, 169.44, 169.22, 159.71, 158.59, 152.43, 151.01, 150.62, 130.27, 129.22, 125.15, 121.64, 113.44, 110.04, 101.89, 98.25, 97.97, 73.73, 72.50, 70.80, 70.70, 69.16, 69.10, 68.70, 66.70, 66.24, 21.14, 21.12, 20.78, 20.75, 20.63, 20.59, 20.56, 17.32

Fraction C5 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, indicated the presence of YS5 as a major component. It (4.2 mg) was acetylated with acetic anhydride (0.20 ml) in the presence of pyridine (0.05 ml). The mixture was stirred at room temperature overnight. The reaction mixture was extracted with ethyl acetate (3×20 ml). The ethyl acetate layer was consecutively washed with 10% hydrochloric acid (2×20 ml), 10% sodium bicarbonate (3×20 ml) and water (2×20 ml). The organic phase was dried over anhydrous sodium sulfate, filtered and evaporated to dryness *in vacuo* to yield a yellow viscous liquid in 7.1 mg. Further separation with precoated TLC on silica gel plates with 45% ethyl acetate-petroleum ether (7 runs) as a mobile phase afforded a colorless viscous liquid in 3.3 mg (AcYS5). Chromatogram characteristics on normal phase TLC with 45% ethyl acetate-petroleum ether (3 runs) showed one pure UV-active spot with R_f value of 0.33.

$[\alpha]_{D}^{29}$	-33.33° (c = 3.0 x 10^{-2} g/100 cm ³ , CHCl ₃)
IR (neat) v (cm ⁻¹)	2926 (CH stretching),
	1756, 1750, 1659, 1653 (C=O stretching),
	1622, 1579 (C=C stretching)
UV (CHCl ₃) λ_{max} (nm) (log ε)	306 (3.63)
1 H NMR (CDCl ₃) (δ ppm)	8.27 (d , J = 9.0 Hz, 1H), 8.02 (s , 1H), 7.61 (d , J
(500 MHz)	= 9.0 Hz, 2H), 7.18 (d , J = 9.0 Hz, 2H), 7.08 (d , J
	= 2.0 Hz, 1 H), 7.06 (dd , J = 9.0 , 2.0 Hz, 1 H),
	5.36 (t , J = 9.0 Hz, 1H), 5.34 (dd , J = 9.0, 7.5 Hz,

1H), 5.33 (dd, J = 3.5, 1.5 Hz, 1H), 5.31 (dd, J =

		"), - i.e. (iii), 5 i.e., 111), 5.51 (aa, 5
		10.0, 3.5 Hz, 1H), 5.24 (<i>d</i> , <i>J</i> = 7.5 Hz, 1H), 5.10
		(dd, J = 10.0, 9.1 Hz, 1H), 5.07 (t, J = 10.0 Hz,
		1H), 4.75 (d , J = 1.5 Hz, 1H), 3.96 (ddd , J =
		10.0, 7.5, 2.5 Hz, 1H), 3.84 (dq, J = 10.0, 6.5 Hz,
		1H), 3.77 (dd, J = 12.0, 2.5 Hz, 1H), 3.65 (dd, J
		= 12.0, 7.5 Hz, 1H), 2.34 (s, 3H), 2.18 (s, 3H),
		2.10 (s, 3H), 2.09 (s, 3H), 2.07 (s, 3H), 2.06 (s,
		3H), 2.00 (s , 3H), 1.19 (d , $J = 6.5$ Hz, 3H)
13 C NMR (CDCl ₃) (δ pp	m)	175.43, 170.18, 169.98, 169.91, 169.74, 169.47,
(125 MHz)		169.25, 160.47, 157.40, 153.33, 150.57, 130.04,
		129.57, 128.24, 124.33, 121.64, 120.16, 115.43,
		104.10, 98.21, 77.20, 73.80, 72.55, 70.74, 69.21,
		69.06, 68.79, 66.73, 66.36, 21.16, 20.80, 20.77,
		20.76, 20.63, 20.62, 20.59, 17.33
DEPT (135°) (CDCl ₃)	CH	153.33, 130.04, 128.24, 121.64, 115.43, 104.10,
		98.21, 77.20, 73.80, 72.55, 70.74, 69.21, 69.06,
		68.79, 66.73
	CH_2	66.36
	CH_3	21.16, 20.80, 20.77, 20.76, 20.63, 20.62, 20.59,
		17.33

Fraction C6 Chromatogram characteristics on normal phase and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed that it contained YS4 and three minor UV-active components, two of which were found in A3.

Fraction C7 Chromatogram characteristics on normal phase and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, indicated that this fraction contained YS4 and other two components as found in A3.

Fraction C8 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed no definite spots. However, reversed-phase TLC with

50% methanol-water showed one major spot with R_f value of 0.68. Further purification was not attempted.

Fraction D It (436.3 mg) was separated into forty eight fractions by chromatotron using silica gel plate with 2 mm thickness. Elution was conducted initially with chloroform, followed by increasing amount of methanol and finally with pure methanol. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and evaporated to dryness under reduced pressure to afford subfractions D1-D7 as shown in Table 35.

Table 35 Fractions obtained from D by chromatotron

Fraction	Weight (g)	Physical appearance
Di	0.002	White solid
D2	0.002	White solid
D3	0.002	White solid
D4	0.019	Colorless viscous liquid
D5	0.141	White solid
D6	0.199	Colorless viscous liquid
D7	0.044	Yellow viscous liquid

Fraction D1 Chromatogram characteristics on normal phase (20% methanol-chloroform) and reversed-phase TLC (50% methanol-water) showed no major components. It was not further investigated.

Fraction D2 Chromatogram characteristics on normal phase TLC (20% methanol-chloroform) showed two spots under UV-S with R_f values of 0.33 and 0.47. However, chromatogram characteristics on reversed-phase TLC (50% methanol-water) showed only one spot with R_f value of 0.51.

Fraction D3 Chromatogram characteristics on reversed-phase TLC (50% methanol-water) showed two spots under UV-S with $R_{\rm f}$ values of 0.52 and 0.61 which were not identical to any of the previously isolated compounds.

Fraction D4 Chromatogram characteristics on normal phase TLC (20% methanol-chloroform) showed three UV-active components with $R_{\rm f}$ values of 0.15, 0.22 and 0.27. It was not further investigated.

Fraction D5 Chromatogram characteristics on reversed-phase TLC (50% methanol-water) showed one spot with the same R_f value as that of YS2. It was recrystallized in a mixture of methanol-chloroform to give YS2 (27.0 mg).

Fraction D6 This fraction contained YS2 and YS3 according to their R_f values of 0.17, 0.15 (normal phase TLC with 20% methanol-chloroform) and 0.23, 0.29 (reversed-phase TLC with 50% methanol-water). It was then separated by chromatotron with silica gel plate (2 mm thickness). Elution was conducted initially with chloroform, followed by increasing amount of methanol in chloroform and finally with pure methanol to give eighty nine fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and evaporated to dryness *in vacuo* to afford four fractions as shown in Table 36.

Table 36 Fractions separated from D6 by chromatotron

Fraction	Weight (g)	Physical appearance
D6.1	0.013	Yellow-brown solid
D6.2	0.013	White solid
D6.3	0.194	Colorless solid
D6.4	0.018	Yellow viscous liquid

Fraction D6.1 Chromatogram characteristics on reversed-phase TLC (50% methanol-water) indicated the presence of YS2 mixed with YS3 and the other minor component with R_f value of 0.49.

Fraction D6.2 Chromatogram characteristics on reversed-phase TLC (50% methanol-water) indicated the presence of YS2.

Fraction D6.3 Chromatogram characteristics on reversed-phase TLC (50% methanol-water) indicated the presence of YS2 and YS3. Attempted recrystallization in a mixture of methanol-chloroform was unsuccessful.

Fraction D6.4 Chromatogram characteristics on reversed-phase TLC (50% methanol-water) showed no major spot under UV-S. It was then not further investigated.

Fraction D7 Chromatogram characteristics on reversed-phase TLC (50% methanol-water) showed no major spot under UV-S. It was therefore not further investigated.

Fraction E It (528.9 mg) was separated into two fractions by dissolving in methanol. The methanol-soluble fraction, after evaporation to dryness, afforded YS4 as a white-yellow solid. The methanol-insoluble fraction showed the similar chromatogram characteristics as C. It was then combined with the remainder of C and further separated by column chromatography over acid-washed silica gel. Elution was conducted initially with chloroform and finally with pure methanol to give sixty seven fractions. All fractions were examined by TLC with normal and reversed-phase silica gel plates, combined on the basis of their chromatogram characteristics and evaporated to dryness under reduced pressure to afford eleven fractions as shown in Table 37.

Table 37 Fractions obtained from E by column chromatography over acid-washed silica gel

Fraction	Weight (g)	Physical appearance
E1	0.008	Yellow solid
E2	0.004	White solid
E3	0.005	Yellow solid
E4	0.007	Yellow solid
E5	0.034	Yellow viscous liquid
E6	0.049	Yellow viscous liquid
E7	0.153	Pale yellow solid
E8	0.020	Yellow viscous liquid
E9	0.114	Pale yellow solid

Table 37 (continued)

Fraction	Weight (g)	Physical appearance
E10	0.027	Yellow viscous liquid
E11	0.030	Yellow viscous liquid

Fraction E1 Chromatogram characteristics on normal phase and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed none of UV-active spots. It was therefore not further investigated.

Fraction E2 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed one major spot with R_f value of 0.66. Because of low quantity of this fraction, it was not further investigated.

Fraction E3 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed light spot under UV-S. It was therefore not further investigated.

Fraction E4 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water indicated the presence of YS2 mixed with YS3.

Fraction E5 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water were similar to those of A3.

Fraction E6 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed the presence of **YS4** as a major component and other two components with R_f values of 0.29 and 0.66. Chromatography on reversed phase TLC with 50% methanol-water afforded four bands

Band I was obtained as a white solid in 3.3 mg. Chromatogram characteristics on normal phase with 20% methanol-chloroform showed one spot under UV-S with R_f value of 0.32 while chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed one spot under UV-S with R_f value of 0.70. It was not further investigated because of low quantity of this fraction.

Band 2 was obtained as a white solid in 8.8 mg. It was shown to be YS4 by chromatogram characteristics on normal phase and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively.

Band 3 was obtained as a white solid in 17.5 mg. Chromatogram characteristics on reversed-phase TLC with 50% methanol-water indicated the presence of YS2 (R_f 0.25) and the other less polar compound with R_f value of 0.14.

Band 4 was obtained as a yellow viscous liquid mixed with white solid in 3.9 mg. Chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed two spots under UV-S with the same R_f values as YS2 and YS3 and the other non-polar compound with R_f value of 0.74. It was therefore not further investigated.

Fraction E7 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed the presence of YS4 as a major spot. It crystallized at room temperature to give YS4 as a white solid in 27.8 mg.

Fraction E8 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water indicated the presence of YS2, YS3 and YS4.

Fraction E9 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water were similar to those of **A3**.

Fraction E10 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water indicated the presence of YS4 and other two spots as found in A3.

Fraction E11 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water indicated the presence of YS2, YS3 and YS4.

Fraction F Chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed one spot with R_f value of 0.78 under UV-S. Therefore, It (278.0 mg) was separated by column chromatography over reversed phase silica gel. Elution was conducted initially with 30% methanol-water and gradually enriched with methanol to give thirty nine fractions. All fractions were examined by TLC, combined on the basis of chromatogram characteristics and evaporated to dryness to afford six fractions as shown in Table 38.

Table 38 Fractions obtained from **F** by column chromatography over reversed-phase silica gel

Fraction	Weight (g)	Physical appearance
F1	0.156	Yellow-brown viscous liquid
F2	0.044	Yellow viscous liquid
F3	0.006	Yellow viscous liquid
F4	0.010	Yellow viscous liquid
F5	0.017	Yellow viscous liquid
F6	0.040	Brown solid
1 [i	

Fraction F1 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed three major spots under UV-S with R_f values of 0.33, 0.42 and 0.78. It was further separated by column chromatography over reversed-phase silica gel. Elution was conducted initially with 10% methanol-water, followed by increasing amount of methanol and finally with pure methanol to give sixty five fractions. All fractions were examined by TLC, combined on the basis of chromatogram characteristics and evaporated to dryness to afford seven fractions as shown in Table 39.

Table 39 Fractions obtained from **F1** by column chromatography over reversed-phase silica gel

Fraction	Weight (g)	Physical appearance
F1.1	0.031	Colorless viscous liquid
F1.2	0.009	Colorless viscous liquid
F1.3	0.009	White solid
F1.4	0.005	Colorless viscous liquid
F1.5	0.002	White solid
F1.6	0.009	White solid
F1.7	0.055	Yellow viscous liquid
	1	

Fraction F1.1 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed one oval spot under UV-S with R_f value of 0.39 whereas chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed one spot under UV-S with R_f value of 0.70. It was not further investigated.

Fraction F1.2 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed no definite spots under UV-S whereas chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed two well-separated spots under UV-S with R_f values of 0.66 and 0.79. No further investigation was performed.

Fraction F1.3 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed two well-separated spots under UV-S with $R_{\rm f}$ values of 0.05, 0.45 and 0.66, 0.74, respectively. It was not further investigated because of low quantity of this fraction.

Fractions F1.4 and F1.5 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed one spot with $R_{\rm f}$ value of 0.45. However, chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed two well-separated spots under UV-S with $R_{\rm f}$ values of 0.66 and 0.74. It was not further investigated.

Fraction F1.6 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed one spot under UV-S with R_f values of 0.44 and 0.62, respectively. No further investigation was performed.

Fraction F1.7 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed pale spots under UV-S. It was therefore not further investigated.

Fraction F2 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water indicated the presence of YS3 and other two spots as found in A3. It was not further investigated.

Fraction F3 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed two spots under UV-S with the same R_f values as YS2 and YS3.

Fraction F4 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed the presence of YS2 as a major spot.

Fraction F5 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed the presence of YS2 as a major spot together with the other spot under UV-S with R_f value of 0.09.

Fraction F6 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed pale spots under UV-S. It was therefore not further investigated.

Fraction G Chromatogram characteristics on normal phase TLC with 14% methanol-dichloromethane (6 runs) showed four well-separated spots under UV-S with R_f values of 0.20, 0.27, 0.34 and 0.42. In addition, chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed three major spots under UV-S with R_f values of 0.38, 0.49 and 0.65. This fraction (903.1 mg) was further separated by column chromatography over reversed-phase silica gel. Elution was conducted with 50% methanol-water to give thirty two fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford three fractions.

Fraction G1 was obtained as a yellow solid in 148.4 mg. Chromatogram characteristics on normal and reversed-phase TLC with 14% methanol-dichloromethane and 50% methanol-water, respectively, showed no major spots under UV-S. It was therefore not further investigated.

Fraction G2 was obtained as a yellow solid mixed with yellow viscous liquid in 226.2 mg. Chromatogram characteristics on normal and reversed-phase TLC with 14% methanol-dichloromethane and 50% methanol-water, respectively, indicated the presence of YS4 as a major component.

Fraction G3 was obtained as a yellow viscous liquid in 490.7 mg. Chromatogram characteristics on normal and reversed-phase TLC with 14% methanol-dichloromethane (5 runs) and 50% methanol-water, respectively, showed four major spots of YS2, YS3, YS4 and one UV-active spot with R_f values of 0.49 and 0.35, respectively. Further separation by column chromatography over silica gel was carried out. Elution was conducted with 14% methanol-dichloromethane to give

eighty seven fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford four fractions.

Fraction G3.1 was obtained as a colorless viscous liquid in 13.2 mg. Chromatogram characteristics on normal phase TLC with 14% methanol-dichloromethane indicated that it contained YS2 as a major component.

Fraction G3.2 was obtained as a yellow solid in 202.6 mg. Chromatogram characteristics on normal phase TLC with 14% methanol-dichloromethane indicated the presence of YS2 and YS3 as major components.

Fraction G3.3 was obtained as a yellow viscous liquid in 98.9 mg. Chromatogram characteristics on normal phase TLC with 14% methanol-dichloromethane (3 runs) showed one major UV-active spot with $R_{\rm f}$ value of 0.15. Further separation with precoated TLC on silica gel plates with the same solvent system (7 runs) afforded YS10 as a yellow viscous liquid in 30.1 mg. Chromatogram characteristics on normal phase TLC with 14% methanol-dichloromethane (4 runs) showed one UV-active spot with $R_{\rm f}$ value of 0.22.

¹H NMR (CD₃OD) (δ ppm) (500 MHz)

8.27 (s, 1H), 7.70 (d, J = 9.5 Hz, 1H), 7.50 (d, J = 9.0 Hz, 2H), 7.35 (d, J = 9.5 Hz, 1H), 7.00 (d, J = 9.0 Hz, 1H), 4.99 (d, J = 7.5 Hz, 1H), 4.72 (d, J = 1.5 Hz, 1H), 4.05 (d, J = 9.2 Hz, 1H) , 3.86 (dd, J = 3.5, 1.5 Hz, 1H), 3.71 (dd, J = 9.2, 3.5 Hz, 1H), 3.68-3.63 (m, 3H), 3.59 (dd, J = 9.5, 7.5 Hz, 1H), 3.52 (t, J = 9.2 Hz, 1H), 3.41 (t, J = 9.2 Hz, 1H), 3.36 (t, J = 9.2 Hz, 1H), 1.20 (t, J = 6.5 Hz, 3H)

It (20.1 mg) was further acetylated with acetic anhydride (0.8 ml) in the presence of pyridine (0.2 ml). The mixture was stirred at room temperature for 24 hours. The reaction mixture was extracted with ethyl acetate (3×20 ml). The ethyl acetate layer was consecutively washed with 10% hydrochloric acid (2×20 ml), 10% sodium bicarbonate (3×20 ml) and water (2×20 ml). The organic phase was dried over

anhydrous sodium sulfate, filtered and evaporated to dryness *in vacuo* to yield a yellow-white solid in 29.7 mg. Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform (3 runs) showed two well-separated spots under UV-S with R_f values of 0.42 and 0.50. Further purification on precoated TLC with 1% methanol-chloroform (7 runs) as a mobile phase afforded **AcYS10** as a pale yellow viscous liquid in 14.0 mg. Chromatogram characteristics on normal phase TLC with 1% methanol-chloroform showed one pure spot under UV-S with R_f value of 0.52.

 -51.47° (c = 13.6 x 10^{-2} g/100 cm³, CHCl₃) $[\alpha]_D^{29}$ 2940 (CH stretching), IR (neat) v (cm⁻¹) 1732, 1659 (C=O stretching), 1613, 1573 (C=C stretching) 257 (4.46) UV (CHCl₃) λ_{max} (nm) (log ε) ¹H NMR (CDCl₃) (δ ppm) 8.20 (d, J = 9.0 Hz, 1H), 7.90 (s, 1H), 7.46 (d, J =8.5 Hz, 2H), 7.12 (d, J = 9.0 Hz, 1H), 6.96 (d, J(500 MHz) = 8.5 Hz, 2H, 5.35-5.31 (m, 1H), 5.34-5.30 (m, 1H)1H), 5.30 (dd, J = 10.0, 3.5 Hz, 1H), 5.24 (dd, J =3.5, 1.5 Hz, 1H), 5.21 (d, J = 7.5 Hz, 1H), 5.09 (t, J = 10.0 Hz, 1H), 5.06 (t, J = 10.0 Hz, 1H), 4.74 (d, J = 1.5 Hz, 1H), 3.93 (ddd, J = 10.0, 6.5, 2.5)Hz, 1H), 3.86 (dq, J = 10.0, 6.5 Hz, 1H), 3.84 (s, 3H), 3.79 (dd, J = 11.5, 2.5 Hz, 1H), 3.67 (dd, J =11.5, 6.5 Hz, 1H), 2.40 (s, 3H), 2.09 (s, 3H), 2.08 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H), 2.04 (s, 3H), 2.01 (s, 3H), 1.17 (d, J = 6.5 Hz, 3H)¹³C NMR (CDCl₃) (δ ppm) 175.28, 170.05, 170.03, 169.98, 169.89, 169.47, 169.45, 168.09, 159.72, 152.00, 152.15, 151.95, (125 MHz) 149.59, 130.13, 125.07, 124.96, 123.90, 120.08, 114.00, 112.00, 98.00, 97.00, 73.79, 72.26, 70.78, 70.53, 69.39, 68.78, 68.68, 66.83, 66.39,

55.31, 20.79, 20.72, 20.60, 20.55, 20.15, 17.33

DEPT (135°) (CDCl₃) CH 152.15, 151.95, 130.13, 125.07, 124.96, 114.00, 98.00, 73.79, 72.26, 70.78, 70.53, 69.39, 68.78, 68.68, 66.83

CH₂ 66.39

CH₃ 55.31, 20.79, 20.72, 20.60, 20.55, 20.15, 17.33

Fraction G3.4 was obtained as a yellow viscous liquid in 11.4 mg. Chromatogram characteristics on normal phase TLC with 14% methanol-dichloromethane indicated the presence of YS4 as major component.

The Second Investigation

The crude *n*-butanol extract of *D. scandens* Benth, was tested for solubility in various solvents. The results were shown in Table 40.

Table 40 Solubility of the crude *n*-butanol extract

Solvent	Solubility at room temperature
Petrol	-
CH ₂ Cl ₂	-
CHCl ₃	-
Ether	-
EtOAc	-
Acetone	+ yellow solution
СН₃ОН	+++ brown solution
H ₂ O	+++ brown solution
10% HCl	+++ yellow solution
10% NaOH	+++ brown solution
10% NaHCO ₃	+++ brown solution
BuOH	++ yellow solution

insoluble
 + slightly soluble
 ++ moderately soluble
 +++ well-soluble

The above results revealed that the crude n-butanol extract consisted of highly polar and acidic compounds.

The *n*-butanol extract (122.48 g) was chromatographed on silica gel using chloroform, chloroform-methanol gradient and finally pure methanol to give eighty fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford seven fractions as shown in Table 41.

Table 41 Fractions obtained from the crude *n*-butanol extract by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
1	4.35	Yellow-brown viscous liquid
2	0.69	Yellow-brown solid
3	1.57	Yellow-brown viscous liquid
4	3.08	Yellow-brown viscous liquid
5	4.38	Yellow-brown viscous liquid
6	2.85	Pale yellow solid mixed with yellow-brown viscous liquid
7	4.89	Yellow-brown solid

Fraction 1 Chromatogram characteristics on normal phase TLC (20% methanol-chloroform) and reversed-phase TLC (50% methanol-water) showed many spots under UV-S. This fraction was further investigated by Mrs. Supamas Intarit.

Fraction 2 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed three major UV-active spots with R_f values of 0.55, 0.76 and 0.83 while chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed one major UV-active spot with R_f value of 0.77. Therefore, It was further investigated by Miss Morakot Kaewpet.

Fraction 3 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed many spots. This fraction was further investigated by Miss Morakot Kaewpet.

Fraction 4 Chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed two major UV-active spots with R_f values of 0.55 and 0.73. This fraction was divided into three portions for further investigation.

The first portion (H, 280.2 mg) was further separated by column chromatography over reversed-phase silica gel. Elution was conducted initially with 30% methanol-water and gradually enriched with pure methanol to afford one hundred and two fractions. All fractions were examined by TLC, combined on the basis of chromatogram characteristics and then evaporated to dryness under reduced pressure to afford ten subfractions as shown in Table 42.

Table 42 Fractions obtained from H by column chromatography over reversed-phase silica gel

Fraction	Weight (g)	Physical appearance
H1	0.002	White solid
H2	0.015	Yellow viscous liquid
H3	0.011	Yellow viscous liquid
H4	0.023	Pale yellow solid
H5	0.004	White solid
Н6	0.011	Brownish solid
H7	0.009	Pale yellow solid
H8	0.061	Yellow viscous liquid
H9	0.044	Yellow viscous liquid
H10	0.099	Yellow viscous liquid

Subfraction H1 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed none of UV-active spots. It was therefore not further investigated.

Subfraction H2 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed two UV-active spots with $R_{\rm f}$ values of 0.34 and 0.38 while chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed one major UV-active spot with $R_{\rm f}$ value of 0.80.

Subfraction H3 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed two of well-separated spots with R_f values of 0.37, 0.44 and 0.68, 0.78, respectively. Because it was obtained in low quantity, it was not further investigated.

Subfraction H4 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed two of well-separated spots under UV-S with R_f values of 0.27, 0.44 and 0.46, 0.70, respectively. It was not further investigated.

Subfraction H5 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, were similar to those of **H4**. It was not further investigated.

Subfraction H6 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform demonstrated two pale and well-separated spots under UV-S with R_f values of 0.42 and 0.48 while chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed one UV-active spot with R_f value of 0.66. Because of low quantity of this fraction, it was not further investigated.

Subfraction H7 (YS9) Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed one UV-active spot with $R_{\rm f}$ values of 0.49 and 0.66, respectively. However, this fraction was obtained as a pure compound but in low quantity.

145° (decomposed)
3445 (OH stretching), 1668 (C=O stretching),
1591 (C=C stretching)
291 (4.04), 259 (4.32), 220 (4.32)
7.58 (dd , $J = 7.7$, 1.4 Hz, 1H), 7.55 (d , $J = 1.4$
Hz, 1H), $6.90 (d, J = 7.7 \text{ Hz}, 1\text{H}), 3.90 (s, 3\text{H})$
167.29, 151.79, 147.79, 124.56, 122.64, 115.24,
113.23, 56.03

Subfraction H8 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed none of well-separated spots under UV-S. It was therefore not further investigated.

Subfraction H9 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed three major spots under UV-S with $R_{\rm f}$ values of 0.19, 0.34 and 0.43. Further separation with precoated TLC on silica gel plates with 20% methanol-chloroform (2 runs) as a mobile phase afforded four bands.

<u>Band 1</u> was obtained as a white solid in 5.9 mg. Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, indicated that it was **YS1**.

Band 2 was obtained as a white solid in 3.7 mg. Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, demonstrated one major UV-active spot with equal $R_{\rm f}$ value of 0.38. Because of low quantity of this fraction, it was not further investigated.

Band 3 was obtained as a yellow solid in 1.2 mg. Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed one pure UV-active spot with R_f values of 0.30 and 0.37, respectively. Therefore, no further investigation was performed because this fraction was obtained in low quantity.

Band 4 was obtained as a white solid in 1.7 mg. Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, indicated the presence of **YS2** as a major spot.

Subfraction H10 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed none of well-separated spots under UV-S. It was therefore not further investigated.

The second portion (I, 227.7 mg) was chromatographed using the same procedure as that of H to give ninety one fractions. All fractions were examined by TLC, combined on the basis of chromatogram characteristics and then evaporated to dryness *in vacuo* to afford nine subfractions as shown in Table 43.

Table 43 Fractions obtained from I by column chromatography over reversed-phase silica gel

Fraction	Weight (g)	Physical appearance
I1	0.019	Yellow viscous liquid mixed with white solid
I2	0.025	Pale yellow solid
13	0.014	Yellow viscous liquid
I4	0.015	Yellow viscous liquid
15	0.031	Yellow viscous liquid
I 6	0.017	Yellow viscous liquid
I7	0.023	Yellow viscous liquid
18	0.031	Yellow viscous liquid
I 9	0.044	Yellow viscous liquid

Subfraction I1 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed three major UV-active spots with R_f values of 0.40, 0.49 and 0.54. In addition, chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed two UV-active spots with R_f values of 0.69 and 0.82. Because it was obtained in low quantity, no further purification was performed.

Subfraction I2 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed none of well-separated spots. It was not further investigated.

Subfraction I3 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed three major UV-active spots with R_f values of 0.27, 0.47 and 0.56 while chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed one oval UV-active spot with R_f value of 0.69. Finally, it was combined with other fractions which had the same chromatogram characteristics.

Subfraction I4 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed two well-separated spots under UV-S with R_f values of 0.26 and 0.39. In addition, chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed one major UV-active spot with R_f value of 0.59. Because it was obtained in low quantity, it was not further investigated.

Subfraction I5 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, demonstrated none of well-separated spots under UV-S. It was therefore not further investigated.

Subfraction I6 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed two well-separated spots under UV-S with R_f values of 0.33 and 0.43 while chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed one major UV-active spot with R_f value of 0.25. No further purification was performed because it was obtained in low quantity.

Subfraction I7 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed four well-separated spots under UV-S with R_f values of 0.16, 0.33, 0.38 and 0.42. In addition, chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed one oval UV-active spot with R_f value of 0.23. It was not further investigated because it was obtained in low quantity.

Subfraction I8 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed three major UV-active spots with R_f values of 0.16, 0.38 and 0.44. In addition, chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed one oval UV-active spot with R_f value of 0.16. It was not further investigated because it was obtained in low quantity.

Subfraction I9 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed no major spots under UV-S. It was therefore not further investigated.

The third portion (J, 1.97 g) was chromatographed using the same procedure as that of H to afford eighty five fractions. All fractions were examined by TLC, combined on the basis of chromatogram characteristics and then evaporated to dryness in vacuo to afford eleven subfractions as shown in Table 44.

Table 44 Fractions obtained from **J** by column chromatography over reversed-phase silica gel

Fraction	Weight (g)	Physical appearance
J1	0.143	Yellow viscous liquid
J2	0.150	Pale yellow solid
Ј3	0.013	Yellow viscous liquid
J4	0.115	Yellow viscous liquid
J5	0.059	Yellow viscous liquid
J6	0.153	Yellow viscous liquid
J7	0.204	Yellow viscous liquid
Ј8	0.242	Brownish solid
Ј9	0.341	Yellow solid
J10	0.163	Yellow solid mixed with yellow viscous liquid
J11	0.423	Yellow viscous liquid

Subfraction J1 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed two spots under UV-S with $R_{\rm f}$ values of 0.40 and 0.45 while chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed one major spot under UV-S with $R_{\rm f}$ value of 0.76. No attempted purification was carried out.

Subfraction J2 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed one major UV-active spot with R_f values of 0.28 and 0.35, respectively. It (56.2 mg) was further separated by column chromatography over reversed-phase silica gel. Elution was conducted initially with 10% methanol-water and gradually enriched with pure methanol to afford one hundred and one fractions. All fractions were examined by TLC, combined on the basis of chromatogram characteristics and then evaporated to dryness under reduced pressure to give three subfractions as shown in Table 45.

Table 45 Fractions obtained from J2 by column chromatography over reversedphase silica gel

Fraction	Weight (g)	Physical appearance
J2.1	0.001	Yellow viscous liquid
J2.2	0.018	White solid mixed with yellow viscous liquid
J2.3	0.045	Pale yellow solid

Subfraction J2.1 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed none of UV-active spots. It was therefore not further investigated.

Subfraction J2.2 Chromatogram characteristics on normal phase TLC with 10% methanol-chloroform (2 runs) showed three well-separated spots under UV-S with R_f values of 0.09, 0.18 and 0.30 whereas chromatogram characteristics on reversed-phase TLC with 10% methanol-water showed two well-separated spots under UV-S with R_f values of 0.13 and 0.65. Because it was obtained in low quantity, it was not further investigated.

Subfraction J2.3 Chromatogram characteristics on normal and reversed-phase TLC with 10% methanol-chloroform and 10% methanol-water, respectively, showed one major UV-active spot with $R_{\rm f}$ values of 0.18 and 0.14, respectively. It was not further investigated.

Subfraction J3 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed one pale major spot under UV-S with R_f values of 0.44 and 0.65, respectively. It was therefore not further investigated.

Subfraction J4 Chromatogram characteristics on normal and reversed-phase. TLC with 20% methanol-chloroform and 50% methanol-water, respectively, indicated the presence of **YS9** as a major component.

Subfraction J5 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, indicated that this fraction contained YS9 as a major component. Further separation with column chromatography over reversed-phase silica gel was performed. Elution was

conducted with 30% methanol-water to afford fifty one fractions. All fractions were examined by TLC, combined on the basis of chromatogram characteristics and then evaporated to dryness *in vacuo* to afford five subfractions as shown in Table 46.

Table 46 Fractions obtained from J5 by column chromatography over reversedphase silica gel

Fraction	Weight (g)	Physical appearance
J5.1	0.008	Brownish solid
J5.2	0.005	White solid mixed with yellow viscous liquid
J5.3	0.010	Yellow viscous liquid
J5.4	0.049	Yellow solid
J5.5	0.006	Yellow-brown viscous liquid

Subfraction J5.1 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform showed one oval spot under UV-S with R_f value of 0.50. No attempted purification was performed because of low quantity of this fraction.

Subfraction J5.2 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform showed three UV-active spots with R_f values of 0.19, 0.38 and 0.44. No further purification was performed because this fraction was obtained in low quantity.

Subfraction J5.3 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform showed four well-separated spots under UV-S with R_f values of 0.14, 0.19, 0.39 and 0.46. Because it was obtained in low quantity, no further purification was carried out.

Subfraction J5.4 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform as a mobile phase showed one oval spot under UV-S with R_f value of 0.53 whereas that with 60% ethyl acetate-petroleum ether as a mobile phase showed two UV-active spots with R_f values of 0.14 and 0.29. Further separation with precoated TLC on silica gel plates with 60% ethyl acetate-petroleum ether (3 runs) as a mobile phase to afford three bands.

<u>Band 1</u> was obtained as a yellow solid in 5.3 mg. Chromatogram characteristics on normal phase TLC with 60% ethyl acetate-petroleum ether showed one major spot with R_f value of 0.48, indicating the presence of **YS9**, and the other component with R_f value of 0.60.

Band 2 was obtained as a yellow solid in 10.8 mg. Chromatogram characteristics on normal phase with 50% ethyl acetate-petroleum ether showed one pure UV-active spot with the same R_f value as YS9.

Band 3 (YS12) was obtained as a pale yellow solid in 8.2 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether showed one pure UV-active spot with $R_{\rm f}$ value of 0.19.

IR (neat)
$$\nu$$
 (cm⁻¹) 3472 (OH stretching), 2925 (CH stretching), 1683 (C=O stretching),1598 (C=C stretching) UV (CH₃OH) λ_{max} (nm) (log ε) 270 (3.68), 217 (4.07) 7.30 (s , 2H), 3.90 (s , 6H) (500 MHz) 168.54, 149.04, 142.18, 122.16, 108.53, 56.76 (125 MHz)

Subfraction J5.5 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform showed no UV-active spot. It was therefore not further investigated.

Subfraction J6 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (3 runs) showed the same major component as **I6** with R_f value of 0.31.

Subfraction J7 Chromatogram characteristics on normal and reversed-phase TLC with 15% methanol-chloroform and 50% methanol-water, respectively, showed none of well-separated spots under UV-S. It was then acetylated using acetic anhydride (5.0 ml) and pyridine (1.5 ml). The mixture was stirred at room temperature for 24 hours. The reaction mixture was extracted with ethyl acetate (3×20 ml). The ethyl acetate layer was consecutively washed with 10% hydrochloric acid (2×20 ml),

10% sodium bicarbonate (3×20 ml) and water (2×20 ml). The organic phase was dried over anhydrous sodium sulfate, filtered and evaporated to dryness under reduced pressure to yield a yellow viscous liquid in 235.9 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether showed none of well-separated spots under UV-S. It was therefore not further investigated.

Subfraction J8 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform showed four spots under UV-S with R_f values of 0.12, 0.19, 0.24 and 0.32. Further separation with column chromatography over silica gel was performed. Elution was conducted initially with 10% methanol-chloroform and gradually enriched with pure methanol to afford one hundred and four fractions. All fractions were examined by TLC, combined on the basis of chromatogram characteristics and then evaporated to dryness *in vacuo* to afford six subfractions as shown in Table 47.

Table 47 Fractions obtained from J8 by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
Ј8.1	0.015	Yellow viscous liquid
J8.2	0.037	Pale yellow solid
J8.3	0.015	Colorless viscous liquid
J8.4	0.079	Yellow viscous liquid
Ј8.5	0.086	Yellow viscous liquid
J8.6	0.026	Yellow viscous liquid

Subfraction J8.1 Chromatogram characteristics on normal phase TLC with 10% methanol-chloroform showed none of well-separated spots under UV-S. It was therefore not further investigated.

Subfraction J8.2 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform showed the presence of **YS1** as a major component.

Subfraction J8.3 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform indicated the presence of **YS1** as a major component. It was further acetylated using acetic anhydride (0.8 ml) and pyridine (0.2 ml). The

mixture was stirred at room temperature for 24 hours. The reaction mixture was extracted with ethyl acetate (3×20 ml). The ethyl acetate layer was consecutively washed with 10% hydrochloric acid (2×20 ml), 10% sodium bicarbonate (3×20 ml) and water (2×20 ml). The organic phase was dried over anhydrous sodium sulfate, filtered and evaporated to dryness under reduced pressure to yield a yellow viscous liquid in 40.2 mg. Chromatogram characteristics on normal phase TLC with 40% ethyl acetate-petroleum ether (4 runs) showed one major spot under UV-S with R_f value of 0.15. Further purification on precoated TLC with 45% ethyl acetate-petroleum ether (4 runs) as a mobile phase afforded a yellow viscous liquid in 11.9 mg (AcYS1). Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether showed one pure UV-active spot with R_f value of 0.15.

IR (neat) v (cm ⁻¹)	2937, 2849 (CH stretching),
	1755, 1645 (C=O stretching),
	1609, 1567 (C=C stretching)
UV (CHCl ₃) λ_{max} (nm) (log ε)	253 (4.45)
1 H NMR (CDCl ₃) (δ ppm)	8.10 (<i>d</i> , <i>J</i> = 9.0 Hz, 1H), 7.99 (<i>s</i> , 1H), 7.52 (<i>d</i> , =
(500 MHz)	9.0 Hz, 2H), 7.06 (<i>d</i> , <i>J</i> = 9.0 Hz, 1H), 6.98 <i>d</i> , <i>J</i> =
	9.0 Hz, 2H), 5.38 (<i>dd</i> , <i>J</i> = 8.5, 7.0 Hz, 1H), 5.31
	(d, J = 8.5 Hz, 1H), 5.28 (dd, J = 9.5, 8.5 Hz,
	1H), 5.19 (d , J = 7.0 Hz, 1H), 4.29 (dd , J = 12.0,
	5.5 Hz, 1H), 4.08 (<i>dd</i> , <i>J</i> = 12.0, 2.5 Hz, 1H), 3.99
	(s, 3H), 3.84 (s, 3H), 3.70 (ddd, J = 9.5, 5.5, 2.5)
	Hz, 1H), 2.09 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H),
	1.94 (s, 3H)
13 C NMR (CDCl ₃) (δ ppm)	176.17, 170.74, 170.71, 169.81, 169.69, 159.98,
(125 MHz)	156.06, 152.70, 150.92, 132.52, 130.29, 124.54,
	124.04, 123.41, 119.24, 114.12, 110.03, 101.28,
	72.63, 72.02, 71.69, 68.35, 61.78, 56.37, 55.16,
	20.39, 20.32, 20.27
DEPT (135°) (CDCl ₃) CH	152.70, 130.29, 123.41, 114.12, 110.03, 101.28,

 CH_2

72.63, 72.02, 71.69, 68.35 61.78

CH₃ 56.37, 55.16, 20.39, 20.32, 20.27

Subfraction J8.4 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform showed three major UV-active spots with R_f values of 0.27, 0.32 and 0.42. Further separation with column chromatography over silica gel was carried out. Elution was conducted with 15% methanol-chloroform to afford forty seven fractions. All fractions were examined by TLC, combined on the basis of chromatogram characteristics and then evaporated to dryness under reduced pressure to give six subfractions as shown in Table 48.

Table 48 Fractions obtained from J8.4 by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
1	0.007	Yellow viscous liquid
2	0.014	Yellow viscous liquid
3	0.086	Yellow viscous liquid
4	0.022	Yellow viscous liquid
5	0.019	Yellow viscous liquid
6	0.022	Yellow viscous liquid

Subfraction 1 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) indicated the presence of YS1 as a major component.

Subfraction 2 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) under UV-S indicated that this fraction contained YS1 and the other component with R_f value of 0.49. It was acetylated using acetic anhydride (0.4 ml) and pyridine (0.1 ml). The mixture was stirred at room temperature for 24 hours. The reaction mixture was extracted with ethyl acetate (3×20 ml). The ethyl acetate layer was consecutively washed with 10% hydrochloric acid (2×20 ml), 10% sodium bicarbonate (3×20 ml) and water (2×20 ml). The organic phase was dried

over anhydrous sodium sulfate, filtered and evaporated to dryness under reduced pressure to yield a yellow viscous liquid in 17.5 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether showed two well-separated spots under UV-S with $R_{\rm f}$ values of 0.28 and 0.46. Further separation with precoated TLC on silica gel plates with 50% ethyl acetate-petroleum ether (2 runs) afforded two bands.

Band 2.1 (AcYS14) was obtained as a white solid in 4.5 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed one pure UV-active spot with $R_{\rm f}$ value of 0.49.

$\left[\alpha\right]_{D}^{29}$	-45.45° (c = 2.2 x 10^{-2} g/100 cm ³ , CHCl ₃)
IR (neat) v (cm ⁻¹)	2938, 2851 (CH stretching),
	1756, 1645 (C=O stretching),
	1609, 1569 (C=C stretching)
UV (CHCl ₃) λ_{max} (nm) (log ε)	258 (4.19)
1 H NMR (CDCl ₃) (δ ppm)	8.01 (s, 1H), 8.00 (d, $J = 9.0$ Hz, 1H), 7.50 (d,
(500 MHz)	J = 9.0 Hz, 2H), 7.18 (d, $J = 9.0 Hz, 1H$), 6.98
	(d, J = 9.0 Hz, 2H), 5.39 (dd, J = 9.0, 7.2 Hz,
	1H), 5.33 (t , J = 9.0 Hz, 1H), 5.20 (dd , J = 9.6,
	9.0 Hz, 1H), 5.16 (d , $J = 7.2$ Hz, 1H), 4.31
	(dd, J = 12.0, 6.0 Hz, 1H), 4.20 (dd, J = 12.0,
	2.2 Hz, 1H), 3.96 (s, 3H), 3.90 (ddd, $J = 9.6$,
	6.0, 2.2 Hz, 1H), 3.85 (s, 3H), 2.10 (s, 3H),
	2.09 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H)
13 C NMR (CDCl ₃) (δ ppm)	176.36, 171.01, 170.67, 169.91, 169.81, 160.20
(125 MHz)	153.80, 152.72, 151.15, 138.85, 130.42, 125.14
	123.97, 121.75, 115.11, 114.24, 99.98, 77.17
	72.38, 70.90, 68.13, 61.95, 61.78, 55.22, 20.39
	20.32, 20.30, 20.27
DEPT (135°) (CDCl ₃) CH	152.72, 130.42, 121.45, 115.11, 114.24, 99.98,
	77.17, 72.38, 70.90, 68.13

CH₂ 61.78

CH₃ 61.95, 55.22, 20.39, 20.32, 20.30, 20.27

Band 2.2 was obtained as a yellow viscous liquid in 2.6 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether indicated the presence of pure AcYS1.

Subfraction 3 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) showed three well-separated spots under UV-S with $R_{\rm f}$ values of 0.41, 0.48 and 0.55. Further purification by precoated TLC on silica gel plates with 15% methanol-chloroform (3 runs) as a mobile phase afforded three bands.

Band 3.1 was obtained as a yellow viscous liquid in 1.6 mg. Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) indicated the presence of pure YS1.

Band 3.2 was obtained as a yellow viscous liquid in 6.6 mg. Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) showed one UV-active spot with R_f value of 0.44. It was then acetylated using acetic anhydride (0.10 ml) and pyridine (0.03 ml). The mixture was stirred at room temperature for 24 hours. It was then extracted with ethyl acetate (3×20 ml). The ethyl acetate layer was consecutively washed with 10% hydrochloric acid (2×20 ml), 10% sodium bicarbonate (3×20 ml) and water (2×20 ml). The organic phase was dried over anhydrous sodium sulfate, filtered and evaporated to dryness under reduced pressure to yield a yellow viscous liquid in 8.9 mg. Further purification on precoated TLC with 50% ethyl acetate-petroleum ether (3 runs) as a mobile phase afforded a white solid in 1.9 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) with R_f value of 0.45 indicated that it was identical to AcyS14.

Band 3.3 was obtained as a yellow viscous liquid in 13.0 mg. Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) showed one major UV-active spot with $R_{\rm f}$ value of 0.38. It was then acetylated using acetic anhydride (0.40 ml) and pyridine (0.10 ml). The mixture was stirred at room temperature for 24 hours. The reaction mixture was extracted with

ethyl acetate (3×20 ml). The ethyl acetate layer was consecutively washed with 10% hydrochloric acid (2×20 ml), 10% sodium bicarbonate (3×20 ml) and water (2×20 ml). The organic phase was dried over anhydrous sodium sulfate, filtered and evaporated under reduced pressure to yield a yellow viscous liquid in 16.7 mg. Further purification on precoated TLC with 45% ethyl acetate-petroleum ether (3 runs) as a mobile phase afforded a yellow viscous liquid (AcYS13) in 2.3 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed one UV-active spot with R_f value of 0.49.

$\left[\alpha\right]_{\mathrm{D}}^{29}$		-38.46° (c = 2.6 x 10^{-2} g/100 cm ³ , CHCl ₃)
IR (neat) v (cm ⁻¹)		2924, 2852 (CH stretching),
		1756, 1642 (C=O stretching),
		1622, 1591 (C=C stretching)
UV (CHCl ₃) λ _{max} (nm)	$(\log \varepsilon)$	263 (4.47)
1 H NMR (CDCl ₃) (δ pp	om)	8.25 (d, J = 8.1 Hz, 1H), 7.94 (s, 1H), 7.50 (d, J =
(500 MHz)		8.1 Hz, 2H), 7.05 (<i>dd</i> , <i>J</i> = 8.1, 2.5 Hz, 1H), 7.03
		(d, J = 2.5 Hz, 1H), 6.98 (d, J = 8.1 Hz, 2H),
		5.36-5.33 (m, 1H), 5.34-5.30 (m, 1H), 5.23 (d, J
		= 7.5 Hz, 1H), 5.18 (dd , J = 9.0, 8.4 Hz, 1H),
		4.29 (dd, $J = 12.0$, 6.0 Hz, 1H), 4.22 (dd, $J =$
		12.0, 2.2 Hz, 1H), 3.96 (ddd , $J = 9.0$, 6.0, 2.2 Hz,
·		1H), 3.85 (s, 3H), 2.10 (s, 3H), 2.08 (s, 3H), 2.07
		(s, 3H), 2.05 (s, 3H)
13 C NMR (CDCl ₃) (δ p)	pm)	176.09, 170.84, 170.53, 169.74, 169.57, 160.83,
(125 MHz)		160.07, 157.69, 152.54, 130.29, 128.40, 125.31,
		124.03, 120.43, 115.37, 114.13, 104.36, 98.43;
		72.45, 72.34, 70.92, 68.07, 61.78, 55.13, 20.24,
		20.21, 20.18, 20.16
DEPT (135°) (CDCl ₃)	СН	152.54, 130.29, 128.40, 115.37, 114.13,
		104.36, 98.43, 72.45, 72.34, 70.92, 68.07
	CH_2	61.78

CH₃ 55.13, 20.24, 20.21, 20.18, 20.16

Subfraction 4 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) showed none of well-separated spots under UV-S. It was then acetylated using acetic anhydride (0.60 ml) and pyridine (0.15 ml). The mixture was stirred at room temperature for 24 hours. The reaction mixture was extracted with ethyl acetate (3×20 ml). The ethyl acetate layer was consecutively washed with 10% hydrochloric acid (2×20 ml), 10% sodium bicarbonate (3×20 ml) and water (2×20 ml). The organic phase was dried over anhydrous sodium sulfate, filtered and evaporated to dryness under reduced pressure to yield a yellow viscous liquid in 26.4 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed no major spots under UV-S. It was therefore not further investigated.

Subfraction 5 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) showed three well-separated spots under UV-S with R_f values of 0.22, 0.31 and 0.38. Further acetylation with acetic anhydride (0.55 ml) and pyridine (0.14 ml) was performed. The mixture was stirred at room temperature for 24 hours. The reaction mixture was extracted with ethyl acetate (3×20 ml). The ethyl acetate layer was consecutively washed with 10% hydrochloric acid (2×20 ml), 10% sodium bicarbonate (3×20 ml) and water (2×20 ml). The organic phase was dried over anhydrous sodium sulfate, filtered and evaporated to dryness under reduced pressure to yield a yellow viscous liquid in 22.8 mg. Further separation with precoated TLC on silica gel plates with 50% ethyl acetate-petroleum ether (2 runs) as a mobile phase afforded a white solid (AcYS6) in 2.8 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether demonstrated one pure component under UV-S with R_f value of 0.45.

[
$$\alpha$$
]_D²⁹ -68.18° (c = 4.4 x 10⁻² g/100 cm³, CHCl₃)
IR (neat) v (cm⁻¹) 2938 (CH stretching),
1750, 1634 (C=O stretching),
1602, 1579 (C=C stretching)

UV (CHCl₃) λ_{max} (nm) (log ε) 260 (4.47) ¹H NMR (CDCl₃) (δ ppm) 7.97 (s, 1H), 7.65 (s, 1H), 7.51 (d, J = 9.3 Hz, 2H), 7.20 (s, 1H), 6.98 (d, J = 9.3 Hz, 2H), 5.35-5.32 (m, (500 MHz) 2H), 5.31(dd, J = 3.4, 1.7 Hz, 1H), 5.26 (dd, J = 9.9, 1.7 Hz)3.4 Hz, 1H), 5.13 (d, J = 7.6 Hz, 1H), 5.09 (t, J = 9.9 Hz, 1H), 5.04 (t, J = 9.9 Hz, 1H), 4.74 (d, J = 1.7 Hz. 1H), 3.92 (s, 3H), 3.89 (ddd, J = 9.9, 7.0, 2.2 Hz, 1H), 3.84 (s, 3H), 3.83 (dd, J = 9.9, 5.9 Hz, 1H), 3.77 (dd, J = 11.2, 2.4 Hz, 1H), 3.65 (dd, J = 11.5, 7.0 Hz,1H), 2.09 (s, 3H), 2.08 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H), 1.96 (s, 3H), 1.19 (d, J = 5.9 Hz, 3H) 13 C NMR (CDCl₃) (δ ppm) 175.84, 170.43, 170.14, 170.05, 169.96, 169.68 169.49, 159.79, 152.94, 151.52, 150.99, 148.82 (125 MHz) 130.33, 124.69, 124.32, 120.71, 114.21, 107.19 106.57, 100.03, 98.44, 73.90, 72.64, 71.24, 71.07 69.55, 69.36, 69.25, 66.93, 66.80, 56.62, 55.55, 21.00 20.93, 20.83, 17.58 DEPT (135°) (CDCl₃) 152.94, 130.33, 114.21, 107.19, 106.57, 100.03, CH 98.44, 73.90, 72.64, 71.24, 71.07, 69.55, 69.36, 69.25, 66.93 CH_2 66.80 CH_3 56.62, 55.55, 21.00, 20.93, 20.83, 17.58

Subfraction 6 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) showed one major spot under UV-S with $R_{\rm f}$ value of 0.37. Because it was obtained in low quantity, it was not further investigated.

Subfraction J8.5 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform showed one major UV-active spot with $R_{\rm f}$ value of 0.31. Further purification by precoated TLC on silica gel plates with 15% methanol-chloroform (4 runs) as a mobile phase afforded three bands.

Band J8.5-a (Acetate of AcYS8) was obtained as a white solid in 9.5 mg. Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) showed one major component under UV-S with R_f value of 0.32. Further acetylation with acetic anhydride (0.2 ml) and pyridine (0.06 ml) was carried out. The mixture was stirred at room temperature for 24 hours. The reaction mixture was extracted with ethyl acetate (3×20 ml). The ethyl acetate layer was consecutively washed with 10% hydrochloric acid (2×20 ml), 10% sodium bicarbonate (3×20 ml) and water (2×20 ml). The organic phase was dried over anhydrous sodium sulfate, filtered and evaporated to dryness *in vacuo* to yield a yellow viscous liquid in 10.8 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed one pure compound under UV-S with R_f value of 0.43.

$[\alpha]_{D}^{29}$	-55.56° (c = 3.6 x 10^{-2} g/100 cm ³ , CHCl ₃)
IR (neat) v (cm ⁻¹)	2925, 2851 (CH stretching),
	1756, 1645 (C=O stretching),
	1609, 1581 (C=C stretching)
UV (CHCl ₃) λ_{max} (nm) (log ε)	255 (4.93), 213 (4.87)
1 H NMR (CDCl ₃) (δ ppm)	8.14 (d , J = 8.5 Hz, 1H), 8.00 (s , 1H), 7.52 (d , J =
(500 MHz)	7.0 Hz, 2H), 7.16 (d , J = 8.5 Hz, 1H), 7.00 (d , J =
	7.0 Hz, 2H), 5.37 (dd , $J = 9.5$, 7.5 Hz, 1H), 5.31
	(t, J = 9.5 Hz, 1H), 5.23 (dd, J = 9.5, 9.0 Hz, 1H),
	5.18 (d , J = 7.5 Hz, 1H), 4.36 (dd , J = 11.3, 4.2
	Hz, 1H), 4.00 (dd, $J = 11.3$, 2.5 Hz, 1H), 3.87 (s,
	3H), 3.70 (<i>ddd</i> , <i>J</i> = 9.0, 4.2, 2.5 Hz, 1H), 2.38 (<i>s</i> ,
	3H), 2.15 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 2.02
	(s, 3H)
13 C NMR (CDCl ₃) (δ ppm)	175.63, 170.59, 170.48, 169.61, 169.42, 168.42
(125 MHz)	160.18, 152.14, 150.40, 147.82, 136.47, 130.36
	125.65, 123.76, 123.58, 122.95, 121.00, 114.39
	101.69, 72.88, 72.56, 71.84, 68.23, 61.72, 55.59

20.97, 20.96, 20.82, 20.77

DEPT (135°) (CDCl₃) CH 152.14, 130.36, 122.95, 121.00, 114.39, 101.69

72.88, 72.56, 71.84, 68.23

CH₂ 61.72

CH₃ 55.92, 20.97, 20.96, 20.82, 20.77

Band J8.5-b was obtained as a white solid in 1.1 mg. Chromatogram characteristics on normal phase with 15% methanol-chloroform (2 runs) showed two major UV-active spots with $R_{\rm f}$ values of 0.14 and 0.17. It was therefore not further investigated because it was obtained in low quantity.

Band J8.5-c was obtained as a white solid in 1.2 mg. Chromatogram characteristics on normal phase with 15% methanol-chloroform (2 runs) showed one UV-active spot with $R_{\rm f}$ value of 0.24. It was therefore not further investigated because it was obtained in low quantity.

Subfraction J8.6 Chromatogram characteristics on normal phase with 15% methanol-chloroform showed none of well-separated spots. It was therefore not further investigated.

Subfraction J9 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform showed five spots under UV-S with $R_{\rm f}$ values of 0.13, 0.20, 0.26, 0.30 and 0.34. It was further chromatographed on silica gel column chromatography using 10% methanol-chloroform, chloroform-methanol gradient and finally pure methanol to give one hundred and forty one fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford six subfractions as shown in Table 49.

Table 49 Fractions obtained from J9 by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
J9.1	0.025	Yellow viscous liquid
Ј9.2	0.015	Pale yellow solid

Table 49 (continued)

Fraction	Weight (g)	Physical appearance
J9.3	0.105	Yellow viscous liquid
J9.4	0.061	White solid mixed with yellow viscous liquid
J9.5	0.058	Yellow viscous liquid
Ј9.6	0.072	Pale yellow solid mixed with yellow viscous liquid

<u>Subfraction J9.1</u> Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) showed no UV-active spots. Therefore, no further purification was performed.

<u>Subfraction J9.2</u> Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) indicated the presence of pure **YS1**.

<u>Subfraction J9.3</u> Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) showed two major spots of **YS1** and **YS6**. This fraction was combined with **J8.4**.

<u>Subfraction J9.4</u> Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) showed one major spot of **YS2**.

Subfraction J9.5 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) under UV-S indicated that this fraction contained YS2 and the other component with $R_{\rm f}$ value of 0.26. Further separation with column chromatography over silica gel was carried out. Elution was conducted with 15% methanol-chloroform to afford seventy eight fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford four subfractions as shown in Table 50.

Table 50 Fractions obtained from J9.5 by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
J9.5-a	0.003	Colorless viscous liquid
J9.5-b	0.018	Colorless viscous liquid

Table 50 (continued)

Fraction	Weight (g)	Physical appearance
Ј9.5-с	0.008	Colorless viscous liquid
J9.5-d	0.006	Colorless viscous liquid

Subfraction J9.5-a Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) showed one major UV-active spot with R_f value of 0.30. No further purification was performed because this fraction was obtained in low quantity.

Subfraction J9.5-b Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) under UV-S indicated that this fraction contained **YS2** and the other component with R_f value of 0.31. It was not further investigated because of low quantity of this fraction.

<u>Subfraction J9.5-c and J9.5-d</u> Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) indicated the presence of **YS2** as a major component.

<u>Subfraction J9.6</u> Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) indicated the presence of **YS2** as a major component.

Subfraction J10 Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform showed none of well-separated spots under UV-S. Further acetylation with acetic anhydride (4.00 ml) and pyridine (1.20 ml) was carried out. The mixture was stirred at room temperature for 24 hours. The reaction mixture was extracted with ethyl acetate (3×20 ml). The ethyl acetate layer was consecutively washed with 10% hydrochloric acid (2×20 ml), 10% sodium bicarbonate (3×20 ml) and water (2×20 ml). The organic phase was dried over anhydrous sodium sulfate, filtered and evaporated to dryness *in vacuo* to yield a brownish viscous liquid in 187.3 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether showed one major UV-active spot with R_f value of 0.48. It was then chromatographed on silica gel column. Elution was conducted initially with 40% ethyl acetate-petroleum ether, gradually enriched with ethyl acetate and followed by increasing amount of methanol in ethyl acetate and finally with 10% methanol-ethyl

acetate to give forty four fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford seven subfractions as shown in Table 51.

Table 51 Fractions obtained from J10 by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
J10.1	0.008	Yellow viscous liquid
J10.2	0.023	Yellow viscous liquid
J10.3	0.017	Yellow viscous liquid
J10.4	0.014	Yellow viscous liquid
J10.5	0.034	Yellow viscous liquid
J10.6	0.064	Yellow viscous liquid
J10.7	0.038	Yellow viscous liquid

Subfraction J10.1 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether showed one major spot under UV-S with $R_{\rm f}$ value of 0.45. Further purification by precoated TLC on silica gel plates with 30% ethyl acetate-petroleum ether (8 runs) as a mobile phase afforded a yellow viscous liquid (AcYS15) in 2.2 mg. Chromatogram characteristics on normal phase TLC with chloroform showed one pure spot under UV-S with $R_{\rm f}$ value of 0.12.

IR (neat)
$$\nu$$
 (cm⁻¹) 2924, 2852 (CH stretching), 1782, 1730, 1649 (C=O stretching), 1611, 1568 (C=C stretching) UV (CHCl₃) λ_{max} (nm) (log ε) 257 (4.12)

¹ H NMR (CDCl ₃) (δ ppm)	8.20 (<i>d</i> , <i>J</i> = 8.8 Hz, 1H), 7.94 (<i>s</i> , 1H), 7.48 (<i>d</i> , <i>J</i> =
(500 MHz)	8.8 Hz, 2H), 7.26 (<i>d</i> , <i>J</i> = 8.8 Hz, 1H), 6.98 (<i>d</i> , <i>J</i> =
	8.8 Hz, 2H), 3.84 (s, 3H), 2.42 (s, 3H), 2.36 (s,
	3H)
13 C NMR (CDCl ₃) (δ ppm)	175.34, 167.54, 167.21, 159.85, 152.03, 149.46,
(125 MHz)	146.42, 130.14, 125.42, 124.04, 123.38, 119.97,
	114.08, 55.35, 20.64, 20.26

Subfraction J10.2 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether showed two well-separated spots under UV-S with R_f values of 0.31 and 0.36. It was therefore not further investigated because it was obtained in low quantity.

Subfraction J10.3 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether showed two well-separated spots under UV-S with R_f values of 0.19 and 0.27. It was therefore not further investigated because it was obtained in low quantity.

<u>Subfraction J10.4</u> Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether showed two well-separated spots under UV-S with R_f values of 0.15 and 0.20. It was not further investigated because it was obtained in low quantity.

Subfraction J10.5 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether showed four spots under UV-S with R_f values of 0.06, 0.12, 0.15 and 0.25. It was not further investigated because it was obtained in low quantity.

<u>Subfraction J10.6</u> Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether showed none of well-separated spots under UV-S. It was therefore not further investigated.

Subfraction J10.7 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether showed three UV-active spots with $R_{\rm f}$ values of 0.05, 0.10 and 0.25. It was not further investigated because it was obtained in low quantity.

Subfraction J11 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether showed no major spots under UV-S. It was therefore not further investigated.

Fraction 5 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether showed four well-separated spots under UV-S with R_f values of 0.42, 0.56, 0.72 and 0.90. In addition, it contained YS2 (R_f 0.28) and YS3 (R_f 0.20) as major components. This fraction was divided into two portions.

The first portion (K, 2.09 g) was further separated by column chromatography over reversed-phase silica gel. Elution was conducted initially with 30% methanol-water and gradually enriched with pure methanol to afford one hundred and four fractions. All fractions were examined by TLC, combined on the basis of chromatogram characteristics and then evaporated to dryness *in vacuo* to afford twelve subfractions as shown in Table 52.

Table 52 Fractions obtained from K by column chromatography over reversed-phase silica gel

Fraction	Weight (g)	Physical appearance
K1	0.062	Yellow viscous liquid
K2	0.032	Yellow viscous liquid
К3	0.030	Yellow viscous liquid
K4	0.032	Pale yellow solid
K5	0.013	Yellow viscous liquid
K6	0.044	Yellow viscous liquid
К7	0.082	Yellow viscous liquid
K.8	0.138	Yellow viscous liquid
K9	0.107	Yellow viscous liquid
K10	0.150	Yellow viscous liquid
K11	0.883	Pale yellow solid
K12	0.343	Yellow viscous liquid

Subfraction K1 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed none of separated spots under UV-S. It was therefore not further investigated.

Subfraction K2 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed one oval spot under UV-S with R_f value of 0.17. In addition, chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed one major spot under UV-S with R_f value of 0.84. No further purification was performed because this fraction was obtained in low quantity.

Subfraction K3 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed one major spot under UV-S with $R_{\rm f}$ value of 0.26 while chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed two UV-active spots with $R_{\rm f}$ values of 0.56 and 0.66. Chromatography on reversed-phase TLC with 33% methanol-water afforded four bands.

Band 1 was obtained as a white solid in 1.6 mg. Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 33% methanol-water demonstrated one pale spot under UV-S with $R_{\rm f}$ values of 0.08 and 0.84, respectively. This fraction was obtained in low quantity. It was therefore not further investigated.

Band 2 was obtained as a yellow solid in 4.9 mg. Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed two well-separated spots under UV-S with R_f values of 0.25 and 0.45. In addition, chromatogram characteristics on reversed-phase TLC with 33% methanol-water showed only one spot under UV-S with R_f value of 0.82. Further acetylation with acetic anhydride (1.00 ml) and pyridine (0.10 ml) was performed. The mixture was stirred at room temperature for 24 hours. The reaction mixture was extracted with ethyl acetate (3×20 ml). The ethyl acetate layer was consecutively washed with 10% hydrochloric acid (2×20 ml), 10% sodium bicarbonate (3×20 ml) and water (2×20 ml). The organic phase was dried over anhydrous sodium sulfate, filtered and evaporated to dryness *in vacuo* to yield a yellow viscous liquid in 3.4 mg. Chromatogram characteristics on normal phase TLC with chloroform, followed by 10% methanol-chloroform, showed two pale well-separated spots under UV-S with R_f values of 0.53 and 0.80. It was therefore not further investigated.

Band 3 was obtained as a white solid in 4.1 mg Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 33% methanol-water, respectively, showed two well-separated spots under UV-S with $R_{\rm f}$ values of 0.23, 0.39 and 0.64, 0.84, respectively. It was obtained in low quantity. Therefore, no further purification was performed.

Band 4 was obtained as a yellow solid in 1.9 mg. Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 33% methanol-water, respectively, showed only one spot under UV-S with $R_{\rm f}$ values of 0.23 and 0.84, respectively. It was therefore not further investigated because this fraction was obtained in low quantity.

Subfraction K4 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed one major UV-active spot with R_f value of 0.49 while chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed two pale UV-active spots with R_f values of 0.55 and 0.67. It was not further investigated.

Subfraction K5 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed none of well-separated spots under UV-S. It was therefore not further investigated.

Subfraction K6 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed three spots with R_f values of 0.15, 0.22, 0.33 and 0.60, 0.68, 0.73, respectively. This fraction (18.4 mg) was further acetylated with acetic anhydride (0.46 ml) and pyridine (0.14 ml). The mixture was stirred at room temperature for 24 hours. The reaction mixture was extracted with ethyl acetate (3×20 ml). The ethyl acetate layer was consecutively washed with 10% hydrochloric acid (2×20 ml), 10% sodium bicarbonate (3×20 ml) and water (2×20 ml). The organic phase was dried over anhydrous sodium sulfate, filtered and evaporated to dryness *in vacuo* to yield a yellow viscous liquid in 8.7 mg. Chromatogram characteristics on normal phase TLC with 8% acetone-chloroform showed none of well-separated spots under UV-S. The remainder of K6 was then dissolved with methanol. Two fractions were obtained as follow:

0.20, 0.35 and 0.42. In addition, chromatogram characteristics on reversed-phase TLC with 30% methanol-water showed two major spots under UV-S with R_f values of 0.62 and 0.72. Because of low quantity, it was not further investigated.

Subfraction K6.3 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed three major UV-active spots with R_f values of 0.22, 0.26 and 0.38 while chromatogram characteristics on reversed-phase TLC with 30% methanol-water showed two well-separated spots with R_f values of 0.34 and 0.62. Because of low quantity, it was not further investigated.

Subfraction K6.4 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 30% methanol-water, respectively, showed two well-separated spots under UV-S with R_f values of 0.27, 0.39 and 0.34, 0.61, respectively. It was further separated into two fractions by dissolving in methanol.

Methanol-insoluble fraction was obtained as a white solid in 2.3 mg. Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) showed one major UV-active spot with $R_{\rm f}$ value of 0.22. It was not further investigated as it was obtained in low quantity.

Methanol-soluble fraction was obtained as a pale yellow solid. Chromatogram characteristics on normal phase TLC with 15% methanol-chloroform (2 runs) showed many spots under UV-S. It was therefore not further investigated.

Subfraction K6.5 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed three major spots under UV-S with R_f values of 0.25, 0.35 and 0.40 while chromatogram characteristics on reversed-phase TLC with 30% methanol-water showed two well-separated spots under UV-S with R_f values of 0.34 and 0.62. No further purification was performed because of low quantity.

Subfraction K6.6 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed two well-separated spots under UV-S with $R_{\rm f}$ values of 0.26 and 0.40. In addition, chromatogram characteristics on reversed-phase TLC with 30% methanol-water showed one major UV-active spot with $R_{\rm f}$ value of 0.60. It was therefore not further investigated because it was obtained in low quantity.

Subfraction K6.7 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 30% methanol-water, respectively, showed

one major UV-active spot with R_f values of 0.27 and 0.60. Further investigation was not performed because of low quantity.

Subfraction K6.8 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed one pale UV-active spot with R_f value of 0.26. In addition, chromatogram characteristics on reversed-phase TLC with 30% methanol-water showed none of well-separated spots under UV-S. It was therefore not further investigated.

Subfraction K6.9 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 30% methanol-water, respectively, showed no major spots under UV-S. Therefore, no further purification was carried out.

Subfraction K7 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed none of well-separated spots under UV-S. It was therefore not further investigated.

Subfraction K8 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed no major UV-active spots. It was therefore not further investigated.

Subfraction K9 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed one major UV-active spot with $R_{\rm f}$ values of 0.39 and 0.31, respectively. This subfraction was divided into three portions.

The first portion (31.5 mg) was further separated by column chromatography over silica gel. Elution was conducted with 14% methanol-dichloromethane to afford forty fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford two subfrations.

Subfraction 1 was obtained as a colorless viscous liquid in 14.8 mg. Chromatogram characteristics on normal phase TLC with 14% methanol-dichloromethane (3 runs) demonstrated one major spot under UV-S with R_f value of 0.23. Further purification by precoated TLC with 14% methanol-dichloromethane (6 runs) as a mobile phase afforded a yellow viscous liquid in 1.4 mg. Chromatogram characteristics on normal phase TLC with 14% methanol-dichloromethane (3 runs) and 20% methanol-chloroform showed one UV-active spot with R_f values of 0.46 and

0.32, respectively. Therefore, no further purification was performed because this fraction was obtained in low quantity.

Subfraction 2 was obtained as a colorless viscous liquid in 6.1 mg. Chromatogram characteristics on normal phase TLC with 14% methanol-dichloromethane (3 runs) showed none of UV-active spots. It was therefore not further investigated.

The second portion (16.1 mg) was further separated by precoated TLC on silica gel plates with 14% methanol-dichloromethane as a mobile phase afforded two bands.

Band 1 (YS11) was obtained as a yellow-white solid in 3.2 mg. Chromatogram characteristics on normal phase TLC with 14% methanol-dichloromethane (2 runs) showed one UV-active spot with $R_{\rm f}$ value of 0.25.

Band 2 was obtained as a white solid in 0.8 mg. Chromatogram characteristics on normal phase TLC with 14% methanol-dichloromethane (2 runs) demonstrated one UV-active spot with R_f value of 0.22. No further purification was performed because this fraction was obtained in low quantity.

The third portion (50.5 mg) was further separated by column chromatography over silica gel. Elution was conducted with 14% methanol-dichloromethane to afford sixty fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford two subfractions.

Subfraction 1 was obtained as a colorless viscous liquid in 1.3 mg. Chromatogram characteristics on normal phase TLC with 14% methanol-dichloromethane (3 runs) showed no UV-active spots. It was therefore not further investigated.

Subfraction 2 was obtained as a white solid mixed with yellow viscous liquid in 37.5 mg. Chromatogram characteristics on normal phase TLC with 14% methanol-dichloromethane (3 runs) indicated the presence of YS11 as a major component. Further separation with precoated TLC on silica gel plates with 14% methanol-dichloromethane (5 runs) as a mobile phase afforded two bands.

Band 1 was obtained as a yellow-white solid in 13.0 mg. Chromatogram characteristics on normal phase TLC with 14% methanol-dichloromethane (4 runs) indicated that the major component was YS11. Further acetylation with acetic

anhydride (0.40 ml) and pyridine (0.10 ml) was performed. The mixture was stirred at room temperature for 24 hours. The reaction mixture was extracted with ethyl acetate (3×20 ml). The ethyl acetate layer was consecutively washed with 10% hydrochloric acid (2×20 ml), 10% sodium bicarbonate (3×20 ml) and water (2×20 ml). The organic phase was dried over anhydrous sodium sulfate, filtered and evaporated to dryness *in vacuo* to give a yellow viscous liquid in 13.5 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed well-separated spots with R_f values of 0.19 and 0.27. Further separation with precoated TLC on silica gel plates with 50% ethyl acetate-petroleum ether (4 runs) as a mobile phase afforded two bands.

Band 1.1 was obtained as a white viscous liquid in 1.5 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed two UV-active spots with R_f values of 0.20 and 0.28. No further purification was performed because this band was obtained in low quantity.

Band 1.2 (AcYS11) was obtained as a colorless viscous liquid in 7.8 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed one pure spot with R_f value of 0.20.

$[\alpha]_D^{29}$	-40.54° (c = 7.4 x 10^{-2} g/100 cm ³ , CHCl ₃)
IR (neat) v (cm ⁻¹)	2939, 2848 (CH stretching),
	1748, 1645 (C=O stretching),
	1609, 1567 (C=C stretching)
UV (CHCl ₃) λ_{max} (nm) (log ε)	253 (4.50)
1 H NMR (CDCl ₃) (δ ppm)	8.06 (d, J = 9.1 Hz, 1H), 7.99 (s, 1H), 7.52 (d, J = 9.1 Hz)
(500 MHz)	Hz, 1H), 7.04 (d , J = 9.1 Hz, 1H), 6.98 (d , J = 9.1
	Hz, 1H), 5.36 (dd, $J = 9.2$, 6.8 Hz, 1H), 5.31 (t, $J =$
	9.2 Hz, 1H), 5.22 (d , J = 6.8 Hz, 1H), 5.15 (t , J = 9.2
	Hz, 1H), 5.12 (dd , J = 9.2, 3.2 Hz, 1H), 5.06 (dd , J =
	3.2, 1.6 Hz, 1H), 4.98 (t , J = 9.2 Hz, 1H), 4.56 (d , J =
	1.6 Hz, 1H), 3.99 (s , 3H), 3.84 (s , 3H), 3.75 (ddd , $J =$
	9.2, 6.8, 2.4 Hz, 1H), 3.70 (dq , J = 9.2, 6.3 Hz, 1H),

		$3.69 \ (dd, J = 12.0, 6.8 \ Hz, 1H), 3.62 \ (dd, J = 12.0,$
		2.4 Hz, 1H), 2.11 (s, 3H), 2.08 (s, 3H), 2.06 (s, 3H),
		1.99 (s , 3H), 1.94 (s , 3H), 1.11 (d , J = 6.3 Hz, 3H)
13 C NMR (CDCl ₃) (δ pp	m)	175.95, 170.49, 170.25, 170.15, 170.09, 169.88,
(125 MHz)		169.56, 159.92, 156.05, 152.71, 150.82, 132.35,
		130.49, 124.72, 124.24, 123.41,119.35,114.21,
		110.30, 101.15, 97.92, 74.38, 72.89, 72.12, 70.91,
		69.56, 69.26, 69.18, 66.94, 66.53, 56.80, 55.56,
		20.95, 20.93, 20.87, 20.86, 20.85, 17.52
DEPT (135°) (CDCl ₃)	СН	152.71, 130.49, 123.41, 114.21, 110.30, 101.15,
		97.92, 74.38, 72.89, 72.12, 70.91, 69.56, 69.26,
		69.18, 66.94
	CH_2	66.53
	CH ₃	56.80, 55.56, 20.95, 20.93, 20.87, 20.86, 20.85, 17.52

Band 2 was obtained as a yellow viscous liquid in 3.0 mg. Chromatogram characteristics on normal phase TLC with 14% methanol-dichloromethane (4 runs) showed one major UV-active spot with $R_{\rm f}$ value of 0.30. No further purification was performed because it was obtained in low quantity.

Subfraction K10 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, indicated the presence of YS3 and YS11 as major components.

Subfraction K11 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, indicated that the major component was **YS2**.

Subfraction K12 Chromatogram characteristics on normal and reversed-phase TLC with 20% methanol-chloroform and 50% methanol-water, respectively, showed none of well-separated spots under UV-S. It was therefore not further investigated.

The second portion (L, 1.65 g) was further acetylated with acetic anhydride (43.75 ml) in the presence of pyridine (13.02 ml). The mixture was stirred at room temperature for 24 hours. The reaction mixture was extracted with ethyl acetate (3×20 ml). The ethyl acetate layer was consecutively washed with 10% hydrochloric acid

(2×20 ml), 10% sodium bicarbonate (3×20 ml) and water (2×20 ml). The organic phase was dried over anhydrous sodium sulfate, filtered and evaporated to dryness in vacuo to yield a yellow viscous liquid in 1.81 g. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether showed three major spots under UV-S with R_f values of 0.25, 0.32 and 0.39. Further separation with column chromatography over silica gel was carried out. Elution was conducted initially with 10% ethyl acetate-petroleum ether, gradually enriched with ethyl acetate, ethyl acetate-acetone gradient and followed by increasing amount of methanol in acetone and finally with pure methanol to give one hundred and fifty six fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford fourteen subfractions as shown in Table 54.

Table 54 Fractions obtained from L by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance	
L1	0.082	Yellow viscous liquid	
L2	0.013	Yellow viscous liquid	
L3	0.147	Yellow viscous liquid	
L4	0.062	Yellow viscous liquid	
L5	0.139	Yellow viscous liquid	
L6	0.364	Colorless viscous liquid mixed with white solid	
L7	0.156	Yellow viscous liquid	
L8	0.104	Yellow viscous liquid	
L9	0.085	Yellow viscous liquid	
L10	0.006	Colorless viscous liquid	
L11	0.041	Yellow viscous liquid	
L12	0.008	Orange-yellow viscous liquid	
L13	0.390	Yellow viscous liquid	
L14	0.211	Yellow viscous liquid	

Subfraction L1 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether showed none of UV-active spots. It was therefore not further investigated.

Subfraction L2 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (3 runs) showed one pale UV-active spot with R_f value of 0.28. It was therefore not further investigated.

Subfraction L3 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (3 runs) showed many UV-active spots. No further purification was performed.

Subfraction L4 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (3 runs) showed two major spots under UV-S with R_f values of 0.41 and 0.50. Further separation with precoated TLC with 45% ethyl acetate-petroleum ether as a mobile phase afforded five bands.

 $\underline{Band\ 1}$ was obtained as a colorless viscous liquid in 7.2 mg. Chromatogram characteristics on normal phase TLC with 45% ethyl acetate-petroleum ether (2 runs) showed one major UV-active spot with R_f value of 0.42. Therefore, no further purification was performed because of low quantity.

 $\underline{\mathrm{Band}\ 2}$ was obtained as a colorless viscous liquid in 13.9 mg. Chromatogram characteristics on normal phase TLC with 45% ethyl acetate-petroleum ether (2 runs) showed one major UV-active spot with R_{f} value of 0.36. Because of low quantity, it was not further investigated.

 $\underline{Band\ 3}$ was obtained as a colorless viscous liquid in 3.7 mg. Chromatogram characteristics on normal phase TLC with 45% ethyl acetate-petroleum ether (2 runs) showed one major UV-active spot with R_f value of 0.50. No further purification was carried out because this fraction was obtained in low quantity.

 $\underline{Band\ 4}$ was obtained as a colorless viscous liquid in 1.9 mg. Chromatogram characteristics on normal phase TLC with 45% ethyl acetate-petroleum ether (2 runs) showed two pale UV-active spots with R_f values of 0.38 and 0.46. It was therefore not further investigated.

Band 5 was obtained as a colorless viscous liquid in 0.8 mg. Chromatogram characteristics on normal phase TLC with 45% ethyl acetate-

petroleum ether (2 runs) showed one major UV-active spot with R_f value of 0.38. Because this fraction was obtained in low quantity, it was not further investigated.

Subfraction L5 Chromatogram characteristics on normal phase TLC with 40% ethyl acetate-petroleum ether (3 runs) demonstrated two major spots under UV-S with $R_{\rm f}$ values of 0.35 and 0.45. It was not further investigated because it was obtained in low quantity.

Subfraction L6 (AcYS2) Chromatogram characteristics on normal phase TLC with 40% ethyl acetate-petroleum ether (3 runs) showed one pure spot under UV-S with R_f value of 0.28.

IR (neat) v (cm⁻¹) 2940 (CH stretching), 1755, 1645 (C=O stretching), 1609, 1570 (C=C stretching) 255 (4.10) UV (CHCl₃) λ_{max} (nm) (log ε) 1 H NMR (CDCl₃) (δ ppm) 8.04 (d, J = 9.5 Hz, 1H), 7.99 (s, 1H), 7.49 (d, J = 9.5 Hz, 2H), 7.18 (d, J = 9.5 Hz, 1H), 6.97 (d, J = 9.5(500 MHz) Hz, 2H), 5.37 (dd, J = 9.7, 7.4 Hz, 1H), 5.33 (t, J =9.7 Hz, 1H), 5.27 (dd, J = 10.0, 3.7 Hz, 1H), 5.23 (dd, J = 3.7, 1.5 Hz, 1H), 5.18 (d, J = 7.4 Hz, 1H),5.12 (dd, J = 10.5, 9.7 Hz, 1H), 5.06 (t, J = 10.0 Hz,1H), 4.78 (d, J = 1.5 Hz, 1H), 3.96 (s, 3H), 3.90 (ddd, J = 10.5, 6.3, 2.5 Hz, 1H), 3.87 (dq, J = 10.0, 6.5 Hz, 1H), 3.79 (dd, J = 11.3, 2.5 Hz, 1H), 3.68 (dd, J =11.3, 6.3 Hz, 1H), 2.11 (s, 3H), 2.10 (s, 3H), 2.08 (s, 3H), 2.06 (s, 3H), 2.05 (s, 3H), 2.00 (s, 3H), 1.19 (d, J = 6.5 Hz, 3H175.75, 170.17, 169.98, 169.97, 169.91, 169.46, 13 C NMR (CDCl₃) (δ ppm) 169.29, 159.68, 153.29, 152.21, 150.72, 138.48, (125 MHz) 130.11, 124.82, 123.83, 121.87, 121.55, 114.99, 113.99, 99.77, 98.09, 73.66, 72.40, 71.03, 70.79,

69.43, 68.79, 66.80, 66.59, 62.00, 55.32, 20.80,

20.70, 20.63, 20.61, 20.60, 17.36

Subfraction L7 Chromatogram characteristics on normal phase TLC with 40% ethyl acetate-petroleum ether (3 runs) demonstrated the presence of AcYS2 as a major component and the other UV-active spot with R_f value of 0.22. It was further separated by precoated TLC with 40% ethyl acetate-petroleum ether (8 runs) as a mobile phase to afford two bands.

<u>Band 1</u> was obtained as a colorless viscous liquid in 55.3 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) indicated the presence of pure **AcyS2**.

Band 2 was obtained as a yellow viscous liquid in 46.2 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed one UV-active spot with R_f value of 0.32. However, ¹H NMR spectrum indicated that it was a mixture. Further separation with precoated TLC on silica gel plates with 50% ethyl acetate-petroleum ether (3 runs), followed by 1% methanol-chloroform (3 runs) and then 6% acetone-chloroform afforded a yellow viscous liquid (AcYS6) in 11.3 mg. Chromatogram characteristics on normal phase TLC with 8% acetone-chloroform (2 runs) showed one pure spot under UV-S with R_f value of 0.32.

Subfraction L8 Chromatogram characteristics on normal phase TLC with 40% ethyl acetate-petroleum ether (3 runs) showed one major UV-active spot with R_f value of 0.16. Further separation with precoated TLC on silica gel plates with 45% ethyl acetate-petroleum ether (7 runs) and then 50% ethyl acetate-petroleum ether (3 runs) afforded AcYS11, a yellow viscous liquid in 21.5 mg.

Subfraction L9 Chromatogram characteristics on normal phase TLC with 40% ethyl acetate-petroleum ether (3 runs) showed two well-separated spots under UV-S with R_f values of 0.15 and 0.40. It was further separated by precoated TLC on silica gel plates with 50% ethyl acetate-petroleum ether (3 runs) to afford AcYS8 as a yellow viscous liquid in 5.6 mg. Chromatogram characteristics on normal phase TLC with 45% ethyl acetate-petroleum ether (3 runs) demonstrated one pure spot under UV-S with R_f value of 0.35.

$[\alpha]_D^{29}$ IR (neat) v (cm ⁻¹)		-55.56° (c = 3.6 x 10 ⁻² g/100 cm ³ , CHCl ₃) 3443 (OH stretching) 2920, 2850 (CH stretching),
UV (CHCl ₃) λ _{max} (nm) (l	റെ ടി	1755, 1630 (C=O stretching), 1609 (C=C stretching) 254 (4.07)
¹ H NMR (CDCl ₃) (δ ppn	•	8.05 (d , J = 9.0 Hz, 1H), 7.85 (s , 1H), 7.47 (d , J =
(400 MHz)	* /	9.0 Hz, 2H), 7.05 (d , J = 9.0 Hz, 1H), 6.98 (d , J =
,		9.0 Hz, 2H), 5.40 (<i>dd</i> , <i>J</i> = 9.8, 8.1 Hz, 1H), 5.33
		(t, J = 9.8 Hz, 1H), 5.20 (t, J = 9.8 Hz, 1H), 4.99
		(d, J = 8.1 Hz, 1H), 4.30 (dd, J = 12.6, 5.6 Hz,
		1H), 4.20 (<i>dd</i> , <i>J</i> = 12.6, 2.8 Hz, 1H), 3.84 (<i>s</i> , 3H),
	•	3.82 (ddd, J = 9.8, 5.6, 2.8 Hz, 1H), 2.20 (s, 3H),
		2.12 (s, 3H), 2.07 (s, 3H), 2.06 (s, 3H)
13 C NMR (CDCl ₃) (δ ppr	n)	175.59, 170.57, 170.14, 169.30, 169.17, 159.85,
(100 MHz)		154.37, 151.34, 150.19, 131.07, 130.21, 125.37,
·		124.26, 123.49, 118.66, 115.29, 114.08, 103.36,
		72.68, 72.06, 70.98, 67.93, 61.34, 55.35, 20.74,
		20.57
DEPT (135°) (CDCl ₃)	CH	151.34, 130.21, 124.26, 115.29, 114.08, 103.36,
		72.68, 72.06, 70.98, 67.93
	CH_2	61.34
	CH_3	55.35, 20.74, 20.57

Subfraction L10 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether showed two well-separated spots under UV-S with R_f values of 0.19 and 0.23. It was further separated by precoated TLC on silica gel plates with 45% ethyl acetate-petroleum ether to afford two bands.

Band 1 was obtained as a colorless viscous liquid in 0.8 mg. Chromatogram characteristics on normal phase TLC with 45% ethyl acetate-petroleum ether (2 runs) showed one UV-active spot with $R_{\rm f}$ value of 0.32. Because this fraction was obtained in low quantity, it was not further investigated.

Band 2 was obtained as a colorless viscous liquid in 1.6 mg. Chromatogram characteristics on normal phase TLC with 45% ethyl acetate-petroleum ether (2 runs) showed one major UV-active spot with $R_{\rm f}$ value of 0.22. Because this fraction was obtained in low quantity, it was not further investigated.

Subfraction L11 Chromatogram characteristics on normal phase TLC with 40% ethyl acetate-petroleum ether (3 runs) showed one major UV-active spot with R_f value of 0.38. It was further separated by precoated TLC with 45% ethyl acetate-petroleum ether as a mobile phase afforded four bands.

Band 1 was obtained as a colorless viscous liquid in 0.6 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed one major UV-active spot with $R_{\rm f}$ value of 0.58. No attempted purification was carried out because of low quantity.

Band 2 was obtained as a colorless viscous liquid in 2.9 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed one UV-active spot with $R_{\rm f}$ value of 0.48 which was identical to that of AeYS7.

Band 3 was obtained as a colorless viscous liquid in 1.3 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed one UV-active spot with R_f value of 0.19. No further investigation was performed because it was obtained in low quantity.

Band 4 was obtained as a white solid in 1.1 mg. Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed one pale spot under UV-S with $R_{\rm f}$ value of 0.12. It was therefore not further investigated.

Subfraction L12 Chromatogram characteristics on normal phase TLC with 40% ethyl acetate-petroleum ether (3 runs) showed one oval spot under UV-S with R_f value of 0.19. No further investigation was carried out because it was obtained in low quantity.

Subfraction L13 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether showed none of well-separated spots under UV-S. No attempted purification was carried out.

Subfraction L14 Chromatogram characteristics on normal phase TLC with 40% ethyl acetate-petroleum ether (3 runs) showed one major spot under UV-S with R_f value of 0.48. Further separation with column chromatography over silica gel was performed. Elution was conducted initially with 45% ethyl acetate-petroleum ether and gradually enriched with 50% ethyl acetate-petroleum ether to give fifty three fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford nine subfractions as shown in Table 55.

Table 55 Fractions obtained from L14 by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
L14.1	0.001	Colorless viscous liquid
L14.2	0.001	Yellow viscous liquid
L14.3	0.001	Yellow viscous liquid
L14.4	0.002	Yellow viscous liquid
L14.5	0.001	Yellow viscous liquid
L14.6	0.0001	Yellow viscous liquid
L14.7	0.001	Yellow viscous liquid
L14.8	0.006	Yellow viscous liquid
L14.9	0.110	Yellow viscous liquid

Subfraction L14.1 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether showed none of UV-active spots. It was therefore not further investigated.

Subfraction L14.2 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed one pale UV-active spot with R_f value of 0.73. No attempted purification was carried out.

Subfraction L14.3 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed no UV-active spots. It was therefore not further investigated.

Subfraction L14.4 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed three well-separated spots under UV-S with R_f values of 0.49, 0.58 and 0.67. No further purification was performed because it was obtained in low quantity.

Subfraction L14.5 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) demonstrated one pale UV-active spot with R_f value of 0.69. It was therefore not further investigated.

Subfraction L14.6 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed no UV-active spots. No further investigation was carried out.

Subfraction L14.7 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed three well-separated spots under UV-S with R_f values of 0.27, 0.38 and 0.68. Because this fraction was obtained in low quantity, it was not further investigated.

Subfraction L14.8 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) demonstrated two pale well-separated spots under UV-S with R_f values of 0.55 and 0.69. No attempted investigation was performed because this fraction was obtained in low quantity.

Subfraction L14.9 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed one major spot under UV-S with R_f value of 0.67, indicating the presence of AcYS7. Further separation with precoated TLC on silica gel plates with 50% ethyl acetate-petroleum ether and 8% acetone-chloroform (4 runs) afforded AcYS7 as a yellow viscous liquid in 9.0 mg. Chromatogram characteristics on normal phase TLC with 8% acetone-chloroform showed one pure spot under UV-S with R_f value of 0.56.

$$[α]_D^{29}$$
 -90.90° (c = 1.1 x 10⁻² g/100 cm³, CHCl₃)

IR (neat) ν (cm⁻¹) 2923 (CH stretching),

1756, 1659 (C=O stretching),

1613, 1591 (C=C stretching)

UV (CHCl₃) $λ_{max}$ (nm) (log ε) 265 (4.33)

1 H NMR (CDCl ₃) (δ pg	om)	12.90 (brs, 1H), 7.95 (s, 1H), 7.48 (d, J = 9.0 Hz,
(400 MHz)		2H), 6.99 (<i>d</i> , <i>J</i> = 9.0 Hz, 2H), 6.71 (<i>s</i> , 1H), 5.36
		(t, J = 9.0 Hz, 1H), 5.34 (dd, J = 3.0, 1.5 Hz, 1H),
		5.33 (t , J = 9.0 Hz, 1H), 5.27 (dd , J = 9.0, 3.0 Hz,
		1H), 5.12 (d , J = 7.5 Hz, 1H), 5.07 (t , J = 9.0 Hz,
		1H), 5.05 (t , J = 9.0 Hz, 1H), 4.76 (d , J = 1.5 Hz,
		1H), 3.93-3.86 (m, 1H), 3.86-3.81 (m, 1H), 3.84
		(s, 3H), 3.83 (s, 3H), 3.76 (dd, J = 12.0, 3.0 Hz,
		1H), 3.63 (<i>dd</i> , $J = 12.0$, 9.0 Hz, 1H), 2.10 (s , 3H),
		2.08 (s, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 2.04 (s,
		3H), 1.96 (s, 3H), 1.20 (d, $J = 6.4$ Hz, 3H)
13 C NMR (CDCl ₃) (δ pp	om)	181.36, 170.18, 169.89, 169.76, 169.48, 169.29,
(100 MHz)		159.78, 155.68, 154.28, 153.73, 152.74, 133.72,
		130.09, 123.02, 122.93, 114.21, 108.39, 100.89,
		99.45, 98.29, 95.41, 73.67, 72.37, 70.74, 69.19,
		68.93, 66.67, 66.46, 61.08, 55.36, 20.80, 20.62,
		17.34
DEPT (135°) (CDCl ₃)	СН	153.73, 130.09, 114.21, 99.45, 98.29, 95.41,
		73.67, 72.37, 70.74, 69.19, 68.93, 66.67
	CH_2	66.46
	CH ₃	61.08, 55.36, 20.80, 20.62, 17.34

Fraction 6 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed one oval major spot under UV-S with R_f value of 0.24. In addition, chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed two pale spots under UV-S with R_f values of 0.71 and 0.89 and two major spots under UV-S with R_f values of 0.06 and 0.20. It was further acetylated with acetic anhydride (27.90 ml) in the presence of pyridine (8.40 ml). The mixture was stirred at room temperature for 24 hours. The reaction mixture was extracted with ethyl acetate (3×20 ml). The ethyl acetate layer was consecutively washed with 10% hydrochloric acid (2×20 ml), 10% sodium bicarbonate (3×20 ml) and water (2×20 ml). The organic phase was dried over anhydrous sodium sulfate,

filtered and evaporated to dryness *in vacuo* to yield a brown-yellow solid in 1.49 g. Chromatogram characteristics on normal phase TLC with 45% ethyl acetate-petroleum ether demonstrated three major UV-active spots with R_f values of 0.26, 0.39 and 0.60. Further separation with column chromatography over silica gel was performed. Elution was conducted initially with 20% ethyl acetate-petroleum ether, gradually enriched with ethyl acetate and followed by increasing amount of acetone in ethyl acetate and finally with pure acetone to give eight four fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness *in vacuo* to afford nine subfractions as shown in Table 56.

Table 56 Fractions obtained from fraction 6 by column chromatography over silica gel

Fraction	Weight (g)	Physical appearance
M1	0.052	Yellow viscous liquid
M2	0.037	Yellow viscous liquid
M3	0.127	Yellow viscous liquid
M4	0.364	White solid
M5	0.165	Yellow viscous liquid
M6	0.159	Yellow viscous liquid
M7	0.103	Yellow viscous liquid
M8	0.099	Yellow viscous liquid
M9	0.069	Yellow viscous liquid

Subfraction M1 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed none of well-separated spots under UV-S. It was therefore not further investigated.

Subfraction M2 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed two well-separated spots under UV-S with R_f values of 0.39 and 0.54. It was further separated by precoated TLC on silica gel plates with 45% ethyl acetate-petroleum ether (4 runs) to afford AcYS3 as a

colorless viscous liquid in 29.2 mg. Chromatogram characteristics on normal phase TLC with 45% ethyl acetate-petroleum ether (4 runs) showed one pure UV-active spot with $R_{\rm f}$ value of 0.60.

$[\alpha]_{D}^{29}$	-41.52° (c = 28.9 x 10^{-2} g/100 cm ³ , CHCl ₃)
IR (neat) ν (cm ⁻¹)	2939 (CH stretching),
	1748, 1645 (C=O stretching),
	1622, 1569 (C=C stretching)
UV (CHCl ₃) λ_{max} (nm) (log ε)	260 (4.39)
^I H NMR (CDCl ₃) (δ ppm)	8.24 (d , J = 8.0 Hz, 1H), 7.95 (s , 1H), 7.51 (d , J
(500 MHz)	= 8.0 Hz , 2H), 7.04 (s , 1H), 7.03 (d , J = 8.0 Hz ,
	1H), 6.97 (d , J = 8.0 Hz, 2H), 5.34 (t , J = 9.0 Hz,
	1H), 5.31 (dd , $J = 9.0$, 7.6 Hz, 1H), 5.30 (d , $J =$
	3.5 Hz, 1H), 5.28 (dd, J = 9.7, 3.5 Hz, 1H), 5.21
	(d, J = 7.6 Hz, 1H), 5.09 (t, J = 9.0 Hz, 1H), 5.04
	(t, J = 9.7 Hz, 1H), 4.74 (s, 1H), 3.94 (ddd, J =
	9.0, 7.0, 2.3 Hz, 1H), 3.85 (dq , $J = 9.7$, 6.1 Hz,
	1H), 3.84 (s, 3H), 3.77 (dd, $J = 12.0$, 2.3 Hz,
	1H), 3.65 (dd, $J = 12.0$, 7.0 Hz, 1H), 2.09 (s,
	3H), 2.08 (s, 3H), 2.06 (s, 3H), 2.05 (s, 6H), 1.99
	(s, 3H), 1.18 (d, J = 6.1 Hz, 3H)
13 C NMR (CDCl ₃) (δ ppm)	175.75, 170.17, 169.94, 169.92, 169.75, 169.47,
(125 MHz)	169.25, 160.42, 159.66, 157.43, 152.69, 130.14,
,	128.29, 124.81, 124.23, 120.27, 115.26, 114.02,
	104.19, 98.33, 98.24, 73.80, 72.62, 71.08, 70.85,
	69.34, 69.10, 68.88, 66.78, 66.45, 55.34, 20.79,
	20.76, 20.74, 20.63, 20.62, 20.60, 17.35
DEPT (135°) (CDCl ₃) CH	152.69, 130.14, 128.29, 115.26, 114.02, 104.19,
221 (133) (ODCI3) CII	98.33, 98.24, 73.80, 72.62, 71.08, 70.83, 69.34,
	69.10, 68.88, 66.78
CH ₂	66.45
z	

CH₃ 55.34, 20.79, 20.76, 20.74, 20.63, 20.62, 20.60,

17.35

EIMS m/z (% relative intensity) 829 (52), 708 (2), 664 (4), 621 (4), 576 (4), 532

(3), 488 (5), 434 (8), 426 (2), 331 (2), 273 (9),

211 (2), 153 (2), 143 (10), 111 (15)

Subfraction M3 Chromatogram characteristics on normal phase TLC with 40% ethyl acetate-petroleum ether (4 runs) indicated the presence of AcYS3 as a major component.

Subfraction M4 Chromatogram characteristics on normal phase TLC with 40% ethyl acetate-petroleum ether (4 runs) showed two major spots of AcYS2 and AcYS3.

Subfraction M5 Chromatogram characteristics on normal phase TLC with 40% ethyl acetate-petroleum ether (4 runs) showed three major spots of AcYS2, AcYS3 and AcYS6.

Subfraction M6 Chromatogram characteristics on normal phase TLC with 40% ethyl acetate-petroleum ether (4 runs) indicated the presence of AcyS2, AcyS6 and AcyS11 as the major components.

Subfraction M7 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed no major spots under UV-S. It was therefore not further investigated.

Subfraction M8 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed two major spots under UV-S with R_f values of 0.58 and 0.63. Because of limitation of time, it was not further investigated.

Subfraction M9 Chromatogram characteristics on normal phase TLC with 50% ethyl acetate-petroleum ether (2 runs) showed two major spots under UV-S with R_f values of 0.52 and 0.60. No further purification was carried out because of limitation of time.

Fraction 7 Chromatogram characteristics on normal phase TLC with 20% methanol-chloroform showed one pale spot under UV-S with $R_{\rm f}$ value of 0.25 while chromatogram characteristics on reversed-phase TLC with 50% methanol-water showed two major spots under UV-S with $R_{\rm f}$ values of 0.06 and 0.20. Because of limitation of time, it was not further purified.

CHAPTER 2.3

RESULTS AND DISCUSSION

Chromatographic separation of the crude *n*-butanol extract from stems of *D. scandens* afforded 15 compounds: two known benzoic acid derivatives (YS9 and YS12), one known isoflavone (YS15), four glucosyl isoflavones [one new (YS8) and three known ones (YS1, YS13 and YS14)] and eight rhamnosyl-(1→6)-glucosyl isoflavones [four new (YS6, YS7, YS10 and YS11) and four known ones (YS2, YS3, YS4 and YS5)]. Most of the compounds were isolated and identified as their corresponding acetates except for YS1, YS2, YS4, YS9 and YS12. Their structures were determined using 1D and 2D NMR spectroscopic data. All carbons of an aglycone unit were assigned by ¹³C NMR, HMQC and HMBC data. The ¹H chemical shift of a sugar moiety were determined using 1D ¹H NMR and ¹H-¹H COSY spectroscopic data.

2.3.1 Benzoic acid derivatives

Compound YS9

YS9 was obtained as a pale yellow solid, melting at 145 °C. The UV spectrum (Figure 50) showed absorption bands at 291, 259 and 220 nm, indicating the presence of a conjugated system. The IR spectrum (Figure 51) showed absorption bands at 3445 cm⁻¹ (a hydroxyl group) and 1668 cm⁻¹ (a carbonyl group). The ¹H NMR spectrum (Figure 52) displayed signals of aromatic protons at $\delta_{\rm H}$ 7.58 (J=7.7 and 1.4 Hz, H-6) as a *doublet of doublet*, $\delta_{\rm H}$ 7.55 (J=1.4 Hz, H-2) and $\delta_{\rm H}$ 6.90 (J=7.7 Hz, H-5) as two sets of *doublet* integrating for single proton for each signal. The splitting pattern of aromatic protons indicated that YS9 was a 1, 3, 4-trisubstituted benzene. Its ¹H NMR spectrum also showed an additional *singlet* signal for one methoxyl group at $\delta_{\rm H}$ 3.90. The ¹³C NMR spectrum (Figure 53) revealed the presence of a carbonyl carbon of an acid at $\delta_{\rm C}$ 167.29. The following NOEDIFF data established the location

of the methoxyl group at the C-3. Irradiation of the methoxy proton at δ_H 3.90 (Figure 54) enhanced the aromatic proton signal at δ_H 7.55 (H-2). Thus, **YS9** was 4-hydroxy-3-methoxybenzoic acid which was isolated from *Gardenia sootepensis* (Nauvanit, 1998).

Compound YS12

YS12 was obtained as a pale yellow solid. In the UV spectrum (Figure 55), absorption bands at 270 and 217 nm revealed the presence of a conjugated system. The IR spectrum (Figure 56) showed absorption bands at 3472 cm⁻¹ (a hydroxyl group) and 1683 cm⁻¹ (a carbonyl group). The ¹H NMR spectrum (Figure 57) showed a sharp *singlet* at $\delta_{\rm H}$ 7.30 integrating for two protons and a sharp *singlet* at $\delta_{\rm H}$ 3.90 for two methoxyl groups. The ¹³C NMR spectrum (Figure 58) revealed the presence of a carbonyl carbon of an acid at $\delta_{\rm C}$ 168.54. **YS12** was therefore identified as 4-hydroxy-3,5-dimethoxybenzoic acid. This proposed structure was confirmed by comparison of its ¹H and ¹³C NMR spectra with those of 4-hydroxy-3,5-dimethoxybenzoic acid isolated from *Gardenia sootepensis* (Nauvanit, 1998).

2.3.2 Isoflavone

The diacetate of YS15 (AcYS15)

AcYS15 was obtained as a yellow viscous liquid. The UV spectrum (Figure 59) exhibited a characteristic absorption band of an isoflavone at 257 nm (Markham, 1982). The IR spectrum (Figure 60) showed absorption bands for acetyl carbonyl groups (1782 and 1730 cm⁻¹), a carbonyl group of an isoflavone (1649 cm⁻¹) and an aromatic ring (1611 and 1568 cm⁻¹). The ¹H NMR spectrum (Figure 61) revealed the presence of the isoflavone skeleton according to a characteristic sharp *singlet* of the H-2 at $\delta_{\rm H}$ 7.94. Two *doublets* at $\delta_{\rm H}$ 8.20 and 7.26 with *ortho* coupling constant of 8.8 Hz were attributed to the H-5 and H-6, respectively. It also showed a pair of *doublets* at $\delta_{\rm H}$ 7.48 and 6.98 (2H for each signal, J = 8.8 Hz), characteristic of a *p*-disubstituted benzene ring carrying a methoxyl group as a substituent (Intarit, 1999), and protons of two acetyl groups at $\delta_{\rm H}$ 2.42 and 2.36. The ¹³C NMR spectrum (Figure 62) displayed 16 signals for 20 carbons ($\delta_{\rm C}$ 175.34, 167.54, 167.21, 159.85, 152.03, 149.46, 146.42, 130.14, 125.42, 124.04, 123.38, 119.97, 114.08, 55.35, 20.64, 20.26). Thus, **AcYS15** was identified as the diacetate of 7, 8-Dihydroxy-4'-methoxyisoflavone (YS15), isolated from *Prosopis juliflora* (Shukla, *et al.*, 1981).

2.3.3 Glucosyl isoflavones

The tetraacetate of YS13 (AcYS13)

AcYS13 was isolated as a yellow viscous liquid with $[\alpha]_D^{29}$ –38.46°. The UV spectrum (Figure 63) with an absorption band at 263 nm represented an isoflavone skeleton. The IR spectrum (Figure 64) showed absorption bands for an acetyl carbonyl group (1756 cm⁻¹), a carbonyl group of an isoflavone (1642 cm⁻¹) and an aromatic ring (1622 and 1591 cm⁻¹). The ¹H NMR spectrum (Table 57) (Figure 65) displayed a characteristic *singlet* at δ_H 7.94 for the H-2 of an isoflavonoid nucleus and

a singlet for one methoxyl group at δ_H 3.85. Its also exhibited two doublets at δ_H 8.25 (J = 8.1 Hz, H-5) and $\delta_{\rm H}$ 7.03 (J = 2.5 Hz, H-8) as well as a doublet of doublet at $\delta_{\rm H}$ 7.05 (J = 8.1 and 2.5 Hz, H-6), indicating the presence of an oxysubstituent at the C-7 of A-ring. An AA'XX' pattern of B-ring, typical of 1,4-disubstituted benzene with two doublets at $\delta_{\rm H}$ 7.50 (J = 8.1 Hz, H-2', H-6') and $\delta_{\rm H}$ 6.98 (J = 8.1 Hz, H-3', H-5') was also detected. The NOEDIFF experiment revealed the attachment of the methoxyl group at the C-4' of B-ring due to the enhancement of the proton signal of the H-3' and H-5' after irradiation at the methoxy proton (Figure 68). In addition, it exhibited typical signals of glucose moiety: an anomeric proton signal $[\delta_H 5.23 (d, J = 7.5)]$ Hz)], four oxymethine protons [δ_H 5.36-5.33 (m), 5.34-5.30 (m), 5.18 (dd, J = 9.0 and 8.4 Hz) and 3.96 (ddd, J = 9.0, 6.0 and 2.2 Hz)] and one oxymethylene group [$\delta_{\rm H}$ 4.29 (dd, J = 12.0 and 6.0 Hz) and 4.22 (dd, J = 12.0 and 2.2 Hz) together with methyl proton of four acetyl groups [$\delta_{\rm H}$ 2.10, 2.08, 2.07 and 2.05]. The appearance of the anomeric proton as a doublet with large coupling constant of 7.5 Hz indicated that glucose must have a β -glucopyranose form (Agrawal, 1992). From these results, the β -glucosyl unit was attached to the 7-hydroxyl of the isoflavone moiety through a glycosidic bond, although the HMBC spectrum (Table 57) (Figure 70) showed no correlation between the anomeric proton of glucose residue with the C-7 of the isoflavone moiety. AcYS13 was identified as the tetraacetate of formonetin 7-O-Bglucopyranoside (YS13), a known isoflavone glucoside isolated from Astragali semen (Cui, et al., 1993).

Table 57 The NMR spectral data of AcYS13

Position	$\delta_{ ext{H}}$	$\delta_{ extsf{C}}$	Type of C	НМВС
2	7.94 (s)	152.54	СН	C-3, C-4, C-8a, C-1
3	-	125.31	С	
4		176.09	С	
4a	-	120.43	С	:
5	8.25 (d, 8.1)	128.40	СН	C-4, C-7, C-8a
6	7.05 (dd, 8.1, 2.5)	115.37	СН	C-4a, C-8
7	<u>.</u>	160.83	С	
8	7.03 (d, 2.5)	104.36	СН	C-4a, C-6, C-7, C-8a
8a	-	157.69	С	1 1 1
1	-	124.03	С	
2', 6'	7.50 (d, 8.1)	130.29	СН	C-3, C-2', 6', C-4'
3', 5'	6.98 (d, 8.1)	114.13	CH	C-1', C-3', 5', C-4'
4	-	160.07	С	
Glc-1"	5.23 (d, 7.5)	98.43	СН	
2"	5.34-5.30 (m)	70.92	CH	
3"	5.36-5.33 (m)	72.34	СН	
4"	5.18 (dd, 9.0, 8.4)	68.07	СН	
5"	3.96 (ddd, 9.0, 6.0, 2.2)	72.45	СН	
6"	4.22 (dd, 12.0, 2.2)	61.78	CH ₂	
	4.29 (dd, 12.0, 6.0)	:		
4'-OMe	3.85 (s)	55.13	CH ₃	C-4
OCOCH3	2.10, 2.08, 2.07, 2.05	20.24	CH ₃	
		20.21	CH ₃	
		20.18	CH ₃	
		20.16	CH ₃	
OCOCH ₃		170.84	С	
		170.53	С	
		169.74	C	
		169.57	С	

The tetraacetate of YS8 (AcYS8)

AcYS8 was obtained as a yellow viscous liquid with $[\alpha]_D^{29}$ -55.56°. The UV spectrum (Figure 71) with an absorption band at 254 nm suggested an isoflavone skeleton. The IR spectrum (Figure 72) showed absorption bands for a hydroxyl group (3443 cm⁻¹), an acetyl carbonyl group (1755 cm⁻¹), a carbonyl group of an isoflavone (1630 cm⁻¹) and an aromatic ring (1609 cm⁻¹). The ¹H NMR spectrum (Table 58) (Figure 73) displayed a characteristic singlet at $\delta_{\rm H}$ 7.85 for the H-2 of an isoflavone, two doublets with ortho coupling constant of 9.0 Hz at $\delta_{\rm H}$ 8.05 and 7.05, the H-5 and H-6, respectively, and a pair of doublets at δ_H 7.47 and 6.98 with coupling constant of 9.0 Hz, characteristic of a p-disubstituted benzene ring. This results implied that AcYS8 had a 4',7,8-trioxygenated framework. The methoxyl group at $\delta_{\rm H}$ 3.84 was assigned to C-4 in B-ring as irradiation at $\delta_{\rm H}$ 6.98 (H-3, H-5) enhanced the signals of the methoxyl group and the H-2', H-6' in the NOEDIFF spectrum (Figure 76). This was further confirmed by the HMBC correlation (Table 58) (Figure 78) between the methoxy proton ($\delta_{\rm H}$ 3.84) with the C-4 ($\delta_{\rm C}$ 159.85). In addition, the signal of protons of glucose unit were observed together with methyl proton of four acetyl groups [δ_H 2.20, 2.12, 2.07 and 2.06]. The anomeric proton of glucose at $\delta_{\rm H}$ 4.99 with large coupling constant of 8.1 Hz implied that this glucose moiety must have a β -glucopyranose form (Ozden, et al., 1998). In order to determine the attachment of glucose unit, the HMBC spectrum (Table 58) (Figure 78) was measured. A cross peak between the H-1" ($\delta_{\rm H}$ 4.99) with the C-8 ($\delta_{\rm C}$ 131.07) indicated that the glucose moiety was attached to the 8-hydroxyl of the isoflavone moiety. Therefore, AcYS8 was determined to be the tetraacetate of 7-hydroxy-4'methoxyisoflavone $8-O-\beta$ -glucopyranoside (YS8), a new isoflavone glucoside.

Table 58 The NMR spectral data of AcYS8

Position	$\delta_{ ext{H}}$	$\delta_{ m C}$	Type of C	HMBC
2	7.85 (s)	151.34	СН	C-3, C-4, C-8a, C-1
3	-	125.32	C	
4	-	175.59	С	
4a	-	118.66	С	
5	8.05 (d, 9.0)	124.26	СН	C-4, C-7, C-8, C-8a
6	7.05 (d, 9.0)	115.29	СН	C-4a, C-7, C-8, C-8a
7	-	154.37	С	
8	-	131.07	С	
8a	-	150.19	С	
1	-	123.49	С	
2, 6	7.47 (d, 9.0)	130.21	СН	C-3, C-2', 6', C-4'
3', 5'	6.98 (d, 9.0)	114.08	CH	C-1', C-3', 5', C-4'
4′	-	159.85	С	
Glc-1"	4.99 (d, 8.1)	103.36	СН	C-8
2"	5.40 (dd, 9.8, 8.1)	70.98	СН	C-3", 169.17 (C=O)
3"	5.33 (t, 9.8)	72.06	СН	C-2", C-4", 170.14 (C=O)
4"	5.20 (t, 9.8)	67.93	СН	C-3", C-5", C-6", 169.30 (C=O)
5"	3.82 (ddd, 9.8, 5.6, 2.8)	72.68	CH	
6"	4.30 (dd, 12.6, 5.6)	61.34	CH ₂	C-5", 170.57 (C=O)
	4.20 (dd, 12.6, 2.8)			
4'-OMe	3.84 (s)	55.35	CH ₃	C-4'
OCOCH ₃	2.20, 2.12, 2.07, 2.06	20.74	CH ₃	
		20.57	CH ₃	
OCOCH ₃		170.57	С	
		170.14	С	
-		169.30	С	
		169.17	С	

Compound YS1

YS1 was obtained as a white solid, melting at 199.4-201.0 °C with $\left[\alpha\right]_{D}^{29}$ -16.81°. The UV spectrum (Figure 79) with an absorption band at 254 nm was typical for a compound of an isoflavone type. The IR spectrum (Figure 80) exhibited absorption bands for a hydroxyl group (3426 cm⁻¹), a carbonyl group of an isoflavone (1617 cm⁻¹) and an aromatic ring (1605 cm⁻¹). A singlet proton signal at $\delta_{\rm H}$ 8.24 in the ¹H NMR spectrum (Table 59) (Figure 81) was a characteristic signal of the H-2 of an isoflavone. It exhibited two singlets integrating three protons for each signal at $\delta_{\rm H}$ 4.02 and 3.84 for two methoxyl groups. Two doublets with coupling constant of 9.0 Hz at $\delta_{\rm H}$ 8.00 and 7.27 were assigned to the H-5 and H-6, respectively, due to a chemical-shift characteristic of the H-5. It also displayed an AA'XX' pattern, typical of 4'-substituted B-ring, with two doublets at $\delta_{\rm H}$ 7.49 and 6.99 (2H for each signal, J=9.0 Hz), which were assigned to the H-2', H-6' and H-3', H-5', respectively. An anomeric proton signal at $\delta_{\rm H}$ 5.17 with coupling constant of 7.5 Hz suggested the presence of glucose residue with β -configuration. The location of the methoxyl group at the C-4' and C-7 was determined by NOEDIFF experiments. Irradiation of the methoxy proton at $\delta_{\rm H}$ 3.84 (Figure 85) enhanced the signal for the H-3', H-5' ($\delta_{\rm H}$ 6.99) and irradiation of the methoxy proton at $\delta_{\rm H}$ 4.02 (Figure 86) showed an enhancement of the H-6 ($\delta_{\rm H}$ 7.27). The low-field methoxyl group ($\delta_{\rm H}$ 4.02) was then assigned to the C-7. Supporting evidence for these assignments was provided by HMBC correlation data (Table 59) (Figure 88) which showed the polarization transfer between the methoxyl groups at $\delta_{\rm H}$ 3.84 and 4.02 and the C-4 ($\delta_{\rm C}$ 159.28) and the C-7 ($\delta_{\rm C}$ 155.80), respectively. Complete ¹H and ¹³C assignments were reported in Table 59, as results from DEPT (Figure 84), HMQC (Figure 87) and HMBC (Figure 88) experiments. The location of β -glucose residue was then assigned to the C-8 using a correlation between the sugar H-1" ($\delta_{\rm H}$ 5.17) and the C-8 ($\delta_{\rm C}$ 133.00) of an isoflavone in the HMBC correlation spectrum (Table 59) (Figure 88). Therefore, YS1 was 4',7-dimethoxyisoflavone $8-O-\beta$ -glucopyranoside, a known characterized isoflavone glucoside (Fujita, et al., 1982).

Table 59 The NMR spectral data of YS1

Position	$\delta_{ ext{H}}$	$\delta_{\rm c}$	Type of C	HMBC
2	8.24 (s)	152.79	СН	C-3, C-4, C-8a, C-1
3	-	123.57	С	
4	-	175.50	С	
4a	_	118.80	С	
5	8.00 (d, 9.0)	121.74	СН	C-4, C-7, C-8, C-8a
6	7.27 (d, 9.0)	110.47	СН	C-4a, C-7, C-8, C-8a
7	-	155.80	С	
8	-	133.00	С	
8a	-	150.50	C .	
1		124.08	С	
2', 6'	7.49 (d, 9.0)	129.97	СН	C-3, C-2', 6', C-4'
3', 5'	6.99 (d, 9.0)	113.69	СН	C-1', C-3', 5', C-4'
4	-	159.28	С	
Glc-1"	5.17 (d, 7.5)	103.95	СН	C-8
2"	3.57 (dd, 9.0, 7.5)	72.50	СН	C-2"
3"	3.46 (t, 9.0)	76.80	СН	C-4", C-5"
4"	3.41 (t, 9.0)	70.25	СН	C-4", C-5"
5"	3.25 (ddd, 9.0, 5.5, 2.5)	74.23	СН	C-3"
6"	3.83 (dd, 12.0, 2.5)	61.59	CH ₂	C-4"
	3.64 (dd, 12.0, 5.5)			
4 ['] -OMe	3.84 (s)	55.14	СН3	C-4
7-OMe	4.02 (s)	56.66	СН3	C-7

The tetraacetate of YS14 (AcYS14)

AcYS14 was isolated as a white solid with $\left[\alpha\right]_{D}^{29}$ -45.45°. The UV spectrum (Figure 94) with an absorption band at 258 nm suggested an isoflavone skeleton. The IR spectrum (Figure 95) showed absorption bands for an acetyl group (1756 cm⁻¹), a carbonyl group of an isoflavone (1645 cm⁻¹) and an aromatic ring (1609 and 1569 cm⁻¹). Comparison of its ¹H NMR spectrum (Figure 96) with that of the tetraacetate of YS1 (AcYS1) (Table 60) (Figure 91) revealed that AcYS14 was also a tetraacetate derivative of an isoflavone glucoside with the same substitution pattern on the isoflavone moiety, 4',7,8-trioxygenated framework. AcYS14 also consisted of two methoxyl groups at $\delta_{\rm H}$ 3.85 and 3.96. Their location was assigned to the C-4 and C-8 by NOEDIFF. Irradiation of the methoxy proton at $\delta_{\rm H}$ 3.85 (Figure 99) enhanced the aromatic proton the H-3 and H-5 ($\delta_{\rm H}$ 6.98) while irradiation of the other methoxy proton ($\delta_{\rm H}$ 3.96) (Figure 100) caused no enhancement of any aromatic protons. A large coupling constant of 7.2 Hz for the anomeric proton (H-1") at $\delta_{\rm H}$ 5.16 in the ¹H NMR spectrum suggested a β -configuration for the glucose unit. The HMBC correlation data (Table 61) (Figure 102) between the H-1" ($\delta_{\rm H}$ 5.16) of glucose residue with the C-7 ($\delta_{\rm C}$ 153.80) established the linkage between the sugar and isoflavone moiety. Thus, AcYS14 was identified as the tetraacetate of 4',8-dimethoxyisoflavone 7-O-β-glucopyranoside (YS14), a known isoflavone glucoside isolated from Ebenus cretica (Mitrocotsa, et al., 1999).

Table 60 Comparison of ¹H NMR data of AcYS1 with AcYS14

¹ H NMR of AcYS1	¹ H NMR of AcYS14
8.10 (d, J = 9.0 Hz, 1H)	8.00 (d, J = 9.0 Hz, 1H)
7.99 (s, 1H)	8.01 (s, 1H)
7.52 (d, J = 9.0 Hz, 2H)	7.50 (d, J = 9.0 Hz, 2H)
7.06 (d, J = 9.0 Hz, 1H)	7.18 (d, J = 9.0 Hz, 1H)
6.98 (d, J=9.0 Hz, 2H)	6.98 (d, J = 9.0 Hz, 2H)
5.38 (dd, J = 8.5, 7.0 Hz, 1H)	5.39 (<i>dd</i> , <i>J</i> = 9.0, 7.2 Hz, 1H)
5.31 (t, J = 8.5 Hz, 1H)	5.33 (t, J = 9.0 Hz, 1H)
5.28 (dd, J = 9.5, 8.5 Hz, 1H)	5.20 (<i>dd</i> , <i>J</i> = 9.6, 9.0 Hz, 1H)
5.19 (d, J = 7.0 Hz, 1H)	5.16 (d, J = 7.2 Hz, 1H)
4.29 (dd, J = 12.0, 5.5 Hz, 1H)	4.31 (dd, J = 12.0, 6.0 Hz, 1H)
4.08 (dd, J = 12.0, 2.5 Hz, 1H)	4.20 (<i>dd</i> , <i>J</i> = 12.0, 2.2 Hz, 1H)
3.99 (s, 3H)	3.96 (s, 3H)
3.84 (s, 3H)	3.85 (s, 3H)
3.70 (ddd, J = 9.5, 5.5, 2.5 Hz, 1H)	3.90 (<i>ddd</i> , <i>J</i> = 9.6, 6.0, 2.2 Hz, 1H)
2.09 (s, 3H)	2.10 (s, 3H)
2.05 (s, 3H)	2.09 (s, 3H)
2.04 (s, 3H)	2.06 (s, 3H)
1.94 (s, 3H)	2.05 (s, 3H)

Table 61 The NMR spectral data of AcYS14

Position	δ_{H}	$\delta_{ m C}$	Type of C	НМВС
2	8.01 (s)	152.72	СН	C-3, C-4, C-8a, C-1
3	-	125.14	С	
4	-	176.36	С	
4a		115.11	С	
5	8.00 (d, 9.0)	121.75	СН	C-7, C-8a
6	7.18 (d, 9.0)	115.11	СН	C-5, C-7, C-8
7	-	153.80	С	
8	-	138.85	С	
8a	-	151.15	С	
I,	-	123.97	С	
2', 6'	7.50 (d, 9.0)	130.42	СН	C-3, C-2', 6', C-4'

Table 61 (continued)

Position	$\delta_{\!\scriptscriptstyle H}$	$\delta_{ m C}$	Type of C	НМВС
3', 5'	6.98 (d, 9.0)	114.24	СН	C-1', C-3', 5', C-4'
4	-	160.20	С	
Glc-1"	5.16 (d, 7.2)	99.98	СН	C-7
2"	5.39 (dd, 9.0, 7.2)	70.90	СН	C-1", C-3"
3"	5.33 (t, 9.0)	72.38	СН	C-2", C-4"
4"	5.20 (dd, 9.6, 9.0)	68.13	СН	C-3"
5"	3.90 (ddd, 9.6, 6.0, 2.2)	77.17	СН	
6"	4.20 (dd, 12.0, 2.2)	61.78	CH ₂	
	4.31 (dd, 12.0, 6.0)			
4'-OMe	3.85 (s)	55.22	CH ₃	C-4
8-OMe	3.96 (s)	61.95	CH ₃	C-8 .
OCOCH ₃	2.10, 2.09, 2.06, 2.05	20.39	CH ₃	
		20.32	CH ₃	
		20.30	CH₃	
		20.27	CH₃	·
OCOCH ₃		171.01	С	
		170.67	С	
		169.91	С	
		169.81	С	

2.3.4 Rhamnosyl- $(1\rightarrow 6)$ -glucosyl isoflavones

The heptaacetate of YS5 (AcYS5)

AcYS5 was obtained as a colorless viscous liquid with $[\alpha]_D^{29}$ –33.33°. Its spectroscopic behavior including the UV absorption band at 306 nm (Figure 103), IR absorption bands (Figure 104) for an acetyl carbonyl group (1756 cm⁻¹), a carbonyl group of an isoflavone (1659 cm⁻¹) and an aromatic ring (1622 and 1579 cm⁻¹), and the *singlet* signal at δ_H 8.02 (H-2) in the ¹H NMR spectrum (Table 62) (Figure 105) indicated that AcYS5 was a compound of an isoflavone type. The 4'-oxysubstitution pattern of ring-B and 7-oxysubstitution pattern of ring-A were readily deduced from the proton signals forming an AA'XX' system (δ_H 7.61, J = 9.0 Hz, H-2', H-6' and δ_H 7.18, J = 9.0 Hz, H-3', H-5') and an ABX-type [δ_H 7.06 (1H, dd, J = 9.0, 2.0 Hz, H-6),

 $\delta_{\rm H}$ 8.27 (1H, d, J = 9.0 Hz, H-5) and $\delta_{\rm H}$ 7.08 (1H, d, J = 2.0 Hz, H-8)]. In addition, ¹H NMR signals (Table 62) (Figure 105) belonging to two sugar residues and seven acetyl groups were observed. According to chemical shifts and splitting pattern of these protons as well as the presence a methyl doublet at $\delta_{\rm H}$ 1.19 (J=6.5 Hz), a characteristic signal of the H-6" of rhamnose unit, two sugar residues were determined as glucose and rhamnose units. Two doublets at $\delta_{\rm H}$ 5.24 (J = 7.5 Hz) and $\delta_{\rm H}$ 4.75 ($J=1.5~{\rm Hz}$) integrating for single proton for each signal were attributed to the H-1" of glucose unit and the H-1" of rhamnose unit, respectively. A large coupling constant (J = 7.5 Hz) of the H-1" and a small coupling constant of the H-1" established the presence of glucose and rhamnose units in β -glucopyranose and α rhamnopyranose forms (Agrawal, 1992). The appearance of the C-6" signal of glucose unit in the 13 C NMR spectrum (Table 62) (Figure 106) at $\delta_{\rm C}$ 66.36 revealed that the rhamnose unit was attached to the C-6" of glucose unit. The HMBC correlation experiments (Table 62) (Figure 110) exhibited a correlation between the H-1 $^{'''}$ ($\delta_{\rm H}$ 4.75) of rhamnose unit and the C-6" ($\delta_{\rm C}$ 66.36) of glucose unit. These results confirmed that the C-1" of rhamnose unit was attached to the C-6" of glucose unit through a glycosidic bond. Furthermore, a cross peak between the H-1" ($\delta_{\rm H}$ 5.24) of glucose unit and the C-7 ($\delta_{\rm C}$ 160.47) established the attachment of glucose unit to the 7-hydroxyl of the isoflavone aglycone. The proton signals of glucose and rhamnose units were assigned by ¹H-¹H COSY spectrum (Table 62) (Figure 108). Thus, AcYS5 of 4'-hydroxyisoflavone 7-O-Γαwas identified as the heptaacetate rhamnopyranosyl- $(1\rightarrow 6)$]- β -glucopyranoside (YS5), which has been isolated from stems of Derris scandens (Suwannaroj, et al., 2000).

Table 62 The NMR spectral data of AcYS5

Position	$\delta_{\! ext{H}}$	$\delta_{ m C}$	Type of C	'H- ¹ H COSY	НМВС
2	8.02 (s)	153.33	СН	0001	C-3, C-4, C-8a
3	-	124.33	С		
4	-	175.43	С		
4a	-	120.16	С		
5	8.27 (d, 9.0)	128.24	СН	H-6	C-7, C-8a
6	7.06 (dd, 9.0, 2.0)	115.43	СН	H-5	C-4a, C-7, C-8
7	-	160.47	С		
8	7.08 (d, 2.0)	104.10	СН		C-4a, C-6, C-8a
8a	-	157.40	С		
l'	-	129.57	С		
2', 6'	7.61 (d, 9.0)	130.04	СН	H-3', 5'	C-3, C-2', 6', C-4'
3', 5'	7.18 (d, 9.0)	121.64	СН	H-2', 6'	C-1', C-3', 5', C-4'
4	_	150.57	С		
Glc-1"	5.24 (d, 7.5)	98.21	СН	H-2"	C-7
2"	5.34 (dd, 9.0, 7.5)	70.74	СН	H-1", H-3"	C-3"
3"	5.36 (t, 9.0)	72.55	СН	H-2", H-4"	C-2"
4″	5.10 (dd, 10.0, 9.0)	68.79	СН	H-3", H-5"	C-3"
5"	3.96 (<i>ddd</i> , 10.0, 7.5, 2.5)	73.80	СН	H-4", H-6"	
6"	3.77 (dd, 12.0, 2.5)	66.36	CH ₂	H-5", H-6"	C-5"
	3.65 (dd, 12.0, 7.5)				
Rha-1‴	4.75 (d, 1.5)	98.21	СН	H-2"	C-6"
2‴	5.33 (dd, 3.5, 1.5)	70.74	СН	H-1", H-3"	
3"'	5.31 (dd, 10.0, 3.5)	69.21	СН	H-2", H-4"	
4"	5.07 (t, 10.0)	69.06	СН	H-3", H-5"	
5"	3.84 (dq, 10.0, 6.5)	66.73	СН	H-4", H-6"	
6""	1.19 (d, 6.5)	17.33	CH ₃	H-5"	C-4", C-5"
OCOCH ₃	2.34, 2.18, 2.10, 2.09,	21.16	CH ₃		
	2.07, 2.06, 2.00	20.80	CH₃		
		20.77	CH ₃		

Table 62 (continued)

	c	c	Type of C	¹H-¹H	НМВС
Position	$\delta_{\! ext{H}}$	$\delta_{ m C}$	rypeore	COSY	IMADO
·		20.76	CH ₃		
		20.63	CH ₃		
		20.62	CH ₃		
		20.59	CH ₃		
OCOCH ₃		170.18	С		
		169.98	С		
		169.91	С		
		169.74	С		
		169.47	С		
		169.25	С		

The hexaacetate of YS3 (AcYS3)

AcYS3 was obtained as a colorless viscous liquid with $[\alpha]_D^{29}$ -41.52°. The UV spectrum (Figure 111) showed an absorption band at 260 nm while the IR spectrum (Figure 112) revealed absorption bands for an acetyl carbonyl group (1748 cm⁻¹), a carbonyl group of an isoflavone (1645 cm⁻¹) and an aromatic ring (1622 and 1569 cm⁻¹). These results together with the presence of a *singlet* signal at $\delta_{\rm H}$ 7.95 in the ¹H NMR spectrum (Table 63) (Figure 113) established an isoflavone framework for AcYS3. Its ¹H NMR spectrum data was similar to that of AcYS13, except for additional proton signals of the other sugar unit, apart from glucose residue, and additional protons of other two acetyl groups. A doublet of a methyl group at $\delta_{\rm H}$ 1.18 (J = 6.1 Hz) suggested that the additional sugar unit was rhamnose moiety. The 4'methoxy substitution pattern of B-ring and 7-oxysubstitution pattern of A-ring were confirmed by the proton signals forming an AA'XX' system ($\delta_{\rm H}$ 7.51, J=8.0 Hz, H-2', H-6' and $\delta_{\rm H}$ 6.97, J = 8.0 Hz, H-3', H-5') and an ABX-type [$\delta_{\rm H}$ 8.24 (1H, d, J =8.0 Hz, H-5), $\delta_{\rm H}$ 7.04 (1H, d, J = 2.5 Hz, H-8) and $\delta_{\rm H}$ 7.03 (1H, dd, J = 8.0 and 2.5 Hz, H-6)]. A doublet at δ_H 5.21 (J=7.6 Hz) and a singlet at δ_H 4.74 integrating for single proton for each signal were attributed to the H-1" of β -glucose unit and the H-1" of α -rhamnose unit, respectively. The chemical shift of the C-6" carbon signal at $\delta_{\rm C}$ 66.45 of glucose unit in the ¹³C NMR spectrum (Table 63) (Figure 114) revealed that the rhamnose unit was attached to the C-6" of glucose residue. The HMBC correlation experiments (Table 63) (Figure 118) exhibited a correlation between the H-1" ($\delta_{\rm H}$ 4.74) of rhamnose unit and the C-6" ($\delta_{\rm C}$ 66.45) of glucose unit as well as a correlation between the H-1" ($\delta_{\rm H}$ 5.21) of glucose unit and the C-7 ($\delta_{\rm C}$ 160.42) of the isoflavone aglycone. These results indicated that the rhamnose unit formed a (1 \rightarrow 6) glycosidic bond with the glucose unit of which the C-1" was attached to the 7-hydroxyl of the aglycone. The proton signals of the glucose and rhamnose units were assigned by 1 H- 1 H COSY spectrum (Figure 116) as shown in Table 63. Therefore, AcYS3 was identified as the hexaacetate of 4'-methoxyisoflavone 7-O-[α -rhamnopyranosyl-(1 \rightarrow 6)]- β -glucopyranoside (YS3), isolated from *Dalbergia paniculata* (Parthasarathy, *et al.*, 1976).

Table 63 The NMR spectral data of AcYS3

Position	δ_{H}	$\delta_{ m C}$	Type of C	¹H-¹H COSY	НМВС
2	7.95 (s)	152.69	СН		C-3, C-4, C-8a
3	-	124.81	С		
4	-	175.75	С		
4a	-	120.27	С		
5	8.24 (d, 8.0)	128.29	СН	H-6	C-4, C-7, C-8a
6	7.03 (dd, 8.0, 2.5)	114.02	СН	H-5	C-4a, C-7, C-8a
7	-	160.42	С		
8	7.04 (d, 2.5)	115.26	СН		C-4, C-7, C-8
8a	-	157.43	С		

Table 63 (continued)

Position	$\delta_{\rm H}$	$\delta_{ m C}$	Type of C	^I H- ¹ H COSY	НМВС
1'	•	124.23	С		
2', 6'	7.51 (d, 8.0)	130.14	СН	H-3 ['] , 5 [']	C-3, C-2', 6', C-4'
3', 5'	6.97 (d, 8.0)	104.19	СН	H-2', 6'	C-1', C-3', 5', C-4'
4	-	159.66	С		
Glc-1"	5.21 (d, 7.6)	98.33	СН	H-2"	C-7, C-3"
2"	5.31 (dd, 9.0, 7.6)	71.08	СН	H-1", H-3"	C-2", C-4"
3"	5.34 (t, 9.0)	72.62	СН	H-2", H-4"	C-2", C-4"
4"	5.09 (1, 9.0)	69.10	СН	H-3", H-5"	C-3"
5"	3.94 (<i>ddd</i> , 9.0, 7.0, 2.3)	73.80	СН	H-4", H-6"	
6"	3.77 (dd, 12.0, 2.3)	66.45	CH ₂	H-5", H-6"	C-5"
	3.65 (dd, 12.0, 7.0)	:			
Rha-1‴	4.74 (s)	98.24	СН		C-6"
2‴	5.30 (d, 3.5)	69.34*	СН	H-3 ^{""}	C-4"
3‴	5.28 (dd, 9.7, 3.5)	68.88*	СН	H-2 ^{'''} , H-4 ^{'''}	C-4"
4‴	5.04 (t, 9.7)	70.85	CH	H-3", H-5"	
5‴	3.85 (dq, 9.7, 6.1)	66.78	СН	H-4", H-6"	
6""	1.18 (d, 6.1)	17.35	CH ₃	H-5 ^{'''}	
4 ['] -OMe	3.84 (s)	55.34	СН3		
OCOCH ₃	2.09, 2.08, 2.06, 2.05 (6H),	20.79	CH ₃		
	1.99	20.76	CH ₃		
		20.74	СН₃		
		20.63	CH ₃		
		20.62	CH₃		
		20.60	СН₃		
OCOCH ₃		170.17	С		
		169.94	С		•
		169.92	С		,
		169.75	С		
		169.47	С		
		169.25	С		

^{*} interchangeable

The heptaacetate of YS10 (AcYS10)

AcYS10 was obtained as a pale yellow viscous liquid with $[\alpha]_{D}^{29}$ -51.47°. The IR spectrum (Figure 122) showed absorption bands for an acetyl carbonyl group (1732 cm⁻¹), a carbonyl group of an isoflavone (1659 cm⁻¹) and an aromatic ring (1613 and 1573 cm⁻¹). The UV absorption band (Figure 121) at 257 nm was typical for an isoflavone. Its ¹H NMR spectrum (Table 64) (Figure 123) was similar to that of AcYS8. It consisted of the H-2 signal at $\delta_{\rm H}$ 7.90, two protons ortho-related with coupling constant of 9.0 Hz of the H-5 ($\delta_{\rm H}$ 8.20) and H-6 ($\delta_{\rm H}$ 7.12) and a pair of doublets at $\delta_{\rm H}$ 7.46 and 6.96, characteristic of a p-disubstituted benzene ring (2H each, J = 8.5 Hz). Thus, AcYS10 was a 4',7,8-trioxygenated isoflavone. The appearance of two anomeric protons as two doublets at $\delta_{\rm H}$ 5.21 ($J=7.5~{\rm Hz}$) and $\delta_{\rm H}$ 4.74 ($J=1.5~{\rm Hz}$) together with methyl proton of six acetyl groups [δ_H 2.09, 2.08, 2.07, 2.06, 2.04 and 2.01] indicated the presence of acetylated β -glucose and acetylated α -rhamnose units. The presence of seven carbonyl carbons of acetyl groups apart from the carbonyl carbon of the isoflavone suggested that AcYS10 contained one hydroxyl substituent on the isoflavone skeleton apart from six hydroxyl groups of two sugar units. The methoxyl group at $\delta_{\rm H}$ 3.84 was assigned to the C-4' in B-ring due to the ¹H chemical shift values of the H-2', H-6' and H-3', H-5' (Intarit, 1999). Enhancement of the aromatic proton H-3 and H-5 ($\delta_{\rm H}$ 6.96) after irradiation of the methoxy proton at $\delta_{\rm H}$ 3.84 (Figure 127) confirmed the location of the methoxyl group at the C-4'. In the HMBC spectrum (Table 64) (Figure 129), a cross peak between the methoxy proton $(\delta_{\rm H} 3.84)$ and the C-4 $(\delta_{\rm C} 159.72)$ also supported above conclusion. The location of two sugar units was also established by the HMBC spectrum. The H-1 $^{''}$ signal ($\delta_{
m H}$ 5.21) of glucose unit showed a cross peak with the C-7 ($\delta_{\rm C}$ 151.95) while the H-1" signal at $\delta_{\rm H}$ 4.74 of rhamnose unit showed a correlation with the C-6" ($\delta_{\rm C}$ 66.39) of glucose unit. These results suggested that the C-1" of rhamnose unit formed a $(1\rightarrow 6)$ glycosidic bond with the glucose unit of which the C-1" was linked with the 7hydroxyl of the isoflavone aglycone. Other protons of the sugar residues were assigned by analysis of the ¹H-¹H COSY spectrum (Table 64) (Figure 126) using the anomeric protons as starting points. These data permitted the identification of

AcYS10 as the heptaacetate of 8-hydroxy-4'-methoxyisoflavone 7-O-[α-rhamnopyranosyl-(1 \rightarrow 6)]- β -glucopyranoside (YS10), a new isoflavone glycoside.

Table 64 The NMR spectral data of AcYS10

D. W.	C	e	Т	¹ H- ¹ H	НМВС
Position	$\delta_{\!\scriptscriptstyle ext{H}}$	$\delta_{ m C}$	Type of C	COSY	HWIBC
2	7.90 (s)	152.15	CH		C-3, C-4, C-8a
3	-	125.07	С		
4	-	175.28	С		
4a	-	120.08	С		
5	8.20 (d, 9.0)	123.90	СН	H-6	C-4, C-7, C-8a
6	7.12 (d, 9.0)	112.00	СН	Н-5	C-8
7		151.95	С		
. 8	<u>-</u>	152.00	С		
8a	-	149.59	С		
1	-	124.96	С		
2', 6'	7.46 (d, 8.5)	130.13	СН	H-3', 5'	C-3, C-2', 6', C-4'
3', 5'	6.96 (d, 8.5)	114.00	СН	H-2', 6'	C-1', C-3', 5', C-4
4	-	159.72	С		
Glc-1"	5.21 (d, 7.5)	98.00	СН	H-2"	C-7,
2"	5.35-5.31 (m)	70.53	СН	H-1", H-3"	C-3"
3"	5.34-5.30 (m)	72.26	СН	H-2", H-4"	C-3"
4"	5.09 (t, 10.0)	68.68*	СН	H-3", H-5"	C-3"
5"	3.93 (ddd, 10.0, 6.5, 2.5)	73.79	СН	Н-6"	
6"	3.79 (dd, 11.5, 2.5)	66.39	CH ₂	H-5", H-6"	C-1"

Table 64 (continued)

Position	$\delta_{ m H}$	$\delta_{ m C}$	Type of C	¹ H- ¹ H COSY	НМВС
	3.67 (dd, 11.5, 6.5)				
Rha-1"	4.74 (d, 1.5)	97.00	СН	H-2"	C-6", C-3"
2‴	5.24 (dd, 3.5, 1.5)	69.39	СН	H-3‴	
3‴	5.30 (dd, 10.0, 3.5)	68.78*	СН	H-2 ^{""} , H-4 ^{""}	
4"	5.06 (t, 10.0)	70.78	СН	H-3", H-5"	
5‴	3.86 (<i>dq</i> , 10.0, 6.5)	66.83	СН	H-4", H-6"	
6'''	1.17 (d, 6.5)	17.33	CH ₃		C-4"', C-5"'
4'-OMe	3.84 (s)	55.31	CH ₃		C-4
OCOCH ₃	2.40, 2.09, 2.08, 2.07,	20.79	CH₃		
	2.06, 2.04, 2.01	20.72	CH ₃		
		20.60	CH ₃		}
		20.55	CH ₃		
		20.15	CH ₃		
OCOCH ₃		170.05	С		·
		170.03	С		<u>.</u>
		169.98	С	•	·
		169.89	С		
:		169.47	С		
ļ		169.45	С		
		168.09	С		

^{*} interchangeable

Compound YS2

YS2 was obtained as a white solid, melting at 205-207 °C with $\lceil \alpha \rceil_{D}^{29}$ -84.07°. The UV spectrum (Figure 130) with an absorption band at 255 nm was typical for a compound of an isoflavone type. The IR spectrum (Figure 131) showed absorption bands for a hydroxyl group (3407 cm⁻¹), a carbonyl group of an isoflavone (1621 cm⁻¹) and an aromatic ring (1605, 1578 cm⁻¹). The ¹H NMR spectrum (Table 65) (Figure 132) indicated an isoflavonoid nucleus by the appearance of the H-2 signal at $\delta_{\rm H}$ 8.24. It also displayed signals for the methoxyl groups at $\delta_{\rm H}$ 4.01 and 3.82 and two doublets signals for the H-5 and H-6 at $\delta_{\rm H}$ 7.88 (1H, J=8.8 Hz) and $\delta_{\rm H}$ 7.29 (1H, J=8.8 Hz), respectively. A pair of ortho doublets (J = 8.8 Hz) each integrating for two protons centered at $\delta_{\rm H}$ 7.50 and 6.95 were assigned to the H-2', H-6' and H-3', H-5' of 4'-methoxysubstituted B-ring, respectively. In addition, the two anomeric protons at $\delta_{\rm H}$ 5.00 as a doublet with coupling constant of 7.2 Hz and $\delta_{\rm H}$ 4.65 as a singlet suggested the presence of one β -glucosyl unit and one α -rhamnosyl unit. The ¹³C NMR spectrum (Table 65) (Figure 133) showed two methoxyl carbons at $\delta_{\rm C}$ 61.42 and 55.06 and one carbonyl carbon at $\delta_{\rm C}$ 175.16. It also revealed a set of signals belonging to the sugar moieties which showed the C-1" of glucose unit and the C-1" of rhamnose unit at $\delta_{\mathbb{C}}$ 101.18 and 100.63, respectively. The ¹H-¹H COSY spectrum (Figure 135) exhibited coupling of nearby protons as shown in Table 65. In the HMBC spectrum (Table 65) (Figure 137), the methoxy proton ($\delta_{\rm H}$ 4.01) showed a correlation with the C-8 ($\delta_{\rm C}$ 137.34) of the aglycone, indicating the attachment of this methoxyl group at the C-8 of the aglycone. The proton signal at $\delta_{\rm H}$ 7.50 (H-2', H-6') showed a correlation with the C-4 ($\delta_{\rm C}$ 159.19), which in turn correlated with the proton signal of the methoxyl group at $\delta_{\rm H}$ 3.82. These results revealed the presence of the methoxyl group (δ_H 3.82) at the C-4 of the aglycone and the other methoxyl group $(\delta_{\rm H} 4.01)$ at the C-8. The glycosidic linkage at the 7-hydroxyl of the aglycone was confirmed by the HMBC correlation of the H-1" ($\delta_{\rm H}$ 5.00) of β -glucosyl unit with the C-7 ($\delta_{\rm C}$ 154.08). In addition, the H-1" ($\delta_{\rm H}$ 4.65) of α -rhamnosyl moiety correlated with the C-6" ($\delta_{\rm C}$ 66.56) of glucose unit, suggesting an interglycosidic linkage to be rhamnose-(1→6)-glucose. From the above data, YS2 can be identified as 4,8dimethoxyisoflavone 7-O-[α -rhamnopyranosyl-(1 \rightarrow 6)]- β -glucopyranoside (Derriscanoside B), a known isoflavone glycoside isolated from *Derris scandens* (Dianpeng, *et al.*, 1999).

Table 65 The NMR spectral data of YS2

Position	$\delta_{ ext{li}}$	$\delta_{ m C}$	Type of C	¹ H- ¹ H COSY	НМВС
2	8.24 (s)	152.80	СН	COST	C-4, C-8a, C-2', 6'
3	-	123.68	С		0 1, 0 0., 0 2, 0
4	-	175.16	С		
4a	-	119.89	С		
5	7.88 (d, 8.8)	120.62	СН	H-6	C-4, C-6, C-7, C-8, C-8a
6	7.29 (d, 8.8)	114.19	СН	H-5	C-4a, C-7, C-8, C-8a
7	-	154.08	С		
8	-	137.34	С		
8a	-	150.27	С		
1	_	123.96	С		
2, 6	7.50 (d, 8.8)	129.99	СН	H-3', 5'	C-3, C-2', 6', C-4'
3', 5'	6.95 (d, 8.8)	113.60	СН	H-2', 6'	C-1', C-2', 6', C-3', 5', C-4'
4	-	159.19	С		
Glc-1"	5.00 (d, 7.2)	101.18	СН	H-2"	C-7, C-3", C-5"
2"	3.54-3.48 (m)	73.29	СН	H-1"	C-3"
3"	3.43 (t, 8.4)	76.90	СН		C-2", C-4"
4"	3.31 (t, 8.4)	69.92	СН		C-3", C-5", C-6"
5"	3.58-3.53 (m)	75.91	СН	H-6"	C-3", C-4", C-5", C-6"
					1 ' ' '

Table 65 (continued)

Position	$\delta_{ m H}$	$\delta_{ m c}$	Type of C	¹H-¹H COSY	НМВС
6"	4.00-3.98 (m)	66.56	CH₂	H-5"	C-1", C-4"
	3.54-3.48 (m)				
Rha-1"	4.65 (s)	100.63	СН		C-6", C-2", C-3", C-5"
2""	3.78-3.73 (m)	70.49	СН	H-3"	C-2", C-4"
3""	3.62-3.55 (m)	71.17	СН	H-2"	C-1", C-4"
4‴	3.30-3.25 (m)	72.36	СН		C-3", C-5"
5""	3.55-3.51 (m)	68.28	СН		C-3", C-4"
6‴	1.16 (d, 6.1)	17.71	CH ₃		C-4", C-5"
4'-OMe	3.82 (s)	55.06	CH ₃		C-4
8-OMe	4.01 (s)	61.42	CH ₃		C-8
2"-OH	5.40 (d, 5.4)			H-2"	C-1", C-2", C-3"
3" - OH	5.11 (d, 1.8)			H-3"	C-2", C-3", C-4", C-5"
4"-OH	5.13 (d, 2.7)			H-4"	C-2", C-3", C-4", C-5"
2‴-OH	4.53 (d, 3.6)			H-2 ^{'''}	C-1", C-2", C-3"
3 ^{***} -OH	4.39 (d, 5.9)			H-3'''	C-2"', C-3"', C-4"'
4‴-OH	4.59 (d, 5.4)			H-4"	C-3"', C-4"', C-5"

The hexaacetate of YS11 (AcYS11)

AcYS11 was obtained as a colorless viscous liquid with $[\alpha]_D^{29}$ -40.54°. This compound exhibited an UV absorption band at 253 nm (Figure 143), characteristic of an isoflavonoid. IR absorption bands (Figure 144) were found at 1748 cm⁻¹ (an acetyl carbonyl group), 1645 cm⁻¹ (a carbonyl group of an isoflavone) and 1609, 1567 cm⁻¹ (an aromatic ring). The ¹H NMR spectrum (Table 66) (Figure 145) was similar to that of **the hexaacetate of YS2** (AcYS2) (Figure 141): a sharp singlet integrating for one proton at δ_H 7.99 for the H-2, two doublets with ortho coupling constant (J = 9.1 Hz) at δ_H 8.06 and 7.04 for the H-5 and H-6, respectively, an AA'XX' system with two doublets at δ_H 7.52 and 6.98 (2H each, J = 9.1 Hz), typical of 4'-substituted B-ring, and two methoxyl groups at δ_H 3.84 and 3.99. In NOESY spectrum (Figure 149), two cross peaks between the H-6 (δ_H 7.04) and the H-3', H-5' (δ_H 6.98) with the methoxy signals at δ_H 3.99 and δ_H 3.84, respectively,

established the attachment of the methoxyl groups at the C-7 of A-ring and the C-4' of B-ring. In addition, AcYS11 also contained two sugar units, one glucose and one rhamnose, as found in AcYS2 due to the presence of two anomeric protons at $\delta_{\rm H}$ 5.22 (d, J = 6.8 Hz) and $\delta_{\rm H}$ 4.56 (d, J = 1.6 Hz) which were attributed to the H-1" of glucose unit and the H-1" of rhamnose unit, respectively. The presence of α rhamnosyl residue was confirmed by the presence of a methyl doublet at $\delta_{\rm H}$ 1.11 (J=6.3 Hz). By analysis of ¹H-¹H COSY spectrum (Figure 148), seven protons of glucose residue and eight protons of rhamnose residue were assigned as shown in Table 66. Complete ¹H and ¹³C assignments were reported in Table 66, as results from DEPT (Figure 147), HMQC (Figure 150) and HMBC (Figure 151) experiments. The HMBC correlation between the H-1 $^{'''}$ ($\delta_{\rm H}$ 4.56) of rhamnose unit and the C-6 $^{''}$ ($\delta_{\rm C}$ 66.53) of glucose unit revealed that the rhamnose unit formed a (1-6) glycosidic linkage with the glucose unit of which the C-1" was connected to the C-8 of the aglycone due to a correlation between the H-1" ($\delta_{\rm H}$ 5.22) of glucose unit with the C-8 ($\delta_{\rm C}$ 132.35) of the aglycone. AcYS11 was therefore identified as the hexaacetate of 7,4'dimethoxyisoflavone 8-O-[α -rhamnopyranosyl-(1 \rightarrow 6)]- β -glucopyranoside (YS11), a new isoflavone glycoside. Thus, the structural differences between AcYS2 and AcYS11 were the location of the methoxyl group and the sugar moiety on the A-ring.

Table 66 The NMR spectral data of AcYS11

Position	δ_{H}	$\delta_{\rm C}$	Type of C	¹H-¹H	НМВС
	VH .		Type or C	COSY	HMBC
2	7.99 (s)	152.71	СН		C-4, C-7, C-8a
3	-	124.72	С		
4	-	175.95	С		
4a	-	119.35	С		
5	8.06 (d, 9.1)	123.41	СН	H-6	C-4, C-7, C-8a
6	7.04 (d, 9.1)	110.30	СН	H-5	C-4a, C-7, C-8
7	-	156.05	С		
8	-	132.35	С		
8a	-	150.82	С		
1	-	124.24	С		
2, 6	7.52 (d, 9.1)	130.49	СН	H-3', 5'	C-3, C-2', 6', C-4'
3', 5'	6.98 (d, 9.1)	114.21	СН	H-2', 6'	C-1', C-2', 6', C-4'
4	-	159.92	С		
Glc-1"	5.22 (d, 6.8)	101.15	СН	H-2"	C-8, C-3", C-5", C-6"
2"	5.36 (dd, 9.2, 6.8)	72.12	СН	H-1", H-3"	C-2", C-3", C-4"
3"	5.31 (t, 9.2)	72.89	СН	H-2", H-4"	C-2", C-4", C-5"
4"	5.15 (t, 9.2)	69.18	СН	H-3", H-5"	C-4", C-5"
5"	3.75 (ddd, 9.2, 6.8, 2.4)	74.38	СН	H-4", H-6"	
6"	3.62 (dd, 12.0, 2.4)	66.53	CH ₂	H-5"	C-5"
	3.69 (dd, 12.0, 6.8)				
Rha-1"	4.56 (d, 1.6)	97.92	СН	Н-2"	C-6", C-3"", C-5"
2‴	5.06 (dd, 3.2, 1.6)	69.56	СН	H-1"', H-3"	C-3", C-4"
3‴	5.12 (dd, 9.2, 3.2)	69.26	СН	H-2"', H-4"	C-3", C-4"
4‴	4.98 (t, 9.2)	70.91	СН		C-2", C-3", C-5"
5‴	3.70 (dq, 9.2, 6.3)	66.94	СН	H-4 ^{'''} , H-6 ^{'''}	C-1"
6'''	1.11 (d, 6.3)	17.52	СН₃	H-5 ^{""}	C-4"', C-5"
4'-OMe	3.84 (s)	55.56	CH ₃		C-4
7-OMe	3.99 (s)	56.80	CH ₃		C-7

Table 66 (continued)

Position	$\delta_{\!\scriptscriptstyle ext{H}}$	$\delta_{ m C}$	Type of C	'H-'H COSY	НМВС
OCOCH ₃	2.11, 2.08, 2.06, 1.99 (6H),	20.95	CH ₃		
	1.94	20.93	CH ₃		
		20.87	СН₃		
		20.86	CH ₃		
		20.85	СН₃		1
OCOCH ₃		170.49	С		
		170.25	С		
		170.15	С		
		170.09	С		
		169.88	С		
		169.56	С		

The hexaacatete of YS6 (AcYS6)

AcYS6 was obtained as a white solid with $[\alpha]_{D}^{29}$ -68.18°. The UV spectrum (Figure 152) with an absorption band at 260 nm suggested an isoflavone skeleton. The IR spectrum (Figure 153) exhibited absorption bands for an acetyl carbonyl group (1750 cm⁻¹), a carbonyl group of an isoflavone (1634 cm⁻¹) and an aromatic ring (1602 and 1579 cm⁻¹). The ¹H NMR spectrum (Table 67) (Figure 154) displayed a characteristic one proton singlet at $\delta_{\rm H}$ 7.97 for the H-2 of an isoflavonoid nucleus. Two singlets at $\delta_{\rm H}$ 7.65 and 7.20 were assigned to the H-5 and H-8, respectively, due to a chemical shift characteristic of the H-5 and value of coupling constant (J = 0 Hz). It also displayed an AA'XX' system, typical of 4'-substituted B-ring, with two doublets at $\delta_{\rm H}$ 7.51 and 6.98 (2H each, J=9.3 Hz) which were assigned to the H-2, H-6' and H-3', H-5', respectively. This compound also composed of two methoxyl groups at $\delta_{\rm H}$ 3.92 and 3.84. The location of the methoxyl groups at the C-6 and C-4' were determined by NOESY experiment (Figure 158). The aromatic proton (H-5) at $\delta_{\!H}$ 7.65 correlated with the methoxy proton at $\delta_{\!H}$ 3.92 while the aromatic proton at $\delta_{\rm H}$ 6.98 (H-3', H-5') correlated with the methoxy proton at $\delta_{\rm H}$ 3.84. Furthermore, HMBC correlations (Table 67) (Figure 160) between the methoxy protons ($\delta_{\rm H}$ 3.92

and 3.84) with the C-6 ($\delta_{\rm C}$ 148.82) and the C-4 ($\delta_{\rm C}$ 159.79), respectively, of the aglycone supported above conclusion. The two anomeric protons of two sugar units ($\delta_{\rm H}$ 5.13, d, J = 7.6 Hz, H-1" and $\delta_{\rm H}$ 4.74, d, J = 1.7 Hz, H-1") suggested a β configuration for the glucose unit and a α -configuration for the rhamnose unit. The ¹³C NMR spectrum (Table 67) (Figure 155) revealed a set of signals belonging to the sugar units which showed the C-1" of glucose unit and the C-1" of rhamnose unit at $\delta_{\rm C}$ 100.03 and 98.44, respectively, and the C-6" of glucose residue and the C-6" of rhamnose residue at $\delta_{\rm C}$ 66.80 and 17.58, respectively. The obvious downfield shift (> 6.5 ppm) of the C-6" of glucose unit in the ¹³C NMR spectrum indicated that rhamnose was linked to the 6-hydroxyl of glucose unit. This $(1\rightarrow 6)$ -glycosidic linkage was confirmed by a HMBC correlation between the H-1" ($\delta_{\rm H}$ 4.74) of rhamnose unit with the C-6" ($\delta_{\rm C}$ 66.80) of glucose unit. The attachment of the disaccharide to the 7-hydroxyl of the aglycone was directly deduced from a correlation observed between the anomeric proton, H-1" (&H 5.13), of glucose moiety and the C-7 ($\delta_{\rm C}$ 150.99) of the aglycone in the HMBC experiment. The location of the sugars was further supported by a cross peak between the methoxy proton at the C-6 ($\delta_{\rm H}$ 3.92) with the H-1" of glucose unit in the NOESY spectrum (Figure 158). The presence of six methyl signals of acetyl groups in the ¹H NMR spectrum indicated that all of the hydroxyl groups of glucose and rhamnose units were protected in a form of an acetate ester. Therefore, AcYS6 was identified as the hexaacetate of 4'.6dimethoxyisoflavone 7-O-[α -rhamnopyranosyl-(1 \rightarrow 6)]- β -glucopyranoside (YS6), a new isoflavone glycoside.

Table 67 The NMR spectral data of AcYS6

Position	δ_{H}	$\delta_{\rm C}$	Type of C	¹ H- ¹ H	IMPC
			1 spe of C	COSY	HMBC
2	7.97 (s)	152.94	СН		C-4, C-8a, C-1
3	-	124.32	С		
4	-	175.84	С		
4a	-	120.71	С		
5	7.65 (s)	106.57	СН		C-4, C-4a, C-6, C-8a
6	-	148.82	С		
7	-	150.99	С		C-4, C-4a, C-6, C-8a
8	7.20 (s)	107.19	СН		
8a	-	151.52	С		
1	-	124.69	C		
2, 6	7.51 (d, 9.3)	130.33	CH	H-3', 5'	C-3, C-2', 6', C-4'
3', 5'	6.98 (d, 9.3)	114.21	CH	H-2', 6'	C-1', C-3', 5', C-4'
4	-	159.79	С		
Gle-1"	5.13 (d, 7.6)	100.03	СН	H-2"	C-7
2"	5.35-5.32 (m)	71.24	СН	H-1", H-3"	C-2"
3"	5.35-5.32 (m)	72.64	СН	H-2", H-4"	C-2"
4"	5.09 (t, 9.9)	69.25	СН	H-3", H-5"	C-3"
5"	3.89 (ddd, 9.9, 7.0, 2.5)	73.90	СН	H-6"	C-4"
6"	3.77 (dd, 11.5, 2.5)	66.80	CH ₂	H-5"	C-5", C-1"
	3.65 (dd, 11.5, 7.0)				
Rha-1"	4.74 (d, 1.7)	98.44	СН	H-2"	C-6", C-3"
2""	5.31 (dd, 3.4, 1.7)	69.55	СН	H-3"	C-3", C-4"
3‴	5.26 (dd, 9.9, 3.4)	69.36	СН	H-2", H-4"	C-4"
4‴	5.04 (t, 9.9)	71.07	СН	H-3 ^{""} , H-5 ^{""}	C-3''', C-5'''
5‴	3.83 (dq, 9.9, 5.9)	66.93	СН	H-4"', H-6"	C-4"
6‴	1.19 (d, 5.9)	17.58	CH ₃		C-4"', C-5"
4'-OMe	3.84 (s)	55.55	CH ₃		C-4
6-OMe	3.92 (s)	56.62	СН3		C-6

Table 67 (continued)

Position	δ_{H}	$\delta_{ m C}$	Type of C	'H- ¹ H COSY	НМВС
OCOCH ₃	2.09, 2.08, 2.07, 2.05,	21.00	CH ₃		
i .	2.04, 1.96	20.93	CH ₃		
		20.83	CH ₃		
ОСОСН₃		170.43	C		
		170.14	С		
		170.05	С		
		169.96	С		
		169.68	С		
		169.49	С		

The hexaacetate of YS7 (AcYS7)

AcYS7 was obtained as a yellow viscous liquid with $[\alpha]_D^{29}$ -90.90°. This compound exhibited an UV absorption band at 265 nm (Figure 161), characteristic of an isoflavonoid. The IR absorption bands (Figure 162) were found at 1756 cm⁻¹ (an acetyl carbonyl group), 1659 cm⁻¹ (a carbonyl group of an isoflavone) and 1613, 1590 cm⁻¹ (an aromatic ring). The ¹H NMR spectrum (Table 68) (Figure 163) revealed the presence of a chelated hydroxyl group ($\delta_{\rm H}$ 12.90, s, 5-OH) and a sharp singlet integrating for one proton at $\delta_{\rm H}$ 7.95 assigned to the H-2 of an isoflavonoid nucleus. It exhibited two singlets integrating for three protons for each signal at $\delta_{\rm H}$ 3.84 and 3.83 for two methoxyl groups and a one proton singlet at $\delta_{\rm H}$ 6.71 for the H-8. It also displayed an AA'XX' pattern, typical of 4'-substituted B-ring with two doublets at $\delta_{\rm H}$ 7.48 and 6.99 (2H each, $J=9.0~{\rm Hz}$), which were assigned to the H-2', H-6' and H-3', H-5', respectively. Two anomeric proton signals at $\delta_{\rm H}$ 5.12 (J=7.5 Hz) and $\delta_{\rm H}$ 4.76 (J=1.5 Hz) were attributed to the H-1" and H-1" of β -glucose and α -rhamnose units, respectively. The presence of α -rhamnose unit was confirmed by a methyl doublet at $\delta_{\rm H}$ 1.20 (J=6.4 Hz). Moreover, the C-6" carbon signal of glucose unit in the ¹³C NMR spectrum (Table 68) (Figure 164) was shifted downfield ($\delta_{\rm C}$ 66.46) which suggested the attachment of rhamnose unit at the C-6" of glucose unit. The HMBC correlation experiments (Table 68) (Figure 168) revealed a

correlation between the H-1" ($\delta_{\rm H}$ 4.76) of rhamnose unit and the C-6" ($\delta_{\rm C}$ 66.46) of glucose unit as well as a correlation between the H-1" ($\delta_{\rm H}$ 5.12) of glucose unit and the C-7 ($\delta_{\rm C}$ 155.68) of the aglycone. These results indicated that the rhamnose unit was attached to C-6" of glucose unit of which the C-1" was attached to the C-7 of the aglycone. The location of the methoxyl groups at the C-4' and C-6 was determined by HMBC correlation data (Table 68)(Figure 168) which showed polarization transfer between the methoxyl groups at $\delta_{\rm H}$ 3.84 and 3.83 with the C-4' and C-6, respectively. The presence of six methyl groups of acetyl group at $\delta_{\rm H}$ 2.10, 2.08, 2.07, 2.05, 2.04 and 1.96 suggested that all of hydroxyl groups of rhamnose and glucose units were acetylated while the 5-chelated hydroxyl group of the aglycone was intact. Therefore, AcYS7 was characterized as the hexaacetate of 5-hydroxy-4',6-dimethoxyisoflavone 7-O-[α -rhamnopyranosyl-(1 \rightarrow 6)]- β -glucopyranoside (YS7), a new isoflavone glycoside.

Table 68 The NMR spectral data of AcYS7

Position	$\delta_{\!\scriptscriptstyle m H}$	$\delta_{ m C}$	Type of C	¹H-¹H COSY	НМВС
2	7.95 (s)	153.73	СН		C-3, C-4, C-8a
3	_	122.93	С		
4	-	181.36	С		
4a	_	108.39	С		
5	-	154.28	С		
6	-	133.72	С		
7	-	155.68	С		

Table 68 (continued)

Position	$\delta_{\rm H}$	$\delta_{\rm C}$	Type of C	¹H-¹H COSY	НМВС
8	6.71 (s)	95.41	СН		C-4, C-4a, C-6, C-7, C-8a
8a	-	152.74	С		,, , , , , , , , , , , , , , , , , , , ,
1	-	123.02	С		
2, 6	7.48 (d, 9.0)	130.09	СН	H-3', 5'	C-1', C-2', 6', C-4'
3', 5'	6.99 (d, 9.0)	114.21	СН	H-2 ['] , 6 [']	C-3, C-3', 5', C-4'
4	-	159.78	С		
Glc-1"	5.12 (d, 7.5)	99.45	СН	H-2"	C-7, C-3"
2"	5.36 (t, 9.0)	70.74	СН	H-1", H-3"	C-3", C-4"
3"	5.33 (t, 9.0)	72.37	СН	H-2", H-4"	C-2", C-4"
4"	5.07 (t, 9.0)	68.93	СН	H-3 ["] , H - 5 ["]	C-3", C-5"
5"	3.93-3.86 (m)	73.67	СН	H-6"	C-1", C-4"
6"	3.76 (dd, 12.0, 3.0)	66.46	CH₂	H-5"	C-4", C-6"
	3.63 (dd, 12.0, 9.0)				
Rha-1"	4.76 (d, 1.5)	98.29	СН	H-2 ^{""}	C-6", C-3"
2'''	5.34 (dd, 3.0, 1.5)	69.19	СН	H-1", H-3"	C-3"", C-4""
3‴	5.27 (dd, 9.0, 3.0)	69.19	СН	H-2 ^{""} , H-4 ^{""}	C-2"', C-4"', C-5"'
4‴	5.05 (t, 9.0)	70.74	СН	H-3 ^{""} , H-5 ^{""}	C-2", C-3", C-5"
5‴	3.86-3.81 (m)	66.67	СН	H-4"', H-6"	C-3", C-4"
6‴	1.20 (d, 6.4)	17.34	CH ₃	H-5"	C-4"', C-5"
4´-OMe	3.84 (s)	55.36	CH ₃		C-4
6-ОМе	3.83 (s)	61.08	СН3		C-6
5-OH	12.90 (brs)				
OCOCH ₃	2.10, 2.08, 2.07,	20.80	СН3		
	2.05, 2.04, 1.96	20.62	CH ₃		
OCOCH ₃		170.18	С	į	
		169.89	С		
		169.76	С		
		169.48	С		
		169.29	С		

Compound YS4

YS4 was obtained as a white solid, melting at 195.5-198.5 °C with $[\alpha]_D^{29}$ -52.63°. This compound exhibited an UV absorption band at 262 nm (Figure 169), characteristic of an isoflavonoid nucleus and IR absorption bands (Figure 170) at 3369 cm⁻¹ (a hydroxyl group), 1655 cm⁻¹ (a carbonyl group of an isoflavone) and 1609, 1572 cm⁻¹ (an aromatic ring). The ¹H NMR spectrum (Table 69) (Figure 171) revealed the presence of a chelated hydroxyl group ($\delta_{\rm H}$ 12.85, s, 5-OH) and a sharp singlet integrating for one proton at $\delta_{\rm H}$ 8.25, assigned to the H-2 of an isoflavonoid nucleus. The 4'-oxysubstituted pattern of B-ring and 5,7-dioxysubstituted pattern of A-ring were readily deduced from the proton signals forming an AA'XX' system (δ_H 7.38, J = 8.8 Hz, H-2', H-6' and δ_{H} 6.85, J = 8.8 Hz, H-3', H-5') and two protons metarelated with coupling constant of 2.2 Hz, representing the H-8 ($\delta_{\rm H}$ 6.43) and H-6 ($\delta_{\rm H}$ 6.70). A doublet at δ_H 4.93 (J = 7.8 Hz) and a broad singlet at δ_H 4.62 were attributed to the H-1" of β -glucose unit and the H-1" of α -rhamnose unit. The presence of the α -rhamnosyl unit was confirmed by a methyl signal at $\delta_{\rm H}$ 1.19 as a doublet. Moreover, the C-6" carbon signal of glucose unit in the ¹³C NMR spectrum (Table 69) (Figure 172) was shifted downfield ($\delta_{\rm C}$ 66.60), indicating that the rhamnosvl moiety was attached to the C-6" of glucose residue with a $(1\rightarrow 6)$ -glycosidic bond. The HMBC correlation experiments (Table 69) (Figure 176) revealed a correlation between the H-1" ($\delta_{\rm H}$ 4.62) of rhamnose unit and the C-6" ($\delta_{\rm C}$ 66.60) of glucose unit as well as a correlation between the H-1" ($\delta_{\rm H}$ 4.93) of glucosyl unit and the C-7 ($\delta_{\rm C}$ 162.87) of the aglycone. This suggested that the rhamnosyl unit was attached to the C-6" of glucosyl moiety of which the C-1" was attached to the 7-hydroxyl of the aglycone. These data permitted the identification of YS4 as 4',5-dihydroxyisoflavone 7-O- $[\alpha$ -rhamnopyranosyl- $(1\rightarrow 6)$]- β -glucopyranoside, isolated from tuberosum and Derris scandens (Guang, et al., 1998; Suwannaroj, et al., 2000).

Table 69 The NMR spectral data of YS4

Position	$\delta_{\!\scriptscriptstyle ext{H}}$	$\delta_{\mathbb{C}}$	Type of C	¹H-¹H COSY	HMBC
2	8.25 (s)	154.17	СН		C-3, C-4, C-1, C-2, 6
3	_	122.80	С		
4	-	180.65	С		
4a	<u>-</u>	106.49	С		
5	-	157.39	С		
6	6.70 (d, 2.2)	94.64	СН	H-8	C-4, C-4a, C-6, C-7, C-8a
7	_	162.87	С		
8	6.43 (d, 2.2)	99.96	СН	H-6	C-4, C-4a, C-5, C-7, C-8
8a	-	161.71	С		
1	-	121.17	С		
2', 6'	7.38 (d, 8.8)	129.96	CH	H-3 ['] , 5 [']	C-3, C-2', 6', C-3', 5', C-4'
3', 5'	6.85 (d, 8.8)	115.20	СН	H-2', 6'	C-1', C-2', 6', C-3', 5', C-4'
4	-	157.55	С		
Glc-1"	4.93 (d, 7.8)	100.41	СН	H-2"	C-7, C-3", C-4", C-5"
2"	3.45-3.36 (m)	73.06	СН	H-1", H-3", 2"-OH	C-2", C-3", C-4", C-5"
3"	3.45-3.36 (m)	76.84	СН	H-2", H-4", 3"-OH	C-2", C-3", C-4", C-5"
4"	3.23 (t, 8.4)	70.15	CH	H-3", H-5", 4"-OH	C-3", C-5", C-6"
5"	3.62-3.52 (m)	75.90	СН	H-6"	C-5", C-6"
6"	4.00 (d, 9.8)	66.60	CH ₂	H-5", H-6"	C-4", C-1"
	3.45-3.38 (m)				
Rha-1"	4.62 (s)	100.68	СН	H-2 ^{'''}	C-6", C-2"', C-3"', C-5"'
2""	3.80-3.76 (m)	70.36	СН	H-3 ^{'''} , 2 ^{'''} -OH	C-1", C-3", C-4"
3""	3.70-3.64 (m)	71.08	СН	H-2", H-4"	C-4"', C-5"

٠

Table 69 (continued)

Position	δ_{H}	$\delta_{\!\scriptscriptstyle m C}$	Type of C	¹H-¹H COSY	НМВС
4""	3.27 (dd, 9.1, 4.9)	72.48	СН	Н-3"', 4"'-ОН	C-2", C-3", C-5"
5'''	3.58-3.50 (m)	68.34	СН	H-4 ^{'''} , H-6 ^{'''}	C-1", C-3", C-4"
6'''	1.19 (d, 6.0)	17.79	CH₃		C-4"', C-5"
5-OH	12.85 (s)	-			C-4, C-7, C-8a
4'-OH	9.45 (s)	-			C-4
2"-OH	5.45 (d, 3.5)	-		H-2"	C-1", C-2", C-3"
3"-OH	5.16 (d, 3.0)	-		H-3"	C-2", C-3", C-4", C-5"
4"-OH	5.17 (d, 5.0)	-		H-4"	C-2", C-3", C-4", C-5"
2‴-ОН	4.54 (d, 4.0)	-		H-2 ^{'''}	C-1", C-2", C-3"
3‴-ОН	4.43 (d, 6.0)	-		H-3 ^{""}	C-1", C-2", C-3", C-4"
4‴-OH	4.64 (d, 5.0)	-		H-4"	C-3", C-4", C-5"

Yaowana	Sukpondn	a
Taumapa	Surpondi	l

Appendix/202

APPENDIX

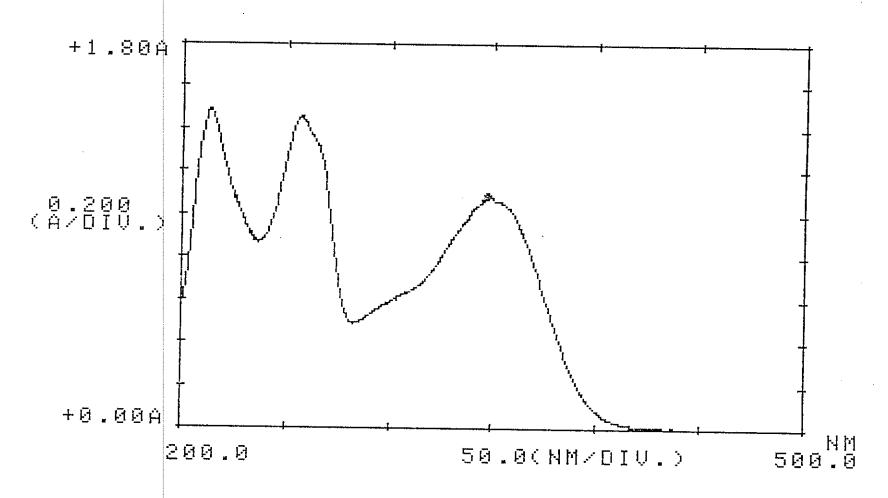


Figure 2 UV (CH₃OH) spectrum of DW1

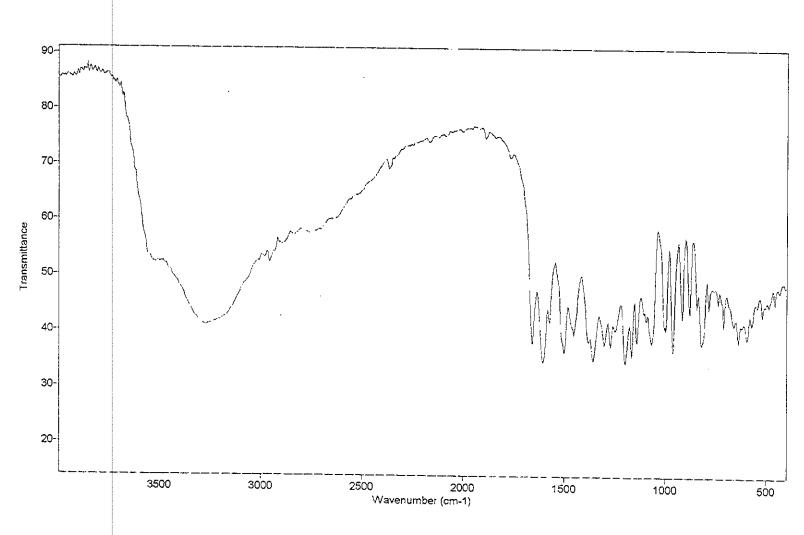


Figure 3 IR (KBr) spectrum of DW1

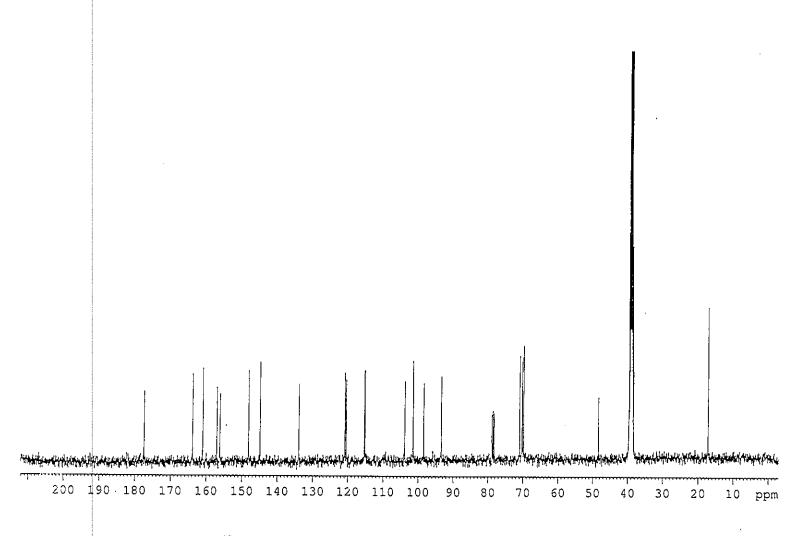


Figure 5 13 C NMR (100 MHz) (CDCl₃ + DMSO- d_6) spectrum of **DW1**

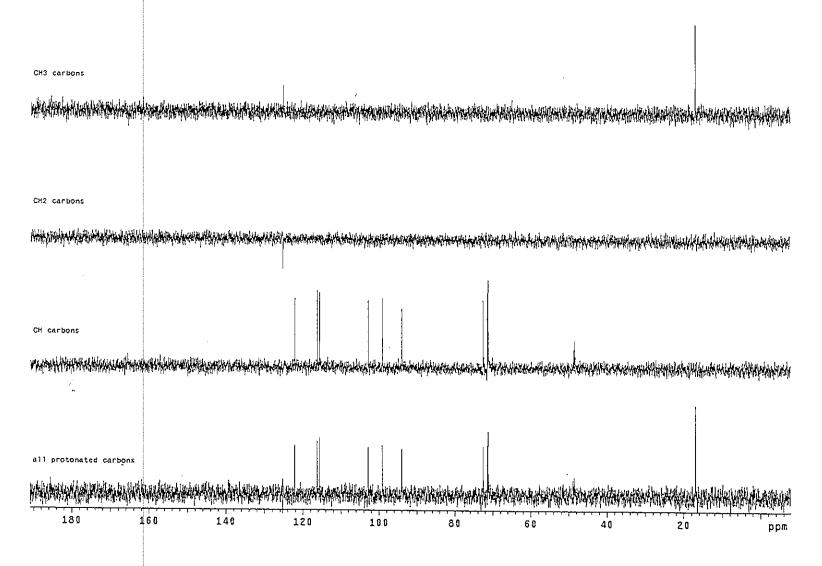


Figure 6 DEPT (135°) (CDCl₃ +DMSO- d_6) spectrum of **DW1**

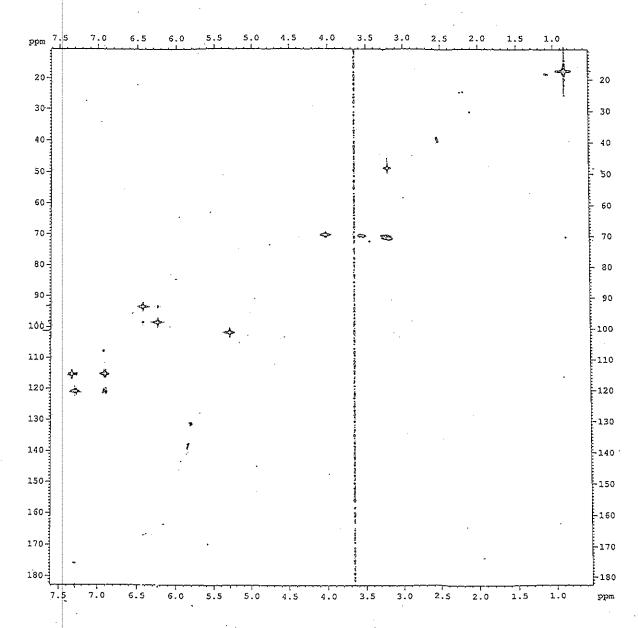


Figure 7 2D HMQC spectrum of DW1

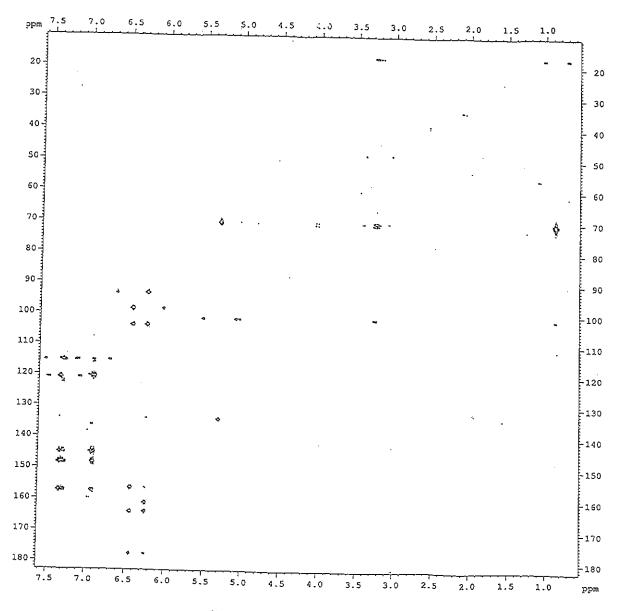


Figure 8 2D HMBC spectrum of DW1

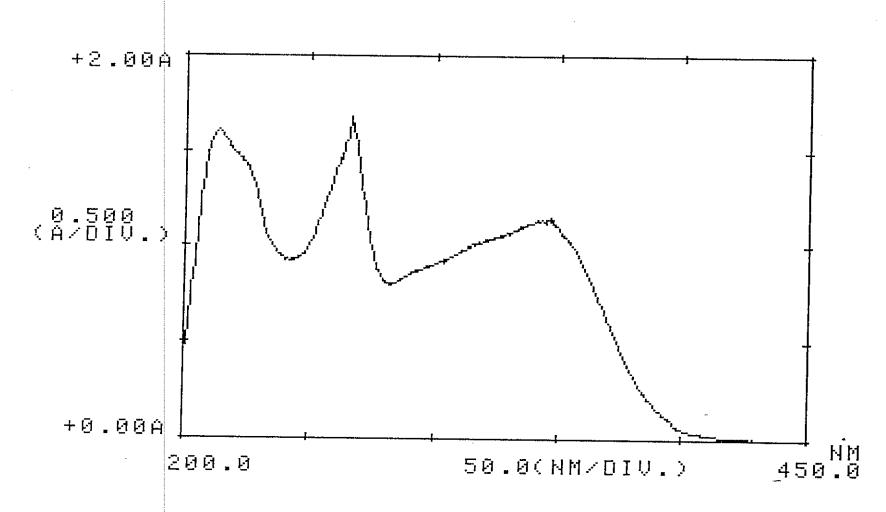


Figure 9 UV (CH₃OH) spectrum of DW2

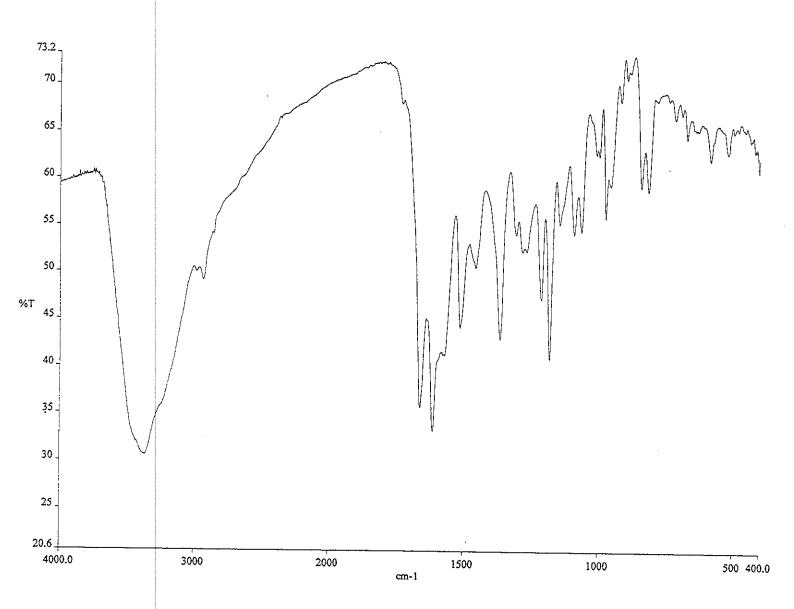


Figure 10 IR (neat) spectrum of DW2

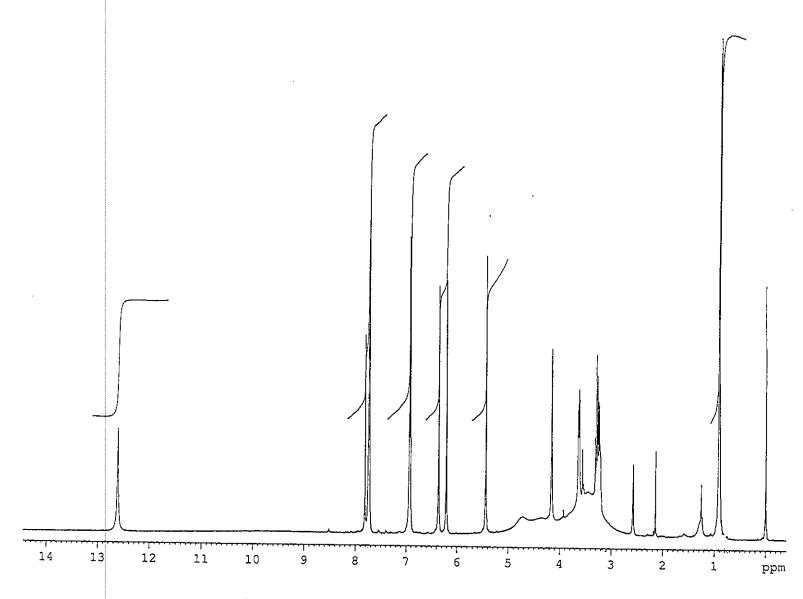


Figure 11 1 H NMR (400 MHz) (CDCl₃ + DMSO- d_6) spectrum of **DW2**

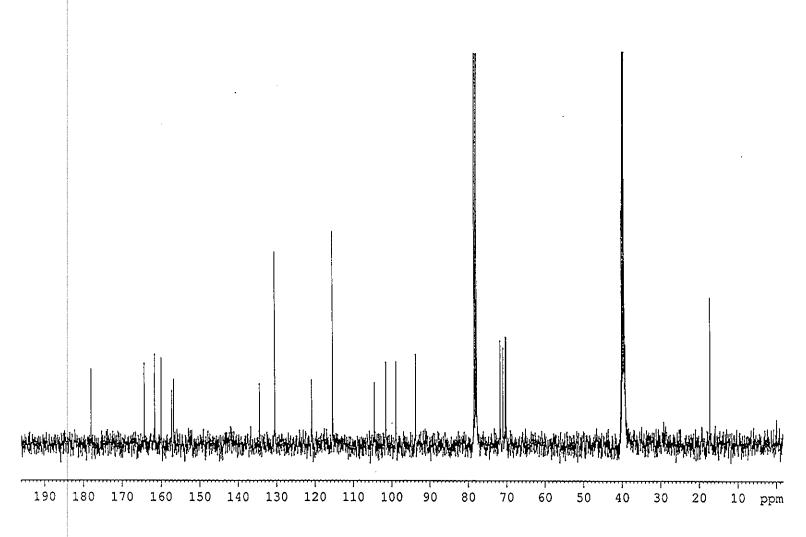


Figure 12 13 C NMR (100 MHz) (CDCl₃ +DMSO- d_6) spectrum of **DW2**

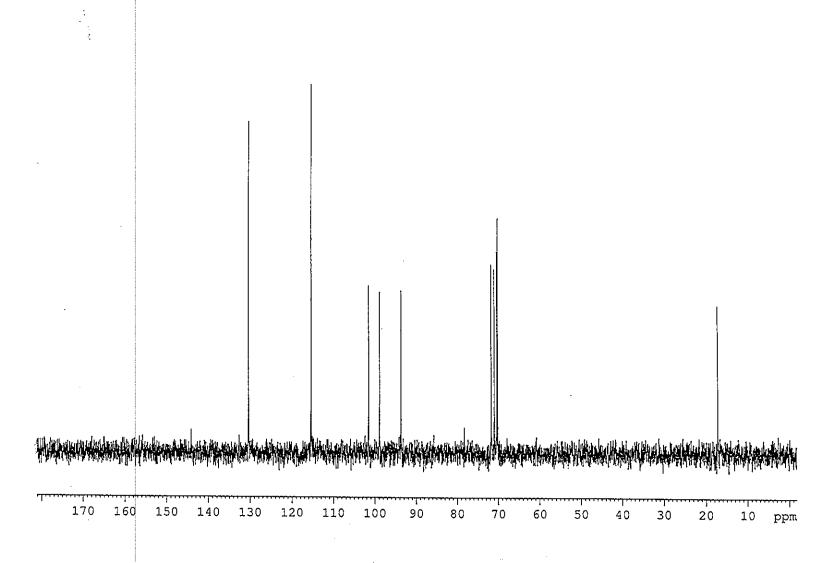


Figure 13 DEPT (135°) (CDCl₃ +DMSO- d_6) spectrum of **DW2**

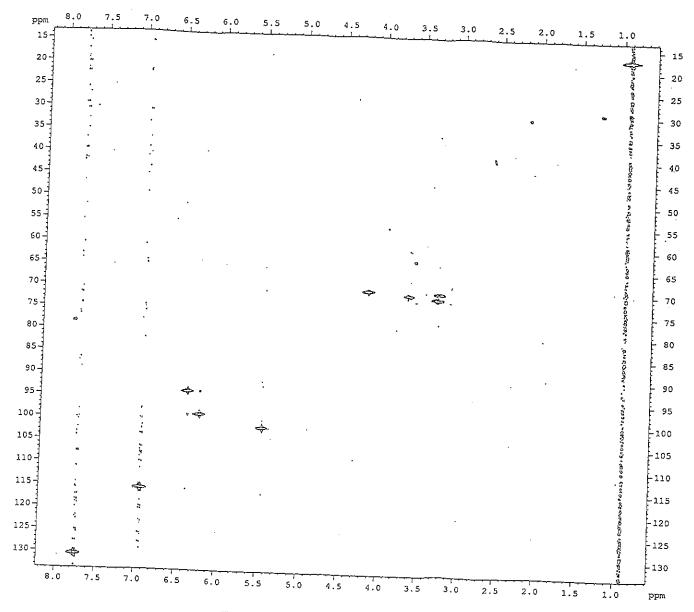
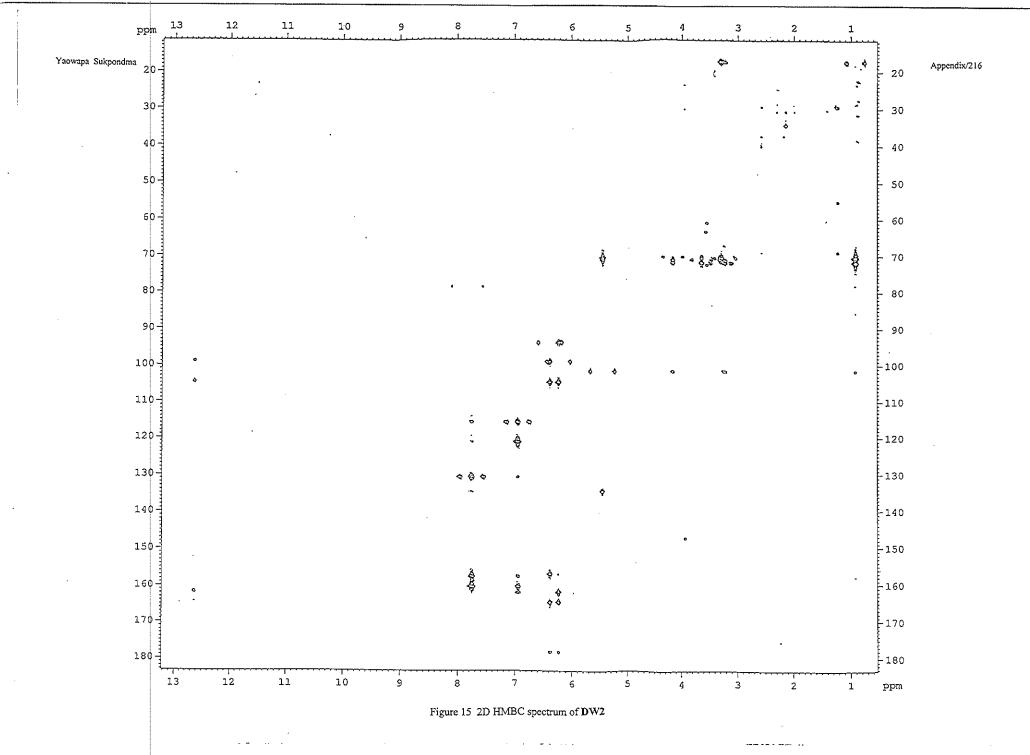



Figure 14 2D HMQC spectrum of DW2



Figure 16 UV (CH₃OH) spectrum of DW3

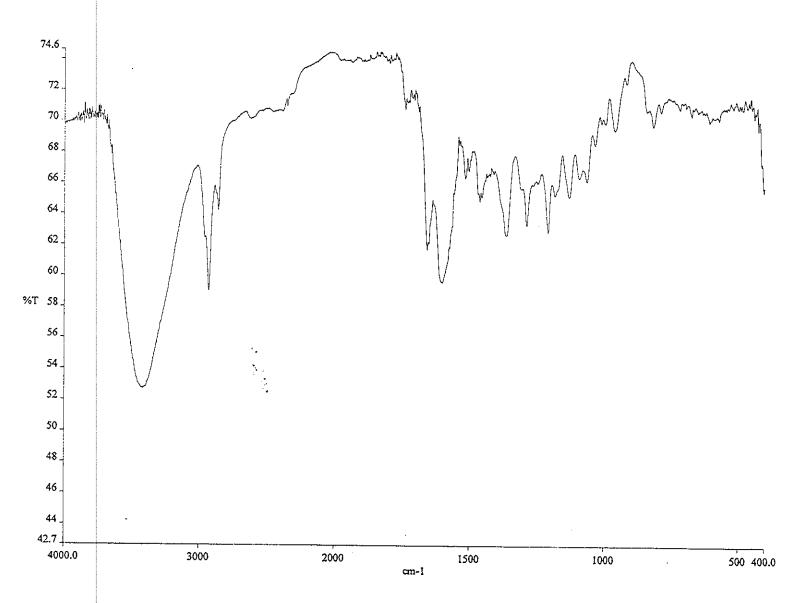


Figure 17 IR (neat) spectrum of DW3

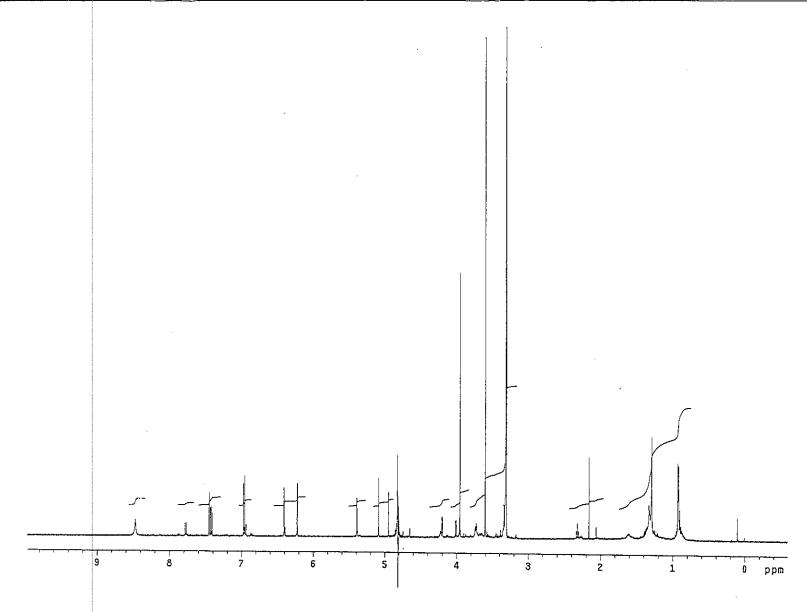


Figure 18 1 H NMR (500 MHz) (CD₃OD) spectrum of **DW3**

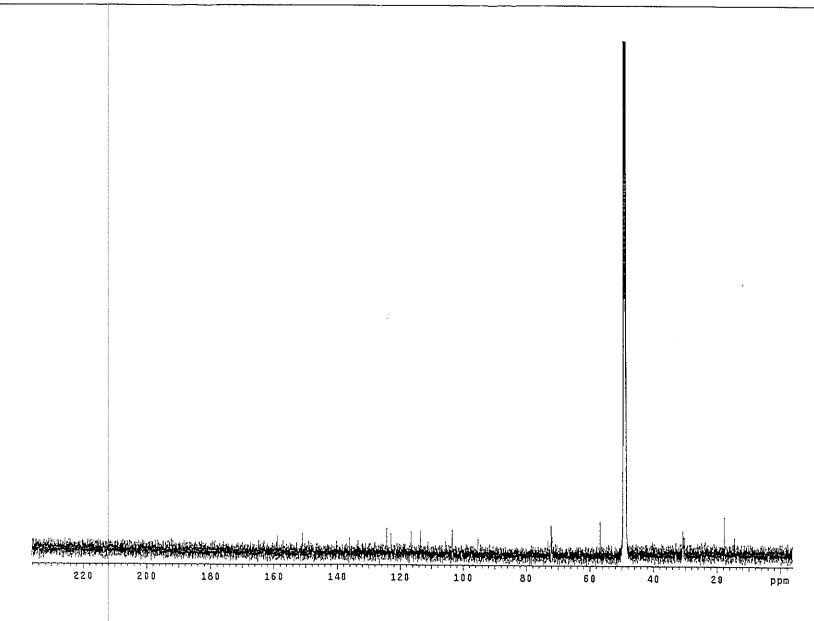


Figure 19 13 C NMR (125 MHz) (CD₃OD) spectrum of **DW3**

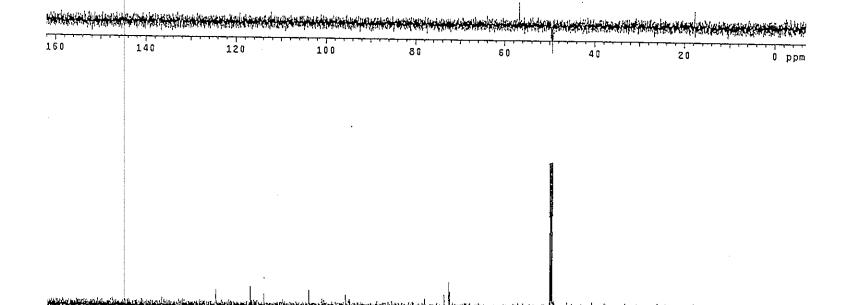


Figure 20 DEPT (135°) (CD₃OD) spectrum of DW3

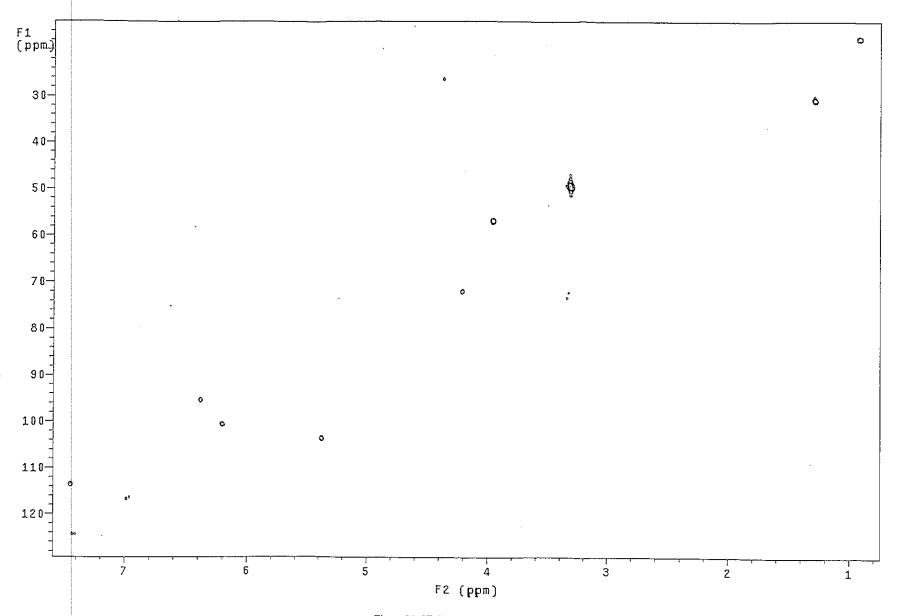


Figure 21 2D HMQC spectrum of DW3

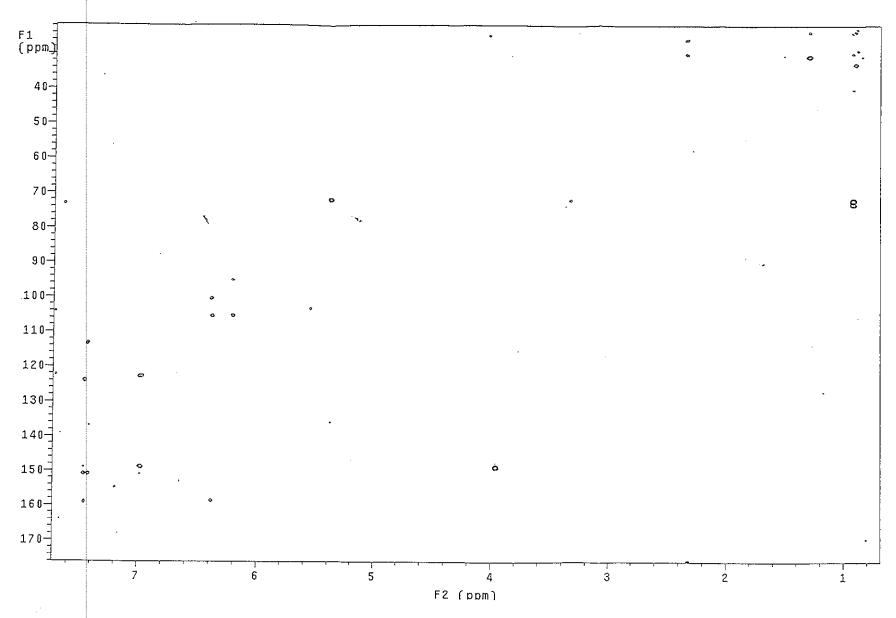


Figure 22 2D HMBC spectrum of DW3

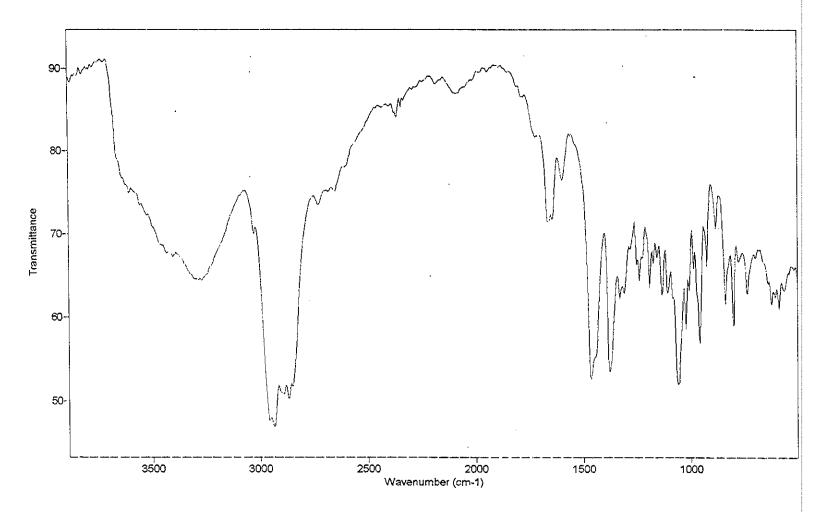


Figure 23 IR (KBr) spectrum of DT1

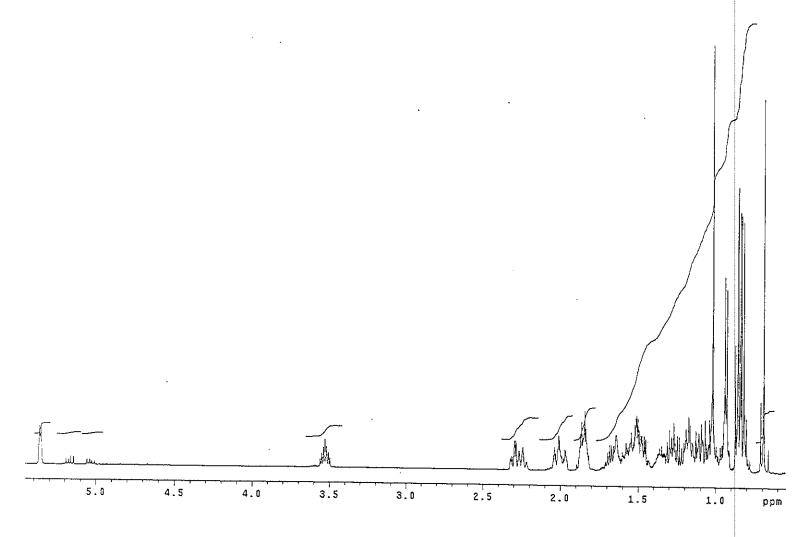


Figure 24 ¹H NMR (500 MHz) (CDCl₃) spectrum of **DT1**

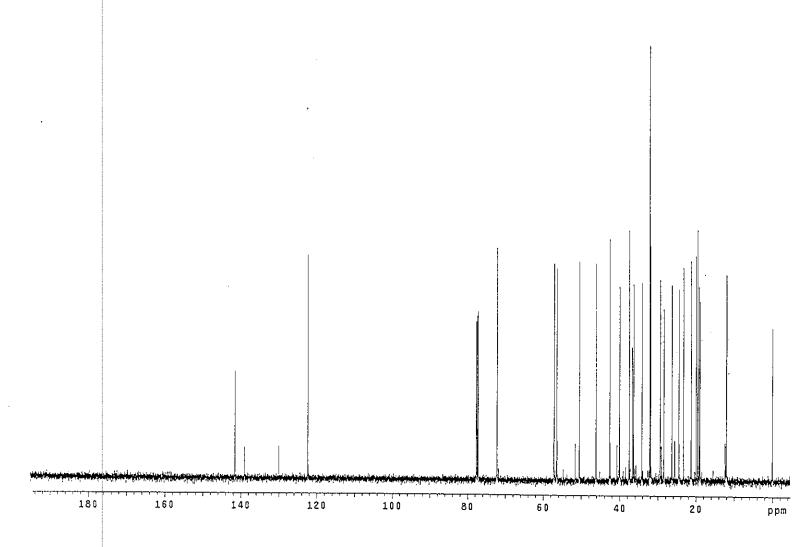


Figure 25 ¹³C NMR (125 MHz) (CDCl₃) spectrum of DT1

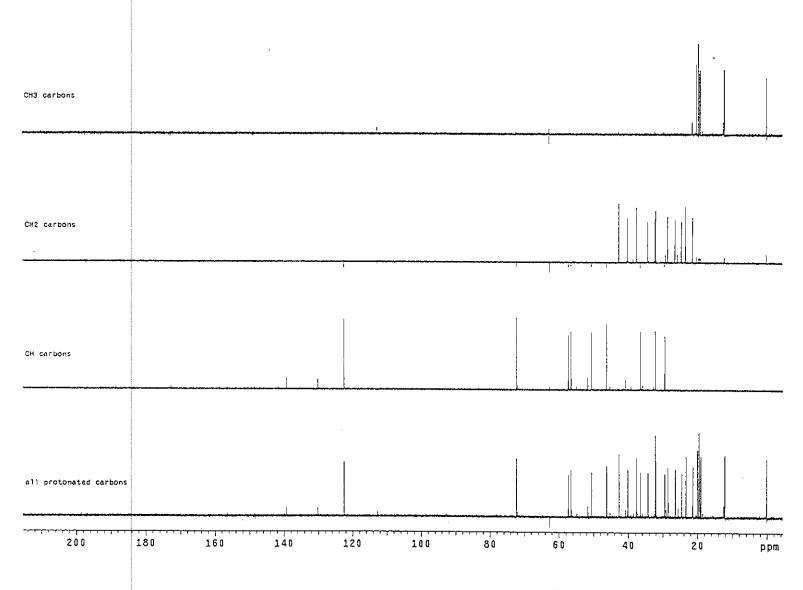


Figure 26 DEPT (135°) (CDCl₃) spectrum of DT1

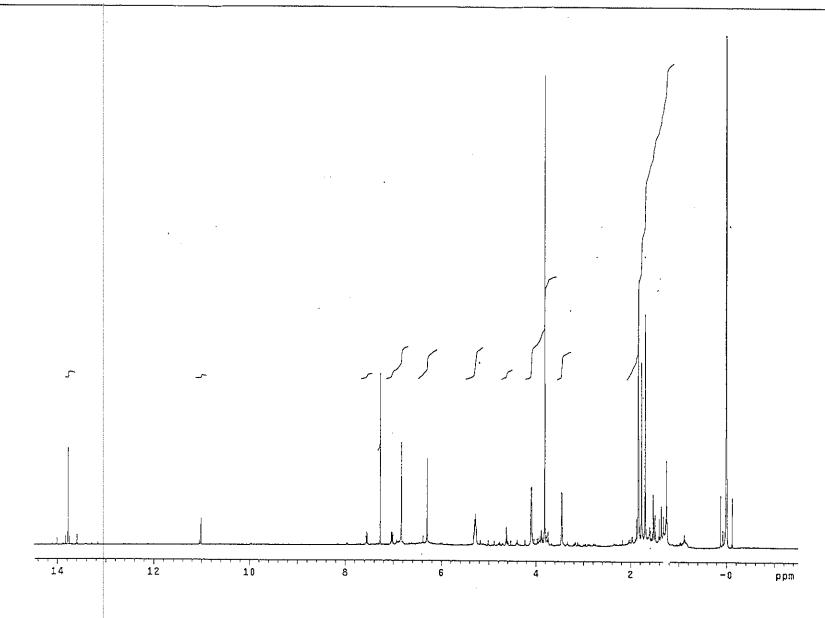


Figure 27 ¹H NMR (500 MHz) (CDCl₃) spectrum of **DT2**

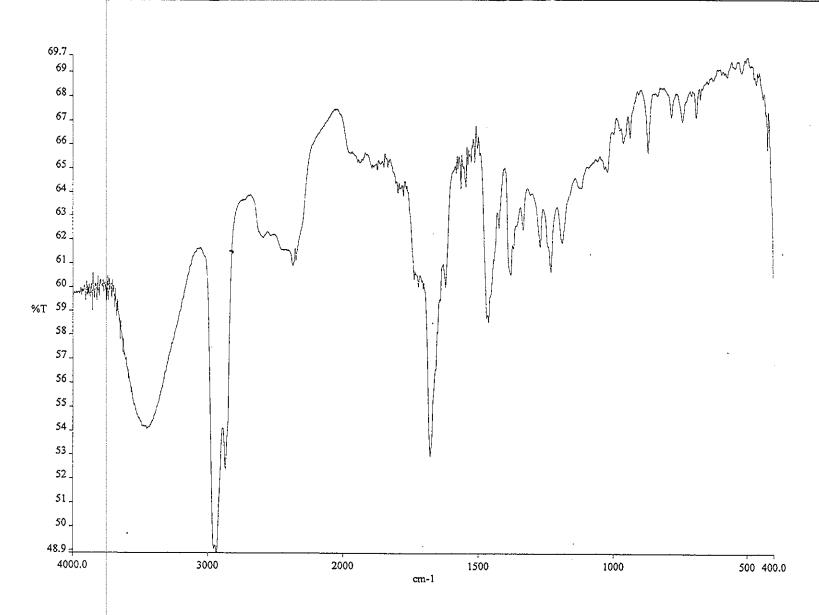


Figure 28 IR (KBr) spectrum of DT3

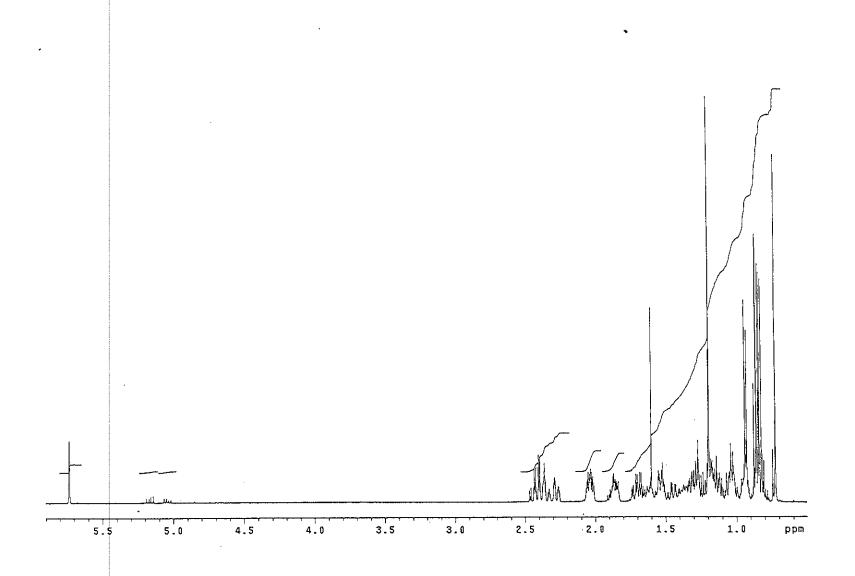


Figure 29 ¹H NMR (500 MHz) (CDCl₃) spectrum of **DT3**

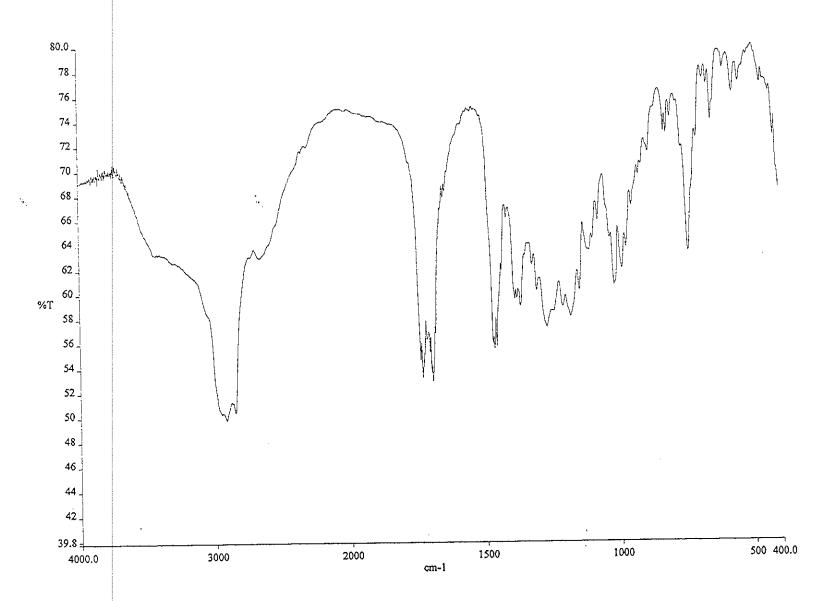


Figure 30 IR (neat) spectrum of DT4

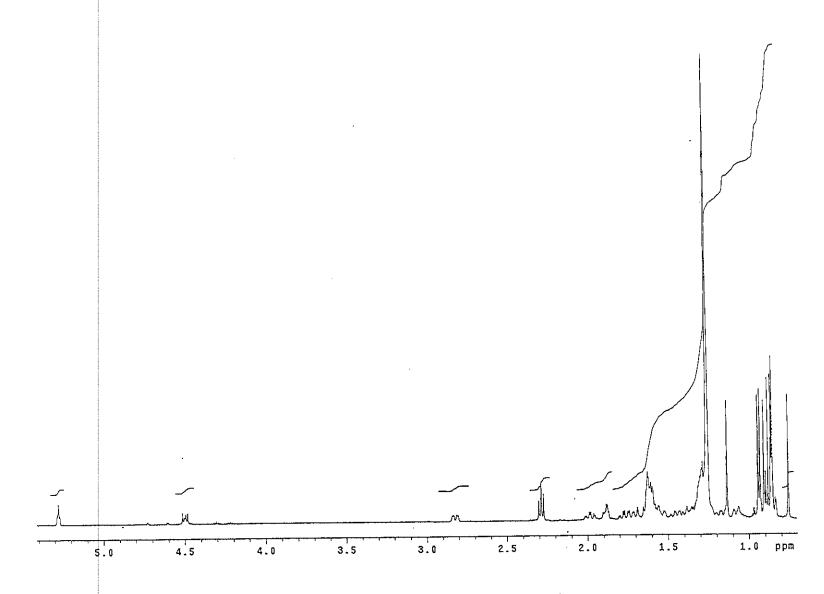


Figure 31 ¹H NMR (500 MHz) (CDCl₃) spectrum of **DT**4

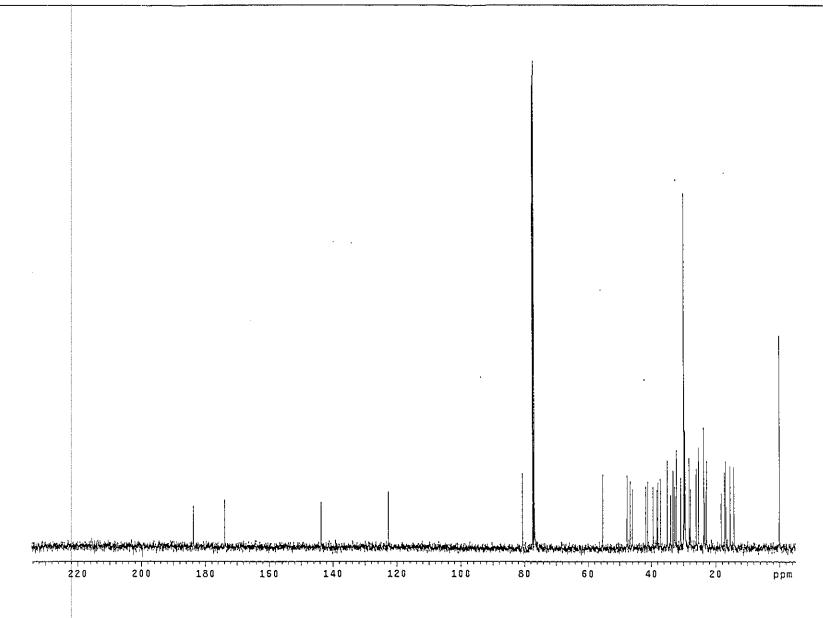


Figure 32 ¹³C NMR (125 MHz) (CDCl₃) spectrum of **DT4**

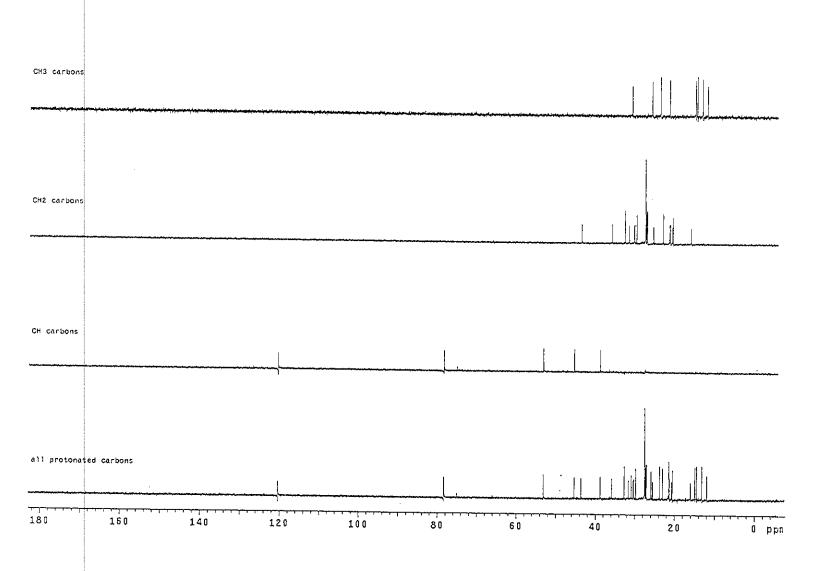


Figure 33 DEPT (135°) (CDCl₃) spectrum of DT4

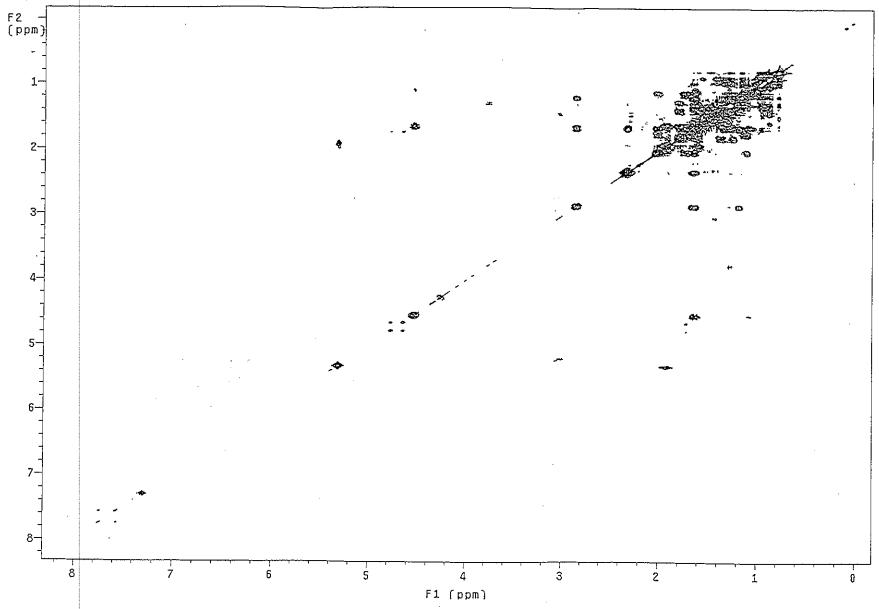


Figure 34 ¹H-¹H COSY spectrum of **DT4**

...

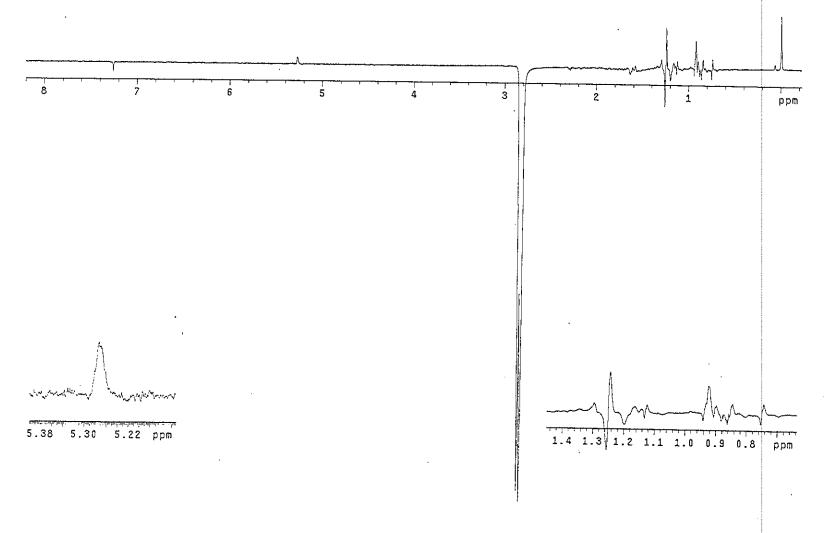


Figure 35 NOEDIFF spectrum of **DT4** after irradiation at $\delta_{\rm H}$ 2.82

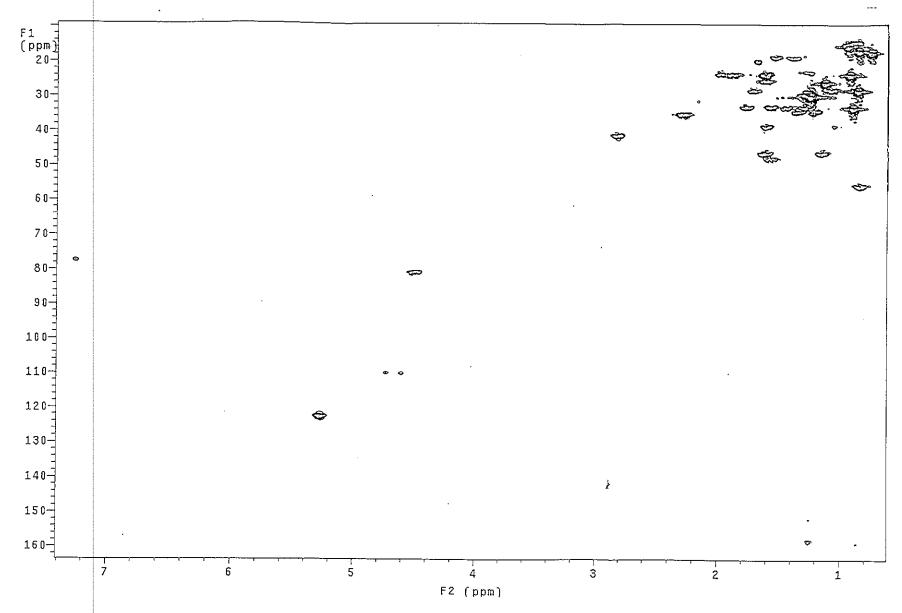
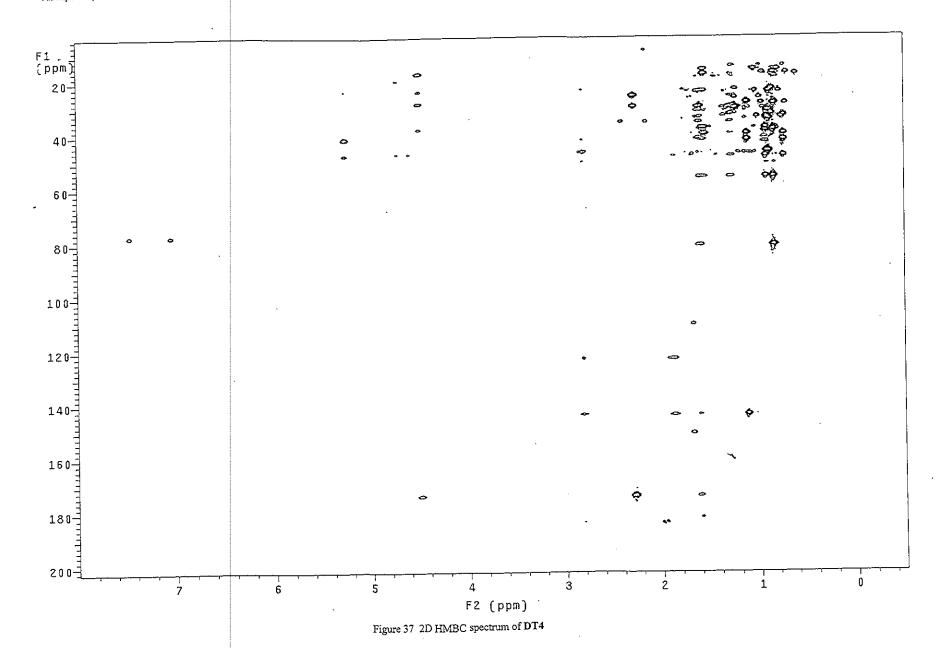



Figure 36 2D HMQC spectrum of DT4

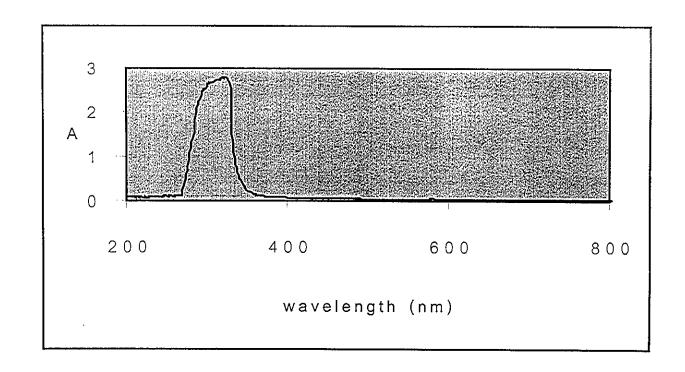


Figure 38 UV (CHCl $_3$) spectrum of DT5

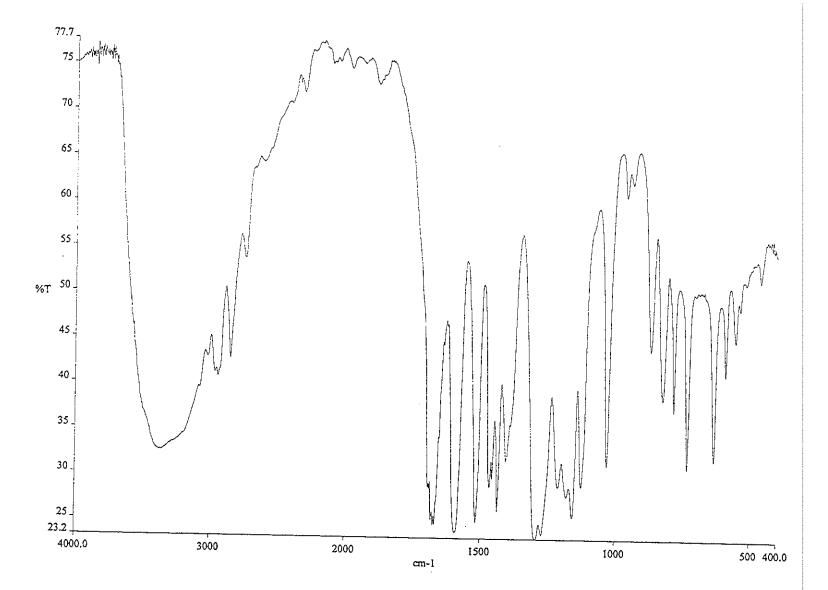


Figure 39 IR (neat) spectrum of DT5



Figure 40 ¹H NMR (500 MHz) (CDCl₃) spectrum of **DT5**

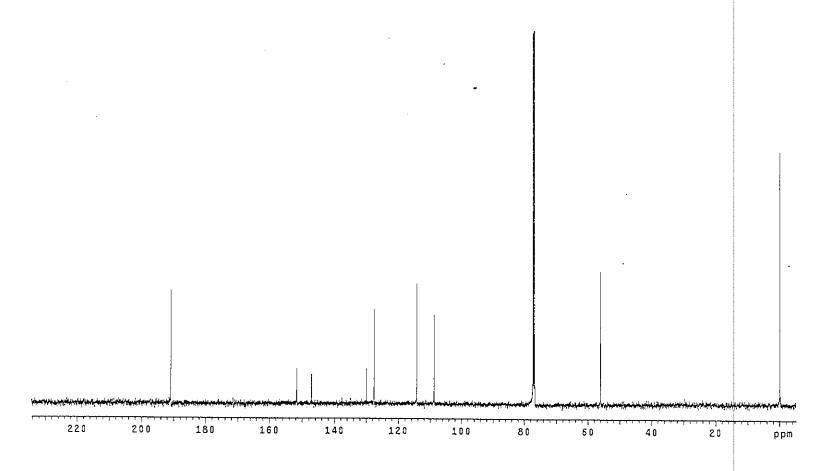


Figure 41 ¹³C NMR (125 MHz) (CDCl₃) spectrum of **DT5**

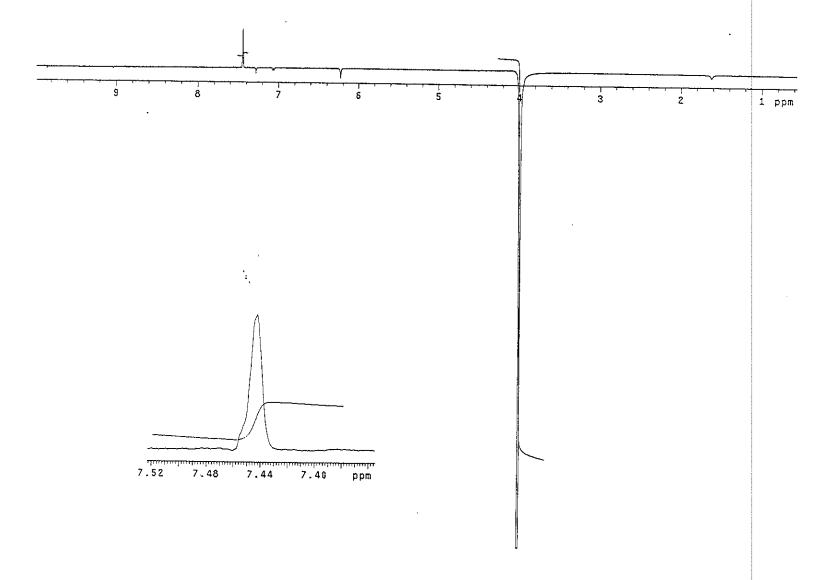


Figure 42 NOEDIFF spectrum of **DT5** after irradiation at $\delta_{\rm H}$ 3.96

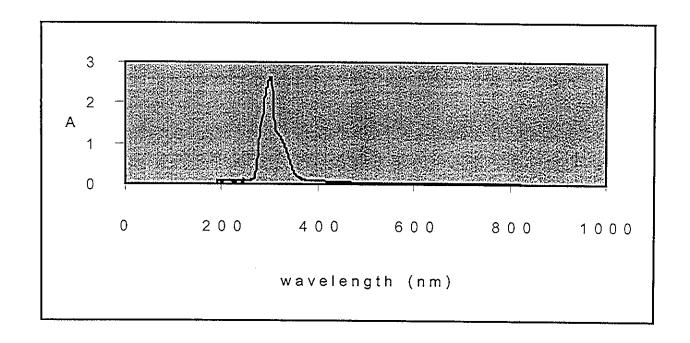


Figure 43 UV (CHCl₃) spectrum of DT6

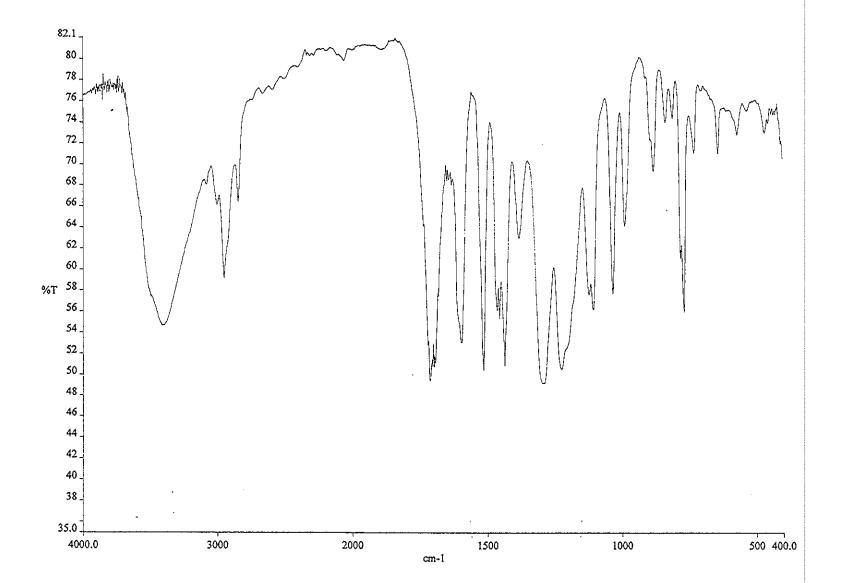


Figure 44 IR (neat) spectrum of DT6

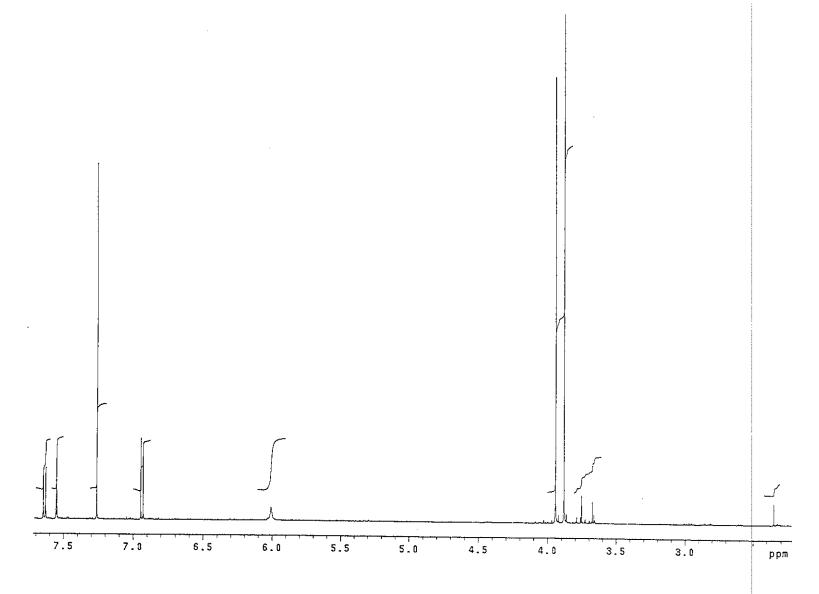


Figure 45 ¹H NMR (500 MHz) (CDCl₃) spectrum of **DT6**

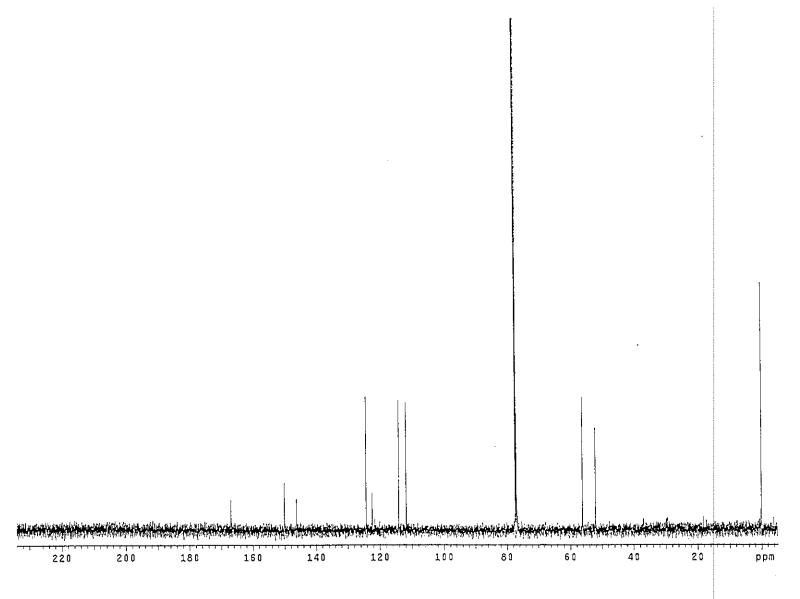


Figure 46 13 C NMR (125 MHz) (CDCl₃) spectrum of **DT6**

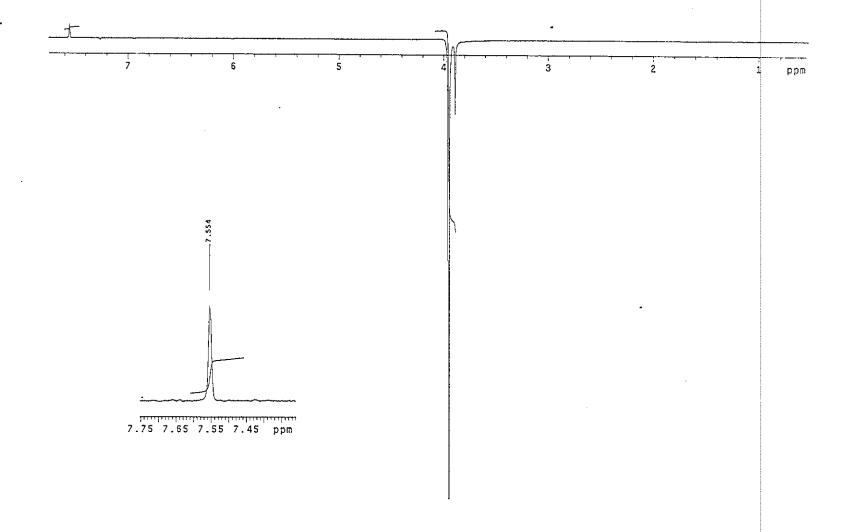


Figure 47 NOEDIFF spectrum of **DT6** after irradiation at $\delta_{\rm H}$ 3.94

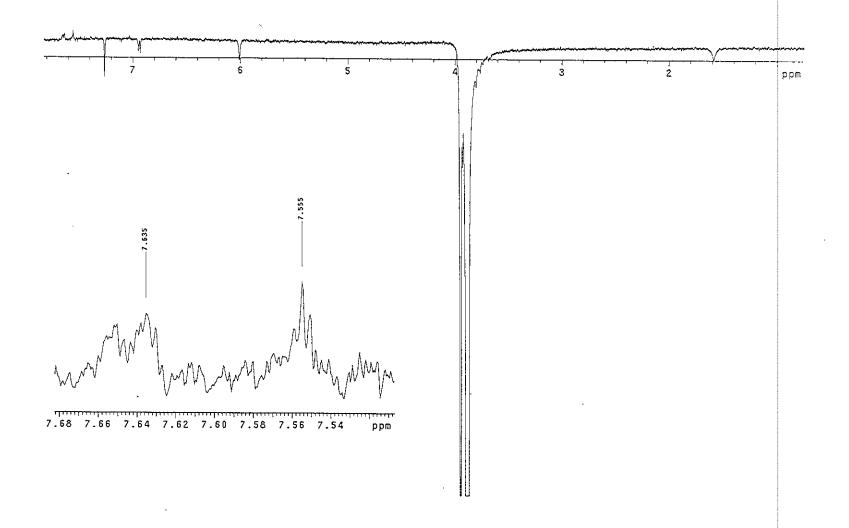


Figure 48 NOEDIFF spectrum of **DT6** after irradiation at $\delta_{\rm H}$ 3.88

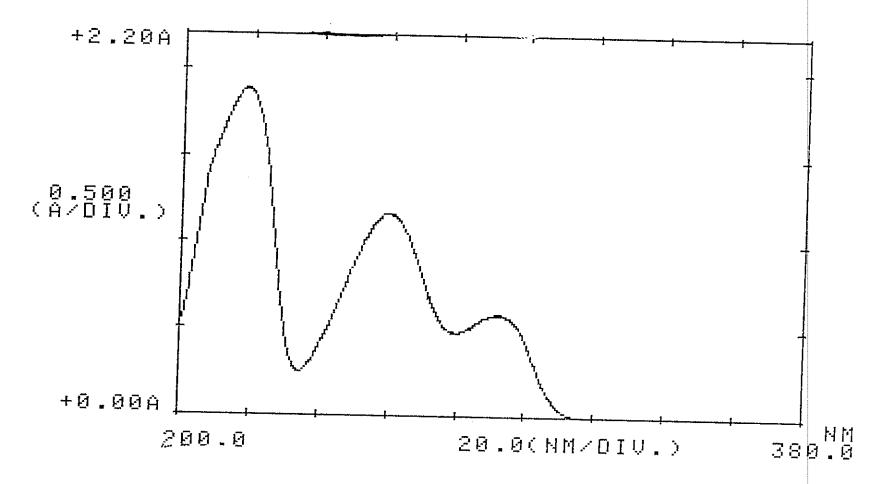


Figure 50 UV (CH $_3$ OH) spectrum of YS9

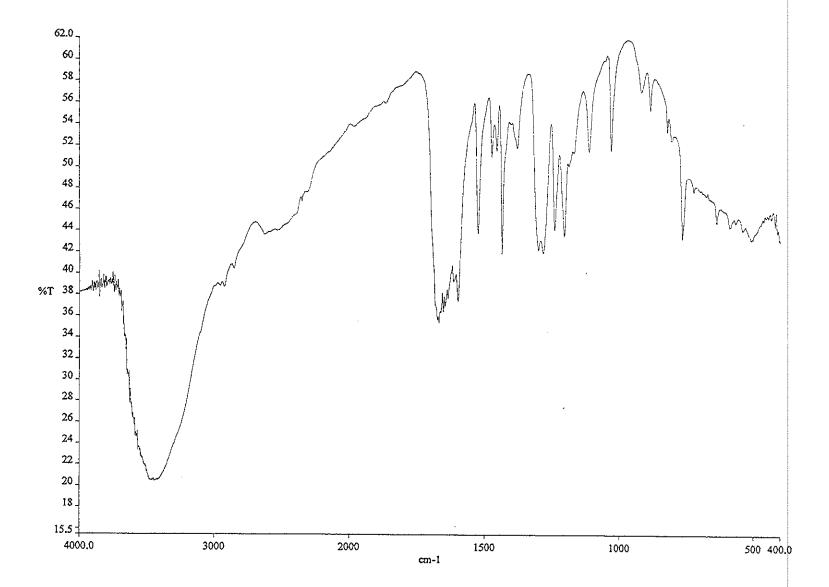


Figure 51 IR (neat) spectrum of YS9

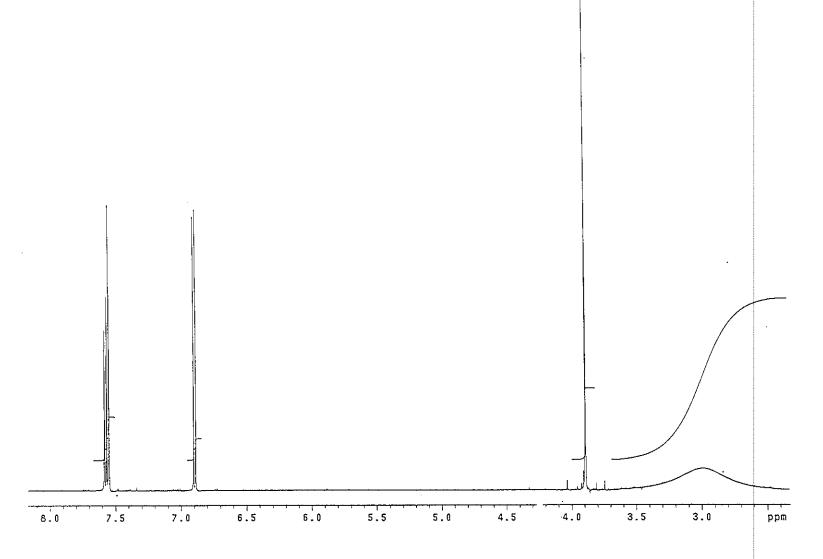


Figure 52 ¹H NMR (500 MHz) (CD₃COCD₃) spectrum of **YS9**

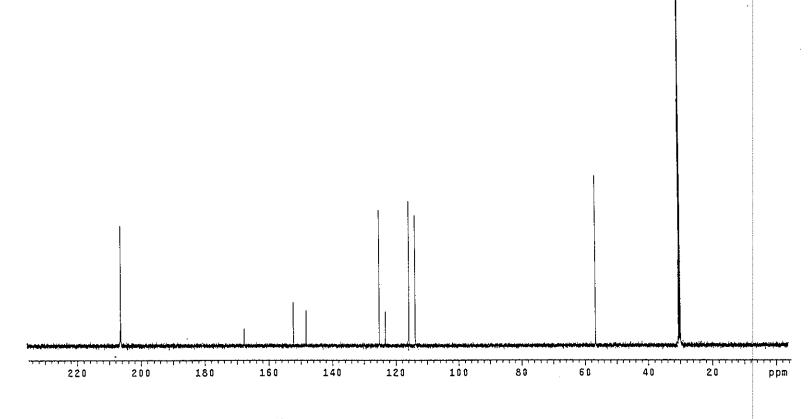


Figure 53 ¹³C NMR (125 MHz) (CD₃COCD₃) spectrum of YS9

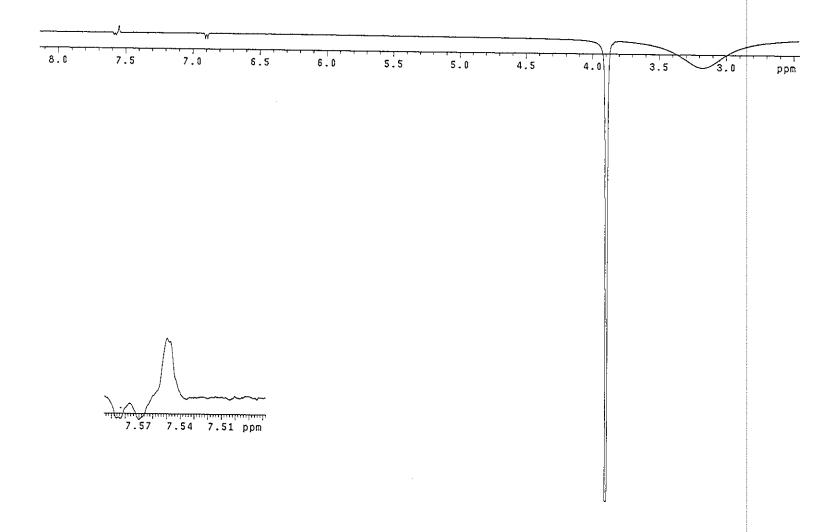


Figure 54 NOEDIFF spectrum of **YS9** after irradiation at δ_H 3.90

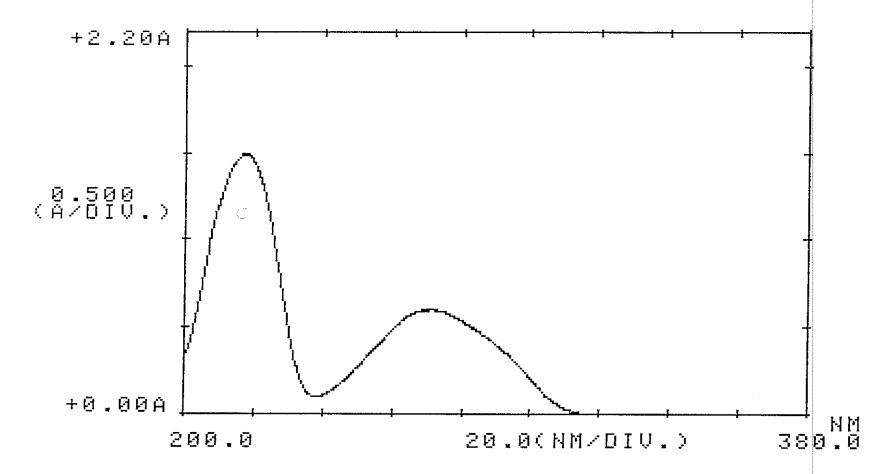


Figure 55 UV (CH₃OH) spectrum of YS12

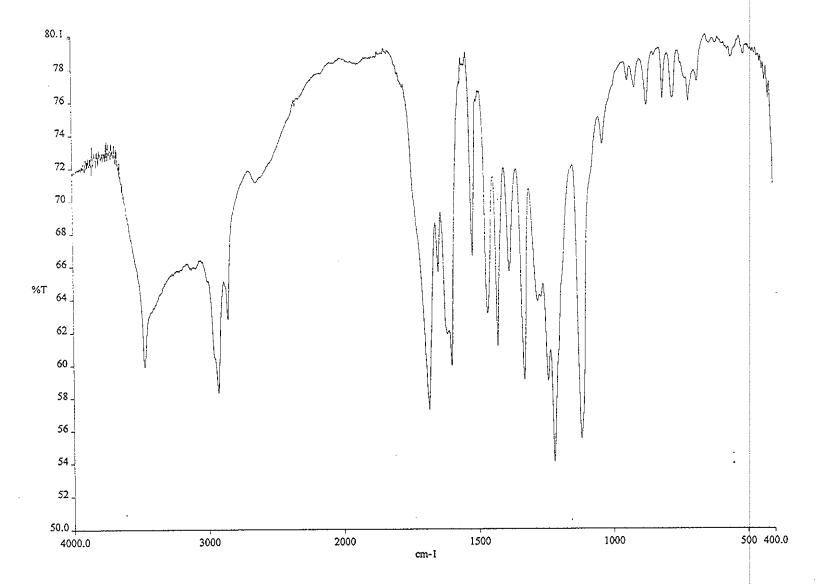


Figure 56 IR (neat) spectrum of YS12

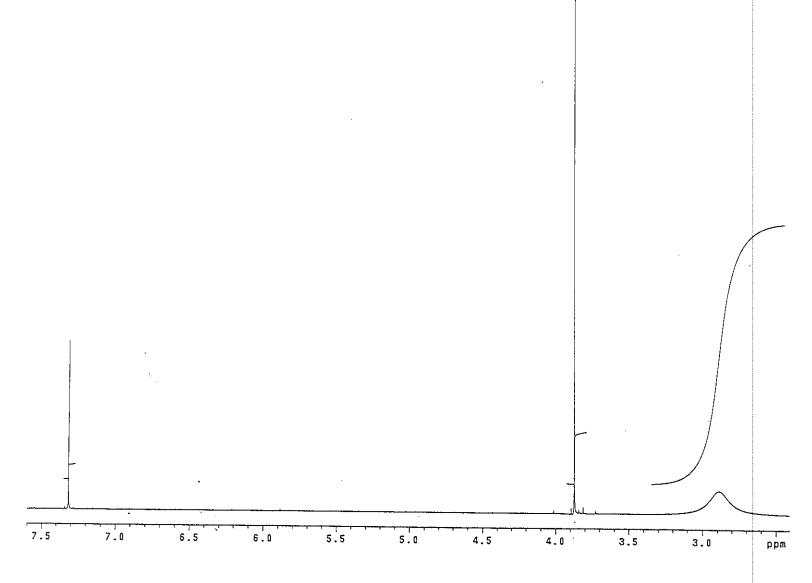


Figure 57 1 H NMR (500 MHz) (CD₃COCD₃) spectrum of **YS12**

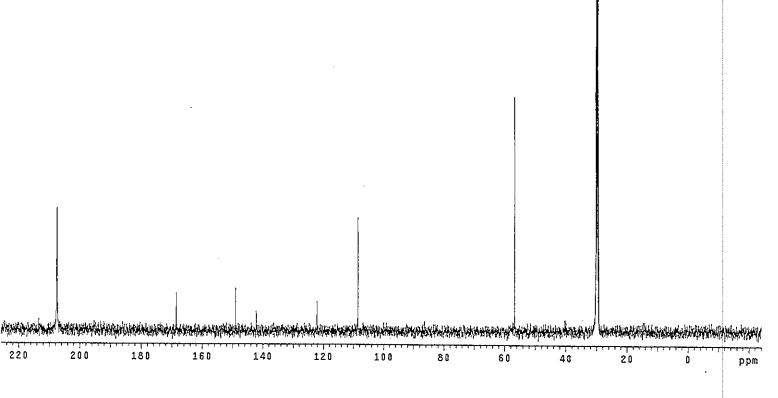


Figure 58 ¹³C NMR (125 MHz) (CD₃COCD₃) spectrum of **YS12**

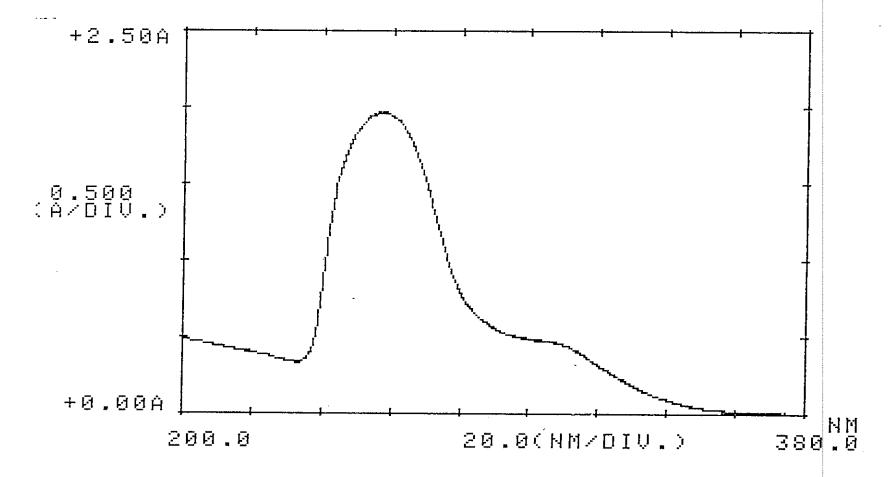


Figure 59 UV (CHCl₃) spectrum of AcYS15

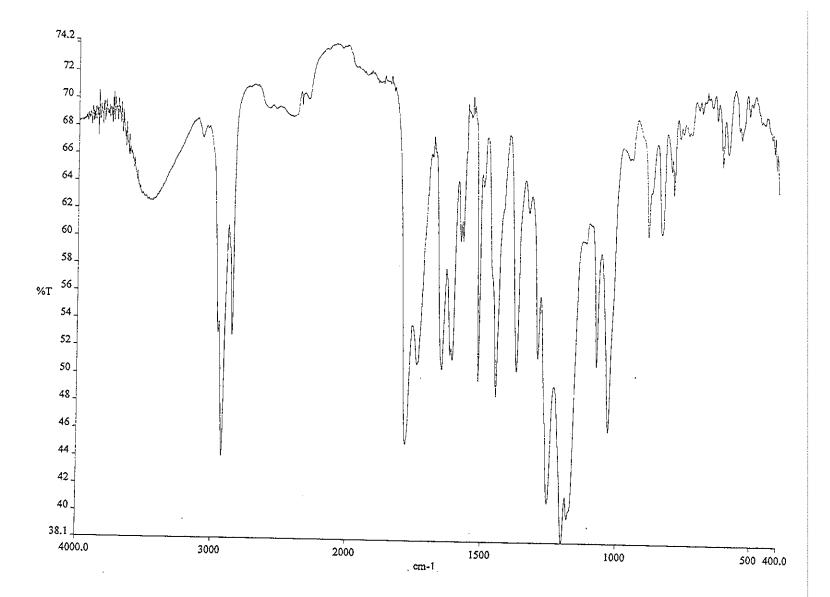


Figure 60 IR (neat) spectrum of AcYS15

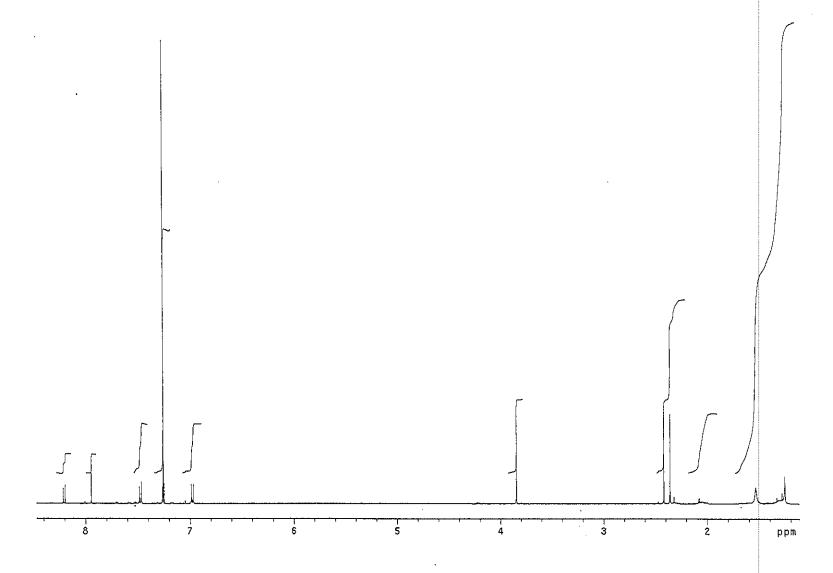


Figure 61 ¹H NMR (500 MHz) (CDCl₃) spectrum of **AcYS15**

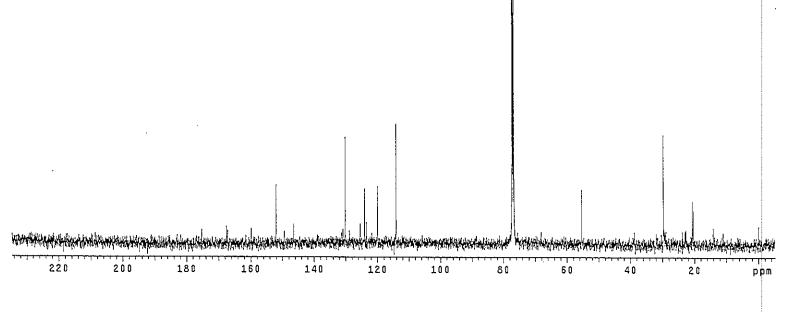


Figure 62 ¹³C NMR (125 MHz) (CDCl₃) spectrum of AcYS15

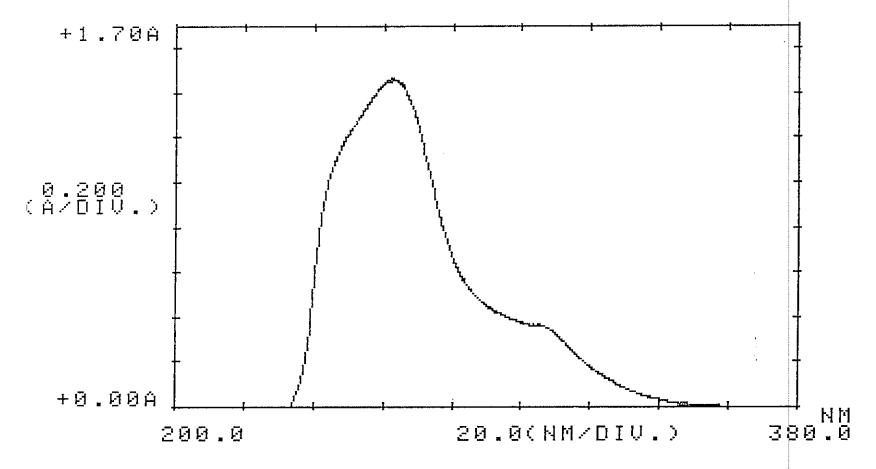


Figure 63 UV (CHCl₃) spectrum of AcYS13

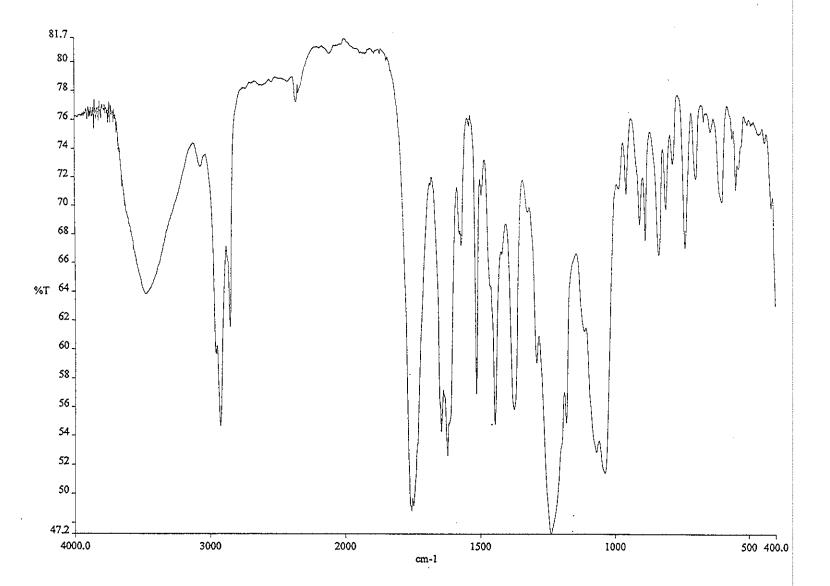


Figure 64 IR (neat) spectrum of AcYS13

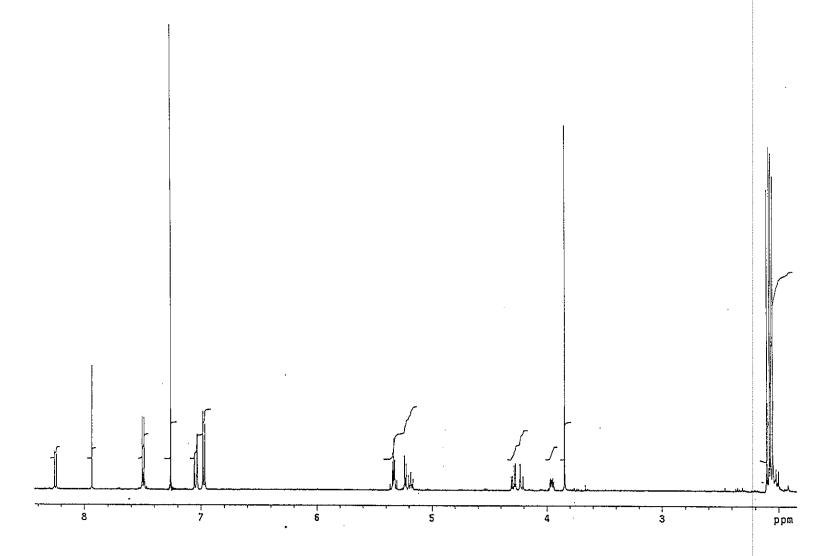


Figure 65 1 H NMR (500 MHz) (CDCl₃) spectrum of AcYS13

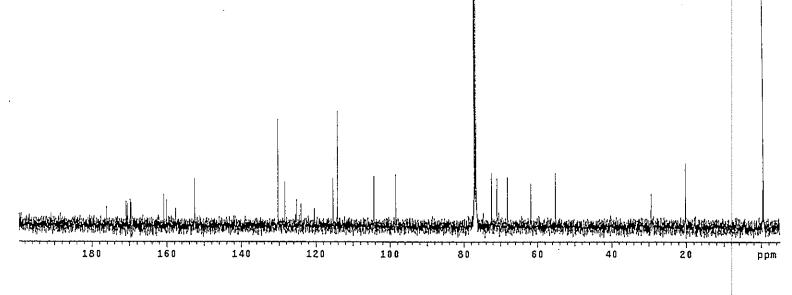


Figure 66 ¹³C NMR (125 MHz) (CDCl₃) spectrum of AcYS13

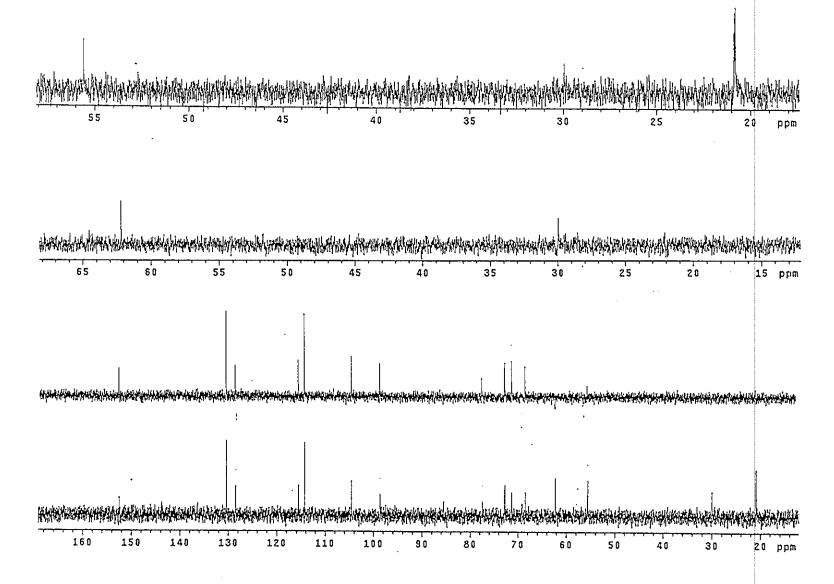


Figure 67 DEPT (135°) (CDCl₃) spectrum of AcYS13

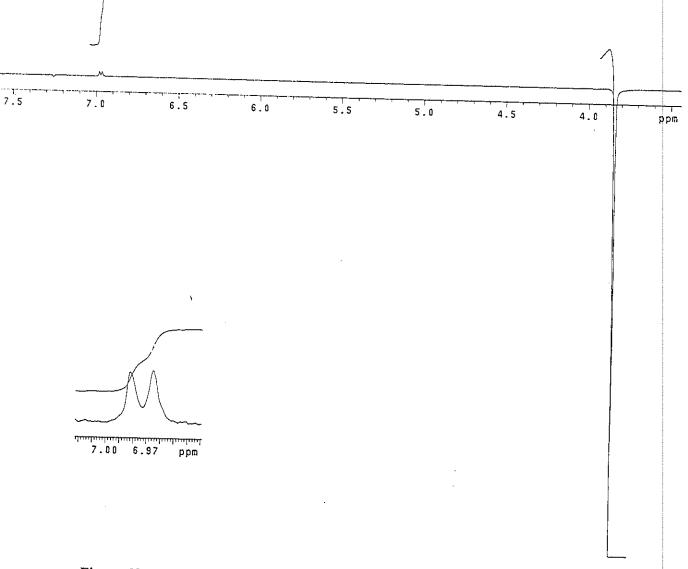


Figure 68 NOEDIFF spectrum of AcYS13 after irradiation at $\delta_{\rm H}$ 3.85

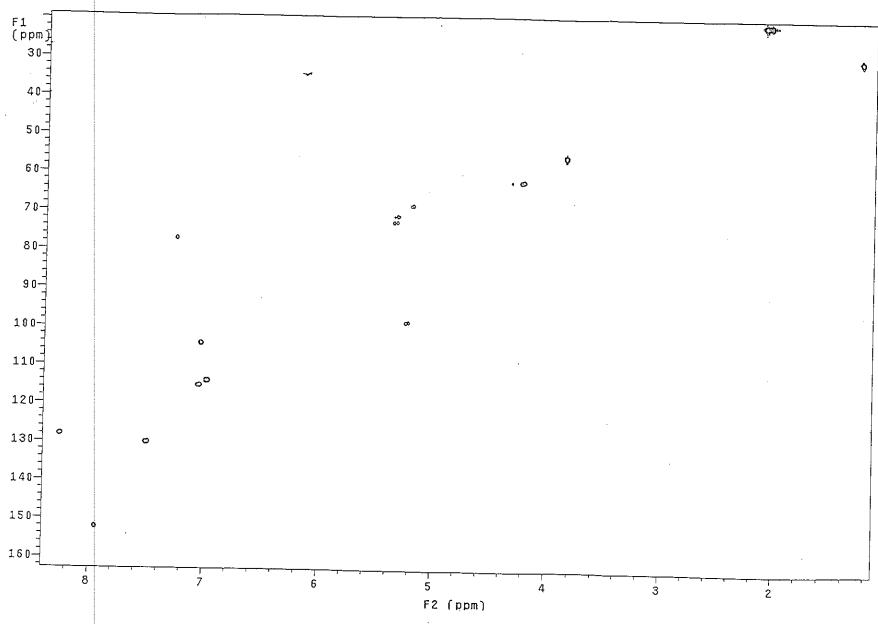


Figure 69 2D HMQC spectrum of AcYS13

. .

...

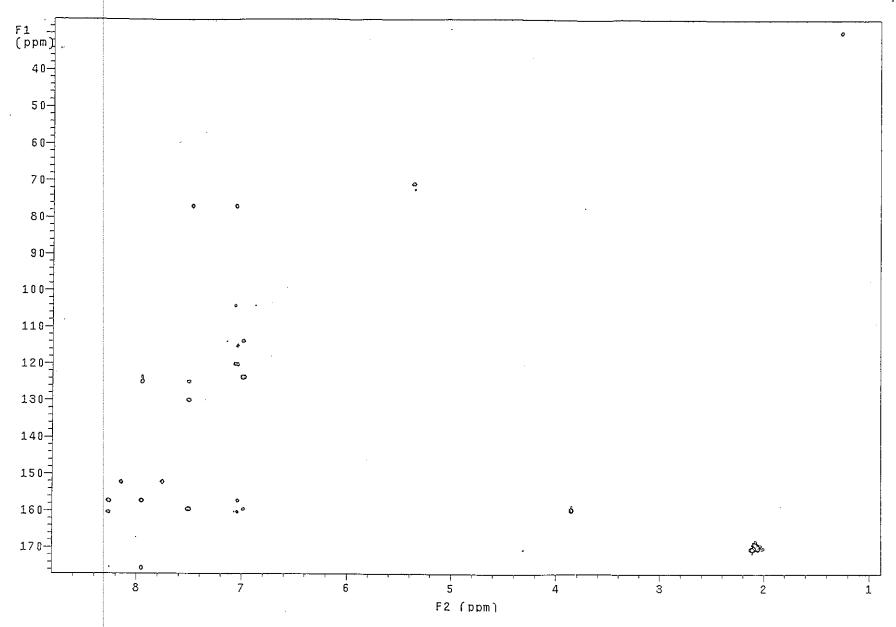


Figure 70 2D HMBC spectrum of AcYS13

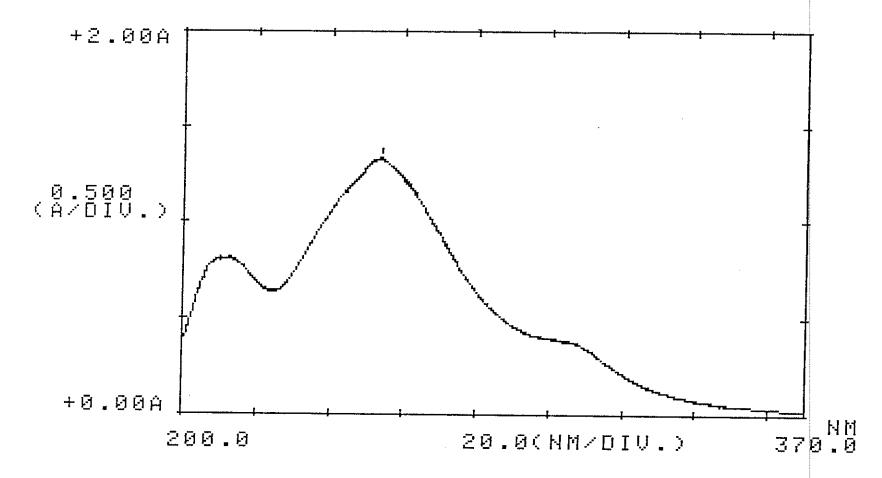


Figure 71 UV (CHCl₃) spectrum of AcYS8

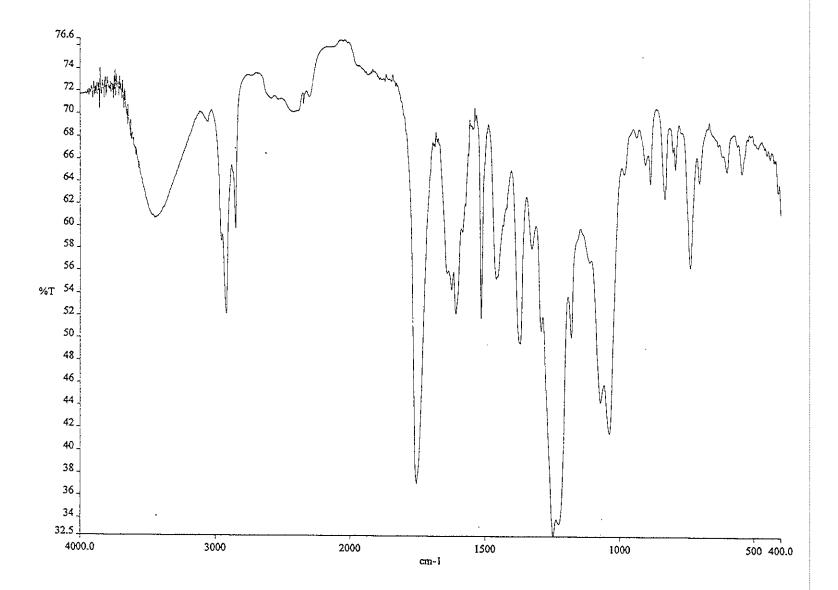


Figure 72 IR (neat) spectrum of AcYS8

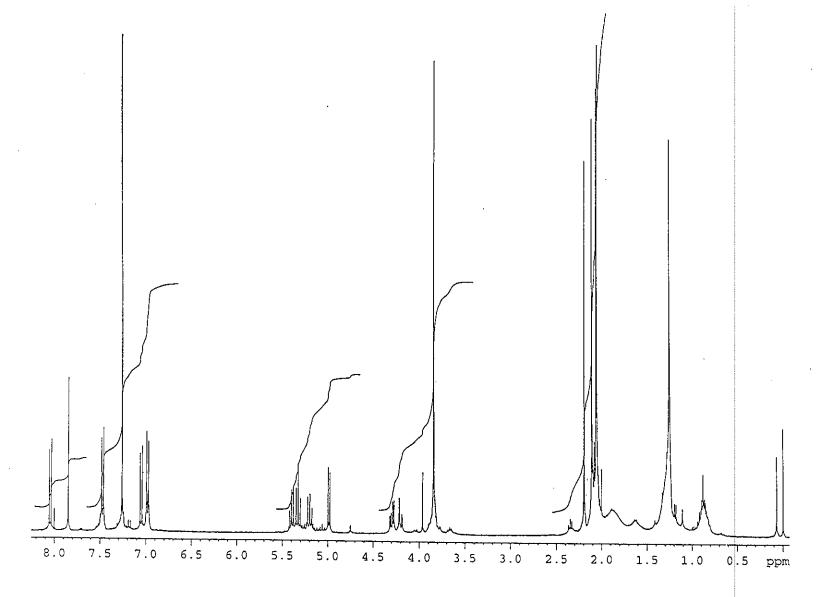


Figure 73 ¹H NMR (400 MHz) (CDCl₃) spectrum of AcYS8

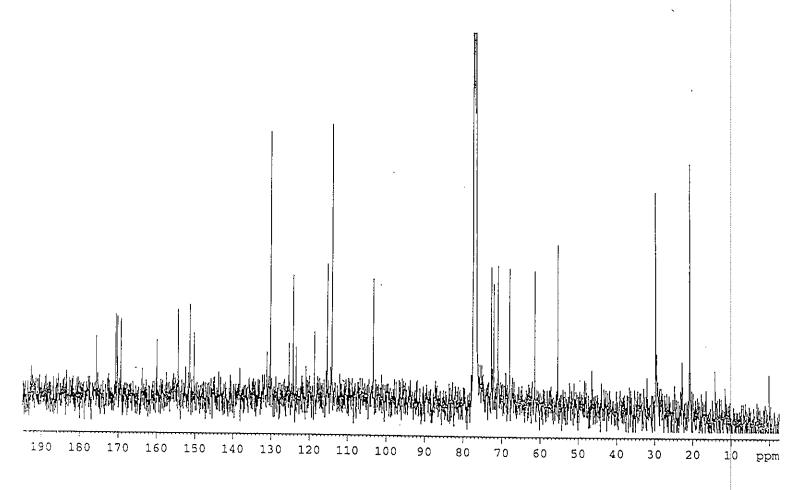


Figure 74 ¹³C NMR (100 MHz) (CDCl₃) spectrum of AcYS8

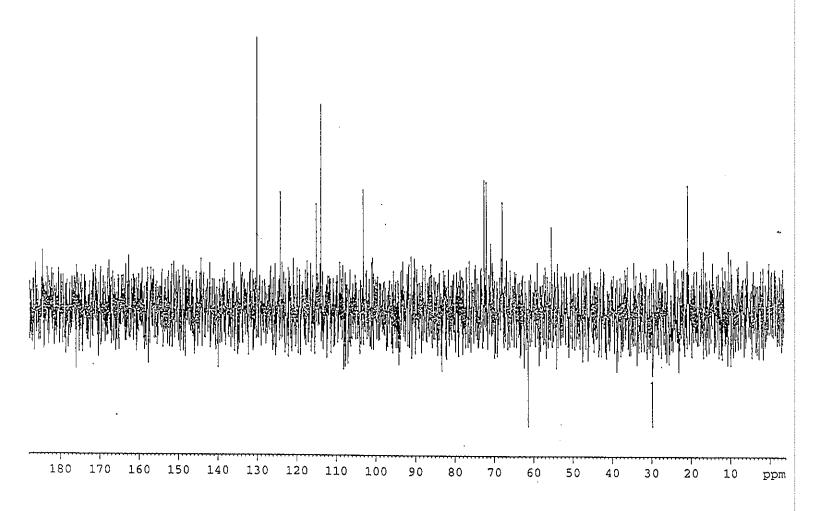


Figure 75 DEPT (135°) (CDCl₃) spectrum of AcYS8

Yaowapa Sukpondma

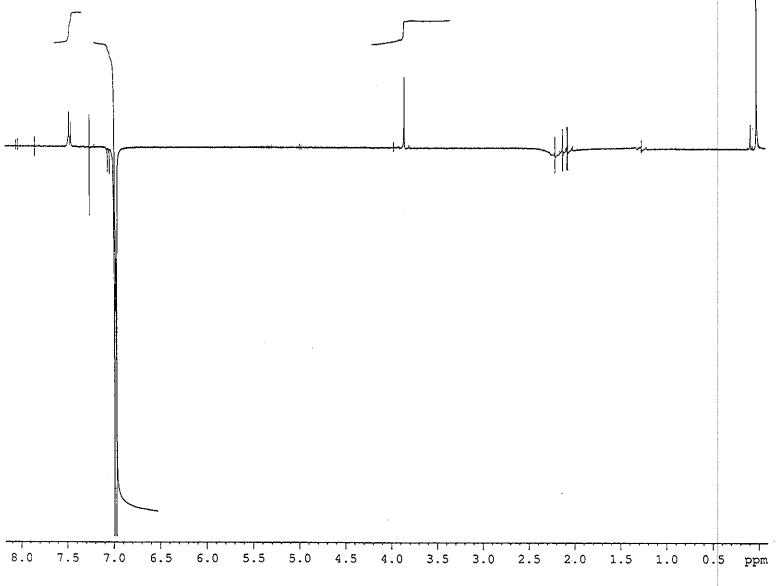
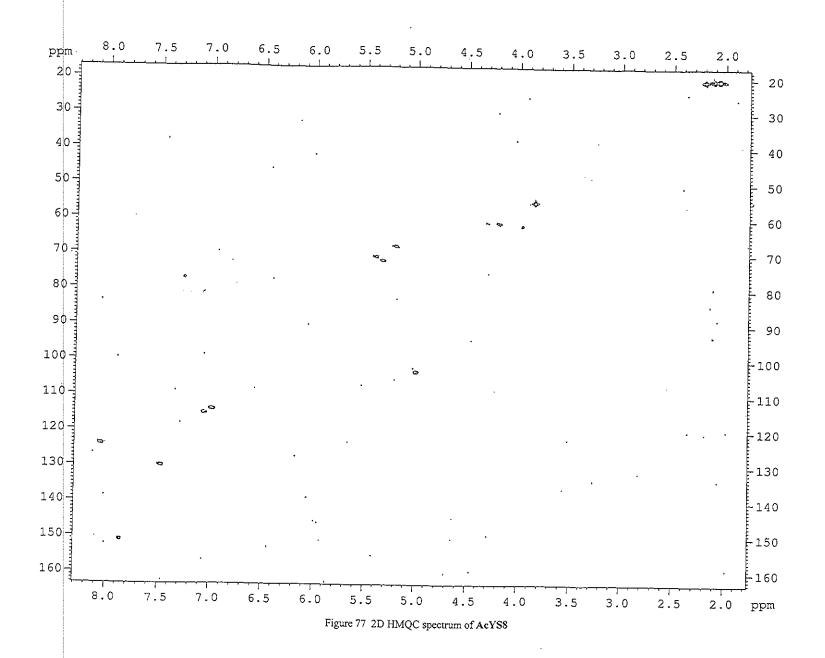



Figure 76 NOEDIFF spectrum of **AcYS8** after irradiation at $\delta_{\rm H}$ 6.98

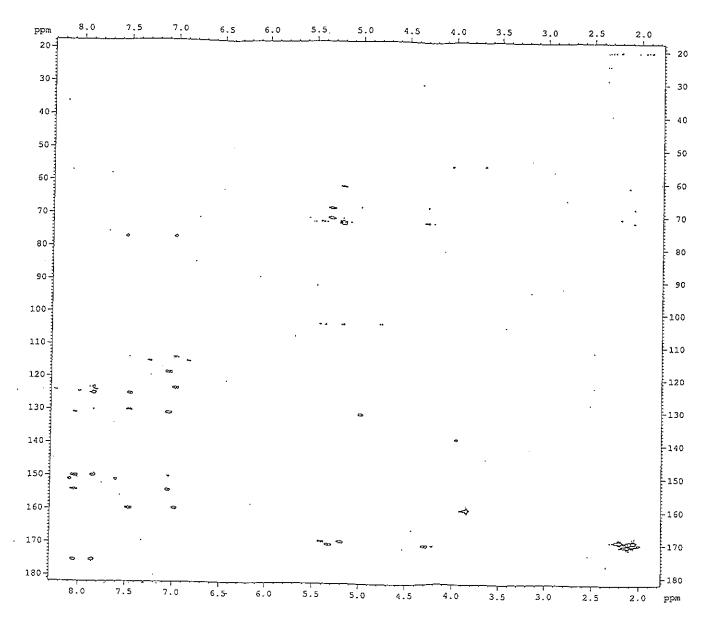


Figure 78 2D HMBC spectrum of AcYS8

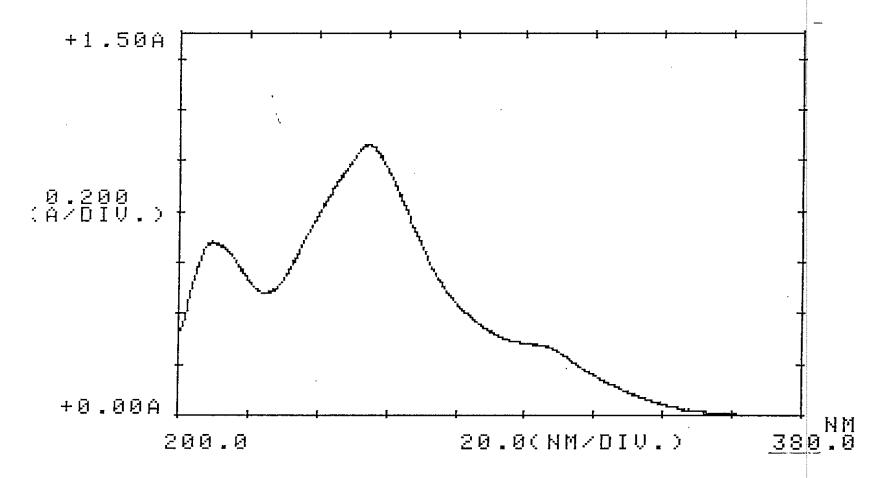


Figure 79 UV (CH₃OH) spectrum of YS1

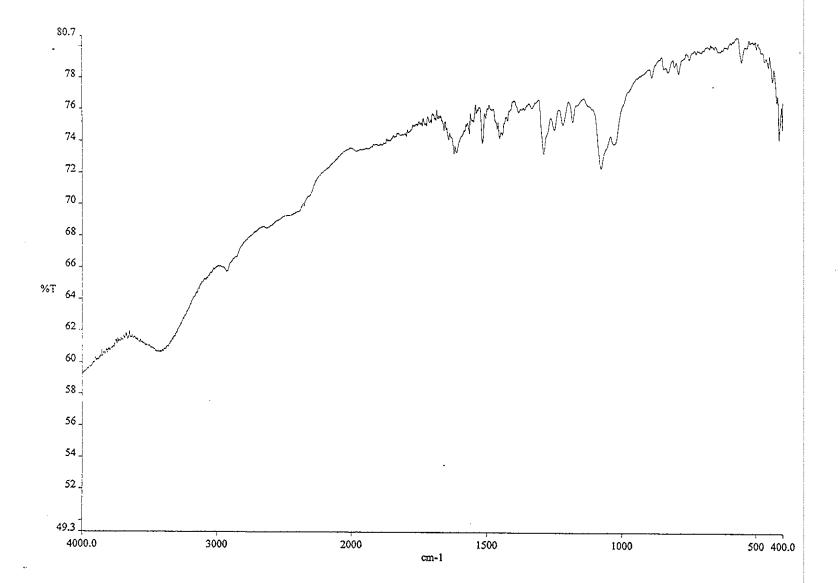


Figure 80 IR (KBr) spectrum of YS1

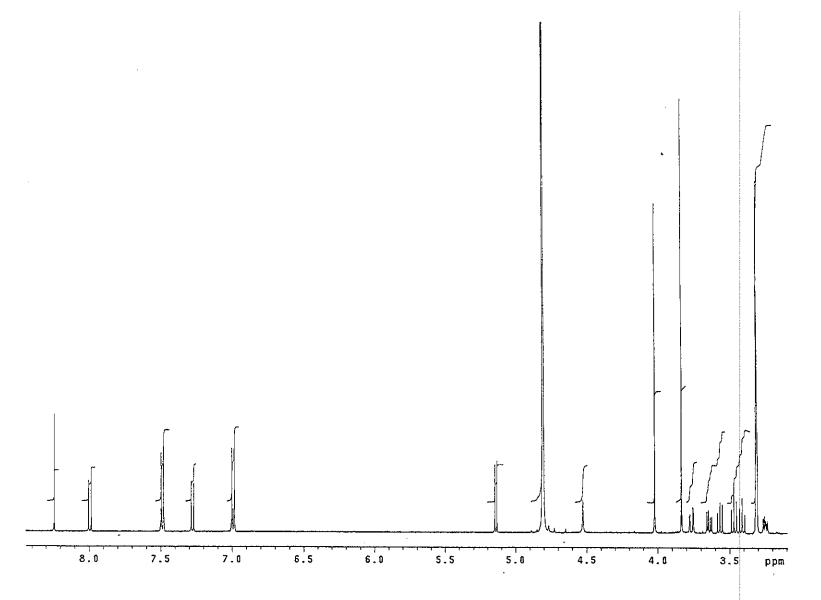


Figure 81 ¹H NMR (500 MHz) (CD₃OD) spectrum of **YS1**

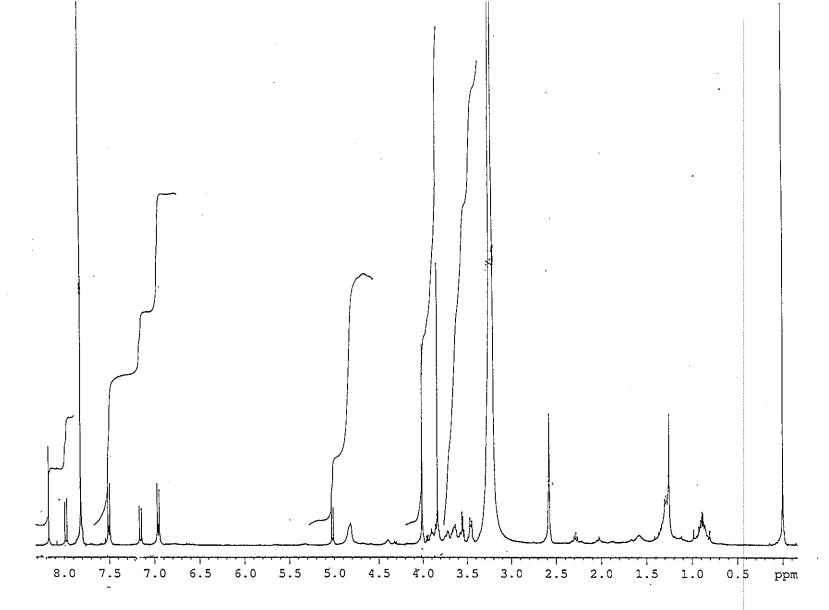


Figure 82 1 H NMR (400 MHz) (CDCl₃ + DMSO- d_6) spectrum of YS1

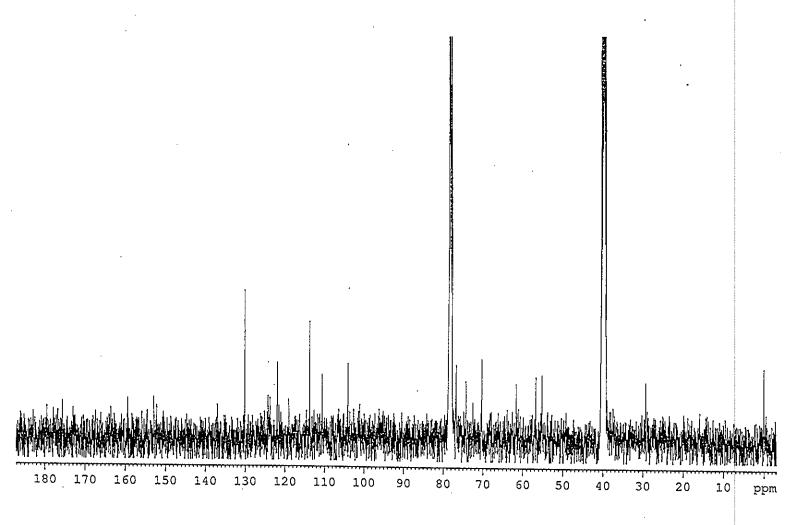


Figure 83 13 C NMR (100 MHz) (CDCl₃ + DMSO- d_6) spectrum of YS1

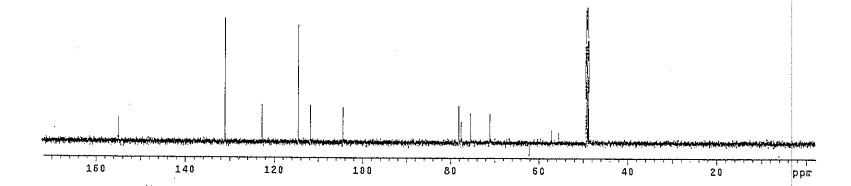


Figure 84 DEPT (135°) (CD₃OD) spectrum of YS1

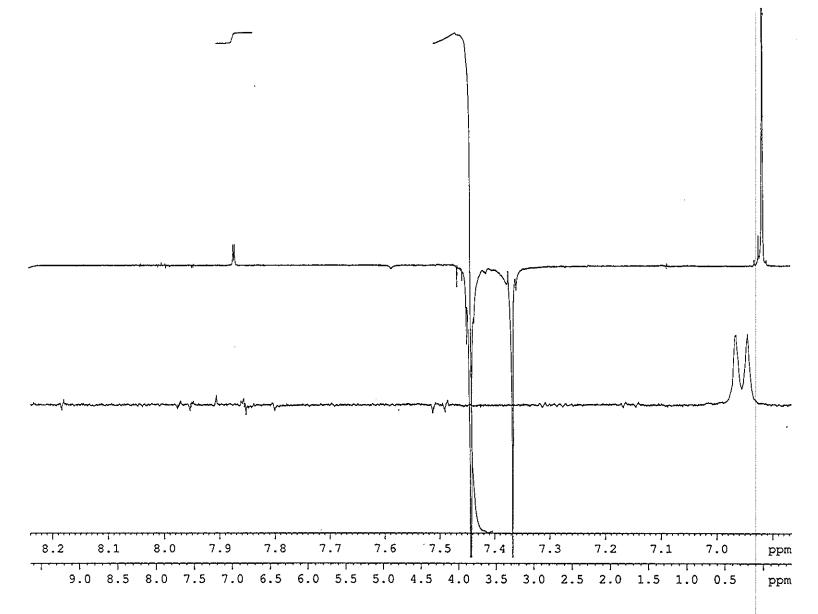


Figure 85 NOEDIFF spectrum of YS1 after irradiation at $\delta_{\rm H}$ 3.84

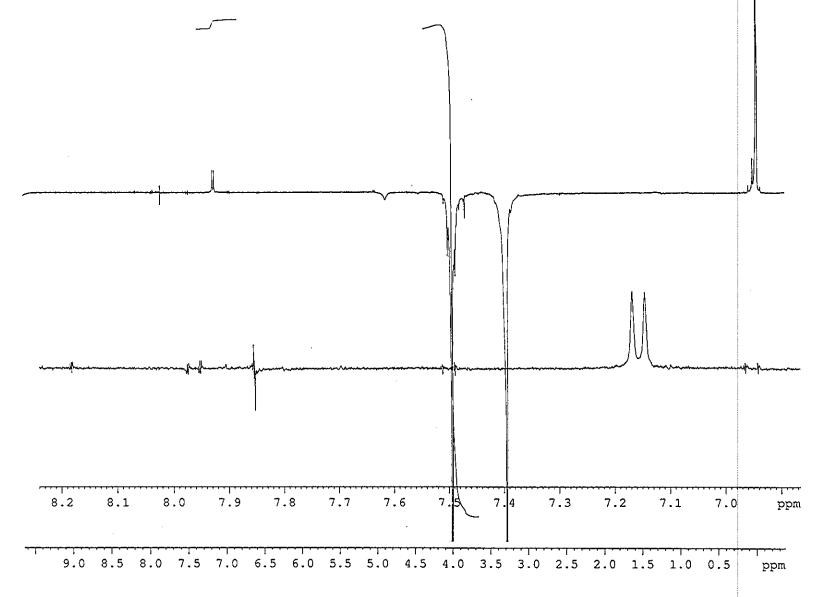


Figure 86 NOEDIFF spectrum of YS1 after irradiation at $\delta_{\rm H}$ 4.02

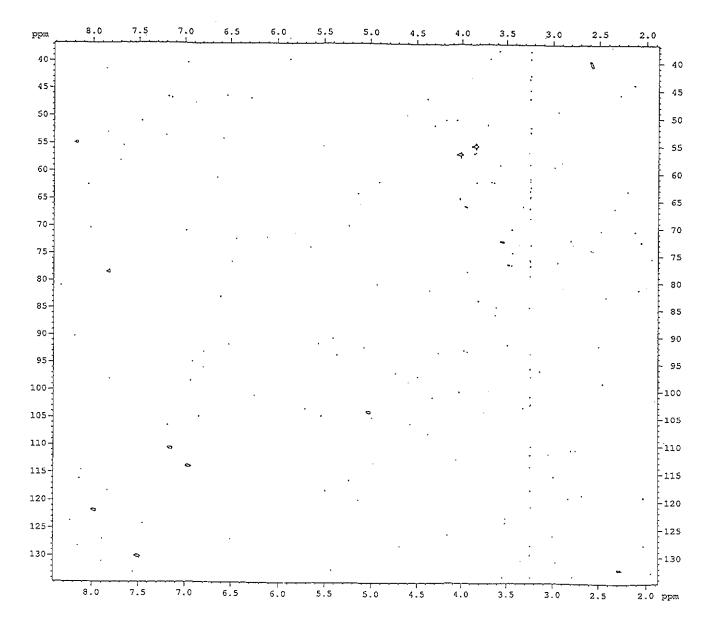


Figure 87 2D HMQC spectrum of YS1

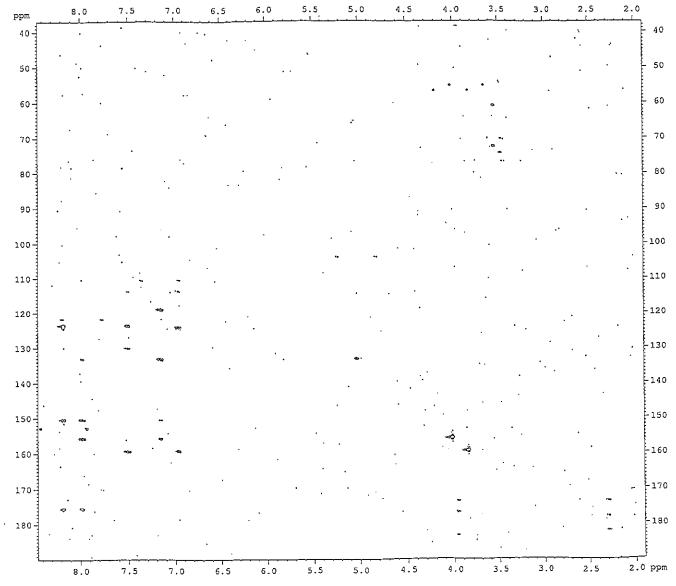


Figure 88 2D HMBC spectrum of YS1

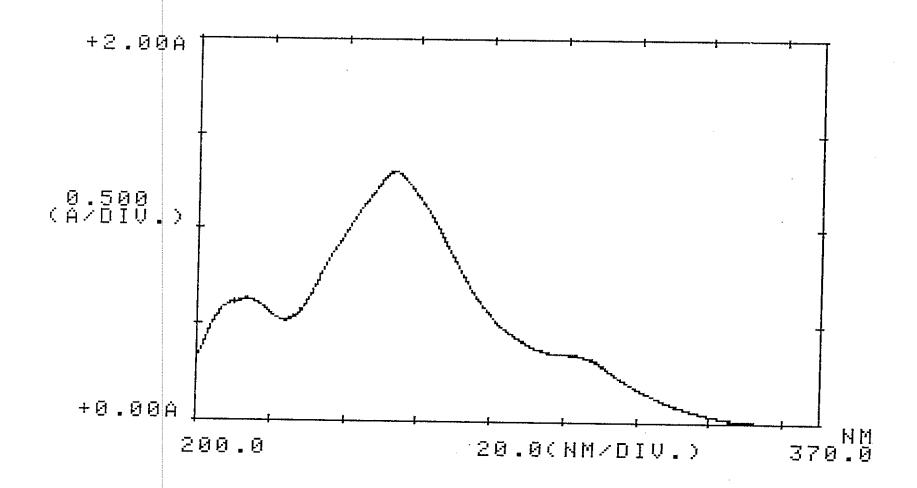


Figure 89 UV (CHCl₃) spectrum of AcYS1

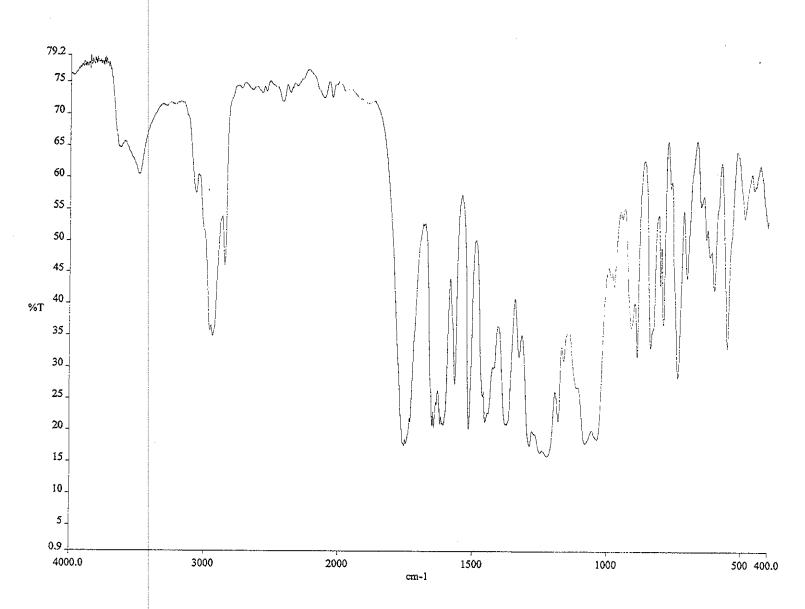


Figure 90 IR (neat) spectrum of AcYS1

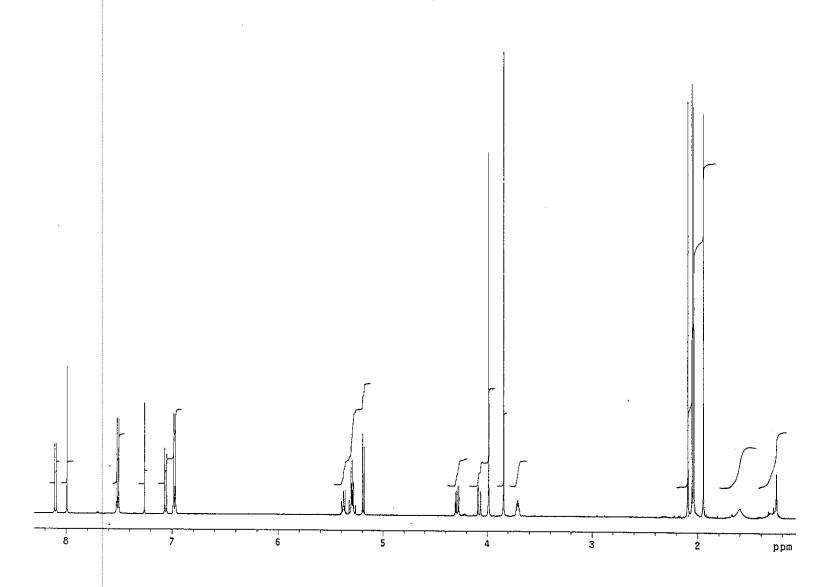


Figure 91 ¹H NMR (500 MHz) (CDCl₃) spectrum of AcYS1

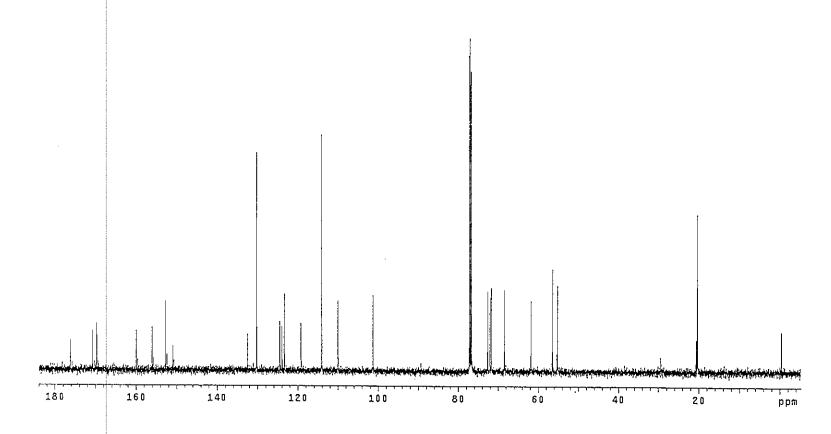


Figure 92 ¹³C NMR (125 MHz) (CDCl₃) spectrum of AcYS1

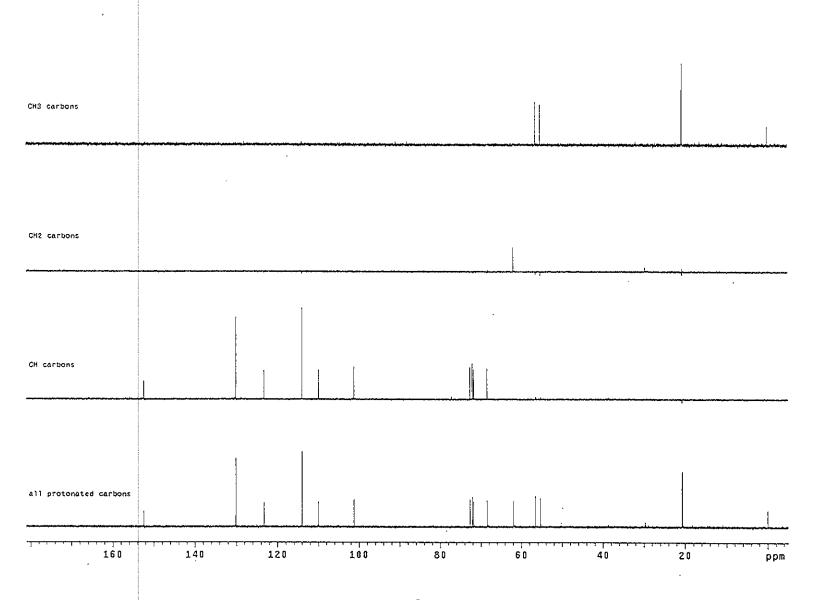


Figure 93 DEPT (135^O) (CDCl₃) spectrum of AcYS1

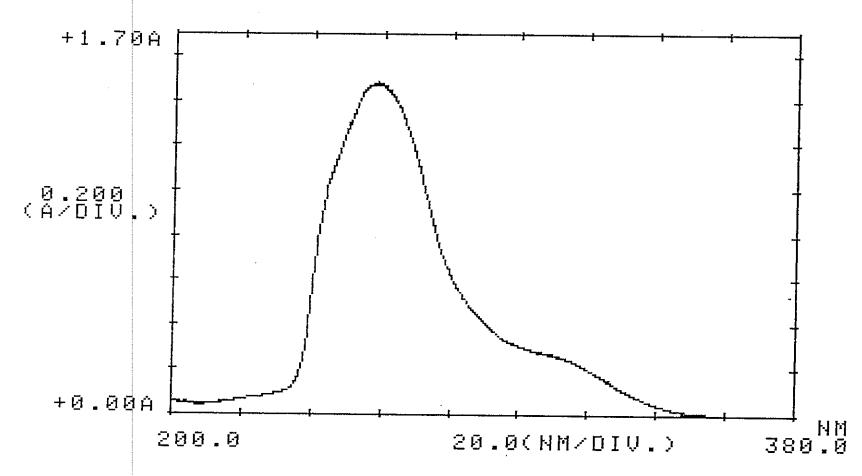


Figure 94 UV (CHCl₃) spectrum of AcYS14

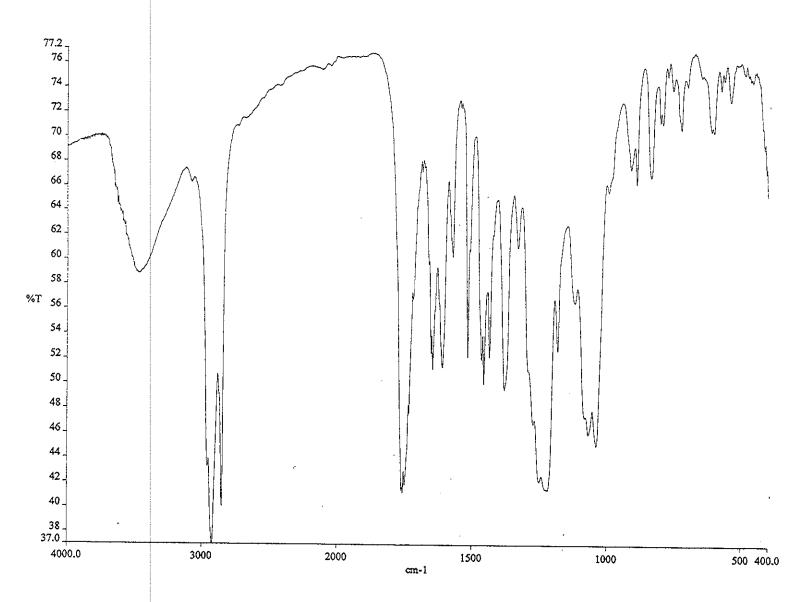


Figure 95 IR (neat) spectrum of AcYS14

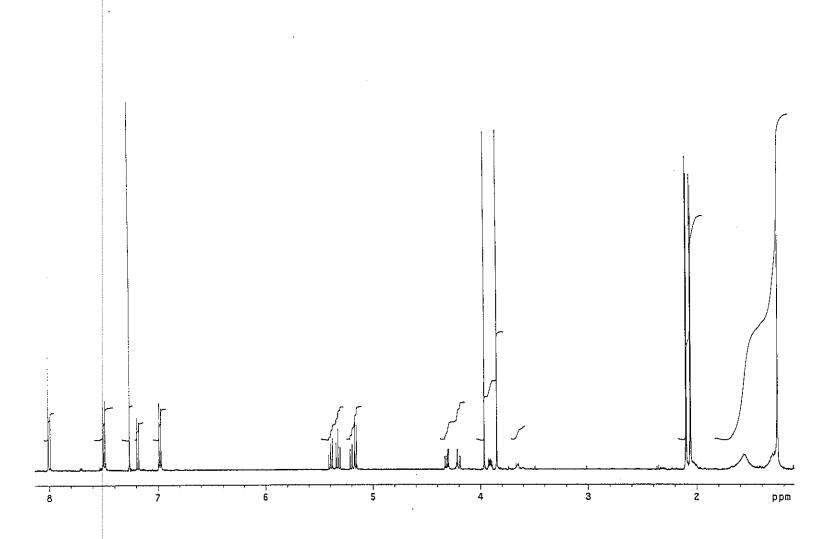


Figure 96 ¹H NMR (500 MHz) (CDCl₃) spectrum of AcYS14

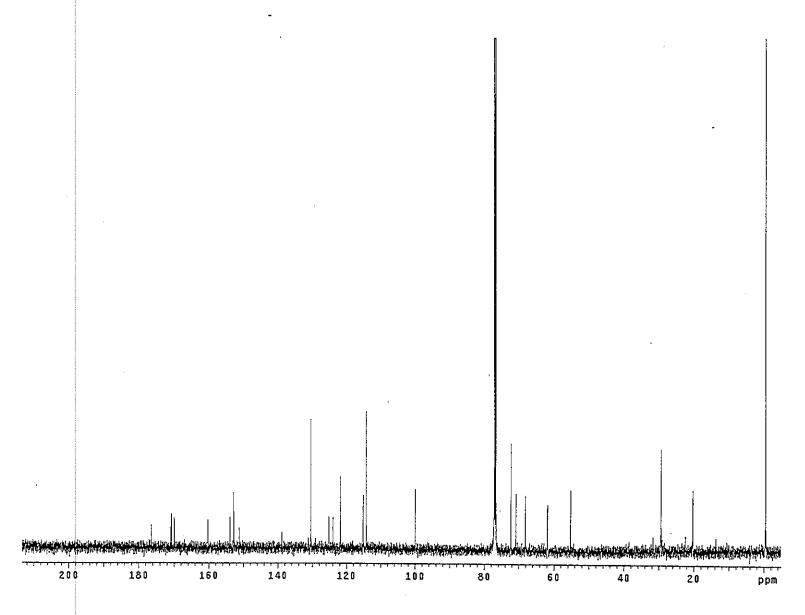


Figure 97 ¹³C NMR (125 MHz) (CDCl₃) spectrum of AcYS14

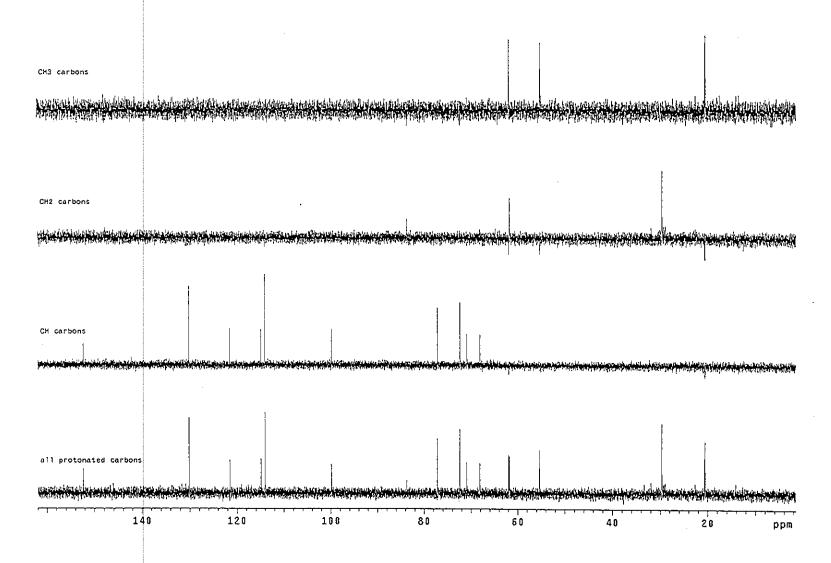


Figure 98 DEPT (135°) (CDCl₃) spectrum of AcYS14

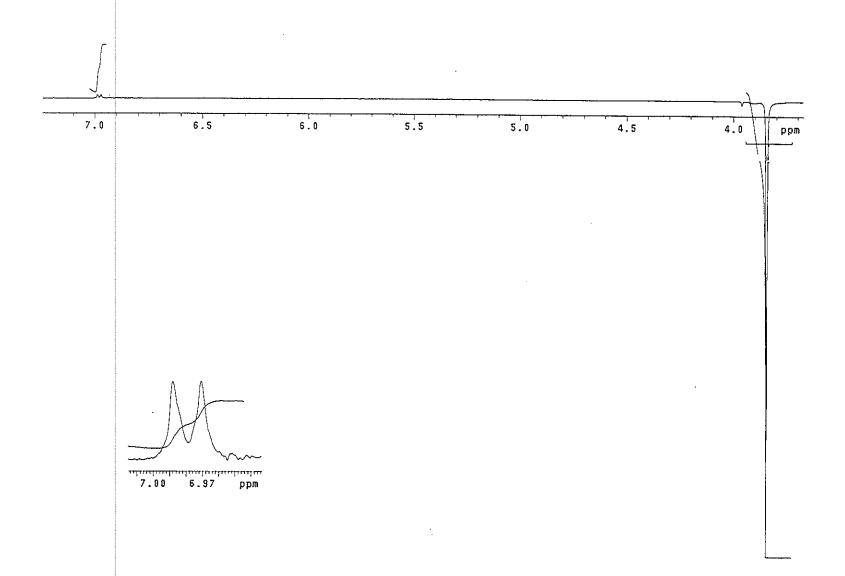


Figure 99 NOEDIFF spectrum of AcYS14 after irradiation at $\delta_{\rm H}$ 3.85

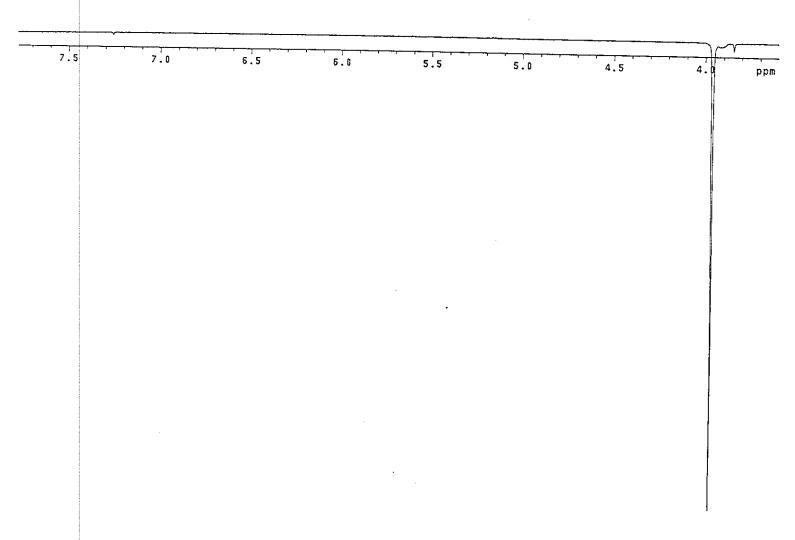


Figure 100 NOEDIFF spectrum of AcYS14 after irradiation at $\delta_{\rm H}$ 3.96

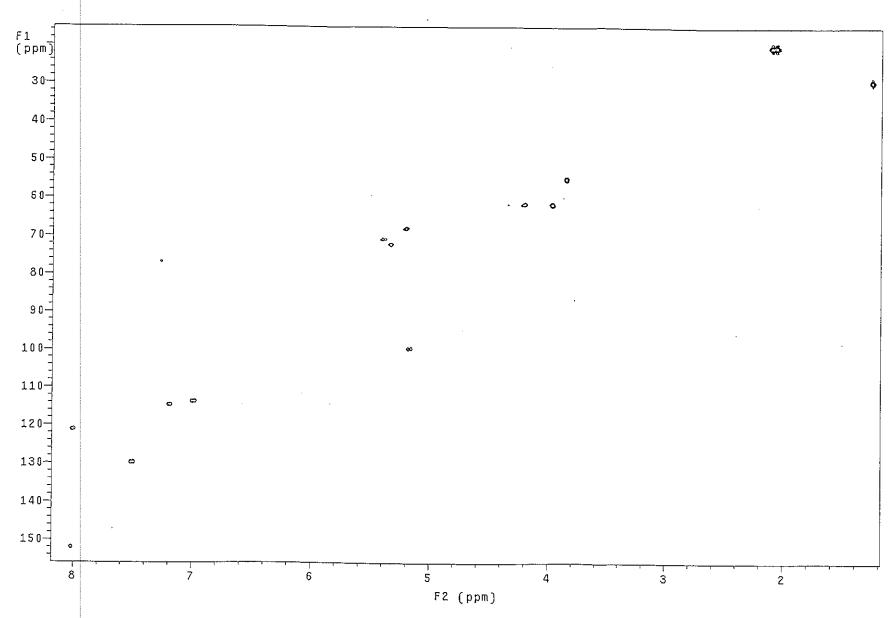


Figure 101 2D HMQC spectrum of AcYS14

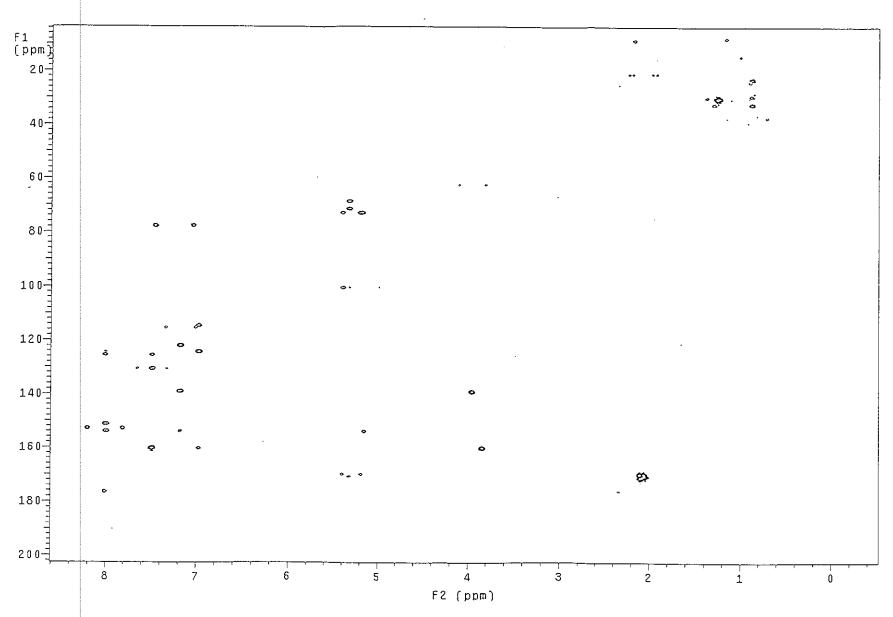


Figure 102 2D HMBC spectrum of AcYS14

. **-** - -

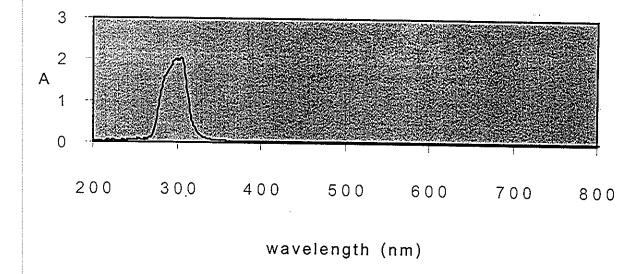


Figure 103 UV (CHCl₃) spectrum of AcYS5

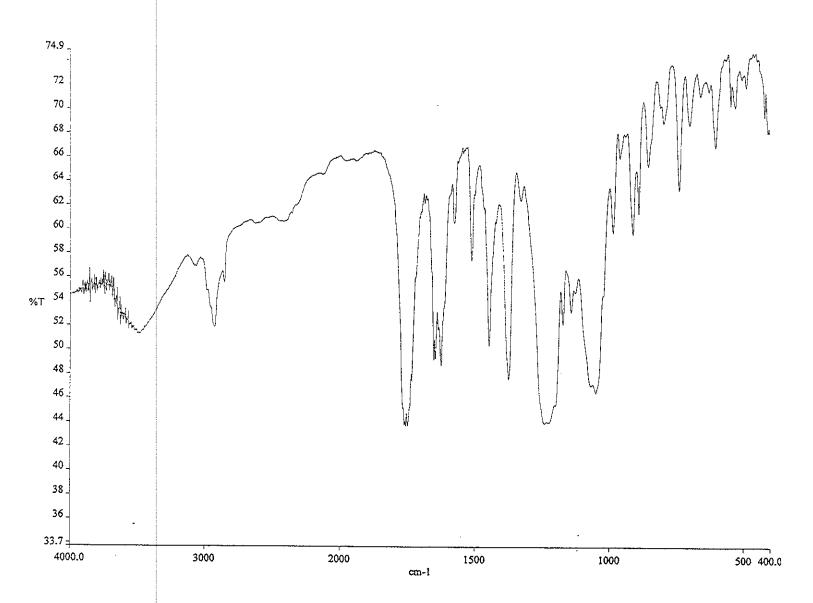


Figure 104 IR (neat) spectrum of AcYS5

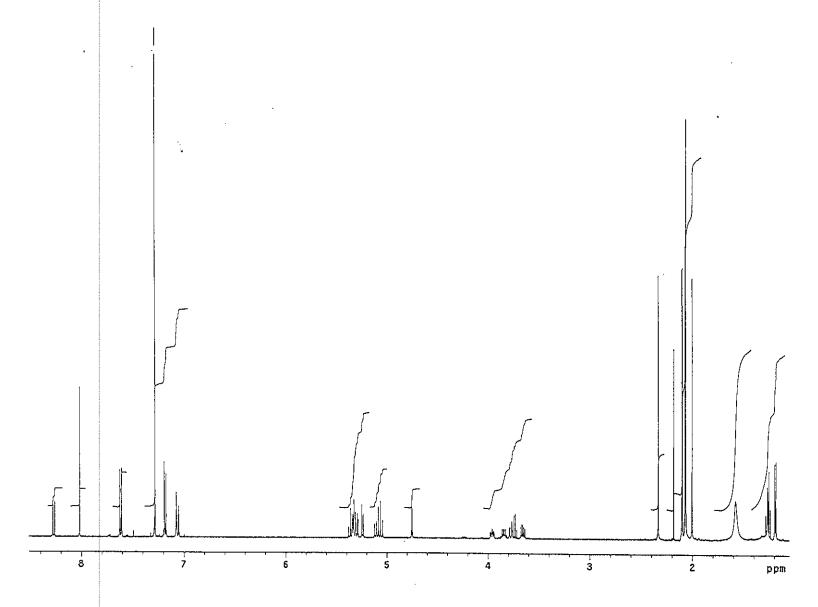
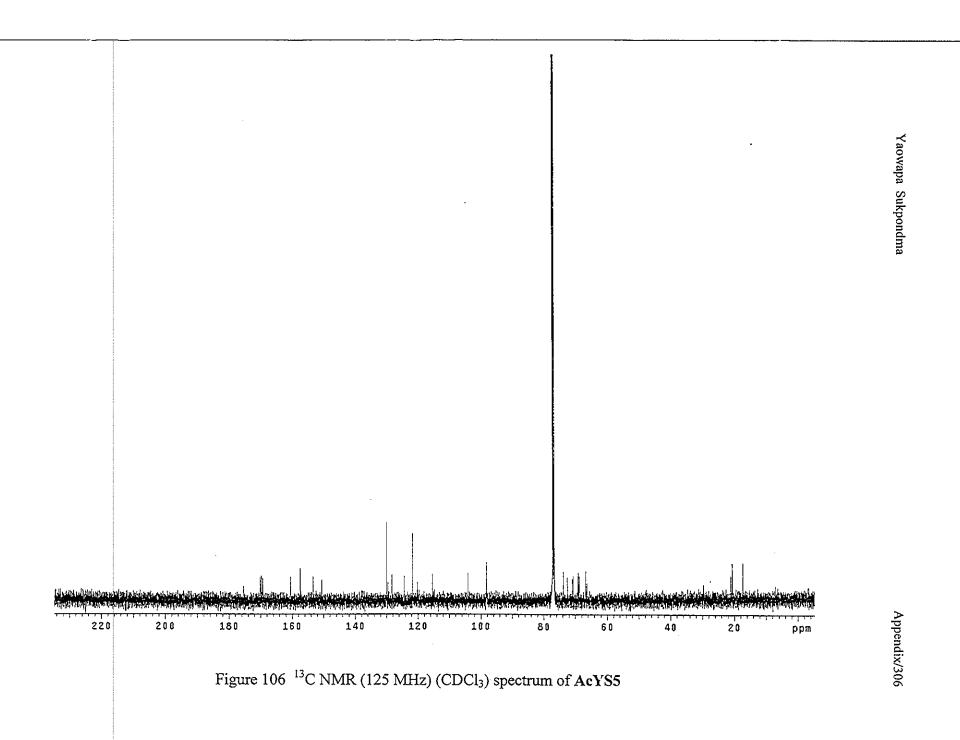



Figure 105 $\,^{1}\text{H}$ NMR (500 MHz) (CDCl₃) spectrum of AcYS5

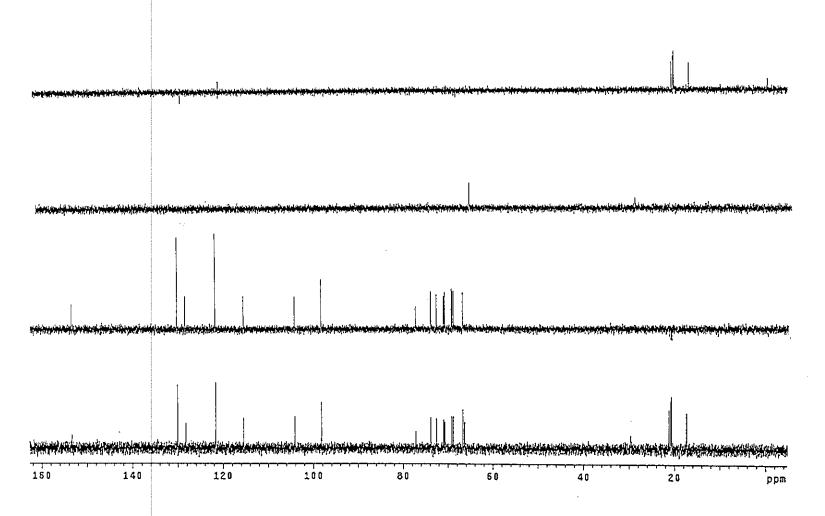


Figure 107 DEPT (135°) (CDCl₃) spectrum of AcYS5

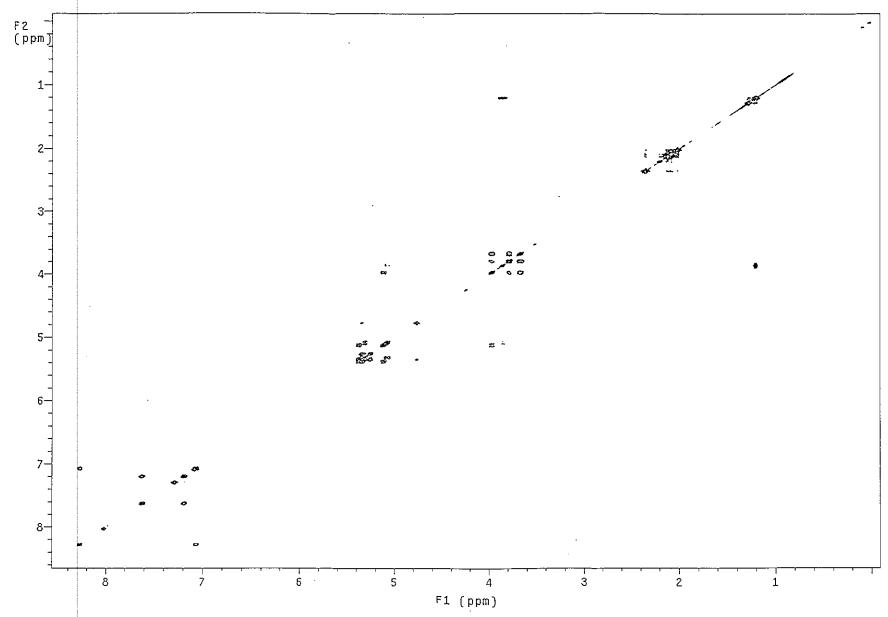


Figure 108 ¹H-¹H COSY spectrum of AcYS5

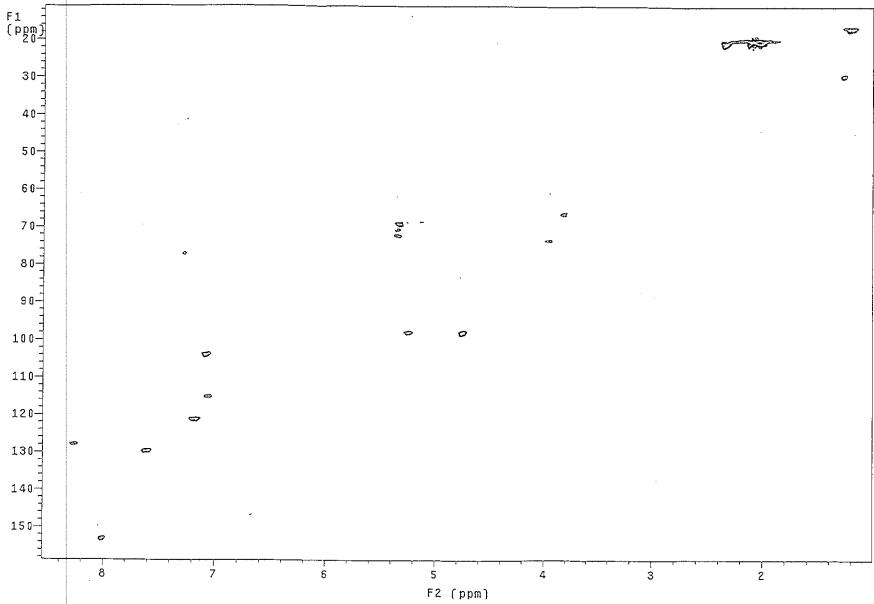


Figure 109 2D HMQC spectrum of AcYS5

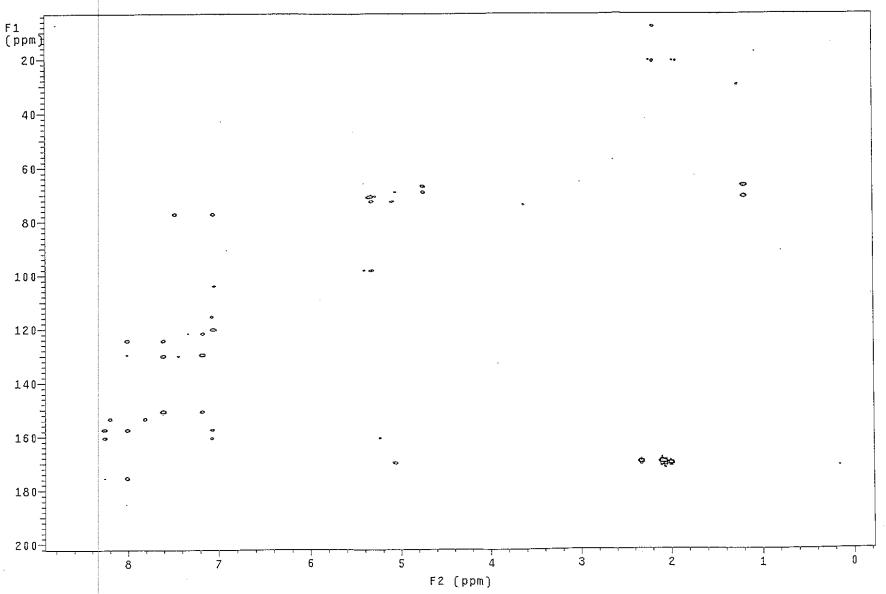


Figure 110 2D HMBC spectrum of AcYS5

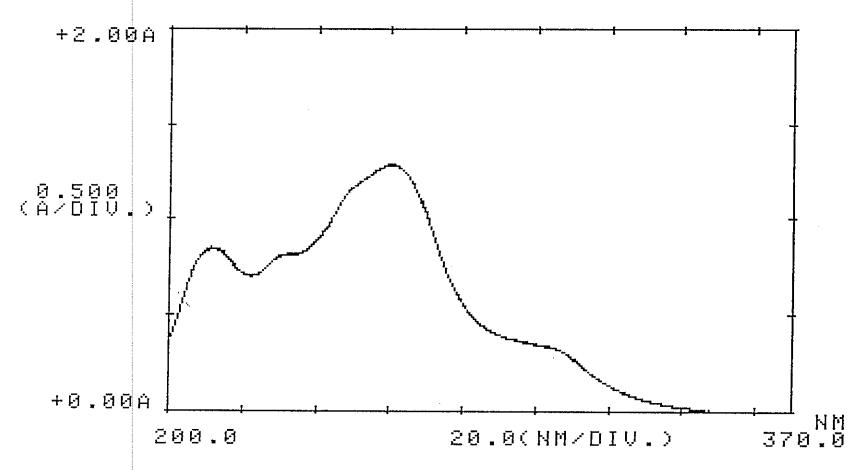


Figure 111 UV (CHCl₃) spectrum of AcYS3

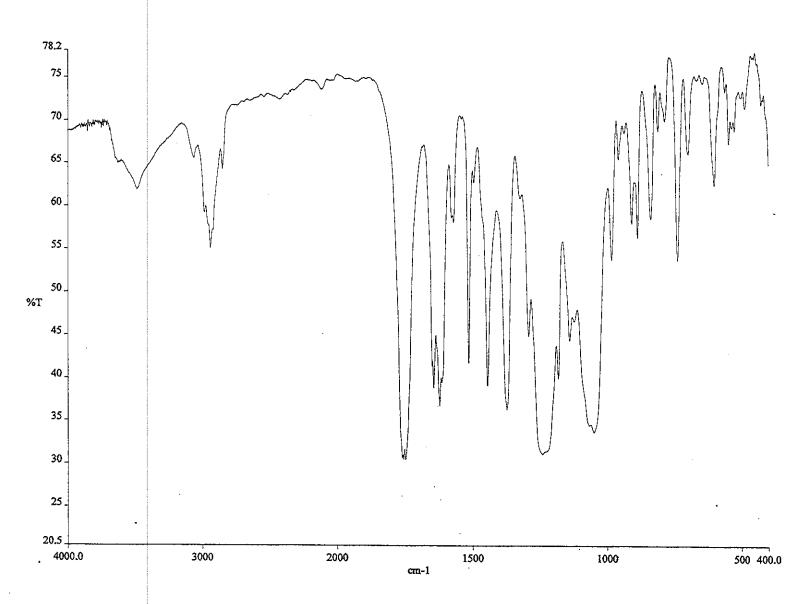


Figure 112 IR (neat) spectrum of AcYS3

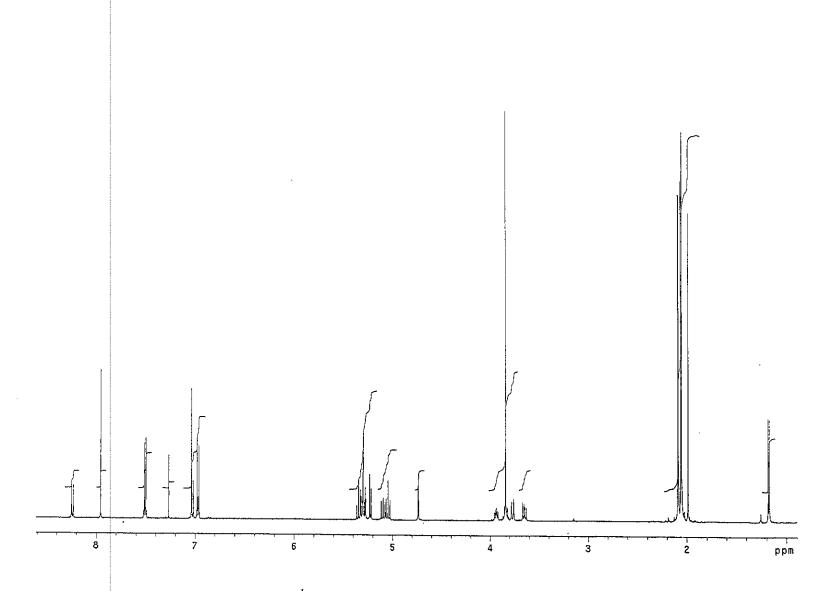


Figure 113 ¹H NMR (500 MHz) (CDCl₃) spectrum of AcYS3

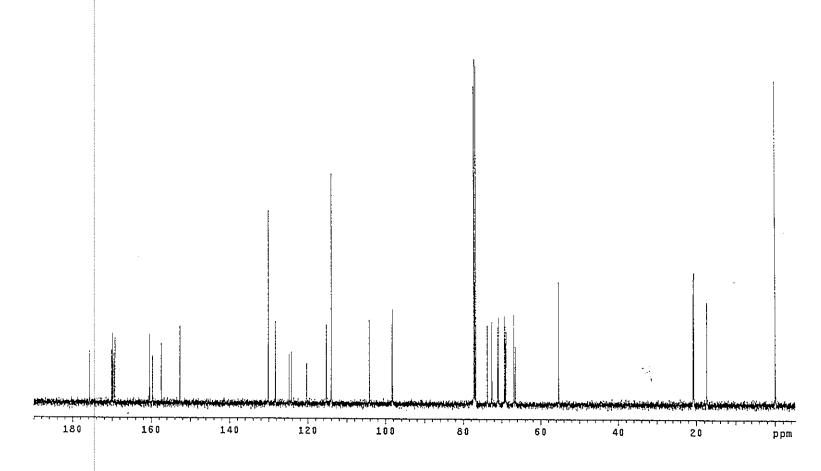


Figure 114 ¹³C NMR (125 MHz) (CDCl₃) spectrum of AcYS3

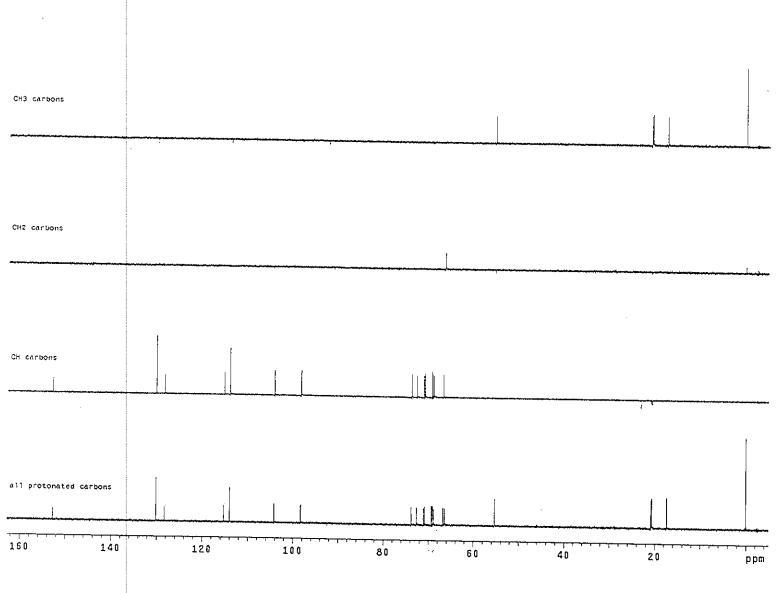


Figure 115 DEPT (135°) (CDCl₃) spectrum of AcYS3

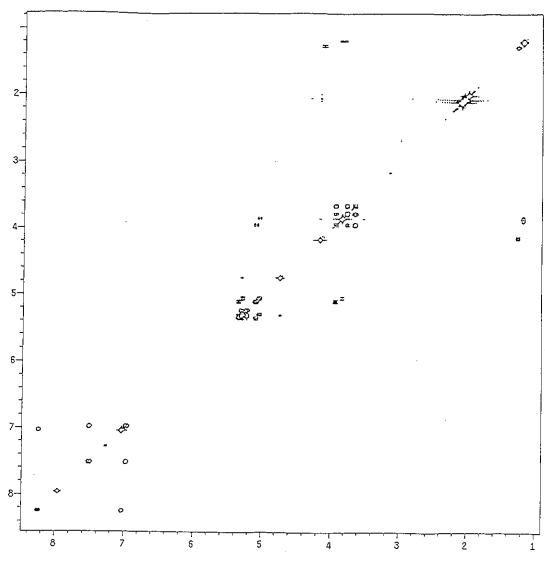


Figure 116 ¹H-¹H COSY spectrum of AcYS3

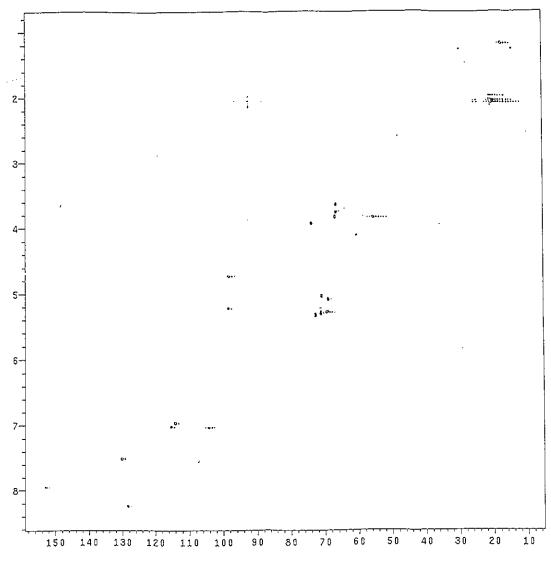


Figure 117 2D HMQC spectrum of AcYS3

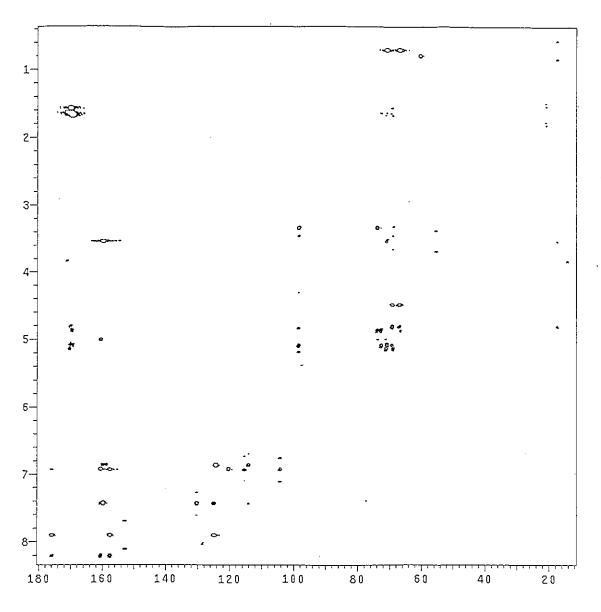


Figure 118 2D HMBC spectrum of AcYS3

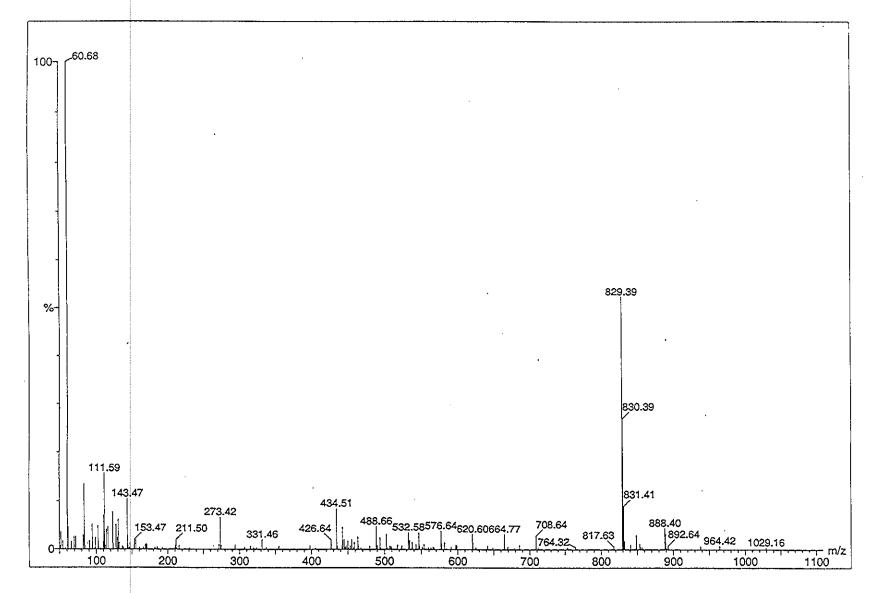


Figure 119 Mass spectrum of AcYS3

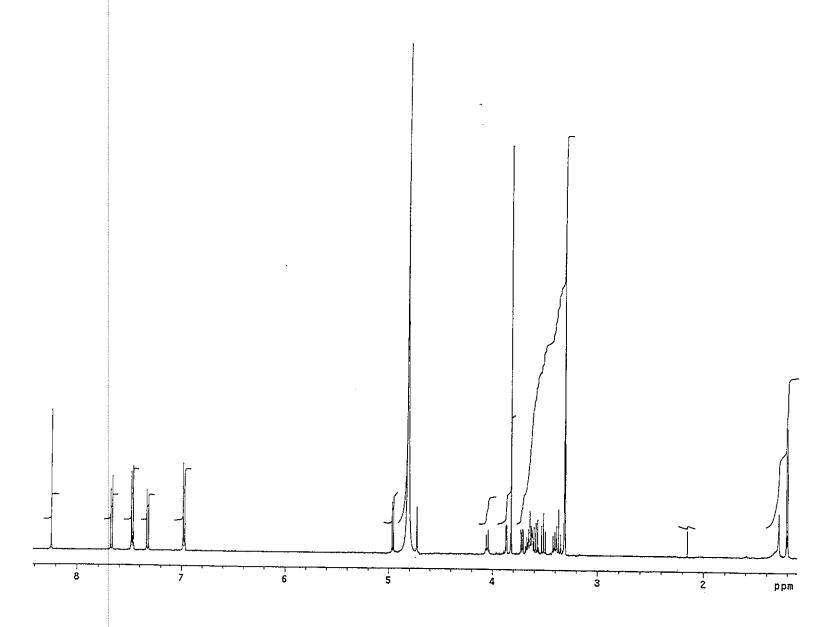


Figure 120 ¹H NMR (500 MHz) (CD₃OD) spectrum of **YS10**

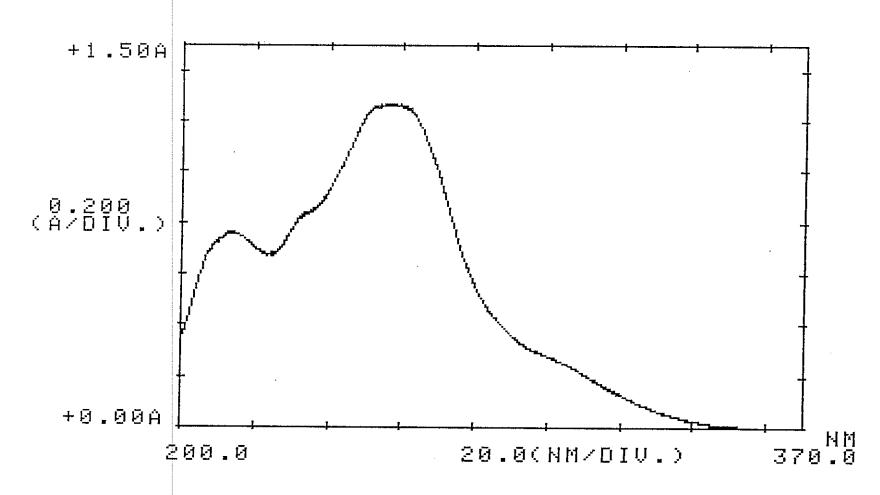


Figure 121 UV (CHCl₃) spectrum of AcYS10

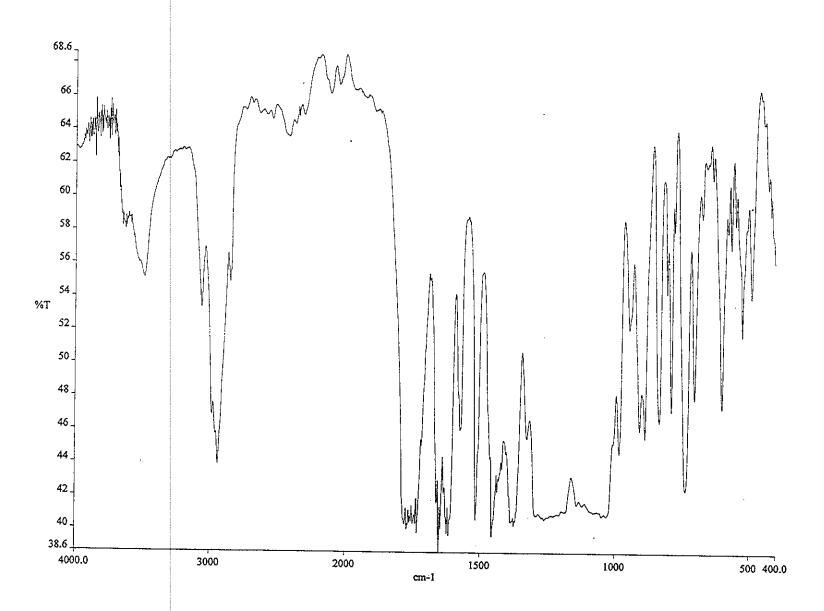


Figure 122 IR (neat) spectrum of AcYS10

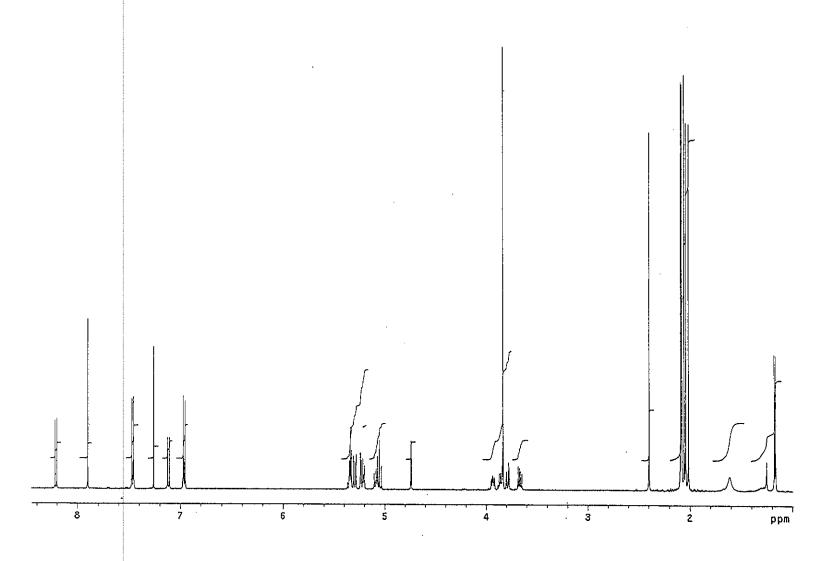


Figure 123 ¹H NMR (500 MHz) (CDCl₃) spectrum of AcYS10

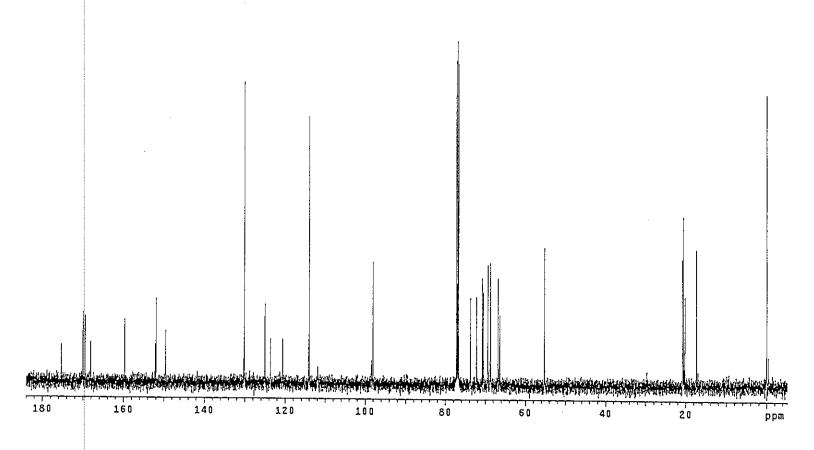


Figure 124 13 C NMR (125 MHz) (CDCl₃) spectrum of AcYS10

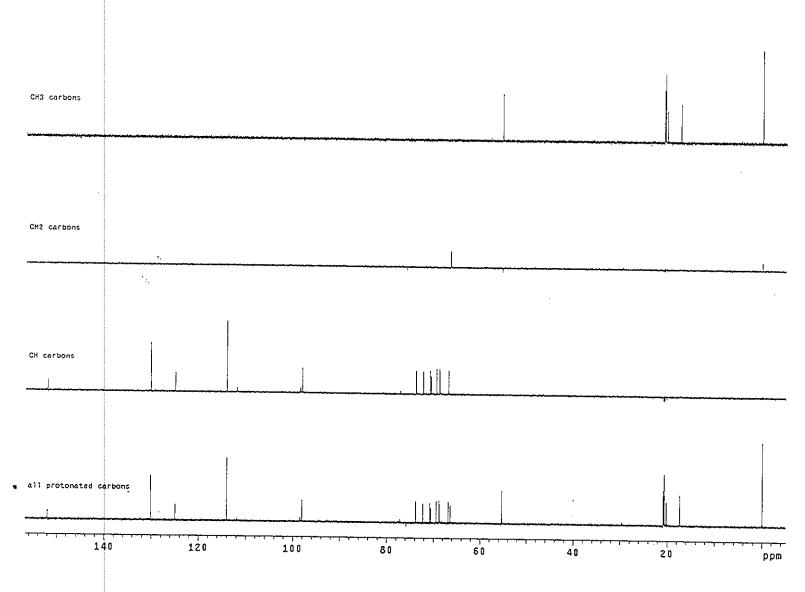


Figure 125 DEPT (135°) (CDCl₃) spectrum of AcYS10

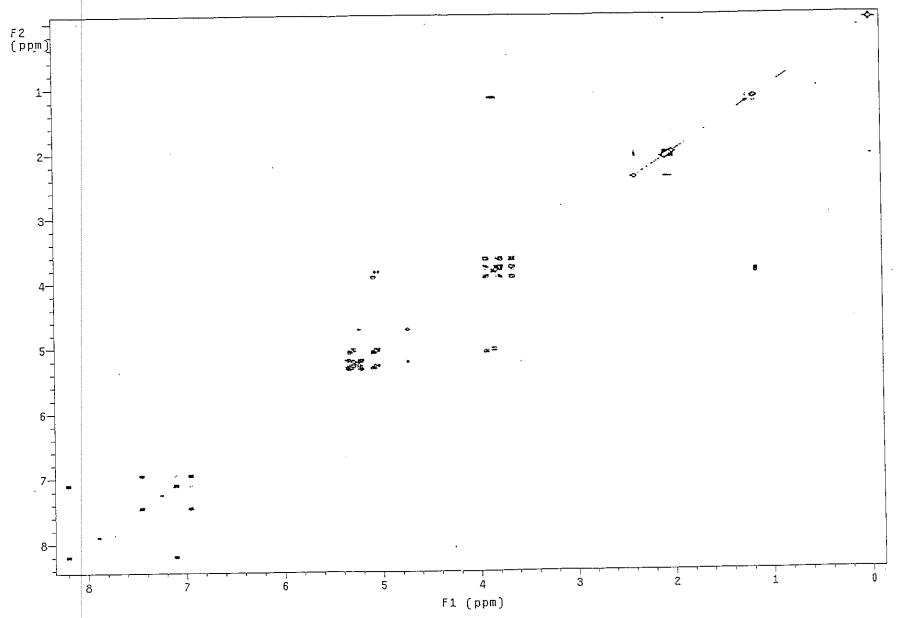


Figure 126 ¹H-¹H COSY spectrum of AcYS10

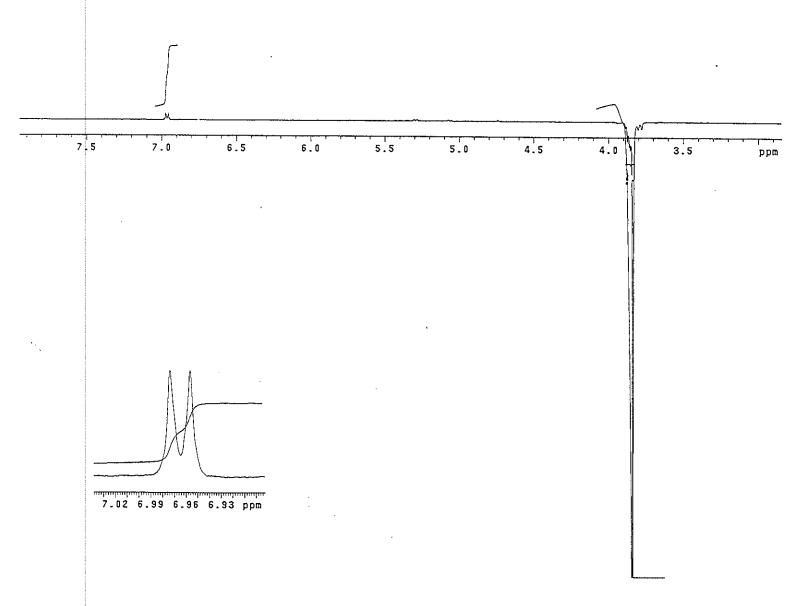
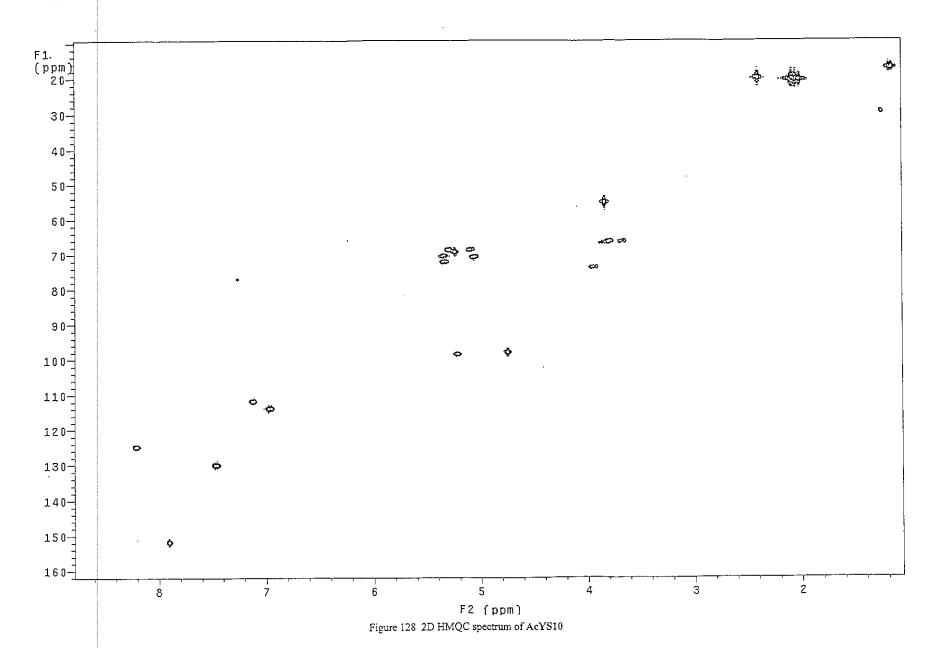
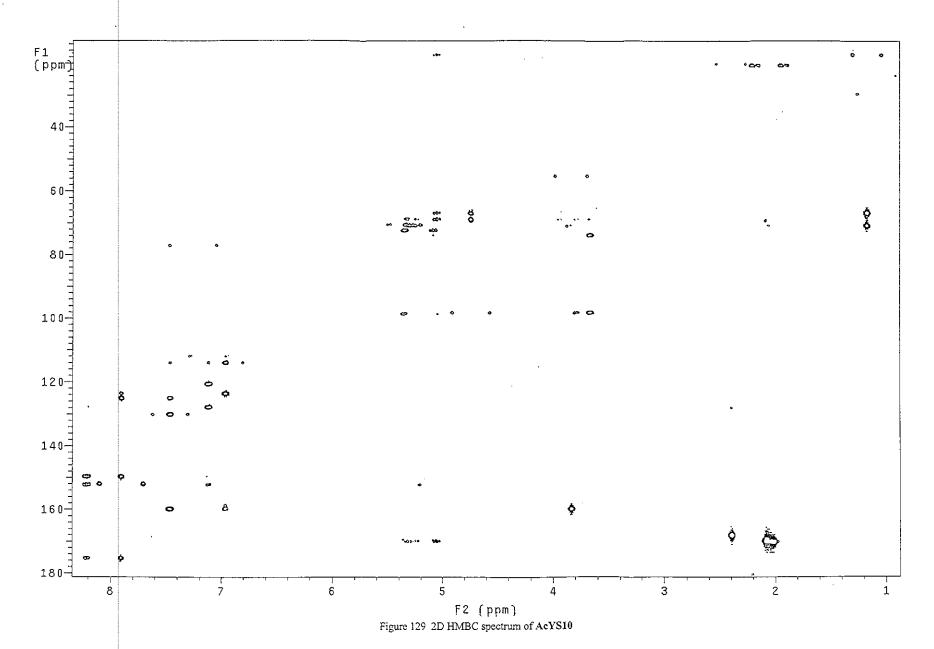




Figure 127 NOEDIFF spectrum of **AcYS10** after irradiation at δ_H 3.84

}

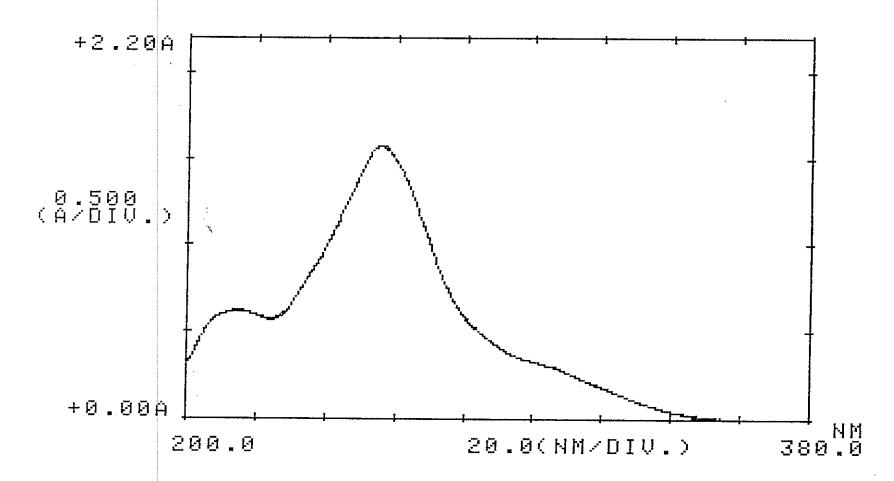


Figure 130 UV (CH₃OH) spectrum of YS2

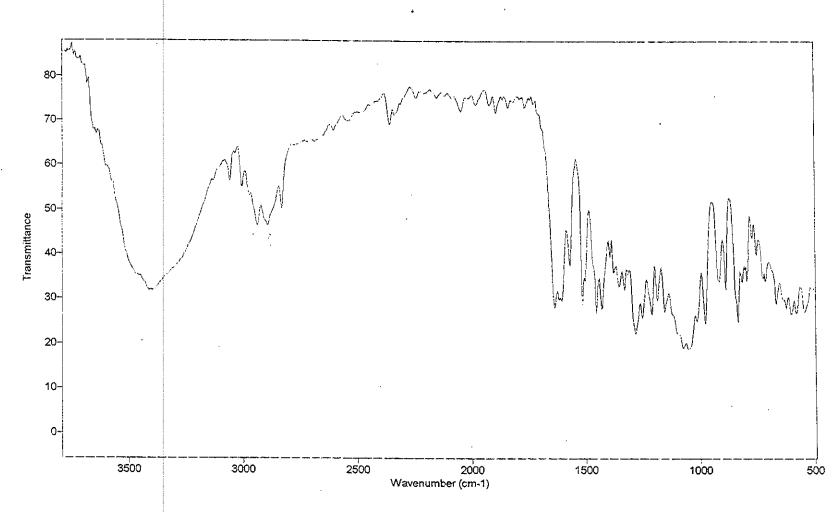


Figure 131 IR (KBr) spectrum of YS2

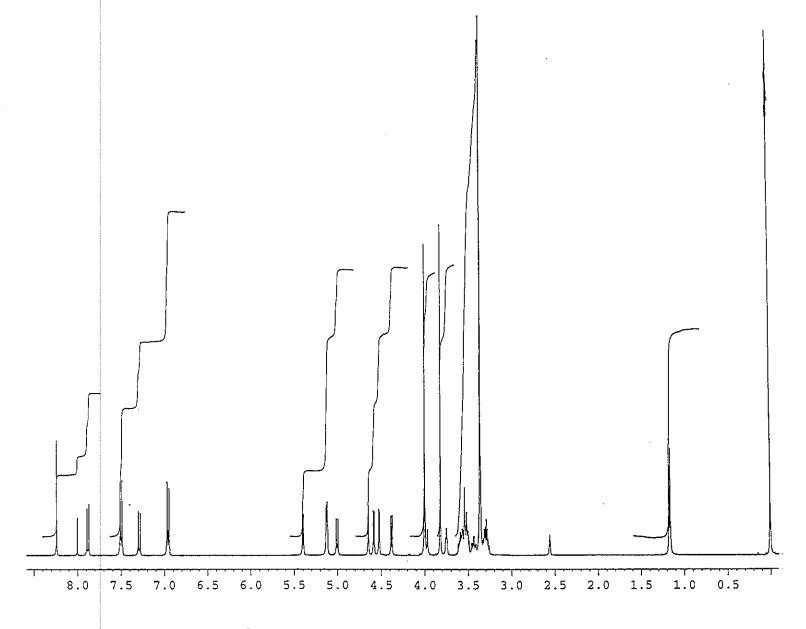


Figure 132 1 H NMR (400 MHz) (CDCl₃ + DMSO- d_6) spectrum of **YS2**

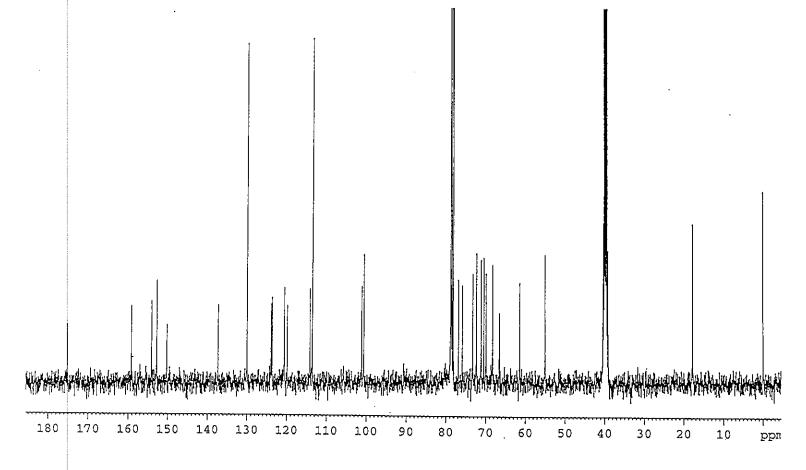


Figure 133 13 C NMR (100 MHz) (CDCl₃ +DMSO- d_6) spectrum of YS2

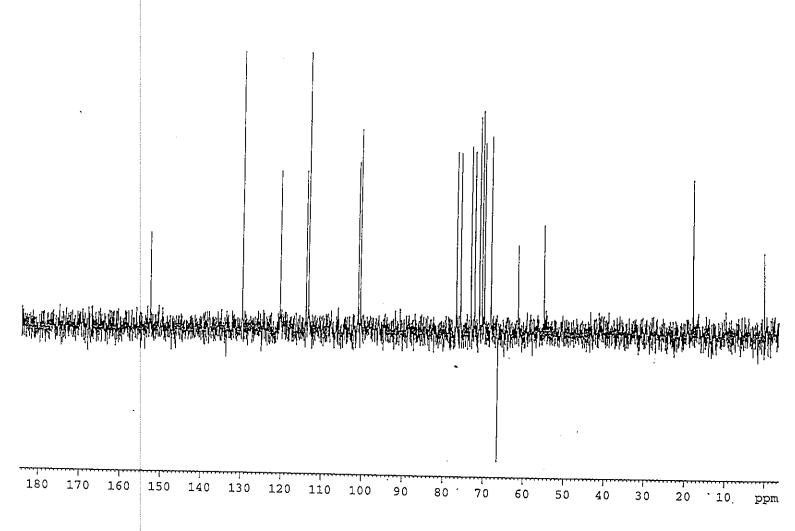
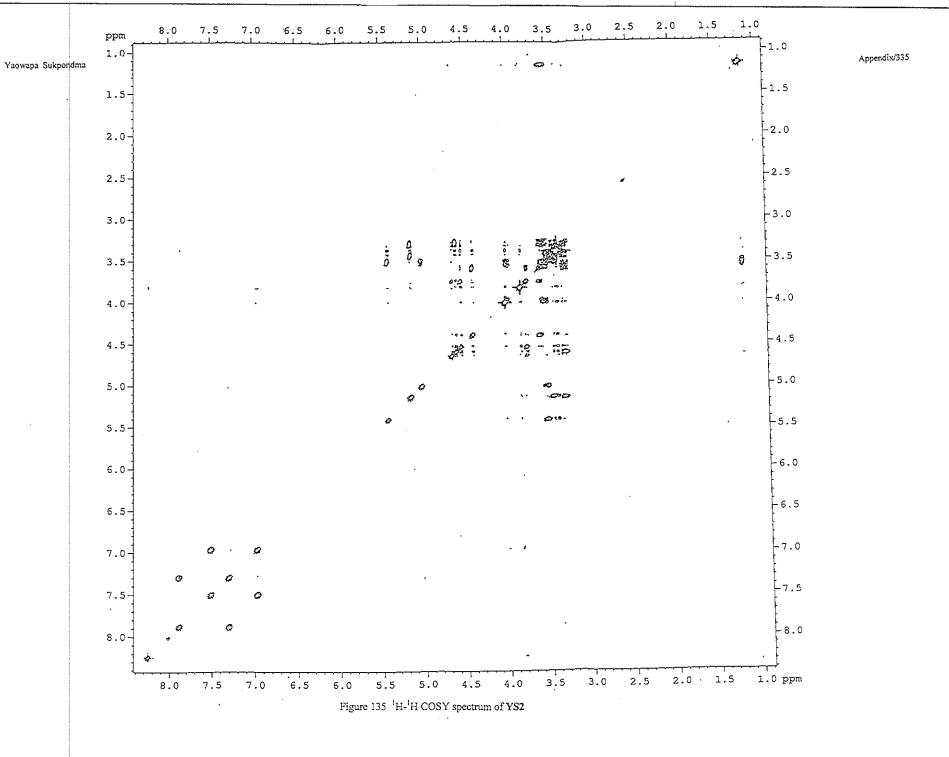
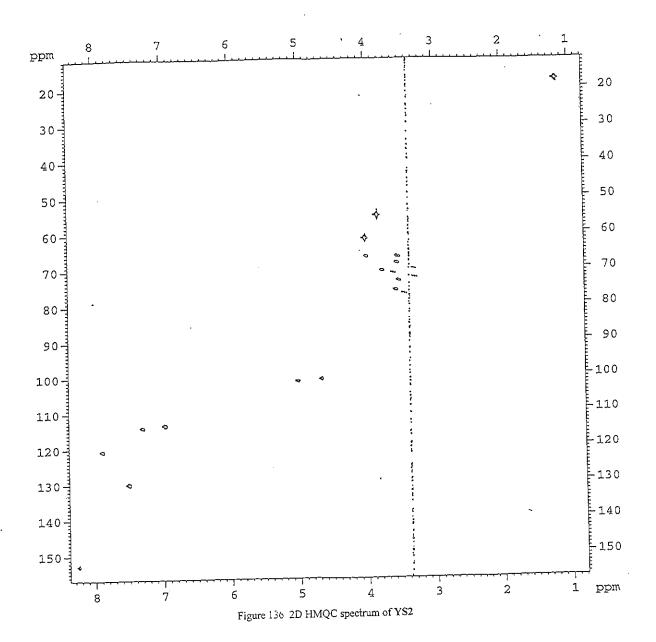




Figure 134 DEPT (135°) (CDCl₃ +DMSO- d_6) spectrum of YS2

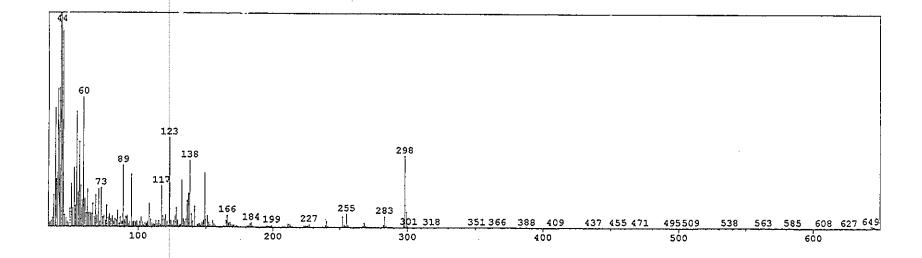


Figure 138 Mass spectrum of YS2

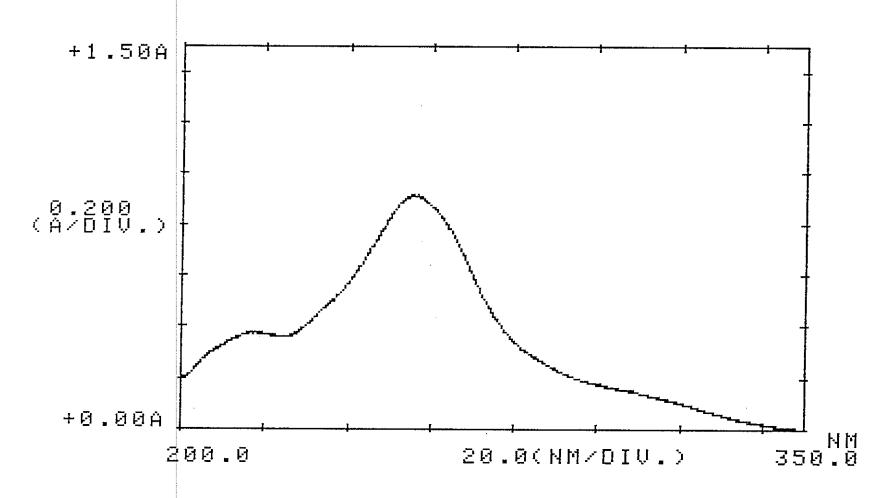


Figure 139 UV (CHCl₃) spectrum of AcYS2

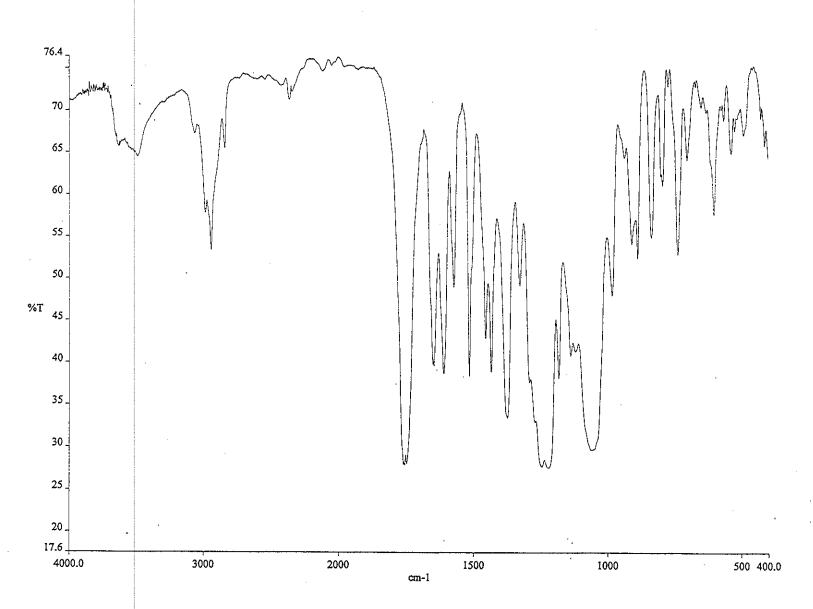


Figure 140 IR (neat) spectrum of AcYS2

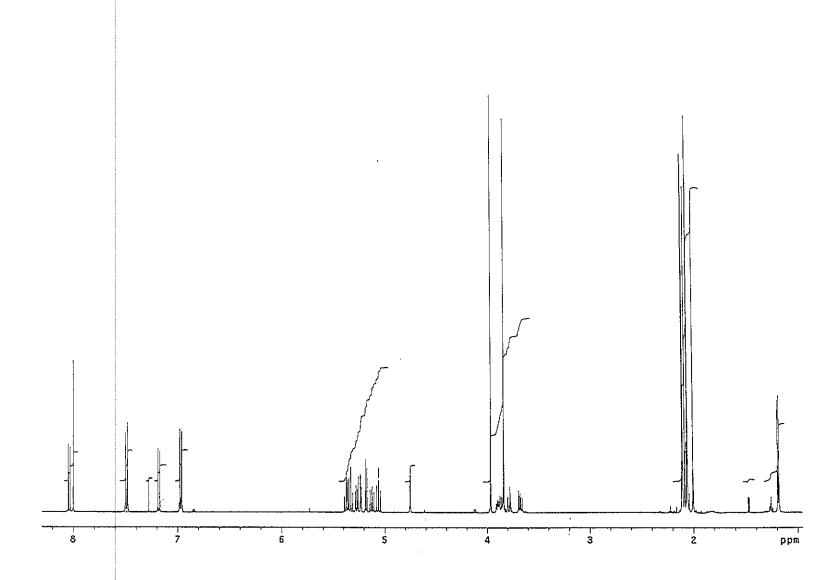


Figure 141 ¹H NMR (500 MHz) (CDCl₃) spectrum of AcYS2

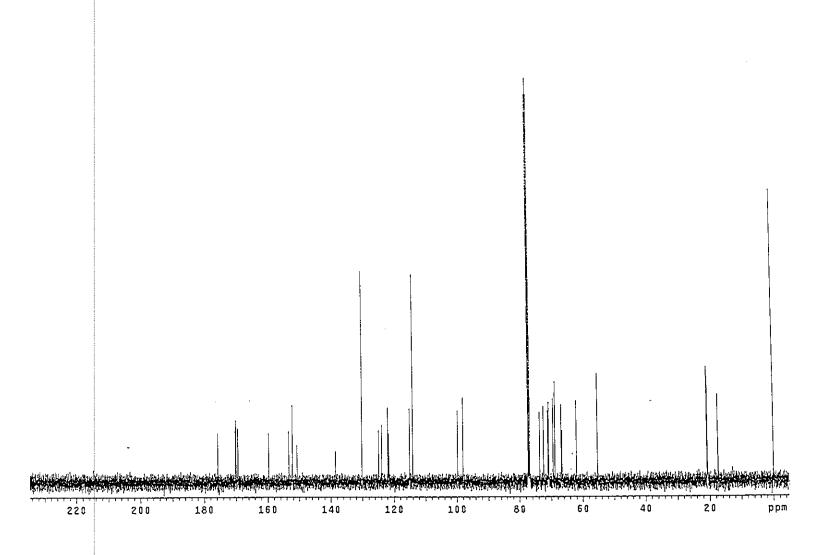


Figure 142 $\,^{13}$ C NMR (125 MHz) (CDCl₃) spectrum of AcYS2

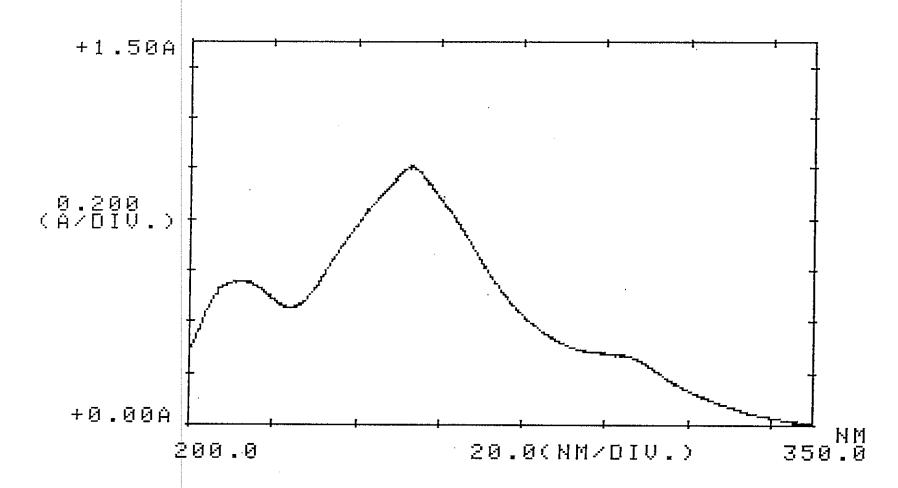


Figure 143 UV (CHCl₃) spectrum of AcYS11

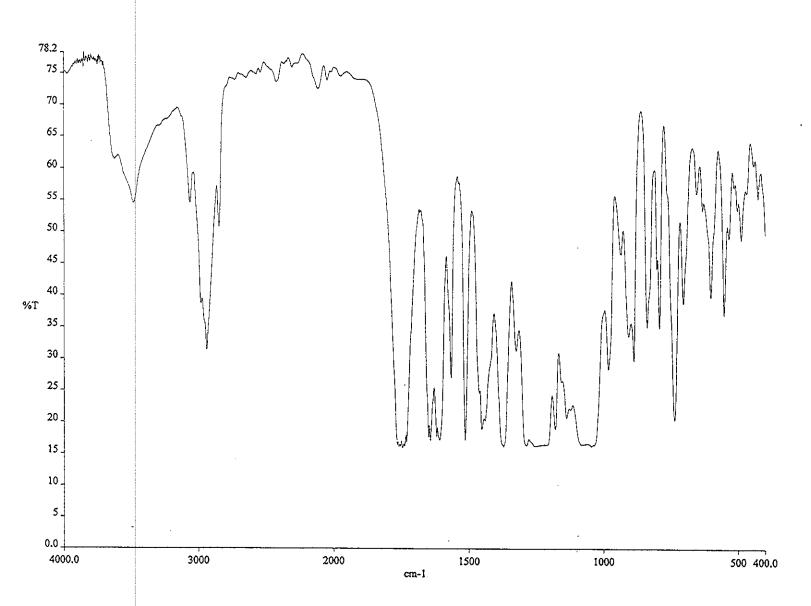


Figure 144 IR (neat) spectrum of AcYS11

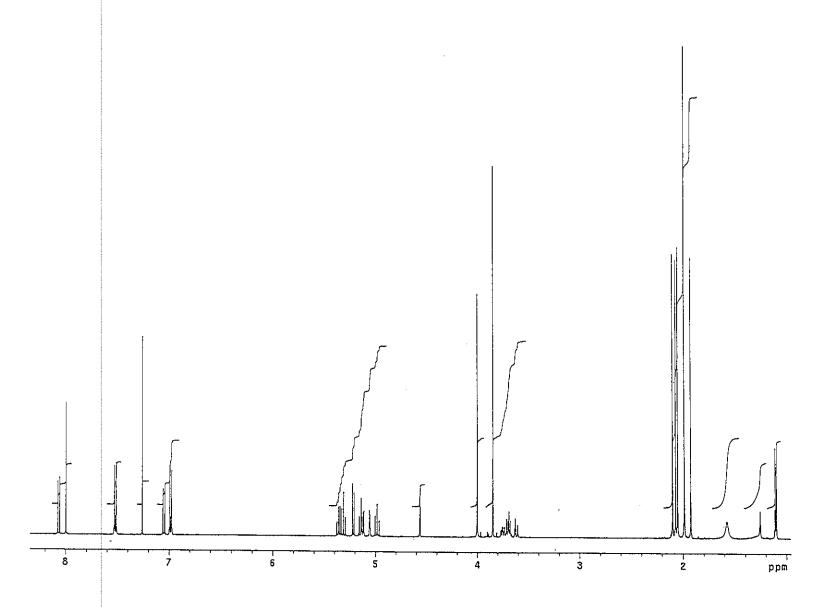


Figure 145 1 H NMR (500 MHz) (CDCl₃) spectrum of AcYS11

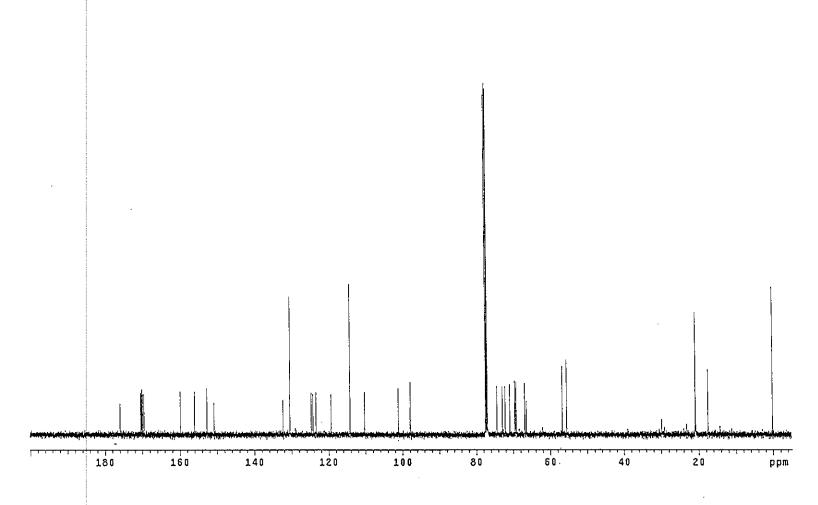


Figure 146 ¹³C NMR (125 MHz) (CDCl₃) spectrum of AcYS11

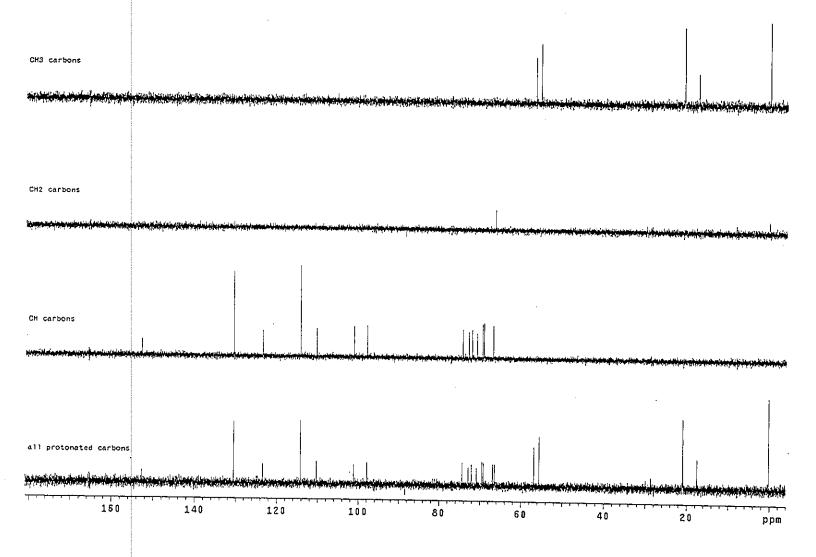


Figure 147 DEPT (135°) (CDCl₃) spectrum of AcYS11

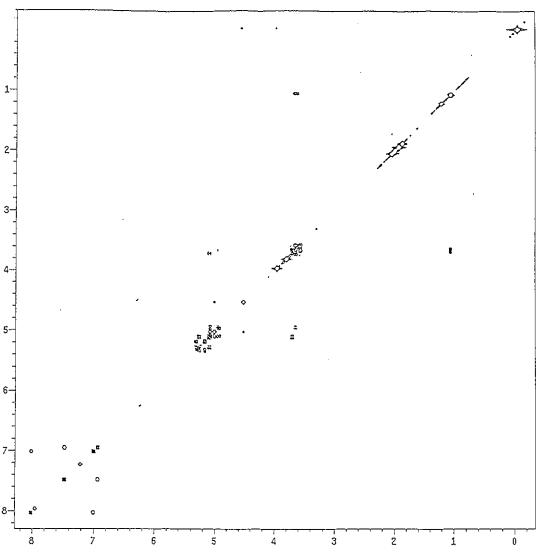
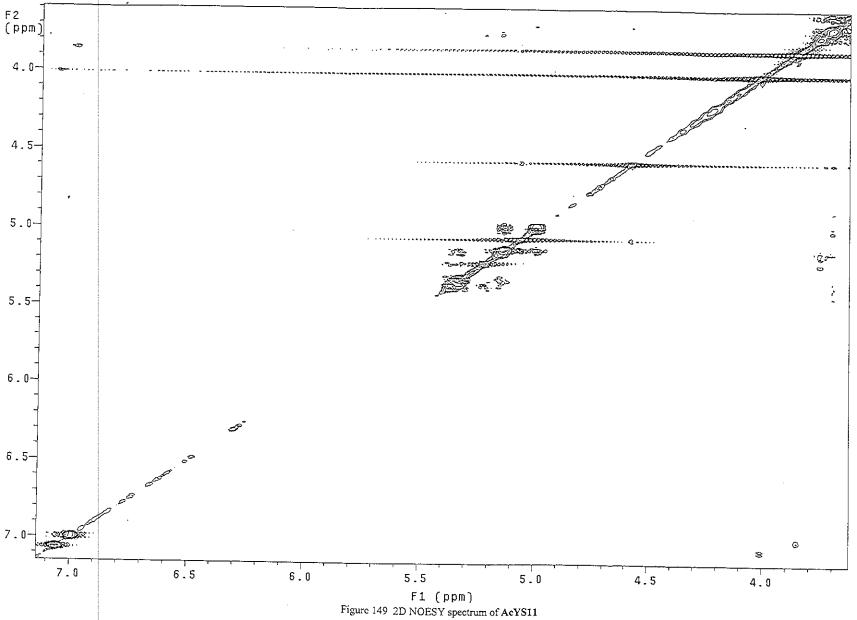



Figure 148 ¹H-¹H COSY spectrum of AcYS11

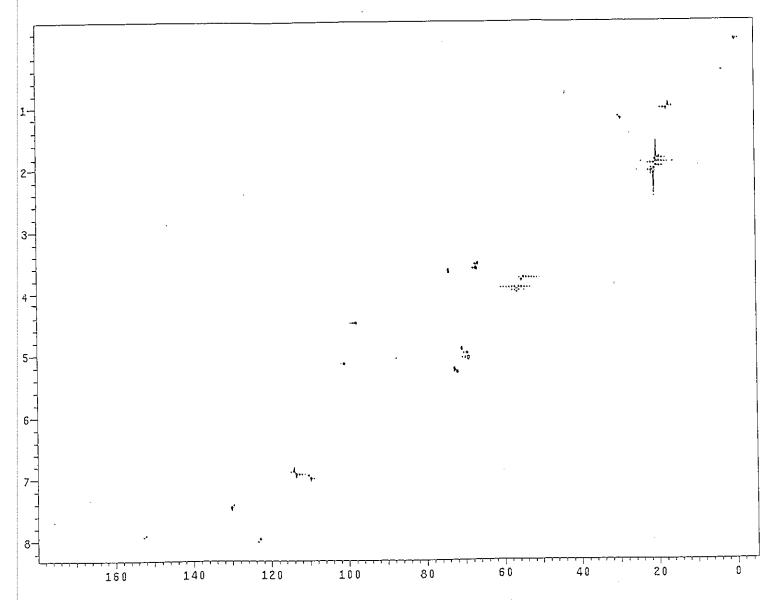


Figure 150 2D HMQC spectrum of AcYS11

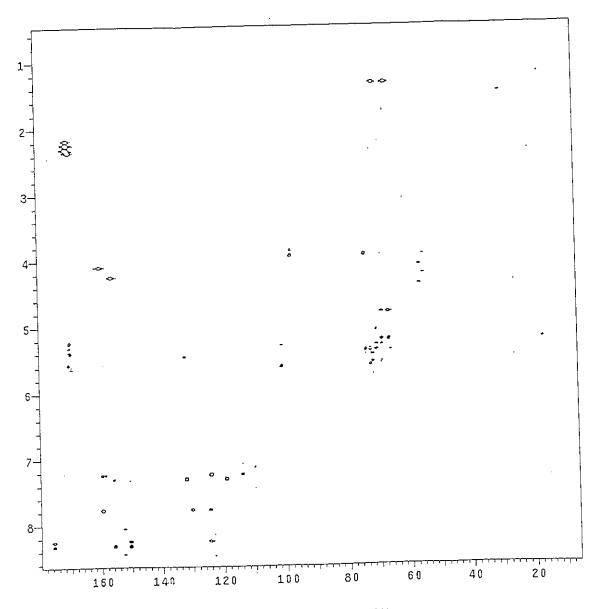


Figure 151 2D HMBC spectrum of AcYS11

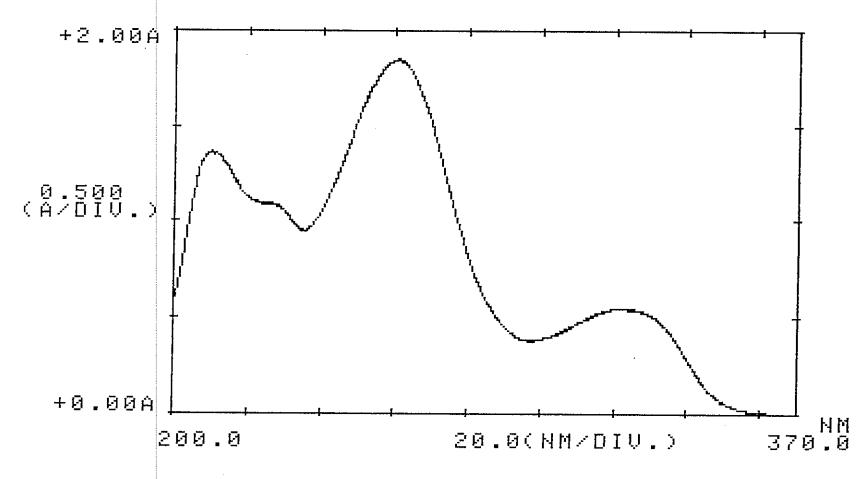


Figure 152 UV (CHCl₃) spectrum of AcYS6

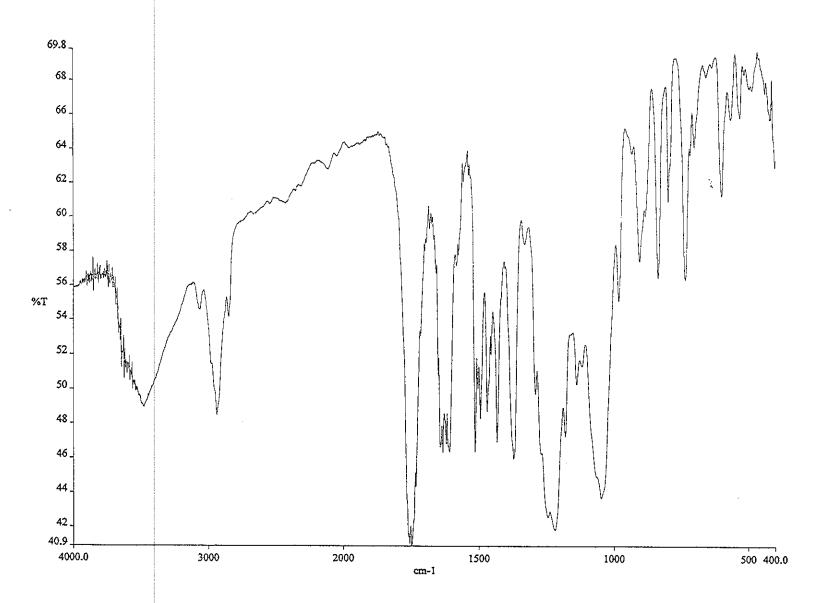


Figure 153 IR (neat) spectrum of AcYS6

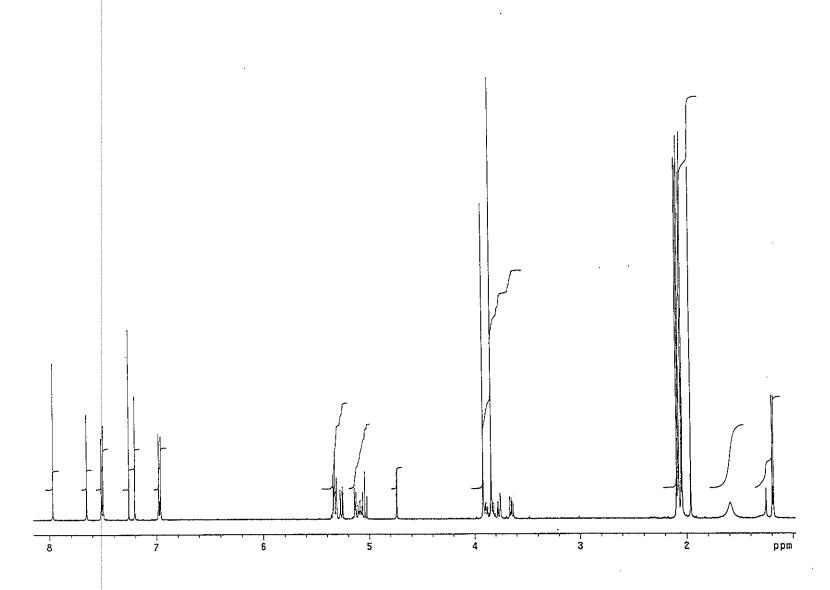


Figure 154 1 H NMR (500 MHz) (CDCl₃) spectrum of AcYS6

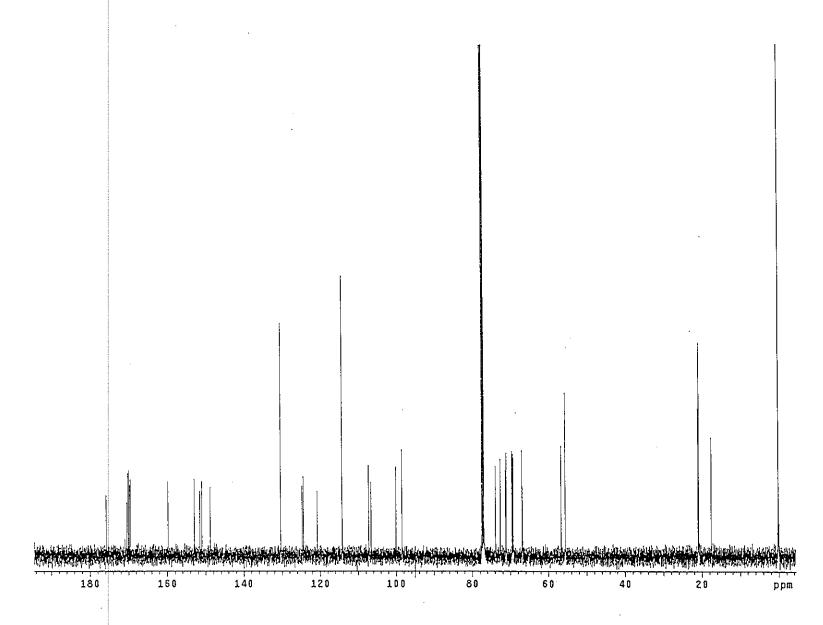


Figure 155 ¹³C NMR (125 MHz) (CDCl₃) spectrum of AcYS6

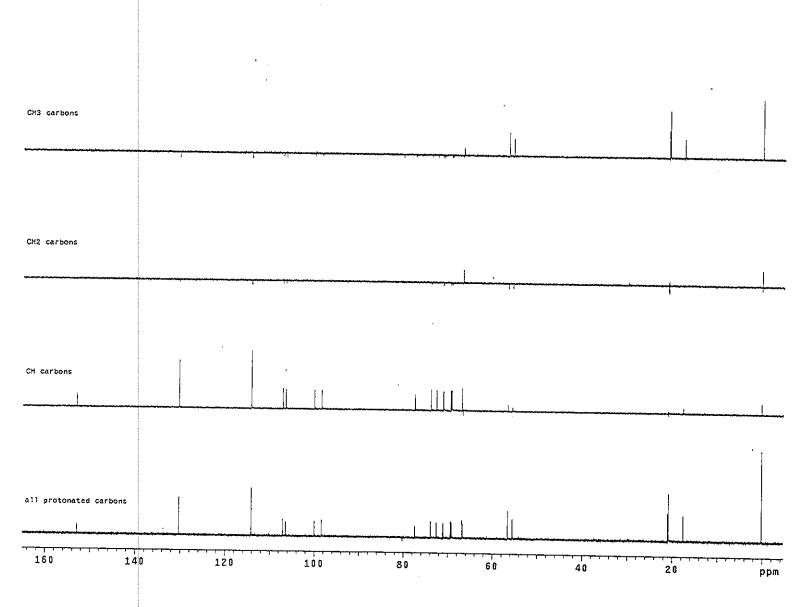
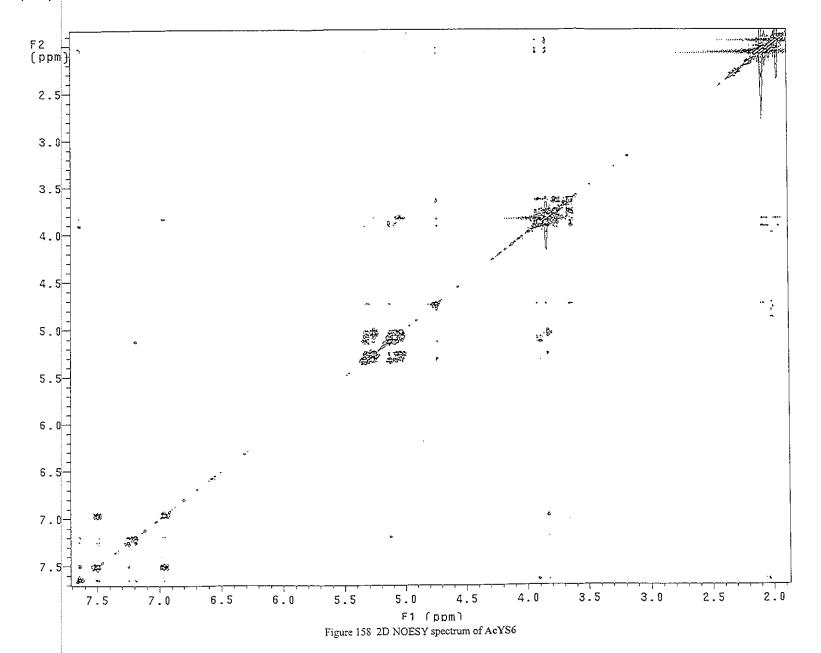
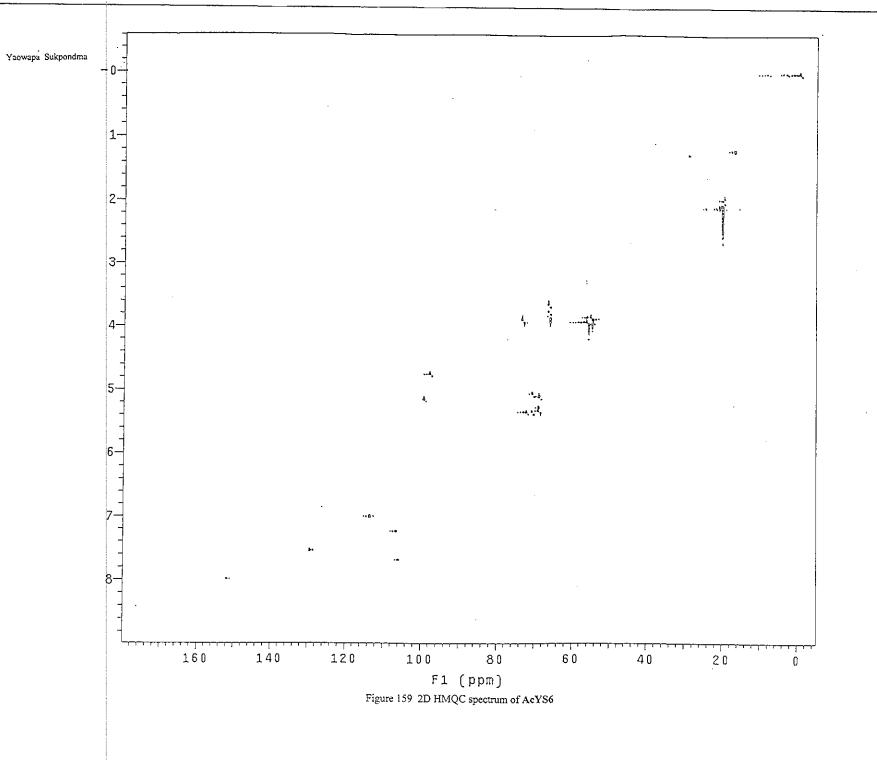




Figure 156 DEPT (135°) (CDCl₃) spectrum of **AcYS6**

Figure 157 ¹H-¹H COSY spectrum of AcYS6

Appendix/359

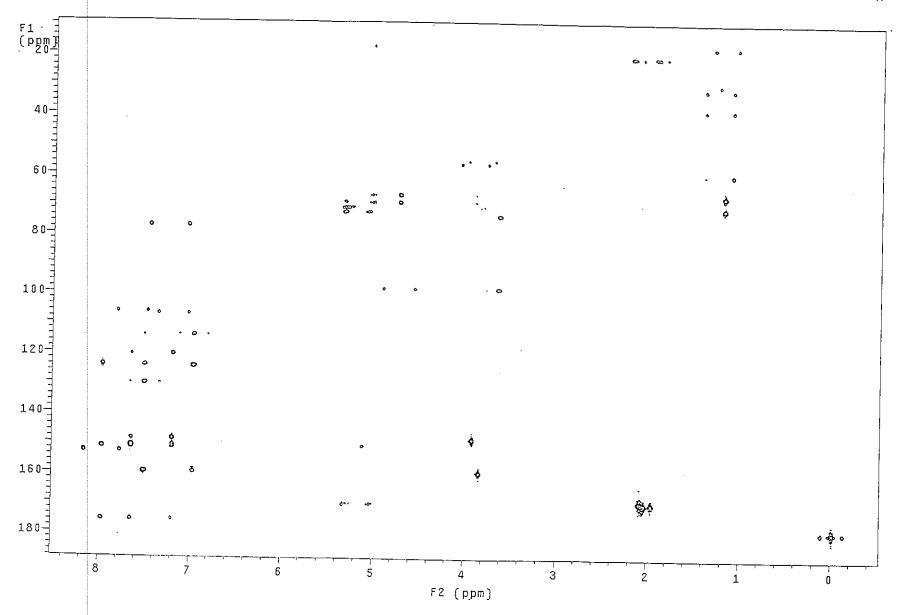


Figure 160 2D HMBC spectrum of AcYS6

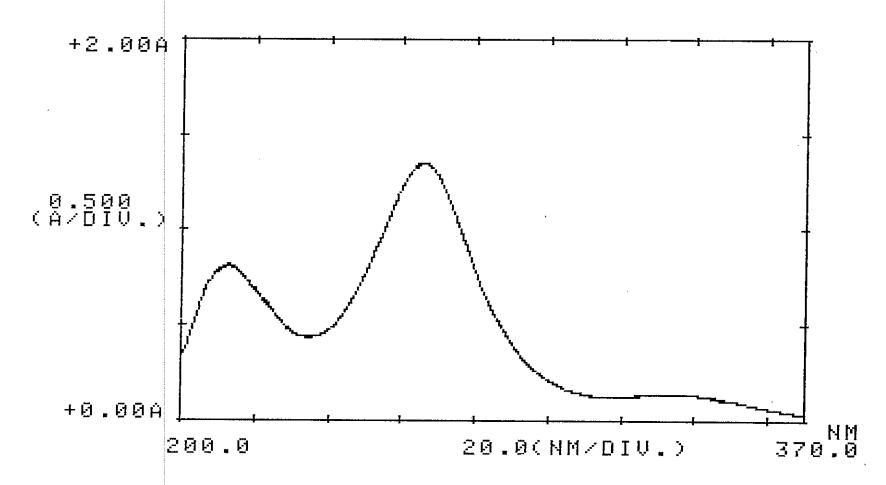


Figure 161 UV (CHCl₃) spectrum of AcYS7

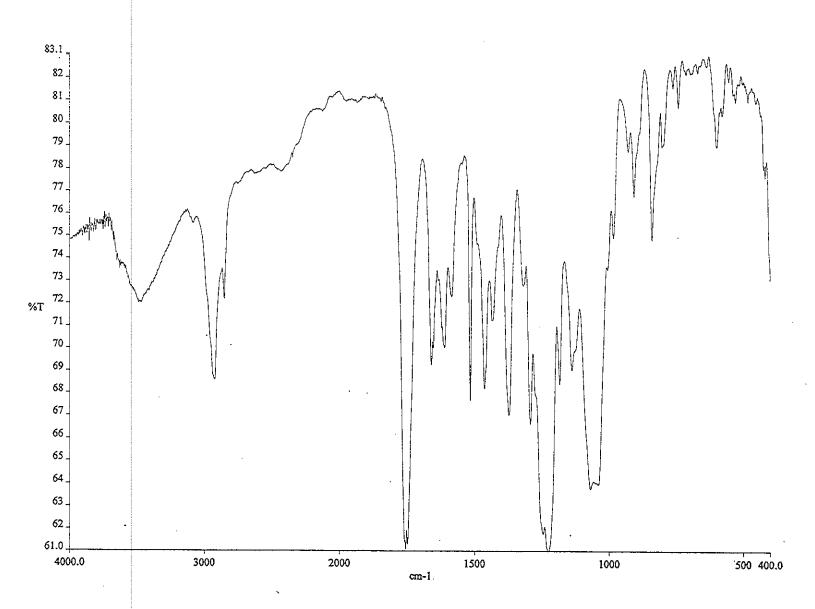


Figure 162 IR (neat) spectrum of AcYS7

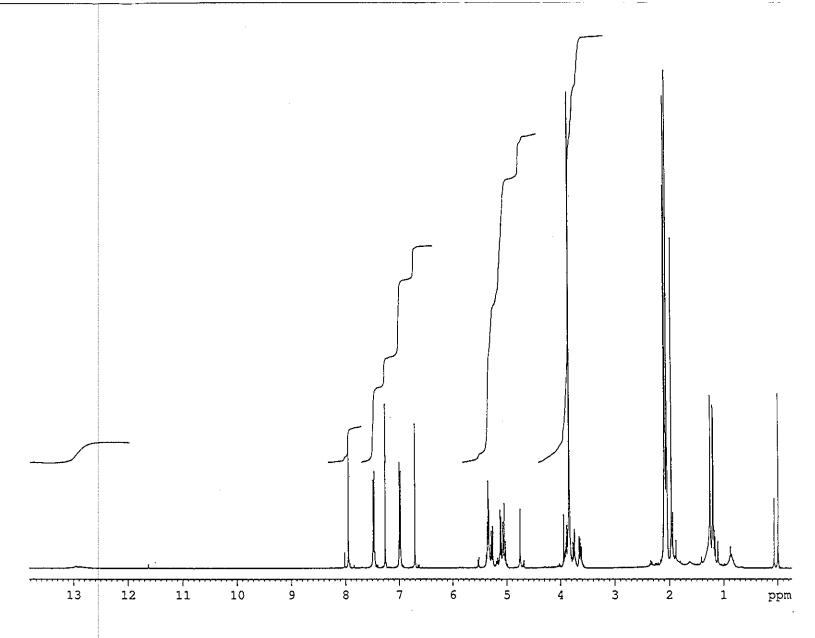


Figure 163 1 H NMR (400 MHz) (CDCl₃) spectrum of AcYS7

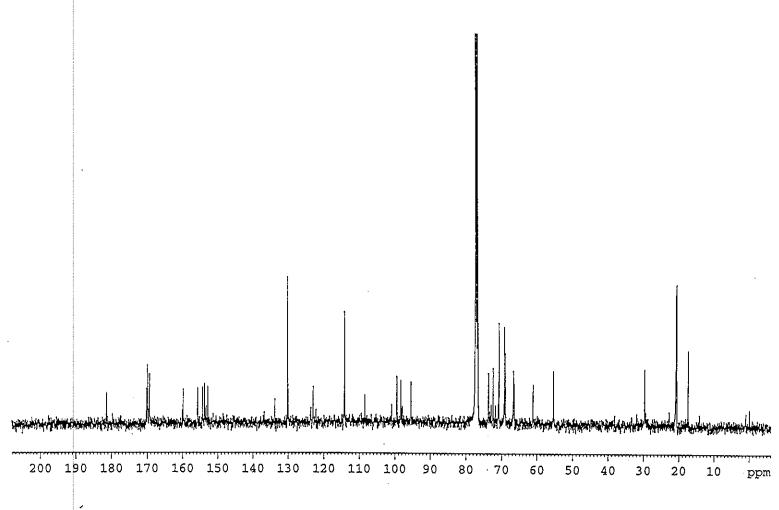


Figure 164 ¹³C NMR (100 MHz) (CDCl₃) spectrum of AcYS7

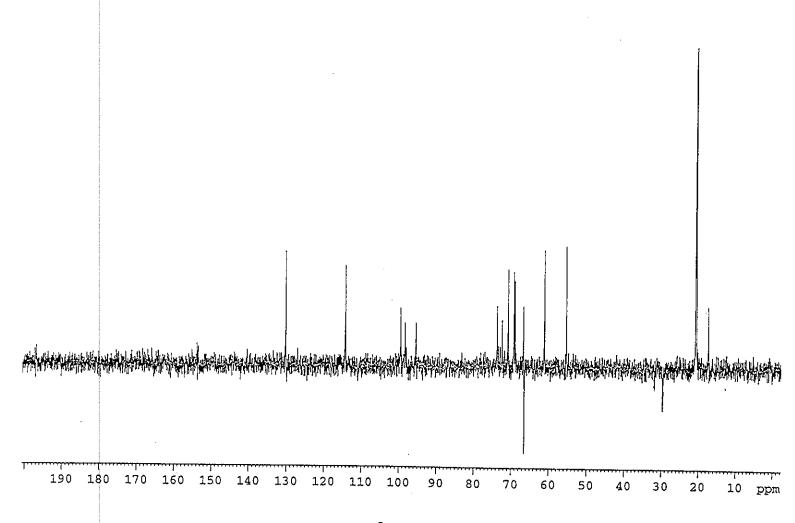


Figure 165 DEPT (135°) (CDCl₃) spectrum of AcYS7

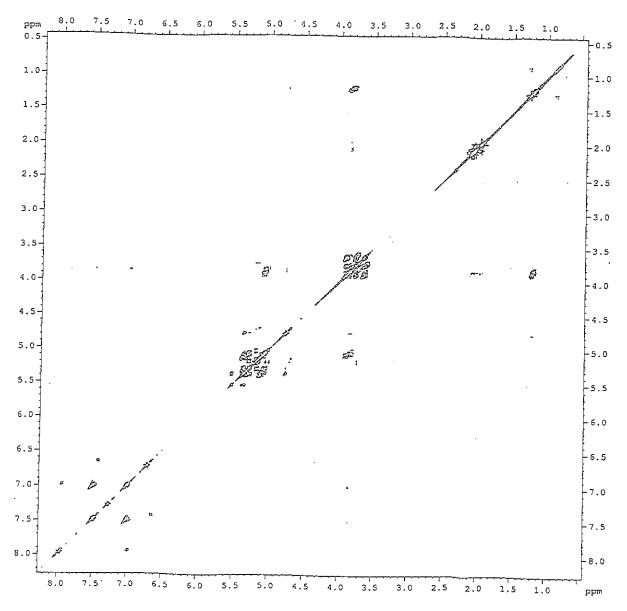


Figure 166 ¹H-¹H COSY spectrum of AcYS7

-

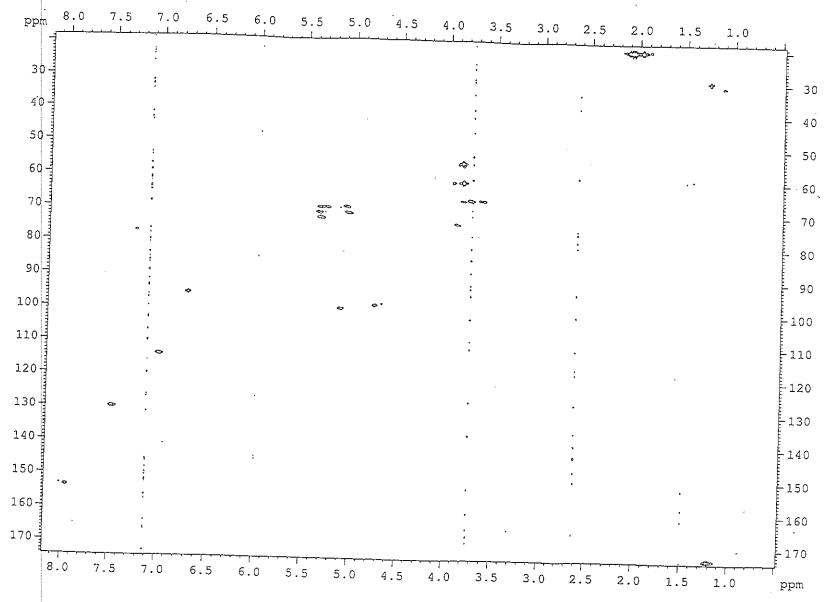


Figure 167 2D HMQC spectrum of AcYS7

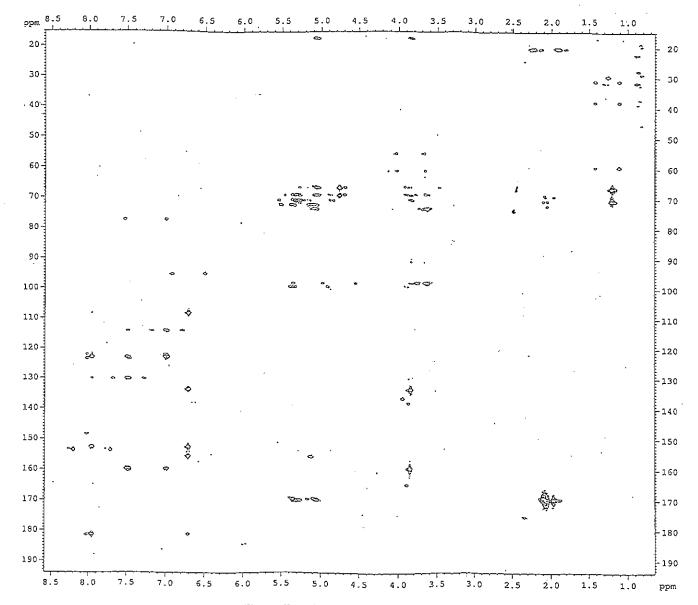


Figure 168 2D HMBC spectrum of AcYS7

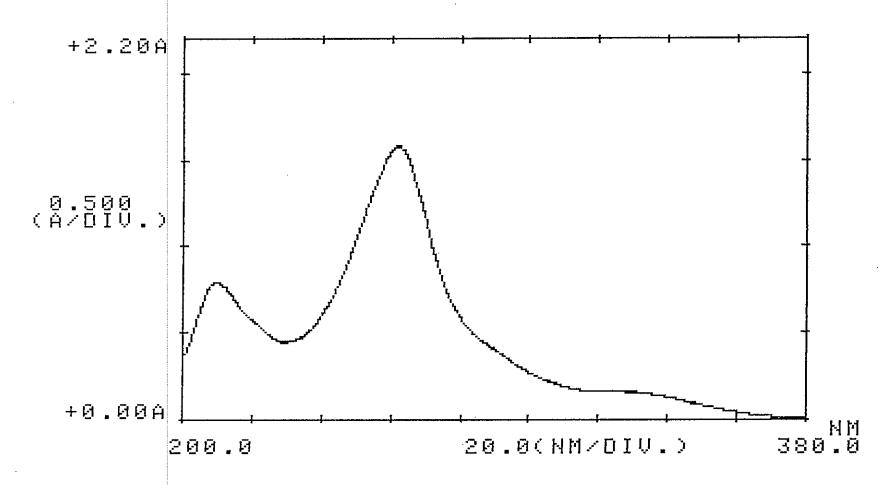


Figure 169 UV (CH₃OH) spectrum of YS4

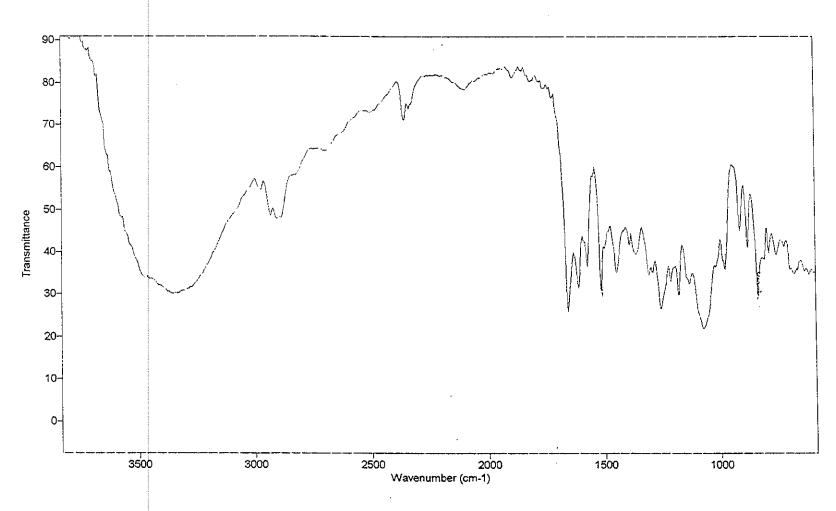


Figure 170 IR (KBr) spectrum of YS4

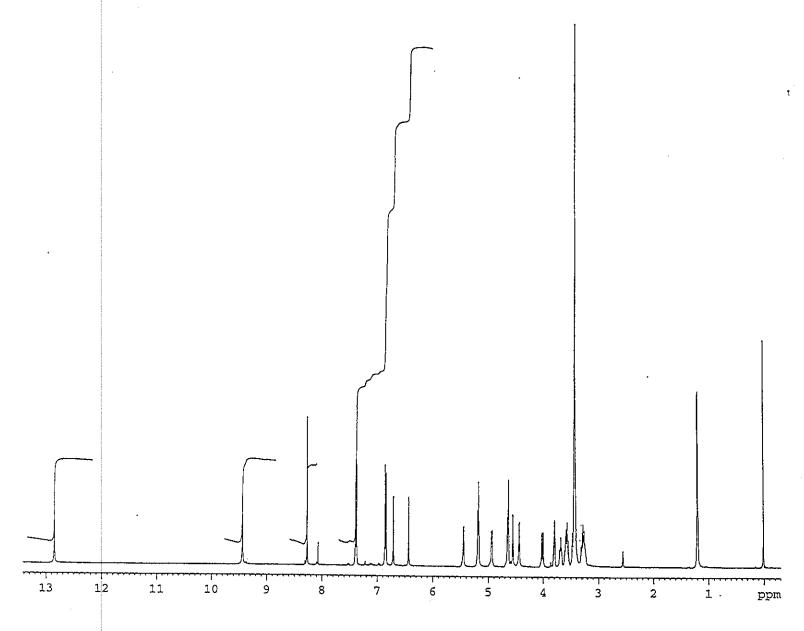


Figure 171 1 H NMR (400 MHz) (CDCl₃ +DMSO- d_6) spectrum of **YS4**

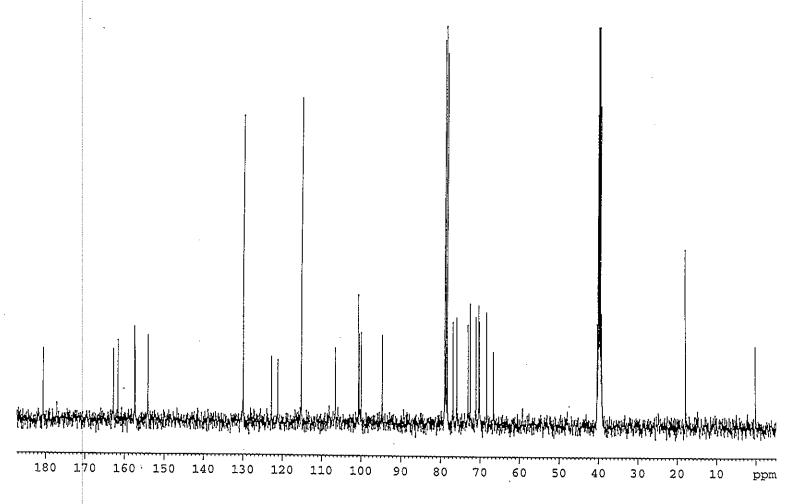


Figure 172 13 C NMR (100 MHz) (CDCl₃ + DMSO- d_6) spectrum of YS4

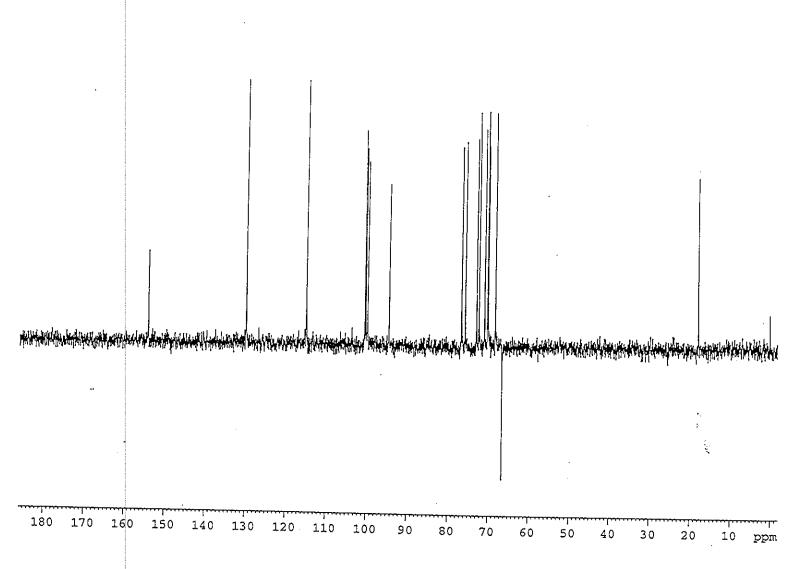


Figure 173 DEPT (135°) (CDCl₃ + DMSO-d₆) spectrum of **YS4**

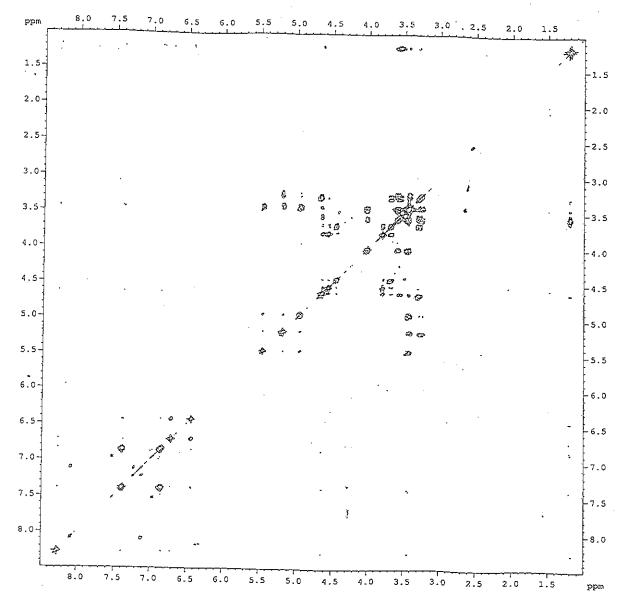


Figure 174 ¹H-¹H COSY spectrum of YS4

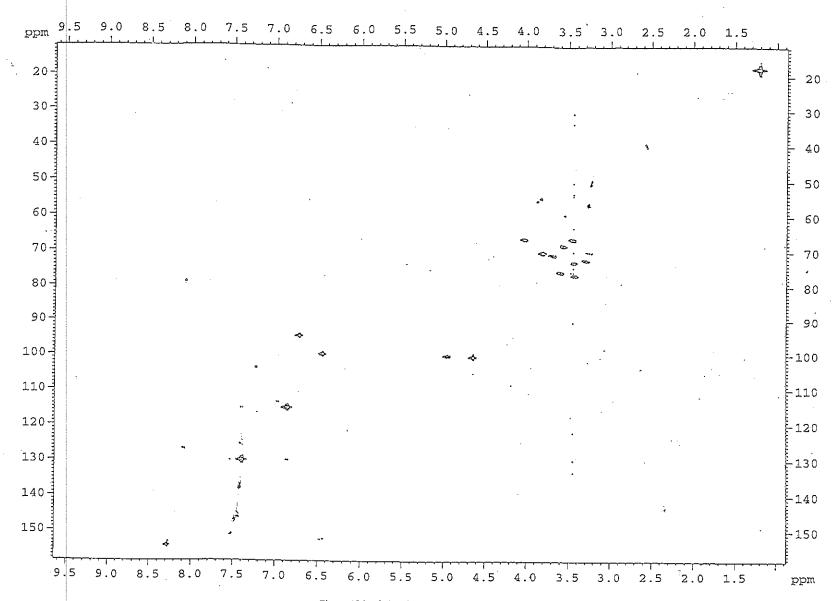


Figure 175 2D HMQC spectrum of YS4

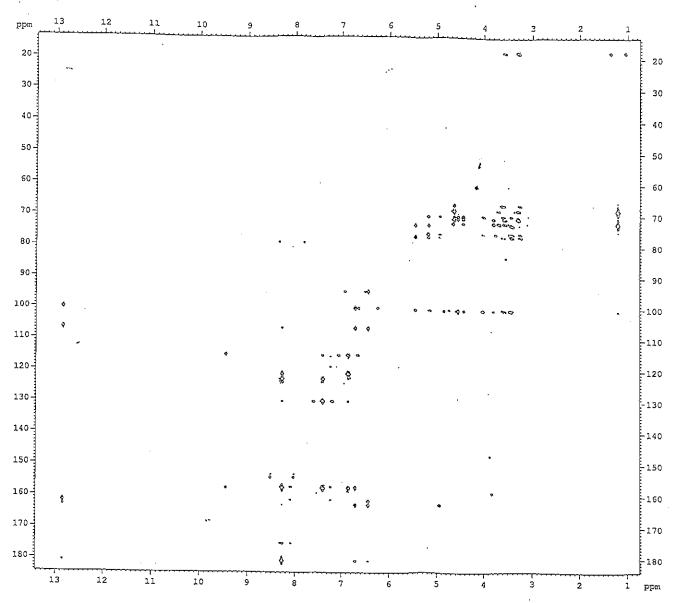


Figure 176 2D HMBC spectrum of YS4

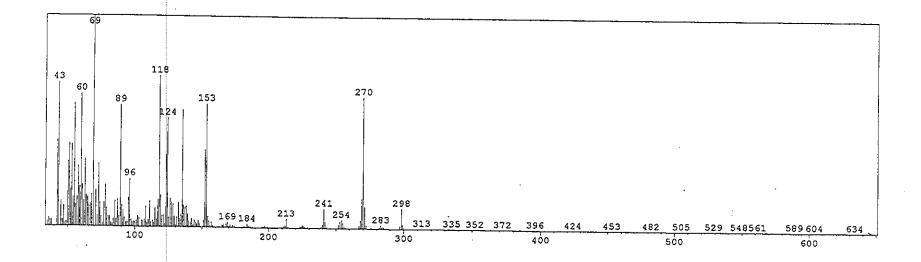


Figure 177 Mass spectrum of YS4

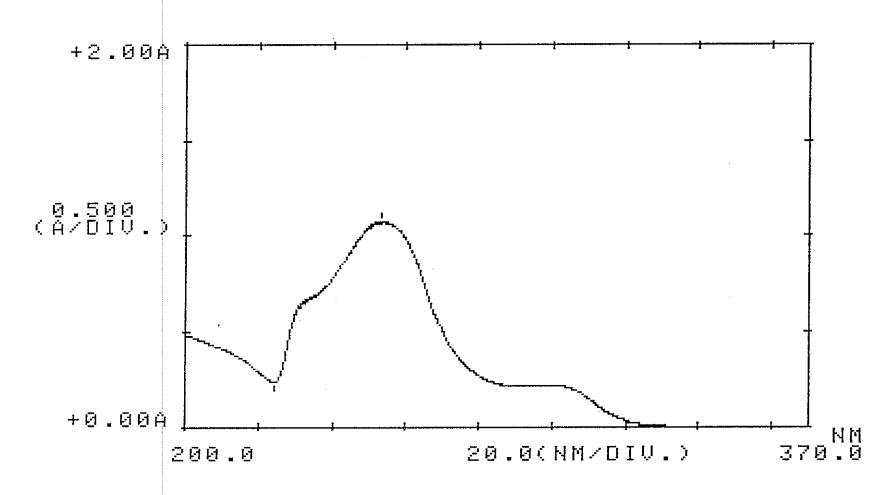


Figure 178 UV (CHCl₃) spectrum of AcYS4

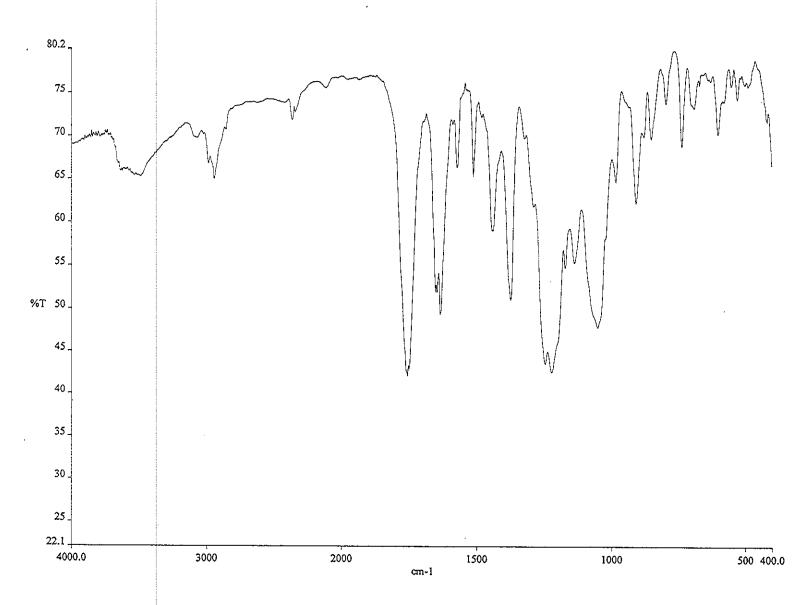


Figure 179 IR (neat) spectrum of AcYS4

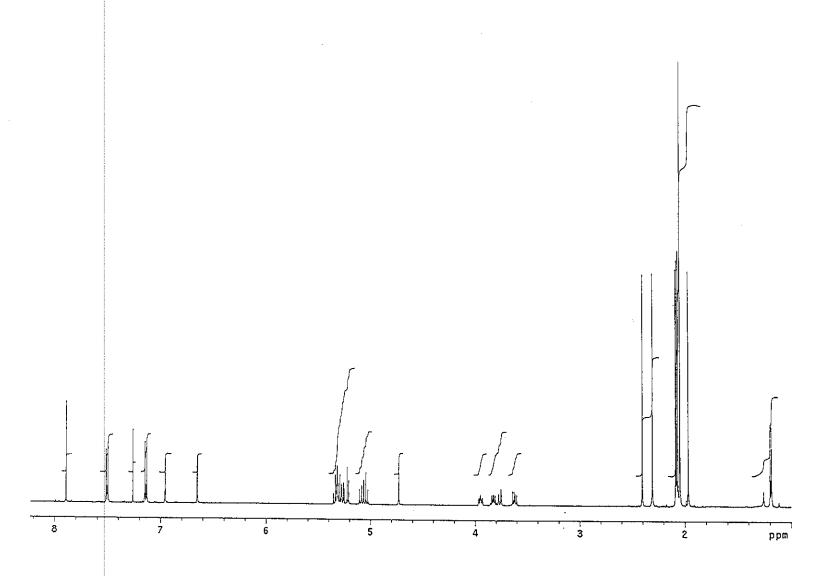


Figure 180 ¹H NMR (500 MHz) (CDCl₃) spectrum of AcYS4

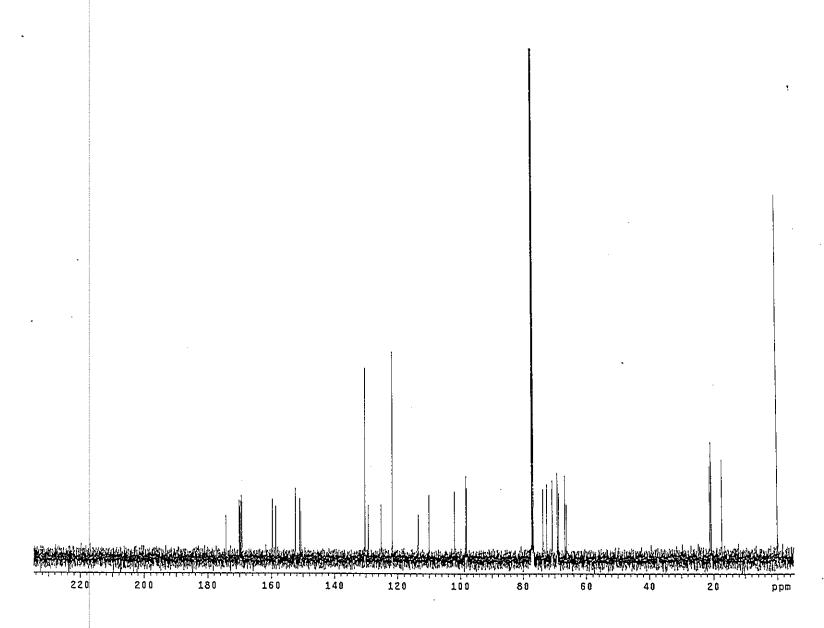


Figure 181 ¹³C NMR (125 MHz) (CDCl₃) spectrum of **AcYS4**

Bibliography

- รุ่งระวี เต็มศิริฤกษ์กุล และ ชาติชาย ศันสนียชีวิน. 2541. <u>สมุนไพรไทย : ภูมิปัญญาของชาติชุคที่</u>

 1. (ซีคีรอม) กรุงเทพฯ : โครงการเผยแพร่ข้อมูลและตรวจสอบมาตรฐานสมุนไพร ภาควิชา
 เภสัชพฤกษศาสตร์ คณะเภสัชศาสตร์ มหาวิทยาลัยมหิคล.
- วุฒิ วุฒิธรรมเวช. 2540. <u>สารานุกรมสมุนไพร รวมหลักเภสัชกรรมไทย</u>. พิมพ์ครั้งที่ 1. หน้า 228. กรุงเทพฯ : โอเดียนสโตร์.
- Ahmed, M., Shireen, K.F., Rashid, M.A. and Mahmud-UL-Ameen. 1989. "A further rotenoid from *Derris elliptica*" *Planta Med.* 55(2): 207-208.
- Agrawal, P.K. 1992. "NMR Spectroscopy in the structural elucidation of oligosaccharides and glycosides" *Phytochemistry* 31 (10): 3307-3330.
- Barlow, B.A. 1997. <u>Flora Malesiana</u>. Series I Vol. 13, pp. 209-401, Netherlands: Publication Department Rijhsherbraium/Hortusbotanicus.
- Bose, P.C., Kirtaniya, C.L. and Adityachoudhury, N. 1976. "Occurrence of dehydrorotenone in *Derris uliginosa* Benth." *Indian J. Chem.* 14B (12): 1012A.
- Braz Filho, R., Gottlieb, O.R. and Mourao, A.P. 1975a. "Chemistry of Brazilian leguminosae. 47. A stilbene and two flavanones from *Derris rariflora*" *Phytochemistry* 14 (1): 261-263.
- Braz Filho, R., Gottlieb, O.R. and Mourao, A.P. 1975b. "Flavonoids from *Derris* species" *Phytochemistry* 14: 1454-1456.

- Chavalittumrong, P., Chivapat, S., Chuthaputti, A., Rattanajarasroj, S. and Punyamong, S. 1999. "Chronic toxicity study of crude extract of *Derris scandens* Benth." *Songklanakarin J. Sci. Technol* 21 (4): 425-433.
- Chibber, S.S. and Sharma, R.P. 1979a. "Robustigenin, a new isoflavone from *Derris robusta* seed shells" *Phytochemistry* 18 (6): 1082.
- Chibber, S.S. and Sharma, R.P. 1979b. "Derrugenin, a new isoflavone from *Derris robusta* seed shells" *Phytochemistry* 18 (9): 1583-1584.
- Chibber, S.S., Sharma, R.P. and Dutt, S.K. 1979c. "Rubone, a new chalcone from *Derris robusta* seed shells" *Phytochemistry* 18 (12): 2056.
- Chibber, S.S. and Sharma, R.P. 1979d. "5-Hydroxy-7-methoxyisoflavone from seeds of *Derris robusta*" *Planta Med.* 36 (4): 379-380.
- Chibber, S.S. and Sharma, R.P. 1979e. "Robustigenin-5-O-methyl ether, A new isoflavone from *Derris robusta*" *Indian J. Chem.* 17B: 649-650.
- Chibber, S.S. and Sharma, R.P. 1980a. "Chemical Constituents of seeds of *Derris robusta*" *Indian J. Chem.* 19B: 471-472.
- Chibber, S.S. and Sharma, R.P. 1980b. "Derrone, a new pyranoisoflavone from *Derris robusta* seeds" *Phytochemistry* 19 (8): 1857-1858.
- Chibber, S.S., Sharma, R.P. and Dutt, S.K. 1981. "Derrone-4'-O-methyl ether from seeds of *Derris robusta*" *Curr. Sci.* 50 (18): 818-819.
- Clark, E.P. and Keenan, G.L. 1933. "Note on the occurrence of dehydrodeguelin and dehydrotoxicarol in some samples of *Derris* roots" *J. Am. Chem. Soc.* 55: 422-423.

- Crombie, L. and Peace, R. 1961. "Structure and stereochemistry of sumatrol and malaccol" *J. Chem. Soc.*: 5445-5448.
- Crombie, L., Green, C.L. and Whiting, D.A. 1968a. "Biosynthesis of rotenoids, the origin of C-6a and the extra methylene at C-6" *Chem. Commun.* 1968: 234.
- Crombie, L., Green, C.L. and Whiting, D.A. 1968b. "Biosynthesis of rotenoids; origin of C-6 and C-6a" J. Chem. Soc. C (24): 3029-3032.
- Cui, B., Nakamura, M., Kinjo, J. and Nohara, T. 1993. "Chemical Constituents of Astragali semen" Chem. Pharm. Bull. 41 (1): 178-182.
- Delle Monache, F., Cairo Valero, G., Sialer De Zapata, D. and Marini-Bettolo, G.B. 1977. "3-Aryl-4-methoxycoumarins and isoflavones from *Derris glabrescens*" *Gazz. Chim. Ital.* 107 (7-8): 403-407.
- Desai, H.K., Gawad, D.H., Joshi, B.S., Parthasarathy, P.C., Ravindranath, K.R., Saindane, M.T., Sidhaye, A.R. and Viswanathan, N. 1977. "Chemical investigation of indian plants: Part X" *Indian J. Chem.* 15B (3): 291-293.
- Dianpeng, L., Mingan, O., Jansakul, C. and Chongren, Y. 1999. "Two isoflavonoids glycosides from *Derris scandens*" *Yaoxue Xuebao* 34 (1): 43-45.
- East, A.J., Ollis, W.D. and Wheeler, R.E. 1969. "Natural occurrence of 3-aryl-4-hydroxycoumarins. Part I. Phytochemical examination of *Derris robusta* (Roxb.) Benth." *J. Chem. Soc. C.* 3:365-374.
- Falshaw, C.P., Harmer, R.A., Ollis, W.D. and Wheeler, R.E. 1969. "Natural occurrence of 3-aryl-4-hydroxycoumarins. Part II. Phytochemical examination of *Derris scandens*" *J. Chem. Soc. C.* 3: 374-382.

- Fossen, T., Larsen, A., Kiremire, B.T. and Andersen, O.M. 1999. "Flavonoids from blue flowers of *Nymphaea caerulea*" *Phytochemistry* 51:1133-1137.
- Fujita, M., Nagai, M. and Inoue, T. 1982. "Carbon-13 nuclear magnetic resonance spectral study. Effect of O-methylation of ortho-substituted phenols on the aryl carbon shielding and its application to interpretation of the spectra of some flavonoids" *Chem. Pharm. Bull.* 30 (4):1151-1156.
- Garcia, M., Kano, M.H.C., Vieira, D.M., Nascimento, M.C.D. and Mors, W.B. 1986. "Isoflavonoids from *Derris spruceana*" *Phytochemistry* 25(10): 2425-2427.
- Gaudin, O. and Vacherat, R. 1938. "Rotenone and the ichthyotoxic power in some plants of the French Sudan" *Bull. Sci. Pharmacol.* 45: 385-394.
- Ghosh, A., Misra, S., Dutta, A.K. and Choudhury, A. 1985. "Pentacyclic triterpenoids and sterols from seven species of mangrove" *Phytochemistry* 24 (8): 1725-1727.
- Guang, W., Fukushi, T., Hostettmann, K. and Tahara, S. 1998. "Isoflavonoid glycosides from *Eriosema tuberosum*" *Phytochemistry* 49 (1): 251-254.
- Gupta, A., Siddiqui, I.R. and Sharma, J.P. 1998. "Flavone and isoflavone derivatives from the seeds of *Derris robusta* with pods" *Indian J. Chem.* 37B (4): 419-421.
- Gupta, A., Siddiqui, I.R., Singh, J. and Sharma, J.P. 1999. "New aliphatic compounds from the seeds with pods of *Derris robusta*" *Indian J. Chem.* 38B (6) : 752-753.
- Hooker, J.D. 1879. <u>The Flora of British India</u>. Vol.II, pp. 240, Great Britain: Headley Brothers LTD.

- Intarit, S. 1999. "Chemical Constituents of Eugenia malaccensis, Garcinia nigrolineata and Derris scandens" Master of Science Project in Chemical Studies, Prince of Songkla University. (Unpublished)
- Jansakul, C., Srichanbarn, A. and Saelee, A. 1997. "Some pharmacological studies of a hypotensive fraction from *Derris scandens*" *J.Sci.Soc.Thailand* 23: 323-334.
- Jansakul, C. 1999. "Cardiovascular effects of a fraction from *Dendrophthoe pentandra*" The 8th southeast Asian-Western Pacific Regional Meeting of Pharmacologists Taipei Internation Convention Center, Taipei, China, 1-5 November 1999, pp.s103.
- Johnson, A.P., Pelter, A. and Stainton, P. 1966a. "Extractives from *Derris scandens*. Part I. The structure of scandenin and lonchocarpic acid" *J. Chem. Soc.*, Org. 2: 192-203.
- Johnson, A.P. and Pelter, A. 1966b. "The structure of robustic acid, a new 4-hydroxycoumarin. Part I. Phytochemical examination of *Derris robusta*" *J. Chem. Soc.* C. (3): 365-374.
- Johnson, A.P. and Pelter, A. 1966c. "The structure of robustic acid, a new 4-hydroxy-3-phenylcoumarin" J. Chem. Soc. C: 606-611.
- Kaewpet, M. 2000. "Isoflavones and Isoflavone glycosides from *Derris scandens*"

 Department of Chemistry, Faculty of Science: Prince of Songkla University.

 (Unpublished)
- Kim, Y.H., Lee, E.S., Koonchanok, N.M., Geahlen, R.L., Ashendel, C.L. and Chang, C.J. 1995. "Prenylated flavanones from *Derris laxiflora*" *Nat. Prod. Lett.* 6 (3): 223-231.

- Kodama, T., Yamakawa, T. and Minoda, Y. 1980. "Rotenoid biosynthesis by tissue culture of *Derris elliptica*" *Agric. Biol. Chem.* 44: 2387-2390.
- Lin, Y.L., Chen, Y.L. and Kuo, Y.H. 1991a. "Three new flavonoids, 3'-methoxylupinifolin, laxifolin and isolaxifolin from the roots of *Derris laxiflora* Benth." *Chem. Pharm. Bull.* 39 (12): 3132-3135.
- Lin, Y.L., Chen, Y.L. and Kuo, Y.H. 1991b. "Two new chalcones, laxichalcone and derrichalcone, from the roots of *Derris laxiflora* Benth." *Chem. Express.* 6 (10): 747-750.
- Lin, Y.L., Chen, Y.L. and Kuo, Y.H. 1992. "Two new flavanones and two new chalcones from the roots of *Derris laxiflora* Benth." *Chem. Pharm. Bull.* 40 (9): 2295-2299.
- Lin, Y.L. and Kuo, Y.H. 1993a. "6a,12a-Dehydro-β-toxicarol and derricarpin, two new isoflavonoids, from the roots of *Derris oblonga* Benth." *Chem. Pharm. Bull.* 41 (8): 1456-1458.
- Lin, Y.L., Chen, Y.L. and Kuo, Y.H. 1993b. "A novel 12-deoxorotenone, 12-deoxo-12α-acetoxyelliptone, from the roots of *Derris Oblonga*" *J. Nat. Prod.* 56 (7): 1187-1189.
- Lin, Y.L. and Kuo, Y.H. 1993c. "Two new coumaronochromone derivatives, oblongin and oblonginol from the roots of *Derris oblonga* Benth." *Heterocycles* 36 (7): 1501-1507.
- Lin, Y.L. and Kuo, Y.H. 1995. "6-Oxo-6a,12a-dehydro-α-toxicarol, a 6-oxodehydrorotenone from the roots of *Derris oblonga* Benth." *Heterocycles* 41 (9): 1959-1965.

- Lyra, D.A., De Mello, J.F., Monache, G.D., Monache, F.D. and Marini-Bettolo, G.B. 1979. "Flavonoids from *Derris mollis*" *Gazz. Chim. Ital.* 109 (1-2): 93-94.
- Mahidol, C., Prawat, H., Ruchirawat, S., Lihkitwitayawuid, K., Lin, Long-Ze. and Cordell, G.A. 1997. "Prenylated flavonoids from *Derris reticulata*" *Phytochemistry* 45 (4): 825-829.
- Maillard, M., Adewunmi, C.O. and Hostettmann, K. 1992. "A triterpene glycoside from the fruits of *Tetrapleura tetraptera*" *Phytochemistry* 31 (4): 1321-1323.
- Markham, K.R. 1982. <u>Techniques of flavonoid identification</u>. New York : Academic press INC.
- Marlier, M., Dardenne, G. and Casimir, J. 1976. "2S-Carboxy-4R,5S-dihydroxypiperidine and 2S-carboxy-4S, 5S-dihydroxypiperidine separated from *Derris elliptica*" *Phytochemistry* 15 (1): 183-185.
- Menichini, F., Delle Monache, F. and Marini-Bettolo, G.B. 1982. "Flavonoids and rotenoids from Tephrosieae and related tribes of Leguminosae" *Planta. Med.* 42: 243-244.
- Milsum, J.N. 1938. "Derris uliginosa" Malayan Agr. J. 26: 18.
- Mitrocotsa, D., Skaltsounis, A.L., Mitaku, S., Harvala, C. and Tillequin, F. 1999. "Flavonoids and terpene glycosides from European Ebenus species" Biochem. Syst. Ecol. 27 (3): 305-307.
- Moretti, C. and Grenand, P. 1982. "Nivrees, or Ichthyotoxic plants of French Guyana" J. Ethnopharmacol 6 (2): 139-160.

- Mors, W.B., Nascimento, M.C.D., Ribeiro Do Valle, J. and Aragao, J.A. 1973. "Ichthyotoxic activity of plants of the genus *Derris* and compounds isolated therefrom" *Cienc. Cult.* (Sao Paulo) 25 (7): 647-648.
- Nair, A.G.R. and Seetharaman, T.R. 1986. "Rhamnetin-3-O-neohesperidoside, a new flavonoids from the leaves of *Derris trifoliata*" *J. Nat. Prod.* 49 (4): 710-711.
- Nascimento, M.C.D. and Mors, W.B. 1970. "Flavonoids of *Derris sericea*" An. Acad. Brasil. Cienc. 42 (Supl.): 87-92.
- Nascimento, M.C.D. and Mors, W.B. 1972. "Chalcones of root bark of *Derris sericea*" *Phytochemistry* 11 (10): 3023-3028.
- Nascimento, M.C.D., Vasconcellos Dias, R.L.D. and Mors, W.B. 1976. "Flavonoids of *Derris obtusa*: aurones and auronols" *Phytochemistry* 15: 1553-1558.
- Nascimento, M.C.D. and Mors, W.B. 1981. "Flavonoids of *Derris araripensis*" *Phytochemistry* 20: 147-152.
- Nauvanit, S. 1998. "Chemical Constituents of Gardenia sootepensis Hutch. And Insecticidal actitivity of some Zingiberaceous plants on Tobacco Cut worm (Spodoptera litura Fabr.)" Master of Science Thesis in Chemical Studies, Prince of Songkla University. (Unpublished)
- Obara, Y., Matsubara, H. and Munakata, K. 1976. "Isolation and identification of tubaic acid and β -tubaic acid from *Derris* roots" *Agric. Biol. Chem.* 40 (6): 1245-1246.
- Obara, Y. and Matsubara, H. 1981. "Isolation and identification of (-)-maackiain from *Derris* roots" *Meijo Daigaku Nogakubu Gakujutsu Hokoku* 17: 40-41.

- Ozden, S., Durust, N., Toki, K., Saito, N. and Honda, T. 1998. "Acetylated kaempferol glycosides from the flowers of *Delphinium formosum*" *Phytochemistry* 49 (1): 241-245.
- Parente, J.P. and Mors, W.B. 1980. "Derrissaponin, a new hydrophllic constituent of Timbo-urucu" *An. Acad. Bras. Cienc.* 52 (3): 503-514.
- Parthasarathy, M.R., Seshadri, T.R. and Varma, R.S. 1976. "New isoflavonoid glycosides from *Dalbergia paniculata*" *Phytochemistry* 15: 1025-1027.
- Pelter, A. and Stainton, P. 1966. "Extractives from *Derris scandens*. Part II. The isolation of osajin and two new isoflavones, scandenone and scandinone" *J. Chem. Soc. C.*, 7:701-704.
- Petard, P. 1951. "Ichthyotoxic plants of polynesia" *Med. Trop.* (Marseille) 11: 498-511.
- Rao, M.N.; Krupadanam, G.L.D. and Srimannarayana, G. 1994. "Four isoflavones and two 3-aryl coumarins from stems of *Derris scandens*" *Phytochemistry* 37 (1): 267-269.
- Rocha, A.I. and Zoghbi, G.B. 1982. "Isoflavanones in speices of the genus *Derris* (Leguminosae)" *Acta Amazonica* 12 (3): 615-618.
- Sekine, T., Inagaki, M., Ikegami, F., Fujii, Y. and Ruangrungsi, N. "Six diprenylisoflavones, derrisisoflavone A-F, from *Derris scandens*" *Phytochemistry* 52: 87-94.
- Sengupta, P., Das, P.B. and Saha, S.K. 1971. "Triterpenes from *Derris scandens*" *J. Indian Chem. Soc.* 48 (1): 95-96.

- Shukla, R.V.N. and Misra, K. 1981. "Two flavonoid glycosides from the bark of *Prosopis juliflora*" *Phytochemistry* 20: 339-340.
- Sudachan, K. 1967. "The active principles in *Derris trifoliata*" *Thesis-MS-Chulalongkorn Univ.* 1967: 74pp-.
- Suwannaroj, N., Karnchanapoom, T., Ryoji, K. and Yamazaki, K. 2000. "Isoflavone glycosides from *Derris scandens* Bentham stems" The fifth joint seminar natural medicines, Bangkok, Thailand, 15-17 November 2000, 121.
- Tsukayama, M., Horie, T., Yamashita, Y., Masumura, M. and Nakayama, M. 1980. "The synthesis of 5,5'-dihydroxy-7,2',4'-trimethoxyisoflavone and its isomer: A revised structure of Derrugenin" *Heterocycles* 14: 1283-1286.
- Vasconcelos, M.N.L. and Maia, J.G.S. 1976. "Chemical study of *Derris negrensis*" *Acta Amazonica* 6 (1): 59-61.
- Welter, A., Jadot, J., Dardenne, G., Marlier, M. and Casimir, J. 1976. "2,5-Dihydroxymethyl-3, 4-dihydroxypyrrolidine from the leaves of *Derris ellipica*" *Phytochemistry* 15 (5): 747-749.
- Yoxopeus, H.J. 1952. "The breeding of *Derris elliptica* and *Derris malaccensis*. I. Variation and the origin of the cultivated material" *Euphytica* 1:34.
- Yuldashev, M.P. 1998. "Flavonoids of the epigeal part of *Cicer flexuosum* and *C. mogoltavicum*" *Chem. Nat. Compd.* 34 (2): 195-196.
- Zoghbi, M.D.G.B., Marques, M.D.F.D.S., Cabral, J.A.D.S. and Braz Filho, R. 1988. "Isolation of coumestrol from a species of the genus *Derris*" *Acta Amazonica* 18 (1/2): 57-59.

VITAE

Name

Miss Yaowapa Sukpondma

Birth Date

5 January 1976

Educational Attainment

Degree

Name of Institution

Year of Graduation

B.Sc. (Chemistry)

Prince of Songkla University

1997

Scholarship Awards during Enrolment

Scholarship was awarded by The Institute for the Promotion of Teaching Science Technology (IPST) and Higher Education Development Project: Postgraduate Education and Research Program in Chemistry, funded by The Royal Thai Government (PERCH).