

การประเมินเสถียรภาพทางสถิตยศาสตร์และพลศาสตร์ของเชื่อนดิน กรณีศึกษา เชื่อนคลองสะเดา

Static and Dynamic Stability Evaluation of an Earth Dam:

A Case Study of the Klong Sadao Dam

ฐิตินันท์ อินธนู

Thitinan Indhanu

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมโยธา

มหาวิทยาลัยสงขลานครินทร์

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Civil Engineering

Prince of Songkla University

2555

ลิขสิทธิ์ของมหาวิทยาลัยสงขลานครินทร์

ชื่อวิทยานิพนธ์	การประเมินเสถียรภาพทางสถิตยศาสตร์และพลศาสตร์ของเขื่อนคิน
	กรณีศึกษาเขื่อนคลองสะเดา
ผู้เขียน	นายฐิตินันท์ อินธนู
สาขาวิชา	วิศวกรรมโยธา

อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	คณะกรรมการสอบ
 (รองศาสตราจารย์ คร.ธนิต เฉลิมยานนท์)	ประธานกรรมการ (ผู้ช่วยศาสตราจารย์ คร.ภาสกร ชัยวิริยะวงศ์)
	กรรมการ (รองศาสตราจารย์ คร.ธนิต เฉลิมยานนท์)
	กรรมการ (ดร.ธนันท์ ชุบอุปการ)

.....กรรมการ (ผู้ช่วยศาสตราจารย์ คร.สุทธิศักดิ์ ศรลัมพ์)

บัณฑิตวิทยาลัย มหาวิทยาลัยสงขลานครินทร์ อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วน หนึ่งของการศึกษาตาม หลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมโยธา

> (ศาสตราจารย์ คร.อมรรัตน์ พงศ์คารา) คณบดีบัณฑิตวิทยาลัย

ชื่อวิทยานิพนชั่	การประเมินเสถียรภาพทางสถิตยศาสตร์ และพลศาสตร์ของเขื่อนดิน
	กรณีศึกษา เงื่อนคลองสะเดา
ผู้เขียน	นายฐิตินันท์ อินธนู
สาขาวิชา	วิศวกรรมโยธา (วิศวกรรมธรณีเทคนิค)
ปีการศึกษา	2554

บทคัดย่อ

เงื่อนคลองสะเดาตั้งอยู่ใกล้กับชายแดนไทย-มาเลเซีย ที่บ้านห้วยคู ตำบลสำนัก แด้ว อำเภอสะเดา จังหวัดสงขลา ห่างจากอำเภอสะเดาไปทางทิศตะวันตกเฉียงใต้ประมาณ 10 กิโลเมตร มีปริมาตรกักเก็บน้ำ 56.74 ล้านลูกบาศก์เมตร โดยมีพื้นที่ด้านท้ายน้ำได้แก่ อำเภอสะเดา อำเภอคลองหอยโข่ง อำเภอหาดใหญ่ และอำเภอบางกล่ำ ซึ่งมีประชากรรวม 530,692 คน โดยทั่วไปแล้วเงื่อนเป็นโครงสร้างทางวิศวกรรมที่มีโอกาสเกิดการพิบัติได้ยาก แต่ภัยธรรมชาติที่ ทำให้เงื่อนเกิดการพิบัติได้ คือ แผ่นดินไหว ถึงแม้ว่าเงื่อนคลองสะเดาจะตั้งอยู่ในพื้นที่ที่มีโอกาส เกิดแผ่นดินไหวที่มีความรุนแรงระดับต่ำ หลังจากเหตุการณ์แผ่นดินไหวที่เกิดขึ้นแถบหมู่เกาะสุ มาตรา ประเทศอินโดนีเซีย ในปีพ.ศ. 2547 ชาวบ้านที่อาศัยอยู่ทางด้านท้ายเงื่อน โดยเฉพาะ อำเภอ สะเดา และอำเภอหาดใหญ่ มีความกังวลว่าเงื่อนคลองสะเดาจะยังคงมีเสถียรภาพอยู่หรือไม่ เมื่อ ได้รับแรงกระทำจากแผ่นดินไหว ดังนั้น การศึกษาในครั้งนี้ได้ทำการศึกษาเสถียรภาพองตัวเงื่อน คลองสะเดาทั้งในสภาวะสถิตยศาสตร์และพลศาสตร์ โดยใช้ข้อมูลคลื่นแผ่นดินไหวจากเหตุการณ์ ที่สำคัญทั่วโลก และเหตุการณ์แผ่นดินไหวในท้องถิ่น

ผลการศึกษาพบว่า ลาดชันเขื่อนทางด้านเหนือน้ำและด้านท้ายน้ำมีค่าอัตราส่วน กวามปลอดภัยอยู่ในช่วง 2.255 – 2.673 และ 1.637 – 1.683 ตามลำดับ พฤติกรรมการตอบสนอง ทางพลศาสตร์ต่อแรงกระทำแผ่นดินไหวของตัวเขื่อนกลองสะเดามีก่าแตกต่างกันในแต่ละบริเวณ ของตัวเขื่อน ซึ่งเมื่อตัวเขื่อนกลองสะเดาได้รับแรงกระทำแผ่นดินไหวจากเหตุการณ์ Hawaii, 2010 ที่มีขนาดเท่ากับ 6.7 ริกเตอร์ มีก่าอัตราเร่งพื้นดินเท่ากับ 0.72g และก่า Predominant period เท่ากับ 0.28 วินาที พบว่าก่าอัตราเร่งในแนวราบของวัสดุถมเขื่อนมีแนวโน้มเพิ่มขึ้นตามกวามสูงของเขื่อน โดยมีก่ามากที่สุดเท่ากับ 3.31g ที่บริเวณสันเขื่อน ก่าการเกลื่อนตัวในแนวราบมีก่ามากที่สุดเท่ากับ 0.064 เมตร สำหรับการเปลี่ยนรูปถาวรของลาดชันเขื่อนที่วิเกราะห์โดยใช้วิธี Newmark's deformation analysis มีก่าการเกลื่อนตัวมากที่สุด 0.643 เมตร ทั้งนี้เนื่องจากกลื่นแผ่นดินไหว Hawaii, USA (2010) มีลักษณะที่ใกล้เคียงกับการสั่นพ้องกับค่าคาบธรรมชาติของตัวเขื่อนคลอง สะเดาที่มีค่าประมาณ 0.3 วินาที นอกจากนี้ผลการวิเคราะห์การเกิด Liquefaction บริเวณชั้นวัสดุ Filter material ทางด้านท้ายน้ำ พบว่า ตัวเขื่อนจะเริ่มเกิด Liquefaction เมื่อมีคลื่นแผ่นดินไหวที่มีค่า อัตราเร่งพื้นดินสูงกว่า 0.4g มากระทำ อย่างไรก็ตามโอกาสที่เขื่อนคลองสะเดาจะเกิด Liquefaction เป็นไปได้ยาก เนื่องจากอยู่ห่างจากรอยเลื่อนมีพลังมากกว่า 300 กิโลเมตร

คำหลัก : เงื่อนคลองสะเคา, การตอบสนองทางพลศาสตร์, อัตราเร่งสูงสุดของพื้นดิน, การเปลี่ยน รูปถาวร, การเกิด Liquefaction

Thesis Title	Static and Dynamic Stability Evaluation of an Earth Dam: A Case Study
	of the Klong Sadao Dam
Author	Mr. Thitinan Indhanu
Major Program	Civil Engineering (Geotechnical Engineering)
Academic Year	2011

ABSTRACT

The Klong Sadao Dam, the largest dam in Songkhla province, Southern Thailand, is located next to Thai-Malaysian border with water storage capacity of 56.74 million cubic meters. Downstream areas include Sadao, Klong Hoi Kong, Bang Klum and hat Yai districts with total popular of 530,692. Dam is a large engineering facility with low chance of failure but it would cause high is damage if failure takes places. Earthquake is natural disaster that could trigger dam collapse. Even though the Klong Sadao Dam is located in area of low risk earthquakes, the local people and authorities have raised concern about the stability of the Klong Sadao Dam subjected to an earthquake, especially after Sumatra earthquakes in 2004. The objective of this study was to evaluate static and seismic stability of the Klong Sadao Dam subjected to the ground acceleration data from major and local ground motions.

Analytical results showed that the static factor of safety of the dam ranged from 2.255 to 2.673 and from 1.637 to 1.683 for the upstream and downstream slopes respectively. The dynamic response of the Klong Sadao Dam showed that the horizontal displacement and acceleration of the dam increased with its height and a maximum horizontal displacement and acceleration was 0.064 meter and 3.31g respectively. The maximum permanent deformation calculated by Newmark's deformation analysis was 0.643 meter for upstream slope. Analytical results obtained from simplified method proposed by Seed and Idriss (1971) showed that liquefaction would occur at filter zones of downstream slope when the ground motions of earthquakes were more than 0.4g. Liquefaction at filter zones, therefore is the most significant

seismic stability problem of the Klong Sadao Dam. However the occurrence of ground motions greater than 0.4g for the dam is unlikely because its location is more than 300 km away from the nearest active fault.

Keywords : Klong Sadao Dam, Dynamic response, Peak ground acceleration, Permanent deformation, Liquefaction

กิตติกรรมประกาศ

ขอขอบคุณ รองศาสตราจารย์ คร.ธนิต เฉลิมยานนท์ ประธานกรรมการที่ปรึกษา และ คร.ธนันท์ ชุบอุปการ กรรมการที่ปรึกษา ที่ได้กรุณาให้ความรู้ คำปรึกษา และชี้แนะแนวทาง แก่ผู้วิจัยเป็นอย่างคี ตลอดการปฏิบัติงานวิจัยชิ้นนี้

ขอขอบคุณ ผู้ช่วยศาสตราจารย์ คร.สุทธิศักดิ์ ศรลัมพ์ กรรมการสอบวิทยานิพนธ์ ที่กรุณาให้คำแนะนำและข้อเสนอแนะที่เป็นประโยชน์ให้งานวิจัยชิ้นนี้มีความสมบูรณ์ยิ่งขึ้น

ขอขอบคุณ บัณฑิตวิทยาลัย คณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ที่ได้ให้การสนับสนุนทุนศิษย์ก้นกุฏิและทุนอุดหนุนการวิจัย ทำให้สามารถดำเนินงานวิจัยผ่านมา ได้ด้วยดีตลอดมา

ขอขอบคุณ คุณเกรียงไกร แทนสุโพธิ์ ที่ได้ให้คำแนะนำ รวมถึงเทคนิคการใช้ โปรแกรม GeoStudio 2004 ซึ่งเป็นประโยชน์ต่อผู้วิจัยเป็นอย่างมาก

ขอขอบคุณ คุณปพน รักษ์ศรี โครงการชลประทานสงขลา สำนักชลประทานที่ 16 ที่ให้ความอนุเคราะห์ในการเดินทางไปเก็บข้อมูลเบื้องต้นของเขื่อนคลองสะเดา

ขอขอบคุณ น้ำใจจากคุณยุตติกร สินสุขศรีวิไล และกำลังใจจากคุณนั้นทิยา ริยา พันธ์ รวมถึงเพื่อนๆ และพี่ๆ นักศึกษาปริญญาโทภาควิชาวิศวกรรมโยธาทุกคน ที่ได้ให้ความ ช่วยเหลือในการปฏิบัติงานจนสำเร็จ

สุดท้ายนี้ สิ่งสำคัญสุด ที่ทำให้มีข้าพเจ้าในวันนี้ พระคุณของบิดามารดา กำลังใจ และความช่วยเหลือจากสมาชิกทุกคนในครอบครัว เป็นสิ่งสำคัญที่ผลักดันจนข้าพเจ้าสำเร็จ การศึกษา ซึ่งข้าพเจ้าจะระลึกถึงบุกคลเหล่านี้อยู่ในใจตลอดไป

ฐิตินันท์ อินธนู

สารบัญ

			หน้า
สาร	บัญ		(8)
รายการตาราง		(13)	
รายการภาพประกอบ		(15)	
บทา่	้าก		
1	บทา	น้ำ	
	1.1	ที่มาและความสำคัญ	1
	1.2	วัตถุประสงค์ของงานวิจัย	3
	1.3	ขอบเขตของงานวิจัย	3
	1.4	ประโยชน์ที่คาดว่าจะได้รับ	3
2	แนว	คิดและทฤษฎีที่เกี่ยวข้อง	
	2.1	ข้อมูลทั่วไปเกี่ยวกับเขื่อน	4
		2.1.1 ชนิดของเบื่อน	4
		2.1.2 ประโยชน์ของเขื่อน	4
		2.1.3 เบื่อนที่สำคัญในประเทศไทย	5
	2.2	ข้อมูลเขื่อนคลองสะเคา	5
		2.2.1 ประวัติของโครงการอ่างเก็บน้ำคลองสะเคา	6
		2.2.2 วัตถุประสงค์ของโครงการอ่างเก็บน้ำคลองสะเดา	6
		2.2.3 ที่ตั้งของโครงการอ่างเก็บน้ำคลองสะเดา	7
		2.2.4 ลักษณะของโครงการอ่างเก็บน้ำคลองสะเดา	7
		2.2.5 ชนิดและกุณสมบัติของวัสดุถมเขื่อนกลองสะเดา	8
		2.2.6 ลักษณะทางธรณีวิทยาบริเวณเขื่อนคลองสะเดา	11
	2.3	ทฤษฎีการเกิดแผ่นดินไหว	14
		2.3.1 สาเหตุการเกิดแผ่นดินไหว	14
		2.3.2 ขนาดและความรุนแรงของแผ่นดินใหว	15
		2.3.3 คลื่นแผ่นดินไหว	17
		2.3.4 การตรวจวัคกลื่นแผ่นดินใหว	18

	ท	น้ำ
	2.3.5 เหตุการณ์แผ่นดินไหวในประเทศไทย	19
	2.3.6 บริเวณเสี่ยงภัยแผ่นดินไหวในประเทศไทย	21
	2.3.7 รอยเลื่อนมีพลังในประเทศไทย	22
	2.3.8 ข้อมูลด้านแผ่นดินใหวบริเวณเขื่อนคลองสะเดา	23
2.4	เขื่อนและแผ่นดินไหว	26
	2.4.1 ผลกระทบจากการเกิดแผ่นดินใหวที่มีต่อเขื่อน	26
	2.4.2 ลักษณะการพิบัติของเขื่อนดินถมที่เกิดจากแรงกระทำแผ่นดินไหว	29
2.5	ทฤษฎีการออกแบบเขื่อนเพื่อรองรับการเกิดแผ่นดินไหว	33
	2.5.1 การวิเคราะห์เสถียรภาพลาคชั้นเขื่อนในสภาวะสถิตยศาสตร์	33
	2.5.2 การวิเคราะห์เสถียรภาพของลาคชั้นเขื่อนด้วยวิธี Bishop's	
	Simplified Method	36
	2.5.3 การวิเคราะห์เสถียรภาพลาคชั้นเขื่อนที่ถูกกระทำจากแรงแผ่นคินใหว	
	โดยวิธี Pseudostatic	37
2.6	ทฤษฎีการวิเคราะห์พฤติกรรมการตอบสนองทางพลศาสตร์	39
	2.6.1 วิธี Equivalent Linear Approach	39
	2.6.2 คาบธรรมชาติของตัวเบื่อน (Natural Period of Dam)	40
	2.6.3 โมดูถัสแรงเฉือนสูงสุด (Maximum Shear Modulus)	41
	2.6.4 ค่าโมดูลัสเฉือน (Shear Modulus) ที่ใช้ในแบบจำลองทางคณิตศาสตร์ 2 มิติ	43
	2.6.5 ความเร็วคลื่นเฉือน (Shear Wave Velocity)	43
	2.6.6 Shear Modulus Reduction and Damping Ratio Curve	44
	2.6.7 การเปลี่ยนรูปถาวรของลาคชันเขื่อน โคยวิธี Newmark's Deformation	
	Analysis	47
	2.6.8 การเกิดปรากฏการณ์ Liquefaction	48
2.7	งานวิจัยที่เกี่ยวข้อง	53
วิชีดำ	าเนินการวิจัย	
3.1	การรวบรวมและวิเคราะห์ข้อมูล	56

3

		หน้า
	3.1.1 ข้อมูลทั่วไปของตัวเขื่อน	56
	3.1.2 ข้อมูลด้านธรณีวิทยา	56
	3.1.3 ข้อมูลด้านแผ่นดินไหว	58
	3.1.4 ข้อมูลกุณสมบัติของวัสดุถมเชื่อนกลองสะเดา	60
	3.1.5 ข้อมูลจากงานวิจัยที่เกี่ยวข้อง	60
3.2	แบบจำลองทางคณิตศาสตร์	60
	3.2.1 การเลือกโปรแกรมคอมพิวเตอร์	60
	3.2.2 การสร้างแบบจำลอง	61
3.3	การวิเคราะห์เสถียรภาพลาคชั้นเงื่อนในสภาวะสถิตยศาสตร์	61
3.4	การวิเคราะห์คุณสมบัติทางพลศาสตร์ของตัวเขื่อน	63
	3.4.1 ก่ากาบธรรมชาติของตัวเขื่อน	63
	3.4.2 ก่าโมดูถัสแรงเฉือนสูงสุด	63
	3.4.3 ค่าโมคูลัสเฉือนที่ใช้ในแบบจำลองทางคณิตศาสตร์ 2 มิติ	65
	3.4.4 ก่าความเร็วกลื่นเฉือน	65
	3.4.5 Shear Modulus Reduction and Damping Ratio	65
3.5	การวิเคราะห์พฤติกรรมการตอบสนองทางพลศาสตร์	65
3.6	การวิเคราะห์การเปลี่ยนรูปถาวรของลาคชันเขื่อน	67
3.7	การวิเคราะห์การเกิดปรากฏการณ์ Liquefaction	68
ผลก	ກະວີຈັຍ	
4.1	ผลการวิเคราะห์เสถียรภาพลาคชั้นเขื่อนในสภาวะสถิตยศาสตร์	72
	4.1.1 กรณีระดับเก็บกักน้ำอยู่ที่ระดับต่างๆ	72
	4.1.2 กรณีลดระดับเก็บกักน้ำอย่างรวดเร็ว	74
4.2	ผลการวิเคราะห์หากุณสมบัติทางพลศาสตร์ของตัวเขื่อน	76
	4.2.1 ผลการวิเคราะห์คาบธรรมชาติของตัวเขื่อน	77
	4.2.2 ผลการวิเกราะห์ก่าโมดูลัสแรงเฉือนสูงสุด และกวามเร็วกลื่นเฉือน	80
	4.2.3 ผลการวิเคราะห์ก่าโมดูลัสเฉือนที่ใช้ในแบบจำลองทางคณิตศาสตร์ 2 มิติ	80

4

			หน้า
		4.2.4 ผลการวิเคราะห์ค่า Shear Modulus Reduction และ Damping Ratio	81
	4.3	ผลการวิเคราะห์พฤติกรรมการตอบสนองทางพลศาสตร์ของตัวเขื่อน	82
		4.3.1 กรณีคลื่นแผ่นดินไหวรูปแบบต่างๆ กระทำที่ฐานเขื่อน	84
		4.3.2 กรณึเปลี่ยนแปลงระดับเก็บกักน้ำ	89
	4.4	ผลการวิเคราะห์การเปลี่ยนรูปถาวรของลาคชันเขื่อน	95
		4.4.1 กรณีคลื่นแผ่นดินไหวรูปแบบต่างๆ กระทำที่ฐานเงื่อน	95
		4.4.2 กรณีลคระคับเก็บกักน้ำอย่างรวคเร็ว	97
		4.4.3 กรณีระดับน้ำอยู่ที่ระดับต่างๆ	97
	4.5	ผลการวิเคราะห์การเกิดปรากฏการณ์ Liquefaction	98
		4.5.1 ผลการวิเคราะห์ Liquefaction โดยใช้สมการ Empirical	99
		4.5.2 ผลการวิเคราะห์ Liquefaction โดยใช้สมการผลการตอบสนอง	
		ทางพลศาสตร์	100
	4.6	ผลการวิเคราะห์ขนาคและระยะจากจุคศูนย์กลางแผ่นคินไหวที่ส่งผลกระทบ	
		ต่อตัวเขื่อน	104
5	สรุบ	ผลการวิจัย และข้อเสนอแนะ	
	5.1	สรุปผลการวิจัย	107
	5.2	ข้อเสนอแนะ	111
บรร	ณานุศ	ารม	112
ภาค	ผนวร		116
ก.	ผลก	ารวิเคราะห์การหาคาบธรรมชาติของตัวเขื่อนคลองสะเดา โดยวิธีผลการ	
	ตอบ	าสนองทางพลศาสตร์	117
ข.	วิธีก	ารกำนวณก่าโมดูถัสแรงเฉือนสูงสุด และก่ากวามเร็วกลื่นเฉือน	123
위.	ผลก	ารวิเคราะห์การเปลี่ยนรูปถาวรของลาดชั้นเขื่อนของเหตุการณ์แผ่นดินไหว	
	ที่ใช้	ในการวิเคราะห์ กรณีคลื่นแผ่นดินใหวต่างๆ กระทำที่ฐานเงื่อน	128
গ .	ผลก	ารวิเคราะห์การเปลี่ยนรูปถาวรของลาคชันเขื่อนของเหตุการณ์แผ่นคินไหว	
	ที่ใช้	ในการวิเคราะห์ กรณีลคระคับเก็บกักน้ำอย่างรวคเร็ว	133

(11)

		หน้า
จ.	ผลการวิเคราะห์การเกิดปรากฏการณ์ Liquefaction ของเหตุการณ์แผ่นดินไหว	
	ที่ใช้ในการวิเคราะห์	136
ิฉ.	วิธีการคำนวณการเกิด Liquefaction ด้วยวิธี Simplified method	150
การเผยแพร่ผลงานวิทยานิพนธ์		
ก.	การเผยแพร่ในการประชุมวิชาการ	155
ประวั	วัติผู้เขียน	

รายการตาราง

ตารางที่		หน้า
2.1	เขื่อนที่สำคัญในประเทศไทย	5
2.2	ขนาดของตัวเขื่อนและความจุของอ่างเก็บน้ำในเขื่อนคลองสะเดา	8
2.3	ชนิดและคุณสมบัติของวัสดุถมเขื่อนคลองสะเดา	11
2.4	ขนาดของแรงสั่นสะเทือนเนื่องจากแผ่นดินใหวตามมาตราริกเตอร์	16
2.5	เงื่อนไขในการจำแนกคลื่นแผ่นดินไหวตามสถานที่ตรวจวัด	19
2.6	Static Equilibrium methods	35
2.7	Interslice Force Characteristics and Relationship	35
2.8	ท่า Seismic Coefficient และ Factor of Safety, (FS)	39
2.9	ค่าปรับแก้เนื่องจากขนาดของแผ่นดินใหว (ริกเตอร์) สำหรับค่า CSR _L	52
3.1	ข้อมูลคลื่นแผ่นดินไหวที่ใช้ในการวิเคราะห์	58
3.2	รายละเอียดของเขื่อนคลองสะเคา ที่ใช้ในการสร้างแบบจำลอง	62
4.1	เปรียบเทียบค่าอัตราส่วนความปลอคภัยที่วิเคราะห์ได้กับรายงานการออกแบบ	
	ของโครงการเชื่อนคลองสะเดา	76
4.2	ค่าโมดูลัสแรงเฉือนสูงสุดและความเร็วกลื่นเฉือนในแต่ละชั้นวัสคุถมเขื่อน	
	กลองสะเดา	80
4.3	การขยายขนาดของคลื่นแผ่นดินไหวในบริเวณต่างๆ ของตัวเขื่อนเมื่อได้รับ	
	แรงกระทำจากคลื่นแผ่นดินใหวต่างๆ	85
4.4	ผลการวิเคราะห์การเปลี่ยนรูปถาวรของลาดชันเขื่อนทางด้านเหนือน้ำ	96
4.5	ผลการวิเคราะห์การเปลี่ยนรูปถาวรของลาดชันเขื่อนทางด้านท้ายน้ำ	96
4.6	ผลการวิเคราะห์การเปลี่ยนรูปถาวรของลาดชันเขื่อน ในกรณีลดระดับเก็บกัก	
	น้ำอย่างรวดเร็ว เมื่อได้รับแรงกระทำจากเหตุการณ์แผ่นดินไหว Hawaii, 2010	
	และ Haiti, 2010	97
4.7	สรุปผลการเกิด Liquefaction โดยใช้สมการ Empirical ในการวิเคราะห์	100
4.8	ผลการวิเคราะห์ Liquefaction โดยใช้สมการ Empirical ของเหตุการณ์	
	แผ่นดินใหว San Fernando, USA (1971)	101

รายการตาราง (ต่อ)

ตารางที่		หน้า
4.9	สรุปผลการวิเคราะห์การเกิด Liquefaction โดยใช้ผลการตอบสนองทาง	
	พลศาสตร์ในการวิเคราะห์	103
4.10	ขนาดและระยะจากจุดศูนย์กลางแผ่นดินไหวที่ทำให้เกิดค่าอัตราเร่งพื้นดิน	
	ต่างๆ บริเวณใต้ฐานเขื่อน	106

รายการภาพประกอบ

รูปที่		หน้า
1.1	เขื่อนคลองสะเดา	2
2.1	ภาพถ่ายทางอากาศแสดงที่ตั้งโครงการอ่างเกีบนด้ำ าคลองสะ	7
2.2	หน้ าตัดของเขื่อนคลองสะเดา ณ จุดลิ กสุด	10
2.3	ภาพตัดขวางถักษณะธรณีวิทยาตามแนวยาวของเขื่ สะเลล อง	12
2.4	แผนที่ธรณี วิทยาของจังหวัดสงขลา	13
2.5	ลักษณะการเคลื่อนที่ของเปลือกโลกรูปแบบต่างๆ ที่ทํดิาในให้กิดแผ่	น 14
2.6	ลักษณะของคลื่นแผ่ นดินไหวชนิดต่าง ๆ	17
2.7	การตรวจวั ดกลื่นแผ่ นดิ นไหว	18
2.8	แผนที่ Seismicity ปี พ.ศ. 2526 ถึงพ.ศ. 2546	20
2.9	ตำแหน่ งศูนย์ กลางแผ่ นดินไหวตั้งแต่ ปี นส ุม เจาเ งัถึน บ ์คืออศ.	
	2008 บริ เวณประเทศไทยและใกล้ เคี ยง	20
2.10	แผนที่เสี่ยงภัยแผ่ นดินใหวของประเทศไทย	21
2.11	แผนที่ตำแหน่ งรอยเลื่อนมี พลั งในประเทศไทย	22
2.12	เหตุการณ์ แผ่ นดินไหวที่บันทึกได้ บริเวณเขื่อนแต่ลอลสะเษต์อัลึงง	
	ค.ศ. 1983	23
2.13	รอยเลื่อนต่างๆ บริ เวณพื้นที่ศึกษา	24
2.14	Thailand hazard map for PGA corresponding to a probability in 50 years	25
2.15	ความเสี ยหายของเขื่อน Shi-Kong ประเทศใต้ หวัน	26
2.16	คลื่นในอ่างเก็บน้ำเนื่องมาจากแผ่ นดินไหวฟี(่SeitchHeebbgen่เประเทศ	
	สหรัฐอเมริกา	27
2.17	แรงสั่นสะเทือนของแผ่ นดินไหวก่ อให้ เกิดรอยแต ลขมเ ขิ่นอันบแ	28
2.18	การวิ เคราะห์ การไหลซึ มเมื่อเกิ ดการรั่วผ่ านรอยแตกตามขวาง	28
2.19	การพิบัติแบบเลื่อนไถลของเขื่อนดินถม	30
2.20	การพิบัติที่เกิดปรากฏการณ์ Liquefaction	30
2.21	ล้ กษณะและบริ เวณที่เกิ ครอยแตกตามแนวยาว	31
2.22	รอยแตกตามขวางที่เกิ คจากการทรุ คตัวไม่ เท่ ากัดินของเขื่อน	32

(15)

รูปที่		หน้า
2.23	Infinite and Finite Slopes	34
2.24	Bishop's simplified method	36
2.25	กราฟของค่ $m_{lpha(n)}$ สำหรับสมการของ Bishop	37
2.26	ทฤษฎี การวิ เคราะห์ ความมั่นคงของลาดชันด้วยวิ ธี Pseudo static	38
2.27	ตัวอย่างหน้าตัดเขื่อนที่วิเกราะห์ ด้วยวิธีraFpopouovaalkent linea	40
2.28	Modulus reduction curve สำหรับดินเม็ดละเอียชที่ต่มีเหก้าน	44
2.29	Variation of G/G_{max} with shear strain for sand	44
2.30	Damping ratio curve สำหรับดินเม็ดละเอียดที่มีางกัานPI ต	45
2.31	Damping ratio for sand	45
2.32	การเคลื่อนที่แบบ Slide Block บนระนาบเอียง	47
2.33	การหาก่าการเคลื่อนตัวของ Newmark กรณี Ky ฒึ่ง ก่าลด	48
2.34	การเกิ ดปรากฏการณ์ Liquefaction	49
2.35	ขอบเขตของการกระจายขนาดกละของวัสดุที่มีโอกาโฮนตุโนextaction	49
2.36	Stress reduction factor	51
2.37	ความสัมพันธ์ ระหว่าง Cyclic stress ratio เมละสุเทหรับ Silty sands ของ	
	แผ่ นดิ นใหวขนาด M=7.5	51
2.38	กราฟการปรับแก้ ค่ _ต านี่ ่องจากอิทธิพลของ Effective overburden pressure	52
3.1	แผนภู มิ การดำเนิ นงานวิ จั ย	57
3.2	ลั กษณะของคลื่นแผ่ นดิ นไหวที่ใช้ ในการวิ เคราะห์	59
3.3	แบบจำลองทางคณิตศาสตร์ ใน2 มิติ ที่ใช ี ใณภาษร ห์ เสถียรภาพทาง	
	สถิ ดยศาสตร์	61
3.4	รู ปแบบคลื่นที่ใช้ ในการวิ เคราะห์ คาบธรรมชาติ ของตัวเขื่อน	64
3.5	ความสัมพันธ์ ระหว่าง Standard penet extistanc e และ Bearing capacity	
	factor	64
3.6	แบบจำถองทางคณิตศาสตร์ 2 มิติโดยวิธีไฟไนต์อจิเ ซิ่อมน ฑ์ลองสะเดา	66

(16)

รูปที่	٩	หน้า	
3.7	การกำหนดเงื่อนใขขอบของแบบจำลองบริ เวณฐานเขื่อนค ลอ งสะเ	66	
3.8	ระนาบการพิบัติที่กำหนดที่ใช้ ในการวิ เกราะห์ ทางด้านเหนือเขื่อน	67	
3.9	ระนาบการพิบัติที่กำหนดที่ใช้ ในการวิ เคราะห์ ทางค้านท้ายเขื่อน	67	
3.10	ระนาบการพิบัติที่กำหนดที่ใช้ในการวิเคชระตัณแณ็บคกักน้ำอย่	าง	
	รวดเรี ว	68	
3.11	Correlations between the effective friction angle in triaxial compression and		
	the dry density, relative density, and soil classification.	69	
3.12	แผนภูมิแสดงขั้นตอนการวิเคราะห์การเกิดtibiquotaงตัวเขื่อนคลอง		
	สะเคา	70	
4.1	ระนาบการพิบัติที่วิกฤติที่สุดและก่าอัป ดจรกับน(สร ง)มทางด้าน		
	เหนื อน้ำ	73	
4.2	ระนาบการพิบัติที่วิกฤติที่สุดและก่าอัป ดอหล้า วน(สรง) มทางด้าน		
	ท้ายน้ำ	74	
4.3	ระนาบการพิบัติที่วิกฤติที่สุดและค่าเข้ปดอหล้าวนน(สรร) กรณี ลด		
	ระดับเก็บกักน้ำอย่างรวดเร็ว	75	
4.4	ความสัมพันธ์ ระหว่างระยะการเคลื่อนตับให้แฒนกรามสูงของตัวเขื่อน		
	บริเวณชั้นวัสดุทึบน้ำที่ค่าคาบเวลาต่างๆ ของข้อมูืลชัGAราเร่งพื่	้นดินที	່ນ
	= 0.03g	78	
4.5	ความสัมพันธ์ ระหว่างค่าการเคลื่อนตัวสูงสุดใ นแนลรด ่บกังๆบค	78	
4.6	ความสัมพันธ์ระหว่างค่าการเคลื่อนตันวรู รงห ุวัดในนRGA ต่างๆ ที่		
	คาบเวลา 0.3 วิ นาที	79	
4.7	ค่าโมดู ถัสเฉือนในแต่ ละชั้นวัสดุถมเขื่อื่นให้ ต้องสะบณ ทำลองทาง		
	กณิ ตศาสตร์	81	
4.8	Shear modulus reduction curve ในแต่ ละชั้นวัซี่คุอนภลองสะเดา	81	
4.9	Damping Ratio Curve ในแต่ ละชั้นวัสคุถมเขื่อนคลองสะเดา	82	

(17)

รูปที่		หน้า
4.10	การเคลื่อนตัวเชิงเปรียบเทียบ (Relative thispt) เcของวัสดุถมเขื่อนตาม	
	แนวราบณเวลาที่มีค่าอัตราเร่งสูงสุดของคลื่นแหม่เพมเดินปรก	
	(2010) กระทำที่บริ เวณ ฐานเขื่อน	83
4.11	ค่าอัตราเร่งเชิงเปรียบเทียบ (Relative tionec) celชผลงวัสคุถมเขื่อนตาม	
	แนวราบณเวลาที่มีค่าอัตราเร่งสูงสุดของคลื่นแหม่เพมเดินปรณ	
	(2010) กระทำที่บริ เวณฐานเขื่อน	83
4.12	ความเค้นเฉือนสูงสุด (Relative maximum she aresst) ในบริเวณต่างๆ ของ	
	ตัวเขื่อนเมื่อได้ รับแรงกระทำจากเหตุการณ์ แห่งงนณิ, USxa (24010)	
	ณ เวลาที่มีอัตราเร่งสูงสุด	84
4.13	ตัวอย่างผลการตอบสนองของคลื่นแผ่นดินไหวใน่บริงขุว นอ มตัวเขื่อน	
	เมื่อได้ รับแรงกระทำงากเหตุการณ์ แผ่ นดินไหว Kobe, Japan (1995	86
4.14	ความสัมพันธ์ระหว่างก่าการเกลื่อนตัวในเซนมชูาษที่ธอดับต่างๆ	
	ของตัวเขื่อนในบริเวณชั้นวัสคุทึบน้ำแกนเขื่อนของแห่ตุญฑีร่ณ์ใช้เผ่	นด
	ในการวิ เคราะห์	88
4.15	ความสัมพันธ์ระหว่างค่าอัตราเร่งสูงสุดิ บภณามร ูญมที่ระดับต่าง	ๆ
	ของตัวเขื่อนในบริเวณชั้นวัสคุทึบน้ำแกนเขื่อนของแห่เตุญฑีร่ณ์ใช้แผ่	นด
	ในการวิ เคราะห์	88
4.16	Normalized ค่าอัตราเร่งสูงสุดในแนวราบอัสูษที่ว่าระดับต่างๆ ของตั	J
	เขื่อนในบริ เวณชั้นวั สคุทึบน้ำแกนเขื่อนของเหตุ การณ์ แผ่ารนดินไห	วที่ใช้ ในก
	วิ เคราะห์	89
4.17	ค่าแรงดันประสิทธิผลเฉลี่ย (Mean effect siy evอนะ ขื่อนคลองสะเดา ณ	
	เวลาที่มีค่าอัตราเร่งสูงสุดเนื่องจากคลื่นแผ่ นดินใหญร)Kobe, Japan (90
4.18	ความสัมพันธ์ระหว่างค่าการเคลื่อนตัวใหมวนเวสูาษฑ้องหมัวเขื่อนที่	
	ระดับน้ำเก็บกักต่างๆ บริเวณชั้นวัสดุทึนี่บ่นอึงจาภาณสึขึ้นอน	l
	แผ่ นดิ นไหว Kobe, Japan (1995)	91

(18)

รูปที่		หน้า
4.19	ความสัมพันธ์ ระหว่างค่าอัตราเร่งในแนวราบกับควาขึ้ม่สูงหญื่อ่รระดับ	
	น้ำเกีบกักต่างๆ บริเวณชั้นวัสดุทึบน้ำแกนเขื่อนใหื่ว่องจากคลื่	นแผ่ นดิ น
	Kobe, Japan (1995)	92
4.20	การเปรียบเทียบก่าการเกลื่อนตัวในแนวราบกับบที่้ำหะ่ดางๆ บริเวณสั	น
	เขื่อน	93
4.21	การเปรียบเทียบค่าการเคลื่อนตัวในแนวราบกับที่ง่ ๆ แต๊อท ี่เล้าหพับน	
	เขื่อนด้านเหนื อน้ำที่ระดับความสูง +65.00 เมตร(รทก.)	93
4.22	การเปรียบเทียบก่าการเคลื่อนตัวในแนวราบกับที่ รุธศรีอบน ์ลำด _ั ดหัาน	
	เขื่อนด้านท้ายน้ำที่ระดับความสูง +65.00 เมตร(รทก.)	93
4.23	การเปรียบเทียบค่าอัตราเร่งในแนวราบกับที่ระดัวบนสั้นเพ็า่อขุบริเ	94
4.24	การเปรี ยบเที ยบค่ าอั ตราเร่ งในแนวราบกั บที่ระ จับบิน [้] วํณลาดชัน	
	เขื่อนด้านเหนื อน้ำที่ระดับความสูง +65.00 เมตร(รทก.)	94
4.25	การเปรียบเทียบค่าอัตราเร่งในแนวราบกับที่รงะจุบบินวํณลาดชัน	
	เขื่อนด้านท้ายน้ำที่ระดับความสูง +65.00 เมตร(รทก.)	94
4.26	เปรียบเทียบก่า Yield Acceleration, ky บริเลขัลนเขื่อนด้านเหนือน้ำ	เที ่
	ระดับเกีบกักน้ำต่างๆ เมื่อได้รับแรงกระทำจากคลื่นแม่2014ดินไหว	H 9s ya
4.27	รายละเอียดโซนต่างๆ ของชั้นวัสดุ Filterสำเ ลเษส ้ลไบวิเคราะห์ ผลการเกิด	
	Liquefaction	99
4.28	บริ เวณที่เกิ ดปรากฏการณ์ Liquefaction เมื่บเชงได้กระทำงากเหตุการณ์	
	แผ่ นดินใหว San Fernando, 1971 มี ขนาด 6.6 ริกเตอร์อาณี่มี ก่ากวามเก้น	
	เฉื้อนสูงสุด	103
4.29	ผลการวิ เคราะห์ การลดทอนพลั งงานของแผ่ นดิ นไหว (tAutreMuladel)	105

บทที่ 1 บทนำ

1.1 ที่มาและความสำคัญ

เงื่อนคลองสะเดาตั้งอยู่บนคลองสะเดาใกล้กับชายแคนไทย-มาเลเซียในเงตหมู่ที่ 4 บ้าน ห้วยคู ตำบลสำนักแด้ว อำเภอสะเดา จังหวัดสงงลา ห่างจากอำเภอสะเดาไปทางทิสตะวันตกเฉียงใด้ ประมาณ 10 กิโลเมตร ดังแสดงในรูปที่ 1.1 เงื่อนคลองสะเดาเป็นโครงการประเภทอ่างเก็บน้ำ ประกอบด้วย ตัวเงื่อนหลัก ตัวเงื่อนปิดช่องเงางาดเป็นเงื่อนดินถม อ่างเก็บน้ำ และอาการประกอบ ต่าง ๆ เป็นส่วนหนึ่งของลุ่มน้ำคลองสะเดาซึ่งอยู่ในลุ่มน้ำคลองอู่ตะเภาทางทิสตะวันออกเฉียงใด้ ระหว่างละติจูดที่ 6° 28' เหนือ ถึง 6° 40' เหนือ และระหว่างลองจิจูดที่ 100° 25' ตะวันออก ถึง 100° 37' ตะวันออก ลุ่มน้ำคลองสะเดามีพื้นที่ทั้งหมดประมาณ 89.9 ตารางกิโลเมตร เงื่อนคลอง สะเดามีความสูงที่จุดลึกที่สุดเท่ากับ 34.5 เมตร เงื่อนคลองสะเดามีหน้าที่หลักในการเป็นแหล่งน้ำ ดิบ ในกิจการประปาให้แก่พื้นที่อำเภอสะเดา อำเภอหาดใหญ่ รวมถึงเทศบาลเมืองสงงลาโดย สามารถจ่ายน้ำดิบให้การประปาหาดใหญ่-สงงลาได้สูงสุด 38.4 ล้านลูกบาศก์เมตรต่อปี และ ยัง สามารถใช้กักเก็บน้ำในฤดูฝนเพื่อบรรเทาอุทกภัยในลุ่มน้ำคลองอู่ตะเภาซึ่งรวมถึงเทศบาลนคร หาดใหญ่ด้วย โดยสามารถกักเก็บน้ำสูงสุดได้ 56 ล้านลูกบาศก์เมตร

โดยทั่วไปแล้วเขื่อนถือว่าเป็นโครงสร้างทางวิศวกรรมขนาดใหญ่ที่จัดอยู่ในประเภท โครงสร้างที่มีโอกาสเกิดการพิบัติต่ำ แต่จะก่อให้เกิดความเสียหายสูง (สุทธิศักดิ์, 2550) ดังนั้น วิศวกรจึงต้องออกแบบให้เขื่อนสามารถใช้งานได้อย่างปลอดภัยทั้งในสภาวะปกติ อุทกภัย และ แผ่นดินไหว โดยเฉพาะแผ่นดินไหวถือเป็นภัยธรรมชาติที่ส่งผลกระทบต่อเบื่อนโดยตรง ซึ่งใน ปัจจุบันมีแผ่นดินไหวเกิดขึ้นบ่อยครั้ง โดยมากจะเกิดในพื้นที่บริเวณมหาสมุทรอินเดีย ประเทศ อินโดนีเซีย และ ประเทศพม่า หลายครั้งแผ่นดินไหวที่เกิดขึ้นสามารถรับรู้ได้ในประเทศไทย โดยเฉพาะแผ่นดินไหวครั้งรุนแรงที่สุด เมื่อวันที่ 27 ธันวากม 2547 โดยแผ่นดินไหวครั้งนี้มีจุด ศูนย์กลางอยู่ที่ใต้มหาสมุทรอินเดีย บริเวณเกาะสุมาตรา ประเทศอินโดนีเซีย มีขนาดความรุนแรง ประมาณ 9.0 ริกเตอร์ จึงมีการประกาศใช้กฎหมายและเทศบัญญัติในการออกแบบโครงสร้างทาง วิศวกรรมให้สามารถด้านทานแผ่นดินไหวได้ กำถามทั้งของนักวิชาการ องค์การปกครองส่วนท้องถิ่น และ ชาวบ้านที่ตั้งบ้านเรือนอยู่ท้าย เงื่อนมีสอดคล้องกันว่า เงื่อนคลองสะเดาซึ่งเริ่มใช้งานตั้งแต่ปี พ.ศ. 2540 จะยังคงมีเสถียรภาพอยู่ หรือไม่ เมื่อถูกกระทำเนื่องจากแรงแผ่นดินไหว ทั้งนี้ถ้าเงื่อนคลองสะเดาเกิดการพิบัติ นอกจะไม่มี แหล่งน้ำดิบของกิจการประปา และแหล่งกักเก็บน้ำเพื่อบรรเทาการเกิดอุทกภัยแล้ว ปริมาณน้ำใน เงื่อนที่เกิดการพิบัติยังจะก่อให้เกิดความเสียหายต่อทั้งชีวิตและทรัพย์สินของประชาชนที่อยู่ท้ายน้ำ โดยเฉพาะอย่างยิ่งชุมชุนบริเวณ อำเภอสะเดา ดังนั้นจุดมุ่งหมายของการวิจัยในครั้งนี้เพื่อศึกษา วิเคราะห์ และตรวจสอบพฤติกรรมของตัวเงื่อนคลองสะเดา ทั้งในสภาวะปกติ (สถิตยศาสตร์) และ สภาวะเกิดแรงกระทำจากแผ่นดินไหว (พลศาสตร์) โดยเน้นไปที่ความสามารถในการต้านทานแรง เนื่องจากแผ่นดินไหวต่อเสถียรภาพของเงื่อนคลองสะเดา

รูปที่ 1.1 เงื่อนคลองสะเดา

1.2 วัตถุประสงค์ของงานวิจัย

 1.2.1 เพื่อเก็บรวบรวมข้อมูลเกี่ยวกับคุณสมบัติของเขื่อนคลองสะเดา และข้อมูล คุณลักษณะแผ่นดินไหวในท้องถิ่นและแผ่นดินไหวที่สำคัญทั่วโลก

 1.2.2 เพื่อศึกษา ประเมิน และวิเคราะห์เสถียรภาพของตัวเขื่อนคลองสะเคา ทั้งทางค้าน สถิตยศาสตร์และพลศาสตร์

 1.2.3 เพื่อศึกษาพฤติกรรมการเปลี่ยนรูปถาวรของลาดชันเขื่อน และพฤติกรรมการ ตอบสนองของตัวเขื่อนต่อแรงกระทำแผ่นดินไหว

1.3 ขอบเขตของงานวิจัย

1.3.1 การวิจัยในครั้งนี้ศึกษาเฉพาะตัวเงื่อนคลองสะเดาเท่านั้น ไม่รวมอาการประกอบ อื่นๆ และใช้แบบจำลองทางคณิตศาสตร์ 2 มิติ ในการวิเคราะห์

1.3.2 การวิจัยในครั้งนี้ไม่ได้คำนึงถึง Initial stress และ Cyclic stress เนื่องจากผลของการ เปลี่ยนแปลงระดับเก็บกักน้ำในตัวเงื่อน

1.4 ประโยชน์ที่คาดว่าจะได้รับ

1.4.1 สามารถบอกถึงความมั่นคงปลอดภัยของเงื่อนคลองสะเดาทั้งในสภาวะปกติ และจาก แรงกระทำแผ่นดินไหวได้

1.4.2 สามารถบอกถึงพฤติกรรมของตัวเบื่อนคลองสะเดาเมื่อได้รับแรงกระทำจากเหตุการณ์ แผ่นดินไหวต่าง ๆ ได้

1.4.3 สามารถประเมินความเสี่ยงที่เงื่อนคลองสะเคาจะเกิดการพิบัติจากแผ่นดินไหวได้

บทที่ 2 แนวคิดและทฤษฎีที่เกี่ยวข้อง

2.1 ข้อมูลทั่วไปเกี่ยวกับเขื่อน

เงื่อนเป็นสิ่งก่อสร้างขนาดใหญ่สำหรับกั้นทางน้ำ เพื่อใช้ในการเก็บกักน้ำและป้องกัน อุทกภัยรวมถึงผลิตกระแสไฟฟ้า ส่วนบนของเงื่อนจะประกอบไปด้วยส่วนที่เรียกว่าทางน้ำล้น สำหรับให้น้ำที่สูงกว่าระดับที่ต้องการเก็บกักสูงสุดไหลผ่านไปยังที่ฝั่งท้ายน้ำ มากกว่าครึ่งหนึ่งของ แม่น้ำสายหลักทั่วโลกจะมีเงื่อนกั้นไว้เพื่อใช้ประโยชน์ในทางใดทางหนึ่ง

2.1.1 ชนิดของเขื่อน

ชนิดของเขื่อนจะจำแนกตามชนิดของวัสดุก่อสร้าง เช่น เขื่อนหิน เขื่อนดิน เขื่อนคอนกรีต เขื่อนคอนกรีตบดอัด หรือเขื่อนไม้

2.1.2 ประโยชน์ของเขื่อน

ประโยชน์ของเชื่อนที่สำคัญคือ เพื่อกักเก็บน้ำโดยเก็บน้ำจากช่วงฤดูน้ำหลากและปล่อยน้ำ ใช้ในการเกษตรกรรม อุปโภคบริโภคในช่วงขาดแคลนน้ำ นอกจากนี้เขื่อนยังคงใช้สำหรับป้องกัน น้ำท่วมฉับพลันในฤดูที่น้ำไหลหลากอีกทางหนึ่ง โดยเขื่อนจะทำหน้าที่ชะลอความเร็วของน้ำให้น้ำ ไหลผ่านได้เฉพาะตามปริมาณที่เหมาะสม ในปัจจุบันเชื่อนมีหน้าที่หลักอีกด้านหนึ่งกือการผลิต กระแสไฟฟ้า โดยพลังงานไฟฟ้าส่วนหนึ่งในประเทศไทยมาจากการปั่นไฟจากเชื่อน นอกจากนี้ เขื่อนบางแห่งใช้เป็นสถานที่ท่องเที่ยวและกิจกรรมนันทนาการต่าง ๆ เช่น การล่องเรือ หรือ การตก ปลา อย่างไรก็ตามเชื่อนมีผลกระทบต่อสิ่งแวดล้อม ได้แก่ การปิดกั้นทางน้ำทำให้สิ่งมีชีวิตในน้ำ บางชนิด เช่น ปลาแซลมอน ไม่สามารถว่ายไปตามกระแสน้ำเพื่อวางไข่ได้ในช่วงฤดูขยายพันธุ์ เชื่อนยังคงปิดกั้นทางน้ำทำให้การเดินทางทางเรือไม่สามารถเคลื่อนที่ผ่านได้ ปัญหาของการสร้าง เชื่อนที่มียังรวมถึงพื้นที่บ้านเรือนและป่าไม้ที่อยู่บริเวณเหนือเชื่อน จะถูกน้ำท่วมทำให้ไม่สามารถ ใช้งานได้

2.1.3 เงื่อนที่สำคัญในประเทศไทย

ในปัจจุบันประเทศไทยมีเขื่อนที่สำคัญตั้งอยู่ในจังหวัดต่าง ๆ ทั่วประเทศจำนวนมาก ดัง แสดงในตารางที่ 2.1

ชื่อเขื่อน	ชนิดของเขื่อน	ปริมาตรกักเก็บ _v	ที่ตั้ง	
		(ล้าน ลบ.ม.)		
1. เขื่อนภูมิพล	เขื่อนคอนกรีต	13,462	จ.ตาก	
2. เขื่อนเจ้าพระยา	เขื่อนทคน้ำ	-	จ.ชัยนาท	
3. เงื่อนศรีนครินทร์	เขื่อนหินถม	17,745	จ.กาญจนบุรี	
4. เขื่อนสิริกิติ์	เขื่อนดิน	9,510	จ.อุตรดิตถ์	
5. เงื่อนอุบลรัตน์	เขื่อนหินถม	2,342	จ.ขอนแก่น	
6. เงื่อนวชิราลงกรณ์	เขื่อนหินถม	8,860	จ.กาญจนบุรี	
7. เงื่อนสิรินธร	เขื่อนคอนกรีต	1,966	จ.อุบลราชธานี	
8. เขื่อนจุฬาภรณ์	เขื่อนหินถม	164	จ.ชัยภูมิ	
9. เขื่อนแก่งกระจาน	เขื่อนดิน	710	จ.เพชรบุรี	
10. เขื่อนกิ่วลม	เขื่อนคอนกรีต	106	จ.ลำปาง	
11. เขื่อนลำตะคอง	เขื่อนดิน	314	จ.นครราชสีมา	
12. เชื่อนบางถาง	เขื่อนหินถม	1,454	ຈ.ຍະຄາ	
13. เงื่อนรัชประภา	เขื่อนหินถม	5,639	จ.สุราษฎร์ธานี	
14. เขื่อนป่าสักชลสิทธิ์	เขื่อนดิน	785	จ.ถพบุรี – จ.สระบุรี	
15. เงื่อนคลองสะเคา	เขื่อนดิน	56	จ.สงขลา	

ตารางที่ 2.1 เงื่อนที่สำคัญในประเทศไทย

2.2 ข้อมูลเขื่อนคลองสะเดา

รายงานการส่งมอบและรับมอบโครงการอ่างเก็บน้ำคลองสะเคา ของสำนักชลประทานที่ 16 จังหวัคสงขลา ได้อธิบายเกี่ยวกับเขื่อนคลองสะเคาไว้ ดังต่อไปนี้

2.2.1 ประวัติของโครงการอ่างเก็บน้ำคลองสะเดา

กลองสะเดา อยู่ในพื้นที่ อำเภอสะเดา จังหวัดสงขลา เป็นลุ่มน้ำสาขาของกลองอู่ตะเภา ซึ่ง เป็นแหล่งน้ำดิบที่ใช้ในกิจการประปาเพียงแห่งเดียวของอำเภอหาดใหญ่ในปัจจุบัน แต่เนื่องจากการ เพิ่มขึ้นของประชากร การเจริญเติบโตทางด้านเสรษฐกิจ และสังกมการอุตสาหกรรม การท่องเที่ยว การก้าและอื่น ๆ ทำให้ความต้องการใช้น้ำประปาเพิ่มขึ้นอย่างมาก เมื่อวันที่ 3 มีนาคม 2530 คณะรัฐมนตรีได้มีมติและมอบหมายให้กรมชลประทานดำเนินการว่าจ้างบริษัทที่ปรึกษา ดำเนิน การศึกษาความเหมาะสมและออกแบบรายละเอียดด้านวิสวกรรมของโครงการเขื่อนคลองสะเดา และในวันที่ 14 กันยายน 2531 กรมชลประทานได้ลงนามในสัญญาว่าจ้าง บริษัทที่ปรึกษา ทีมคอน ซัลดิ้ง เอ็นจิเนียร์ จำกัด และบริษัท นิปปอน เดเอะ จำกัด ให้ร่วมกันดำเนินการศึกษาความเหมาะสม และออกแบบรายละเอียดของโครงการฯ โดยใช้เงินกู้จากธนาคารเอเซียและเงินสมทบจากรัฐบาล ไทย การก่อสร้างเสร็จเรียบร้อย และได้ส่งมอบให้ทางโครงการชลประทานสงขลา ตั้งแต่วันที่ 11 ธันวาคม 2541 โดยในปัจจุบันเป็นที่ตั้งที่ทำการหน่วยส่งน้ำและบำรุงรักษาที่ 4 (กลองสะเดา) ของ งานส่งน้ำและบำรุงรักษาที่ 1 โครงการชลประทานสงขลา

2.2.2 วัตถุประสงค์ของโครงการอ่างเก็บน้ำคลองสะเดา

 เพื่อเพิ่มเติมปริมาณน้ำให้แก่คลองอู่ตะเภา ซึ่งเป็นแหล่งน้ำดิบที่ใช้ในกิจการประปา เพียงแห่งเดียวในปัจจุบัน โดยยึดหลักเกณฑ์ว่าจะต้องจัดหาน้ำดิบเพื่อกิจการประปาให้เพียงพอต่อ การขยายตัวของตัวเมืองหาดใหญ่และสงขลา การเพิ่มขึ้นของประชากร การเจริญเติบโตทางด้าน เศรษฐกิจและสังคม การอุตสาหกรรมการท่องเที่ยว การค้าอื่น ๆ ได้จนถึงปีเป้าหมาย พ.ศ. 2556

2) เพื่อช่วยบรรเทาอุทกภัยในอำเภอสะเดา และอำเภอหาดใหญ่

3) เพื่อช่วยลคมลภาวะเป็นพิษของน้ำคลองอู่ตะเภา และผลักคันน้ำเก็ม

 เพื่อเป็นแหล่งเพาะพันธ์สัตว์น้ำ สำหรับราษฎรอุปโภค และมีการประมงเพิ่มเติมจาก การเกษตรกรรม

2.2.3 ที่ตั้งของโครงการอ่างเก็บน้ำคลองสะเดา

พื้นที่ศึกษาเป็นส่วนหนึ่งของลุ่มน้ำคลองสะเคาซึ่งอยู่ในลุ่มน้ำคลองอู่ตะเภาทางทิศ ตะวันออกเฉียงใต้ ระหว่างละติจูคที่ 6° 28' เหนือ ถึง 6° 40' เหนือ และระหว่างลองจิจูคที่ 100° 25' ตะวันออก ถึง 100° 37' ตะวันออก ลุ่มน้ำคลองสะเคามีพื้นที่ทั้งหมดประมาณ 89.9 ตารางกิโลเมตร ตัวเงื่อนคลองสะเคาตั้งอยู่บนคลองสะเคาใกล้กับชายแดนไทย-มาเลเซียในเขตหมู่ที่ 4 บ้านห้วยดู ตำบลสำนักแต้ว อำเภอสะเคา จังหวัดสงขลา ห่างจากอำเภอสะเคาไปทางทิศตะวันตกเฉียงใต้ ประมาณ 10 กิโลเมตร ดังแสดงในรูปที่ 2.1

รูปที่ 2.1 ภาพถ่ายทางอากาศแสดงที่ตั้งโครงการอ่างเก็บน้ำคลองสะเดา

2.2.4 ลักษณะของโครงการอ่างเก็บน้ำคลองสะเดา

โครงการอ่างเก็บน้ำคลองสะเคาประกอบด้วย ตัวเขื่อนหลัก ตัวเขื่อนปิดช่องเขาขาด อ่าง เก็บน้ำ และอาการประกอบต่าง ๆ ซึ่งตัวเขื่อนมีลักษณะเป็นเขื่อนดินถม มีความสูงของตัวเขื่อนที่จุด ลึกสุด 34.50 เมตร สันเขื่อนมีความกว้าง 8.00 เมตร ยาว 672.50 เมตร และอ่างเก็บน้ำสามารถจุน้ำ ได้ 56.00 ล้านลูกบาศก์เมตร นอกจากนี้ยังมีรายละเอียดอื่น ๆ ของตัวเขื่อนและอ่างเก็บน้ำ ซึ่งแสดง ไว้ในตารางที่ 2.2

ตารางที่ 2.2 ขนาดของตัวเขื่อนและความจุของอ่างเก็บน้ำในเขื่อนคลองสะเดา (กรมชลประทาน, 2532)

ข้อมูล	ปริมาณ
1. ตัวเบื่อน	
- ระดับสันเงื่อน	+72.500 เมตร (รทก.)
- ระดับน้ำสูงสุด	+70.280 เมตร (รทก.)
- ระดับน้ำเกีบกัก	+68.000 เมตร (รทก.)
- ระดับน้ำต่ำสุด	+52.000 เมตร (รทก.)
 ความสูงของตัวเขื่อนจ 	อุดลึกสุด 34.50 เมตร
- ความกว้างของสันเขี้ย	าน 8.00 เมตร
- ความยาวของสันเขื่อเ	<i>เ</i> 672.50 เมตร
- วัสคุถมตัวเขื่อน	1.341 ล้านลูกบาศก์เมตร
2. อ่างเก็บน้ำ	
- พื้นที่รับน้ำ	89.90 ตารางกิโลเมตร
- ความจุของอ่างเก็บน้ำ	56.00 ถ้านลูกบาศก์เมตร
- ความลึกเฉลี่ย	15.00 เมตร

2.2.5 ชนิดและคุณสมบัติของวัสดุถมเขื่อนคลองสะเดา

เงื่อนคลองสะเคาเป็นเงื่อนคินถมชนิด Zoned Dam ซึ่งมีชนิดของวัสคุถมเงื่อนแบ่ง ออกเป็น 3 โซน ดังนี้ (กรมชลประทาน, 2532)

1) แกนเชื่อน (Impervious Earth Zone)

ชนิดของดินประกอบด้วยตะกอนทราย (Silt) หรือดินเหนียว (Clay) สามารถจำแนกชนิด ของดินโดยใช้ระบบเอกภาพ (Unified soil classification system) ได้เป็น MH หรือ CL มีค่าพิกัด เหลว (Liquid limit) ระหว่าง 48% - 61% มีค่าดัชนีความเป็นพลาสติก (Plasticity index) ระหว่าง 21 – 29 มีค่าความหนาแน่นแห้งสูงสุด (Maximum dry density) ระหว่าง 1.408 – 1.640 ตันต่อลูกบาศก์ เมตร และมีค่าความชื้นที่เหมาะสม (Optimum moisture content) ระหว่าง 22.20% - 29.30% 2) วัสดุกรอง (Filter Material)

ชนิดของดินประกอบด้วยทราย (Sand) มีค่าความถ่วงจำเพาะ (Specific gravity) เท่ากับ 2.65 มีค่าความหนาแน่นแห้งสูงสุด (Maximum dry density) เท่ากับ 1.887 ตันต่อลูกบาศก์เมตร มีค่า ความหนาแน่นสัมพัทธ์ (Relative density) เท่ากับ 70% และมีค่าสัมประสิทธิ์การซึมผ่านของน้ำ (Coefficient of permeability) เท่ากับ 5×10⁻³ เซนติเมตรต่อวินาที

3) วัสดุถมเขื่อน (Random Material)

ชนิดของดินประกอบด้วยตะกอนทรายจากการผุกร่อน (Weathered sandstone) หินดินดาน (Shale) และหินโกลน (Mudstone) สามารถจำแนกชนิดของดินโดยใช้ระบบเอกภาพ (Unified soil classification system) ได้เป็น SM มีค่าความถ่วงจำเพาะ (Specific gravity) ระหว่าง 2.70 – 2.82 มี ค่าความหนาแน่นแห้งสูงสุด (Maximum dry density) ระหว่าง 1.848 – 1.962 ตันต่อลูกบาศก์เมตร และมีค่าความชื้นที่เหมาะสม (Optimum moisture content) ระหว่าง 12.60% - 13.50%

โดยรายละเอียดของชนิดและคุณสมบัติวัสดุถมเชื่อนคลองสะเดาสามารถแสดงให้อยู่ใน รูปแบบของหน้าตัดเชื่อนได้ดังรูปที่ 2.2 และตารางที่ 2.3 ตามลำดับ

ร**ูปที่ 2.2** หน้าตัดของเงื่อนกลองสะเคา ณ จุคที่ลึกสุด (กม 0+120 – 0+150)

Parameter		Impervious	Filter	Random
		Earth Zone	Material	Material
Specific Gravity		2.73	2.72	2.78
Moist Density (t/m ³)		1.84	1.95	2.09
Saturated Density (t/m ³)		1.92	2.11	2.19
Cohesion (t/m ²)	UU	4.6		
	CU	1.2	0	2.2
Internal Friction Angle, ϕ	UU	13		
(degree)	CU	25	30**	29
Coefficient of Permeability (cm/s)		5×10 ⁻⁶	5×10^{-3}	5×10 ⁻⁵

ตารางที่ 2.3 ชนิดและคุณสมบัติของวัสดุถมเขื่อนคลองสะเดา (กรมชลประทาน, 2532)

<u>หมายเหตุ:</u> UU = Unconsolidated Undrained Test CU = Consolidated Undrained Test

** = Tentative Value

2.2.6 ลักษณะทางธรณีวิทยาบริเวณเงื่อนคลองสะเดา

กรมชลประทาน (2532) ได้สรุปลักษณะทางธรณีวิทยาบริเวณเงื่อนคลองสะเคาว่า บริเวณ ทางด้านทิศตะวันออกของพื้นที่ศึกษาประกอบด้วยขุคหินตะกอน (Mesozoic sedimentary rock) ชุด หินสะเดา (Triassic Sadao Formation) และชุดหินนาทวี (Triassic Na Thawi Formation) โดยในชั้น หินแข็งส่วนใหญ่ประกอบด้วยหินทราย (Sandstone) สีน้ำตาลแดง ซึ่งมีอนุภาคแตกต่างกัน แต่ส่วน ใหญ่อนุภาคจะมีขนาดกลาง ไม่ยึดติดกัน และบางส่วนมีตะกอนทราย (Silt) สอดแทรกปะปนอยู่ใน ชั้นหินดินดาน สำหรับชุดหินนาทวี (Triassic Na Thawi Formation) ประกอบด้วยหินทราย (Sandstone) และหินดินดาน (Shale) มีลักษณะสีเทาเข้ม มีอนุภาคขนาดกลาง วางตัวอยู่ใต้บริเวณ พื้นที่ของอ่างเก็บน้ำและตัวเงื่อนปิดช่องเขาขาด ส่วนในบริเวณฐานรากเงื่อนส่วนใหญ่ ประกอบด้วยตะกอนทราย (Silt) และตะกอนทรายปนดินเหนียว (Silty clay) และมีชุดหินสะเดา (Triassic Sadao Formation) วางตัวอยู่ด้านล่าง ดังแสดงในรูปที่ 2.3 ซึ่งสอดกล้องกับแผนที่ ธรณีวิทยาจังหวัดสงขลาของกรมทรัพยากรธรณี (2550) ที่กล่าวว่าบริเวณพื้นที่ศึกษาประกอบด้วย ตะกอนตะพักถ่าน้ำ กรวด ทราย ตะกอนทราย ศิลาแลง และเศษหิน ดังแสดงในรูปที่ 2.4

2.3 ทฤษฎีการเกิดแผ่นดินไหว

แผ่นดินไหวเป็นภัยพิบัติทางธรรมชาติ ที่เกิดจากการสั่นสะเทือนของแผ่นเปลือกโลก (Earth crust) อันเนื่องมาจากการปลดปล่อยพลังงาน เพื่อปลดปล่อยความเครียดที่สะสมไว้ภายใน โลกออกมาอย่างฉับพลัน เพื่อปรับสมดุลของเปลือกโลกให้คงที่ สาเหตุของการเกิดแผ่นดินไหวนั้น จัดแบ่งได้ 2 ชนิด ชนิดที่หนึ่งเป็นแผ่นดินไหวจากธรรมชาติ ชนิดที่สองเกิดจากการกระทำของ มนุษย์ ได้แก่ การทดลองระเบิดปรมาณู การกักเก็บน้ำในเงื่อนและแรงระเบิดของการทำเหมืองแร่ เป็นต้น

2.3.1 สาเหตุการเกิดแผ่นดินไหว

 แผ่นดินใหวจากธรรมชาติ เป็นธรณีพิบัติภัยชนิดหนึ่งส่วนมากเป็นปรากฏการณ์ทาง ธรรมชาติที่เกิดจากการสั่นสะเทือนของพื้นดิน อันเนื่องมาจากการปลดปล่อยพลังงานเพื่อระบาย กวามเครียดที่สะสมไว้ภายในโลกออกมาอย่างฉับพลันเพื่อปรับสมดุลของเปลือกโลกให้คงที่ โดย ปกติเกิดจากการเคลื่อนใหวของรอยเลื่อน ภายในชั้นเปลือกโลกที่อยู่ด้านนอกสุดของโครงสร้าง ของโลก มีการเคลื่อนที่หรือเปลี่ยนแปลงอย่างช้า ๆ อยู่เสมอ ดังแสดงในรูปที่ 2.5 แผ่นดินใหวจะ เกิดขึ้นเมื่อความเค้นอันเป็นผลจากการเปลี่ยนแปลงมีมากเกินไป ภาวะนี้เกิดขึ้นบ่อยในบริเวณ ขอบเขตของแผ่นเปลือกโลก ที่ที่แบ่งชั้นเปลือกโลกออกเป็นธรณีภาค (Lithosphere) เรียก แผ่นดินใหวที่เกิดขึ้นบริเวณขอบเขตของแผ่นเปลือกโลกนี้ว่า แผ่นดินใหวระหว่างแผ่น (Interplate Earthquake) ซึ่งเกิดได้บ่อยและรุนแรงกว่า แผ่นดินใหวภายในแผ่น (Intraplate Earthquake)

รูปที่ 2.5 ลักษณะการเคลื่อนที่ของเปลือกโลกรูปแบบต่างๆ ที่ทำให้เกิดแผ่นดินไหว (a) Normal faulting, (b) Reverse faulting, (c) Left lateral strike-slip faulting (Kramer, 1996)

2) แผ่นดินใหวจากการกระทำของมนุษย์ มีทั้งทางตรงและทางอ้อม เช่น การระเบิด การทำ เหมือง สร้างอ่างเก็บน้ำหรือเขื่อนใกล้รอยเลื่อน การทำงานของเครื่องจักรกล การจราจร เป็นต้น

แผ่นดินใหวเป็นปรากฏการณ์ธรรมชาติที่เกิดจากการเคลื่อนที่ของแผ่นเปลือกโลก (แนว ระหว่างรอยต่อธรณีภาค) ทำให้เกิดการเคลื่อนตัวของชั้นหินขนาดใหญ่เลื่อน เคลื่อนที่ หรือแตกหัก และเกิดการ โอนถ่ายพลังงานศักย์ผ่านในชั้นหินที่อยู่ติดกัน พลังงานศักย์นี้อยู่ในรูปคลื่นไหว สะเทือน จุดศูนย์กลางการเกิดแผ่นดินไหว (Focus) มักเกิดตามรอยเลื่อน อยู่ในระดับความลึกต่างๆ ของผิวโลก เท่าที่เคยวัดได้ลึกสุดอยู่ในชั้นแมนเทิล ส่วนจุดที่อยู่ในระดับสูงกว่า ณ. ตำแหน่งผิวโลก เรียกว่า "จุดเหนือศูนย์กลางแผ่นดินไหว" (Epicenter) การสั่นสะเทือนหรือแผ่นดินไหวนี้จะถูก บันทึกด้วยเครื่องมือที่เรียกว่า ไซส์โมกราฟ (Seismograph)

2.3.2 ขนาดและความรุนแรงของแผ่นดินใหว

 บนาดของแผ่นดินไหว (Magnitude) เป็นปริมาณที่มีความสัมพันธ์กับพลังงานที่พื้นโลก ปลดปล่อยออกมาในรูปของการสั่นสะเทือน คำนวณได้จากการตรวจวัดค่าความสูงของคลื่น แผ่นดินไหวที่ตรวจวัดได้ด้วยเครื่องมือตรวจวัดแผ่นดินไหว โดยเป็นค่าปริมาณที่บ่งชี้ขนาด ณ บริเวณศูนย์กลางแผ่นดินไหว มีหน่วยเป็น "ริกเตอร์ "

 ความรุนแรงแผ่นดินไหว (Intensity) แสดงถึงความรุนแรงของเหตุการณ์แผ่นดินไหวที่ เกิดขึ้น วัดได้จากปรากฏการณ์ที่เกิดขึ้น ขณะเกิด และหลังเกิดแผ่นดินไหว เช่น ความรู้สึกของผู้คน ลักษณะที่วัตถุ หรืออาการเสียหายหรือสภาพภูมิประเทศที่เปลี่ยนแปลง เป็นต้น

การเกิดแผ่นดินไหวในแต่ละครั้งจะนานประมาณ 10 วินาที หรืออาจนาน 3-4 นาที ก็ได้ แผ่นดินไหวแต่ละครั้งที่เกิดขึ้นมีความรุนแรงแตกต่างกันจึงมีมาตรในการวัด และที่นิยมใช้กันคือ มาตราริกเตอร์ เป็นมาตรในการวัดการสั่นสะเทือนเมื่อเกิดแผ่นดินไหว โดยได้กำหนดมาตราวัด ขนาดของแรงสั่นสะเทือนไว้ ดังแสดงในตารางที่ 2.4

อันดับตัวเลขที่	
แสดงบนเครื่องวัด	ผลของแรงสั่นสะเทือน
(ริกเตอร์)	
1	มนุษย์ไม่รู้สึก
2	รู้สึกได้เฉพาะคนที่อยู่นิ่งๆ
2	คนที่อยู่ในบ้านหรือในตัวอาคารจะรู้สึกถึงแรงสั่นสะเทือน วัตถุสิ่งของที่แขวน
3	ไว้จะแกว่งไกว เกิดแรงสั่นสะเทือนคล้ายกับรถบรรทุกขนาดเล็กแล่นผ่าน
4	รถยนต์ที่จอคอยู่จะสั่นไหว ประตูหน้าต่างสั่น เกิดแรงสั่นสะเทือนคล้ายกับ
4	รถบรรทุกขนาดใหญ่แล่นผ่าน
E	คนที่อยู่นอกบ้านและนอกอาคารจะรู้สึกได้ คนที่หลับจะรู้สึกตัวตื่น ของเหลว
5	ในภาชนะจะกระฉอกและหกออกมา ประตูจะเปิดปิดไปมา
6	ทุกคนจะรู้สึกในแรงสั่นสะเทือน เกิดความตื่นตระหนกตกใจ ไม่สามารถที่จะ
0	เดินให้มั่นคงได้ ระฆังเล็กๆ ตามโบสถ์และโรงเรียนจะสั่นดังได้เอง
7	ยากที่จะทรงตัวอยู่ได้ เครื่องประดับตกแต่งบ้านแตกเสียหาย ระฆังขนาดใหญ่
1	จะสั่นไกวเองได้ คนที่กำลังขับ รถยนต์จะบังคับพวงมาลัยได้ลำบาก
0	ตึกและสิ่งก่อสร้างบางแห่งพังทลาย กิ่งไม้จะหักออกจากต้น บนแผ่นดินจะมี
8	รอยแตกแยกให้เห็น
0	เกิดการ โกลาหลอลหม่าน โดยทั่วไป เงื่อนและอ่างเก็บน้ำอาจเสียหาย ท่อน้ำที่
9	ฝังใต้ดินแตก เกิดแผ่นดินแตกแยกชัดเจน
10	ตึกส่วนใหญ่จะพังทลาย มีการเลื่อนใหลของแผ่นดินหรือแผ่นดินถล่ม น้ำ
10	กระฉอกออกจากแม่น้ำ ลำธาร และทะเลสาบ
11	รางรถไฟจะบิคงอไปมา
12	ทุกอย่างจะถูกทำลายพังพินาศย่อยยับ แทบไม่มีอะไรเหลืออยู่

ตารางที่ 2.4 ขนาดของแรงสั่นสะเทือนเนื่องจากแผ่นดินใหวตามมาตราริกเตอร์ (บุรินทร์, 2550)

2.3.3 คลื่นแผ่นดินไหว

คลื่นแผ่นดินไหว (Seismic Waves) เป็นพลังงานรูปแบบหนึ่งที่เกิดจากการแตกหรือการ เคลื่อนที่อย่างฉับพลันของหินบริเวณรอยเลื่อน (Faults) หรือจากการระเบิด (Explosions) คลื่น เหล่านี้เดินทางไปยังส่วนต่างๆ ของโลกโดยเราสามารถบันทึกไว้ได้ด้วยเครื่องตรวจแผ่นดินไหว (Seismograph) คลื่นแผ่นดินไหวแบ่งออกเป็น 2 ชนิด ได้แก่

 กลื่นหลัก (Body Wave) เป็นกลื่นที่เดินทางอยู่ภายใต้โลก ได้แก่ กลื่น P อนุภาคของดิน เกลื่อนที่ไปตามแนวแรง และกลื่น S อนุภาคดินเกลื่อนที่ไปตามแนวระนาบ ทิศเหนือใต้ และ ตะวันออกตะวันตก ความยาวช่วงกลื่นหลักอยู่ระหว่าง 0.01-50 วินาที

 2) คลื่นผิวพื้น (Surface Wave) ได้แก่คลื่นเลิฟ (Love wave) อนุภาคดินเคลื่อนที่ในแนว ระนาบเหมือนการเคลื่อนที่ของงูเลื้อย และคลื่นเรย์เลห์ (Rayleigh wave) อนุภาคของดินเคลื่อนที่ เหมือนคลื่น P แต่ขณะเดียวกันมีการเคลื่อนตัวแบบย้อนกลับ ความยาวช่วงคลื่นผิวพื้นประมาณ 10-350 วินาที (รูปที่ 2.6) (Kramer, 1996)

ร**ูปที่ 2.6** ถักษณะของคลื่นแผ่นดินไหวชนิดต่าง ๆ (a) Primary waves, (b) Secondary Waves, (c) Rayleight waves, (d) Love waves (Kramer, 1996)
2.3.4 การตรวจวัดคลื่นแผ่นดินใหว

แผ่นดินไหวเป็นปรากฏการณ์ธรรมชาติซึ่งสามารถส่งแรงสั่นสะเทือน หรือมีผลกระทบไป ได้ไกล ไม่เฉพาะบริเวณประเทศที่เกิดเท่านั้นบางครั้งหากมีขนาดใหญ่ คลื่นแผ่นดินไหวสามารถ ส่งผ่านไปได้บนผิวโลกหลายพันกิโลเมตรในหลายประเทศ ดังนั้นการตรวจวัดแผ่นดินไหวจึงใช้ทั้ง ระบบเครือข่าย สถานีตรวจวัดแผ่นดินไหวในระดับแต่ละประเทศ และเครือข่ายในระดับโลก เพื่อ การวิเคราะห์ตำแหน่ง ขนาดและเวลาเกิดของเหตุการณ์แผ่นดินไหวได้อย่างรวดเร็ว

Seismograph เป็นเครื่องมือที่ใช้บันทึกความเร็วของอนุภาคดินจากแผ่นดินไหวเพื่อหา ดำแหน่งศูนย์กลาง เวลาการเกิด และขนาดของแผ่นดินไหว หลักการทำงาน Seismograph จะรับ สัญญาณของแผ่นดินไหวได้จากเครื่องรับแรงสั่นสะเทือน (Seismometer) ซึ่งจะทำหน้าที่ตรวจจับ คลื่นแผ่นดินไหวและบันทึกลงในกระดาษบันทึก (Seismogram) ทั้งหมดรวมเรียกว่า เครื่องมือ ตรวจวัดแผ่นดินไหว (Seismograph) และข้อมูลที่บันทึกได้จะมีลักษณะเป็นกราฟแผ่นดินไหวดัง แสดงในรูปที่ 2.7 (บุรินทร์, 2550)

นอกจากนี้คลื่นแผ่นดินไหวที่ตรวจวัดได้สามารถจำแนกตามสถานที่ตรวจวัดได้เป็น 2 ชนิด คือ ชนิดที่ตรวจวัดได้บนชั้นหิน (Rock site) และชนิดที่ตรวจวัดได้บนชั้นดิน (Soil site) Kramer (1996) เสนอเงื่อนไขในการจำแนกโดยสามารถพิจารณาจากอัตราส่วนระหว่างก่าความเร็ว สูงสุดกับก่าความความเร่งสูงสุด (v_{max}/a_{max}) ของคลื่นแผ่นดินไหว ดังแสดงในตารางที่ 2.5

ร**ูปที่ 2.7** การตรวจวัดคลื่นแผ่นดินไหว (a) เครื่องตรวจวัดแผ่นดินไหวแบบอนาล็อก (b) ลักษณะ คลื่นแผ่นดินไหวที่บันทึกได้ (http://www.vchakarn.com/vcafe/26373)

Site Condition	v _{max} /a _{max}
Rock	55 cm/sec/g = 0.056 sec
Stiff soils (<200 ft)	110 cm/sec/g = 0.112 sec
Deep stiff soils (>200 ft)	135 cm/sec/g = 0.138 sec

ตารางที่ 2.5 เงื่อนไขในการจำแนกคลื่นแผ่นดินไหวตามสถานที่ตรวจวัด (Kramer, 1996)

2.3.5 เหตุการณ์แผ่นดินไหวในประเทศไทย

ประเทศไทยเป็นประเทศหนึ่งในภูมิภาคเอเชียตะวันออกเฉียงใต้ ซึ่งได้เคยประสบกับ เหตุการณ์แผ่นดินไหวมาตั้งแต่ในอดีตจนถึงปัจจุบัน แม้ว่าจะเป็นที่ยอมรับกันว่าประเทศไทยไม่ใช่ ศูนย์กลางของการเกิดแผ่นดินไหวของภูมิภาคแถบนี้ แต่หลักฐานทั้นพื้นฐาน ทำให้ทราบว่าได้เคยมี ทางเครื่องบันทึกแผ่นดินไหว (Seismograph) อันเป็นหลักฐานขั้นพื้นฐาน ทำให้ทราบว่าได้เคยมี แผ่นดินไหวขนาดใหญ่และขนาดเล็กเกิดขึ้นหลายครั้งแล้วในประเทศไทย ด้วยเหตุนี้ทำให้เกิด ความจำเป็นในการศึกษาข้อมูลธรณีวิทยาเกี่ยวกับแผ่นดินไหวขึ้น ซึ่งเป็นที่เข้าใจและแพร่หลายน้อย มากโดยเฉพาะประเทศไทยในปัจจุบัน ดังนั้นการศึกษาเรื่องราวของแผ่นดินไหวจึงก่อให้เกิดความ กระจ่างเกี่ยวกับการกำเนิดและตระหนักถึงภัยจากแผ่นดินไหวของประเทศ และภูมิภาคเอเชีย ตะวันออกเฉียงใต้อันเป็นประโยชน์ต่อการวางแผนโครงสร้างวิศวกรรมขนาดใหญ่ และการใช้

สุมาลีและคณะ (2549) ได้นำข้อมูลเหตุการณ์เกิดแผ่นดินไหวตั้งแต่ปี พ.ศ.2526 ถึง พ.ศ.2546 มาทำแผนที่ Seismicity โดยมีขนาดแผ่นดินไหวตั้งแต่ 4.1 ถึง 9.0 ริกเตอร์ พบว่าโดยส่วน ใหญ่ตำแหน่งศูนย์กลางแผ่นดินไหวจะอยู่ตามแนวรอยต่อแผ่นทวีป (Tectonic plate) ระหว่าง Indian-Australian Plate และ Eurasian Plate โดยเฉพาะบริเวณทะเลอันดามันเรื่อยขึ้นมาในประเทศ พม่า ทางทิศตะวันตกของประเทศไทย ดังรูปที่ 2.8

U.S. Geological Survey, USGS (2008) ได้บันทึกข้อมูลเหตุการณ์แผ่นดินไหวที่มีขนาด ตั้งแต่ 5 ริกเตอร์ขึ้นไปในประเทศไทยและบริเวณใกล้เคียง ตั้งแต่ปี ค.ศ.1973 ถึงเดือนกุมภาพันธ์ ค.ศ.2008 (รูปที่ 2.9) โดยแผนที่แสดงตำแหน่งศูนย์กลางเกิดแผ่นดินไหว (Epicenter) และความลึก ของจุดกำเนิดแผ่นดินไหว (Hypocenter) มีลักษณะสอดกล้องกับแผนที่ Seismicity ที่เสนอโดย สุมาลีและคณะ (2549)

ร**ูปที่ 2.8** แผนที่ Seismicity ปี พ.ศ. 2526 ถึง พ.ศ. 2546 (สุมาลี และคณะ, 2549)

ร**ูปที่ 2.9** ตำแหน่งศูนย์กลางแผ่นดินไหวตั้งแต่ปี ค.ศ. 1973 ถึงเดือนกุมภาพันธ์ ค.ศ. 2008 บริเวณ ประเทศไทยและใกล้เคียง (U.S. Geological Survey, 2008)

2.3.6 บริเวณเสี่ยงภัยแผ่นดินไหวในประเทศไทย

กรมทรัพยากรธรณี (2548) ได้จัดทำแผนที่เสี่ยงภัยแผ่นดินไหวของประเทศไทย (รูปที่ 2.10) โดยแบ่งแยกพื้นที่เสี่ยงภัยแผ่นดินไหวออกเป็น 4 เขตตามความรุนแรง ซึ่งพื้นที่วิจัยอยู่ในเขต พื้นที่ 1 มีความรุนแรงระดับ III-IV ตามมาตราเมอร์คัลลี ทำให้ผู้ที่อาศัยอยู่บนอาการสูงรู้สึกว่ามี แผ่นดินไหว (มีความเสี่ยงน้อยแต่อาจมีความเสียหายบ้าง)

รูปที่ 2.10 แผนที่เสี่ยงภัยแผ่นดินใหวของประเทศไทย (กรมทรัพยากรธรณี, 2548)

2.3.7 รอยเลื่อนมีพลังในประเทศไทย

รอยเลื่อนมีพลังคือรอยเลื่อนที่เคยมีการเคลื่อนตัวในอดีตภายในระยะเวลาไม่เกินประมาณ 10,000 ปี กรมทรัพยากรธรณี (2549) ได้จัดทำแผนที่รอยเลื่อนมีพลังในประเทศไทย โดยมีทั้งหมด 15 รอยเลื่อน ซึ่งส่วนใหญ่พบในบริเวณภาคตะวันตกและภาคเหนือตอนบนของประเทศ (รูปที่ 2.11) ในภาคใต้มี 2 รอยเลื่อน คือรอยเลื่อนระนองและรอยเลื่อนคลองมะรุ่ย

ร**ูปที่ 2.11** แผนที่ตำแหน่งรอยเลื่อนมีพลังในประเทศไทย (กรมทรัพยากรธรณี, 2549)

2.3.8 ข้อมูลด้านแผ่นดินใหวบริเวณเขื่อนคลองสะเดา

1) เหตุการณ์แผ่นดินไหวที่เกิดขึ้นในอดีต

International Seismological Center, U.K. และกรมชลประทาน (2532) ได้บันทึกเหตุการณ์ แผ่นดินไหวที่มีศูนย์กลางการเกิดแผ่นดินไหวในรัศมี 500 กิโลเมตรขึ้นไปจากตัวเขื่อนคลองสะเดา ซึ่งเกิดขึ้นในช่วงระหว่าง 1.5 – 11.5 องศาเหนือ และ 95.5 – 105.5 องศาตะวันออก ตั้งแต่ปี ค.ศ. 1912 ถึง ค.ศ. 1983 พบว่ามีแผ่นดินไหวเกิดขึ้นมีขนาดสูงสุด 7.2 ริกเตอร์ มีจุดกำเนิดอยู่ห่างจากตัว เขื่อนคลองสะเดาไปทางทิศตะวันตกเฉียงใต้ประมาณ 450 กิโลเมตร โดยเหตุการณ์แผ่นดินไหวที่ บันทึกได้ส่วนใหญ่มีจุดกำเนิดบริเวณเกาะสุมาตรา ประเทศอินโดนีเซีย ดังแสดงในรูปที่ 2.12

ร**ูปที่ 2.12** เหตุการณ์แผ่นดินไหวที่บันทึกได้บริเวณเงื่อนคลองสะเดาตั้งแต่ ค.ศ. 1912 ถึง ค.ศ. 1983 (กรมชลประทาน, 2532)

2) รอยเลื่อนมีพลัง

อดิศร (2549) ได้ศึกษาการตรวจสอบรอยเลื่อนมีพลังในประเทศไทย สรุปได้ว่าในบริเวณ ภากใต้ของประเทศไทยมีกลุ่มรอยเลื่อนมีพลังที่วางตัวอยู่ในแนวตะวันออกเฉียงเหนือ – ตะวันตก เฉียงใต้อยู่ 2 กลุ่ม คือ กลุ่มรอยเลื่อนระนอง มีแนวพาดผ่านอำเภอเมือง อำเภอกะเปอร์ อำเภอสุข สำราญ จังหวัดระนอง และเลยเข้าไปในทะเลอันดามันทางด้านตะวันตกของอำเภอกุระบุรี จังหวัด พังงา มีกวามยาวประมาณ 98 กิโลเมตร และกลุ่มรอยเลื่อนกลองมะรุ่ย มีแนวพาดผ่านอำเภอบ้านตา ขุน อำเภอพนม จังหวัดสุราษฎร์ธานี อำเภอทับปุด อำเภอเมือง จังหวัดพังงา และเลยลงไปในทะเล อันดามัน ระหว่างอำเภอเมือง จังหวัดภูเก็ต กับอำเภอเกาะยาว จังหวัดพังงา มีกวามยาวประมาณ 148 กิโลเมตร นอกจากนี้ในบริเวณทางด้านทิศตะวันตกของพื้นที่ศึกษายังมีรอยเลื่อนสุมาตราซึ่งเป็น รอยเลื่อนมีพลังที่วางตัวในแนวเหนือใต้บริเวณหมู่เกาะนิโกบาร์ และหมู่เกาะสุมาตรา ประเทศ อินโดนีเซีย ดังแสดงในรูปที่ 2.13

รูปที่ 2.13 รอยเลื่อนต่างๆ บริเวณพื้นที่ศึกษา (Fenton et al, 2003)

3) ค่าอัตราเร่งสูงสุดของพื้นดิน (Peak ground acceleration)

Ornthammarath et al. (2010) ได้วิเคราะห์ความน่าจะเป็นของค่าอัตราเร่งสูงสุดของพื้นดิน ในประเทศไทยในระยะเวลาอีก 50 ปีข้างหน้า พบว่าในบริเวณพื้นที่ศึกษามีความน่าจะเป็นของค่า อัตราเร่งสูงสุดของพื้นดินประมาณ 0.02g – 0.04g ในขณะที่ความน่าจะเป็นของค่าอัตราเร่งสูงสุด ของพื้นดินที่มีค่ามากที่สุด พบว่าอยู่ทางตอนบนของประเทศไทยบริเวณจังหวัดเชียงใหม่ และ จังหวัดเชียงราย มีค่าประมาณ 0.25g – 0.30g ดังแสดงในรูปที่ 2.14

รูปที่ 2.14 Thailand hazard map for PGA corresponding to a probability in 50 years (Ornthammarath et al, 2010)

2.4 เขื่อนและแผ่นดินไหว

2.4.1 ผลกระทบจากการเกิดแผ่นดินไหวที่มีต่อเงื่อน

เงื่อนเป็นโครงสร้างทางวิศวกรรมขนาดใหญ่ที่จัดอยู่ในประเภทโครงสร้างที่มีโอกาสเกิด การพิบัติต่ำแต่จะก่อให้เกิดความเสียหายสูง ดังนั้นวิศวกรจึงด้องออกแบบให้เงื่อนสามารถใช้งาน ได้อย่างปลอดภัยทั้งในสภาวะปกติ อุทกภัย และแผ่นดินไหว โดยจากสถิติที่ผ่านมาในอดีตพบว่า แผ่นดินไหวก่อให้เกิดความเสียหายต่อเงื่อนที่ไม่รุนแรงถึงขั้นที่จะทำให้เงื่อนพิบัติ (สุทธิศักดิ์, 2550) ได้สรุปพฤติกรรมของระบบเงื่อนที่อาจนำไปสู่การพิบัติของเงื่อนได้ 8 พฤติกรรม โดยมี รายละเอียดดังต่อไปนี้

 การเคลื่อนตัวของรอยเลื่อนในแนวดิ่งใกล้ตัวเขื่อน ซึ่งจะก่อให้เกิดการยุบตัวของ แผ่นดินส่งผลให้ระดับของสันเขื่อนลดลงต่ำกว่าระดับน้ำในอ่างเก็บน้ำ กรณีนี้เป็นกรณีที่เกิดได้ยาก

2) การเคลื่อนตัวของรอยเลื่อนใต้ฐานเขื่อน ตัวอย่างในกรณีนี้ได้แก่เขื่อน Shi-Kong ใน ประเทศได้หวันในครั้งที่เกิดแผ่นดินไหวขนาดใหญ่ ขนาด 7.6 ริกเตอร์ ในปี พ.ศ. 2542 (Chi Chi Earthquake) ทำให้เกิดการเคลื่อนตัวในแนวดิ่งผ่านกลางเชื่อนโดยมีความแตกต่างของการเคลื่อนตัว ถึง 6 เมตร ดังแสดงในรูปที่ 2.15 อย่างไรก็ตามเขื่อนไม่ได้เกิดการพิบัติเป็นช่องเปิดแต่อย่างใด สำหรับสาเหตุการพิบัตินี้เป็นกรณีที่ป้องกันได้ตั้งแต่ขั้นสำรวจและออกแบบโดยนักธรณีจะ ทำการศึกษารอยเลื่อนใต้ฐานเชื่อนว่าเป็นรอยเลื่อนมีพลังหรือไม่และวิศวกรจะทำการออกแบบ องค์ประกอบเชื่อนที่เหมาะสมในการต้านทานการเคลื่อนตัว เช่น การเลือกใช้เชื่อนดินถมแทนเชื่อน กอนกรีตในพื้นที่เสี่ยงให้มากกว่าปกติเพื่อรองรับการเคลื่อนตัวที่อาจเกิดขึ้นได้

ร**ูปที่ 2.15** ความเสียหายของเงื่อน Shi-Kong ประเทศไต้หวัน (Olsen, 1999)

3) การเกิดคลื่นในอ่างเก็บน้ำ (Seiches) เนื่องจากแรงสั่นสะเทือน คลื่นน้ำจะวิ่งเข้า กระแทกและล้นสันเงื่อนก่อให้เกิดความเสียหายต่อตัวเงื่อน ดังเช่นในกรณีของเงื่อน Hebgen ที่ ประเทศสหรัฐอเมริกา ในปี พ.ศ. 2502 โดยเกิดแผ่นดินใหวงนาด 7.8 ริกเตอร์ ทำให้เกิดคลื่นน้ำล้น สันเงื่อนหลายระลอก ดังแสดงในรูปที่ 2.16 โดยเมื่อจบเหตุการณ์พบว่าเงื่อนมีความเสียหายเกิดขึ้น แต่ไม่พิบัติ

ร**ูปที่ 2.16** คลื่นในอ่างเก็บน้ำเนื่องมาจากแผ่นดินไหว (Seiches) ที่เขื่อน Hebgen ประเทศ สหรัฐอเมริกา (สุทธิศักดิ์, 2550)

4) การเกิดดินถล่มรอบอ่างเก็บน้ำจากแผ่นดินไหวทำให้เกิดน้ำล้นข้ามสันเชื่อนทั้งนี้ เนื่องจากปริมาณดินที่ไหลลงมาแทนที่น้ำในอ่างพร้อม ๆ กัน เหตุการณ์ใกล้เกียงที่เคยเกิดขึ้นใน อดีตคือ เหตุการณ์ของเชื่อน Vaiont ในประเทศอิตาลี ถึงแม้สาเหตุไม่ได้เกิดจากแผ่นดินไหวแต่เกิด จากฝนตกหนักและสภาพโครงสร้างทางธรณีวิทยาที่เอื้ออำนวย อย่างไรก็ตามแผ่นดินไหวอาจเป็น ตัวกระตุ้นที่ดีที่จะก่อให้เกิดเหตุการณ์ใกล้เกียงเช่นนี้ได้

5) การพิบัติของอาคารบังคับน้ำ ทำให้ไม่สามารถระบายน้ำได้ เหตุการณ์ดังกล่าวจะมีผล มากในช่วงที่มีน้ำหลากเข้าเขื่อนในช่วงฤดูฝนหรือช่วงอุทกภัย แผ่นดินใหวอาจทำให้ระบบการ บังคับบานเกิดการติดขัดไม่สามารถเปิดได้ โดยเฉพาะอย่างยิ่งความบกพร่องของอาคารระบายน้ำ ล้นฉุกเฉิน

 การสูญเสียกำลังของดินตัวเงื่อนหรือฐานรากเนื่องจากการเกิด Liquefaction โดย Liquefaction เป็นปรากฏการณ์ที่ดินทรายหรือกรวดที่อิ่มตัวด้วยน้ำเกิดการสูญเสียกำลัง เนื่องจาก แรงสั่นสะเทือนของแผ่นดินไหว 7) การขุบตัวและเคลื่อนด้านข้างเนื่องมาจากแรงสั่นสะเทือนก่อให้เกิดรอยแตกใน แนวขนานกับสันเขื่อน ดังแสดงในรูปที่ 2.17 ลักษณะความเสียหายในข้อนี้เป็นความเสียหายที่พบ ได้บ่อยที่สุด เขื่อนส่วนใหญ่จะเกิดรอยแยกหรือขุบตัวเมื่อเกิดแผ่นดินไหวมากกว่าที่จะพิบัติลง ทันทีทันใด การไถลตัวของลาดชันเขื่อนดังกล่าว นอกจากก่อให้เกิดรอยแตกในแนวขนานกับแกน เขื่อนแล้วในบางกรณีอาจเกิดรอยแตกในแนวขวางได้

 การ ใหลซึมของน้ำผ่านตัวเขื่อนตามรอยแตกตามขวาง เมื่อเกิดรอยแตกจากการ สั่นสะเทือนดังที่ ได้กล่าวมาข้างต้น น้ำจะสามารถ ใหลซึมผ่านรอยแตกทำให้แรงดันน้ำขยายรอย แตกหรือกัดเซาะเม็ดดินภายในตัวเขื่อนและก่อให้เกิดการรั่วพิบัติในที่สุด (สุทธิศักดิ์และชิโนรส, 2550) ได้จำลองสภาพการ ใหลซึมผ่านตัวเขื่อนเมื่อเกิดรอยแตกตามขวางจากการเกลื่อนตัวของรอย เลื่อนดังแสดงในรูปที่ 2.18

รูปที่ 2.17 แรงสั่นสะเทือนของแผ่นดินไหวก่อให้เกิดรอยแตกขนานกับแกนเขื่อน (สุทธิศักดิ์,2550)

รูปที่ 2.18 การวิเคราะห์การไหลซึมเมื่อเกิดการรั่วผ่านรอยแตกตามขวาง (สุทธิศักดิ์, 2550)

2.4.2 ลักษณะการพิบัติของเขื่อนดินถมที่เกิดจากแรงกระทำแผ่นดินใหว

Siyahi and Arslan (2008) กล่าวว่าการพิบัติของเขื่อนดินอาจจะก่อให้เกิดความเสียหายแก่ เศรษฐกิจที่สำคัญและความสูญเสียแก่ชีวิต หนึ่งในสาเหตุหลักที่ทำให้เขื่อนดินเกิดการพิบัติก็คือ แผ่นดินใหว ความปลอดภัยของเขื่อนดินในขณะเกิดแผ่นดินใหวจะถูกควบคุมโดยการตอบสนอง ทางพลศาสตร์ ในช่วงหลายปีที่ผ่านมามีแผ่นดินใหวหลายแห่งที่สร้างความเสียหายให้กับเขื่อนดิน และเชื่อนดินถม ในระหว่างเกิดแผ่นดินใหวมีปัจจัยที่สำคัญที่ส่งผลกระทบต่อประสิทธิภาพและ เสถียรภาพของเขื่อนอยู่ 3 ประการ คือ

- ก) ลักษณะทางกายภาพของหน้าตัดเขื่อน (ลาดชันเขื่อนด้านเหนือน้ำและท้ายน้ำ)
- ง) วิธีการก่อสร้างและบดอัดดิน
- ก) ชนิดของดินถมและวัสดุฐานราก

้ปัจจัยที่อาจทำให้เงื่อนเกิดการพิบัติเนื่องจากการเกิดแผ่นดินไหว ได้แก่

- 1) การเคลื่อนที่ของรอยเลื่อนที่อยู่ใต้ฐานรากของเขื่อนทำให้เขื่อนเกิดรอยแตกร้าว
- 2) เกิดการพิบัติของลาดชันเขื่อนแบบหมุน
- 3) เกิดการสูญเสียระยะพ้นน้ำเนื่องจากการทรุดตัวของเขื่อน
- 4) เกิดโพรงใต้ฐานเงื่อนเนื่องจากมีน้ำใหลซึมผ่านลอดใต้เงื่อน
- 5) เกิดการพิบัติของทางน้ำล้นทำให้น้ำใหลข้ามสันเบื่อน

โดยทั่วไปแล้วประเภทของความเสียหายที่เกิดขึ้นกับเงื่อนดินสามารถแบ่งได้เป็น การพิบัติ แบบการเลื่อนไถล การพิบัติที่ก่อให้เกิด Liquefaction เกิดรอยแตกร้าวตามยาวและตามขวางของสัน เงื่อน และเกิดรูโพรงใต้ฐานเงื่อน

1) การพิบัติแบบการเลื่อนไถล (Sliding Failure)

การพิบัติแบบการเลื่อนไถลเป็นการพิบัติประเภทหลักของความเสียหายที่เกิดขึ้นกับเงื่อน ดินภายใต้สภาวะการเกิดแผ่นดินไหว ดังรูปที่ 2.19 ความมั่นคงของลาดชันเงื่อนที่เป็นเงื่อนดิน มักจะประเมินเกี่ยวกับความต้านทานแรงเฉือนของดินและทฤษฎีของ Mohr-Coulomb ซึ่งมักจะ นำมาใช้กับลักษณะการพิบัติแบบนี้ เมื่อความเก้นเฉือนสูงสุดเกิดขึ้นเนื่องจากแผ่นดินไหวมีก่า มากกว่ากำลังเฉือนของคินจะทำให้มีโอกาสที่จะเกิดการคราก (Yielding) และเกิดการพิบัติแบบ เลื่อนไถลขึ้นได้

รูปที่ 2.19 การพิบัติแบบเลื่อนไถลของเบื่อนดินถม (Siyahi and Arslan, 2008)

2) การพิบัติที่ก่อให้เกิดปรากฏการณ์ Liquefaction

เมื่อเกิดแผ่นดินไหวซึ่งจะทำให้อนุภาคของดินสั่นอย่างรวดเร็ว ก่อให้เกิดแรงดันน้ำ ส่วนเกินขึ้นชั่วคราว และเป็นผลกระทบให้กำลังของดินลดลง เรียกกระบวนการนี้ว่า Liquefaction ดังรูปที่ 2.20 ปรากฏการณ์ Liquefaction เป็นพฤติกรรมการสูญเสียกำลังรับแรงเลือนของดินทราย หลวม และกรวดปนทรายหลวมที่อยู่ในสภาวะอิ่มตัว บริเวณที่อยู่ในสภาวะอิ่มตัวของเงื่อนดินถมก็ กือ ลาดชันด้านเหนือน้ำ ซึ่งอาจจะก่อให้เกิดปรากฏการณ์ Liquefaction ได้ หากว่ามีแรงสั่นสะเทือน เกิดขึ้นเกินขีดจำกัด การพิบัติแบบ Liquefaction มักมีความสัมพันธ์กับความเครียดของดินซึ่ง สามารถเขียนเป็นสมการได้ดังสมการที่ 2.1

$$\boldsymbol{\varepsilon}_{v} = \boldsymbol{\varepsilon}_{1} + \boldsymbol{\varepsilon}_{2} + \boldsymbol{\varepsilon}_{3} \tag{2.1}$$

เมื่อ $\mathbf{\mathcal{E}}_1 \, \mathbf{\mathcal{E}}_2$ และ $\mathbf{\mathcal{E}}_3$ = ความเครียดหลัก (Principal Strains) ใน 3 มิติ

รูปที่ 2.20 การพิบัติที่เกิดปรากฏการณ์ Liquefaction (Siyahi and Arslan, 2008)

อีกวิธีการหนึ่งที่ใช้ในการประเมินการเกิด Liquefaction คือการใช้เกณฑ์ความเครียด ถ้า ความเครียดเฉือนในดินที่เป็นผลมาจากการเกิดแผ่นดินไหวมีค่าไม่เกินเกณฑ์ความเครียด ปรากฏการณ์ Liquefaction จะไม่เกิดขึ้น ความเครียดเฉือนสูงสุด (γmax) ที่ทำให้เกิดแผ่นดินไหว สามารถประมาณได้จากสมการที่ 2.2

$$\gamma_{\rm max} = \frac{1.2a_{\rm max}h}{v_{\rm s}^2} \tag{2.2}$$

เมื่อ	$a_{\rm max}$	=	ความเร่งแผ่นดินไหวสูงสุด
	h	=	ความสูงของสันเขื่อน
	Vs	=	ความเร็วคลื่นเฉือนของดิน

3) การพิบัติก่อให้เกิดรอยแตกตามยาว (Longitudinal Cracks)

รอยแตกร้าวตามแนวยาวมักจะเกิดขึ้นบนสันเงื่อน ดังแสดงในรูปที่ 2.21 ความกว้างของ รอยแตกจะขึ้นอยู่กับหน่วยแรงดึงที่ผิวของสันเงื่อน การเลื่อนไถลของลาดชันอาจจะก่อให้เกิดการ พิบัติแบบดังกล่าวได้ สาเหตุของการเกิดรอยแตกตามยาวอีกอย่างหนึ่งก็คือเกิดการทรุดตัวที่ แกนกลางเงื่อน หรือฐานรากของเงื่อน ซึ่งกรณีนี้อาจจะเกิดขึ้นได้มากเมื่อฐานรากมีความไม่ สม่ำเสมอ บางกรั้งรอยแตกตามยาวที่เกิดขึ้นอาจจะซ่อนอยู่ ไม่แสดงให้เห็นอย่างชัดเจน เช่น รอย แตกตามยาวที่เกิดขึ้นกับเงื่อน Hachi ในเมืองนิกาตะ ประเทศญี่ปุ่น ได้ก้นพบเมื่อมีการขุดเพื่อ ซ่อมแซมความเสียหายที่เกิดจากแผ่นดินไหวนิกาตะ ดังนั้นจึงต้องตรวจสอบให้ละเอียดเพราะ บางครั้งอาจมองไม่เห็นรอยแตกที่เกิดขึ้น

ร**ูปที่ 2.21** ลักษณะและบริเวณที่เกิดรอยแตกตามแนวยาว (Siyahi and Arslan, 2008)

4) การพิบัติที่ก่อให้เกิดรอยแตกตามขวาง (Transverse Cracks)

รอยแตกตามขวางแบ่งเป็น 4 ประเภท คังนี้

ก) รอยแตกที่เกิดจากการสั่นสะเทือนในทิศทางที่ขนานกับแกนเงื่อน

 ง) รอยแตกที่เกิดใกล้กับปลายทั้งสองของเงื่อน เพราะลักษณะความแตกต่างของ แรงสั่นสะเทือนที่เกิดขึ้น

ค) รอยแตกที่เกิดจากความแตกต่างภายในเงื่อน เมื่อทำการซ่อมแซมอาคาร
 ประกอบต่าง ๆ

รอยแตกที่เกิดจากการทรุดตัวที่ไม่เท่ากันของฐานรากเขื่อน

โดยปกติรอยแตกตามขวางมักจะเกิดจากการทรุดตัวไม่เท่ากันของฐานรากเขื่อน ดังแสดง ในรูปที่ 2.22 ซึ่งโดยทั่วไปมักจะพบรอยแตกตามขวางน้อยกว่ารอยแตกตามยาว

รูปที่ 2.22 รอยแตกตามขวางที่เกิดจากการทรุดตัวไม่เท่ากันของเชื่อนดิน (Siyahi and Arslan, 2008)

5) การพิบัติที่ก่อให้เกิดรูโพรงใต้ดินถมและฐานรากเงื่อน

การเกิดรูโพรงใต้ดินถมและฐานรากเขื่อน เป็นกระบวนการกัดกร่อนที่ทำให้เกิดการ รั่วไหลภายใต้เขื่อน ซึ่งถือเป็นการพิบัติอย่างหนึ่ง โดยที่น้ำจะซึมผ่านชั้นดินบดอัดของดินถม หรือ ฐานราก ซึ่งแรงดันน้ำจะกระจายไปทุกทิศทางเพื่อเอาชนะแรงหนืดที่ต้านการไหลผ่านช่องเล็ก ๆ ระหว่างเม็ดดิน ในทางกลับกันน้ำที่ซึมผ่านจะสร้างแรงกัดกร่อนซึ่งมักจะดึงอนุภาคของดินลอดใต้ เขื่อนไปกับน้ำด้วย ถ้าแรงต้านการกัดกร่อนมีค่าน้อยกว่าแรงดึงของน้ำ ก็จะทำให้อนุภาคดินหายไป เกิดรูโพรงขึ้น ซึ่งแรงด้านทานจะขึ้นอยู่กับแรงยึดเหนี่ยวและน้ำหนักของอนุภาคเม็ดดิน

2.5 ทฤษฎีการออกแบบเงื่อนเพื่อรองรับการเกิดแผ่นดินไหว

ค่าแรงแผ่นดินใหวที่เหมาะสมจะนำมาใช้ในการออกแบบเงื่อน International Commission of Large Dams, ICOLD (1983) ได้แนะนำให้ใช้ค่า Maximum Credible Earthquake (MCE) คือ งนาดแผ่นดินใหวสูงสุดที่คาดว่าจะเกิดขึ้นต่อเงื่อน โดยพิจารณาข้อมูลแผ่นดินใหวของรอยเลื่อนมี พลังรอบ ๆ บริเวณที่ตั้งเงื่อน สามารถหาได้ด้วยวิธีกำหนดค่า (Deterministic Analysis) อย่างไรก็ ตามข้อกำหนดของ ICOLD ภายใต้แผ่นดินไหว MCE การออกแบบเงื่อนจะต้องรองรับไม่ให้เกิด กรณีดังต่อไปนี้

- 1) วัสคุตัวเบื่อนและฐานรากเกิด Liquefaction
- 2) เกิดการทรุดตัว เลื่อนตัวของลาดชันเงื่อนและฐานราก
- 3) เกิดการสูญเสียระยะเผื่อพ้นน้ำ
- 4) เกิดการแตกร้าวของตัวเขื่อนจนน้ำใหลรั่วโดยควบคุมไม่ได้
- อาการระบายน้ำและอุปกรณ์ เสียหายรุนแรงจนเป็นอันตรายต่อเงื่อน

2.5.1 การวิเคราะห์เสถียรภาพของลาดชันเขื่อนในสภาวะสถิตยศาสตร์

การวิเคราะห์เสถียรภาพของลาดชัน (Slope Stability) เป็นการศึกษาปัญหาพื้นฐานของ วัสดุดิน ลาดดิน (Slope) อาจจะแบ่งเป็นลาดดินธรรมชาติ (Natural Slopes) หรือ ลาดดินจากการ กระทำของมนุษย์ (Man-made Slope) เช่น การขุดลาดทำถนนหรือคลอง ดินลาดธรรมชาติ ส่วนมากจะมีความสมดุลในตัวมันเองอยู่แล้ว แต่บางครั้งจะมีน้ำหนักภายนอกหรือสภาพภายในที่ เปลี่ยนแปลงไปที่อาจเกิดจากการรบกวนแบบต่างๆหรือ อาจเกิดจากฤดูกาลที่เปลี่ยนแปลงทำให้ ลาดธรรมชาติเกิดพังทลาย แต่ปัญหาที่พบบ่อยในทางวิศวกรรมคือ ลาดดินที่เกิดจากมนุษย์ เช่น ลาดที่เกิดจากขุดดิน, การทำ Retaining Wall การถมทำถนน และ ฯลฯ ลักษณะของลาดชัน (Slope) อาจแบ่งได้คร่าว ๆ จากลักษณะการพังทลาย คือ

a) Infinite Slope ดินลาดแบบต่อเนื่องไม่จำกัด (สมการที่ 2.3)

$$\frac{D}{L} < 0.1 \tag{2.3}$$

b) Finite Slope ดินลาดแบบจำกัด (สมการที่ 2.4)

$$\frac{D}{L} > 0.15 \tag{2.4}$$

รูปที่ 2.23 Infinite and Finite Slopes

ทฤษฎีในการวิเคราะห์เสถียรภาพความลาดชันมีหลายทฤษฎีขึ้นอยู่กับสมมุติฐานที่ใช้ และ ข้อกำหนดในการวิเคราะห์ต่าง ๆ ซึ่งรวมถึงสมคุลของแรง สมคุลของ โมเมนต์ และการเลือกใช้งาน แรงปฏิกิริยาระหว่าง slice ดังรายละเอียดในตารางที่ 2.6 และ 2.7

ตารางที่ 2.6 Static Equilibrium methods (Kranh, 2004)

Method	Moment Equilibrium	Force Equilibrium
Ordinary or Fellenius	Yes	No
Bishop's Simplified	Yes	No
Janbu's Simplified	No	Yes
Spencer	Yes	Yes
Morgenstern-Price	Yes	Yes
Corps of Engineers-1	No	Yes
Janbu Generalized	Yes (by slice)	Yes

ตารางที่ 2.7 Interslice Force Characteristics and Relationship (Kranh, 2004)

Method	Interslice Normal	Interslice Shear
Ordinary or Fellenius	No	No
Bishop's Simplified	Yes	No
Janbu's Simplified	No	No
Spencer	Yes	Yes
Morgenstern-Price	Yes	Yes
Corps of Engineers-1	Yes	Yes
Janbu Generalized	Yes	Yes

2.5.2 การวิเคราะห์เสถียรภาพลาดชันเขื่อนด้วยวิชี Bishop's Simplified Method

การวิเคราะห์เสถียรภาพของลาคชั้นเขื่อนในสภาวะสถิตยศาสตร์ด้วยวิธี Bishop's Simplified Method เป็นวิธีที่นิยมใช้มากที่สุด โดยใช้หลักการแบ่งดินที่อยู่บนพื้นระนาบการเคลื่อน ด้วออกเป็นส่วนๆ โดยพิจารณาแรงกระทำด้านข้างของแต่ละส่วนมวลดินที่ถูกแบ่งด้วย ดังแสดงใน รูปที่ 2.24 และก่าอัตราส่วนกวามปลอดภัยสามารถกำนวณได้โดยใช้สมการที่ 2.5 (Das, 1994)

รูปที่ 2.24 Bishop's simplified method (Das, 1994)

$$FS = \frac{\sum_{n=1}^{n=p} (cb_n + W_n \tan \phi + \Delta \tan \phi) \frac{1}{m_{\alpha(n)}}}{\sum_{n=1}^{n=p} W_n \sin \alpha_n}$$
(2.5)

¥

ເນື່ອ

รูปที่ 2.25 กราฟของค่า $m_{\alpha(n)}$ สำหรับสมการของ Bishop (Das, 1994)

2.5.3 การวิเคราะห์เสถียรภาพถาดชันเขื่อนที่ถูกกระทำจากแรงแผ่นดินไหวโดยวิธี Pseudostatic

วิธีวิเคราะห์แบบนี้เป็นวิธีที่ใช้กันอย่างแพร่หลายสำหรับการออกแบบลาคชันเงื่อนเพื่อ ด้านทานแผ่นดินไหว และยังคงใช้ได้ดีอยู่ในปัจจุบัน การวิเคราะห์ดำเนินการเหมือนการวิเคราะห์ กวามมั่นคงของลาคชันปกติ เพียงแต่เพิ่มแรงในแนวราบ (ng.W) ที่เกิดจากความเร่งของแผ่นดินไหว เข้าไปในสมการดังแสดงในรูปที่ 2.26 การกำหนดความเร่งในแนวราบจะประเมินจากความเร่ง สูงสุดของพื้นดิน (Peak Ground Acceleration, PGA) ที่เป็นไปได้ในพื้นที่นั้น ๆ แต่เนื่องจากแรง กระทำจากแผ่นดินไหวเป็นแรงที่ไม่คงที่ (Transient Loading) จึงต้องทำการลดทอนค่า PGA ลง 1/3 หรือ 1/2 เท่าของค่า PGA (Marcuson and Franklin, 1983) การลดทอนค่า PGA ดังกล่าวสามารถ นำไปใช้เพื่อการวิเคราะห์ออกแบบลาดชันเงื่อนได้ตรงตามพฤติกรรมจริงระหว่างการเกิด แผ่นดินไหว

ร**ูปที่ 2.26** ทฤษฎีการวิเคราะห์ความมั่นคงของลาคชันด้วยวิธี Pseudo Static (Seed, 1979)

อัตราส่วนความปลอดภัยในการวิเคราะห์ความมั่นคงของลาดชันเขื่อนด้วยวิธี Pseudo Static สามารถแสดงได้ ดังนี้

$$F.S. = \frac{s1R}{EW + n_a FW}$$
(2.6)

ค่าสัมประสิทธิ์แผ่นดินไหวเป็นตัวคูณที่ใช้คำนวณแรงในแนวราบเสมือนกับแรงที่เกิดจาก แผ่นดินไหว ซึ่งจะขึ้นอยู่กับความรุนแรงของแผ่นดินไหว เช่น อัตราเร่งสูงสุดของพื้นดิน (Peak Ground Acceleration, PGA), ช่วงเวลาของการสั่นสะเทือน และความถึ่ของคลื่นแผ่นดินไหว ซึ่ง ตัวอย่างก่า Seismic Coefficient ที่เกยใช้ในการประเมินผลสำหรับวิเคราะห์เสถียรภาพของลาดชัน เมื่อมีแรงแผ่นดินไหวมากระทำสามารถแสดงได้ดังตารางที่ 2.8

Seismic Coefficient	Remarks
0.10	Major earthquake, FS > 1.0 (Corps of Engineers, 1982)
0.15	Great earthquake, FS > 1.0 (Corps of Engineers, 1982)
0.15 - 0.25	Japan, FS > 1.0
0.05 - 0.15	State of California
0.15	Seed (1979), with FS > 1.15 and a 20% strength reduction
1/3 – 1/2 PGA	Marcuson and Franklin (1983), FS > 1.0
1/2 PGA	Hyness – Griffin and Franklin (1984), FS > 1.0 and a 20%
	strength reduction

ตารางที่ 2.8 ค่า Seismic Coefficient และ Factor of Safety ที่ใช้ในการวิเคราะห์เสถียรภาพของเบื่อน

2.6 ทฤษฎีการวิเคราะห์พฤติกรรมการตอบสนองทางพลศาสตร์

การวิเคราะห์พฤติกรรมการตอบสนองทางพลศาสตร์จากแรงกระทำแผ่นดินไหวมีหลักการ และตัวแปรต่างๆ ที่เกี่ยวข้อง ดังนี้

2.6.1 วิธี Equivalent Linear Approach

วิธี Equivalent linear approach เป็นวิธีที่ใช้สำหรับการวิเคราะห์การตอบสนองทาง พลศาสตร์ของโครงสร้างเชื่อนแบบ 2 มิติ ซึ่งหลักการวิเคราะห์มีสมมุติฐานให้เชื่อนมีลักษณะเป็น แบบ Plain strain ดังแสดงในรูปที่ 2.27(a) และจะใช้หน้าตัดในบางบริเวณเป็นตัวแทนของเงื่อน ซึ่ง โดยส่วนใหญ่จะใช้หน้าตัดบริเวณที่สูงที่สุดมาใช้ในการวิเคราะห์ ดังแสดงในรูปที่ 2.27(b) การ วิเคราะห์จะมีลักษณะคล้ายคลึงกับวิธีวิเคราะห์แบบ 1 มิติมาก โดยเงื่อนจะถูกจำลองโดยใช้วิธีไฟ ในต์อิลิเมนต์ มีแรงกระทำแผ่นดินใหวที่อยู่ในรูปอนุกรม Fourier Series และวิเคราะห์สมการการ เคลื่อนที่ในแต่ละความถี่ ดังสมการที่ 2.7 (เกรียงไกร, 2551)

ร**ูปที่ 2.27** ตัวอย่างหน้าตัดเงื่อนที่วิเคราะห์ด้วยวิธี Equivalent linear approach (a) หน้าตัดที่เป็น ตัวแทนของเงื่อน (b) แบบจำลองหน้าตัดเงื่อนด้วยวิธีไฟไนต์อิลิเมนต์ (Kramer, 1996)

$$[M]{\dot{u}} + [D]{\dot{u}} + [K^*]{u} = [M][1]\ddot{u}_b(t)$$
(2.7)

ເນື່ອ

[M]	=	Mass matrix
$[K^*]$	=	Complex stiffness matrix
[D]	=	Damping matrix
<i>{u}</i>	=	Displacement vector
\ddot{u}_b	=	อัตราเร่งของแรงกระทำแผ่นดินใหว

2.6.2 คาบธรรมชาติของตัวเชื่อน (Natural Period of Dam)

คาบธรรมชาติมีความสำคัญมากในการวิเคราะห์ทางด้านพลศาสตร์ เนื่องจากถ้าค่าคาบเด่น (Predominant Period) ของข้อมูลอัตราเร่งของพื้นดินที่ใช้ในการวิเคราะห์ไปตรงกับค่าคาบ ธรรมชาติของตัวเงื่อนจะทำให้เกิดปรากฏการณ์สั่นพ้อง (Resonance) คือมีการขยายขนาดของคลื่น แผ่นดินใหวอย่างมากทำให้ค่าอัตราเร่งของวัสดุตัวเงื่อนมีค่ามากขึ้น โดยการวิเคราะห์หาคาบ ธรรมชาติมีวิธีต่างๆ ดังนี้

วิธีของ Gazetas and Dakoulus

Gazetas and Dakoulas (1991) ได้เสนอความสัมพันธ์ของการหาค่าคาบธรรมชาติของตัว เงื่อนไว้ดังสมการที่ 2.8

$$T = \frac{2.61H}{V_s} \tag{2.8}$$

ເມື່ອ H = Maximum height of the dam or embankment (m) $V_s =$ Average shear wave velocity (m/s)

2) วิธีผลการตอบสนองทางพลศาสตร์

เกรียงใกร (2551) ได้เสนอวิธีการวิเคราะห์หาก่ากาบธรรมชาติของตัวเขื่อน โดยใช้ แบบจำลองไฟในต์อิลิเมนต์ ที่ใช้ในการวิเคราะห์การตอบสนองทางพลศาสตร์ของตัวเขื่อน ซึ่ง หลักการวิเคราะห์จะสร้างข้อมูลอัตราเร่งของพื้นดินอย่างง่ายขึ้นมากระทำที่บริเวณฐานเขื่อน โดย จะทำการเปลี่ยนก่า Predominant period ของข้อมูลอัตราเร่งพื้นดิน แล้วพิจารณาพฤติกรรมการ ตอบสนองทางพลศาสตร์ของตัวเขื่อน เช่น ก่าการเกลื่อนตัวในแนวราบในชั้นวัสดุทึบน้ำแกนเขื่อน (Impervious earth zone) ที่ระดับความสูงต่างๆ ของตัวเขื่อน

2.6.3 โมดูลัสแรงเฉือนสูงสุด (Maximum Shear Modulus, Gmax)

Hardin and Black (1968) ได้เสนอความสัมพันธ์ของค่า Maximum Shear Modulus ของดิน ทราย จากผลการทดสอบในห้องปฏิบัติการและจากการวัดในสนาม ดังความสัมพันธ์ดังนี้

้สำหรับคินทรายที่มีรูปร่างเม็คคินกลมและมีอัตราส่วนช่องว่างน้อยกว่าหรือเท่ากับ 0.8

$$G_{\max} = 6931 \frac{(2.17 - e)^2}{1 + e} (\sigma_o^{'})^{1/2} (kPa)$$
(2.9)

สำหรับคินทรายที่มีรูปร่างเม็คคินเป็นเหลี่ยม

$$G_{\max} = 3230 \frac{(2.973 - e)^2}{1 + e} (\sigma_o^{'})^{1/2} (kPa)$$
(2.10)

ເມື່ອ
$$\sigma_0 = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3} (kPa)$$

Hardin and Drnevich (1972) ศึกษาปัจจัยที่มีผลต่อ Shear modulus ของคินเหนียวโดย พบว่าตัวแปรที่ส่งผลต่อคุณสมบัติทางพลศาสตร์คือขนาดของความเครียดเฉือน (Shear strain amplitude) ค่าความเค้นประสิทธิผล (Effective confining stress) และอัตราส่วนช่องว่าง (Void ratio) และจากค่าความเค้นในอดีต (Stress history) ด้วย โดยมีความสัมพันธ์ดังสมการที่ 2.11

$$G_{\max} = 3230 \frac{(2.973 - e)^2}{1 + e} (OCR)^k (\sigma_o^{'})^{1/2} (kPa)$$
(2.11)

 $l_{JJ}^{A} OCR = Overconsolidation ratio$ k = Constant depending on PI = 0 for PI = 0% = 0.5 for PI = 100%

Seed et al. (1986) ได้เสนอความสัมพันธ์ระหว่างค่าโมดูลัสแรงเฉือนสูงสุด (Maximum Shear Modulus, G_{max}) กับการทดสอบการรับน้ำหนักของดิน (Standard Penetration Resistance, SPT-N) ดังแสดงในสมการที่ 2.12

$$G_{\text{max}} \approx 35 \times 1000 N_{60}^{0.34} (\sigma_0^{'})^{0.4}$$
 (2.12)

$$IJD G_{max} = Maximum shear modulus (lb/ft2)$$

$$N_{60} = Normalized standard penetration resistance (blows/ft)$$

$$\sigma_{0}' = Effective confining pressure (lb/ft2)$$

$$= \frac{\overline{\sigma_{V}}}{3}(3-2\sin\phi)$$

$$\sigma_{V}' = Effective vertical stress (lb/ft2)$$

$$\phi = Internal friction angle (degree)$$

2.6.4 ค่าโมดูลัสเฉือน (Shear Modulus, G) ที่ใช้ในแบบจำลองทางคณิตศาสตร์ 2 มิติ

ค่าโมดูลัสแรงเฉือนเป็นตัวแปรที่สำคัญในการวิเคราะห์ทางพลศาสตร์ โดยปกติแล้วค่า โมดูลัสแรงเฉือนของวัสดุถมเขื่อนจะมีค่าเพิ่มขึ้นตามความลึกของตัวเขื่อนตามทฤษฎี Stiffness as a Function of Depth ซึ่งมีความสัมพันธ์ดังสมการที่ 2.13 (Krahn, 2004)

$$G = K_G \left(\sigma_m' \right)^n \tag{2.13}$$

4	C		
เทอ	G	=	Shear Modulus (kPa)
	K _G	=	Modulus Number
	$\sigma_{_m}$	=	Mean Effective Stress (kPa)
	n	=	A Power Exponent

2.6.5 ความเร็วคลื่นเฉือน (Shear Wave Velocity, V.)

Andrus and Stokoe (2000) ใด้เสนอความสัมพันธ์ของค่าความเร็วคลื่นเนือน (Shear wave velocity, V) ที่ใช้สำหรับเขื่อนดินถมสามารถประมาณได้จากสมการที่ 2.14

$$V_s = 93.2 \times (N_{60})^{0.231} \tag{2.14}$$

 $\mathfrak{lid} N_{60} = Normalized standard penetration resistance (blows/ft)$

นอกจากนี้ยังสามารถหาค่าความเร็วคลื่นเฉือนจากค่าโมคูลัสเฉือนสูงสุด โดยใช้ ความสัมพันธ์จากทฤษฎี Elastic Continuum Mechanics แสดงใค้คังสมการที่ 2.15

$$G_{\rm max} = \rho V_s^2 \tag{2.15}$$

ເມື່ອ
$$G_{\text{max}} = Maximum \text{ shear modulus (kPa)}$$

 $\rho = Mass \text{ density of soil (kg/m3)}$
 $V_s = Shear wave velocity (m/s)$

2.6.6 Shear Modulus Reduction and Damping Ratio Curve

ในการวิเคราะห์แบบจำลองวัสดุแบบ Equivalent linear approach (Kramer, 1996) ใช้ กวามสัมพันธ์ระหว่างโมดูลัสเฉือนและความเครียดเฉือน ซึ่งแสดงในลักษณะกราฟความสัมพันธ์ ระหว่างอัตราส่วนโมดูลัสแรงเฉือนและความเครียดเฉือน โดยที่ค่าโมดูลัสแรงเฉือนจะมีค่าลดลง ตามขนาดของความเครียดเฉือนที่เพิ่มขึ้น ค่าโมดูลัสแรงเฉือนสำหรับดินเม็ดละเอียดและดินเม็ด หยาบสามารถแสดงได้ดังรูปที่ 2.28 และรูปที่ 2.29 ตามลำดับ ส่วนค่าอัตราส่วน Damping จะแสดง ในลักษณะกราฟความสัมพันธ์ระหว่างอัตราส่วน Damping และความเครียดเช่นกัน แต่ค่า อัตราส่วน Damping จะมีค่าเพิ่มขึ้นตามขนาดของความเครียดที่เพิ่มขึ้น ค่าอัตราส่วน Damping สำหรับดินเม็ดละเอียดและดินเม็ดหยาบสามารถแสดงได้ดังรูปที่ 2.30 และรูปที่ 2.31 ตามลำดับ

ร**ูปที่ 2.28** Modulus reduction curve สำหรับดินเม็ดละเอียดที่มีค่า PI ต่างกัน (Vucetic and Dobry, 1991)

รูปที่ 2.29 Variation of G/G_{max} with shear strain for sand (Das, 1993)

ร**ูปที่ 2.30** Damping Ratio Curve สำหรับดินเม็ดละเอียดที่มีค่า PI ต่างกัน (Vucetic and Dobry, 1991)

รูปที่ 2.31 Damping ratio for sand (Das, 1993)

Ishibashi and Zhang (1993) กล่าวว่าโดยทั่วไปแล้ว ค่า Modulus Reduction และ Damping Ratio จะขึ้นอยู่กับค่าแรงดันประสิทธิผล (Effective Confining Pressure) และค่าดัชนีความเป็น พลาสติกของดิน (Plasticity Index, PI) ซึ่งสามารถเขียนเป็นสมการได้ดังสมการที่ 2.16 และ 2.17 ตามลำดับ

$$\frac{G}{G_{\text{max}}} = K(\gamma, PI) (\sigma_m)^{m(\gamma, PI) - m_0}$$
(2.16)

เมื่อ	G/G _{max}	=	Modulus reduction
	$\sigma_{\scriptscriptstyle m}$	=	Effective confining pressure (kPa)
	PI	=	Plasticity index
	γ	=	Cyclic shear strain (%)

$$K(\gamma, PI) = 0.5 \left\{ 1 + \tanh\left[\ln\left(\frac{0.000102 + n(PI)}{\gamma}\right)^{0.492}\right] \right\}$$

$$m(\gamma, PI) - m_0 = 0.272 \left\{ 1 - \tanh\left[\ln\left(\frac{0.000556}{\gamma}\right)^{0.4} \right] \right\} \exp\left(-0.0145PI^{1.3}\right)$$

n(PI) =
$$\begin{cases} 0 & \text{for } PI = 0 \\ 3.37*10^{-6} PI^{1.404} & \text{for } 0 < PI \le 15 \\ 7.0*10^{-7} PI^{1.976} & \text{for } 15 < PI \le 70 \\ 2.7*10^{-5} PI^{1.115} & \text{for } PI > 70 \end{cases}$$

$$\xi = 0.333 \frac{1 + \exp(-0.0145PI^{1.3})}{2} \left[0.586 \left(\frac{G}{G_{\text{max}}}\right)^2 - 1.547 \frac{G}{G_{\text{max}}} + 1 \right] \quad (2.17)$$

เมื่อ
$$\xi$$
 = Damping ratio (%)

2.6.7 การเปลี่ยนรูปถาวรของลาดชันเงื่อนโดยวิธี Newmark's Deformation Analysis

Newmark (1965) เสนอวิชีวิเคราะห์การเคลื่อนตัวถาวรของลาดชันเขื่อน โดยกล่าวว่าถ้ามี แรงที่มากระทำกับมวลดินมากกว่าแรงด้าน จะทำให้มีอัตราส่วนความปลอดภัย (FS) ต่ำกว่า 1 ซึ่งจะ ทำให้เกิดการเคลื่อนตัวของมวลดินดังกล่าว สามารถเปรียบเทียบได้กับการเคลื่อนที่แบบ Slide Block บนระนาบเอียง ดังแสดงในรูปที่ 2.32 เมื่อพิจารณา Slide Block ซึ่งอยู่ในสภาวะสมดุลบน ระนาบเอียง จะพบว่าก่าความปลอดภัย (FS) ของ Slide Block จะเป็นอัตราส่วนระหว่างแรงด้าน (Resisting Force, Rs) กับแรงกระทำ (Driving Force, Ds) โดยสมมุติว่าแรงด้านการเคลื่อนที่ของ Slide Block ไม่มีแรงเสียดทานเกิดขึ้น สามารถเขียนเป็นสมการได้ดังสมการที่ 2.18

ร**ูปที่ 2.32** การเคลื่อนที่แบบ Slide block บนระนาบเอียง (a) Potential Landslide (b) Block resting on inclined (Kramer, 1996)

$$FS = \frac{Rs}{Ds} = \frac{W\cos\beta\tan\phi}{W\sin\beta} = \frac{\tan\phi}{\tan\beta}$$
(2.18)

นอกจากนี้ Newmark ยังกล่าวอีกว่าการเคลื่อนตัวของมวลดินจะหยุดเมื่อ Inertia forces เคลื่อนตัวกลับ ดังนั้นระยะการเคลื่อนตัวคือผลรวมของค่าอัตราเร่งของพื้นดินที่กระทำกับลาดชันที่ มากกว่าค่า Yield acceleration แต่ทั้งนี้ค่า Yield acceleration ขึ้นอยู่กับคุณสมบัติความแข็งแรงของ วัสดุ ซึ่งความแข็งแรงของวัสดุอาจจะเปลี่ยนแปลงไปขณะที่มีแรงมากระทำ ส่งผลให้ค่า Yield Acceleration มีก่าลดลง และทำให้ลาดชันมีการเคลื่อนที่มากขึ้น ดังแสดงในรูปที่ 2.33

ร**ูปที่ 2.33** การหาค่าการเคลื่อนตัวของ Newmark กรณี Ky มีค่าลดลง (Seed, 1979)

2.6.8 การเกิดปรากฏการณ์ Liquefaction

ปรากฏการณ์ Liquefaction คือ การเปลี่ยนแปลงสถานะของวัสดุจำพวกกรวดหรือทราย ที่ อยู่ในสภาวะอิ่มตัว จากสภาพของแข็ง (Solid state) กลายเป็นสภาพของเหลว (Liquefied state) ซึ่ง กระบวนการดังกล่าวจะเกิดขึ้นก็ต่อเมื่อดินดังกล่าวถูกแรงกระทำจากแผ่นดินไหว ทำให้แรงเฉือน ระหว่างเม็ดดินเพิ่มขึ้น และหากแรงกระทำจากแผ่นดินไหวมีความรุนแรงมากพอ เม็ดดินจะเกิดการ ขยับตัวและทรุดตัวในที่สุดดังแสดงในรูปที่ 2.34 ผลที่ตามมาคือ เกิดแรงดันน้ำส่วนเกิน (Excess pore water pressure) เพิ่มสูงขึ้น และก่าความเก้นประสิทธิผล (Effective stress) ระหว่างเม็ดดิน ลดลง ทำให้เกิดการสูญเสียกำลังรับแรงเฉือนของดินเนื่องจากผลของการเพิ่มขึ้นของแรงดันน้ำ ส่วนเกิน ในขณะที่ดินก็จะเกิดการเคลื่อนตัวทำให้ดินดังกล่าวไม่สามารถรับน้ำหนักได้

ร**ูปที่ 2.34** การเกิดปรากฏการณ์ Liquefaction a) ก่อนเกิดแผ่นดินไหว b) หลังเกิดแผ่นดินไหว

Seed et al. (1983) ระบุว่าลักษณะดินที่มีโอกาสเกิด Liquefaction ได้แก่ ดินทราย ทรายแป้ง และกรวดปนทราย ที่มีส่วนละเอียด (ขนาดเล็กกว่า 0.005 mm) มากกว่าร้อยละ 20 ถือว่าเป็นดินที่ ไม่มีโอกาสเกิด Liquefaction ในขณะที่ Wang (1979) กำหนดให้ดินที่มีส่วนละเอียด (P200) เกิน ร้อยละ 15 และมีค่า LL มากกว่าร้อยละ 35 ถือว่าดินดังกล่าวไม่มีโอกาสเกิด Liquefaction ดังแสดง ในรูปที่ 2.35 เช่นเดียวกัน การกำหนดดังกล่าวมีพื้นฐานเกี่ยวข้องกับการลดลงของกำลังรับแรง เฉือนดังที่ได้กล่าวมา โดยเมื่อความเก้นประสิทธิผลระหว่างเม็ดดินลดลง แต่หากดินดังกล่าวมีส่วน ละเอียดของดินเหนียวอยู่เกินก่าที่กำหนด ความเหนียวของดินหรือ Cohesion จะช่วยต้านทานการ เสียกำลังได้ดี นอกจากนั้นในกรณีที่มีดินเม็ดละเอียดอยู่มากโอกาสที่ดินจะมีช่องว่างสำหรับการ ยุบตัวจะน้อย ทำให้ Liquefaction ไม่สามารถเกิดได้

รูปที่ 2.35 ขอบเขตของการกระจายขนาคคละของวัสคุที่มีโอกาสเกิค Liquefaction (Tsuchada, 1970)

Seed and Idriss (1971) ได้เสนอวิธีการประเมินการเกิด Liquefaction โดยวิธี Simplified Method ซึ่งเป็นวิธีที่ใช้กันอย่างกว้างขวางในการวิเคราะห์ Liquefaction โดยการวิเคราะห์จะใช้ค่า Cyclic Shear Stress (τ_{cyc}) และค่า Liquefaction Resistance ($\tau_{cyc,L}$) มาคำนวณหาค่าความปลอดภัย (Factor of Safety, FS) ซึ่งการคำนวณค่า Cyclic Shear Stress (τ_{cyc}) และค่า Liquefaction Resistance ($\tau_{cyc,L}$) สามารถคำนวณได้ดังสมการที่ 2.19 และสมการที่ 2.20 ตามลำดับ

$$\tau_{cyc} = 0.65 \tau_{max} = 0.65 \left(\frac{a_{max}}{g}\right) \sigma_{vo} r_d \tag{2.19}$$

$$\tau_{cyc,L} = CSR_L \sigma_{vo} = (CSR_{M=7.5})(MSF)(K_{\sigma})\sigma_{vo}$$
(2.20)

ເນື່ອ	$ au_{cyc}$	=	Cyclic shear stress
	a _{max}	=	ค่าอัตราเร่งสูงสุดที่ผิวดินตามแนวราบ
	g	=	ความเร่งเนื่องจากแรงโน้มถ่วงของโลก
	$\sigma_{\scriptscriptstyle vo}$ and $\sigma_{\scriptscriptstyle vo}$	=	ความเค้นรวม และความเค้นประสิทธิผลตาม
			แนวดิ่ง
	r _d	=	Stress reduction factor (รูปที่ 2.36)
	$ au_{cyc,L}$	=	Liquefaction resistance
	CSR_L	=	Cyclic shear stress required to cause
			Liquefaction
	MSF	=	ค่าปรับแก้เนื่องจากขนาดของแผ่นดินไหว
	K_{σ}	=	ค่าปรับแก้เทียบกับอิทธิพลของ Effective
			overburden pressure

สำหรับการหาค่า CSR_L สามารถประมาณได้ โดยใช้ความสัมพันธ์ระหว่างค่า SPT, $(N_1)_{60}$ กับค่า CSR_{Mw = 7.5} ซึ่งใช้เฉพาะแผ่นดินไหวที่มีขนาด M_w = 7.5 ริกเตอร์ เท่านั้น ดังแสดงในรูปที่ 2.37 และ ทำการปรับเทียบอิทธิพลของ Effective Overburden Pressure โดยใช้ค่า K_o (Estimated average curve for sand) ดังแสดงในรูปที่ 2.38 นอกจากนี้ถ้าขนาดของแผ่นดินไหว (Earthquake Magnitude, M_w) ที่พิจารณามีค่ามากกว่าหรือน้อยกว่า 7.5 ให้ปรับแก้ค่า Magnitude Scaling Factor (MSF) จากตารางที่ 2.9

รูปที่ 2.37 ความสัมพันธ์ระหว่าง Cyclic Stress Ratio และ (N₁)₆₀ สำหรับ Silty Sands ของ แผ่นดินไหวขนาด M=7.5 (Kramer, 1996)

ร**ูปที่ 2.38** กราฟการปรับแก้ค่า K_o เนื่องจากอิทธิพลของ Effective Overburden Pressure (Kramer, 1996)

ตารางที่ 2.9 ค่าปรับแก้เนื่องจากขนาดของแผ่นดินไหว (ริกเตอร์) สำหรับค่า CSR_L (Kramer, 1996)

Magnitude, M	MSF
5.25	1.50
6.00	1.32
6.75	1.13
7.50	1.00
8.50	0.89

ค่าอัตราส่วนความปลอคภัย (Factor of Safety, FS) ของการวิเคราะห์การเกิดปรากฏการณ์ Liquefaction สามารถคำนวณได้จากอัตราส่วนของ Liquefaction Resistance ($au_{cyc,L}$) ต่อ Cyclic Shear Stress (au_{cyc}) ดังสมการที่ 2.21 ซึ่งถ้าค่าอัตราส่วนความปลอคภัย (Factor of Safety, FS) มีค่า น้อยกว่า 1.0 แสดงว่าบริเวณที่พิจารณามีโอกาสเสี่ยงสูงต่อการเกิด Liquefaction

$$FS = \frac{\tau_{cyc,L}}{\tau_{cyc}}$$
(2.21)

เมื่อ	FS	=	Factor of safety
	$ au_{cyc,L}$	=	Liquefaction resistance
	$ au_{cvc}$	=	Cyclic shear stress

2.7 งานวิจัยที่เกี่ยวข้อง

การวิเคราะห์ผลกระทบจากแรงกระทำแผ่นดินไหวที่เกิดขึ้นกับโครงสร้างเงื่อน ได้มีผู้ให้ ความสนใจและศึกษาด้านนี้กันมาก เนื่องจากในปัจจุบันมีแผ่นดินไหวเกิดขึ้นบ่อยครั้งมากและมี ขนาดของความรุนแรงมากด้วยเช่นกัน โดยมีงานวิจัยที่เคยมีการศึกษาในอดีตทั้งในและต่างประเทศ ดังนี้

เกรียงไกร (2551) ได้ทำการศึกษาการวิเคราะห์ความปลอดภัยของเชื่อนดินและหินถมต่อ แรงกระแผ่นดินไหวโดยวิธีการตอบสนองทางพลศาสตร์ :กรณีศึกษาเชื่อนศรีนครินทร์ โดย ทำการศึกษาเพื่อประเมิน วิเคราะห์ความมั่นคงความปลอดภัยของเชื่อนโดยวิธีตอบสนองจากแรง พลศาสตร์ ซึ่งใช้โปรแกรม SLOPE/W วิเคราะห์เสถียรภาพความลาดชัน หาค่า Yield Acceleration และการเปลี่ยนรูปถาวรของลาดชันเชื่อนเมื่อมีแรงกระทำแบบพลศาสตร์ ใช้โปรแกรม QUAKE/W วิเคราะห์ความเค้นสถิต และการตอบสนองของเชื่อนต่อแรงกระทำทางพลศาสตร์ ใช้โปรแกรม QUAKE/W วิเคราะห์ความเค้นสถิต และการตอบสนองของเชื่อนต่อแรงกระทำทางพลศาสตร์ให้รูปแบบจำลอง ทางคณิตศาสตร์ไฟไนต์อีลีเมนต์ 2 มิติ และโปรแกรม SeismicSignal วิเคราะห์หาองค์ประกอบของ ข้อมูลอัตราเร่งของพื้นดินจากคลื่นแผ่นดินไหว สำหรับผลการวิเคราะห์พบว่า พฤติกรรมการ ตอบสนองทางพลศาสตร์ของเชื่อนต่อแรงกระทำแผ่นดินไหว มีค่าแตกต่างกันในแต่ละบริเวณเชื่อน โดยอัตราเร่งในแนวราบของวัสดุตัวเชื่อนมีแนวโน้มเพิ่มขึ้นตามระดับความสูงเชื่อนโดยมีค่ามาก ที่สุดที่ระดับกวามสูง +180 ม.รทก. สำหรับค่าการทรุดตัวถาวรของสันเชื่อนจากแรงแผ่นดินไหวซึ่ง
เป็นความเสียหายที่พบได้ทั่วไปเมื่อเงื่อนถูกแรงกระทำจากแผ่นดินไหว จากงานวิจัยพบว่าค่า ดังกล่าวมีปัจจัยหลักขึ้นอยู่กับ (1) รูปร่างของตัวเงื่อน (2) คุณสมบัติของวัสคุถมเงื่อน (3) ระดับเก็บ กักน้ำในเงื่อนและ (4) องค์ประกอบของคลื่นแผ่นดินไหวโดยพบว่าเมื่อระดับเก็บกักน้ำลดลงจะทำ ให้การทรุดตัวถาวรของสันเงื่อนลดลง นอกจากนั้นผลการวิเคราะห์ดังกล่าวยังพบว่าค่าการทรุดตัว ถาวรของสันเงื่อนที่วิเคราะห์โดยวิธี Newmark's Deformation (1965) มีค่าสอดกล้องกับค่าที่ได้จาก ข้อมูลสถิติโดยวิธี Swaisgood (1998) สำหรับการทรุดตัวถาวรสูงสุดของสันเงื่อนที่วิเคราะห์ของ เงื่อนศรีนครินทร์ด้านเหนือน้ำกรณีระดับเก็บกักน้ำปกติมีค่ามากที่สุดเท่ากับ 6.82 เมตรหรือมีค่า การทรุดตัวถาวรสูงสุดของสันเงื่อน 3.40 เมตร จากแผ่นดินไหวที่มีค่า PGA กระทำที่ฐานเงื่อน 1.17g ซึ่งการทรุดตัวดังกล่าวมีค่าน้อยกว่าระยะ Freeboard ของเงื่อนคือ 5 เมตร แต่อย่างไรก็ตาม เงื่อนอาจเกิดความเสียหายจากการทรุดตัวของสันเงื่อนและอาจทำให้เครื่องมือวัดพฤติกรรมเงื่อนที่ ดิดตั้งไว้บริเวณสันเงื่อนได้รับความเสียหายได้

Singh et al. (2005) ได้ทำการวิเคราะห์ผลกระทบที่เกิดขึ้นกับเชื่อนต่าง ๆ ในประเทศอินเดีย เนื่องจากแผ่นดินไหวขนาด 7.6 ริกเตอร์ ที่เกิดขึ้นในเมืองภุช (Bhuj) เมื่อวันที่ 26 มกราคม 2544 เหตุการณ์แผ่นดินไหวที่เกิดขึ้นนี้ได้สร้างความเสียหายต่อเชื่อนในบริเวณใกล้เคียงกับจุดกำเนิด แผ่นดินไหวเนื่องจาก Liquefaction การศึกษาวิจัยนี้มีเชื่อนทั้งหมด 6 เชื่อนเป็นกรณีศึกษา ได้แก่ เชื่อน Chang, เชื่อน Shivlakha, เชื่อน Fatehgadh, เชื่อน Kaswati, เชื่อน Suvi และเชื่อน Tapar ซึ่งใน การวิเคราะห์ได้ใช้โปรแกรม XSTABL Version 5.2 และทฤษฎี Modified Bishop ซึ่งนำไปใช้ใน การวิเคราะห์เสถียรภาพของลาดชันแบบ Pseudo Static จากกรณีศึกษาทั้ง 6 เชื่อน มี 4 เชื่อนที่ตั้งอยู่ ภายในรัศมี 50 กิโลเมตรจากจุดกำเนิดแผ่นดินไหว ได้แก่เชื่อน Chang, Shivlakha, Savi และ Tapar ซึ่งทั้ง 4 เชื่อนนี้มีก่าอัตราเร่งของพื้นดินอยู่ในช่วง 0.28g - 0.52g โดยเฉพาะเงื่อน Chang ได้ทรุดตัว ลงอย่างมากซึ่งตรงกันข้ามกับเงื่อน Shivlakha, Suvi และเงื่อน Tapar ที่ได้รับผลกระทบอย่าง รุนแรงเฉพาะบริเวณที่อยู่เหนือน้ำ

Chakraborty et al. (2009) ได้ทำการตรวจสอบพฤติกรรมของเขื่อนแบบ Tailing Dam ภายใต้เงื่อนไขแรงกระทำจากแผ่นดินไหวขนาด 7.7 ริกเตอร์ การวิเคราะห์ที่เกี่ยวกับแผ่นดินไหว (Seismic Analysis) ถูกใช้ในการศึกษาเสถียรภาพของ เชื่อนแบบ Tailing Dam ผลการศึกษาเมื่อใช้ โปรแกรม FLAC^{3D} วิเคราะห์พบว่าภายใต้แรงกระทำแผ่นดินไหวทำให้เงื่อนเกิดการเคลื่อนที่สูงสุด 66.7 เซนติเมตร ในทางตรงกันข้ามทฤษฎีของ Makdisi and Seed ระบุว่าก่าการเคลื่อนตัวสูงสุดที่ ยอมรับได้คือ 57 เซนติเมตร การวิเคราะห์โดยใช้ FLAC^{3D} ต้องใส่ก่าอัตราเร่งของพื้นดินกับกวาม สูงของเชื่อนที่ระดับสูงสุด หลังจากทำการวิเคราะห์เสถียรภาพของลาดชันภายใต้แรงกระทำ แผ่นดินใหวพบว่ามีค่าอัตราส่วนความปลอดภัยเท่ากับ 0.89 แต่เงื่อนใจภายใต้สภาวะสถิตค่า อัตราส่วนความปลอดภัยน้อยที่สุดที่ยอมรับได้คือ 1.22 จากการศึกษาวิเคราะห์สรุปได้ว่าเงื่อนไม่ ปลอดภัยภายใต้แรงกระทำจากแผ่นดินไหวขนาด 7.7 ริกเตอร์ที่เกิดขึ้น

Gui and Chiu (2009) ได้ทำการศึกษาการตอบสนองทางพลศาสตร์ของเชื่อน Renyitan ใน ประเทศได้หวัน ซึ่งประเทศได้หวันเป็นหนึ่งในประเทศที่เกิดแผ่นดินไหวอยู่บ่อยครั้ง และในปี ก.ศ. 1999 ได้เกิดแผ่นดินไหว Chi Chi มีขนาด 7.3 ริกเตอร์ ขึ้นเมื่อวันที่ 21 กันยายน 1999 ซึ่งได้ สร้างความสูญเสียแก่ชีวิตและทรัพย์สินของชาวได้หวันเป็นอย่างมาก และยังทำให้เกิดรอยแตกร้าว บนตัวเชื่อน Shigang เป็นอย่างมากเกินกว่าจะรับได้ ส่งผลให้เชื่อน Shigang สูญเสียความสามารถ ในการเก็บกักน้ำอย่างสมบูรณ์ ดังนั้นจึงต้องให้ความสำคัญกับความปลอดภัยของเชื่อนกั้นน้ำที่อยู่ บนเกาะ งานวิจัยนี้ได้ทำการศึกษาประเมินพฤติกรรมของเชื่อน Renyitan โดยใช้ค่าอัตราเร่งที่ บันทึกได้จากเหตุการณ์แผ่นดินไหว Chi Chi การวิเคราะห์ทางพลศาสตร์ได้ถูกนำมาใช้วิเคราะห์ ด้วยโปรแกรม FLAC^{3D} ผลลัพธ์ที่ได้จะแสดงในรูปของการเคลื่อนที่ แรงดันน้ำส่วนเกิน และอัตรา เร่งของเชื่อน โดยพบว่าที่บริเวณฐานเชื่อนฝั่งซ้ายซึ่งเป็นชั้นวัสดุ Transition zone มีแรงดันน้ำ ส่วนเกินมากกว่าบริเวณอื่นๆ ซึ่งอาจจะก่อให้เกิดปรากฏการณ์ Liquefaction หรือก่อให้เกิดการ พิบัติของเชื่อนได้ เนื่องจากส่วนที่เป็นแกนเชื่อนน้ำไม่สามารถซึมผ่านได้จึงไม่มีโอกาสเกิด ปรากฏการณ์ Liquefaction

บทที่ 3 วิธีดำเนินงานวิจัย

การดำเนินงานประเมินเสถียรภาพทางสถิตยศาสตร์ และพลศาสตร์ของเชื่อนดิน กรณีศึกษา เชื่อนคลองสะเดาประกอบด้วยลำดับขั้นตอนและรายละเอียดปลีกย่อยเป็นจำนวนมาก ทั้งนี้เพื่อให้เข้าใจถึงภาพรวมของวิธีดำเนินงาน จึงแบ่งการดำเนินการวิจัยออกเป็น 4 ขั้นตอนใหญ่ๆ ประกอบด้วย การรวบรวมข้อมูลที่เกี่ยวข้อง การศึกษาโปรแกรมที่ใช้ในการวิเคราะห์ การวิเคราะห์ ทางสถิตยศาสตร์ และการวิเคราะห์ทางพลศาสตร์ ดังแสดงในรูปที่ 3.1

3.1 การรวบรวมและวิเคราะห์ข้อมูล

รวมรวบและวิเคราะห์ข้อมูลพื้นฐานต่างๆ ได้แก่ ข้อมูลทั่วไปของตัวเขื่อน ข้อมูลด้าน ธรณีวิทยา ข้อมูลด้านแผ่นดินไหว และคุณสมบัติของวัสคุถมเขื่อน โดยข้อมูลหลักได้จากรายงาน การออกแบบเขื่อนคลองสะเคา (กรมชลประทาน, 2532) โดยมีรายละเอียดต่างๆ ดังนี้

3.1.1 ข้อมูลทั่วไปของตัวเขื่อน

พิจารณารูปร่างและสัดส่วนของตัวเขื่อนเพื่อเลือกหน้าตัดที่เหมาะสมมาใช้ในการวิเคราะห์ ซึ่งรูปตัดตามขวางของเขื่อนคลองสะเดามีลักษณะที่แตกต่างกัน ดังนั้นในการวิเคราะห์จึงเลือกหน้า ตัดตามขวางในช่วง กม. 0+120 ถึง 0+150 เนื่องจากเป็นช่วงที่ฐานรากอยู่ลึกที่สุด (รูปที่ 2.2) และมี อัตราส่วนความสูงต่อความลึกของลาดชันเขื่อนด้านเหนือน้ำเป็น 1:2.5 และ 1:2.8 ด้านท้ายน้ำเป็น 1:2.4 และอัตราส่วนความสูงต่อความกว้างของฐานเขื่อน ณ จุดลึกสุดประมาณ 0.2:1 ซึ่งอัตราส่วน ดังกล่าวสามารถวิเคราะห์ในลักษณะ Plane Strain Condition ได้โดยไม่จำเป็นต้องวิเคราะห์ใน ลักษณะ 3 มิติ เนื่องจากการวิเคราะห์ในลักษณะ 3 มิติ จะต้องมีอัตราส่วนความสูงต่อความกว้างช่วง หน้าตัดลึกสุดอยู่ในช่วง 1:1.0 ถึง 1:1.2 (Lefebvre and Duncan, 1971, Hunter and Fell, 2003)

3.1.2 ข้อมูลด้านธรณีวิทยา

รวบรวมและศึกษาข้อมูลด้านธรณีวิทยา เช่น ชุดหินต่างๆ ในบริเวณพื้นที่ศึกษา รวมถึง แผนที่ธรณีวิทยาจังหวัดสงขลา โดยใช้ข้อมูลจากกรมทรัพยากรธรณี (2550) ดังที่แสดงในรูป 2.4

ร**ูปที่ 3.1** แผนภูมิการคำเนินงานวิจัย

3.1.3 ข้อมูลด้านแผ่นดินใหว

สึกษา รวบรวม และวิเคราะห์ข้อมูลด้านแผ่นดินใหว เช่น ค่าอัตราเร่งของพื้นดิน บริเวณ เสี่ยงภัยแผ่นดินใหวในประเทศไทย เหตุการณ์แผ่นดินใหวที่เคยเกิดขึ้นในอดีตในบริเวณพื้นที่
สึกษาหรือใกล้เคียง และเหตุการณ์แผ่นดินใหวที่สำคัญจากทั่วโลก โดยใช้ข้อมูลจากแหล่งต่าง ๆ
เช่น National Strong Motion Program (NSMP), Center for Engineering Strong Motion Data (CESMD) และกรมทรัพยากรธรณี ข้อมูลคลื่นแผ่นดินใหวที่สำคัญและเกิดขึ้นในการวิเคราะห์มีทั้งสิ้น 11
เหตุการณ์ ซึ่งเป็นเหตุการณ์แผ่นดินใหวที่สำคัญและเกิดขึ้นจริงจากทั่วโลก 10 เหตุการณ์ และอีก 1
เหตุการณ์ จากเหตุการณ์แผ่นดินใหวที่สำคัญและเกิดขึ้นจริงจากทั่วโลก 10 เหตุการณ์ และอีก 1
เหตุการณ์ จากเหตุการณ์แผ่นดินใหวที่สำคัญและเกิดขึ้นจริงจากทั่วโลก 10 เหตุการณ์ และอีก 1
เหตุการณ์ จากเหตุการณ์กลองที่สอดคล้องกับที่ตั้งของเขื่อนคลองสะเดา โดยใช้ค่าการปรับลด
ข้อมูลอัตราเร่งของพื้นดินของคลื่นแผ่นดินใหว Sumatra, Indonesia (2007) ให้มีก่า 0.03g ซึ่งเป็น
ก่าที่สอดคล้องกับก่าอัตราเร่งของพื้นดินในบริเวณพื้นที่ศึกษาเขื่อนคลองสะเดา (Ornthammarath,
2010) โดยคลื่นแผ่นดินใหวที่ใช้ในการวิเคราะห์เป็นคลื่นที่วัดได้จากชั้นหิน (Rock site) และชั้นดิน
(Soil site) สำหรับคลื่นแผ่นดินใหวที่วัดได้บนชั้นดินนั้นได้นำมาวิเกราะห์เพื่อเปรียบเทียบผลการ
วิเคราะห์เท่านั้น โดยมีรายละเอียดและลักษณะของคลื่นดังแสดงในตารางที่ 3.1 และรูปที่ 3.2
ตามถำดับ

No.	Earthquakes	Magnitude, Mw (Richter)	Peak Ground Acceleration, PGA (g)	Predominant Period, Tp (sec)	Site Condition**
1.	Calexico, Mexico (2010)*	7.0	0.19	0.44	Deep stiff soils
2.	Maule, Chile (2010)*	8.8	0.64	0.20	Deep stiff soils
3.	Christchurch, NZ (2011)	6.3	0.53	0.24	Rock
4.	Haiti Region, Haiti (2010)*	7.0	0.42	0.84	Deep stiff soils
5.	Hawaii, USA (2010)	6.7	0.72	0.28	Stiff soils
6.	Kobe, Japan (1995)*	6.9	0.68	0.30	Deep stiff soils
7.	Loma Preita, USA (1989)	7.0	0.23	0.16	Rock
8.	Nisqually, USA (2001)*	6.8	0.35	2.46	Deep stiff soils
9.	San Fernando, USA (1971)	6.6	1.07	0.20	Rock
10.	Sumatra, Indonesia (2007)*	8.4	0.06	0.10	Deep stiff soils
11.	Simulated Sadao *	8.4	0.03	0.10	Deep stiff soils

ตารางที่ 3.1 ข้อมูลคลื่นแผ่นดินใหวที่ใช้ในการวิเคราะห์

<u>หมายเหตุ</u>: * คลื่นแผ่นดินไหวที่ใช้ในการเปรียบเทียบเท่านั้น

** พิจารณาตาม Kramer (1996) ตามตารางที่ 2.5

3.1.4 ข้อมูลคุณสมบัติของวัสดุถมเขื่อนคลองสะเดา

คุณสมบัติทางสถิตยศาสตร์ของวัสคุถมเชื่อนคลองสะเคารวบรวมได้จากรายงานการ ออกแบบเขื่อนคลองสะเคา (กรมชลประทาน, 2532) ซึ่งรายละเอียคต่างๆ ได้กล่าวมาแล้วในหัวข้อ 2.2.5

3.1.5 ข้อมูลจากงานวิจัยที่เกี่ยวข้อง

รวบรวมข้อมูลงานวิจัยที่เกี่ยวข้องจากผู้ที่ให้ความสนใจและทำการศึกษาในอดีตในด้านนี้ ทั้งในและต่างประเทศ เช่น การศึกษาการวิเคราะห์ความปลอดภัยของเงื่อนดินและหินถมต่อแรง กระแผ่นดินไหวโดยวิธีการตอบสนองทางพลศาสตร์ กรณีศึกษาเงื่อนศรีนครินทร์ (เกรียงไกร, 2551) ผลกระทบที่เกิดขึ้นจากแรงแผ่นดินไหวกับเงื่อนต่าง ๆ ในประเทศอินเดีย (Singh et al., 2005) และการตอบสนองทางพลศาสตร์ของเงื่อน Renyitan ในประเทศได้หวัน (Gui, 2009) เป็น ด้น

3.2 แบบจำลองทางคณิตศาสตร์ของเขื่อนคลองสะเดา

ในการศึกษาครั้งนี้เพื่อให้สอดคล้องกับวัตถุประสงค์ของการศึกษาจึงต้องมีการใช้ แบบจำลองทางคณิตศาสตร์มาใช้ในการวิเคราะห์ด้วยโปรแกรมคอมพิวเตอร์ ซึ่งขั้นตอนต่างๆ ใน การใช้แบบจำลองทางคณิตศาสตร์มีรายละเอียดดังนี้

3.2.1 การเลือกใช้โปรแกรมคอมพิวเตอร์

โปรแกรมคอมพิวเตอร์ที่นำมาสร้างแบบจำลองหน้าตัดของตัวเขื่อนคลองสะเดาใน การศึกษาครั้งนี้ ได้เลือกใช้โปรแกรม GeoStudio 2004 ซึ่งพัฒนาโดยบริษัท GEO–SLOPE International Ltd. จากประเทศแคนาดา ซึ่งโปรแกรมนี้ประกอบด้วยโปรแกรมข่อยๆ อีกหลาย โปรแกรม โดยโปรแกรมที่ใช้ในการวิเคราะห์เป็นหลักได้แก่ SLOPE/W และ QUAKE/W ซึ่งมี ความเหมาะสมต่อการนำมาใช้ในการวิเคราะห์เสถียรภาพของตัวเขื่อนทั้งทางสถิตยศาสตร์และ พลศาสตร์

3.2.2 การสร้างแบบจำลอง

เนื่องจากในการศึกษาครั้งนี้ได้แบ่งการวิเคราะห์ออกเป็น 2 ส่วนหลักๆ คือ การวิเคราะห์ ทางสถิตยศาสตร์ และการวิเคราะห์ทางพลศาสตร์ ดังนั้น ตัวแปร หรือเงื่อนไขขอบเขตต่างๆ ที่ใช้ ในการวิเคราะห์ในแต่ละส่วนจะแตกต่างกัน ซึ่งรายละเอียดต่างๆ ของการสร้างแบบจำลองได้สรุป ไว้ดังตารางที่ 3.2

3.3 การวิเคราะห์เสถียรภาพของลาดชันเขื่อนในสภาวะสถิตยศาสตร์

การประเมินเสถียรภาพทางสถิตยศาสตร์ ของเชื่อนคลองสะเดาในงานวิจัยนี้ได้ใช้หน้าตัด ของตัวเชื่อนคลองสะเดาที่มีฐานรากอยู่ลึกที่สุดคือ 34.50 เมตร ในช่วง กม. 0+120 ถึง กม. 0+150 ซึ่งทำการสร้างหน้าตัดดังกล่าวขึ้นมาในรูปของแบบจำลองทางคณิตศาสตร์ใน 2 มิติ โดยมีขอบเขต ของชั้นวัสดุต่างๆ ดังรูปที่ 3.3 โดยใช้โปรแกรม SLOPE/W ซึ่งการวิเคราะห์จะแบ่งเป็นกรณีต่างๆ คือ กรณีกิดผลของน้ำอยู่ที่ระดับต่ำสุด (+52.00 เมตร รทก.) กรณีกิดผลของน้ำอยู่ที่ระดับปกติ (+ 68.00 เมตร รทก.) กรณีกิดผลของน้ำอยู่ที่ระดับสูงสุด (+72.00 เมตร รทก.) และกรณีกิดผลของการ ลดระดับน้ำอย่างรวดเร็ว (Rapid Drawdown) ซึ่งกรณีลดระดับเก็บกักน้ำอย่างรวดเร็วได้แบ่งการ วิเกราะห์เป็น 2 ส่วน คือพิจารณา Upstream filter และ ไม่พิจารณา Upstream filter ทางด้านเหนือน้ำ โดยการวิเกราะห์ในทุกกรณีได้ใช้ทฤษฎี Limit Equilibrium ด้วยวิธีของ Bishop's Simplified Method

ร**ูปที่ 3.3** แบบจำลองทางคณิตศาสตร์ใน 2 มิติ ที่ใช้ในการวิเคราะห์เสถียรภาพทางสถิตยศาสตร์

รายการที่กำหนด	ค่าที่กำหนดในแบบจำลอง
 ลักษณะทั่วไปของแบบจำลองตัวเงื่อน 	
- ความกว้างบริเวณฐานเงื่อน	201.00 เมตร
- ความกว้างของสันเขื่อน	8.00 เมตร
 ความสูงของตัวเบื่อน ณ จุดลึกสุด 	38.50 เมตร
- อัตราส่วนความลาคชันด้านเหนือน้ำ	1:2.8 และ 1:2.5
- อัตราส่วนความลาคชันด้านท้ายน้ำ	1:2.4
- ระคับฐานเงื่อน	+38.00 เมตร (รทก.)
- ระดับสันเงื่อน	+72.50 เมตร (รทก.)
- ระดับน้ำเก็บกักต่ำสุด	+52.00 เมตร (รทก.)
- ระดับน้ำเก็บกักปกติ	+68.00 เมตร (รทก.)
- ระดับน้ำเก็บกักสูงสุด	+72.00 เมตร (รทก.)
 การวิเคราะห์ทางสถิตยศาสตร์ 	
- ทฤษฎีที่ใช้ในการวิเคราะห์	Bishop's Simplified Method
- กุณสมบัติของวัสดุถมเบื่อน	ตามตารางที่ 2.3
- รูปแบบของแบบจำลองชั้นวัสคุต่างๆ	Mohr-Coulomb
 การวิเคราะห์ทางพลศาสตร์ 	
- จำนวน Node	2,380 Nodes
- จำนวน Element	4,545 Elements
- รูปแบบของ Element	Unstructured
- ค่า Poisson's Ratio	0.334
- ค่า Damping Ratio	0.1
- เงื่อนไขขอบเขตบริเวณฐานเงื่อน -	ไม่มีการเกลื่อนที่ทั้งแนวดิ่งและแนวราบ
- รูปแบบของแบบจำลองชั้นวัสคุต่างๆ	Equivalent Linear
 ระนาบการพิบัติที่ใช้วิเคราะห์ 	
- รูปแบบที่ใช้	Auto Locate
- ขอบเขตด้านเหนือน้ำ	พิกัค (-118,38) ถึง (4,72.5)
- ขอบเขตค้านท้ายน้ำ	พิกัด (83,38) ถึง (-4,72.5)

ตารางที่ 3.2 รายละเอียดของเงื่อนคลองสะเดา ที่ใช้ในการสร้างแบบจำลอง

3.4 การวิเคราะห์คุณสมบัติทางพลศาสตร์ของตัวเขื่อน

การวิเคราะห์คุณสมบัติทางพลศาสตร์ของตัวเขื่อนคลองสะเคา เริ่มต้นจากการวิเคราะห์หา ค่าคาบธรรมชาติของตัวเขื่อน ค่าโมคูลัสแรงเฉือนสูงสุด ค่าโมคูลัสเฉือนที่ใช้ในแบบจำลองทาง คณิตศาสตร์ 2 มิติ ค่าความเร็วคลื่นเฉือน และ Shear Modulus Reduction and Damping Ratio ซึ่งมี ขั้นตอนและรายละเอียดต่างๆ ดังนี้

3.4.1 การวิเคราะห์ค่าคาบธรรมชาติของตัวเขื่อน

การวิเคราะห์หาค่าคาบธรรมชาติ (Predominant period) ของตัวเขื่อนคลองสะเดาได้ทำการ วิเคราะห์ 2 วิธีได้แก่ วิธีของ Gazetas and Dakoulus (1991) (สมการที่ 2.8) และวิธีผลการตอบสนอง ทางพลสาสตร์ เพื่อเปรียบเทียบผลการวิเคราะห์ที่ได้ ซึ่งในงานวิจัยนี้จะใช้วิธีผลการตอบสนองทาง พลสาสตร์เป็นวิธีหลักที่ใช้ในการวิเคราะห์ โดยใช้แบบจำลองทางคณิตสาสตร์ใน 2 มิติ โดยวิธีไฟ ในต์อิลิเมนต์ ซึ่งจะมีคุณสมบัติของวัสดุถมเขื่อน แรงคันน้ำ และความเค้นต่างๆ ในตัวเขื่อนอย่าง เดียวกัน โดยหลักการวิเคราะห์จะทำการสร้างข้อมูลอัตราเร่งพื้นดินอย่างง่ายขึ้นมาซึ่งจะอยู่ใน ลักษณะของคลื่นไซน์ (Sine wave) ดังแสดงในรูปที่ 3.4 โดยจะทำการเปลี่ยนก่าคาบเวลาของคลื่น ดังกล่าวให้อยู่ในช่วงที่เป็นไปได้ของก่าคาบธรรมชาติ และทำการเปรียบเทียบกับก่าอัตราเร่งพื้นดิน (PGA) ต่างๆ เพื่อเปรียบเทียบผลการวิเคราะห์ที่ได้ คลื่นไซน์จะถูกใช้กระทำบริเวณฐานเขื่อนโดย ใช้โปรแกรม QUAKE/W โดยจะพิจารณาผลการตอบสนองทางพลสาสตร์ในรูปของระยะการ เคลื่อนตัวในแนวราบ (Horizontal displacement) ของตัวเขื่อนต่อแรงกระทำที่สร้างขึ้นมาเพื่อหาค่า คาบธรรมชาติ (Predominant Period, Tp) ของตัวเขื่อนที่ทำให้เกิดการขยายค่าอัตราเร่งพื้นดินและ การเคลื่อนที่ในบริเวณต่างๆ ของตัวเขื่อน

3.4.2 การวิเคราะห์ค่าโมดูลัสแรงเฉือนสูงสุด

การวิเคราะห์ก่าโมดูลัสแรงเฉือนสูงสุด (Maximum shear modulus) ของวัสคุณมเชื่อน กลองสะเคาได้ใช้ความสัมพันธ์ระหว่างก่าโมดูลัสแรงเฉือนสูงสุดกับการทดสอบการรับน้ำหนัก ของดิน (Standard penetration resistance, SPT-N) ซึ่งเสนอโดย Seed et al. (1986) มาใช้ในการ วิเคราะห์ โดยเริ่มจากการประมาณก่า SPT-N ซึ่งประมาณได้จากความสัมพันธ์ระหว่าง SPT-N และ มุมเสียดทานภายในของดิน (Internal friction angle) ดังแสดงในรูปที่ 3.5 จากนั้นนำก่า SPT-N ที่ ประมาณได้ไปปรับแก้เป็นค่า Normalized standard penetration resistance, N_{60} หลังจากนั้นจึงนำ ค่า Normalized standard penetration resistance, N_{60} ที่ได้ไปคำนวณหาค่าค่าโมดูลัสแรงเฉือน สูงสุด (Maximum Shear Modulus, G_{max}) โดยใช้สมการที่ 2.14

รูปที่ 3.4 รูปแบบคลื่นที่ใช้ในการวิเคราะห์กาบธรรมชาติของตัวเขื่อน

รูปที่ 3.5 ความสัมพันธ์ระหว่าง Standard Penetration Test, N และ Bearing Capacity Factor (Peck Hansen & Thornburn, 1953)

3.4.3 ค่าโมดูลัสเฉือนที่ใช้ในแบบจำลองทางคณิตศาสตร์ 2 มิติ

การวิเคราะห์หาค่าโมดูลัสเฉือน (Shear modulus) ที่ใช้ในแบบจำลองทางคณิตศาสตร์ 2 มิติ ใด้ใช้ทฤษฎี Stiffness as a Function of Depth ซึ่งในการวิเคราะห์ได้นำค่าโมดูลัสแรงเฉือนสูงสุด (Maximum shear modulus, G_{max}) ที่วิเคราะห์ได้จากทฤษฎีของ Seed (1986) ซึ่งเป็นค่าเฉลี่ยของแต่ ละวัสดุถมเบื่อนมาแทนค่าในสมการที่ 2.15 โดยสมมุติให้ก่า n = 1 เพื่อหาค่า Modulus number, K_G ของแต่ละวัสดุถมเบื่อน จากนั้นนำค่า Modulus number, K_G ที่ได้มาคำนวณย้อนกลับเพื่อหาค่า โมดูลัสเฉือน (Shear Modulus, G) ตามความลึกต่างๆ ตั้งแต่สันเบื่อนจนถึงฐานเบื่อน

3.4.4 ค่าความเร็วคลื่นเฉือน

การวิเคราะห์ก่าความเร็วกลื่นเฉือน (Shear wave velocity, Vs) ของวัสดุถมเขื่อนคลอง สะเดา จะทำการวิเคราะห์ โดยใช้ความสัมพันธ์จากทฤษฎี Elastic Continuum Mechanics (สมการที่ 2.17) โดยอาศัยก่า โมดูลัสแรงเฉือนสูงสุด (Maximum Shear Modulus, G_{max}) ที่วิเคราะห์ได้ในหัวข้อ 3.3.2

3.4.5 Shear Modulus Reduction and Damping Ratio Curve

การวิเคราะห์หา Shear Modulus Reduction and Damping Ratio Curve ในงานวิจัยนี้ ทำ การวิเคราะห์โดยอาศัยความสัมพันธ์ระหว่างค่าแรงดันประสิทธิผล (Effective confining pressure) กับค่าความเป็นพลาสติกของดิน (Plasticity index, PI) ซึ่งเสนอโดย Ishibashi and Zhang (1993) (สมการที่ 2.18 และ 2.19)

3.5 การวิเคราะห์พฤติกรรมการตอบสนองทางพลศาสตร์

การวิเคราะห์พฤติกรรมการตอบสนองทางพลศาสตร์ของตัวเขื่อนคลองสะเดา ทำการ วิเคราะห์โดยการสร้างแบบจำลองทางคณิตศาสตร์ใน 2 มิติ โดยวิธีไฟในต์อิลิเมนต์ (FEM) โดยใช้ โปรแกรม QUAKE/W เพื่อหาพฤติกรรมการตอบสนองของเขื่อนต่อแรงกระทำแผ่นดินไหว โดยใช้ ก่าอัตราเร่งของพื้นดินที่วิเคราะห์ได้จากเหตุการณ์แผ่นดินไหวที่สำคัญจากทั่วโลก 10 เหตุการณ์ และอีก 1 เหตุการณ์จากการปรับลดค่าอัตราเร่งพื้นดินของเหตุการณ์แผ่นดินไหว Sumatra, Indonesia (2007) ให้มีค่าเท่ากับ 0.03g ซึ่งเป็นค่าที่ใกล้เคียงกับอัตราเร่งของพื้นดินในบริเวณเขื่อน กลองสะเดา (Ornthammarath, 2010) โดยเรียกว่า Simulated Sadao (ตารางที่ 3.1) ซึ่งการวิเคราะห์ จะพิจารณาผลการตอบสนองของตัวเขื่อนต่อแรงกระทำแผ่นดินใหวบริเวณที่สนใจ โดยเฉพาะ บริเวณสันเขื่อนและลาดชันเขื่อนที่มีโอกาสเกิดการพิบัติมากที่สุด โดยมีกรณีที่ใช้ในการวิเคราะห์ รวม 3 กรณี คือ กรณีแผ่นดินใหวรูปแบบต่างๆ มากระทำบริเวณฐานเขื่อน กรณีระดับเก็บกักน้ำอยู่ ที่ระดับต่างๆ และกรณีลดระดับเก็บกักน้ำอย่างรวดเร็ว ซึ่งในการวิเคราะห์ได้แบ่งหน้าตัดของตัว เขื่อนออกเป็น 4,545 อิลิเมนต์ ดังแสดงในรูปที่ 3.6 และกำหนดเงื่อนใขขอบเขตของแบบจำลองทาง กณิตศาสตร์ 2 มิติ ให้บริเวณฐานเงื่อนไม่สามารถเกลื่อนที่ได้ทั้งแนวดิ่งและแนวราบดังแสดงในรูป ที่ 3.7

รูปที่ 3.6 แบบจำลองทางคณิตศาสตร์ใน 2 มิติ โคยวิธีไฟในต์อิลิเมนต์ของเชื่อนคลองสะเคา

3.6 การวิเคราะห์การเปลี่ยนรูปถาวรของลาดชันเขื่อน

การวิเคราะห์การเปลี่ยนรูปถาวรของลาดชันเขื่อนคลองสะเคาได้นำผลการวิเคราะห์การ ตอบสนองทางพลศาสตร์ ของตัวเชื่อนจากโปรแกรม Quake/w มาใช้ในการวิเคราะห์ โดยโปรแกรม Slope/w ตามทฤษฎีของ Newmark's Deformation Analysis (1965) ซึ่งกรณีต่างๆ ที่ใช้ในการ วิเคราะห์จะเหมือนกับการวิเคราะห์การตอบสนองทางพลศาสตร์ของตัวเขื่อน โดยจะกำหนด ระนาบการพิบัติ (Slip surface) ของลาดชันเขื่อนที่จะใช้ในการวิเคราะห์เป็น 4 แนว ทั้งทางด้าน เหนือเขื่อน ด้านท้ายเขื่อน และกรณีลดระดับเก็บกักน้ำอย่างรวดเร็ว (Rapid drawdown) ดังแสดงใน รูปที่ 3.8, 3.9 และ 3.10 ตามลำดับ ซึ่งจะพิจารณาคัดเลือกระนาบการพิบัติดังกล่าวจากผลการ วิเคราะห์ความมั่นคงของลาดชันเขื่อนทางสถิตยศาสตร์ ด้วยวิธี Bishop's Simplified Method โดย พิจารณาเฉพาะระนาบการพิบัติที่วิกฤติที่สุด (Critical slip surfaces) เนื่องจากมีโอกาสเกิดการพิบัติ ได้มากที่สุด

รูปที่ 3.8 ระนาบการพิบัติที่กำหนดที่ใช้ในการวิเคราะห์ทางด้านเหนือเงื่อน

รูปที่ 3.9 ระนาบการพิบัติที่กำหนดที่ใช้ในการวิเกราะห์ทางด้านท้ายเงื่อน

รูปที่ 3.10 ระนาบการพิบัติที่กำหนดที่ใช้ในการวิเคราะห์กรณีลดระดับเก็บกักน้ำอย่างรวดเร็ว

3.7 การวิเคราะห์การเกิดปรากฏการณ์ Liquefaction

การวิเคราะห์การเกิด Liquefaction ของตัวเบื่อนคลองสะเดา ได้ทำการวิเคราะห์ในชั้นวัสดุ Filter material ทางค้านท้ายเงื่อนเท่านั้น เนื่องจากชั้นวัสดุ Filter material ทางค้านเหนือเงื่อนอยู่ ้บริเวณผิวหน้าของลาคชั้นเขื่อน และเมื่อเกิด Liquefaction ในบริเวณดังกล่าวก็จะไม่ส่งผลกระทบ ต่อความมั่นคงของตัวเขื่อน ขณะที่ชั้นวัสดุ Filter material ที่บริเวณฐานรากเขื่อนทางค้านเหนือ เงื่อนก็จะ ไม่ส่งผลกระทบต่อตัวเงื่อนเช่นกัน เนื่องจากบริเวณฐานรากของเงื่อนคลองสะเดามี ้ลักษณะเป็นชั้นหินแข็ง ดังนั้นในชั้นวัสดุ Filter Material ทางด้านท้ายเขื่อน จึงมีโอกาสทำให้ตัว เงื่อนเกิดการพิบัติมากกว่าบริเวณอื่นๆ นอกจากนี้ชั้นวัสดุ Filter Material ของตัวเงื่อนคลองสะเดา มีค่ามุมเสียคทานภายใน (Internal friction angle, φ) เท่ากับ 30° ซึ่งเป็นค่าที่ใช้ในการออกแบบ ก่อสร้างและเป็นทรายสภาพหลวม อาจทำให้เกิด Liquefaction ได้ง่าย ดังนั้นในการวิเคราะห์จึงได้ ใช้ค่ามุมเสียดทานภายในที่ได้จากข้อกำหนดการก่อสร้าง (Specification) ร่วมในการวิเคราะห์ด้วย โดยข้อกำหนดการก่อสร้างกำหนดให้ชั้นวัสดุ Filter material เป็นทรายที่มีส่วนคละดี (SW) มีค่า ้ความหนาแน่นแห้ง (Dry density) เท่ากับ 1.770 ตันต่อลูกบาศก์เมตร และค่าความหนาแน่นสัมพัทธ์ (Relative density) ประมาณ 70% เมื่อนำมาปรับเทียบ โดยใช้กวามสัมพันธ์ระหว่างก่ามมเสียดทาน ภายใน (Internal friction angle, \$\phi\$) กับค่าความหนาแน่นแห้ง (Dry density) ซึ่งเสนอโดย U.S. Navy, 1971 (ดังแสดงในรูปที่ 3.11) จะได้มุมเสียดทานภายในเท่ากับ 36° และปรับเทียบเป็นค่า (N₁)₆₀ ได้ประมาณ 30 ครั้งต่อฟุต

ในการศึกษาครั้งนี้ทำการวิเคราะห์ Liquefaction โดยใช้วิธีที่เสนอโดย Seed and Idriss (1971) ซึ่งแบ่งการวิเคราะห์เป็น 2 วิธี คือคำนวณค่าแรงเฉือนสูงสุด (Maximum shear stress) และ ค่าความเค้นประสิทธิผลตามแนวคิ่ง (Effective vertical stress) ได้จากสมการที่ 2.21 – 2.23 ซึ่ง พิจารณาตามความลึกจากบริเวณสันเบื่อนจนถึงบริเวณฐานเบื่อน และอีกวิธี คือใช้ค่าแรงเฉือน สูงสุด (Maximum shear stress) และก่ากวามเค้นประสิทธิผลตามแนวดิ่ง (Effective vertical stress) ที่ได้จากผลการตอบสนองทางพลศาสตร์จากโปรแกรม QUAKE/W โดยพิจารณา ณ เวลาที่เกิดแรง เฉือนสูงสุด โดยการวิเคราะห์ทั้ง 2 วิธี สามารถแสดงขั้นตอนได้ดังแสดงในรูปที่ 3.12

รูปที่ 3.11 Correlations between the effective friction angle in triaxial compression and the dry density, relative density, and soil classification. (U.S. Navy, 1971)

(a)

ร**ูปที่ 3.12** แผนภูมิแสดงขั้นตอนการวิเคราะห์การเกิด Liquefaction ของตัวเขื่อนคลองสะเดา (a) วิธี ที่ใช้สมการ Empirical (b) วิธีที่ใช้ผลการตอบสนองทางพลศาสตร์จากแบบจำลอง

ร**ูปที่ 3.12** แผนภูมิแสดงขั้นตอนการวิเคราะห์การเกิด Liquefaction ของตัวเขื่อนคลองสะเดา (a) วิธี ที่ใช้สมการ Empirical (b) วิธีที่ใช้ผลการตอบสนองทางพลศาสตร์จากแบบจำลอง (ต่อ)

บทที่ 4 ผลการวิจัยและการวิจารณ์

ผลการดำเนินการวิจัยในการศึกษาครั้งนี้ ได้แบ่งออกเป็น 4 ส่วนหลักๆ คือ ผลการวิเคราะห์ เสถียรภาพลาดชันเงื่อนในสภาวะสถิตยศาสตร์ ผลการวิเคราะห์ก่ากุณสมบัติทางพลศาสตร์ของตัว เงื่อน ผลการตอบสนองทางพลศาสตร์ของตัวเงื่อน และผลการวิเคราะห์การเกิดปรากฏการณ์ Liquefaction และรายละเอียดต่างๆ ได้รวบรวมไว้ในภากผนวก

4.1 ผลการวิเคราะห์เสลียรภาพลาดชั้นเงื่อนในสภาวะสลิตยศาสตร์

ผลการวิเคราะห์เสถียรภาพของลาดชันเชื่อนคลองสะเดาในสภาวะสถิตศาสตร์ โดยใช้ ทฤษฎี Limit equilibrium วิธี Bishop's simplified method ซึ่งสามารถแบ่งผลการการวิเคราะห์ ออกเป็น 2 กรณี คือ กรณีระดับเก็บกักน้ำอยู่ที่ระดับต่างๆ และกรณีลดระดับเก็บกักน้ำอย่างรวดเร็ว โดยมีการเปรียบเทียบผลการวิเคราะห์ที่ได้กับรายงานการออกแบบเงื่อนคลองสะเดาด้วย (กรม ชลประทาน, 2532)

4.1.1 กรณีระดับเก็บกักน้ำอยู่ที่ระดับต่างๆ

ผลการวิเคราะห์เสถียรภาพของลาดชันเขื่อนคลองสะเดาในสภาวะสถิตยศาสตร์ในกรณี ระดับน้ำเก็บกักอยู่ที่ระดับต่างๆ ทางด้านเหนือน้ำ พบว่ามีค่าอัตราส่วนความปลอดภัยอยู่ในช่วง 2.255 – 2.673 ซึ่งพบว่ากรณีที่ระดับน้ำเก็บกักต่ำสุด มีค่าอัตราส่วนความปลอดภัยน้อยที่สุด (รูปที่ 4.1 c) และกรณีที่ระดับน้ำเก็บกักสูงสุดมีค่าอัตราส่วนความปลอดภัยมากที่สุด (รูปที่ 4.1 a) ส่วน การวิเคราะห์ทางด้านท้ายน้ำมีค่าอัตราส่วนความปลอดภัยอยู่ในช่วง 1.637 – 1.673 โดยกรณีที่ระดับ น้ำเก็บกักสูงสุด และกรณีระดับน้ำเก็บกักปกติ มีค่าอัตราส่วนความปลอดภัยน้อยที่สุด (รูปที่ 4.2 a และ b) และกรณีที่ระดับน้ำเก็บกักต่ำสุดมีค่าอัตราส่วนความปลอดภัยมากที่สุด (รูปที่ 4.2 c)

ร**ูปที่ 4.1** ระนาบการพิบัติที่วิกฤติที่สุด และค่าอัตราส่วนความปลอดภัย (FS) ทางด้านเหนือน้ำ (a) กรณีระดับน้ำเก็บกักสูงสุดมีค่า FS = 2.673 (b) กรณีระดับน้ำเก็บกักปกติมีค่า FS = 2.513 (c) กรณีระดับเก็บกักต่ำสุดมีค่า FS = 2.255

ร**ูปที่ 4.2** ระนาบการพิบัติที่วิกฤติที่สุด และค่าอัตราส่วนความปลอดภัย (FS) ทางค้านท้ายน้ำ (a) กรณีระดับน้ำเก็บกักสูงสุดมีค่า FS = 1.637 (b) กรณีระดับน้ำเก็บกักปกติมีค่า FS = 1.637 (c) กรณีระดับเก็บกักต่ำสุดมีค่า FS = 1.683

4.1.2 กรณีลดระดับเก็บกักน้ำอย่างรวดเร็ว

ผลการวิเคราะห์เสถียรภาพของลาดชันเงื่อนคลองสะเดาในสภาวะสถิตยศาสตร์ในกรณีลด ระดับเก็บกักน้ำอย่างรวดเร็ว (Rapid drawdown) จากระดับ +68.00 เมตร(รทก.) ลงมาถึงระดับ +52.00 เมตร(รทก.) พบว่า ก่อนการลดระดับเก็บกักน้ำ (Before rapid drawdown) มีค่าอัตราส่วน ความปลอดภัยเท่ากับ 2.580 (รูปที่ 4.3a) และหลังการลดระดับเก็บกักน้ำ (After rapid drawdown) ค่าอัตราส่วนความปลอดภัยมีค่าลดลง โดยกรณีที่พิจารณา Upstream filter มีค่าอัตราส่วนความ ปลอดภัยเท่ากับ 1.925 (รูปที่ 4.3b) และกรณีที่ไม่พิจารณา Upstream filter มีค่าอัตราส่วนความ ปลอดภัยน้อยกว่า คือ 1.212 ดังแสดงในรูปที่ 4.3c

ร**งปที่ 4.3** ระนาบการพิบัติที่วิกฤติที่สุด และค่าอัตราส่วนความปลอดภัย (FS) กรณีลดระดับเก็บกัก น้ำอย่างรวดเร็ว (a) ก่อนการลดระดับน้ำมีค่า FS = 2.513 (b) หลังการลดระดับน้ำโดย พิจารณา Upstream filter มีค่า FS = 1.925 และ (c) หลังการลดระดับน้ำโดยไม่พิจารณา Upstream filter มีค่า FS = 1.212 เมื่อนำค่าอัตราส่วนความปลอดภัยที่วิเคราะห์ได้ทั้งกรณีที่ระดับเก็บกักน้ำอยู่ที่ระดับต่างๆ และกรณีลดระดับเก็บกักน้ำอย่างรวดเร็ว มาเปรียบเทียบกับผลการวิเคราะห์จากรายงานการ ออกแบบของโครงการเงื่อนคลองสะเดา ซึ่งทำการวิเคราะห์โดยวิธี Bishop's simplified method เช่นกัน พบว่าค่าอัตราส่วนกวามปลอดภัยในกรณีต่างๆ ส่วนใหญ่มีค่าใกล้เกียงกัน ดังรายละเอียดใน ตารางที่ 4.1

อรอีซีให้ในอารวิเอราะห์			ค่าอัตราส่วนความปลอดภัยที่ได้ (FS)			
TI.	9 ERAIT (19 11 19 11	เตว เะห	การศึกษาครั้งนี้ รายงานการออกแ			
ระดับน้ำเก็บกัก	Ŕ	้ำนเหนือน้ำ	2.513	2.385		
ปกติ		ด้านท้ายน้ำ	1.637	1.610		
ระดับน้ำเก็บกัก	Ģ	้ำนเหนือน้ำ	2.255	3.000		
ต่ำสุด		ด้านท้ายน้ำ	1.683	1.745		
ระดับน้ำเก็บกัก	Ŕ	้ำนเหนือน้ำ	2.673	2.636		
สูงสุด		ด้านท้ายน้ำ	1.637	1.840		
ະພວມນຶ່ງ	ก่อน	การลดระดับน้ำ	2.513	-		
ารผกกต่	หลังการ	พิจารณา Upstream filter	1.925	1.231		
ี เป็นเกิด 17 วิ 1817 วิ 1	ลดระดับน้ำ	ไม่พิจารณา Upstream filter	1.212			

ตารางที่ 4.1 เปรียบเทียบค่าอัตราส่วนความปลอดภัยที่วิเคราะห์ได้กับรายงานการออกแบบของ โครงการเงื่อนคลองสะเดา

* รายงานการออกแบบเงื่อนคลองสะเคา (กรมชลประทาน, 2532)

4.2 ผลการวิเคราะห์คุณสมบัติทางพลศาสตร์ของตัวเขื่อน

คุณสมบัติทางพลศาสตร์ของตัวเขื่อนคลองสะเคาที่ได้ทำการวิเคราะห์ในการศึกษาครั้งนี้ ประกอบด้วยค่าคาบธรรมชาติของตัวเขื่อน ค่าโมดูลัสแรงเฉือนสูงสุด ค่าโมดูลัสเฉือนที่ใช้ใน แบบจำลอง ค่าความเร็วคลื่นเฉือน และ Shear Modulus Reduction และ Damping Ration โดย รายละเอียดผลการวิเคราะห์มีดังนี้

4.2.1 ผลการวิเคราะห์คาบธรรมชาติของตัวเขื่อน

้ผลการวิเคราะห์กาบธรรมชาติของตัวเขื่อนคลองสะเคาโคยวิธีต่างๆ มีดังนี้

1) วิธีของ Gazetas and Dakoulus (1991)

ผลการวิเคราะห์แบ่งตามชั้นวัสดุต่างๆ ของตัวเขื่อนพบว่ามีค่าใกล้เคียงกัน คือในชั้น Impervious zone, Random material และ Filter material มีก่าคาบธรรมชาติเท่ากับ 0.493, 0.491 และ 0.452 วินาที ตามลำดับ เมื่อนำค่าคาบธรรมชาติของตัวเขื่อนคลองสะเคาในทุก ๆ ชั้นวัสดุมา เฉลี่ยกัน มีค่าประมาณ 0.478 วินาที ซึ่งเป็นค่าที่เหมาะสมที่จะใช้ในการวิเคราะห์ เนื่องจากเมื่อ เปรียบเทียบกับเขื่อนดินถมทั่วโลก พบว่ามีก่าคาบธรรมชาติอยู่ในช่วง 0.05 – 1.22 วินาที (Singh et al., 2007) รวมถึงเขื่อนศรีนครินทร์ซึ่งเป็นเขื่อนดินถมที่ใหญ่ที่สุดในประเทศไทย มีก่าคาบ ธรรมชาติอยู่ในช่วง 0.62-0.90 วินาที (เกรียงไกร, 2551)

2) วิธีผลการตอบสนองทางพลศาสตร์ของตัวเขื่อน

จากการวิเคราะห์โดยใช้ Sine wave และข้อมูลอัตราเร่งของพื้นดินที่สร้างขึ้นมา ซึ่งมีค่า PGA ขนาดต่างๆ (0.1g - 1.0g) มากระทำที่ฐานเขื่อน โดยพิจารฉา ฉ เวลาเดียวกันพบว่า ผลการ วิเคราะห์ที่ได้มีค่าสอดกล้องกันคือ เขื่อนคลองสะเดามีการเคลื่อนตัวในแนวราบตามความสูงของ เขื่อนมากที่สุดอย่างเห็นได้ชัดในช่วงคาบ 0.2-0.4 วินาที ดังแสดงในรูปที่ 4.4 ซึ่งเป็นกราฟแสดง กวามสัมพันธ์ระหว่างระยะการเคลื่อนตัวในแนวราบตามระดับความสูงของเขื่อนบริเวณชั้นวัสดุ ทึบน้ำแกนเขื่อนกับค่าคาบเวลาต่างๆ (Predominant Period) โดยใช้ PGA = 0.03g สำหรับ PGA อื่นๆ ได้แสดงไว้ในภาคผนวก ก. (รูปที่ ก-1 – รูปที่ ก-10) ดังนั้นค่าคาบธรรมชาติของตัวเขื่อนคลอง สะเดาจึงมีก่าอยู่ในช่วง 0.2-0.4 วินาที เมื่อพิจารฉาความสัมพันธ์ระหว่างค่าการเคลื่อนตัวสูงสุดใน แนวราบบริเวณสันเขื่อนกับค่าคาบเวลาต่างๆ (Predominant Period) พบว่าตัวเขื่อนคลองสะเดามีค่า เกลื่อนตัวในแนวราบสูงสุด ฉ เวลาประมาฉ 0.3 วินาที ดังแสดงในภาพที่ 4.5 และเมื่อนำค่า PGA ต่างๆ มาหาความสัมพันธ์กับการเคลื่อนตัวสูงสุดในแนวราบที่บริเวฉสันเชื่อน ฉ คาบเวลา 0.3 วินาที พบว่าการเคลื่อนด้วสูงสุดในแนวราบมีแนวโน้มลดลงจนถึง PGA 0.25g จากนั้นมีแนวโน้ม เพิ่มขึ้นจนมีก่ามากที่สุดเท่ากับ 0.1 เมตร ที่ PGA = 1.0g ดังแสดงในรูปที่ 4.6

ร**ูปที่ 4.4** ความสัมพันธ์ระหว่างระยะการเกลื่อนตัวในแนวราบกับความสูงของตัวเขื่อนเขื่อนบริเวณ ชั้นวัสดุทึบน้ำที่ก่ากาบเวลาต่างๆ ของข้อมูลอัตราเร่งพื้นดินที่มี PGA = 0.03g

รูปที่ 4.5 ความสัมพันธ์ระหว่างค่าการเคลื่อนตัวสูงสุดในแนวราบกับคาบเวลาต่างๆ

ร**ูปที่ 4.6** ความสัมพันธ์ระหว่างค่าการเคลื่อนตัวสูงสุดในแนวราบกับ PGA ต่างๆ ที่คาบเวลา 0.3 วินาที

เมื่อเปรียบเทียบผลการวิเคราะห์คาบธรรมชาติของเขื่อนคลองสะเคาทั้ง 3 วิธี พบว่า วิธีกฎ กระทรวงฯ มีค่าคาบธรรมชาติสูงเกินไป และไม่เหมาะกับการวิเคราะห์โครงสร้างประเภทเขื่อน ในขณะที่วิธีของ Gazetas and Dakoulus (1991) มีค่าคาบธรรมชาติแบ่งออกเป็นแต่ละชั้นวัสคุ และ มีผลการวิเคราะห์ในแต่ละชั้นวัสคุใกล้เคียงกัน โดยมีค่าเฉลี่ยเท่ากับ 0.478 วินาที ซึ่งใกล้เคียงกับ วิธีการตอบสนองทางพลศาสตร์ของตัวเขื่อน แต่วิธีผลการตอบสนองทางพลศาสตร์ของตัวเขื่อน เหมาะสมที่จะนำมาใช้ในการวิเคราะห์มากกว่า เนื่องจากวิธีดังกล่าวสามารถบอกถึงพฤติกรรมของ ตัวเขื่อนได้อย่างชัดเจนเมื่อได้รับแรงกระทำขนาดต่างๆ โดยเฉพาะการเคลื่อนตัวบริเวณสันเขื่อน ดังนั้นจึงใช้ก่าคาบธรรมชาติที่ได้จากวิธีการตอบสนองทางพลศาสตร์ของตัวเขื่อน

จากผลการวิเคราะห์ที่ได้ ค่าคาบธรรมชาติที่ส่งผลกระทบต่อตัวเงื่อนคลองสะเคามาก มีค่า อยู่ในช่วง 0.2 - 0.4 วินาที ซึ่งค่าที่มีผลกระทบมากที่สุดมีค่าประมาณ 0.3 วินาที เมื่อเปรียบเทียบกับ ค่าคาบธรรมชาติของคลื่นแผ่นดินไหวที่ใช้ในการวิเคราะห์ พบว่าคาบธรรมชาติของคลื่นส่วนใหญ่ อยู่ในช่วง 0.1 - 0.4 วินาที ซึ่งทำให้มีโอกาสที่จะเกิดปรากฏการณ์สั่นพ้อง (Resonance) ได้

4.2.2 ผลการวิเคราะห์ก่าโมดูลัสแรงเฉือนสูงสุดและความเร็วคลื่นเฉือน

ผลการวิเคราะห์ค่าโมดูลัสแรงเฉือนสูงสุด (Maximum shear modulus, G_{max}) และความเร็ว กลื่นเฉือน (Shear wave velocity, Vs) ของวัสดุถมเชื่อนคลองสะเดา โดยใช้ความสัมพันธ์ระหว่าง ค่าโมดูลัสแรงเฉือนสูงสุดกับการทดสอบการรับน้ำหนักของดิน (Standard penetration resistance, SPT-N) และความสัมพันธ์จากทฤษฎี Elastic continuum mechanics ตามลำดับ พบว่าค่าโมดูลัสแรง เฉือนสูงสุด และค่าความเร็วคลื่นเฉือนในแต่ละชั้นวัสดุถมเขื่อนมีค่าใกล้เกียงกัน ยกเว้นชั้นวัสดุ Filter Material ที่มีค่าโมดูลัสแรงเฉือนสูงสุดมากกว่าชั้นวัสดุอื่นๆ โดยค่าโมดูลัสแรงเฉือนสูงสุดมี ค่าอยู่ในช่วง 80,365.72 – 89,200.38 กิโลนิวตันต่อตารางเมตร ค่าความเร็วคลื่นเฉือนมีค่าอยู่ในช่วง 193.14 – 205.61 เมตรต่อวินาที ซึ่งมีรายละเอียดดังแสดงในตารางที่ 4.2 และรายละเอียดการคำนวณ ได้แสดงไว้ในภาคผนวก ข.

Matarial	Maximum Shear	Mass Density	Shear Wave	
Material	Modulus, G _{max} (kPa)	(kg/m ³)	Velocity (m/s)	
Impervious zone	80,365.72	1,920	204.59	
Random Material	81,962.67	2,190	193.14	
Filter Material	89,200.38	2,110	205.61	

ตารางที่ 4.2 ก่าโมดูลัสแรงเฉือนสูงสุดและกวามเร็วกลื่นเฉือนในแต่ละชั้นวัสดุถมเบื่อนกลองสะเดา

4.2.3 ผลการวิเคราะห์ก่าโมดูลัสเฉือนที่ใช้ในแบบจำลองทางคณิตศาสตร์ 2 มิติ

ผลการวิเคราะห์ค่าโมดูลัสเฉือน (Shear Modulus, G) ที่ใช้ในแบบจำลองทางคณิตศาสตร์ 2 มิติ โดยใช้ทฤษฎี Stiffness as a Function of Depth พบว่าค่าโมดูลัสเฉือนในแต่ละชั้นวัสดุมีค่า สอดคล้องกัน คือ มีค่าเพิ่มขึ้นตามความลึกจากสันเขื่อนจนถึงบริเวณฐานเขื่อนในลักษณะที่เป็น เส้นตรง เนื่องจากในการวิเคราะห์โดยใช้ความสัมพันธ์จากทฤษฎีดังกล่าวได้กำหนดให้ค่า Exponent, n มีค่าเท่ากับ 1 โดยในชั้นวัสดุ Impervious zone มีค่าสูงกว่าชั้นวัสดุอื่นๆ ดังแสดงในรูป ที่ 4.7

รูปที่ 4.7 ค่าโมดูลัสเฉือนในแต่ละชั้นวัสดุถมเบื่อนกลองสะเดาที่ใช้ในแบบจำลองทางกณิตศาสตร์

4.2.4 ผลการวิเคราะห์ค่า Shear Modulus Reduction และ Damping Ratio

ผลการวิเคราะห์ค่า Shear modulus reduction และ Damping ratio โดยใช้ความสัมพันธ์ ระหว่างค่าแรงดันประสิทธิผล (Effective Confining Pressure) กับค่าความเป็นพลาสติกของดิน (Plasticity Index, PI) ตามทฤษฎีของ Ishibashi and Zhang (1993) ได้แสดงในลักษณะของกราฟ อัตราส่วนโมดูลัสแรงเฉือน (G/G_{max}) และอัตราส่วน Damping เปรียบเทียบกับระดับความเครียด ต่างๆ ดังแสดงในรูปที่ 4.8 และ 4.9 ตามลำดับ

ร**ูปที่ 4.8** Shear Modulus Reduction Curve ในแต่ละชั้นวัสคุถมเบื่อนคลองสะเคา

รูปที่ 4.9 Damping Ratio Curve ในแต่ละชั้นวัสดุถมเบื่อนคลองสะเดา

4.3 ผลการวิเคราะห์พฤติกรรมการตอบสนองทางพลศาสตร์ของตัวเขื่อน

การวิเคราะห์พฤติกรรมการตอบสนองทางพลศาสตร์ของตัวเชื่อนคลองสะเดาในรูปของค่า การเคลื่อนตัวในแนวราบ (Horizontal displacement) ค่าอัตราเร่งในแนวราบ (Horizontal acceleration) และค่าความเค้นเฉือนสูงสุด (Maximum shear stress) ได้นำค่าอัตราเร่งพื้นดินของ เหตุการณ์แผ่นดินไหวที่สำคัญจากทั่วโลก 10 เหตุการณ์ และอีก 1 เหตุการณ์ จากการปรับลดค่า อัตราเร่งของพื้นดินของเหตุการณ์แผ่นดินไหว Sumatra, Indonesia (2007) ให้มีค่าเท่ากับ 0.03g ที่ เรียกว่า Simulated Sadao มากระทำที่บริเวณฐานเชื่อน ซึ่งพิจารณาไม่ให้เกิดการเคลื่อนที่ทั้งแนวดิ่ง และแนวราบ โดยเชื่อนมีการตอบสนองต่อแรงกระทำแผ่นดินไหว เกิดอัตราเร่งของวัสดุในตัวเชื่อน ในบริเวณต่าง ๆ ของตัวเชื่อนแตกต่างกันซึ่งขึ้นอยู่กับชนิดและคุณสมบัติของวัสดุถมเชื่อน รวมถึง องก์ประกอบของคลื่นแผ่นดินไหว

ตัวอย่างของการตอบสนองทางพลศาสตร์ของเหตุการณ์แผ่นดินไหว Hawaii, USA (2010) ได้นำเสนอในที่นี้ (รูปที่ 4.10) พบว่าการเคลื่อนตัวในแนวราบมีค่าเพิ่มขึ้นตามความสูงของเขื่อน โดยเขื่อนมีการเคลื่อนตัวมากที่สุดที่บริเวณลาดชันเขื่อนด้านเหนือน้ำตั้งแต่ระดับ +67.00 เมตร (รทก.) ขึ้นไปจนถึงสันเขื่อน ซึ่งเขื่อนมีก่าการเคลื่อนตัวมากที่สุดประมาณ 0.064 เมตร ค่าอัตราเร่งเชิงเปรียบเทียบในบริเวณต่าง ๆ ของตัวเขื่อน ณ เวลาที่มีอัตราเร่งสูงสุดของ เหตุการณ์แผ่นดินไหว Hawaii, USA (2010) กระทำที่บริเวณฐานเขื่อน สามารถแสดงได้ดังรูปที่ 4.11 พบว่าก่าอัตราเร่งสูงสุดของพื้นดินมีค่าเพิ่มขึ้นตามระดับความสูงของตัวเขื่อน โดยพบมาก ที่สุดที่บริเวณลาดชันเขื่อนด้านเหนือน้ำตั้งแต่ระดับ +67.00 เมตร(รทก.) ขึ้นไปจนถึงบริเวณสัน เขื่อน ซึ่งมีค่าอัตราเร่งมากที่สุดประมาณ 32.5 เมตร/วินาที² (3.31g) คิดเป็นอัตราส่วนขยายเท่ากับ 4.6 เมื่อเปรียบเทียบกับค่าอัตราเร่งที่บริเวณฐานเชื่อน (0.72g) ซึ่งมีค่าใกล้เคียงกับเขื่อนศรีนครินทร์ ที่มีค่าอัตราส่วนขยายจากบริเวณฐานเชื่อนจนถึงบริเวณสันเชื่อนเท่ากับ 4.9 (เกรียงไกร, 2551

ร**ูปที่ 4.10** การเคลื่อนตัวเชิงเปรียบเทียบ (Relative displacement) ของวัสดุถมเชื่อนตามแนวราบ ณ เวลาที่มีค่าอัตราเร่งสูงสุดของคลื่นแผ่นดินไหว Hawaii, USA (2010) กระทำที่บริเวณ ฐานเชื่อน (หน่วย: เมตร)

ร**ูปที่ 4.11** ค่าอัตราเร่งเชิงเปรียบเทียบ (Relative acceleration) ของวัสดุถมเชื่อนตามแนวราบ ณ เวลาที่มีค่าอัตราเร่งสูงสุดของคลื่นแผ่นดินไหว Hawaii, USA (2010) กระทำที่บริเวณ ฐานเงื่อน (หน่วย: เมตร/วินาที²) เมื่อพิจารณาถึงค่าความเค้นเฉือนสูงสุด (Maximum Shear Stress) ของบริเวณต่างๆ ในตัว เงื่อนเมื่อได้รับแรงกระทำจากเหตุการณ์แผ่นดินไหว Hawaii, USA (2010) ณ เวลาที่มีอัตราเร่ง สูงสุด มากระทำที่บริเวณฐานเงื่อน พบว่าค่าความเค้นเฉือนในตัวเงื่อนคลองสะเดามีค่าอยู่ในช่วง ประมาณ 50 – 800 กิโลนิวตันต่อตารางเมตร โดยในชั้นวัสดุ Filter Material ทางด้านท้ายน้ำบริเวณ ฐานเงื่อนใกล้กับแกนกลางของตัวเงื่อนมีค่าความเค้นเฉือนมากที่สุดประมาณ 850 กิโลนิวตันต่อ ตารางเมตร ดังแสดงในรูปที่ 4.12

ร**ูปที่ 4.12** ความเค้นเฉือนสูงสุด (Relative maximum shear stress) ในบริเวณต่างๆ ของตัวเขื่อน เมื่อได้รับแรงกระทำจากเหตุการณ์แผ่นดินไหว Hawaii, USA (2010) ณ เวลาที่มีอัตรา เร่งสูงสุด (หน่วย: กิโลนิวตันต่อตารางเมตร)

4.3.1 กรณีคลื่นแผ่นดินใหวต่างๆ กระทำที่บริเวณฐานเงื่อน

พฤติกรรมการตอบสนองทางพลศาสตร์ของตัวเขื่อนคลองสะเคาเมื่อได้รับแรงกระทำจาก เหตุการณ์แผ่นดินไหวหลัก 10 เหตุการณ์ และอีก 1 เหตุการณ์ ที่เรียกว่า Simulated Sadao มากระทำ ที่บริเวณฐานเขื่อน พบว่าตัวเขื่อนคลองสะเดามีพฤติกรรมการตอบสนองที่คล้ายคลึงกัน แต่จะมี ขนาดแตกต่างกันตามขนาดของเหตุการณ์แผ่นดินไหวที่นำมาวิเคราะห์ ซึ่งเมื่อพิจารณาถึงการขยาย ขนาดของคลื่นแผ่นดินไหวในบริเวณต่างๆ ของตัวเขื่อนคลองสะเดา พบว่าที่บริเวณสันเขื่อนมีการ ขยายขนาดของคลื่นแผ่นดินไหวมากกว่าบริเวณอื่นๆ ดังแสดงในรูปที่ 4.13 ซึ่งเป็นตัวอย่างการ ขยายขนาดของคลื่นแผ่นดินไหวในบริเวณต่างๆ ของตัวเขื่อนเมื่อได้รับแรงกระทำจากเหตุการณ์ แผ่นดินไหว Kobe, Japan (1995) ส่วนรายละเอียดการขยายขนาดของคลื่นแผ่นดินไหวอื่นๆ ที่ใช้ ในการวิเคราะห์ในงานวิจัยนี้ได้แสดงไว้ในตารางที่ 4.3

	ฐาน เขื่อน	ผลการคำนวณการขยายขนาดของค่าอัตราเร่ง							
คลื่นแผ่นดินไหว		สันเขื่อน		วัสดุหินถมที่ระดับความสูง 63.00 เมตร (รทก.)				Upstream	
				ด้านเหนือน้ำ		ด้านท้ายน้ำ		Berm	
	PGA	PGA	ส่วน	PGA	ส่วน	PGA	ส่วน	PGA	ส่วน
	(g)	(g)	ขยาย	(g)	ขยาย	(g)	ขยาย	(g)	ขยาย
Calexico, Mexico	0.19	0.73	3.84	0.68	3.58	0.38	2.00	0.57	3.00
Offshore, Chile	0.64	2.67	4.17	2.87	4.48	1.38	2.16	2.50	3.90
Christchurch, NZ	0.53	1.57	2.96	1.29	2.43	0.99	1.87	1.80	3.40
Haiti Region, Haiti	0.42	0.73	1.74	0.78	1.85	0.34	0.81	0.49	1.17
Hawaii, USA	0.72	3.31	4.60	3.26	4.53	1.76	2.44	2.29	3.18
Kobe, Japan	0.68	2.53	3.72	2.46	3.62	1.33	1.96	2.07	3.04
Loma Preita, USA	0.23	0.91	3.96	0.83	3.61	0.59	2.57	0.56	2.43
Nissqually, USA	0.35	0.49	1.40	0.56	1.60	0.36	1.03	0.41	1.17
San Fernando, USA	1.07	2.34	2.19	2.57	2.40	1.31	1.22	2.13	1.99
Sumatra, Indonesia	0.06	0.21	3.50	0.23	3.83	0.12	2.00	0.16	2.67
Simulated Sadao	0.03	0.13	4.33	0.08	2.67	0.08	2.67	0.15	5.00

ตารางที่ 4.3 การขยายขนาดของคลื่นแผ่นดินไหวในบริเวณต่างๆ ของเขื่อนคลองสะเดาเมื่อได้รับ แรงกระทำจากคลื่นแผ่นดินไหวต่างๆ

จากตารางที่ 4.3 พบว่า การขยายขนาดของคลื่นแผ่นดินไหวจะขึ้นอยู่กับคุณสมบัติของวัสดุ ถมเขื่อน ในบริเวณต่างๆ ของตัวเขื่อนแตกต่างกัน โดยส่วนใหญ่มีค่าอัตราส่วนขยาย (Amplication Factor) ประมาณ 1.00 ถึง 5.00 เท่า เมื่อเทียบกับค่าอัตราเร่งที่บริเวณฐานเขื่อน ซึ่งบริเวณสันเขื่อน และบริเวณวัสดุหินถมด้านเหนือน้ำจะมีค่าอัตราส่วนขยายมากกว่าบริเวณอื่นๆ ในขณะที่วัสดุหิน ถมด้านท้ายน้ำจะมีค่าอัตราส่วนขยายน้อยที่สุด ทั้งนี้ยังพบว่าคลื่นแผ่นดินไหว Hawaii, USA มีค่า อัตราส่วนขยายเฉลี่ยในบริเวณต่างๆ ของตัวเขื่อนมากกว่าคลื่นแผ่นดินไหวอื่นๆ คือที่บริเวณสัน เขื่อนมีค่าอัตราส่วนขยาย 4.60 เท่า และบริเวณวัสดุหินถมด้านเหนือน้ำมีค่าอัตราส่วนขยาย 4.53 เท่า ทั้งนี้เนื่องจากผลของลักษณะที่ใกล้เคียงกับการสั่นพ้อง ดังที่กล่าวมาแล้ว จึงทำให้คลื่นแผ่นดินไหว Hawaii, USA เกิดการขยายขนาดของคลื่นแผ่นดินไหวมากกว่าคลื่นแผ่นดินไหวอื่นๆ

นอกจากนี้เมื่อนำค่าการเคลื่อนตัวในแนวราบของคลื่นแผ่นดินไหวต่างๆ ในบริเวณชั้นวัสดุ ทึบน้ำแกนเงื่อนที่ระดับความสูงต่างๆ ของตัวเงื่อนมาหาความสัมพันธ์ดังแสดงรูปที่ 4.14 พบว่าค่า การเคลื่อนตัวในแนวราบมีค่าสอดคล้องกันในทุกเหตุการณ์แผ่นดินไหว โดยมีค่าเพิ่มขึ้นตามระดับ ความสูงของตัวเงื่อน โดยมีระยะการเคลื่อนตัวเพิ่มมากขึ้นเรื่อยๆ จนถึงสันเงื่อน ซึ่งที่ระดับความ สูงประมาณ +45.00 เมตร(รทก.) พบว่ามีระยะการเคลื่อนตัวเพิ่มมากขึ้นเรื่อยๆ จนถึงสันเงื่อน ซึ่งที่ระดับความ การเคลื่อนตัวจะเริ่มมีค่าลดลงที่ระดับความสูงประมาณ +70.00 เมตร(รทก.) ซึ่งเหตุการณ์ แผ่นดินไหว Hawaii, USA (2010) มีก่าการเคลื่อนตัวมากที่สุดประมาณ 0.064 เมตร

ค่าอัตราเร่งในแนวราบที่ระดับความสูงต่างๆ ในบริเวณชั้นวัสดุทึบน้ำแกนเงื่อนของ เหตุการณ์แผ่นดินไหวที่ใช้ในการวิเคราะห์ พบว่าก่าอัตราเร่งของพื้นดินในแนวราบของทุก เหตุการณ์แผ่นดินไหวมีลักษณะแตกต่างกันไป โดยเฉพาะเหตุการณ์แผ่นดินไหว Hawaii, USA (2010) และ Kobe, Japan (1995) มีความแตกต่างจากคลื่นแผ่นดินไหวอื่นๆ อย่างเห็นได้ชัด เนื่องจากผลของลักษณะที่ใกล้เคียงกับการสั่นพ้องที่เกิดขึ้น ซึ่งทำให้เกิดการขยายขนาดของคลื่น แผ่นดินไหวจึงทำให้ค่าอัตราเร่งในแนวราบมีค่าแตกต่างจากคลื่นแผ่นดินไหวอื่นๆ ดังแสดงในรูปที่ 4.15 ซึ่งพฤติกรรมการตอบสนองทางพลศาสตร์ของตัวเงื่อนคลองสะเดา ทั้งก่าการเคลื่อนตัว และ ก่าอัตราเร่งในแนวราบจะมีก่าแตกต่างกันขึ้นอยู่กับขนาดของเหตุการณ์แผ่นดินไหวที่นำมา วิเคราะห์ และเมื่อนำค่าอัตราเร่งในแนวราบของคลื่นแผ่นดินไหวต่างๆ บริเวณชั้นวัสดุทึบน้ำแกน เงื่อนที่ระดับความสูงต่างๆ มา Normalize ให้มีจุดเริ่มต้นที่จุดเดียวกัน ดังแสดงในรูปที่ 4.16 พบว่า เหตุการณ์แผ่นดินไหว Kobe, Japan (1995) มีพฤติกรรมการตอบสนองมากที่สุด

ร**ูปที่ 4.14** ความสัมพันธ์ระหว่างค่าการเคลื่อนตัวในแนวราบกับความสูงที่ระดับต่างๆ ของตัวเขื่อน ในบริเวณชั้นวัสดุทึบน้ำแกนเขื่อนของเหตุการณ์แผ่นดินไหวที่ใช้ในการวิเคราะห์

รูปที่ 4.15 ความสัมพันธ์ระหว่างค่าอัตราเร่งสูงสุดในแนวราบกับความสูงที่ระดับต่างๆ ของตัวเขื่อน ในบริเวณชั้นวัสดุทึบน้ำแกนเขื่อนของเหตุการณ์แผ่นดินไหวที่ใช้ในการวิเกราะห์

ร**ูปที่ 4.16** Normalized ค่าอัตราเร่งสูงสุดในแนวราบกับความสูงที่ระดับต่างๆ ของตัวเขื่อนใน บริเวณชั้นวัสดุทึบน้ำแกนเขื่อนของเหตุการณ์แผ่นดินไหวที่ใช้ในการวิเคราะห์

4.3.2 กรณึเปลี่ยนแปลงระดับเก็บกักน้ำ

เมื่อพิจารณาถึงการเปลี่ยนแปลงระดับเก็บกักน้ำในอ่างเก็บน้ำ โดยในการวิเคราะห์ได้ เปรียบเทียบระดับเก็บกักน้ำเป็น 3 ระดับคือ ระดับเก็บกักสูงสุด (+72.00 เมตร รทก.) ระดับเก็บกัก ปกติ (+68.00 เมตร รทก.) และระดับเก็บกักต่ำสุด (+52.00 เมตร รทก.) ซึ่งเมื่อระดับเก็บกักน้ำ เปลี่ยนแปลงไป เป็นผลให้สภาพความเค้นเปลี่ยนแปลงไปด้วย นั่นคือ เมื่อระดับน้ำลดลงจะทำให้ ก่าแรงดันน้ำในตัวเงื่อนลดลง ส่งผลให้แรงดันประสิทธิผลของวัสดุตัวเงื่อนมีก่าเพิ่มขึ้น รูปที่ 4.17 แสดงตัวอย่างก่าแรงดันประสิทธิผลเฉลี่ย (Mean effective stress) เชิงเปรียบเทียบในบริเวณต่างๆ ของตัวเงื่อน ณ เวลาที่มีก่าอัตราเร่งสูงสุดของพื้นดินของเหตุการณ์แผ่นดินไหว Kobe, Japan (1995) พบว่า ก่าแรงดันประสิทธิผลเฉลี่ย (Mean effective stress) มีก่าสูงสุดประมาณ 500 กิโลนิวตันต่อ ตารางเมตร ในกรณีที่มีระดับเก็บกักน้ำต่ำสุด และมีก่าลดลงเมื่อระดับเก็บกักน้ำเพิ่มขึ้น ซึ่งส่วน ใหญ่จะมีก่ามากที่บริเวณฐานเงื่อนทางด้านเหนือน้ำและด้านท้ายน้ำ

(a)

(b)

ร**ูปที่ 4.17** ค่าแรงดันประสิทธิผลเฉลี่ย (Mean Effective Stress) ของเขื่อนคลองสะเดา ณ เวลาที่มี ค่าอัตราเร่งสูงสุดเนื่องจากคลื่นแผ่นดินไหว Kobe, Japan (1995) (หน่วย: กิโลนิวตันต่อ ตารางเมตร) (a) กรณีระดับเก็บกักอยู่ที่ระดับสูงสุด (b) กรณีระดับเก็บกักอยู่ที่ระดับ ปกติ (c) กรณีระดับเก็บกักอยู่ที่ระดับต่ำสุด เมื่อเปรียบเทียบพฤติกรรมการตอบสนองทางพลศาสตร์ของตัวเขื่อนที่ระดับเก็บกักน้ำ ต่างๆ ในบริเวณชั้นวัสดุทึบน้ำแกนเขื่อน พบว่าก่าการเกลื่อนตัวในแนวราบมีก่าเพิ่มขึ้นตามระดับ เก็บกักน้ำ โดยก่าการเกลื่อนตัวมีก่าเพิ่มขึ้นอย่างชัดเจนที่ระดับกวามสูงประมาณ +40.00 เมตร (รทก.) และมีแนวโน้มเพิ่มขึ้นเรื่อยๆ จนถึงสันเขื่อน ซึ่งที่บริเวณสันเขื่อนพบว่าที่ระดับน้ำเก็บกักน้ำ +72.00 เมตร(รทก.) มีก่าใกล้เกียงกับที่ระดับเก็บกักน้ำ +68.00 เมตร(รทก.) ดังแสดงในรูปที่ 4.18

สำหรับค่าอัตราเร่งในแนวราบพบว่า ที่ระดับเก็บกักน้ำต่างๆ มีแนวโน้มใกล้เคียงกันมาก แต่จะมีค่าแตกต่างกันที่บริเวณสันเขื่อน คือที่ระดับเก็บกักน้ำ +72.00 เมตร(รทก.) มีค่ามากที่สุด และที่ระดับเก็บกักน้ำ +68.00 เมตร(รทก.) มีค่าน้อยที่สุด และเมื่อพิจารณาตามความสูงของตัวเขื่อน พบว่า มีลักษณะที่สอดคล้องกัน กล่าวคือ ค่าอัตราเร่งในแนวราบเพิ่มขึ้นตามระดับความสูงของตัว เขื่อน ดังแสดงในรูปที่ 4.19

ร**ูปที่ 4.18** ความสัมพันธ์ระหว่างค่าการเคลื่อนตัวในแนวราบกับความสูงของตัวเขื่อน ที่ระดับน้ำ เก็บกักต่างๆ บริเวณชั้นวัสดุทึบน้ำแกนเขื่อน เนื่องจากคลื่นแผ่นดินไหว Kobe, Japan (1995)

ร**ูปที่ 4.19** ความสัมพันธ์ระหว่างค่าอัตราเร่งในแนวราบกับความสูงของตัวเขื่อนที่ระดับน้ำเก็บกัก ต่างๆ บริเวณชั้นวัสดุทึบน้ำแกนเขื่อน เนื่องจากคลื่นแผ่นดินไหว Kobe, Japan (1995)

เมื่อเปรียบเทียบค่าการเคลื่อนตัวในแนวราบ และค่าอัตราเร่งพื้นดินในแนวราบกับที่ระดับ น้ำเก็บกักต่างๆ โดยพิจารณาที่ระดับความสูง +65.00 เมตร(รทก.) ของลาดชันเชื่อนด้านเหนือน้ำ และลาดชันเชื่อนด้านท้ายน้ำ รวมถึงบริเวณสันเชื่อน พบว่าที่ระดับน้ำเก็บกักปกติ (+68.00 เมตร รทก.) มีค่าการเคลื่อนตัวมากที่สุด และที่ระดับน้ำเก็บกักต่ำสุด (+52.00 เมตร รทก.) มีค่าการเคลื่อน ตัวน้อยที่สุดเมื่อเทียบกับระดับน้ำเก็บกักอื่นๆ โดยพบว่าที่บริเวณลาดชันเชื่อนด้านเหนือน้ำมีค่าการ เคลื่อนตัวในแนวราบมากกว่าบริเวณอื่นๆ ดังแสดงในรูปที่ 4.20 – 4.22

สำหรับค่าอัตราเร่งในแนวราบ พบว่ามีค่าสอดคล้องกับค่าการเคลื่อนตัวในแนวราบ กล่าวคือ ที่ระดับน้ำเก็บกักปกติ (+68.00 เมตร รทก.) มีค่าอัตราเร่งในแนวราบตัวมากที่สุด และที่ ระดับน้ำเก็บกักต่ำสุด (+52.00 เมตร รทก.) มีค่าอัตราเร่งในแนวราบน้อยที่สุดเมื่อเทียบกับระดับน้ำ เก็บกักอื่นๆ และพบว่าที่บริเวณลาดชันเงื่อนด้านเหนือน้ำมีค่าอัตราเร่งในแนวราบมากกว่าบริเวณ อื่นๆ เช่นกัน ดังแสดงในรูปที่ 4.23 - 4.25

รูปที่ 4.20 การเปรียบเทียบค่าการเคลื่อนตัวในแนวราบกับที่ระดับน้ำต่างๆ บริเวณสันเงื่อน

ร**ูปที่ 4.21** การเปรียบเทียบก่าการเกลื่อนตัวในแนวราบกับที่ระดับน้ำต่างๆ บริเวณลาดชันเขื่อนด้าน เหนือน้ำที่ระดับกวามสูง +65.00 เมตร(รทก.)

ร**ูปที่ 4.22** การเปรียบเทียบก่าการเกลื่อนตัวในแนวราบกับที่ระคับน้ำต่างๆ บริเวณลาคชันเขื่อนด้าน ท้ายน้ำ ที่ระคับกวามสูง +65.00 เมตร(รทก.)

รูปที่ 4.23 การเปรียบเทียบค่าอัตราเร่งในแนวราบกับที่ระดับน้ำต่างๆ บริเวณสันเงื่อน

ร**ูปที่ 4.24** การเปรียบเทียบค่าอัตราเร่งในแนวราบกับที่ระดับน้ำต่างๆ บริเวณลาดชันเขื่อนด้านเหนือ น้ำที่ระดับความสูง +65.00 เมตร(รทก.)

ร**ูปที่ 4.25** การเปรียบเทียบค่าอัตราเร่งในแนวราบกับที่ระดับน้ำต่างๆ บริเวณลาคชันเขื่อนด้านท้าย น้ำที่ระดับกวามสูง +65.00 เมตร(รทก.)

4.4 ผลการวิเคราะห์การเปลี่ยนรูปถาวรของลาดชันเขื่อน

การวิเคราะห์การเปลี่ยนรูปถาวรของลาดชันเขื่อนคลองสะเดา ได้ใช้ทฤษฎี Newmark's deformation analysis ในการวิเคราะห์ โดยทำการวิเคราะห์ทั้งทางด้านเหนือน้ำและทางด้านท้ายน้ำ ทั้งกรณีคลื่นแผ่นดินไหวต่างๆ กระทำที่ฐานเขื่อนและกรณีลดระดับเก็บกักน้ำอย่างรวดเร็ว ซึ่งการ เปลี่ยนรูปถาวรของลาดชันเขื่อน ถือเป็นลักษณะการพิบัติที่สำคัญสำหรับโครงสร้างเขื่อน เนื่องจาก มีโอกาสเกิดขึ้นมากที่สุดเมื่อตัวเขื่อนได้รับแรงกระทำจากแผ่นดินไหว ผลของการเปลี่ยนรูปถาวร ของลาดชันเขื่อนจะทำให้เกิดรอยแยกที่ผิวเขื่อน และเกิดการเคลื่อนตัวตามแนวลาดชันของระนาบ การพิบัติ

4.4.1 กรณีคลื่นแผ่นดินใหวต่างๆ กระทำที่บริเวณฐานเงื่อน

การวิเคราะห์จะนำข้อมูลอัตราเร่งพื้นดินของเหตุการณ์แผ่นดินไหว 10 เหตุการณ์ และ Simulated Sadao มากระทำที่บริเวณฐานเชื่อน แล้วพิจารณาระนาบการพิบัติที่ได้กำหนดไว้ทั้ง ทางด้านเหนือน้ำและทางด้านท้ายน้ำ ผลการวิเคราะห์พบว่า ทางด้านเหนือน้ำระนาบการพิบัติที่ 2 (รูปที่ 3.8) มีการเคลื่อนตัวมากที่สุด 0.643 เมตร เมื่อได้รับแรงกระทำจากเหตุการณ์แผ่นดินไหว Hawaii, 2010 โดยที่ระดับน้ำอยู่ที่ระดับเก็บกักปกติ และทางด้านท้ายน้ำระนาบการพิบัติที่ 2 (รูปที่ 3.9) มีการเคลื่อนตัวมากที่สุด เช่นกัน คือ 0.212 เมตร เมื่อได้รับแรงกระทำจากเหตุการณ์ แผ่นดินไหว Kobe, 1995 ดังแสดงในตารางที่ 4.4 และ ตารางที่ 4.5 ตามลำดับ นอกจากนี้ยังพบอีก ว่าลาดชันเชื่อนทั้งทางด้านเหนือน้ำและด้านท้ายน้ำเริ่มเกิดการเคลื่อนตัวเมื่อได้รับแรงกระทำจาก เหตุการณ์แผ่นดินไหว Haiti, 2010 (PGA=0.4g) ส่วนรายละเอียดผลการวิเคราะห์การเปลี่ยนรูป ถาวรของลาดชันเชื่อนทั้ง 10 เหตุการณ์ และ Simulated Sadao ที่ระดับเก็บกักน้ำต่างๆ ได้แสดงไว้ ในภาคผนวก ค. (ตารางที่ ค-1 และตารางที่ ค-2)

For the set of	Permanent Deformation (m)					
Eartnquakes	Slip No. 1	Slip No. 2	Slip No. 3	Slip No. 4		
Calexico, Mexico (Mw=7.0, PGA=0.19g)	0.001	0.001	0.000	0.000		
Offshore Bio, Chile (Mw=8.8, PGA=0.64g)	0.326	0.627	0.051	0.235		
Christchurch, NZ (Mw=6.3, PGA=0.53g)	0.033	0.046	0.005	0.026		
Haiti (Mw=7.0, PGA=0.42g)	0.060	0.010	0.006	0.048		
Hawaii, USA (Mw=6.7, PGA=0.72g)	0.285	0.643	0.036	0.198		
Kobe, Japan (Mw=6.9, PGA=0.68g)	0.436	0.337	0.086	0.361		
Loma Preita, USA (Mw=7.0, PGA=0.23g)	0.009	0.007	0.000	0.007		
Nissqually, USA (Mw=6., PGA=0.35g)	0.000	0.000	0.000	0.000		
San Fernando, USA (Mw=6.6, PGA=1.07g)	0.220	0.232	0.057	0.184		
Sumatra, Indonesia (Mw=8.4, PGA=0.06g)	0.000	0.000	0.000	0.000		
Simulated Sadao (PGA=0.03g)	0.000	0.000	0.000	0.000		

ตารางที่ 4.4 ผลการวิเคราะห์การเปลี่ยนรูปถาวรของลาคชันเขื่อนทางค้านเหนือน้ำ

ตารางที่ 4.5 ตัวอย่างผลการวิเคราะห์การเปลี่ยนรูปถาวรของลาคชันเขื่อนทางด้านท้ายน้ำ

	Permanent Deformation (m)					
Earthquakes	Slip No. 1	Slip No. 2	Slip No. 3	Slip No. 4		
Calexico, Mexico (Mw=7.0, PGA=0.19g)	0.000	0.000	0.000	0.000		
Offshore Bio, Chile (Mw=8.8, PGA=0.64g)	0.057	0.018	0.021	0.052		
Christchurch, NZ (Mw=6.3, PGA=0.53g)	0.017	0.000	0.007	0.017		
Haiti (Mw=7.0, PGA=0.42g)	0.017	0.001	0.003	0.007		
Hawaii, USA (Mw=6.7, PGA=0.72g)	0.080	0.031	0.029	0.099		
Kobe, Japan (Mw=6.9, PGA=0.68g)	0.212	0.096	0.106	0.183		
Loma Preita, USA (Mw=7.0, PGA=0.23g)	0.000	0.000	0.000	0.000		
Nissqually, USA (Mw=6., PGA=0.35g)	0.000	0.000	0.000	0.000		
San Fernando, USA (Mw=6.6, PGA=1.07g)	0.132	0.081	0.092	0.125		
Sumatra, Indonesia (Mw=8.4, PGA=0.06g)	0.000	0.000	0.000	0.000		
Simulated Sadao (PGA=0.03g)	0.000	0.000	0.000	0.000		

4.4.2 กรณีลดระดับเก็บกักน้ำอย่างรวดเร็ว

การวิเคราะห์การเปลี่ยนรูปถาวรของลาดชันเงื่อน ในกรณีลดระดับเก็บกักน้ำอย่างรวดเร็ว จะพิจารณาจากที่ระดับเก็บกักน้ำปกติ +68.00 เมตร(รทก.) ลดลงมาถึงที่ระดับเก็บกักน้ำต่ำสุด +52.00 เมตร(รทก.) โดยพิจารณาลาดชันเงื่อนทางด้านเหนือน้ำเท่านั้น ผลการวิเคราะห์พบว่า ระนาบการพิบัติที่ 2 (รูปที่ 3.10) มีการเคลื่อนตัวมากที่สุดประมาณ 0.998 เมตร เมื่อได้รับแรง กระทำจากเหตุการณ์แผ่นดินไหว Hawaii, 2010 ดังตัวอย่างที่ได้แสดงไว้ในตารางที่ 4.6 ส่วน รายละเอียดผลการวิเคราะห์การเปลี่ยนรูปถาวรของลาดชันเงื่อนในกรณีลดระดับเก็บกักน้ำอย่าง รวดเร็วของทั้ง 10 เหตุการณ์ ได้แสดงไว้ในภาคผนวก ง. (ตารางที่ ง-1)

ตารางที่ 4.6 ผลการวิเคราะห์การเปลี่ยนรูปถาวรของลาคชันเชื่อน ในกรณีลดระดับเก็บกักน้ำอย่าง รวดเร็ว เมื่อได้รับแรงกระทำจากเหตุการณ์แผ่นดินไหว Hawaii, 2010 (PGA=0.72g) และ Haiti, 2010 (PGA=0.4)

	Permanent Deformation (m)					
	กรณีระดับเก็	บ กักน้ำปกติ	กรณีลดระดับเก็บกักน้ำอย่างรวดเร็ว			
Shp Surface No.	+68.00 เม	ตร(รทก.)	+52.00 เมตร(รทก.)			
	Hawaii, 2010	Haiti, 2010	Hawaii, 2010	Haiti, 2010		
1	0.285	0.060	0.386	0.082		
2	0.643	0.010	0.998	0.016		
3	0.036	0.006	0.058	0.010		
4	0.198	0.048	0.270	0.066		

4.4.3 กรณีระดับน้ำอยู่ที่ระดับต่างๆ

เมื่อเปรียบเทียบการเปลี่ยนรูปถาวรของลาดชันเขื่อนทางด้านเหนือน้ำในกรณีที่ระดับน้ำใน ตัวเขื่อนอยู่ที่ระดับต่างๆ ตั้งแต่ที่ระดับเก็บกักน้ำต่ำสุด (+52.00 เมตร รทก.) ถึงที่ระดับเก็บกักน้ำ สูงสุด (+72.00 เมตร รทก.) โดยได้รับแรงกระทำจากกลื่นแผ่นดินไหว Hawaii, (2010) พบว่าก่า Yield Acceleration (ky) มีแนวโน้มเพิ่มมากขึ้นเมื่อระดับเก็บกักน้ำในตัวเขื่อนลดลง โดยระนาบ การพิบัติที่ 2 มีก่า Yield Acceleration มากที่สุดเท่ากับ 0.62g ที่ระดับเก็บกักน้ำต่ำสุด ทั้งนี้เนื่องจาก ระนาบการพิบัติที่ 2 มีค่าอัตราส่วนความปลอดภัยมากกว่าระนาบการพิบัติอื่นๆ จึงทำให้มีค่า Yield Acceleration มากกว่าระนาบการพิบัติอื่นๆ ดังแสดงในรูปที่ 4.26 โดยรายละเอียดของค่า Yield Acceleration ของทุกระนาบการพิบัติ สำหรับคลื่นแผ่นดินไหวอื่นๆ ได้แสดงไว้ในภาคผนวก ค. (ตารางที่ ค-1 และตารางที่ ค-2)

รูปที่ 4.26 เปรียบเทียบค่า Yield Acceleration, ky บริเวณลาคชันเงื่อนด้านเหนือน้ำที่ระดับเก็บกัก น้ำต่างๆ เมื่อได้รับแรงกระทำจากคลื่นแผ่นดินไหว Hawaii, (2010)

4.5 ผลการวิเคราะห์การเกิดปรากฏการณ์ Liquefaction

การวิเคราะห์การเกิดปรากฏการณ์ Liquefaction ของตัวเชื่อนคลองสะเดา ได้ทำการ วิเคราะห์ในชั้นวัสดุ Filter Material บริเวณทางด้านท้ายน้ำเท่านั้น เพราะเป็นชั้นวัสดุที่มีโอกาสเกิด ปรากฏการณ์ Liquefaction มากกว่าบริเวณอื่นๆ ซึ่งทำการวิเคราะห์โดยใช้วิธีที่เสนอโดย Seed and Idriss (1971) การวิเคราะห์ทำโดยใช้คลื่นแผ่นดินใหวทั้ง 10 เหตุการณ์ และเหตุการณ์ Simulated Sadao มากระทำที่บริเวณฐานเชื่อน ทั้งนี้ผลการวิเคราะห์ในขั้นรายละเอียดที่ได้จะแสดงเฉพาะการ ใช้เหตุการณ์แผ่นดินใหว San Fernando, USA (1971) มากระทำที่บริเวณฐานเชื่อนเท่านั้น เนื่องจาก เป็นเหตุการณ์แผ่นดินใหวอื่นๆ ได้แสดงไว้ในภาคผนวก จ. (ตารางที่ จ-1 ถึงตารางที่ จ-12) และ รายละเอียดการคำนวณการเกิด Liquefaction ด้วยวิธีดังกล่าวโดยใช้คลื่นแผ่นดินไหว San Fernando, USA (1971) ได้แสดงไว้ในภาคผนวก ฉ.

ผลการวิเคราะห์แบ่งได้เป็น 2 กรณี คือ 1) กรณีที่กำนวณค่าแรงเฉือนสูงสุด (Maximum shear stress) และค่าความเก้นประสิทธิผลตามแนวคิ่ง (Effective vertical stress) ที่ได้จากสมการ Empirical (สมการที่ 2.21 – 2.23) และ 2) กรณีที่ใช้ค่าแรงเฉือนสูงสุด (Maximum shear stress) และ ค่าความเก้นประสิทธิผลตามแนวคิ่ง (Effective vertical stress) ที่ได้จากผลการตอบสนองทาง พลศาสตร์จากโปรแกรม QUAKE/W โดยผลการวิเคราะห์การเกิด Liquefaction ของโซนต่างๆ ของ เขื่อนคลองสะเดาได้แบ่งเป็น 5 โซนดังแสดงในรูปที่ 4.27

ร**ูปที่ 4.27** รายละเอียด โซนต่างๆ ของชั้นวัสดุ Filter material สำหรับวิเคราะห์ผลการเกิด Liquefaction

4.5.1 ผลการวิเคราะห์ Liquefaction โดยใช้สมการ Empirical

ค่าอัตราส่วนความปลอดภัยในการเกิด Liquefaction โดยใช้คลื่นแผ่นดินไหวที่ใช้ในการ วิเคราะห์ทั้ง 10 เหตุการณ์ และเหตุการณ์ Simulated sadao พบว่าคลื่นแผ่นดินไหวที่มีค่าอัตราเร่ง สูงสุดของพื้นดิน (PGA) หรือ a_{max} ต่ำกว่า 0.4g จะไม่มีโอกาสเกิด Liquefaction เลย ในขณะที่คลื่น แผ่นดินไหวที่มีค่าอัตราเร่งสูงสุดของพื้นดิน (PGA) หรือ a_{max} สูงกว่า 0.4g จะมีโอกาสเกิด Liquefaction เป็นบางบริเวณเท่านั้น ดังแสดงในตารางที่ 4.7 (รายละเอียดอยู่ในภากผนวก จ.) สำหรับค่าอัตราส่วนความปลอดภัยในการเกิด Liquefaction โดยใช้คลื่นแผ่นดินไหว San Fernando, 1971 ซึ่งเป็นคลื่นแผ่นดินไหวที่มีอัตราเร่งสูงสุดของพื้นดิน (PGA) มากกว่าคลื่นแผ่นดินไหวอื่นๆ (ตารางที่ 4.8) พบว่า ก่าอัตราส่วนกวามปลอดภัยที่วิเกราะห์ได้มีก่าน้อยกว่า 1.0 แสดงว่าบริเวณที่ พิจารณามีโอกาสเกิด Liquefaction โดยมีก่าอัตราส่วนกวามปลอดภัยอยู่ในช่วง 0.57 – 0.95

a	เกิด Liq	uefaction	ไม่เกิด Liquefaction		
ยถ <i>นแพนตน</i> เท J	Zone	ช่วงของ FS	Zone	ช่วงของ FS	
1. Calexico (PGA = 0.19g)	_	_	1,2,3,4,5	2.425 - 4.984	
2. Chile (PGA = 0.64g)	1,2,3,4,5	0.589 - 0.958	_	_	
3. Christchurch (PGA = $0.53g$)	1 (บางส่วน)	0.995	1,2,3,4,5	1.002 - 2.045	
4. Haiti (PGA = 0.42g)	-	_	1,2,3,4,5	1.097 – 2.255	
5. Hawaii (PGA = 0.72g)	1,2,3,4,5	0.673 - 0.956	5 (บางส่วน)	1.093 - 1.383	
6. Kobe (PGA = 0.68g)	1,2,3,4,5	0.688 - 0.977	5 (บางส่วน)	1.118 - 1.414	
7. Loma Preita (PGA = 0.23g)	-	_	1,2,3,4,5	2.003 - 4.117	
8. Nisqually (PGA = $0.35g$)	-	_	1,2,3,4,5	1.357 - 4.790	
9. San Fernando (PGA = 1.07g)	1,2,3,4,5	0.463 - 0.951	_	_	
10. Sumatra (PGA = 0.06g)	_	_	1,2,3,4,5	6.364 - 13.082	
11. Simulated Sadao (PGA = 0.03g)	—	-	1,2,3,4,5	12.728 - 26.164	

ตารางที่ 4.7 สรุปผลการวิเคราะห์การเกิด Liquefaction โดยใช้สมการ Empirical ในการวิเคราะห์

4.5.2 ผลการวิเคราะห์ Liquefaction โดยใช้ผลการตอบสนองทางพลศาสตร์

การวิเคราะห์ Liquefaction โดยใช้ผลการตอบสนองทางพลศาสตร์จะแตกต่างจากการ วิเคราะห์ โดยใช้สมการ Empirical ดังที่กล่าวมาแล้ว ซึ่งวิธีใช้ผลการตอบสนองทางพลศาสตร์ โดย ใช้โปรแกรม QUAKE/W พิจารณา ณ เวลาที่มีค่าความเค้นเฉือนสูงสุด จึงทำให้การวิเคราะห์ด้วยวิธี นี้สามารถวิเคราะห์ความเค้น (Stress) และความเครียด (Strain) ที่เกิดขึ้นจริงในขณะที่เกิดความเค้น เฉือนสูงสุดได้ทุกๆ อิลิเมนต์ ในชั้นวัสดุ Filter Material ทางด้านท้ายน้ำ สำหรับผลการวิเคราะห์ที่ ได้จะแสดงเฉพาะการใช้เหตุการณ์แผ่นดินไหว San Fernando, USA (1971) มากระทำที่บริเวณฐาน เชื่อน เนื่องจากเป็นคลื่นแผ่นดินไหวที่มีค่าอัตราเร่งพื้นดินสูงสุดในงานวิจัยนี้ และเพื่อที่จะสามารถ เปรียบเทียบกับการวิเคราะห์ที่ใช้สมการ Empirical ได้ โดยรายละเอียดผลการวิเคราะห์ Liquefaction ของคลื่นแผ่นดินไหว San Fernando, 1971 ได้แสดงไว้ในภาคผนวก จ (ตารางที่ จ-12)

Z	rd	σ _{vo}	σ ' _{vo}	$\tau_{_{cyc}}$	MSF	CSR	Kσ	$\tau_{_{cyc,L}}$	FS
(m)		(kN/m2)	(kN/m2)						
1	0.994	20.70	10.89	14.31	1.168	0.584	2.140	13.61	0.951
2	0.987	41.40	21.78	28.41	1.168	0.584	1.679	21.36	0.752
3	0.979	62.10	32.67	42.30	1.168	0.584	1.457	27.80	0.657
4	0.973	82.80	43.56	56.01	1.168	0.584	1.318	33.52	0.598
5	0.965	103.50	54.45	69.50	1.168	0.584	1.219	38.75	0.558
6	0.958	124.20	65.34	82.73	1.168	0.584	1.143	43.62	0.527
7	0.949	144.90	76.23	95.59	1.168	0.584	1.083	48.22	0.504
8	0.937	165.60	87.12	107.94	1.168	0.584	1.034	52.59	0.487
9	0.923	186.30	98.01	119.59	1.168	0.584	0.992	56.78	0.475
10	0.905	207.00	108.90	130.28	1.168	0.584	0.956	60.80	0.467
11	0.883	227.70	119.79	139.80	1.168	0.584	0.925	64.69	0.463
12	0.857	248.40	130.68	147.97	1.168	0.584	0.897	68.45	0.463
13	0.827	269.10	141.57	154.71	1.168	0.584	0.872	72.11	0.466
14	0.794	289.80	152.46	160.09	1.168	0.584	0.850	75.67	0.473
15	0.761	310.50	163.35	164.29	1.168	0.584	0.830	79.14	0.482
16	0.728	331.20	174.24	167.61	1.168	0.584	0.811	82.53	0.492
17	0.696	351.90	185.13	170.36	1.168	0.584	0.794	85.85	0.504
18	0.667	372.60	196.02	172.86	1.168	0.584	0.778	89.10	0.515
19	0.641	393.30	206.91	175.34	1.168	0.584	0.764	92.28	0.526
20	0.618	414.00	217.80	177.95	1.168	0.584	0.750	95.41	0.536
21	0.598	434.70	228.69	180.80	1.168	0.584	0.737	98.49	0.545
22	0.581	455.40	239.58	183.92	1.168	0.584	0.726	101.51	0.552
23	0.566	476.10	250.47	187.32	1.168	0.584	0.714	104.49	0.558
24	0.553	496.80	261.36	190.98	1.168	0.584	0.704	107.42	0.562
25	0.541	517.50	272.25	194.87	1.168	0.584	0.694	110.31	0.566
26	0.532	538.20	283.14	198.96	1.168	0.584	0.684	113.15	0.569
27	0.523	558.90	294.03	203.20	1.168	0.584	0.675	115.96	0.571
28	0.515	579.60	304.92	207.57	1.168	0.584	0.667	118.74	0.572
29	0.508	600.30	315.81	212.04	1.168	0.584	0.659	121.48	0.573
30	0.501	621.00	326.70	216.58	1.168	0.584	0.651	124.18	0.573
31	0.496	641.70	337.59	221.17	1.168	0.584	0.643	126.86	0.574
32	0.490	662.40	348.48	225.78	1.168	0.584	0.636	129.50	0.574
33	0.485	683.10	359.37	230.41	1.168	0.584	0.630	132.12	0.573
34	0.480	703.80	370.26	235.05	1.168	0.584	0.623	134.71	0.573
35	0.476	724.50	381.15	239.67	1.168	0.584	0.617	137.27	0.573
36	0.471	745.20	392.04	244.28	1.168	0.584	0.611	139.81	0.572
37	0.467	765.90	402.93	248.86	1.168	0.584	0.605	142.32	0.572
38	0.463	786.60	413.82	253.41	1.168	0.584	0.599	144.81	0.571

ตารางที่ 4.8 ผลการวิเคราะห์ Liquefaction โดยใช้สมการ Empirical ของเหตุการณ์แผ่นดินไหว San Fernando, USA (1971) ซึ่งมีขนาด 6.6 ริกเตอร์ และ PGA = 1.07g

ค่า τ_{cyc} ที่วิเคราะห์ได้จากค่าความเล้นเฉือนสูงสุด (Maximum shear stress) และค่าความ เค้นประสิทธิผลตามแนวดิ่ง (Effective vertical stress) ซึ่งได้จากผลการตอบสนองทางพลศาสตร์ โดยใช้คลื่นแผ่นดินไหว San Fernando, USA (1971) พบว่ามีค่าอยู่ในช่วง 1.47 – 255.29 กิโลนิวตัน ต่อตารางเมตร และค่า τ_{cyc_L} ที่ปรับเทียบกับค่า Magnitude scaling factor (MSF) และค่าอิทธิพล ของ Effective Overburden Pressure, K_{σ} พบว่ามีค่าอยู่ในช่วง 15.43 – 183.16 กิโลนิวตันต่อตาราง เมตร ทั้งนี้พิจารณาทุกๆ อิลิเมนต์ เฉพาะในชั้นวัสดุ Filter Material ทางด้านท้ายน้ำเท่านั้น

เมื่อนำค่า Tcyc และ Tcyc, ที่วิเคราะห์ได้จากการใช้กลิ่นแผ่นดินไหว San Fernando, USA (1971) มาคำนวณหาอัตราส่วนความปลอดภัยในการเกิด Liquefaction โดยสามารถคำนวณได้จาก อัตราส่วนระหว่างค่า Tcyc, กับค่า Tcyc พบว่าโดยส่วนใหญ่ชั้นวัสดุ Filter Material บริเวณที่ พิจารณามีค่าอัตราส่วนความปลอดภัยน้อยกว่า 1.0 แต่มีบางส่วนที่มีค่าอัตราส่วนความปลอดภัย มากกว่า 1.0 คือพื้นที่ด้านท้ายน้ำบริเวณฐานเงื่อน ดังแสดงในรูปที่ 4.28 และเมื่อพิจารณาถึงคลื่น แผ่นดินไหวที่ใช้ในการวิเคราะห์ ทั้ง 10 เหตุการณ์ และเหตุการณ์ Simulated Sadao (รายละเอียดดัง ตารางที่ 4.9) พบว่ากลื่นแผ่นดินไหวที่มีก่าอัตราเร่งสูงสุดของพื้นดิน (PGA) หรือ a_{max} สูงกว่า 0.4g จะมิโอกาสเกิด Liquefaction เป็นบางบริเวณเท่านั้น ขณะที่กลื่นแผ่นดินไหวที่มีก่าอัตราเร่งสูงสุด ของพื้นดิน (PGA) หรือ a_{max} ต่ำกว่า 0.4g จะไม่มิโอกาสเกิด Liquefaction เลย ซึ่งผลการวิเคราะห์ที่ ได้มีก่าสอดกล้องกับการวิเคราะห์ที่ใช้สมการ Empirical และเมื่อเปรียบเทียบก่าอัตราส่วนความ ปลอดภัยการเกิด Liquefaction จากการวิเคราะห์ทั้ง 2 วิธี โดยพิจารณาทุกคลื่นแผ่นดินไหว พบว่า ส่วนใหญ่การวิเคราะห์โดยใช้ผลการตอบสนองทางพลศาสตร์มีก่าอัตราส่วนความปลอดภัยน้อย กว่าการวิเคราะห์โดยการใช้สมการ Empirical

	เกิด Liq	uefaction	ไม่เกิด Liquefaction		
ทถนแผนทน เท ม	Zone	ช่วงของ FS	Zone	ช่วงของ FS	
1. Calexico (PGA = 0.19g)	_	_	1,2,3,4,5	1.324 - 3.696	
2. Chile (PGA = 0.64g)	1,2,3,4,5	0.505 - 0.901	5 (บางส่วน)	1.039 - 13.084	
3. Christchurch (PGA = $0.53g$)	1,2,3,4	0.630 - 0.983	3 (บางส่วน),5	1.002 - 8.655	
4. Haiti (PGA = 0.42g)	2 (บางส่วน)	0.904 - 0.960	1,2,3,4,5	1.000 - 6.341	
5. Hawaii (PGA = 0.72g)	1,2,3,4,5	0.360 - 0.942	5 (บางส่วน)	1.117 - 8.510	
6. Kobe $(PGA = 0.68g)$	1,2,4,5	0.425 - 0.998	3, 5 (บางส่วน)	1.000 - 2.526	
7. Loma Preita (PGA = 0.23g)	1	0.625 - 0.970	2,3,4,5	1.017 - 4.554	
8. Nisqually (PGA = $0.35g$)	-	_	1,2,3,4,5	1.299 - 4.450	
9. San Fernando (PGA = 1.07g)	1,2,3,4,5	0.387 - 0.924	5 (บางส่วน)	1.112 - 11.887	
10. Sumatra (PGA = 0.06g)	_	_	1,2,3,4,5	1.290 - 3.397	
11. Simulated Sadao (PGA = 0.03g)	-	-	1,2,34,5	1.501 - 3.429	

ตารางที่ 4.9 สรุปผลการวิเคราะห์การเกิด Liquefaction โดยใช้ผลการตอบสนองทางพลศาสตร์ใน การวิเคราะห์

ร**ูปที่ 4.28** บริเวณที่เกิดปรากฏการณ์ Liquefaction เมื่อได้รับแรงกระทำจากเหตุการณ์แผ่นดินไหว San Fernando, 1971 มีขนาด 6.6 ริกเตอร์ ณ เวลาที่มีค่าความเค้นเถือนสูงสุด 4.6 ผลการวิเคราะห์ขนาดและระยะจากจุดศูนย์กลางแผ่นดินใหวที่ส่งผลกระทบต่อตัวเขื่อน

จากผลการวิเคราะห์ Liquefaction ทั้ง 2 วิธี ได้พบว่าเกิดปรากฏการณ์ Liquefaction ในบาง บริเวณของชั้นวัสดุ Filter Material แต่เมื่อพิจารณาถึงสภาพความเป็นจริงแล้วโอกาสที่จะเกิดคลื่น แผ่นดินไหวที่มีขนาดความรุนแรงมากๆ เช่น มีขนาดเท่ากับคลื่นแผ่นดินไหว San Fernando, USA (1971) บริเวณฐานเชื่อนคลองสะเดาเป็นไปได้ยาก เนื่องจากบริเวณพื้นที่ศึกษามีค่าอัตราเร่งพื้นดิน เพียง 0.02g – 0.04g (Ornthammarath et al, 2010) และเมื่อพิจารณาถึงคลื่นแผ่นดินไหวที่เรียกว่า Simulated Sadao พบว่าไม่มีโอกาสเกิด Liquefaction เลยในการวิเคราะห์ทั้ง 2 วิธี นอกจากนี้รอย เลื่อนมีพลังที่อยู่ในบริเวณพื้นศึกษาหรือบริเวณภาคใต้ของประเทศไทย คือรอยเลื่อนระนอง และ รอยเลื่อนกลองมะรุ่ย ตั้งอยู่ห่างจากตัวเชื่อนคลองสะเดาประมาณ 430 กิโลเมตร และ 300 กิโลเมตร ตามลำดับ นั่นคือหากรอยเลื่อนดังกล่าวสามารถทำให้เกิดแผ่นดินไหวขึ้น คลื่นแผ่นดินไหวก็จะเกิด การลดทอนพลังงานลงตามระยะทาง

จากความสัมพันธ์ระหว่างค่าอัตราเร่งสูงสุดของพื้นดิน (Peak Ground Acceleration, PGA) กับระยะทางจากตำแหน่งสูนย์กลางแผ่นดินไหว โดยใช้แบบจำลองการลดทอนพลังงาน แผ่นดินไหว (Attenuation Model) ของ Etava and Villaverde (1973) พบว่า ค่าอัตราเร่งสูงสุดของ พื้นดิน (Peak Ground Acceleration, PGA) จะมีค่าลดลงตามระยะทางห่างจากจุดสูนย์กลาง แผ่นดินไหว ซึ่งจะมีค่าลดลงมากในช่วงประมาณ 20 กิโลเมตรแรก (เกรียงไกร, 2551) ดังแสดงใน รูปที่ 4.29 โดยขึ้นอยู่กับขนาดของแผ่นดินไหว และจากข้อมูลคลื่นแผ่นดินไหวที่นำมาวิเคราะห์ใน งานวิจัยนี้พบว่ามีค่าอัตราเร่งสูงสุดของพื้นดิน (Peak Ground Acceleration, PGA) ใต้ฐานเงื่อน กลองสะเดาสูงสุดประมาณ 1.07g

ขนาดและระยะห่างจากจุดศูนย์กลางแผ่นดินไหวที่ทำให้เกิดก่าอัตราเร่งสูงสุดของพื้นดิน (Peak Ground Acceleration, PGA) ต่างๆ บริเวณใต้ฐานเงื่อนสามารถสรุปได้ดังตารางที่ 4.10 โดย ก่า PGA ที่ 0.03g เป็นก่าอัตราเร่งพื้นดินบริเวณพื้นที่ศึกษาซึ่งกำหนดตามแผนที่เสี่ยงภัยแผ่นดินไหว ของประเทศไทยที่วิเคราะห์ โดย Ornthammarath et al (2010) ส่วน PGA ที่ 0.05g เป็นก่า Seismic Coefficient ที่ใช้ในการออกแบบเงื่อนคลองสะเดาโดยวิธี Pseudostatic ส่วน PGA ที่ 0.4g เป็นก่า PGA ที่ตัวเงื่อนคลองกลองสะเดาเริ่มมีพฤติกรรมตอบสนองทางพลศาสตร์ สำหรับ PGA ที่ 0.68g เป็นก่า PGA ของกลื่นแผ่นดินไหว Kobe, Japan (1995) ซึ่งตัวเงื่อนกลองสะเดามีพฤติกรรมการ ตอบสนองทางพลศาสตร์มากที่สุดจากการวิเคราะห์ที่ผ่านมา และ PGA ที่ 1.07g เป็นก่าอัตราเร่ง พื้นดินที่สูงสุดที่ใช้ในการศึกษาครั้งนี้

รูปที่ 4.29 ผลการวิเคราะห์การลดทอนพลังงานของแผ่นดินไหว (Attenuation Model) ของ Etava and Villaverde (1973) (เกรียงไกร, 2551)

ขนาด	ระยะห่างจากจุดศูนย์กลางแผ่นดินใหวที่ทำให้เกิดค่าอัตราเร่งพื้นดินต่างๆ						
แผ่นดินไหว	บริเวณใต้ฐานเขื่อน (กิโลเมตร)						
(ริกเตอร์)	PGA 0.03g	g PGA 0.05g PGA 0.4g PGA 0.68g PGA 1.0					
6.0	150	80	2	ไม่มีโอกาสเกิด	ไม่มีโอกาสเกิด		
6.5	180	110	10	ไม่มีโอกาสเกิด	ไม่มีโอกาสเกิด		
7.0	250	145	23	9	ไม่มีโอกาสเกิด		
7.5	300	185	36	19	6		
8.0	ນາ <mark>กกว่า 3</mark> 00	235	53	32	18		
8.5	ນາ <mark>กกว่า 3</mark> 00	300	73	48	30		
9.0	ນາ <mark>กกว่า 3</mark> 00	ນາ <mark>กกว่า 3</mark> 00	89	68	44		

ตารางที่ 4.10 ขนาดและระยะจากจุดศูนย์กลางแผ่นดินไหวที่ทำให้เกิดค่าอัตราเร่งพื้นดินต่างๆ บริเวณใต้ฐานเงื่อน (ดัดแปลงจากเกรียงไกร, 2551)

ผลการวิเกราะห์พบว่า บริเวณฐานเงื่อนกลองสะเดาจะมีก่าอัตราเร่งสูงสุดของพื้นดิน ประมาณ 0.4g ได้ก็ต่อเมื่อเกิดเหตุการณ์แผ่นดินไหวที่มีขนาดมากกว่าหรือเท่ากับ 6.0 ริกเตอร์ และ จุดศูนย์กลางแผ่นดินไหวดังกล่าวต้องอยู่ห่างจากตัวเงื่อนกลองสะเดาประมาณ 2 กิโลเมตร ซึ่งใน รัศมีดังกล่าวจากตัวเงื่อนกลองสะเดาในอดีตไม่เกยมีเหตุการณ์แผ่นดินไหวเกิดขึ้น และรอยเลื่อนมี พลังที่อยู่ใกล้กับตัวเงื่อนมากที่สุดคือรอยเลื่อนกลองมะรุ่ย ซึ่งอยู่ห่างจากตัวเงื่อนกลองสะเดา ประมาณ 300 กิโลเมตร และในขณะเดียวเหตุการณ์แผ่นดินไหวที่เกยเกิดขึ้นในอดีตที่มีจุด ศูนย์กลางอยู่ใกล้กับตัวเงื่อนกลองสะเดามากที่สุด คือ บริเวณหมู่เกาะสุมาตรา ประเทศอินโดนีเซีย ซึ่งมีจุดศูนย์กลางห่างจากตัวเงื่อนกลองสะเดาประมาณ 320 กิโลเมตร และมีก่าอัตราเร่งพื้นดิน ณ ตำแหน่งเกิดแผ่นดินไหวประมาณ 0.005g (กรมชลประทาน, 2532) ดังนั้นเงื่อนกลองสะเดาจะยังกง มีความมั่นกงปลอดภัย แม้จะได้รับแรงกระทำแผ่นดินไหวงนาดต่างๆ มากระทำก็ตาม เนื่องจากผล ของการลดทอนพลังงานแผ่นดินไหวดังที่กล่าวมาแล้วข้างต้น

บทที่ 5

สรุปผลการวิจัย และข้อเสนอแนะ

5.1 สรุปผลการวิจัย

การประเมินเสถียรภาพทางสถิตยศาสตร์และพลศาสตร์ของเชื่อนดิน กรณีศึกษาเขื่อนคลอง สะเดา ผลการศึกษาสามารถสรุปได้ดังต่อไปนี้

 ข้อมูลแผ่นดินไหวที่ใช้ในการวิเคราะห์ทั้ง 10 เหตุการณ์ และอีก 1 เหตุการณ์ จากการ ปรับลดค่าอัตราเร่งของพื้นดินของคลื่นแผ่นดินไหว Sumatra, Indonesia (2007) ให้มีค่าเท่ากับ 0.03g ซึ่งเป็นก่าอัตราเร่งสูงสุดของพื้นดิน (PGA) ของพื้นที่ศึกษา เรียกว่า Simulated Sadao รวม ทั้งสิ้น 11 ข้อมูล มีค่าอัตราเร่งสูงสุดของพื้นดิน (PGA) ตั้งแต่ 0.03g – 1.07g โดยคลื่นแผ่นดินไหวที่ เรียกว่า Simulated Sadao และคลื่นแผ่นดินไหว San Fernando, USA (1971) เป็นคลื่นแผ่นดินไหวที่ มีค่าอัตราเร่งของพื้นดินต่ำสุดและสูงสุด ตามลำดับ และค่า Predominant Period ของคลื่น แผ่นดินไหวที่ใช้ในการวิเคราะห์ โดยส่วนใหญ่มีค่าอยู่ในช่วง 0.1 – 0.45 วินาที ยกเว้นคลื่น แผ่นดินไหว Haiti และ Nisqually ที่มีก่า Predominant Period สูงกว่าคลื่นแผ่นดินไหวอื่นๆ คือ 0.84 และ 2.46 วินาที ตามลำดับ

2. การวิเคราะห์เสถียรภาพของลาดชันเชื่อนคลองสะเคาทางสถิตยศาสตร์ โดยใช้ทฤษฎี Limit Equilibrium ด้วยวิธี Simplified Bishop's Method พบว่าลาดชันเชื่อนทางด้านเหนือน้ำ มีค่า อัตราส่วนความปลอดภัยอยู่ในช่วง 2.255 – 2.673 ซึ่งกรณีที่ระดับน้ำเก็บกักต่ำสุด มีค่าอัตราส่วน ความปลอดภัยน้อยที่สุด ในขณะที่ลาดชันเชื่อนทางด้านท้ายน้ำมีค่าอัตราส่วนความปลอดภัยอยู่ ในช่วง 1.637 – 1.673 ซึ่งกรณีที่ระดับน้ำเก็บกักสูงสุด และกรณีระดับน้ำเก็บกักปกติ มีค่าอัตราส่วน ความปลอดภัยน้อยที่สุด และเมื่อพิจารณาถึงการลดระดับเก็บกักน้ำอย่างรวดเร็ว พบว่าลาดชันเชื่อน ด้านเหนือน้ำมีค่าอัตราส่วนความปลอดภัยเท่ากับ 1.925 ในกรณีที่พิจารณา Upstream filter และมีค่า อัตราส่วนความปลอดภัยเท่ากับ 1.212 ในกรณีที่ไม่พิจารณา Upstream filter โดยเมื่อระดับน้ำลดลง (Drawdown) จากที่ระดับเก็บกักปกติ (+68.00 เมตร รทก.) ลงมาถึงที่ระดับเก็บกักต่ำสุด (+52.00 เมตร รทก.) 3. การวิเคราะห์คาบธรรมชาติของตัวเขื่อนคลองสะเดาได้ใช้วิธีผลการตอบสนองทาง พลศาสตร์เป็นหลัก เนื่องจากการวิเคราะห์ด้วยวิธีของ Gazetas and Dakoulus (1991) พบว่ามี ก่าประมาณ 0.478 วินาที ซึ่งเป็นก่าที่ได้จากชั้นวัสดุต่างๆ ของตัวเขื่อนมาเฉลี่ยกัน ดังนั้นวิธีผลการ ตอบสนองทางพลศาสตร์จึงเหมาะสมที่สุดเมื่อเปรียบเทียบกับ 2 วิธีดังกล่าว โดยผลการวิเคราะห์ก่า กาบธรรมชาติที่มีผลกระทบกับตัวเขื่อนคลองสะเดามีก่าอยู่ในช่วง 0.2 – 0.4 วินาที เมื่อพิจารณาก่าที่ มีผลกระทบกับตัวเขื่อนคลองสะเดามากที่สุด คือ 0.3 วินาที

 ค่าโมดูลัสเฉือนสูงสุดของวัสดุถมเขื่อนคลองสะเดา ซึ่งวิเคราะห์โดยใช้ความสัมพันธ์ ระหว่างค่าโมดูลัสแรงเฉือนสูงสุดกับค่า Standard penetration resistance (SPT-N) พบว่าในชั้นวัสดุ
 Filter material มีค่าโมดูลัสเฉือนสูงสุด มากที่สุดคือ 89,200.38 กิโลนิวตันต่อตารางเมตร ชั้นวัสดุ
 Impervious zone มีค่าโมดูลัสเฉือนสูงสุด น้อยที่สุดคือ 80,365.72 กิโลนิวตันต่อตารางเมตร และชั้น
 วัสดุ Random material มีค่าโมดูลัสเฉือนสูงสุดเท่ากับ 81,962.67 กิโลนิวตันต่อตารางเมตร

 5. ค่าความเร็วคลื่นเฉือนของวัสดุถมเขื่อนคลองสะเดา ซึ่งวิเคราะห์โดยใช้ความสัมพันธ์ จากทฤษฎี Elastic Continuum Mechanics พบว่ามีค่าใกล้เคียงกันในชั้นวัสดุทั้ง 3 ชนิด โดยที่ชั้น วัสดุ Random Material มีค่าความเร็วคลื่นเฉือนน้อยที่สุดเท่ากับ 193.14 เมตรต่อวินาที และชั้นวัสดุ Filter Material มีค่าความเร็วคลื่นเฉือนมากที่สุดเท่ากับ 205.61 เมตรต่อวินาที และชั้นวัสดุ Impervious zone มีค่าความเร็วคลื่นเฉือนเท่ากับ 204.59 เมตรต่อวินาที

6. การเคลื่อนตัวในแนวราบของวัสดุถมเชื่อนเนื่องจากแรงแผ่นดินไหว มีการเปลี่ยนแปลง ตามความสูงของตัวเชื่อน โดยมีค่าเพิ่มขึ้นตามระดับความสูงของตัวเชื่อน โดยเฉพาะที่ระดับความ สูง +45.00 เมตร รทก. พบว่าเป็นจุดที่มีการเคลื่อนตัวเพิ่มขึ้นอย่างชัดเจน จากนั้นการเคลื่อนตัวเริ่ม จะมีค่าลดลงที่ระดับความสูงประมาณ +70.00 เมตร รทก. โดยค่าการเคลื่อนตัวในแนวราบมีค่ามาก ที่สุดประมาณ 0.064 เมตร เมื่อได้รับแรงกระทำแผ่นดินไหวจากเหตุการณ์ Hawaii, USA (2010) สำหรับค่าอัตราเร่งในแนวราบของวัสดุถมเชื่อน พบว่ามีค่าเพิ่มขึ้นตามความสูงของตัวเชื่อนเช่นกัน โดยมีค่ามากที่สุดประมาณ 32.5 m/s² เมื่อได้รับแรงกระทำแผ่นดินไหวจากเหตุการณ์ Hawaii, USA (2010)

7. ในบริเวณต่างๆ ของชั้นวัสคุถมเบื่อนคลองสะเคามีการขยายขนาดค่าอัตราเร่งใน แนวราบของคลื่นแผ่นดินไหวแตกต่างกันตามแรงแผ่นดินไหวที่มากระทำ โดยส่วนใหญ่มีก่า อัตราส่วนขยายประมาณ 1.00 – 4.00 เท่า เมื่อเทียบกับอัตราเร่งที่บริเวณฐานเขื่อน ซึ่งคลื่น แผ่นดินไหว Hawaii, USA (2010) มีค่าอัตราส่วนขยายมากที่สุดที่บริเวณสันเขื่อนเท่ากับ 4.60 เท่า ทั้งนี้เนื่องจากคลื่นแผ่นดินไหว Hawaii, USA (2010) มีค่า Predominant Period เท่ากับ 0.28 วินาที ซึ่งใกล้เคียงกับค่าคาบธรรมชาติของตัวเขื่อน จึงทำให้มีโอกาสเกิดลักษณะที่ใกล้เคียงกับการสั่น พ้องเกิดขึ้น ซึ่งทำให้เกิดการขยายขนาดของคลื่นแผ่นดินไหว นอกจากนี้คลื่นแผ่นดินไหว Kobe, Japan (1995) มีค่าอัตราส่วนขยายที่บริเวณสันเขื่อนเท่ากับ 3.72 เท่า มีโอกาสเกิดลักษณะที่ใกล้เคียงกับค่าคาบ ธรรมชาติของตัวเขื่อนกลองสะเดาเช่นกัน

8. เมื่อพิจารณาถึงการเปลี่ยนแปลงของระดับน้ำในอ่างเก็บน้ำ ซึ่งทำให้แรงดันน้ำในตัว เงื่อนเปลี่ยนแปลงไป ส่งผลให้สภาพความเค้นเปลี่ยนแปลงไปด้วย กล่าวคือ เมื่อระดับน้ำลดลงจะ ส่งผลให้แรงดันประสิทธิผลของวัสดุถมเงื่อนมีค่าเพิ่มขึ้น เนื่องจากแรงดันน้ำในตัวเงื่อนลดลง นอกจากนี้พฤติกรรมการตอบสนองทางพลศาสตร์ของตัวเงื่อนก็มีการเปลี่ยนแปลงตามระดับเก็บ กักน้ำโดย พบว่าเมื่อระดับเก็บกักน้ำอยู่ที่ระดับปกติ (+68.00 เมตร รทก.) จะมีค่าการเคลื่อนตัวใน แนวราบ และค่าอัตราเร่งในแนวราบมากที่สุด เมื่อพิจารณาในทุกๆ บริเวณของวัสดุถมเงื่อนคลอง สะเดา

9. การเปลี่ยนรูปถาวรของลาดชันเชื่อน ได้กำหนดระนาบการพิบัติที่วิกฤติที่สุด (Critical slip surface) ที่วิเคราะห์ได้จากการวิเคราะห์เสถียรภาพของลาดชันเชื่อนทางสถิตยศาสตร์ ด้วยวิธี Limit equilibrium จำนวน 4 ระนาบ ทั้งทางด้านเหนือน้ำ และด้านท้ายน้ำ โดยพิจารณาที่ระดับเก็บ กักน้ำอยู่ที่ระดับต่างๆ พบว่าที่ระดับเก็บกักน้ำปกติมีค่าการเคลื่อนตัวสูงที่สุด และที่ระดับเก็บกักน้ำ จำสุดมีค่าการเคลื่อนตัวน้อยที่สุด ซึ่งการเคลื่อนตัวของลาดชันเชื่อนจะมีทิศทางในแนวขนานกับ ระนาบการพิบัติที่มีโอกาสเกิดการพิบัติ

 10. ผลการวิเคราะห์การเปลี่ยนรูปถาวรของลาดชันเขื่อนด้วยวิธี Newmark's Deformation Analysis พบว่าลาดชันเขื่อนด้านเหนือน้ำมีการเคลื่อนตัวมากที่สุดประมาณ 0.643 เมตร เมื่อได้รับ แรงกระทำจากเหตุการณ์แผ่นดินไหว Hawaii, USA (2010) ในขณะที่ลาดชันเขื่อนด้านท้ายน้ำมีการ เคลื่อนตัวมากที่สุดประมาณ 0.212 เมตร เมื่อได้รับแรงกระทำจากเหตุการณ์แผ่นดินไหว Kobe, Japan (1995) ทั้งนี้ยังพบอีกว่าคลื่นแผ่นดินไหวที่มีก่าอัตราเร่งของพื้นดินต่ำกว่า 0.4g จะไม่ทำให้ ตัวเขื่อนคลองสะเดาเกิดการเปลี่ยนรูปถาวรของลาดชันเขื่อนทั้งทางด้านเหนือน้ำ และทางด้านท้าย น้ำ และเมื่อพิจารณาถึงค่า Yield Acceleration (ky) พบว่ามีแนวโน้มเพิ่มมากขึ้น เมื่อระดับเก็บกักน้ำ ในตัวเชื่อนลดลง

11. ผลการวิเคราะห์ Liquefaction ในชั้นวัสดุ Filter Material ทางด้านท้ายน้ำด้วยวิธีที่เสนอ โดย Seed and Idriss (1971) โดยใช้สมการ Empirical และใช้ผลการตอบสนองทางพลศาสตร์ ซึ่ง พิจารณาตามความลึกจากสันเบื่อนจนถึงบริเวณฐานเบื่อน พบว่าในบริเวณดังกล่าวมีโอกาสเกิด Liquefaction เป็นบางส่วน เมื่อได้รับแรงกระทำจากเหตุการณ์แผ่นดินไหวที่ใช้ในการวิเคราะห์ โดย พบว่ากลื่นแผ่นดินไหวที่มีก่าอัตราเร่งของพื้นดิน (PGA) ต่ำกว่า 0.4g จะไม่เกิด Liquefaction

12. แบบจำลองการลดทอนพลังงาน (Attenuation Model) ของคลื่นแผ่นดินไหวที่เสนอ โดย Esteva and Villaverde (1973) พบว่าแผ่นดินไหวที่ทำให้เกิดก่าอัตราเร่งสูงสุดของพื้นดิน บริเวณใต้ฐานเงื่อนกลองสะเดามากกว่าหรือเท่ากับ 0.4g จะต้องมีขนาดตั้งแต่ 6.0 ริกเตอร์ขึ้นไป และจุดศูนย์กลางแผ่นดินไหวต้องมีระยะห่างจากตัวเงื่อนกลองสะเดาไม่เกิน 2.0 กิโลเมตร จึงจะทำ ให้มีก่าอัตราเร่งพื้นดินที่บริเวณฐานเงื่อนเท่ากับ 0.4g ซึ่งโอกาสที่จะเกิดแผ่นดินไหวดังกล่าว เป็นไปได้ยาก

13. ผลการประเมินเสถียรภาพทางสถิตยศาสตร์และพลศาสตร์ของเชื่อนคลองสะเดา สามารถสรุปได้ว่า ตัวเชื่อนคลองสะเดามีความมั่นคงปลอดภัยต่อการพิบัติทั้งในสภาวะปกติ และ สภาวะได้รับแรงกระทำแผ่นดินไหวขนาดต่างๆ ถึงแม้ว่าในชั้นวัสดุ Filter Material ทางด้านท้ายน้ำ จะมีโอกาสเกิด Liquefaction เป็นบางส่วนก็ตาม ทั้งนี้เมื่อพิจารณาถึงสภาพความเป็นจริงแล้ว โอกาสที่จะเกิดแรงสั่นสะเทือนอย่างรุนแรงบริเวณใด้ฐานเชื่อนคลองสะเดาเป็นไปได้ยาก เนื่องจาก รอยเลื่อนมีพลังที่อยู่ในบริเวณพื้นที่ศึกษาตั้งอยู่ห่างจากตัวเชื่อนคลองสะเดามากกว่า 300 กิโลเมตร นอกจากนี้จากการศึกษาของ Ornthammarath (2010) ได้ระบุว่าค่าอัตราเร่งของพื้นดินบริเวณพื้นที่ ศึกษามีก่าเพียง 0.02g – 0.04g เท่านั้น

5.2 ข้อเสนอแนะ

 ควรมีการศึกษาและวิเคราะห์ค่าความเร็วคลื่นเฉือน ที่สามารถวัดค่าได้จริงในสนาม หรือวัดได้ที่ตัวเงื่อน เพราะจะทำให้ได้ค่าโมดูลัสแรงเฉือนสูงสุดที่แท้จริง แทนการวิเคราะห์ค่า ดังกล่าวด้วยสมการ Empirical และจะทำให้ทราบถึงพฤติกรรมของตัวเงื่อนได้ถูกต้องยิ่งขึ้น

 ควรมีการประเมินสภาพในปัจจุบันของตัวเชื่อน รวมถึงความเสี่ยงที่จะเกิดการพิบัติของ ตัวเงื่อน โดยใช้วิธีดัชนีความเสี่ยงมาประเมิน เนื่องจากสามารถทำได้โดยไม่มีความยุ่งยาก และยัง ทำให้ทราบถึงค่าความเสี่ยงของตัวเงื่อนที่จะเกิดการพิบัติ ซึ่งจะทำให้ชาวบ้านที่อาศัยอยู่ทางด้าน ท้ายเงื่อนไม่มีความกังวถถึงตัวเงื่อนว่าจะเกิดการพิบัติหรือไม่

บรรณานุกรม

เกรียงใกร แทนสุโพธิ์. 2551. การวิเคราะห์ความปลอดภัยของเชื่อนดินและหินถมต่อแรงกระทำ แผ่นดินใหวโดยวิธีการตอบสนองทางพลศาสตร์. ปริญญาวิทยานิพนธ์. มหาวิทยาลัยเกษตรศาสตร์ ชลประทาน, กรม. 2532. รายงานการออกแบบเขื่อนคลองสะเดา ทรัพยากรธรณี, กรม. 2548. แผนที่เสี่ยงภัยแผ่นดินไหว ทรัพยากรธรณี, กรม. 2549. แผนที่รอยเลื่อนมีพลังในประเทศไทย ทรัพยากรธรณี, กรม. 2550. แผนที่ธรณีวิทยาจังหวัดสงขลา บุญชัย อุกฤษฎชน และ ธวัชชัย สังขะวิไล. การวิเคราะห์โอกาสการเกิด Liquefaction สำหรับชั้น ทรายกรุงเทพฯ ชั้นแรก. บทความทางวิชาการ บุรินทร์ เวชบันเทิง. 2550. ความรู้พื้นฐานทั่วไปเกี่ยวกับแผ่นดินไหว. และ ภัยแผ่นดินไหวใน ประเทศไทยและการเตรียมพร้อมรับมือ. เอกสารเผยแพร่ทางวิชาการ ้โยธาธิการและผังเมือง, กรม. 2540. กฎกระทรวงฉบับที่ 49 (พ.ศ.2540) ออกตามพระราชบัญญัติ ควบคุมอาคาร พ.ศ. 2522 วิชาการ.คอม. 2548. แผ่นดินใหวและการเกิด Tsunami. [Online] Available: http://www.vchakarn.com/vcafe/26373 [2554, ธันวาคม 13] ้สำนักชลประทานที่ 16 จ.สงขลา กรมชลประทาน รายงานการส่งมอบและรับมอบโครงการอ่างเก็บ น้ำคลองสะเดา สุทธิศักดิ์ ศรลัมพ์ และเกรียงใกร แทนสุโพธิ์. 2550. การวิเคราะห์พฤติกรรมการตอบสนองทาง พลศาสตร์ของเขื่อนศรีนครินทร์ต่อแรงกระทำแผ่นดินไหว. บทความทางวิชาการ. สุทธิศักดิ์ ศรลัมพ์. 2550. **แผ่นดินไหวกับเขื่อน.** โครงการอบรม เรื่องความปลอคภัยเขื่อนในสภาวะ ปกติและสภาวะอันตราย. กรุงเทพฯ สุทธิศักดิ์ ศรลัมพ์ และชิโนรส ทองธรรมชาติ. 2550. การวิเคราะห์การใหลซึมเมื่อเกิดการรั่วผ่าน รอยแตกตามขวางของตัวเขื่อน. บทความทางวิชาการ ้สุมาลี ประจวบ และบุรินทร์ เวชบันเทิง. 2549. ชุดโครงการลดภัยพิบัติจากแผ่นดินใหวในประเทศ ไทย (ระยะที่ 1).

อดิศร ฟุ้งบจร. 2549. **การตรวจสอบรอยเลื่อนมีพลังในประเทศไทย.** เอกสารเผยแพร่ทางวิชาการ

- Abramson, L.W., Lee, T.S., Sharma, S., and Boyce, G.M., 1995. Slope Stability and Stabilization Methods. Wiley Interscience. ISBN 0-471-10622-4
- Andrus, R.D., Stokoe, K.H.II, 2000. Liquefaction resistance of soils from shear-wave velocity. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 126(11): 1015-1025.
- Center for Engineering Strong Motion Data, CESMD. Raw data of ground motion of significant earthquakes using in analysis.
- Chakraborty, D. and Choudhury, D.. 2009. Investigation of the Behavior of Tailings Earthen
 Dam Under Seismic Conditions. American J. of Engineering and Applied Sciences 2
 (3): 559-564 ISSN 1941-7020.
- Corps of Engineers. 1982. Slope Stability Manual EM-1110-2-1902. Washington, D. C.: Department of the Army, Office of the Chief of Engineers.
- Das, B.M., 1993. Principals of Soil Dynamics. PWS-KENT Publishing Company, Boston
- Das, B.M., 1994. Principles of geotechnical engineering. Southern Illinois University at Carbondale, USA.
- Esteva, L. and R. Villaverde., 1973. Seismic risk, design spectra and structural reliability. Proceedings of 5th World Conference on Earthquake Engineering, June 25-29, 2586-2596, Rome, Italy.
- Fenton, C.H., Charusiri, P., Wood, S.H., 2003. Recent paleoseismic investigations in northern and western Thailand. Anna Geophys 46:957-981
- Gazetas, P., Dakoulas, P., 1991. Seismic analysis and design of Rockfill dams. Soil Dyn. Earthqu. Eng. 11, 27–61.
- Gui, M. and Chiu, H., 2009. Seismic Response of Renyitan Earth-Fill Dam. Journal of GeoEngineering, Vol.4, No.2, pp.41-50, August 2009
- Hardin, B.O. and V.P. Drnevich. 1972 Shear modulus and damping in soils: measurement and parameter effects. Soil Mechanics and Foundations Division ASCE (98(SM7)):667-692.
- Hardin, B.O. and W.L. Black. 1968. Vibration modulus of normally consolidated clay. Soil Mechanics and Foundations Division ASCE (94(SM2)):353-369.
- Hunter, G., and Fell, R., 2003. Rockfill Modulus and Settlement of Concrete Face RockfillDams. J. Geotech.Geoenv.Engrg., ASCE,129(10), pp. 909-917.

- Hynes-Griffin, M. E. and A. G. Franklin, 1984. Rationalizing the Seismic Coefficient Method, Miscellaneous Paper G. L. 84-13, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi.
- ICOLD 1983. Working Group on Guidelines for the Seismic Assessment of Dam. Final Report. Co-ordinator: N.Reilly, United Kingdom.
- Ishabashi, I. and Zhang, X. 1993. Unified dynamic shear moduli and damping ratios of sand and clay, Soil and Foundations. Vol. 3, pp. 321-376.
- Kramer, S.L. 1996. Geotechnical earthquake engineering, pp.280 291.1 ed. Prentice Hall, New Jersey.
- Kranh, J. 2004. Dynamic modeling with SLOPE/W an engineering methodology. Geo-studio International, Canada
- Lefebvre, G. and Duncan, J.M. 1971. Three-dimensional finite element analyses of dams. College of Engineering, Office of Research Service, University of California. TC540. L47
- Marcuson, W.F. and Franklin, A.G., 1983. Evalution and use of residual strength in seismic safety analysis of embankment. Earthquake Spectra 6 (3): 529-572
- National Strong Motion Program, NSMP. Raw data of ground motion of significant earthquakes using in analysis.
- Newmark, N.M. 1965. Effect of earthquake on dams and embankments. Geotechnique 15(2):139-160
- Olsen, R.S. 1999. Field Reconnaissance Effort to Document The Effect of the Taiwan Magnitude 7.3 Chi Chi Earthquake. U.S. Army Corps of Engineer.
- Ornthammarath, T., Sigbjornsson, R., Warnitchai, P., Worakanchana, K., Zaman, S. and Lai, C.G. 2010. **Probabilistic seismic hazard assessment for Thailand**. Bull Earthquake Eng. Springer Science+Business Media B.V. 2010.
- Peck, R.B., Hanson. W.E., Thornburn, T.H., 1953. Foundation Engineering. 2nd Edition. New York: J. Wiley & Sons.
- Seed, H. B., and Idriss, I. M. 1971. Simplified procedure for evaluating soil liquefaction potential. Journal of Geotechnical Engineering, ASCE, Vol. 97, No. 9, pp1249-1273.

- Seed, H.B. and Idriss, I.M., 1983. Ground motion and soil liquefaction during earthquakes. 1ed. Earthquake Engineering Research Institute, Berkelry California.
- Seed, H.B., 1979. Considerations in the earthquake-resistance design of earth and rockfill dams. Geotechinque 29 (3): 215-263.
- Seed, H.B., Wong ,R.T., Idriss, I.M., and Tokimatsu, K. 1986. Moduli and damping Factors for Dynamic Analyses of Cohesive Soils. Journal of Geotechnical Engineering, ASCE, Vol. 112, No. GT11, pp. 1016-1032.
- Singh, R., Roy, D. and Das, D., 2007. A correlation for permanent earthquake-induced deformation of earth embankment. Journal of Engineering Geology 90 (2007) 174-185
- Singh, R., Roy, D., and Jain, S.K., 2005. Analysis of earth dams affected by the 2001 Bhuj Earthquake. Journal of Engineering Geology 80 (2005) 282-291
- Siyah, B. and Arslan, H. 2008. Earthquake induced deformation of earth dams. Bull Eng Geol Environ 67:397-403 DOI 10.1007/s10064-008-0150-5
- Tsuchida, H. 1970. Prediction and countermeasure against the liquefaction in sand deposits. 33.
- U.S. Geological Survey. 2008. Location of Earthquakes in Thailand from 1973 to 2008.
- U.S. Navy. 1971. Correlations between the effective friction angle in triaxial compression and the dry density, relative density, and soil classification.
- Vucetic, M. and R. Dobry. 1991. Effect of soil plasticity on cyclic response. Geotechnical Engineering ASCE 117 (1): 89-107.
- Wang, W. (1979) "Some Findings in Soil Liquefaction" Report Water Conservancy and Hydroelectric Power Scientific Research Institute, Beijing, China, 1-17

ภาคผนวก

ภาคผนวก ก. ผลการวิเคราะห์การหาคาบธรรมชาติของตัวเขื่อนคลองสะเดา โดยวิธีผลการตอบสนองทางพลศาสตร์

ร**ูปที่ ก-1** ความสัมพันธ์ระหว่างระยะการเคลื่อนตัวในแนวราบตามระดับความสูงเขื่อนบริเวณชั้น วัสคุทึบน้ำกับก่าคาบเวลาต่างๆ ของข้อมูลอัตราเร่งพื้นดินที่มี PGA = 0.1g

ร**ูปที่ ก-2** ความสัมพันธ์ระหว่างระยะการเกลื่อนตัวในแนวราบตามระคับความสูงเงื่อนบริเวณชั้น วัสดุทึบน้ำกับก่ากาบเวลาต่างๆ ของข้อมูลอัตราเร่งพื้นดินที่มี PGA = 0.2g

ร**ูปที่ ก-3** ความสัมพันธ์ระหว่างระยะการเคลื่อนตัวในแนวราบตามระดับความสูงเงื่อนบริเวณชั้น วัสดุทึบน้ำกับค่าคาบเวลาต่างๆ ของข้อมูลอัตราเร่งพื้นดินที่มี PGA = 0.3g

ร**ูปที่ ก-4** ความสัมพันธ์ระหว่างระยะการเคลื่อนตัวในแนวราบตามระคับความสูงเงื่อนบริเวณชั้น วัสดุทึบน้ำกับก่าคาบเวลาต่างๆ ของข้อมูลอัตราเร่งพื้นดินที่มี PGA = 0.4g

ร**ูปที่ ก-ร** ความสัมพันธ์ระหว่างระยะการเคลื่อนตัวในแนวราบตามระคับความสูงเงื่อนบริเวณชั้น วัสดุทึบน้ำกับก่าคาบเวลาต่างๆ ของข้อมูลอัตราเร่งพื้นดินที่มี PGA = 0.5g

ร**ูปที่ ก-6** ความสัมพันธ์ระหว่างระยะการเคลื่อนตัวในแนวราบตามระคับความสูงเงื่อนบริเวณชั้น วัสดุทึบน้ำกับก่าคาบเวลาต่างๆ ของข้อมูลอัตราเร่งพื้นดินที่มี PGA = 0.6g

ร**ูปที่ ก-7** ความสัมพันธ์ระหว่างระยะการเคลื่อนตัวในแนวราบตามระคับความสูงเงื่อนบริเวณชั้น วัสดุทึบน้ำกับก่ากาบเวลาต่างๆ ของข้อมูลอัตราเร่งพื้นดินที่มี PGA = 0.7g

ร**ูปที่ ก-8** ความสัมพันธ์ระหว่างระยะการเคลื่อนตัวในแนวราบตามระคับความสูงเงื่อนบริเวณชั้น วัสดุทึบน้ำกับก่าคาบเวลาต่างๆ ของข้อมูลอัตราเร่งพื้นดินที่มี PGA = 0.8g

ร**ูปที่ ก-9** ความสัมพันธ์ระหว่างระยะการเคลื่อนตัวในแนวราบตามระดับความสูงเงื่อนบริเวณชั้น วัสดุทึบน้ำกับค่าคาบเวลาต่างๆ ของข้อมูลอัตราเร่งพื้นดินที่มี PGA = 0.9g

ร**ูปที่ ก-10** ความสัมพันธ์ระหว่างระยะการเคลื่อนตัวในแนวราบตามระคับความสูงเงื่อนบริเวณชั้น วัสดุทึบน้ำกับค่าคาบเวลาต่างๆ ของข้อมูลอัตราเร่งพื้นดินที่มี PGA = 1.0g

ภาคผนวก ข.

วิชีการคำนวณค่าโมดูลัสแรงเฉือนสูงสุด และค่าความเร็วคลื่นเฉือน

การกำนวณหาก่าโมดูลัสแรงเฉือนสูงสุด (Maximum shear modulus) ได้กำนวณโดยใช้ สมการที่ 2.14 ซึ่งเสนอโดย Seed et al (1986) และก่าความเร็วกลื่นเฉือน (Shear wave velocity) กำนวณได้จากสมการ 2.17 โดยใช้กวามสัมพันธ์จากทฤษฎี Elastic Continuum Mechanics ซึ่ง รายละเอียดในการกำนวณได้แบ่งตามชั้นวัสดุต่างๆ ของเบื่อนกลองสะเดา ดังนี้

1) ชั้นวัสคุทึบน้ำแกนเบื่อน (Impervious Earth Material)

ชั้นวัสดุทึบน้ำแกนเงื่อนของเงื่อนคลองสะเดา ส่วนใหญ่เป็นดินเหนียว และมีคุณสมบัติที่ ด้องใช้ในการคำนวณ ได้แก่ ค่ามุมเสียดทานภายใน (Internal friction angle, φ) เท่ากับ 13° ค่าแรง ยึดเหนี่ยวระหว่างเม็ดดิน (Cohesion, c) เท่ากับ 4.6 t/m² และค่าความหนาแน่นเปียก (Saturated density, γ_{su}) เท่ากับ 18.83 kN/m³

1.1) ค่าโมดูลัสแรงเฉือนสูงสุด

$$G_{\rm max} \approx 35 \times 1000 N_{60}^{0.34} (\sigma_0^{'})^{0.4}$$
 (lb/ft²)

ประมาณค่า SPT-N จาก $c = Su = \frac{N}{1.5}$, $\therefore N = 1.5 \times 4.6 = 6.9$ blows/ft นำค่า SPT-N ที่ได้ มาปรับแก้เป็นค่า N₆₀ ได้เท่ากับ 6.9

คำนวณหาค่า
$$\sigma_0 = \frac{\overline{\sigma_V}}{3} (3 - 2\sin\phi)$$
 (lb/ft²)

$$\therefore \overline{\sigma_V} = \gamma h = \left(18.83 \frac{kN}{m^3} - 9.806 \frac{kN}{m^3}\right) (19.25m)$$

$$\therefore \overline{\sigma_V} = 173.72 \frac{kN}{m^2} = 3,627.98 \frac{lb}{ft^2}$$

$$\therefore \sigma_0' = \frac{3,627.98}{3} (3 - 2\sin 13^\circ) = 3,083.89 \frac{lb}{ft^2}$$

$$\therefore G_{\text{max}} = (35)(1,000)(6.9)^{0.34}(3,083.89)^{0.4}$$
$$\therefore G_{\text{max}} = 1,678,482.023 lb/ft^2 = 80,365.72 kN/m^2$$

1.2) ก่ากวามเร็วกลื่นเฉือน

$$G_{\text{max}} = \rho V_s^2 \qquad \text{(kPa)}$$
$$\therefore V_s = \sqrt{\frac{G_{\text{max}}}{\rho}} = \sqrt{\frac{80,365.72 \times 1,000 \frac{N}{m^2}}{1,920 \frac{kg}{m^3}}} = 204.59 \, m/s$$

$$\therefore G_{\text{max}} = 80,365.72 kPa$$
 $V_s = 204.59 m/s$

2) ชั้นวัสคุกรอง (Filter Material)

ชั้นวัสดุกรองของเขื่อนคลองสะเดา ส่วนใหญ่เป็นทราย ซึ่งมีคุณสมบัติที่ต้องใช้ในการ คำนวณ ได้แก่ ค่ามุมเสียดทานภายใน (Internal friction angle, φ) เท่ากับ 30° และค่าความหนาแน่น เปียก (Saturated density, γ_{sa}) เท่ากับ 20.70 kN/m³

2.1) ค่าโมคูลัสแรงเฉือนสูงสุด

$$G_{\rm max} \approx 35 \times 1000 N_{60}^{0.34} (\sigma_0^{'})^{0.4}$$
 (lb/ft²)

ประมาณค่า SPT-N จากความสัมพันธ์ดังรูปที่ 3.5 ได้ก่า SPT-N เท่ากับ 10 blows/ft นำค่า SPT-N ที่ได้ มาปรับแก้เป็นค่า N₆₀ ได้เท่ากับ 10

คำนวณหาค่า
$$\sigma_0 = \frac{\overline{\sigma_V}}{3} (3 - 2\sin\phi)$$
 (lb/ft²)
$$\therefore \overline{\sigma_{v}} = \gamma h = \left(20.70 \frac{kN}{m^{3}} - 9.806 \frac{kN}{m^{3}}\right)(19.25m)$$
$$\therefore \overline{\sigma_{v}} = 209.71 \frac{kN}{m^{2}} = 4,379.78 \frac{lb}{ft^{2}}$$
$$\therefore \overline{\sigma_{0}} = \frac{4,379.78}{3}(3 - 2\sin 30^{\circ}) = 2,919.86 \frac{lb}{ft^{2}}$$
$$\therefore \overline{G_{max}} = (35)(1,000)(10)^{0.34}(2,919.86)^{0.4}$$
$$\therefore \overline{G_{max}} = 1,862,998.8lb/ft^{2} = 89,200.38kN/m^{2}$$

$$G_{\text{max}} = \rho V_s^2$$
(kPa)
= $\sqrt{\frac{G_{\text{max}}}{\rho}} = \sqrt{\frac{89,200.38 \times 1,000 \frac{N}{m^2}}{2,110 \frac{kg}{m^3}}} = 205.61 \text{ m/s}$

$$\therefore G_{\text{max}} = 89,200.38 kPa$$
 $V_s = 205.61 m/s$

3) ชั้นวัสดุถมเบื่อน (Random Material)

 $\therefore V_s$

ชั้นวัสดุถมเขื่อนของเขื่อนคลองสะเดา ประกอบด้วยตะกอนทรายจากการผุกร่อน (Weathered sandstone) หินดินดาน และหินโคลน ซึ่งมีคุณสมบัติที่ด้องใช้ในการคำนวณ ได้แก่ ค่า มุมเสียดทานภายใน (Internal friction angle, ϕ) เท่ากับ 29° และค่าความหนาแน่นเปียก (Saturated density, γ_{sat}) เท่ากับ 21.47 kN/m³ 3.1) ค่าโมคูลัสแรงเฉือนสูงสุด

$$G_{\rm max} \approx 35 \times 1000 N_{60}^{0.34} (\sigma_0^{-})^{0.4}$$
 (lb/ft²)

ประมาณค่า SPT-N จากความสัมพันธ์ดังรูปที่ 3.5 ได้ค่า SPT-N เท่ากับ 7 blows/ft นำค่า SPT-N ที่ได้ มาปรับแก้เป็นค่า N₆₀ ได้เท่ากับ 7

คำนวณหาค่า

$$\sigma_0 = \frac{\overline{\sigma_V}}{3} (3 - 2\sin\phi)$$
 (Ib/ft²)
 $\therefore \overline{\sigma_V} = \gamma h = \left(21.47 \frac{kN}{m^3} - 9.806 \frac{kN}{m^3}\right) (19.25m)$
 $\therefore \overline{\sigma_V} = 224.53 \frac{kN}{m^2} = 4,689.35 \frac{lb}{ft^2}$
 $\therefore \sigma_0 = \frac{4,689.35}{3} (3 - 2\sin 29^\circ) = 3,173.72 \frac{lb}{ft^2}$
 $\therefore G_{\text{max}} = (35)(1,000)(7)^{0.34} (3,173.72)^{0.4}$
 $\therefore G_{\text{max}} = 1,706,196.17lb/ft^2 = 81,692.67 kN/m^2$

3.2) ค่าความเร็วคลื่นเฉือน

$$G_{\rm max} = \rho V_s^2 \tag{kPa}$$

$$\therefore V_s = \sqrt{\frac{G_{\text{max}}}{\rho}} = \sqrt{\frac{81,692.67 \times 1,000 \frac{N}{m^2}}{2,190 \frac{kg}{m^3}}} = 193.14 \, m/s$$

$$\therefore G_{\text{max}} = 81,962.67 kPa$$
 $V_s = 193.14 m/s$

ภาคผนวก ค.

ผลการวิเคราะห์การเปลี่ยนรูปถาวรของลาดชันเขื่อนของเหตุการณ์แผ่นดินไหวที่ใช้ใน การวิเคราะห์ กรณีคลื่นแผ่นดินไหวต่างๆ กระทำที่ฐานเขื่อน

	<i>a</i>	No	WT	Mn	WT	R	WT	MxWT	
Earthquakes	Slip	Dfmn	Yield	Dfmn	Yield	Dfmn	Yield	Dfmn	Yield
	no.	(m)	Acc. (g)						
Calexico	1	0.0000	0.244	0.0000	0.224	0.0010	0.149	0.0000	0.136
Mw = 7.0	2	0.0074	0.560	0.0000	0.567	0.0012	0.318	0.0010	0.235
PGA = 0.19g	3	0.0000	0.244	0.0000	0.195	0.0000	0.114	0.0000	0.102
Tp = 0.44	4	0.0000	0.233	0.0000	0.215	0.0004	0.145	0.0000	0.128
Chile	1	0.0983	0.264	0.2153	0.231	0.3255	0.148	0.2225	0.137
Mw = 8.8	2	0.2997	0.575	0.2688	0.620	0.6258	0.317	0.3031	0.235
PGA = 0.64g	3	0.0387	0.268	0.1801	0.194	0.0505	0.136	0.0451	0.122
Tp = 0.20	4	0.0727	0.257	0.1893	0.220	0.2345	0.145	0.1726	0.131
Christchurch	1	0.0172	0.264	0.0309	0.231	0.0332	0.148	0.0255	0.138
Mw = 6.3	2	0.0185	0.575	0.0111	0.620	0.0464	0.318	0.0329	0.235
PGA = 0.53g	3	0.0027	0.268	0.0206	0.195	0.0049	0.136	0.0045	0.122
Tp = 0.24	4	0.0126	0.258	0.0274	0.220	0.0260	0.145	0.0204	0.132
Haiti	1	0.0151	0.264	0.0328	0.023	0.0600	0.148	0.0508	0.137
Mw = 7.0	2	0.0035	0.575	0.0023	0.621	0.0101	0.318	0.0090	0.235
PGA = 0.42g	3	0.0023	0.268	0.0130	0.194	0.0061	0.136	0.0053	0.123
Tp = 0.84	4	0.0103	0.257	0.0313	0.220	0.0481	0.145	0.0414	0.131
Hawaii	1	0.0959	0.264	0.0166	0.231	0.2851	0.148	0.1622	0.137
Mw = 6.7	2	0.1695	0.575	0.1237	0.620	0.6427	0.317	0.2121	0.235
PGA = 0.72g	3	0.0339	0.268	0.1276	0.195	0.0355	0.136	0.0327	0.123
Tp = 0.28	4	0.0682	0.257	0.1485	0.220	0.1981	0.145	0.1251	0.131
Kobe	1	0.2060	0.264	0.3134	0.231	0.4360	0.148	0.3620	0.137
Mw = 6.9	2	0.1714	0.575	0.1551	0.620	0.3366	0.317	0.2181	0.236
PGA = 0.60.g	3	0.0701	0.268	0.1575	0.194	0.0861	0.136	0.0756	0.123
Tp = 0.30	4	0.1559	0.257	0.2869	0.220	0.3613	0.145	0.3030	0.131
Loma Preita	1	0.0000	0.264	0.0008	0.231	0.0090	0.149	0.0063	0.139
Mw = 7.0	2	0.0000	0.550	0.0000	0.611	0.0073	0.327	0.0061	0.245
PGA = 0.23g	3	0.0000	0.267	0.0006	0.195	0.0001	0.136	0.0000	0.123
Tp = 0.16	4	0.0000	0.258	0.0006	0.221	0.0068	0.145	0.0046	0.132

ตารางที่ ค-1 ผลการวิเคราะห์การเปลี่ยนรูปถาวรของลาคชันเขื่อน ทางค้านเหนือน้ำ

	cr.	No	WT	Мі	ıWT	R	WT	MxWT		
Earthquakes	Sup	Dfmn	Yield	Dfmn	Yield	Dfmn	Yield	Dfmn	Yield	
	по.	(m)	Acc. (g)							
Nisqually	1	0.0000	0.240	0.0000	0.219	0.0000	0.146	0.0000	0.135	
Mw = 6.8	2	0.0000	0.463	0.0000	0.471	0.0000	0.282	0.0000	0.201	
PGA = 0.35g	3	0.0000	0.237	0.0000	0.185	0.0000	0.118	0.0000	0.100	
Tp = 2.46	4	0.0000	0.231	0.0000	0.210	0.0000	0.142	0.0000	0.129	
San Fernando	1	0.1430	0.264	0.1898	0.231	0.2198	0.149	0.1889	0.138	
Mw = 6.6	2	0.2081	0.575	0.1531	0.621	0.2322	0.318	0.1510	0.235	
PGA = 1.07g	3	0.0834	0.269	0.1280	0.195	0.0568	0.136	0.0528	0.122	
Tp = 0.20	4	0.1202	0.257	0.1781	0.220	0.1840	0.145	0.1568	0.132	
Sumatra	1	0.0000	0.150	0.0000	0.143	0.0000	0.077	0.0000	0.064	
Mw = 8.4	2	0.0000	0.292	0.0000	0.312	0.0000	0.174	0.0000	0.112	
PGA = 0.06g	3	0.0000	0.154	0.0000	0.123	0.0000	0.051	0.0000	0.044	
Tp = 0.10	4	0.0000	0.144	0.0000	0.134	0.0000	0.070	0.0000	0.060	
Simulated Sadao	1	0.0000	0.141	0.0000	0.134	0.0000	0.067	0.0000	0.062	
Mw = 8.4	2	0.0000	0.256	0.0000	0.282	0.0000	0.130	0.0000	0.095	
PGA = 0.03g	3	0.0000	0.140	0.0000	0.109	0.0000	0.045	0.0000	0.040	
Tp = 0.10	4	0.0000	0.134	0.0000	0.127	0.0000	0.062	0.0000	0.057	

ตารางที่ ค-1 (ต่อ) ผลการวิเคราะห์การเปลี่ยนรูปถาวรของลาคชันเขื่อน ทางค้านเหนือน้ำ

<u>หมายเหตุ:</u>

NoWT =

No water table

MnWT = Minimum water table

RWT = Regular water table

MxWT = Maximum water table

Dfmn = Deformation

Slip No. ที่แสดงในตารางได้แสดงไว้ในรูปที่ 3.8

	c.	No	WT	Mı	nWT	R	WT	MxWT	
Earthquakes	Slip	Dfmn	Yield	Dfmn	Yield	Dfmn	Yield	Dfmn	Yield
	no.	(m)	Acc. (g)						
Calexico	1	0.0003	0.254	0.0000	0.272	0.0000	0.264	0.0000	0.263
Mw = 7.0	2	0.0000	0.310	0.0000	0.324	0.0000	0.309	0.0000	0.314
PGA = 0.19g	3	0.0000	0.288	0.0000	0.305	0.0000	0.292	0.0000	0.294
Tp = 0.44	4	0.0032	0.298	0.0000	0.311	0.0000	0.306	0.0000	0.310
Chile	1	0.0993	0.254	0.0798	0.270	0.0569	0.270	0.0443	0.270
Mw = 8.8	2	0.0317	0.312	0.0293	0.328	0.0183	0.342	0.0128	0.341
PGA = 0.64g	3	0.0276	0.291	0.0218	0.309	0.0205	0.313	0.0168	0.312
Tp = 0.20	4	0.1269	0.297	0.1143	0.311	0.0518	0.323	0.0344	0.326
Christchurch	1	0.0133	0.254	0.0079	0.270	0.0171	0.272	0.0146	0.271
Mw = 6.3	2	0.0041	0.312	0.0026	0.332	0.0000	0.339	0.0000	0.339
PGA = 0.53g	3	0.0039	0.291	0.0037	0.310	0.0071	0.313	0.0065	0.312
Tp = 0.24	4	0.0111	0.298	0.0078	0.311	0.0172	0.324	0.0000	0.326
Haiti	1	0.0142	0.255	0.0118	0.271	0.0166	0.270	0.0180	0.270
Mw = 7.0	2	0.0049	0.313	0.0052	0.329	0.0011	0.342	0.0015	0.343
PGA = 0.42g	3	0.0053	0.292	0.0050	0.310	0.0033	0.315	0.0037	0.316
Tp = 0.84	4	0.0096	0.297	0.0109	0.312	0.0073	0.325	0.0076	0.330
Hawaii	1	0.0887	0.254	0.0617	0.270	0.0799	0.270	0.0572	0.270
Mw = 6.7	2	0.0428	0.312	0.0275	0.328	0.0314	0.342	0.0233	0.341
PGA = 0.72g	3	0.0416	0.291	0.0290	0.309	0.0291	0.313	0.0267	0.312
Tp = 0.28	4	0.1000	0.297	0.0768	0.311	0.0987	0.323	0.0569	0.326
Kobe	1	0.2007	0.254	0.1671	0.270	0.2121	0.270	0.1964	0.270
Mw = 6.9	2	0.1042	0.312	0.0906	0.328	0.0959	0.342	0.0859	0.341
PGA = 0.60.g	3	0.1088	0.291	0.0890	0.309	0.1063	0.313	0.1005	0.312
Tp = 0.30	4	0.1775	0.297	0.1665	0.312	0.1825	0.323	0.1512	0.326
Loma Preita	1	0.0000	0.251	0.0000	0.265	0.0000	0.261	0.0000	0.268
Mw = 7.0	2	0.0000	0.298	0.0000	0.307	0.0000	0.311	0.0000	0.325
PGA = 0.23g	3	0.0000	0.283	0.0000	0.293	0.0000	0.294	0.0000	0.301
Tp = 0.16	4	0.0000	0.289	0.0000	0.303	0.0000	0.299	0.0000	0.319

ตารางที่ ค-2 ผลการวิเคราะห์การเปลี่ยนรูปถาวรของลาดชันเขื่อน ทางด้านท้ายน้ำ

	CII	No	WT	Mı	ıWT	R	WT	MxWT	
Earthquakes	Sup	Dfmn	Yield	Dfmn	Yield	Dfmn	Yield	Dfmn	Yield
	по.	(m)	Acc. (g)						
Nisqually	1	0.0000	0.247	0.0000	0.252	0.0000	0.263	0.0009	0.273
Mw = 6.8	2	0.0000	0.288	0.0000	0.294	0.0000	0.313	0.0001	0.348
PGA = 0.35g	3	0.0000	0.273	0.0000	0.284	0.0000	0.290	0.0001	0.314
Tp = 2.46	4	0.0000	0.285	0.0000	0.287	0.0000	0.309	0.0001	0.334
San Fernando	1	0.1297	0.254	0.1214	0.270	0.1322	0.273	0.1323	0.270
Mw = 6.6	2	0.0840	0.312	0.0789	0.332	0.0808	0.342	0.0770	0.341
PGA = 1.07g	3	0.1022	0.291	0.0938	0.310	0.0915	0.313	0.0882	0.313
Tp = 0.20	4	0.1219	0.297	0.1138	0.311	0.1250	0.324	0.1158	0.326
Sumatra	1	0.0000	0.202	0.0000	0.208	0.0000	0.208	0.0000	0.205
Mw = 8.4	2	0.0000	0.228	0.0000	0.232	0.0000	0.239	0.0000	0.234
PGA = 0.06g	3	0.0000	0.215	0.0000	0.222	0.0000	0.226	0.0000	0.224
Tp = 0.10	4	0.0000	0.227	0.0000	0.231	0.0000	0.235	0.0000	0.230
Simulated Sadao	1	0.0000	0.179	0.0000	0.187	0.0000	0.184	0.0000	0.182
Mw = 8.4	2	0.0000	0.200	0.0000	0.207	0.0000	0.208	0.0000	0.207
PGA = 0.03g	3	0.0000	0.189	0.0000	0.199	0.0000	0.199	0.0000	0.197
Tp = 0.10	4	0.0000	0.200	0.0000	0.208	0.0000	0.203	0.0000	0.203

ตารางที่ ค-2 (ต่อ) ผลการวิเคราะห์การเปลี่ยนรูปถาวรของลาคชันเขื่อน ทางค้านท้ายน้ำ

<u>หมายเหตุ:</u>

NoWT =

No water table

MnWT = Minimum water table

RWT = Regular water table

MxWT = Maximum water table

Dfmn = Deformation

Slip No. ที่แสดงในตารางได้แสดงไว้ในรูปที่ 3.9

ภาคผนวก ง.

ผลการวิเคราะห์การเปลี่ยนรูปถาวรของลาดชันเขื่อนของเหตุการณ์แผ่นดินไหวที่ใช้ใน การวิเคราะห์ กรณีลดระดับเก็บกักน้ำอย่างรวดเร็ว

		กรณีระดับเ	ก็บกักอยู่ที่ +68.00	กรณีลดระเ	ลับน้ำเก็บกักอยู่ที่
Earthquakes	Slip no.	เมด	าร(รทก.)	+52.00	เมตร(รทก.)
		Dfmn (m)	Yield Acc. (g)	Dfmn (m)	Yield Acc. (g)
Calexico	1	0.0000	0.244	0.0015	0.202
Mw = 7.0	2	0.0074	0.560	0.0018	0.494
PGA = 0.19g	3	0.0000	0.244	0.0000	0.189
Tp = 0.44	4	0.0000	0.233	0.0005	0.199
Chile	1	0.0983	0.264	0.4413	0.202
Mw = 8.8	2	0.2997	0.575	0.9737	0.493
PGA = 0.64g	3	0.0387	0.268	0.0832	0.224
Tp = 0.20	4	0.0727	0.257	0.3202	0.198
Christchurch	1	0.0172	0.264	0.0450	0.202
Mw = 6.3	2	0.0185	0.575	0.0721	0.494
PGA = 0.53g	3	0.0027	0.268	0.0080	0.224
Tp = 0.24	4	0.0126	0.258	0.0355	0.198
Haiti	1	0.0151	0.264	0.0817	0.202
Mw = 7.0	2	0.0035	0.575	0.0157	0.495
PGA = 0.42g	3	0.0023	0.268	0.0101	0.224
Tp = 0.84	4	0.0103	0.257	0.0660	0.199
Hawaii	1	0.0959	0.264	0.3858	0.202
Mw = 6.7	2	0.1695	0.575	0.9982	0.493
PGA = 0.72g	3	0.0339	0.268	0.0582	0.224
Tp = 0.28	4	0.0682	0.257	0.2697	0.198
Kobe	1	0.2060	0.264	0.5955	0.202
Mw = 6.9	2	0.1714	0.575	0.5306	0.493
PGA = 0.60.g	3	0.0701	0.268	0.1421	0.224
Tp = 0.30	4	0.1559	0.257	0.4967	0.199

ตารางที่ ง-1 ผลการวิเคราะห์การเปลี่ยนรูปถาวรของลาคชันเขื่อน กรณีลคระดับเก็บกักน้ำอย่าง รวคเร็ว ทางด้านเหนือเขื่อน

		กรณีระดับเก็	บกักอยู่ที่ +68.00	กรณีลดระดับน้ำเก็บกักอยู่ที่			
Earthquakes	Slip no.	เมต	ร(รทก.)	+52.00	เมตร(รทก.)		
		Dfmn (m)	Yield Acc. (g)	Dfmn (m)	Yield Acc. (g)		
Loma Preita	1	0.0000	0.264	0.0123	0.203		
Mw = 7.0	2	0.0000	0.550	0.0114	0.509		
PGA = 0.23g	3	0.0000	0.267	0.0001	0.224		
Tp = 0.16	4	0.0000	0.258	0.0093	0.198		
Nisqually	1	0.0000	0.240	0.0000	0.199		
Mw = 6.8	2	0.0000	0.463	0.0000	0.439		
PGA = 0.35g	3	0.0000	0.237	0.0000	0.194		
Tp = 2.46	4	0.0000	0.231	0.0000	0.194		
San Fernando	1	0.1430	0.264	0.2989	0.203		
Mw = 6.6	2	0.2081	0.575	0.3617	0.494		
PGA = 1.07g	3	0.0834	0.269	0.0934	0.224		
Tp = 0.20	4	0.1202	0.257	0.2519	0.198		
Sumatra	1	0.0000	0.150	0.0000	0.105		
Mw = 8.4	2	0.0000	0.292	0.0000	0.271		
PGA = 0.06g	3	0.0000	0.154	0.0000	0.081		
Tp = 0.10	4	0.0000	0.144	0.0000	0.096		
Simulated Sadao	1	0.0000	0.067	0.0000	0.091		
Mw = 8.4	2	0.0000	0.130	0.0000	0.203		
PGA = 0.03g	3	0.0000	0.045	0.0000	0.075		
Tp = 0.10	4	0.0000	0.062	0.0000	0.085		

ตารางที่ ง-1 (ต่อ) ผลการวิเคราะห์การเปลี่ยนรูปถาวรของลาดชันเขื่อน กรณีลดระดับเก็บกักน้ำ อย่างรวดเร็ว ทางด้านเหนือเขื่อน

<u>หมายเหตุ:</u>

Dfmn =

Deformation

ภาคผนวก จ.

ผลการวิเคราะห์การเกิดปรากฏการณ์ Liquefaction ของเหตุการณ์แผ่นดินไหว ที่ใช้ในการวิเคราะห์

Z	rd	σ _{vo}	σ ' _{vo}	$\tau_{_{ m cyc}}$	MSF	CSR	Kσ	$\boldsymbol{\tau}_{_{\mathrm{cyc},\mathrm{L}}}$	FS
(m)		(kN/m2)	(kN/m2)						
1	0.994	20.70	10.89	2.54	1.087	0.544	2.140	12.67	4.984
2	0.987	41.40	21.78	5.04	1.087	0.544	1.679	19.88	3.941
3	0.979	62.10	32.67	7.51	1.087	0.544	1.457	25.87	3.444
4	0.973	82.80	43.56	9.95	1.087	0.544	1.318	31.19	3.137
5	0.965	103.50	54.45	12.34	1.087	0.544	1.219	36.06	2.922
6	0.958	124.20	65.34	14.69	1.087	0.544	1.143	40.60	2.764
7	0.949	144.90	76.23	16.97	1.087	0.544	1.083	44.88	2.644
8	0.937	165.60	87.12	19.17	1.087	0.544	1.034	48.95	2.554
9	0.923	186.30	98.01	21.23	1.087	0.544	0.992	52.84	2.488
10	0.905	207.00	108.90	23.13	1.087	0.544	0.956	56.59	2.446
11	0.883	227.70	119.79	24.83	1.087	0.544	0.925	60.20	2.425
12	0.857	248.40	130.68	26.28	1.087	0.544	0.897	63.71	2.425
13	0.827	269.10	141.57	27.47	1.087	0.544	0.872	67.11	2.443
14	0.794	289.80	152.46	28.43	1.087	0.544	0.850	70.42	2.477
15	0.761	310.50	163.35	29.17	1.087	0.544	0.830	73.65	2.525
16	0.728	331.20	174.24	29.76	1.087	0.544	0.811	76.81	2.581
17	0.696	351.90	185.13	30.25	1.087	0.544	0.794	79.89	2.641
18	0.667	372.60	196.02	30.70	1.087	0.544	0.778	82.92	2.701
19	0.641	393.30	206.91	31.13	1.087	0.544	0.764	85.88	2.758
20	0.618	414.00	217.80	31.60	1.087	0.544	0.750	88.80	2.810
21	0.598	434.70	228.69	32.10	1.087	0.544	0.737	91.66	2.855
22	0.581	455.40	239.58	32.66	1.087	0.544	0.726	94.47	2.893
23	0.566	476.10	250.47	33.26	1.087	0.544	0.714	97.24	2.923
24	0.553	496.80	261.36	33.91	1.087	0.544	0.704	99.97	2.948
25	0.541	517.50	272.25	34.60	1.087	0.544	0.694	102.66	2.967
26	0.532	538.20	283.14	35.33	1.087	0.544	0.684	105.31	2.981
27	0.523	558.90	294.03	36.08	1.087	0.544	0.675	107.92	2.991
28	0.515	579.60	304.92	36.86	1.087	0.544	0.667	110.50	2.998
29	0.508	600.30	315.81	37.65	1.087	0.544	0.659	113.05	3.003
30	0.501	621.00	326.70	38.46	1.087	0.544	0.651	115.57	3.005
31	0.496	641.70	337.59	39.27	1.087	0.544	0.643	118.06	3.006
32	0.490	662.40	348.48	40.09	1.087	0.544	0.636	120.52	3.006
33	0.485	683.10	359.37	40.91	1.087	0.544	0.630	122.96	3.005
34	0.480	703.80	370.26	41.74	1.087	0.544	0.623	125.37	3.004
35	0.476	724.50	381.15	42.56	1.087	0.544	0.617	127.75	3.002
36	0.471	745.20	392.04	43.38	1.087	0.544	0.611	130.11	3.000
37	0.467	765.90	402.93	44.19	1.087	0.544	0.605	132.45	2.997
38	0.463	786.60	413.82	45.00	1.087	0.544	0.599	134.77	2.995

ตารางที่ จ-1 ผลการวิเคราะห์ Liquefaction โดยใช้สมการ Empirical ของเหตุการณ์แผ่นดินไหว Calexico, Mexico (2010) ซึ่งมีขนาด 7.0 ริกเตอร์ และ PGA = 0.19g

Z	rd	σ _{vo}	σ ' _{vo}	$\boldsymbol{\tau}_{_{\mathrm{cvc}}}$	MSF	CSR	Kσ	τ _{cvc,L}	FS
(m)		(kN/m2)	(kN/m2)	·				• •	
1	0.994	20.70	10.89	7.09	1.244	0.622	2.140	14.50	2.045
2	0.987	41.40	21.78	14.07	1.244	0.622	1.679	22.75	1.617
3	0.979	62.10	32.67	20.95	1.244	0.622	1.457	29.61	1.413
4	0.973	82.80	43.56	27.74	1.244	0.622	1.318	35.70	1.287
5	0.965	103.50	54.45	34.42	1.244	0.622	1.219	41.27	1.199
6	0.958	124.20	65.34	40.98	1.244	0.622	1.143	46.46	1.134
7	0.949	144.90	76.23	47.35	1.244	0.622	1.083	51.36	1.085
8	0.937	165.60	87.12	53.47	1.244	0.622	1.034	56.02	1.048
9	0.923	186.30	98.01	59.23	1.244	0.622	0.992	60.47	1.021
10	0.905	207.00	108.90	64.53	1.244	0.622	0.956	64.76	1.004
11	0.883	227.70	119.79	69.25	1.244	0.622	0.925	68.90	0.995
12	0.857	248.40	130.68	73.30	1.244	0.622	0.897	72.91	0.995
13	0.827	269.10	141.57	76.63	1.244	0.622	0.872	76.80	1.002
14	0.794	289.80	152.46	79.30	1.244	0.622	0.850	80.59	1.016
15	0.761	310.50	163.35	81.38	1.244	0.622	0.830	84.29	1.036
16	0.728	331.20	174.24	83.02	1.244	0.622	0.811	87.90	1.059
17	0.696	351.90	185.13	84.39	1.244	0.622	0.794	91.43	1.084
18	0.667	372.60	196.02	85.62	1.244	0.622	0.778	94.89	1.108
19	0.641	393.30	206.91	86.85	1.244	0.622	0.764	98.29	1.132
20	0.618	414.00	217.80	88.14	1.244	0.622	0.750	101.62	1.153
21	0.598	434.70	228.69	89.55	1.244	0.622	0.737	104.90	1.171
22	0.581	455.40	239.58	91.10	1.244	0.622	0.726	108.12	1.187
23	0.566	476.10	250.47	92.78	1.244	0.622	0.714	111.28	1.199
24	0.553	496.80	261.36	94.60	1.244	0.622	0.704	114.41	1.209
25	0.541	517.50	272.25	96.52	1.244	0.622	0.694	117.48	1.217
26	0.532	538.20	283.14	98.55	1.244	0.622	0.684	120.52	1.223
27	0.523	558.90	294.03	100.65	1.244	0.622	0.675	123.51	1.227
28	0.515	579.60	304.92	102.82	1.244	0.622	0.667	126.46	1.230
29	0.508	600.30	315.81	105.03	1.244	0.622	0.659	129.38	1.232
30	0.501	621.00	326.70	107.28	1.244	0.622	0.651	132.26	1.233
31	0.496	641.70	337.59	109.55	1.244	0.622	0.643	135.11	1.233
32	0.490	662.40	348.48	111.84	1.244	0.622	0.636	137.93	1.233
33	0.485	683.10	359.37	114.13	1.244	0.622	0.630	140.72	1.233
34	0.480	703.80	370.26	116.43	1.244	0.622	0.623	143.47	1.232
35	0.476	724.50	381.15	118.72	1.244	0.622	0.617	146.20	1.232
36	0.471	745.20	392.04	121.00	1.244	0.622	0.611	148.91	1.231
37	0.467	765.90	402.93	123.27	1.244	0.622	0.605	151.58	1.230
38	0.463	786.60	413.82	125.52	1.244	0.622	0.599	154.23	1.229

ตารางที่ จ-2 ผลการวิเคราะห์ Liquefaction โดยใช้สมการ Empirical ของเหตุการณ์แผ่นดินไหว Christchurch, New Zealand (2011) ซึ่งมีขนาค 6.3 ริกเตอร์ และ PGA = 0.53g

Z	rd	σ _{vo}	σ ' _{vo}	τ ,,,,	MSF	CSRL	Kσ	τ _{cyc,L}	FS
(m)		(kN/m2)	(kN/m2)						
1	0.994	20.70	10.89	8.56	0.890	0.445	2.140	10.37	1.211
2	0.987	41.40	21.78	16.99	0.890	0.445	1.679	16.28	0.958
3	0.979	62.10	32.67	25.30	0.890	0.445	1.457	21.18	0.837
4	0.973	82.80	43.56	33.50	0.890	0.445	1.318	25.54	0.762
5	0.965	103.50	54.45	41.57	0.890	0.445	1.219	29.53	0.710
6	0.958	124.20	65.34	49.48	0.890	0.445	1.143	33.24	0.672
7	0.949	144.90	76.23	57.18	0.890	0.445	1.083	36.74	0.643
8	0.937	165.60	87.12	64.57	0.890	0.445	1.034	40.08	0.621
9	0.923	186.30	98.01	71.53	0.890	0.445	0.992	43.27	0.605
10	0.905	207.00	108.90	77.93	0.890	0.445	0.956	46.33	0.595
11	0.883	227.70	119.79	83.62	0.890	0.445	0.925	49.29	0.589
12	0.857	248.40	130.68	88.51	0.890	0.445	0.897	52.16	0.589
13	0.827	269.10	141.57	92.54	0.890	0.445	0.872	54.95	0.594
14	0.794	289.80	152.46	95.75	0.890	0.445	0.850	57.66	0.602
15	0.761	310.50	163.35	98.27	0.890	0.445	0.830	60.30	0.614
16	0.728	331.20	174.24	100.25	0.890	0.445	0.811	62.89	0.627
17	0.696	351.90	185.13	101.90	0.890	0.445	0.794	65.41	0.642
18	0.667	372.60	196.02	103.39	0.890	0.445	0.778	67.89	0.657
19	0.641	393.30	206.91	104.87	0.890	0.445	0.764	70.32	0.671
20	0.618	414.00	217.80	106.44	0.890	0.445	0.750	72.70	0.683
21	0.598	434.70	228.69	108.14	0.890	0.445	0.737	75.05	0.694
22	0.581	455.40	239.58	110.01	0.890	0.445	0.726	77.35	0.703
23	0.566	476.10	250.47	112.04	0.890	0.445	0.714	79.62	0.711
24	0.553	496.80	261.36	114.23	0.890	0.445	0.704	81.85	0.717
25	0.541	517.50	272.25	116.56	0.890	0.445	0.694	84.05	0.721
26	0.532	538.20	283.14	119.00	0.890	0.445	0.684	86.22	0.725
27	0.523	558.90	294.03	121.54	0.890	0.445	0.675	88.36	0.727
28	0.515	579.60	304.92	124.16	0.890	0.445	0.667	90.48	0.729
29	0.508	600.30	315.81	126.83	0.890	0.445	0.659	92.56	0.730
30	0.501	621.00	326.70	129.54	0.890	0.445	0.651	94.63	0.730
31	0.496	641.70	337.59	132.29	0.890	0.445	0.643	96.66	0.731
32	0.490	662.40	348.48	135.05	0.890	0.445	0.636	98.68	0.731
33	0.485	683.10	359.37	137.82	0.890	0.445	0.630	100.67	0.730
34	0.480	703.80	370.26	140.59	0.890	0.445	0.623	102.65	0.730
35	0.476	724.50	381.15	143.35	0.890	0.445	0.617	104.60	0.730
36	0.471	745.20	392.04	146.11	0.890	0.445	0.611	106.53	0.729
37	0.467	765.90	402.93	148.85	0.890	0.445	0.605	108.45	0.729
38	0.463	786.60	413.82	151.57	0.890	0.445	0.599	110.34	0.728

ตารางที่ จ-3 ผลการวิเคราะห์ Liquefaction โดยใช้สมการ Empirical ของเหตุการณ์แผ่นดินไหว Offshore Bio, Chile (2010) ซึ่งมีขนาด 8.8 ริกเตอร์ และ PGA = 0.64g

Z	rd	σ _{vo}	σ ' _{vo}	$\tau_{_{ m cyc}}$	MSF	CSRL	К _σ	τ $_{\rm cyc,L}$	FS
(m)		(kN/m2)	(kN/m2)						
1	0.994	20.70	10.89	5.62	1.087	0.544	2.140	12.67	2.255
2	0.987	41.40	21.78	11.15	1.087	0.544	1.679	19.88	1.783
3	0.979	62.10	32.67	16.61	1.087	0.544	1.457	25.87	1.558
4	0.973	82.80	43.56	21.98	1.087	0.544	1.318	31.19	1.419
5	0.965	103.50	54.45	27.28	1.087	0.544	1.219	36.06	1.322
6	0.958	124.20	65.34	32.47	1.087	0.544	1.143	40.60	1.250
7	0.949	144.90	76.23	37.52	1.087	0.544	1.083	44.88	1.196
8	0.937	165.60	87.12	42.37	1.087	0.544	1.034	48.95	1.155
9	0.923	186.30	98.01	46.94	1.087	0.544	0.992	52.84	1.126
10	0.905	207.00	108.90	51.14	1.087	0.544	0.956	56.59	1.107
11	0.883	227.70	119.79	54.88	1.087	0.544	0.925	60.20	1.097
12	0.857	248.40	130.68	58.08	1.087	0.544	0.897	63.71	1.097
13	0.827	269.10	141.57	60.73	1.087	0.544	0.872	67.11	1.105
14	0.794	289.80	152.46	62.84	1.087	0.544	0.850	70.42	1.121
15	0.761	310.50	163.35	64.49	1.087	0.544	0.830	73.65	1.142
16	0.728	331.20	174.24	65.79	1.087	0.544	0.811	76.81	1.167
17	0.696	351.90	185.13	66.87	1.087	0.544	0.794	79.89	1.195
18	0.667	372.60	196.02	67.85	1.087	0.544	0.778	82.92	1.222
19	0.641	393.30	206.91	68.82	1.087	0.544	0.764	85.88	1.248
20	0.618	414.00	217.80	69.85	1.087	0.544	0.750	88.80	1.271
21	0.598	434.70	228.69	70.97	1.087	0.544	0.737	91.66	1.292
22	0.581	455.40	239.58	72.19	1.087	0.544	0.726	94.47	1.309
23	0.566	476.10	250.47	73.53	1.087	0.544	0.714	97.24	1.323
24	0.553	496.80	261.36	74.96	1.087	0.544	0.704	99.97	1.334
25	0.541	517.50	272.25	76.49	1.087	0.544	0.694	102.66	1.342
26	0.532	538.20	283.14	78.10	1.087	0.544	0.684	105.31	1.348
27	0.523	558.90	294.03	79.76	1.087	0.544	0.675	107.92	1.353
28	0.515	579.60	304.92	81.48	1.087	0.544	0.667	110.50	1.356
29	0.508	600.30	315.81	83.23	1.087	0.544	0.659	113.05	1.358
30	0.501	621.00	326.70	85.01	1.087	0.544	0.651	115.57	1.359
31	0.496	641.70	337.59	86.81	1.087	0.544	0.643	118.06	1.360
32	0.490	662.40	348.48	88.63	1.087	0.544	0.636	120.52	1.360
33	0.485	683.10	359.37	90.44	1.087	0.544	0.630	122.96	1.360
34	0.480	703.80	370.26	92.26	1.087	0.544	0.623	125.37	1.359
35	0.476	724.50	381.15	94.08	1.087	0.544	0.617	127.75	1.358
36	0.471	745.20	392.04	95.88	1.087	0.544	0.611	130.11	1.357
37	0.467	765.90	402.93	97.68	1.087	0.544	0.605	132.45	1.356
38	0.463	786.60	413.82	99.47	1.087	0.544	0.599	134.77	1.355

ตารางที่ จ-4 ผลการวิเคราะห์ Liquefaction โดยใช้สมการ Empirical ของเหตุการณ์แผ่นดินไหว Haiti Region, Haiti (2010) ซึ่งมีขนาด 7.0 ริกเตอร์ และ PGA = 0.42g

Z	rd	σ_{vo}	σ ' _{vo}	$\tau_{_{ m cyc}}$	MSF	CSRL	Kσ	τ _{cyc,L}	FS
(m)		(kN/m2)	(kN/m2)						
1	0.994	20.70	10.89	9.63	1.143	0.572	2.140	13.32	1.383
2	0.987	41.40	21.78	19.12	1.143	0.572	1.679	20.90	1.093
3	0.979	62.10	32.67	28.47	1.143	0.572	1.457	27.21	0.956
4	0.973	82.80	43.56	37.69	1.143	0.572	1.318	32.80	0.870
5	0.965	103.50	54.45	46.77	1.143	0.572	1.219	37.92	0.811
6	0.958	124.20	65.34	55.67	1.143	0.572	1.143	42.69	0.767
7	0.949	144.90	76.23	64.32	1.143	0.572	1.083	47.19	0.734
8	0.937	165.60	87.12	72.64	1.143	0.572	1.034	51.47	0.709
9	0.923	186.30	98.01	80.47	1.143	0.572	0.992	55.56	0.691
10	0.905	207.00	108.90	87.67	1.143	0.572	0.956	59.50	0.679
11	0.883	227.70	119.79	94.07	1.143	0.572	0.925	63.31	0.673
12	0.857	248.40	130.68	99.57	1.143	0.572	0.897	66.99	0.673
13	0.827	269.10	141.57	104.11	1.143	0.572	0.872	70.57	0.678
14	0.794	289.80	152.46	107.72	1.143	0.572	0.850	74.05	0.687
15	0.761	310.50	163.35	110.55	1.143	0.572	0.830	77.45	0.701
16	0.728	331.20	174.24	112.78	1.143	0.572	0.811	80.76	0.716
17	0.696	351.90	185.13	114.64	1.143	0.572	0.794	84.01	0.733
18	0.667	372.60	196.02	116.32	1.143	0.572	0.778	87.19	0.750
19	0.641	393.30	206.91	117.98	1.143	0.572	0.764	90.31	0.765
20	0.618	414.00	217.80	119.74	1.143	0.572	0.750	93.37	0.780
21	0.598	434.70	228.69	121.66	1.143	0.572	0.737	96.38	0.792
22	0.581	455.40	239.58	123.76	1.143	0.572	0.726	99.34	0.803
23	0.566	476.10	250.47	126.05	1.143	0.572	0.714	102.25	0.811
24	0.553	496.80	261.36	128.51	1.143	0.572	0.704	105.12	0.818
25	0.541	517.50	272.25	131.13	1.143	0.572	0.694	107.94	0.823
26	0.532	538.20	283.14	133.88	1.143	0.572	0.684	110.73	0.827
27	0.523	558.90	294.03	136.73	1.143	0.572	0.675	113.48	0.830
28	0.515	579.60	304.92	139.68	1.143	0.572	0.667	116.20	0.832
29	0.508	600.30	315.81	142.68	1.143	0.572	0.659	118.88	0.833
30	0.501	621.00	326.70	145.74	1.143	0.572	0.651	121.53	0.834
31	0.496	641.70	337.59	148.82	1.143	0.572	0.643	124.14	0.834
32	0.490	662.40	348.48	151.93	1.143	0.572	0.636	126.73	0.834
33	0.485	683.10	359.37	155.05	1.143	0.572	0.630	129.29	0.834
34	0.480	703.80	370.26	158.16	1.143	0.572	0.623	131.83	0.833
35	0.476	724.50	381.15	161.27	1.143	0.572	0.617	134.33	0.833
36	0.471	745.20	392.04	164.37	1.143	0.572	0.611	136.82	0.832
37	0.467	765.90	402.93	167.46	1.143	0.572	0.605	139.27	0.832
38	0.463	786.60	413.82	170.52	1.143	0.572	0.599	141.71	0.831

ตารางที่ จ-5 ผลการวิเคราะห์ Liquefaction โดยใช้สมการ Empirical ของเหตุการณ์แผ่นดินไหว Hawaii, USA (2010) ซึ่งมีขนาด 6.7 ริกเตอร์ และ PGA = 0.72g

Z	rd	σ _{vo}	σ ' _{vo}	$\tau_{_{ m cyc}}$	MSF	CSR	Kσ	$\boldsymbol{\tau}_{_{\mathrm{cyc},\mathrm{L}}}$	FS
(m)		(kN/m2)	(kN/m2)						
1	0.994	20.70	10.89	9.10	1.104	0.552	2.140	12.87	1.414
2	0.987	41.40	21.78	18.05	1.104	0.552	1.679	20.19	1.118
3	0.979	62.10	32.67	26.88	1.104	0.552	1.457	26.28	0.977
4	0.973	82.80	43.56	35.59	1.104	0.552	1.318	31.68	0.890
5	0.965	103.50	54.45	44.17	1.104	0.552	1.219	36.63	0.829
6	0.958	124.20	65.34	52.57	1.104	0.552	1.143	41.23	0.784
7	0.949	144.90	76.23	60.75	1.104	0.552	1.083	45.58	0.750
8	0.937	165.60	87.12	68.60	1.104	0.552	1.034	49.71	0.725
9	0.923	186.30	98.01	76.00	1.104	0.552	0.992	53.67	0.706
10	0.905	207.00	108.90	82.80	1.104	0.552	0.956	57.47	0.694
11	0.883	227.70	119.79	88.85	1.104	0.552	0.925	61.15	0.688
12	0.857	248.40	130.68	94.04	1.104	0.552	0.897	64.70	0.688
13	0.827	269.10	141.57	98.32	1.104	0.552	0.872	68.16	0.693
14	0.794	289.80	152.46	101.74	1.104	0.552	0.850	71.52	0.703
15	0.761	310.50	163.35	104.41	1.104	0.552	0.830	74.80	0.716
16	0.728	331.20	174.24	106.52	1.104	0.552	0.811	78.01	0.732
17	0.696	351.90	185.13	108.27	1.104	0.552	0.794	81.14	0.749
18	0.667	372.60	196.02	109.86	1.104	0.552	0.778	84.21	0.767
19	0.641	393.30	206.91	111.43	1.104	0.552	0.764	87.23	0.783
20	0.618	414.00	217.80	113.09	1.104	0.552	0.750	90.18	0.797
21	0.598	434.70	228.69	114.90	1.104	0.552	0.737	93.09	0.810
22	0.581	455.40	239.58	116.88	1.104	0.552	0.726	95.95	0.821
23	0.566	476.10	250.47	119.04	1.104	0.552	0.714	98.76	0.830
24	0.553	496.80	261.36	121.37	1.104	0.552	0.704	101.53	0.837
25	0.541	517.50	272.25	123.84	1.104	0.552	0.694	104.26	0.842
26	0.532	538.20	283.14	126.44	1.104	0.552	0.684	106.95	0.846
27	0.523	558.90	294.03	129.14	1.104	0.552	0.675	109.61	0.849
28	0.515	579.60	304.92	131.92	1.104	0.552	0.667	112.23	0.851
29	0.508	600.30	315.81	134.75	1.104	0.552	0.659	114.82	0.852
30	0.501	621.00	326.70	137.64	1.104	0.552	0.651	117.38	0.853
31	0.496	641.70	337.59	140.55	1.104	0.552	0.643	119.91	0.853
32	0.490	662.40	348.48	143.49	1.104	0.552	0.636	122.41	0.853
33	0.485	683.10	359.37	146.43	1.104	0.552	0.630	124.88	0.853
34	0.480	703.80	370.26	149.38	1.104	0.552	0.623	127.33	0.852
35	0.476	724.50	381.15	152.31	1.104	0.552	0.617	129.75	0.852
36	0.471	745.20	392.04	155.24	1.104	0.552	0.611	132.15	0.851
37	0.467	765.90	402.93	158.15	1.104	0.552	0.605	134.52	0.851
38	0.463	786.60	413.82	161.05	1.104	0.552	0.599	136.87	0.850

ตารางที่ จ-6 ผลการวิเคราะห์ Liquefaction โดยใช้สมการ Empirical ของเหตุการณ์แผ่นดินไหว Kobe, Japan (1995) ซึ่งมีขนาด 6.9 ริกเตอร์ และ PGA = 0.68g

Z	rd	σ _{vo}	σ ' _{vo}	$\tau_{_{ m cyc}}$	MSF	CSRL	К _σ	$\boldsymbol{\tau}_{_{\mathrm{cyc,L}}}$	FS
(m)		(kN/m2)	(kN/m2)						
1	0.994	20.70	10.89	3.08	1.087	0.544	2.140	12.67	4.117
2	0.987	41.40	21.78	6.11	1.087	0.544	1.679	19.88	3.255
3	0.979	62.10	32.67	9.09	1.087	0.544	1.457	25.87	2.845
4	0.973	82.80	43.56	12.04	1.087	0.544	1.318	31.19	2.591
5	0.965	103.50	54.45	14.94	1.087	0.544	1.219	36.06	2.414
6	0.958	124.20	65.34	17.78	1.087	0.544	1.143	40.60	2.283
7	0.949	144.90	76.23	20.55	1.087	0.544	1.083	44.88	2.184
8	0.937	165.60	87.12	23.20	1.087	0.544	1.034	48.95	2.110
9	0.923	186.30	98.01	25.71	1.087	0.544	0.992	52.84	2.056
10	0.905	207.00	108.90	28.00	1.087	0.544	0.956	56.59	2.021
11	0.883	227.70	119.79	30.05	1.087	0.544	0.925	60.20	2.003
12	0.857	248.40	130.68	31.81	1.087	0.544	0.897	63.71	2.003
13	0.827	269.10	141.57	33.26	1.087	0.544	0.872	67.11	2.018
14	0.794	289.80	152.46	34.41	1.087	0.544	0.850	70.42	2.046
15	0.761	310.50	163.35	35.31	1.087	0.544	0.830	73.65	2.086
16	0.728	331.20	174.24	36.03	1.087	0.544	0.811	76.81	2.132
17	0.696	351.90	185.13	36.62	1.087	0.544	0.794	79.89	2.182
18	0.667	372.60	196.02	37.16	1.087	0.544	0.778	82.92	2.232
19	0.641	393.30	206.91	37.69	1.087	0.544	0.764	85.88	2.279
20	0.618	414.00	217.80	38.25	1.087	0.544	0.750	88.80	2.321
21	0.598	434.70	228.69	38.86	1.087	0.544	0.737	91.66	2.358
22	0.581	455.40	239.58	39.53	1.087	0.544	0.726	94.47	2.390
23	0.566	476.10	250.47	40.26	1.087	0.544	0.714	97.24	2.415
24	0.553	496.80	261.36	41.05	1.087	0.544	0.704	99.97	2.435
25	0.541	517.50	272.25	41.89	1.087	0.544	0.694	102.66	2.451
26	0.532	538.20	283.14	42.77	1.087	0.544	0.684	105.31	2.462
27	0.523	558.90	294.03	43.68	1.087	0.544	0.675	107.92	2.471
28	0.515	579.60	304.92	44.62	1.087	0.544	0.667	110.50	2.477
29	0.508	600.30	315.81	45.58	1.087	0.544	0.659	113.05	2.480
30	0.501	621.00	326.70	46.55	1.087	0.544	0.651	115.57	2.483
31	0.496	641.70	337.59	47.54	1.087	0.544	0.643	118.06	2.483
32	0.490	662.40	348.48	48.53	1.087	0.544	0.636	120.52	2.483
33	0.485	683.10	359.37	49.53	1.087	0.544	0.630	122.96	2.483
34	0.480	703.80	370.26	50.52	1.087	0.544	0.623	125.37	2.481
35	0.476	724.50	381.15	51.52	1.087	0.544	0.617	127.75	2.480
36	0.471	745.20	392.04	52.51	1.087	0.544	0.611	130.11	2.478
37	0.467	765.90	402.93	53.49	1.087	0.544	0.605	132.45	2.476
38	0.463	786.60	413.82	54.47	1.087	0.544	0.599	134.77	2.474

ตารางที่ จ-7 ผลการวิเคราะห์ Liquefaction โดยใช้สมการ Empirical ของเหตุการณ์แผ่นดินไหว Loma Preita, USA (1989) ซึ่งมีขนาด 7.0 ริกเตอร์ และ PGA = 0.23g

Z	rd	σ _{vo}	σ ' _{vo}	$\boldsymbol{\tau}_{_{\mathrm{cyc}}}$	MSF	CSRL	κ _σ	τ $_{_{\rm cyc,L}}$	FS
(m)		(kN/m2)	(kN/m2)						
1	0.994	20.70	10.89	4.68	1.121	0.561	2.140	13.06	2.790
2	0.987	41.40	21.78	9.29	1.121	0.561	1.679	20.50	2.206
3	0.979	62.10	32.67	13.84	1.121	0.561	1.457	26.68	1.928
4	0.973	82.80	43.56	18.32	1.121	0.561	1.318	32.17	1.756
5	0.965	103.50	54.45	22.73	1.121	0.561	1.219	37.19	1.636
6	0.958	124.20	65.34	27.06	1.121	0.561	1.143	41.87	1.547
7	0.949	144.90	76.23	31.27	1.121	0.561	1.083	46.28	1.480
8	0.937	165.60	87.12	35.31	1.121	0.561	1.034	50.48	1.430
9	0.923	186.30	98.01	39.12	1.121	0.561	0.992	54.49	1.393
10	0.905	207.00	108.90	42.62	1.121	0.561	0.956	58.36	1.369
11	0.883	227.70	119.79	45.73	1.121	0.561	0.925	62.09	1.358
12	0.857	248.40	130.68	48.40	1.121	0.561	0.897	65.70	1.357
13	0.827	269.10	141.57	50.61	1.121	0.561	0.872	69.21	1.368
14	0.794	289.80	152.46	52.36	1.121	0.561	0.850	72.62	1.387
15	0.761	310.50	163.35	53.74	1.121	0.561	0.830	75.96	1.413
16	0.728	331.20	174.24	54.82	1.121	0.561	0.811	79.21	1.445
17	0.696	351.90	185.13	55.73	1.121	0.561	0.794	82.39	1.479
18	0.667	372.60	196.02	56.54	1.121	0.561	0.778	85.51	1.512
19	0.641	393.30	206.91	57.35	1.121	0.561	0.764	88.57	1.544
20	0.618	414.00	217.80	58.21	1.121	0.561	0.750	91.57	1.573
21	0.598	434.70	228.69	59.14	1.121	0.561	0.737	94.52	1.598
22	0.581	455.40	239.58	60.16	1.121	0.561	0.726	97.43	1.619
23	0.566	476.10	250.47	61.27	1.121	0.561	0.714	100.28	1.637
24	0.553	496.80	261.36	62.47	1.121	0.561	0.704	103.09	1.650
25	0.541	517.50	272.25	63.74	1.121	0.561	0.694	105.87	1.661
26	0.532	538.20	283.14	65.08	1.121	0.561	0.684	108.60	1.669
27	0.523	558.90	294.03	66.47	1.121	0.561	0.675	111.30	1.674
28	0.515	579.60	304.92	67.90	1.121	0.561	0.667	113.96	1.678
29	0.508	600.30	315.81	69.36	1.121	0.561	0.659	116.59	1.681
30	0.501	621.00	326.70	70.84	1.121	0.561	0.651	119.19	1.682
31	0.496	641.70	337.59	72.34	1.121	0.561	0.643	121.75	1.683
32	0.490	662.40	348.48	73.85	1.121	0.561	0.636	124.29	1.683
33	0.485	683.10	359.37	75.37	1.121	0.561	0.630	126.80	1.682
34	0.480	703.80	370.26	76.88	1.121	0.561	0.623	129.29	1.682
35	0.476	724.50	381.15	78.40	1.121	0.561	0.617	131.75	1.681
36	0.471	745.20	392.04	79.90	1.121	0.561	0.611	134.18	1.679
37	0.467	765.90	402.93	81.40	1.121	0.561	0.605	136.59	1.678
38	0.463	786.60	413.82	82.89	1.121	0.561	0.599	138.98	1.677

ตารางที่ จ-8 ผลการวิเคราะห์ Liquefaction โดยใช้สมการ Empirical ของเหตุการณ์แผ่นดินไหว Nissqually, USA (2001) ซึ่งมีขนาด 6.8 ริกเตอร์ และ PGA = 0.35g

Z	rd	σ _{vo}	σ ' _{vo}	$\tau_{_{ m cyc}}$	MSF	CSRL	Kσ	τ _{cyc,L}	FS
(m)		(kN/m2)	(kN/m2)						
1	0.994	20.70	10.89	14.31	1.168	0.584	2.140	13.61	0.951
2	0.987	41.40	21.78	28.41	1.168	0.584	1.679	21.36	0.752
3	0.979	62.10	32.67	42.30	1.168	0.584	1.457	27.80	0.657
4	0.973	82.80	43.56	56.01	1.168	0.584	1.318	33.52	0.598
5	0.965	103.50	54.45	69.50	1.168	0.584	1.219	38.75	0.558
6	0.958	124.20	65.34	82.73	1.168	0.584	1.143	43.62	0.527
7	0.949	144.90	76.23	95.59	1.168	0.584	1.083	48.22	0.504
8	0.937	165.60	87.12	107.94	1.168	0.584	1.034	52.59	0.487
9	0.923	186.30	98.01	119.59	1.168	0.584	0.992	56.78	0.475
10	0.905	207.00	108.90	130.28	1.168	0.584	0.956	60.80	0.467
11	0.883	227.70	119.79	139.80	1.168	0.584	0.925	64.69	0.463
12	0.857	248.40	130.68	147.97	1.168	0.584	0.897	68.45	0.463
13	0.827	269.10	141.57	154.71	1.168	0.584	0.872	72.11	0.466
14	0.794	289.80	152.46	160.09	1.168	0.584	0.850	75.67	0.473
15	0.761	310.50	163.35	164.29	1.168	0.584	0.830	79.14	0.482
16	0.728	331.20	174.24	167.61	1.168	0.584	0.811	82.53	0.492
17	0.696	351.90	185.13	170.36	1.168	0.584	0.794	85.85	0.504
18	0.667	372.60	196.02	172.86	1.168	0.584	0.778	89.10	0.515
19	0.641	393.30	206.91	175.34	1.168	0.584	0.764	92.28	0.526
20	0.618	414.00	217.80	177.95	1.168	0.584	0.750	95.41	0.536
21	0.598	434.70	228.69	180.80	1.168	0.584	0.737	98.49	0.545
22	0.581	455.40	239.58	183.92	1.168	0.584	0.726	101.51	0.552
23	0.566	476.10	250.47	187.32	1.168	0.584	0.714	104.49	0.558
24	0.553	496.80	261.36	190.98	1.168	0.584	0.704	107.42	0.562
25	0.541	517.50	272.25	194.87	1.168	0.584	0.694	110.31	0.566
26	0.532	538.20	283.14	198.96	1.168	0.584	0.684	113.15	0.569
27	0.523	558.90	294.03	203.20	1.168	0.584	0.675	115.96	0.571
28	0.515	579.60	304.92	207.57	1.168	0.584	0.667	118.74	0.572
29	0.508	600.30	315.81	212.04	1.168	0.584	0.659	121.48	0.573
30	0.501	621.00	326.70	216.58	1.168	0.584	0.651	124.18	0.573
31	0.496	641.70	337.59	221.17	1.168	0.584	0.643	126.86	0.574
32	0.490	662.40	348.48	225.78	1.168	0.584	0.636	129.50	0.574
33	0.485	683.10	359.37	230.41	1.168	0.584	0.630	132.12	0.573
34	0.480	703.80	370.26	235.05	1.168	0.584	0.623	134.71	0.573
35	0.476	724.50	381.15	239.67	1.168	0.584	0.617	137.27	0.573
36	0.471	745.20	392.04	244.28	1.168	0.584	0.611	139.81	0.572
37	0.467	765.90	402.93	248.86	1.168	0.584	0.605	142.32	0.572
38	0.463	786.60	413.82	253.41	1.168	0.584	0.599	144.81	0.571

ตารางที่ จ-9 ผลการวิเคราะห์ Liquefaction โดยใช้สมการ Empirical ของเหตุการณ์แผ่นดินไหว San Fernando, USA (1971) ซึ่งมีขนาด 6.6 ริกเตอร์ และ PGA = 1.07g

Z	rd	σ _{vo}	σ ' _{vo}	$\tau_{_{ m cvc}}$	MSF	CSRL	Kσ	τ _{cvc,L}	FS
(m)		(kN/m2)	(kN/m2)	·				• •	
1	0.994	20.70	10.89	0.80	0.901	0.451	2.140	10.50	13.082
2	0.987	41.40	21.78	1.59	0.901	0.451	1.679	16.48	10.343
3	0.979	62.10	32.67	2.37	0.901	0.451	1.457	21.45	9.041
4	0.973	82.80	43.56	3.14	0.901	0.451	1.318	25.86	8.233
5	0.965	103.50	54.45	3.90	0.901	0.451	1.219	29.89	7.670
6	0.958	124.20	65.34	4.64	0.901	0.451	1.143	33.65	7.254
7	0.949	144.90	76.23	5.36	0.901	0.451	1.083	37.20	6.940
8	0.937	165.60	87.12	6.05	0.901	0.451	1.034	40.57	6.703
9	0.923	186.30	98.01	6.71	0.901	0.451	0.992	43.80	6.532
10	0.905	207.00	108.90	7.31	0.901	0.451	0.956	46.90	6.420
11	0.883	227.70	119.79	7.84	0.901	0.451	0.925	49.90	6.366
12	0.857	248.40	130.68	8.30	0.901	0.451	0.897	52.81	6.364
13	0.827	269.10	141.57	8.68	0.901	0.451	0.872	55.63	6.412
14	0.794	289.80	152.46	8.98	0.901	0.451	0.850	58.37	6.502
15	0.761	310.50	163.35	9.21	0.901	0.451	0.830	61.05	6.627
16	0.728	331.20	174.24	9.40	0.901	0.451	0.811	63.66	6.774
17	0.696	351.90	185.13	9.55	0.901	0.451	0.794	66.22	6.932
18	0.667	372.60	196.02	9.69	0.901	0.451	0.778	68.73	7.090
19	0.641	393.30	206.91	9.83	0.901	0.451	0.764	71.19	7.240
20	0.618	414.00	217.80	9.98	0.901	0.451	0.750	73.60	7.376
21	0.598	434.70	228.69	10.14	0.901	0.451	0.737	75.97	7.494
22	0.581	455.40	239.58	10.31	0.901	0.451	0.726	78.31	7.593
23	0.566	476.10	250.47	10.50	0.901	0.451	0.714	80.60	7.673
24	0.553	496.80	261.36	10.71	0.901	0.451	0.704	82.86	7.737
25	0.541	517.50	272.25	10.93	0.901	0.451	0.694	85.09	7.787
26	0.532	538.20	283.14	11.16	0.901	0.451	0.684	87.29	7.824
27	0.523	558.90	294.03	11.39	0.901	0.451	0.675	89.45	7.851
28	0.515	579.60	304.92	11.64	0.901	0.451	0.667	91.59	7.869
29	0.508	600.30	315.81	11.89	0.901	0.451	0.659	93.71	7.881
30	0.501	621.00	326.70	12.14	0.901	0.451	0.651	95.80	7.888
31	0.496	641.70	337.59	12.40	0.901	0.451	0.643	97.86	7.891
32	0.490	662.40	348.48	12.66	0.901	0.451	0.636	99.90	7.891
33	0.485	683.10	359.37	12.92	0.901	0.451	0.630	101.92	7.888
34	0.480	703.80	370.26	13.18	0.901	0.451	0.623	103.92	7.884
35	0.476	724.50	381.15	13.44	0.901	0.451	0.617	105.89	7.879
36	0.471	745.20	392.04	13.70	0.901	0.451	0.611	107.85	7.873
37	0.467	765.90	402.93	13.95	0.901	0.451	0.605	109.79	7.867
38	0.463	786.60	413.82	14.21	0.901	0.451	0.599	111.71	7.861

ตารางที่ จ-10 ผลการวิเคราะห์ Liquefaction โดยใช้สมการ Empirical ของเหตุการณ์แผ่นดินไหว Sumatra, Indonesia (2007) ซึ่งมีขนาด 8.4 ริกเตอร์ และ PGA = 0.06g

Z	rd	σ _{vo}	σ ' _{vo}	$\boldsymbol{\tau}_{_{ ext{cvc}}}$	MSF	CSR	Kσ	τ _{cvc,L}	FS
(m)		(kN/m2)	(kN/m2)	·				• •	
1	0.994	20.70	10.89	0.40	0.901	0.451	2.140	10.50	26.164
2	0.987	41.40	21.78	0.80	0.901	0.451	1.679	16.48	20.686
3	0.979	62.10	32.67	1.19	0.901	0.451	1.457	21.45	18.081
4	0.973	82.80	43.56	1.57	0.901	0.451	1.318	25.86	16.466
5	0.965	103.50	54.45	1.95	0.901	0.451	1.219	29.89	15.340
6	0.958	124.20	65.34	2.32	0.901	0.451	1.143	33.65	14.509
7	0.949	144.90	76.23	2.68	0.901	0.451	1.083	37.20	13.879
8	0.937	165.60	87.12	3.03	0.901	0.451	1.034	40.57	13.406
9	0.923	186.30	98.01	3.35	0.901	0.451	0.992	43.80	13.064
10	0.905	207.00	108.90	3.65	0.901	0.451	0.956	46.90	12.841
11	0.883	227.70	119.79	3.92	0.901	0.451	0.925	49.90	12.731
12	0.857	248.40	130.68	4.15	0.901	0.451	0.897	52.81	12.728
13	0.827	269.10	141.57	4.34	0.901	0.451	0.872	55.63	12.824
14	0.794	289.80	152.46	4.49	0.901	0.451	0.850	58.37	13.005
15	0.761	310.50	163.35	4.61	0.901	0.451	0.830	61.05	13.254
16	0.728	331.20	174.24	4.70	0.901	0.451	0.811	63.66	13.548
17	0.696	351.90	185.13	4.78	0.901	0.451	0.794	66.22	13.864
18	0.667	372.60	196.02	4.85	0.901	0.451	0.778	68.73	14.181
19	0.641	393.30	206.91	4.92	0.901	0.451	0.764	71.19	14.481
20	0.618	414.00	217.80	4.99	0.901	0.451	0.750	73.60	14.752
21	0.598	434.70	228.69	5.07	0.901	0.451	0.737	75.97	14.988
22	0.581	455.40	239.58	5.16	0.901	0.451	0.726	78.31	15.186
23	0.566	476.10	250.47	5.25	0.901	0.451	0.714	80.60	15.347
24	0.553	496.80	261.36	5.35	0.901	0.451	0.704	82.86	15.475
25	0.541	517.50	272.25	5.46	0.901	0.451	0.694	85.09	15.574
26	0.532	538.20	283.14	5.58	0.901	0.451	0.684	87.29	15.648
27	0.523	558.90	294.03	5.70	0.901	0.451	0.675	89.45	15.701
28	0.515	579.60	304.92	5.82	0.901	0.451	0.667	91.59	15.738
29	0.508	600.30	315.81	5.95	0.901	0.451	0.659	93.71	15.762
30	0.501	621.00	326.70	6.07	0.901	0.451	0.651	95.80	15.776
31	0.496	641.70	337.59	6.20	0.901	0.451	0.643	97.86	15.781
32	0.490	662.40	348.48	6.33	0.901	0.451	0.636	99.90	15.781
33	0.485	683.10	359.37	6.46	0.901	0.451	0.630	101.92	15.776
34	0.480	703.80	370.26	6.59	0.901	0.451	0.623	103.92	15.768
35	0.476	724.50	381.15	6.72	0.901	0.451	0.617	105.89	15.758
36	0.471	745.20	392.04	6.85	0.901	0.451	0.611	107.85	15.747
37	0.467	765.90	402.93	6.98	0.901	0.451	0.605	109.79	15.735
38	0.463	786.60	413.82	7.10	0.901	0.451	0.599	111.71	15.722

ตารางที่ จ-11 ผลการวิเคราะห์ Liquefaction โดยใช้สมการ Empirical ของคลื่นแผ่นดินไหว Simulated Sadao ซึ่งมีขนาด 8.4 ริกเตอร์ และ PGA = 0.03g

Element	Max.	Efft. Vertical		$\boldsymbol{\tau}_{_{\mathrm{cyc}}}$	Magnitude			$\boldsymbol{\tau}_{_{\mathrm{cyc},\mathrm{L}}}$	
No.	Shear Stress	Overburden Stress	rd	(=0.65 T _{max})	Scaling	CSRL	Kσ		FS
	(kN/m2)	σ ' _{vo} (kN/m2)		(kN/m2)	Factor			(kN/m2)	
2927	103.00	90.80	0.966	64.69	1.168	0.152	1.019	54.029	0.835
2962	123.00	99.60	0.959	76.70	1.168	0.152	0.986	57.377	0.748
2961	150.00	130.00	0.953	92.95	1.168	0.152	0.899	68.223	0.734
3001	164.00	138.00	0.951	101.33	1.168	0.152	0.880	70.923	0.700
3008	195.00	151.00	0.936	118.63	1.168	0.152	0.853	75.197	0.634
3029	237.00	169.00	0.918	141.41	1.168	0.152	0.820	80.908	0.572
3031	302.00	206.00	0.873	171.32	1.168	0.152	0.765	92.020	0.537
3059	363.00	250.00	0.817	192.80	1.168	0.152	0.715	104.359	0.541
3083	395.00	253.00	0.781	200.50	1.168	0.152	0.712	105.171	0.525
3132	441.00	272.00	0.728	208.57	1.168	0.152	0.694	110.240	0.529
3138	491.00	310.00	0.667	212.89	1.168	0.152	0.663	120.020	0.564
3141	528.00	329.00	0.616	211.37	1.168	0.152	0.649	124.751	0.590
3146	552.00	344.00	0.591	211.97	1.168	0.152	0.639	128.419	0.606
3184	549.00	317.00	0.566	201.87	1.168	0.152	0.658	121.774	0.603
3190	572.00	356.00	0.539	200.53	1.168	0.152	0.632	131.314	0.655
3233	589.00	375.00	0.526	201.43	1.168	0.152	0.620	135.828	0.674
3243	572.00	384.00	0.513	190.64	1.168	0.152	0.615	137.938	0.724
3255	543.00	415.00	0.501	176.99	1.168	0.152	0.599	145.077	0.820
3310	457.00	342.00	0.490	145.42	1.168	0.152	0.641	127.934	0.880
3321	211.00	337.00	0.480	65.86	1.168	0.152	0.644	126.715	1.924
3390	470.00	446.00	0.497	151.74	1.168	0.152	0.584	152.032	1.002
3348	531.00	389.00	0.505	174.38	1.168	0.152	0.612	139.102	0.798
3427	434.00	143.00	0.500	141.12	1.168	0.152	0.869	72.583	0.514
3428	602.00	594.00	0.507	198.21	1.168	0.152	0.528	183.159	0.924
3469	615.00	448.00	0.519	207.36	1.168	0.152	0.583	152.475	0.735
3546	756.00	504.00	0.520	255.29	1.168	0.152	0.559	164.607	0.645
3583	648.00	341.00	0.528	222.35	1.168	0.152	0.641	127.690	0.574
3611	619.00	352.00	0.531	213.48	1.168	0.152	0.634	130.353	0.611
3626	613.00	311.00	0.532	211.78	1.168	0.152	0.662	120.271	0.568
3698	544.00	235.00	0.542	191.82	1.168	0.152	0.730	100.245	0.523
3764	507.00	206.00	0.558	183.79	1.168	0.152	0.765	92.020	0.501

ตารางที่ จ-12 ผลการวิเคราะห์ Liquefaction โดยใช้ผลการตอบสนองทางพลศาสตร์ของเหตุการณ์ แผ่นดินไหว San Fernando, USA (1971) ซึ่งมีขนาด 6.6 ริกเตอร์ และ PGA = 1.07g

Element	Max.	Efft. Vertical		$\tau_{_{ m cyc}}$	Magnitude			$\tau_{_{\rm cyc,L}}$	
No.	Shear Stress	Overburden Stress	rd	(=0.65 T _{max})	Scaling	CSRL	Kσ		FS
	(kN/m2)	G' _{vo} (kN/m2)		(kN/m2)	Factor			(kN/m2)	
3842	466.00	161.00	0.573	173.54	1.168	0.152	0.834	78.398	0.452
3868	457.00	148.00	0.573	170.18	1.168	0.152	0.859	74.223	0.436
3907	426.00	135.00	0.594	164.57	1.168	0.152	0.887	69.917	0.425
3928	420.00	124.00	0.594	162.25	1.168	0.152	0.914	66.159	0.408
3967	390.00	111.00	0.627	158.90	1.168	0.152	0.950	61.564	0.387
4013	359.00	107.00	0.648	151.32	1.168	0.152	0.962	60.113	0.397
4058	343.00	106.00	0.651	145.15	1.168	0.152	0.965	59.747	0.412
4118	309.00	109.00	0.681	136.82	1.168	0.152	0.956	60.841	0.445
4141	287.00	106.00	0.731	136.34	1.168	0.152	0.965	59.747	0.438
4171	276.00	109.00	0.718	128.80	1.168	0.152	0.956	60.841	0.472
4186	258.00	109.00	0.747	125.34	1.168	0.152	0.956	60.841	0.485
4227	237.00	110.00	0.757	116.68	1.168	0.152	0.953	61.203	0.525
4259	218.00	110.00	0.794	112.55	1.168	0.152	0.953	61.203	0.544
4286	190.00	112.00	0.842	103.98	1.168	0.152	0.947	61.924	0.596
4315	167.00	113.00	0.865	93.88	1.168	0.152	0.944	62.283	0.663
4338	152.00	113.00	0.873	86.23	1.168	0.152	0.944	62.283	0.722
4369	127.00	107.00	0.905	74.70	1.168	0.152	0.962	60.113	0.805
4388	117.00	114.00	0.905	68.82	1.168	0.152	0.941	62.641	0.910
4398	113.00	109.00	0.901	66.17	1.168	0.152	0.956	60.841	0.920
4431	88.30	104.00	0.925	53.06	1.168	0.152	0.972	59.012	1.112
4454	69.20	99.70	0.944	42.48	1.168	0.152	0.986	57.414	1.352
4468	58.50	87.80	0.951	36.14	1.168	0.152	1.031	52.861	1.463
4481	49.00	84.90	0.960	30.58	1.168	0.152	1.043	51.720	1.691
4519	25.40	62.20	0.970	16.01	1.168	0.152	1.163	42.250	2.639
4526	23.10	64.50	0.974	14.62	1.168	0.152	1.148	43.259	2.958
4532	4.97	39.20	0.989	3.19	1.168	0.152	1.367	31.297	9.797
4535	3.47	25.70	0.994	2.24	1.168	0.152	1.585	23.786	10.606
4541	3.70	24.80	0.995	2.39	1.168	0.152	1.605	23.241	9.712
4542	2.69	20.60	0.991	1.73	1.168	0.152	1.712	20.601	11.887
4543	4.68	13.90	0.990	3.01	1.168	0.152	1.965	15.952	5.295
4544	2.28	13.20	0.993	1.47	1.168	0.152	2.001	15.426	10.485
4539	9.18	36.20	0.982	5.86	1.168	0.152	1.406	29.719	5.074
4529	20.60	59.90	0.972	13.01	1.168	0.152	1.179	41.228	3.168
4534	12.30	44.70	0.980	7.84	1.168	0.152	1.306	34.085	4.350
4537	10.20	48.80	0.985	6.53	1.168	0.152	1.266	36.086	5.525
4540	14.10	20.20	0.991	9.08	1.168	0.152	1.724	20.340	2.239

ตารางที่ จ-12 (ต่อ) ผลการวิเคราะห์ Liquefaction โดยใช้ผลการตอบสนองทางพลศาสตร์ของ เหตุการณ์แผ่นดินใหว San Fernando, USA (1971) ซึ่งมีขนาด 6.6 ริกเตอร์ และ PGA = 1.07g

ภาคผนวก ฉ.

วิธีการคำนวณการเกิด Liquefaction ด้วยวิธี Simplified method

ผลการวิเคราะห์ Liquefaction โดยใช้สมการ Empirical ของคลื่นแผ่นดินไหว San Fernando, 1971 ซึ่งมีค่าขนาดของแผ่นดินไหว (Mw) เท่ากับ 6.6 ริกเตอร์ และมีค่าอัตราเร่งสูงสุด ของพื้นดิน (PGA) หรือ a_{max} เท่ากับ 1.07g เริ่มด้นจากประมาณค่า Stress reduction factor, r_d (รูปที่ ฉ-1) และคำนวณหาค่าความเค้นรวม (Total Overburden Pressure, σ_{vo}) และค่าความเค้น ประสิทธิผลตามแนวดิ่ง (Effective Overburden Pressure, σ_{vo}) ณ จุดที่พิจารณา ซึ่งในกรณีนี้ พิจารณาที่จุด A (รูปที่ ฉ-2) ในชั้นวัสดุ Filter Material บริเวณฐานเบื่อนทางด้านท้ายน้ำ ซึ่งมีความ ลึกจากสันเบื่อนถึงจุด A ประมาณ 29.00 เมตร (z = 95.14 ft) และคำนวณหาค่าอัตราส่วนความ ปลอดภัยการเกิด Liquefaction โดยมีขั้นตอนการคำนวณดังนี้

1) คำนวณหาค่า au_{cyc}

$$\tau_{cyc} = 0.65 \left(\frac{a_{\max}}{g}\right) \sigma_{vo} r_d$$

1.1) ประมาณค่า r_d จากความสัมพันธ์ดังรูป ฉ-1

รูปที่ ฉ-1 Stress reduction factor

ร**ูปที่ ฉ-2** จุด A ที่พิจารณาการเกิดปรากฏการณ์ Liquefaction โดยใช้สมการ Empirical

จากความสัมพันธ์ดังรูปที่ ฉ-1 ประมาณค่า r_d ได้เท่ากับ 0.508

1.2) คำนวณหาค่า $\sigma_{_{\nu_o}}$ และ $\sigma_{_{\nu_o}}^{'}$ ได้จาก

$$\sigma_{vo} = \gamma h = (20.7 \, kN/m^3) \times (29m) = 600.3 \, kN/m^2$$

$$\sigma_{vo} = (\gamma - \gamma_w)h = (20.7 \, kN/m^3 - 9.81 \, kN/m^3) \times (29m) = 315.81 \, kN/m^2$$

$$\tau_{cyc} = (0.65) \left(\frac{1.07g}{g}\right) (600.3) (0.508)$$

$$\therefore \tau_{cyc} = 212.04 \, kN/m^2$$

คำนวณหาค่า Blow Count, $(N_1)_{60}$ ที่ได้จากการปรับค่ามุมเสียดทานภายใน ($\phi = 36^\circ$) โดย ใช้รูปที่ 3.11 และประมาณค่า SPT ของชั้นวัสดุ Filter material โดยอาศัยความสัมพันธ์ระหว่างค่า มุมเสียดทานภายในกับค่า Standard Penetration Test, N (รูปที่ 3.5) ได้ค่า Blow Count, $(N_1)_{60}$ ประมาณ 30 ครั้ง/ฟุต มาวิเคราะห์หาค่า CSR_{7.5} โดยอาศัยความสัมพันธ์ดังรูปที่ ฉ-3 ซึ่งชั้นวัสดุ Filter Material ของตัวเขื่อนคลองสะเดามีค่า Percent Fines ประมาณ 9% ทำให้สามารถหาค่า CSR_{7.5} ได้ ประมาณ 0.5 และเนื่องจากขนาดของเหตุการณ์แผ่นดินใหวที่พิจารณามีค่าเท่ากับ 6.6 ริกเตอร์ ซึ่ง น้อยกว่า 7.5 ริกเตอร์ จึงต้องทำการปรับแก้ค่า Magnitude Scaling Factor (MSF) ได้เท่ากับ 1.168 (ตารางที่ ฉ-1) และเมื่อปรับเทียบกับค่าอิทธิพลของ Effective Overburden Pressure, K_o ซึ่งชั้นวัสดุ Filter Material มีค่า Dr = 70% ทำให้ได้ค่าปรับแก้ K_oประมาณ 0.66 ดังแสดงในรูปที่ ฉ-4

รูปที่ ฉ-3 กราฟปรับแก้ค่า $\mathrm{CSR}_{7.5}$ กับค่า ($\mathrm{N_1}$)₆₀

ตารางที่ ฉ-1 ค่าปรับแก้เนื่องจากขนาดของแผ่นดินไหว (ริกเตอร์) สำหรับค่า CSR_L (Kramer, 1996)

Magnitude, M	MSF
5.25	1.50
6	1.32
6.75	1.13
7.5	1.00
8.5	0.89

ร**ูปที่ ฉ-4** กราฟการปรับแก้ค่า K_σ

2) คำนวณหาค่า au_{cyc_L}

$$\tau_{cyc,L} = CSR_L\sigma_v$$

2.1) คำนวณหาค่า $\mathrm{CSR}_{\mathrm{L}}$ ใด้จากสมการ

 $CSR_{L} = (CSR_{7.5})(MSF)(K_{\sigma})$ $CSR_{L} = (0.5)(1.168)(0.66) = 0.385$ $\therefore \tau_{cyc,L} = (0.385)(315.81) = 121.73 \, kN/m^{2}$

3) คำนวณค่าอัตราส่วนความปลอคภัยจากสมการ

$$FS = \frac{\tau_{cyc,L}}{\tau_{cyc}} = \frac{121.73}{212.04} = 0.574$$

สำหรับการวิเคราะห์ Liquefaction โดยใช้ผลการตอบสนองทางพลศาสตร์ มีรายะเอียดการ คำนวณเหมือนกับวิธีใช้สมการ Empirical ยกเว้นค่าความเค้นประสิทธิผลตามแนวดิ่ง (Effective vertical stress) และค่าความเค้นเฉือนสูงสุด (Maximum shear stress) นอกจากนี้การคำนวณหาค่า Tcyc สามารถคำนวณได้จาก Tcyc = 0.65Tmax สำหรับค่าอื่นๆ รวมถึงการปรับแก้ต่างๆ มี รายละเอียดเช่นเดียวกันกับวิธีใช้สมการ Empirical

การเผยแพร่ผลงานวิทยานิพนธ์ ก.

The 5th PSU-UNS International Conference on Engineering and Technology (ICET- 2011), Phuket, May 2-3, 2011

Prince of Songkla University, Faculty of Engineering, Hat-Yai, Songkhla, Thailand

DYNAMIC RESPONSES OF KLONG SADAO DAM: A PRELIMINARY STUDY

Thitinan Indhanu¹, Tanan Chub-uppakarn^{2*}, Tanit Chalermyanont^{3*}

^{1,2,3}Prince of Songkla University, Faculty of Engineering, Thailand *Corresponding Author email: tanit.c@psu.ac.th, tanan2284@gmail.com

Abstract: Klong Sadao Dam, the largest dam in Songkhla, Southern Thailand, is located next to Thai-Malaysian border with water storage capacity of 56.74 million cubicmeter. Downstream areas include Sadao, Klong Hoi Kong, Bang klam and Hat Yai Districts with total population of 530,692. A major earthquake of 9.0 Richter that caused tsunami on 27th of December 2004, have raised concern about stability of Klong Sadao Dam to local people and authorities. The objective of this study was to evaluate the dynamic responses of Klong Sadao Dam subjected to an earthquake. Simulated maximum horizontal ground acceleration of 0.65g was used and dam responses were calculated. Simulation results showed that horizontal acceleration of the dam increased with its height. Maximum horizontal dam displacement of 0.1054 meter was founded at the crest of the dam.

Key Words: Klong Sadao Dam / Dynamic Response / Earthquake /Peak Ground Acceleration

1. INTRODUCTION

Klong Sadao dam was built in 1989 to meet future demand of water supply of Hat Yai and Songkhla areas. Klong Sadao dam project involved construction of storage dam across Sadao river, one of the major tributary of U-Tapao river which was the present raw water source. The function of the dam is to augment dry season flows in U-Tapao river to meet the raw water demand of the Hat Yai-Songkhla Waterworks [1]. The dam site is located next to the Thai-Malaysian border at Ban Huai Khu, approximately 10 km in the southeastern direction of the Sadao District, Songkhla Province. The catchment area is 89.9 square kilometers and water storage capacity is 56.74 million cubic meters. The main dam is zoned earthfill having height of 38.50 meters (from bottom of cutoff trench). The crest and foundation elevations of the dam are 72.50 m MSL., and 34.00 m MSL, respectively [1].

Generally a dam is a large facility with low chance of failure but high damage is expected if failure occurs. Klong Sadao dam is located in earthquake watching area according to Thai Building Code (1997) [2] thus, residents of downstream areas including Sadao, Klong Hoi Kong, Bang Klam and Hat Yai districts are concerned about stability of Klong Sadao dam particularly after a major earthquake of 9.0 Richter that caused tsunami on 27th of December 2004. The objective of this preliminary study was to evaluate dynamic response of Klong Sadao dam subjected to a simulated earthquake having the magnitude of 8.8 Richter and peak ground acceleration of 0.65g. Dynamic properties such as natural period, shear wave velocity and maximum shear modulus of the dam were determined. Horizontal displacement and acceleration of the dam were calculated.

2. SEISMICITY AND EARTHQUAKE

The seismicity of Klong Sadao dam was determined based on the seismic data recorded by the International Seismological Center, U.K. and Thai Meteorological Department, covered all of the earthquakes with epicenters located within 500 kilometers from Klong Sadao dam [1] as shown in Figure 1. The major active faults in the area are Ranong and Klong Ma Rui faults which showing, so far, low seismic activity. However, for the major earthquakes, their epicenters were located in Sumatra, Indonesia with maximum magnitude of 9.0 Richter.

Fig. 1. Seismicity map in study area adopted from [1].

3. KLONG SADAO DAM IMFORMATION

The Klong Sadao dam is an earthfill dam consist of main dam, saddle dam, reservoir and spillway. Three materials were used in the construction of the dam as shown in Figure 2. The impervious earth was made by clay. The random material consisted of weathered sandstone, shale and mudstone. The filter material was made of sand [1]. The shear strength parameters of dam materials are tabulated in Table 1.

Fig. 2. Cross Section of Klong Sadao Dam.

e	e dtion		Veight /m ³)	(kN/m ²)	riction egree)
Zon	Descrip	Wet	Saturated	Cohesion (Internal F Angle (d
1	Impervious				
	Earth	18.04	18.83	45.10	13
2	Random				
	Material	20.50	21.47	21.50	29
3	Filter				
	Material	19.12	20.10	0.00	30

Table 1. Properties of dam materials [1].

4. FINITE ELEMENT MODELLING

The dam was modeled by two dimensional (2-D) finite element method (QUAKE/W) consisted of 2,380 nodes and 4,545 elements. The bottom of the dam was modeled as fixed boundary in both vertical and horizontal directions as shown in Figure 3. For full reservoir condition, the max mean effective stress of the dam was 427 kPa, as shown in Figure 4.

Fig. 3. Finite element mesh of Klong Sadao Dam.

Fig. 4. The mean effective stress of the dam (kPa) in full reservoir condition.

5. DYNAMIC ANALYSIS

5.1 Determine Dynamic Properties

Maximum Shear Modulus and Shear Wave Velocity

The measured maximum shear modulus (G_{max}) data were not available for Klong Sadao dam, thus they were calculated based on their available data such as cohesion, internal friction angle and standard penetration resistance. The maximum shear modulus values of the dam materials were calculated using an equation proposed by Seed et al. [3] (Eq. 1). When maximum shear modulus obtained, it is possible to calculate the shear wave velocity using the relationship of elastic continuum mechanics as shown in Eq. (2). The calculated maximum shear modulus and shear wave velocity of Klong Sadao dam are tabulated in Table 2.

$$G_{\rm max} \approx 35 \times 1000 (N_{60})^{0.34} (\overline{\sigma_0})^{0.4}$$
 (1)

$$G_{\rm max} = \rho V_s^2 \tag{2}$$

where G_{max} is maximum shear modulus, lb/ft^2 in Eq. (1) and kPa in Eq. (2), N₆₀ is N-value measured in SPT test delivering 60% of the theoretical free-fall energy to the drill rod, $\overline{\sigma_0}$ is effective confining pressure (lb/ft²), V_s is shear wave velocity (m/s) and ρ is density of material (kg/m³).

Table 2.	Calcu	lated i	maxin	num sl	iear	modı	ulus	and s	shear	
	wave	veloci	ity of	Klond	Sac	lan d	lam	mai	torials	

mare reloci	iy of mong buudo	uum maientait
	Maximum Shear	Shear Wave
Materials	Modulus, G _{max}	Velocity, V _s
	(kPa)	(m/s)
Impervious Zone	80,343.33	204.56
Random Material	81,669.89	193.11
Filter Material	89,175.51	205.58

Modulus Reduction (G/G_{max}) and Damping Ratio Curves

As suggested by Ishibashi and Zhang (1993)[4], the relationships between the modulus reduction factors and damping ratio and cyclic shear strain were calculated using effective confining pressure and plasticity index based on Eq. (3) and (4), respectively, and shown in Figure 5. The effective confining pressure and plasticity index [1] of Klong Sadao dam used in the calculation are shown in Table 3.

$$\frac{G}{G_{\max}} = K(\gamma, PI) \left(\sigma_m\right)^{m(\gamma, PI) - m_0}$$
(3)

$$\xi = 0.333 \frac{1 + \exp(-0.0145PI^{1.3})}{2} \left[0.586 \left(\frac{G}{G_{\text{max}}}\right)^2 - 1.547 \frac{G}{G_{\text{max}}} + 1 \right] (4)$$

where G/G_{max} is modulus reduction, σ_m is effective confining pressure (kPa), PI is plasticity index, ξ is damping ratio (%), γ is cyclic shear strain and,

$$K(\gamma, PI) = 0.5 \left\{ 1 + \tanh\left[\ln\left(\frac{0.000102 + n(PI)}{\gamma}\right)^{0.492} \right] \right\}$$
$$m(\gamma, PI) - m_0 = 0.272 \left\{ 1 - \tanh\left[\ln\left(\frac{0.000556}{\gamma}\right)^{0.4} \right] \right\} \exp(-0.0145PI^{1.3})$$
$$n(PI) \begin{cases} 0 & \text{for } PI = 0\\ 3.37 \times 10^{-6} PI^{1.404} & \text{for } 0 < PI \le 15\\ 7.0 \times 10^{-7} PI^{1.976} & \text{for } 15 < PI \le 70\\ 2.7 \times 10^{-5} PI^{1.115} & \text{for } PI \ge 70 \end{cases}$$

Table 3. *The calculated effective confining pressure and plasticity index of Klong Sadao Dam* [1].

Materials	Effective Confining Pressure, σ'_m (kPa)	Plasticity Index, PI
Impervious Zone	86.86	25
Random Material	112.27	0
Filter Material	104.85	0

Fig. 5. *The modulus reduction and damping ratio curves used in the analysis.*

Natural Period

The natural period of dam is significant in dynamic analysis because the resonance will occur if the natural period of dam coincides with the period of ground motion excitation. The natural period of Klong Sadao dam was determine using equation proposed by Gazetas and Dakoulas (1991) [5] as shown in Eq. 5. The calculated natural periods of the dam are tabulated in Table 4. Results show that the natural periods of the dam ranged from 0.4 - 0.5 second.

$$T_D = \frac{2.61H}{V_s} \tag{5}$$

where T_D is natural period of dam (sec), H is maximum height of the dam or embankment (m) and V_s is shear wave velocity (m/s).

Table 4. Calculated	natural	period	of	Klong	Sadao	dam
materials.						

Natural Period of the dam, T_D (sec)				
0.493				
0.491				
0.452				

5.2 Dynamic Response

The maximum peak ground acceleration of Klong Sadao dam as shown in Thailand hazard map for PGA corresponding to a probability of exceedance of 10% in 50 years [6] was 0.02 - 0.04g. However, to be able to determine the seismic resistant of the dam, ground motion data having the magnitude of 8.8 Richter and 0.65g of peak ground acceleration (PGA) as shown in Figure 6 was used. This ground motion was recorded from accelerogram at Colegio San Pedro by USGS [7].

Fig. 6. The ground motion used in dynamic analysis.

The dynamic response of Klong Sadao Dam was achieved via 2D-finite element method (QUAKE/W). An earthquake with peak ground acceleration (PGA) of 0.65g was used to induce the dynamic behaviors of the dam. The deformed finite element mesh (Figure 7), showed the horizontal displacement of the dam. It was found that the maximum horizontal displacement of 0.1054 meters occurred at the crest of the dam. The calculated horizontal acceleration of the dam significantly increases with dam height and it's was scaled up to 1.16g also at the crest of the dam as shown in Figure 8. Furthermore, the maximum shear stress and maximum shear strain of the dam, founded at base of the dam near the impervious core zone, were 238 kPa and 0.49% respectively, as shown in Figure 9 and Figure 10.

Fig. 7. Deformed finite element mesh showing horizontal displacement.

Fig. 8 Horizontal acceleration and displacement results in the impervious earth zone.

Fig. 9 The maximum shear stress (kPa) of the dam in full reservoir condition.

Fig. 10 The maximum shear strain of the dam in full reservoir condition.

6. CONCLUSION

A preliminary study of the dynamic response of Klong Sadao dam was achieved via a 2-D finite element analysis using a peak ground acceleration of 0.65g as simulated ground motion. Dynamic properties of the Klong Sadao dam were calculated based on available dam properties. The calculated maximum shear modulus and shear wave velocity ranged from 80,343 - 89,176 kPa and 193 - 206 m/s, respectively. In addition, the calculated natural period of the dam ranged from 0.4 - 0.5 second.

Simulation results showed that the displacement and acceleration of the impervious core zone increased with increasing dam height. At the crest of the dam, the maximum horizontal displacement was 0.1054 meters that equaled to horizontal deformation to dam height ratio of 0.27% and the maximum horizontal acceleration was 1.16g.

The maximum shear stress and maximum shear strain of the dam were decreased with increasing dam elevation. Furthermore, the maximum shear stress and maximum shear strain of the dam, founded at base of the dam near the impervious core zone, were 238 kPa and 0.49%, respectively.

Results of this preliminary study showed that, eventhough the dam was excited by the simulated earthquake having ground motion of 0.65g which was much hinger than local ground motion, it's responses found in this study showed no significant dam hazard. The Klong Sadao dam was safe from the simulated earthquake. However, in order to have better understanding of dynamic response of the Klong Sadao dam, more analysis should be made. Determination of permanent deformation and liquifaction of the dam is being conducted by the authors to ensure the stability of the dam.

7. ACKNOWLEDGEMENT

The author would like to thank Dr.Suttisak Soralump and Dr.Warakorn Mairaing of Kasetsart University for available data and discussion.

8. REFERENCES

- Team Consulting Engineers Co., Ltd. and Nippon Koei Co., Ltd., 1989. Klong Sadao Dam Project Design Report. Royal Irrigation Department, Ministry of Agricultural and Cooperatives, Thailand.
- [2] Thai Building Code. 1997. The Department of Public Works and Town & Country Planning. Thailand.
- [3] Seed, H.B., Wong ,R.T., Idriss, I.M., and Tokimatsu, K. (1986). Moduli and damping Factors for Dynamic Analyses of Cohesive Soils. Journal of Geotechnical Engineering, ASCE, Vol. 112, No. GT11, pp. 1016-1032.
- [4] Ishabashi, I. and Zhang, X. (1993). Unified dynamic shear moduli and damping ratios of sand and clay, Soil and Foundations. Vol. 3, pp. 321-376.
- [5] Gazetas, P., Dakoulas, P., 1991. Seismic analysis and design of Rockfiil dams. Soil Dyn. Earthqu. Eng. 11, 27-61.
- [6] Ornthammarath, T., Sigbjornsson, R., Warnitchai, P., Worakanchana, K., Zaman, S. and Lai, C.G. (2010). Probabilistic seismic hazard assessment for Thailand. Bull Earthquake Eng. Springer Science+Business Media B.V. 2010.
- [7] United States Geological Survey (USGS). 2010. Significant Earthquake and News Headlines Achieve.

ประวัติผู้เขียน

ทุนการศึกษา

ทุนศิษย์กันกุฏิกณะวิศวกรรมศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ปีการศึกษา 2552 - 2553

การตีพิมพ์เผยแพร่ผลงาน

Thitinan Indhanu, Thanan Chub-uppakarn and Thanit Chalermyanont., (2011). Dynamic Response of Klong Sadao Dam: A Preliminary Study. The 5th PSU-UNS International Conference on Engineering and Technology (ICET 2011), Phuket, May 2-3, 2011.