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ABSTRACT 

 

  This thesis proposes theoretical approaches for forces acting on a 

spheroid in traveling wave electric field. The field was generated by an octa-pair 

interdigitated electrode array, made of gold depositing on a glass slide, and the fed 

signals were from a variable phase shift unit. Magnitude of the force was represented 

by means of velocity which is frequency dependent. Previous Laplace approach and 

RC-model have been extended and compared for a simpler method to reveal dielectric 

properties of a spheroid. Both methods showed force/velocity relationships, which 

were explained by real and imagination part of the Clausius-Mossotti Factor (CMF), to 

reveal dielectric values of cell membrane and its interior. Verifications of these 

theoretical approaches were made using yeast cells (Saccharomyces cervisiate TISTR 

5088) and later phytoplankton, Tetraselmis sp. after pretreatment with several arsenic 

levels. 

            Velocity spectrum of a spheroid was obtained by measuring cell 

velocity during its moving towards the electrode tip, under various field frequencies. 

Lower critical frequency (
λf ), where the spheroid was repelled (i.e. negative force) 

from the tip after being attracted, was recorded against the conductivity of cell 

suspension medium ( sσ ). It was observed that as the sσ was increased the 
λf  was 

shifted towards a higher frequency value. It should be noted that cell velocity spectra 

were reduced significantly under greater sσ value. According to the new approaches, 

when the increased sσ reached a critical value the attractive force became negligible, 

implying an equivalence to the cytoplasmic conductivity. Yeast cells of 1.15 x 10
5
 

mλ
-1

 displayed positive dielectrophoretic force over a frequency ranged between 50 
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kHz and 30 MHz, when increasing sσ  from 0.01 to 0.30 S.m
-1

. The velocity spectrum 

was affected by sσ of which the cells were suspending during the experimentation. An 

abrupt change in the velocity pattern explained non homogeneous phase, cell 

membrane and cytoplasm, only if the sσ was small. Decreasing sσ , there was a 

slightly shift of the prominent peak of the velocity spectrum towards a lower 

frequency value. By curve-fitting method, it was proved that dielectric values of yeast 

were similar to what were reported using other methods. The cytoplasmic and the 

membrane conductivity for yeast cells were 0.25 S.m
-1

 and 0.1 µ S.m
-1

, respectively.  

           When sσ  was less than 0.30 S.m
-1

, Tetraselmis sp. experienced the 

positive dielectrophoretic force where the lower critical frequency (
λf ) remained 

unchanged at 50 kHz. However, when the sσ  reached 0.30 S.m
-1

 and beyond untill 

0.10 S.m
-1

, the 
λf  was shifted from 200 to 500 kHz. Comparing cell density between 

10
5 

and 10
7
  mλ

-1
, there was no difference in the velocity spectra, indicating that cell 

movement was solely affected by the external field during experimentation and the 

density was in an acceptable range for this verification. It should be noted that 

increasing the electric field strength only affected the force magnitude. In all 

experiments, the higher critical frequency (
hf ) was not found. When the imaginary 

part of the CMF was plotted using the appropriate dielectric values estimated from the 

real part, the 
hf  was about 50 MHz. This explained why there was no evidence 

revealing the 
hf  from these approaches. Doubts were brought towards electrode 

spacing, creating a weak electric field. Cells were induced in the electric field 

strengths of 14 kV.m
-1

, 28 kV.m
-1

, 57 kV.m
-1 

and 143 kV.m
-1

, by increasing the 

applied voltage from the lower to the upper limit of the generator used for the present 

study i.e. 1, 2, 4 and 10 Vpp, respectively. Evidence confirming this explanation was 

that the cells were not repelled from the electrodes, resulting in no cells being 

collected in the middle of the electrode array. Hence, the imagination part developed 

in this study was remained for a future work. Under 28 kV.m
-1

field strength and sσ  of 

0.01 S.m
-1

, the velocity spectrum showed the prominent peak at 9.4 µm.s
-1

 (
cDEPv
ρ

) 

under 200 kHz. Between 0.03 and 0.10 S.m
-1

, the spectra were transformed to a bell 
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shape with the plateaus (i.e. a gradually changing in cell velocity) reduced from 5.2 to 

3.5µm.s
-1

, respectively. The frequency dependences of these plateaus occupied the 

range between 500 kHz and 10 MHz. Under the low sσ , increasing the field strengths 

from 28 to 143 kV.m
-1

 enhanced the velocity to as much as 29 µm.s
-1

, and the 

maximum dielectrophoretic DEP force (DEP force) was estimated to be 6.09× 10
-14

 N 

(or 6.09× 10
-2

 pN). Increasing the sσ stepwise from 0.03 to 0.06 and 0.10 S.m
-1

, the 

magnitudes of 
cDEPv
ρ

spectra were decreased significantly from 0.65 to 0.58 and 

0.44 1
µm.s− , respectively. At 28 kV.m

-1
 and 0.01 S.m

-1
; maximum value of 

cDEPv
ρ

 was 

found to be 9.6 1
µm.s−  at 300 kHz which correspond with DEP force 1.93× 10

-14
 N (or 

1.93× 10
-2

 pN). By curve fitting, the cytoplasm and the membrane conductivity for 

Tetraselmis sp. were 0.37 S.m
-1

 and 1.7µ S.m
-1

, respectively. In addition, this study 

also showed that with the manufactured tool it was possible to distinguish viable from 

non-viable cells if these were mixed in the same solution. 

           On the effects of arsenic absorption, the DEP velocity (
cDEPv
ρ

) spectra 

and the lower critical frequency of Tetraselmis sp. were investigated for a comparison, 

over the frequency range from 1 kHz to 30 MHz. It occurred that under 28-143 kV.m
-1

 

field strengths the cells exhibited positive DEP only if the medium conductivity sσ  

was ranged from 0.01 to 0.30 S.m
-1

. Increasing arsenic level from 1 to 150 ppm 

reduced the magnitude of 
cDEPv
ρ

 and shifts the 
λf  to a lower value. When the control 

and the arsenic contaminated cells were combined in between the electrode array, one 

can distinguish the control from the arsenic pretreated cells if the conditions used were 

the same. However, the 
λf  shift was small comparing with the 150 ppm 

contamination. Theoretically, lower 
λf  indicates an increase in membrane permittivity. 

From our previous study, arsenic accumulated increased the cell membrane 

conductance without affecting cell growth, only if arsenic level was not greater than 

100 ppm. With the increased arsenic level, the relative permittivity of the cell 

membrane was changed from 10 to 32. The electrical conductivity of the cytoplasm 

and the cell membrane was 0.03 S.m
-1

 and 3.0 µ S.m
-1

, respectively.  
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           In conclusion, the specific capacitance (
mC ) and conductance (

mG ) of 

the membrane in all cases were calculated. The results showed that 
mC  and 

mG of 

living and dead yeast cells were 11.06 mF.m
-2

, 8.33 S.m
-2

 and 18.44 mF.m
-2

, 

33.33 3
10×  S.m

-2
, respectively. The values of 

mC  and 
mG of the controlled Tetraselmis 

sp. were 5.45 mF.m
-2

 and 13.08 S.m
-2

, respectively, which were smaller than that of 

the arsenic pretreated cells. For 1, 5, 10, 50, and 150 ppm pretreated cells, 
mC  were 

6.81, 8.17, 10.89, 14.30 and 21.79, respectively. It was interesting that while the 

mC values of the arsenic pretreated cells were increased, the value of 
mG remained 

constant and the conductivity of cell membrane ( mσ ) was 23.08 S.m
-2

.    
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5.14 
The dielectrophoretic spectrum of Tetraselmis are affected by (a) the 

conductivities of the suspending medium (b) the electric field 

strengths while it is not clearly for (c) cell densities. Theoretical 

curves (the solid lines) were plotted by using the dielectric 

parameters as shown in Table 5.1. 
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5.15 
Cell-to-Cell interaction calculated from the superposition of energy 

method. Total work to bring two polarizable spheroids to the center-

to-center separation of r was plotted against the ration of r/R. 

Theoretical curve was plotted by using the following parameters:

 

..101

,0.1]Re[,.01.0,.17.0,.37.0

,78,8,48,13),5(8,8,10

22102

111

−

−−−

×≅

====

====≈===

mVE

CMFmSmSmS

nmmRmcmbma

smc

smc

σµσσ

εεεδµµµµ

 

 

 

 

 

 

125 

6.1 
Comparisons of critical frequencies between 1.15 x 10

5
 and 5.75 x 

10
4 

 cell.mλ
-1

 yeast cells when the electric field strengths were 

increased from (a) 28 kV.m
-1

, (b) 57 kV.m
-1 

and (c) 143 kV.m
-1

, 

respectively. 
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6.2 
A comparison of experimental critical frequencies of yeast cells for 

(a) 1.15 x 10
5
 cell.mλ

-1 
and (b) 5.75 x 10

4 
cell.mλ

-1
 when the electric 

field strengths were changed. 
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6.3 
Experimental critical frequencies of Tetraselmis for 9.2 x 10

6
 and 4.0 

x 10
5 

cell.mλ
-1

were plotted when electric field strengths were 

increased from 28 kV.m
-1

to 143 kV.m
-1

, respectively. 
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6.5 
Data fitting of the lower critical frequencies for S.cervisiate. The 

theoretical curve was plotted by using the parameters as shown in 

Table 6.1. 
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6.6 
Data fitting of the lower critical frequencies for Tetraselmis.  The 

theoretical curve was plotted by using the parameters as shown in 

Table 6.1. 
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7.1 
Comparisons of dielectrophoretic velocity spectra of the control and 

heated S. cervisiate when (a) sσ = 0.01 S.m
-1

 and (b) sσ = 0.04 S.m
-

1
. Cell density was 1.15x10

5
 cells.ml

-1
 and electric field strength was 

28 kV.m
-1

. Curve-fitting were drawn as the solid line to obtain cells 

dielectric parameters as shown in Table 7.1. 
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7.2 
Comparison of λf of the controlled and heated S. cervisiate (a). The 

curve-fitting of heated cell below 0.04 S.m
-1

is extended in (b). The 

solid line is theoretical curves plotted by using the parameters as 

shown in Table 7.1. 

 

 

 

153 

7.3 
Dielectrophoretic velocity spectra of Tetraselmis suspended in 0.01 

S.m
-1

 when electric field strength (E) was 28 kV.m
-1

. The theoretical 

lines were drawn by using the following parameters: 1S.m01.0 −=sσ ,
 

16 S.m103 −−×=mσ , 1S.m37.0 −=cσ , 48=cε , 78=sε , 10=a , 

m8µ== cb and 13=δ nm. 
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7.4 
Effect of concentrations of arsenic solution on the lower critical 

frequency spectra of the arsenic pretreated Tetraselmis compared 

with the controlled cells. Experimental data (dots) were obtained 

from the experimentation which used the electric field strength E= 28  

kV.m
-1

 and sσ = 0.01 S/m.  
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7.6 
Plots of ]CMFRe[  and ]CMFIm[ of the controlled and the heated 

S.cervisiate by using the dielectric parameters as shown in Table 7.1. 

Three frequency ranges were indicated at the lower, intermediate and 

the higher frequency which relate with
cDEPF
ρ

 and
twDEPF
ρ

, where λf  

and hf are the critical frequencies of
cDEPF
ρ

 at the lower and the higher, 

respectively. 
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8.1 
Top view of the cell being repelled from the electrode tip showed the 

resultant force RF
ρ

(a) acting on the cell where the strong propagating 

field area was shown in side view (b). 
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8.2 
Plot of magnitude of travelling wave dielectrophoretic velocity 

(
twDEPv
ρ

 ) of the controlled yeast cells by using the dielectric 

parameters shown in Table 6.1. 
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8.3 
Plot of magnitude of travelling wave dielectrophoretic velocity 

(
twDEPv
ρ

 ) of the controlled Tetraselmis by using the dielectric 

parameters shown in Table 6.1. 
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8.4 
Plots of ]CMFRe[  and ]CMFIm[ of the controlled and the boiled yeast 

cells by using the dielectric parameters as shown in Table 7.1. Three 

frequency ranges were indicated at the lower, intermediate and the 

higher frequency which relate with
cDEPF
ρ

±  and
twDEPF
ρ

±   at the lower 

and the higher, respectively. 
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8.5 
Comparisons of ]CMFRe[  and ]CMFIm[ of (a) the controlled and the 

1 ppm arsenic pretreated Tetraselmis sp. cells and several of (b) 5, 10, 

50, 150 ppm arsenic concentrations. All curves were plotted by using 

the dielectric parameters as shown in Table 7.1.  
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 An Overview of the Present Study 

 

 

           Traveling wave dielectrophoresis (twDEP), closely related to the 

conventional dielectrophoresis (cDEP), has shown potential applications in medical 

diagnostics, drug delivery and biological cell therapeutics in terms of selectivity, 

isolation, concentration, purification and separation of bio-particles mixtures (Talarly 

et al., 1996; Pethig et al., 2003). In principle, twDEP is the phenomenon resulting 

from interactions between traveling electric field and the induced electric dipole 

moment of cell or dielectric particle suspended in such field (Hagedorn et al. 1992; 

Huges, 2000). Normally, traveling electric field could be generated by using multi-bar 

electrode with different electric phase such as interdigitated electrode. Previously, 

twDEP studies were reported using a planar linear interdigitated electrode of one array 

(Masuda et al., 1988; Huges, 2000; Jones, 2003; Pethig et al., 2003) and then two 

parallel arrays (Fuhr et al., 1991; Hagedorn et al. 1992; Wang et al., 1995; Talarly et 

al., 1996; Fu et al., 2004). The driven electric field was generated by sinusoidal 

quadrature-phase voltages. A phase sequence addressed to the electrodes had been 

described in details elsewhere (Fuhr et al., 1991; Wang et al., 1995; Huge, 2000; 

Jones, 2003; Pethig et al., 2003; Fu et al., 2004).  

For two parallel interdigitated electrode (TPI) arrays, the Clausius - 

Mossotti factor [CMF], the factor concerning the dipole moment of the cell,  

composed of real (Re[CMF]) and imaginary (Im[CMF]) functions determined by the 

complex conductivity and permittivity of the cell in combination with the cell 

medium. These functions are frequency dependent and hence might affect the cell by 

either collecting it at the TPI or pushing it through electrode central channel, 

respectively. The negative value of Re[CMF] results in the negative cDEP force and 

the cell being repelled from the electrode, represented by a negative velocity, and vice 
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versa. The mathematical model for the frequency dependence of cDEP force including 

the traveling force in the middle of the central channel, for a sphere in traveling wave, 

was firstly derived by Wang et al. (1995). These two forces are each orthogonal. This 

allows, in principle, cells with different properties to be separated by choice of an 

appropriate frequency range. 

           The present study is the first time to determine forces acting on a 

spheroid (one kind of an ellipsoid whose any two semi-axes is equal) in travelling 

electric field. The mathematical model has further extended from the spherical model 

(Wang et al., 1995) to the spheroid by using the Laplace method to explain cell 

velocities in travelling electric field in term of cell dielectric properties. Also, 

impedance (RC model) approach proposed by Gimsa and Wachner (1998) was 

developed to express two boundary frequencies for positive DEP at lower )( λf and 

higher )( hf frequency, the so called “critical frequency”. Yeast cells, Saccharomyces 

cervisiate, and phytoplankton, Tetraselmis sp., were used as the spheroidal model. 

Also, comparison studies between living and dead cells of S.cervisiate including 

arsenic pretreated Tetraselmis were made and cell dielectric properties of these cells 

were determined through the functions of the cell velocity and two critical frequencies.     

 

 

1.2 The Conventional Dielectrophoresis (cDEP) 

 

            The phenomenon of the conventional dielectrophoresis (cDEP) is the 

translational motion of dielectric particles and biological cells in a non-uniform 

electric field due to polarization effects. When a cell is polarized, the dipole moment 

)(µ
ρ

of the cell interior interacts with the electric field gradient )( E
ρρ

∇ . Interaction 

between the dipole and the electric field leads to a net translational force, the so called 

“dielectrophoretic force” (DEP force). The net (time-average) DEP force )( DEPF
ρ

 

(Pohl, 1978) was defined as 

EFDEP

ρρρρ
).( ∇= µ                                                                                                          (1.1) 
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where EVs

ρρ
]CMF[0

∗= εεµ , and 0ε , 
∗

sε  and V represent permittivity of vacuum 

( 121085.8 −× 1
F.m

− ), the complex relative permittivity of the suspending medium and cell 

volume, respectively. The DEPF
ρ

 causes cell translation in which its magnitude 

determines the cell speed. The direction of the translation is either towards or away 

from a region of the stronger electric field, depending on whether the relative 

permittivity and the conductivity of the cell is greater or less than that of a suspending 

medium, respectively. As reported previously by Landau and Lifschitz (1985) and 

later by Jones (1995), and Gimsa and Wachner (1999), a comparison between the two 

dielectric properties was deduced in terms of a frequency-dependent complex function 

known as the Clausius-Mossotti factor ([CMF]), which is,  

 

kseffs

seff

L)(
[CMF] ∗∗∗

∗∗

−+

−
=

εεε

εε
,                                                                                        (1.2) 

 

where 
∗
eff
ε and kL  is the effective complex relative permittivity of the whole cell and 

a depolarization factor, respectively. The [CMF] description is based on the 

knowledge of the electrical cell model in which 
∗
eff
ε describes dielectric properties of 

the cell.  

            For the present study, 
∗
eff
ε was extended for a spheroid and clarified in 

term of a (relative) permittivity and conductivity of a cell membrane and cytoplasm.  

                

 

1.3 Techniques for Estimation of Cell Dielectric Properties via DEP 

 

 

           Cell electro-mechanics are non-invasive techniques which can be 

employed to study cell behaviors such as dielectrophoresis and electro-rotation. Many 

researchers (Pohl, 1978; Pohl and Crane, 1971; Gimsa et al, 1991; Jones, 1995; Zhou 
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et al. 1995 and 1996; Mahaworasilpa et al, 1994 and 1996; Radu et al, 1996; 

Wanichapichart et al., 2002) have explained these behaviors and formulated equations 

to estimate cell properties in measurable terms such as critical and characteristic 

frequencies, cell velocity, and angular velocity. In all cases, experimental data was 

collected and plotted so that the equations could be verified by curve fittings. Such 

experiments were conducted using small organisms, of a few micron such as yeast 

cells (S. cervisiate) (Raicu et al., 1996), Chlorella sp. and Tetraselmis sp. 

(Wanichapichart et al., 2002a) to cells of around a hundred micron such as Lilium 

longiforum or even larger cell like Dendrobium protoplast (Wanichapichart et al., 

2002b). All of these cells are too small for a direct dielectric measurement and 

dielectrophoresis provides a tool to determine these dielectric parameters and gain an 

estimate of the membrane thickness.  

           Cell electro-mechanics techniques, however, have advantages and 

drawbacks. The technique is suitable for a single cell and requires high intensity 

electric field (kilovolt/meter) to induce cell translation or rotation. Also, the electric 

fields at the lower frequency may cause Joule-heating - rather harmful to the cell. 

Another method is dielectric spectroscopy, for characterization of cell suspensions 

under low intensity electric field (less than kilovolt/meter). The latter method, as 

proposed by Asami et al. (1996), requires an impedance analyzer connected to 

dielectric probes which are immersed directly in the cell suspensions. Although, it 

consumes less time than the former method, Bunthawin and Boonlamp (2005) 

suggested that it might be costly and hence not suitable for preliminary studies. In this 

respect, the electro-mechanics was chosen for this study, since it relies on some 

measurable experimental data such as velocity of the cell translation 

)( cDEPv
ρ

(Mahaworasilpa et al., 1994). Previously, a single cell was carefully selected 

and cell velocity was recorded at a corresponding field frequency. The real part of 

[CMF] was plotted against field frequency and curve fitting was made so that 

dielectric parameters could be estimated (Mahaworasilpa et al., 1994; Wanichapichart 

et al., 2002a). The method was, however, rather tedious and time consuming. The 

accuracy of the velocities obtained in such method was also questionable, since the 

uniform velocity required for the measurement could be achieved only in a short 

period, leading to some uncertainties in the data collected.  
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           Some workers reported an alternative method by recording two critical 

frequencies ),( hffλ of DEP instead (Gimsa et al., 1991). Gimsa and his colleagues 

proposed that two critical frequencies lead to estimations of dielectric values of 

spherical and ellipsoidal cells. Theoretically, the two frequencies were expressed in 

term of the angular frequency )2( fπω =  through the Laplace approach which relates 

directly to the Re[CMF], and becomes zero. The data fitting results in estimations of 

the cell’s electrical properties such as conductivities and dielectric constants, 

depending on the geometric structure of the assumed model for the cell.  

            In 1998, Gimsa and Wachner proposed that applying the Laplace 

approach to an ellipsoid raised “the confocal shell problem”. They believed that the 

Laplace description of biological cells or evenly coated dielectric particles by the 

common confocal spheroidal models may lead to large errors in the case of extreme 

axis ratios. These errors, arising from an ill-defined layer thickness, will be found for 

the general ellipsoidal case.  

           Actually, the previous theoretical study done by Asami et al. (1980) had 

encountered the confocal shell problem resulting from the nonuniform of shell 

thickness (see Fig. 1.1). Based on his model, the effective complex relative 

permittivity 
*
effε of a shelled ellipsoid was assumed to be anisotropic. This means that 

dielectric properties of ellipsoid as determined from x, y and z axes are different.  

            Watanabe et al. (1991) attempted to correct the ambiguities of the 

confocal problem by using the average of shell thickness. According to his calculation 

through the Laplace approach, the thickness was assumed not to exceed 1% of the 

length of either semi-axis of the ellipsoid. As the result, the average thickness was 

about 0.85 fold of the shell thickness at equatorial. Similarly, Miller and Jones (1993) 

suggested that if the shell thickness is very thin (less than 10 nm), the confocal shell 

problem may be neglected.     

            To circumvent the confocal shell problem, Gimsa and his colleagues 

proposed the RC-model which unifies the theory of a resistor-capacitor model in term 

of specific impedances. For his derivation, cells of prismatic geometry embedded in 

elementary cubes formed by the external solution were assumed. All geometry 

structures of the model were described by parallel circuits of a resistor and a capacitor.  
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(a)                                                    (b) 

 

 

Fig. 1.1. Ellipsoidal single shell models in (a) isometric and (b) top views which 

reveals the non-uniform shell thickness whereof two poles are smaller than that at 

equatorial area ( ba dd <, ). 

 

 

           The impedance of the cell suspension is given by a meshwork of 

elementary cubes. Each elementary cube was modeled by two branches describing the 

current flow through and around the cell. It is interesting that this work derived the 

Clausius-Mossotti factor ([CMF]) in term of the impedance, instead of permittivity. 

Also, the RC-model predicts the potential at the ellipsoid’s surface leading to the 

calculation of an induced dipole moment. This approach provided equations for 

Re[CMF] and two critical frequencies, the frequencies corresponding with the positive 

dielectrophoresis at the lower )( λf and the higher )( hf .   

            Following Gimsa’s approach, this study thus extends the RC-model to 

explain the critical conductivity of the medium ( ctσ ) in term of cell dielectric 

parameters and to examine dielectric properties of a spheroidal cell in travelling wave.  
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1.4 Ellipsoidal Shell Model  

 

 

           Based on the Laplace approach, various types of a spherical model had 

been developed from time to time (Scher, 1968; Pohl, 1978; Schwan, 1988; Kaler and 

Jones, 1990 Gimsa et al., 1991; Irimajiri et al., 1978; Irimajiri et al., 1979; Asami and 

Irimajiri, 1984). For non-spherical models, Saito et al. (1966) were the first to propose 

an ellipsoidal model without shell and was then extended by many investigations such 

as Asami et al., (1980), Paul and Otwinowski, (1991), Watanabe et al. (1991), Miller 

and Jones (1993) and Zhou et al. (1996), respectively. These models were derived on 

the basis of an energy method to calculate the potential energy stored inside and 

outside of the ellipsoid and from which the effective complex relative permittivity 

*
effε was obtained.  

           In 1996, Zhou et al. investigated the dielectric properties of the 

pretreated yeast cells (Saccharomyces cerevisiae) by using a double-shelled 

ellipsoidal model. He demonstrated the effect of the biocide Cosmocil 

(polyhexxannide), before and after treatment, at different concentrations on yeasts by 

using the electro-rotation technique. Experimentations were carried out over the field 

frequency range from 1 kHz to 10 MHz. Estimations of cell dielectric properties were 

made through a curve-fitting method. The results showed that the conductivity of the 

cell membrane )( mσ  and of the cytoplasm )( cσ  were  10.025.0 ±  1.mµS −  and 

05.020.0 ± 1
.mS

− , and for pretreated yeast were 3.05.5 ± 1.mµS − and 02.001.0 ± 1
.mS

− , 

respectively. In the same year, Radu et al. employed the electro-rotation method to 

estimate the values of mσ and cσ of the normal and beta-mercaptoethanol pretreated 

yeast cells. The results for the normal were 12.040.0 ± 1.mµS − and 03.011.0 ± 1
.mS

− and 

for the pretreated cells were 825± 1.mµS − and 02.001.0 ± 1
.mS

− , respectively.    

           Two year later, Raicu et al. observed effects of cetyltrimethyl-

ammonium bromide (CTAB) surfactant on the dielectric properties of yeast cells 

(Baker’s yeast). The results from dielectric spectroscopy measurements on cell 

suspensions showed that the conductivities of vacuole interior decreased drastically as 
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CTAB was increased. The specific capacitance of the vacuole membrane and the 

conductivity of the inner vacuole were estimated to be 650.0  2cmµF. −  and 

3.1 1
.mS

− and for the pretreated cells were  718.0  2cmµF. −  and 1.5 1
.mS

− , respectively.  

 

   

1.5 Traveling Wave Dielectrophoresis (twDEP)  

 

 

                 For two parallel interdigitated electrode (TPI) arrays (Fig. 1.2), Masuda 

et al. (1988) were the first to demonstrate that travelling electric field of very low 

frequency (around 100 Hz) could be used to induce the controlled translation and 

circular motions of biological cells. Later Fuhr et al. (1991) found cells translation 

along the track of much higher frequencies (10 kHz-39MHz). Theoretical analysis of 

twDEP force acting on a sphere was clearly made by Huang et al. (1992) and 

Hagedorn et al. (1992). It is evident that twDEP force is obviously proportional to the 

imposed electric field strength (E), cell size (r) and the imaginary part of the Clausius-

Mossotti factor, Im[CMF], whereas cDEP translation is related to the real part, 

Re[CMF].  In case of a scalar form of the time-averaged twDEP force in the central 

region of the track was shown to be given by: 

 

λ
εεπ 2

0

32 ]Im[4 ECMFr
F s

twDEP

−
= ,                                                                                  (1.3)                                                                

 

where λ is a periodic distance between electrode bars of the same phase and it is 

constant for the quardrature case since an interdigitated structure is symmetric.  

           Wang and his co-worker (1995) developed the mathematical functions 

to describe both of the cDEP and twDEP forces acting on a sphere as a generalized 

form (gDEP) based on the Laplace approach. The time-averaged gDEP force is given 

by  
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Fig. 1.2 Top view of the interdigitated electrode illustrated with two orthogonal forces 

acting on the spheroid. The 
cDEPF
ρ

and 
twDEPF
ρ

pushes the spheroid in x± and y±  

directions, respectively.  A quardrature phases of 0,
2

,,
2

3
1234 ==== φ

π
φπφπφ   

(in radian) were addressed to the electrode. 

 

 

 

 

 

 

 



10 

 

 

 






















∇+∇= ∑

= zyxi

iisgDEP EErF
,,

22
0

3 ]CMFIm[]CMFRe[2 φεεπ
ρρρ

,                                            (1.4)                                                              

 

where 
iφ∇

ρ
is the phase non-uniformity factor of i component corresponding to a phase 

difference of 
iE . 2E∇

ρ
represents the gradient term of the non-uniform spatial 

distribution of the imposed field. The first and the second terms in the bracket reveal a 

conventional dielectrophoresis force ( 2
0

3 ]CMFRe[2 ErF scDEP ∇=
ρρ

εεπ ) and a travelling 

wave dielectrophoresis ( ∑
=

∇=
zyxi

iistwDEP ErF
,,

2
0

3 ]CMFIm[2 φεεπ
ρρ

), respectively. These 

forces direct cells in perpendicular vectors which has advantages for cells 

manipulation.   

  

 

1.6 Motivation and the Highlight of This Study  

 

 

           A study of cell electro-mechanics is a method to observe cell behaviors 

in an intense electric field (Pohl, 1978). The benefit obtained from such study was to 

obtain cell dielectric properties. Previously, determination of cell dielectric properties 

was made through a curve-fitting which requires measurements of a single cell 

translational velocity during dielectrophoresis and the experiments were carried out in 

animal and plant cells by using two cylindrical parallel electrodes (Mahaworasilpa et 

al., 1994; Wanichapichart et al., 2002). A single cell was carefully selected and the 

cell velocity was recorded at specified field frequencies. The real part of frequency 

dependent complex function (Re[CMF]) was plotted against field frequency and curve 

fitting was used to estimate the dielectric parameters. The method was, however, 

rather tedious and time consuming. The accuracy of the velocities obtained in such 

method was also questionable, since the uniform velocity required for during the 

measurement could be achieved only in a short period. Also, in case of ellipsoidal cell 

(including a spheroid), the confocal shell problem of “the thicker membrane at the two 
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poles than the equatorial area” (Asami et al. 1980; Watanabe et al., 1991; Gimsa et al., 

1998 and 1999) brought about questions of the validity of the method. Calculation of 

two critical frequencies ),( hffλ of the spheroid through the Laplace approach, 

concerning with the computation of 
*

effε (Assmi et al. 1980; Watanabe et al., 1991), 

was rather mathematically complicated. Another approach has been developed by 

Gimsa and his colleges (1998 and 1999) using impedance (RC model) approach to 

correct the ambiguous about the membrane thickness.  

           Recently, our previous work (Bunthawin et al., 2007) has combined two 

critical frequencies with cell dielectrophoretic velocity measurements in order to 

determine cell dielectric properties through a curve-fitting method from both Laplace 

and impedance approaches. However, for cells of S.cervisiate, it was observed that the 

simplified impedance model did not fit well with the experimental data, particularly at 

the lower frequency region due to the model approximations. Also, the critical 

frequency obtained from the real part of the Clausius-Mossotti factor (Re[CMF]) 

through the Laplace approach was rather mathematically complicate. One aspect of the 

present study was aimed at clarifying the extended impedance approach to examine 

dielectric properties for a spheroidal cell such as S.cervisiate and Tetraselmis.   

           For cell separation works, it is important to know dielectric properties of 

cells in suspension in order to calculate the precise frequency for the separation in AC 

electric fields. The former study done by Wanichapichart and her colleges (Sudsiri et 

al., 1999) reported AC electric field frequencies for isolating five marine 

phytoplanktons. The experiments which were carried out by using two parallel 

cylindrical electrodes were achieved in laboratory scale experiments with static 

fluidics and corresponding cell separations using microfluidic flow were not 

investigated.  Later, a planar linear interdigitated electrode of one array and traveling 

wave dielectrophoresis (twDEP) technique was employed by Thongnuaeha (2005). 

The advantages of TPI electrode was already known in detail elsewhere (Pethig et al., 

2003; Tararly et al., 1996) and hence to extend the separation work from the previous 

studies, a two parallel interdigitated electrode (TPI) was employed for the present 

study. For spheroid suspensions, the time-averaged gDEP force (Eq. 1.4) was adapted 

for use with a spheroidal model and the twDEP force acting on the spheroid was 
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calculated to obtain the optimization of microfluidic flow rate. Living and dead cells 

of S.cervisiate and Tetraselmis were used as a model and the results were compared 

with those obtained from our electro-rotation technique (Wanichapichart et al., 2007). 

Since arsenic contamination in surface water has been evidenced in South Thailand, it 

was interesting to investigate how cell changes in the dielectric properties after arsenic 

absorption. Experimental results together with those from the reported literature were 

compared to validate the developed spheroidal model.  

 

 

1.7 Aims of the present study             

 

 

1. To extend the theoretical analysis for the travelling wave dielectrophoretic 

force of a spherical particle to that of a spheroid via the Laplace and 

impedance (RC model) approaches.  

 

2. To evaluate cell dielectric properties from measurements of the velocity 

and two critical frequencies of cells undergoing DEP.  
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CHAPTER 2 

THEORETICAL APPROACHES FOR DETERMINING CRITICAL 

FREQUENCIES FOR A SPHEROIDAL MODEL 

 

 

2.1   Introduction  

 

 

           As mentioned in chapter 1 (section 1.2), the spheroidal model derived 

through the Laplace approach introduces problems related to the confocal shell viz. the 

thicker membrane at the two poles compared with the thickness at the equatorial area. The 

extended impedance approach is provided in this chapter to overcome the confocal 

problem and compared with the Laplace approach to examine dielectric properties for 

S.cervisiate and Tetraselmis.  It is the first time clarifying mathematical expressions of 

two critical frequencies for a spheroidal model ( λf , hf ). Both the Laplace and impedance 

approaches are used. The analyses were made based on the condition of zero 

dielectrophoretic force ( cDEPF
ρ

) as first suggested by Pohl (1978). For the Laplace 

approach, the zero force also relates with the value of the zero Re[CMF] in which the 

effective complex permittivity of the spheroid ∗
eff

ε is equal to that of the suspending 

medium ∗
sε  (see Eq. 1.2 in chapter 1). Two critical frequencies were then solved by using 

the frequency dependence of Re[CMF] as a polynomial function of an angular frequency 

( fπω 2= ). Dielectric dispersion of cell compartments at lower and higher frequency 

range were taken into account to extract two values of λf and hf  from the electric field 

frequencies ( f ) appearing in Re[CMF], derived in this chapter. For the impedance 

approach, the effective complex impedance ( ∗
eff

Z ) replaced by ∗
eff

ε of the Laplace 

approach to derive the value of Re[CMF]. Calculations of λf and hf from both approaches 

were given in the following sections.  
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2.2    The Critical frequencies: Laplace approach 

 

 

            To calculate two critical frequencies for a spheroid, one needs to know the 

geometry of the model so that calculations of spheroidal volume, ∗
eff

ε , [CMF] and 

Re[CMF] can be evaluated term by term. Theoretical analyses of these functions provided 

in this chapter were the identity of the present study.  

 

 

2.2.1 The Geometry of the Spheroidal Model  

 

 

           A spheroid is an ellipsoid whose any two semi-axes are equal, as shown in 

Fig. 2.1a where three semi-axes are defined as cba =>  and cb = . The spheroid is 

suspended in the external solution (s) with the external electric field )(E
ρ

. The single shell 

and the outer closed compartment of the model (Fig. 2.1b) represent the cell membrane 

(m) and the cytoplasm (c), respectively. For a lossy, complex and heterogeneous spheroid 

(Jones, 1995), the dielectric properties of the spheroid can be expressed in term of real 

and imaginary parts i.e. ]Im[]Re[* ∗∗ += effeffeff j εεε , where 1−=j .   

            The conductive (σ ) and capacitive )(ε  properties of the membrane 

( mm εσ , ), the cytoplasm ( cc εσ , ) and the suspending solution ( ss εσ , ) are identified as 

shown in Fig. 2.1b.   

            Using the Maple software (version 9.01), a two-dimensional spheroid in x-

y plane, as shown in Fig. 2.2, was used for the simulations. The values of ooo cba ,,  

measured from the center to the inner surface of the spheroid are assumed to identify three 

inner lengths along x, y and z, respectively (the c value was measured in perpendicular 

direction from x- y plane). 
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Fig. 2.1 A model of a single shelled spheroid in an external AC electric field ( E
ρ

). Views 

of (a) isometric represents its three semi-axes along x-y plane where cba => and (b) 

cross-section shows all the dielectric parameters of cell compartments with a constant 

shell thickness δ (an averaged value). All axes are measured from the center to the  

outer surface along their axis. The longest length (x axis) parallels the vector field  

of E
ρ

. The radial vector r
ρ

is measured from the center of the spheroid to  

the interesting point locating far away outside the spheroid. 
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The space between the inner and the outer surfaces presents the shell thickness )(δ . As 

seen from Fig. 2.2, this approach and definition of the spheroidal particle introduces a 

nonuniform of shell thickness, the so called “confocal shell problem”. The coordinate 

employed for Fig 2.2 is expressed as  

 

 ,1
2

2

2

2

2

2

=
+

+
+

+
+ ξξξ c

z

b

y

a

x
                                                                                          (2.1) 

 

where ξ  is a parameter representing a family of confocal ellipsoids and 2c−>ξ . 

0=ξ and u−=ξ  represents the boundaries of the outer and the inner surface, 

respectively. The inner lengths of ooo cba ,,  are given by: 

 

,,, 222 uccubbuaa ooo −=−=−=                                                                   (2.2) 

or       

.,, 222222

ooo ccubbuaau −=−=−=                                                                       (2.3) 

 

With a focus on the outer surface ( 0=ξ ), Eq. (2.2) becomes  

 

.1
2

2

2

2

2

2

=++
c

z

b

y

a

x
                                                                                                          (2.4) 

 

For a two-dimension plot in the x-y plane, Eq. (2.4) reduces to 1
2

2

2

2

=+
b

y

a

x
 which can be 

rearranged as 

 

2

2

1)(
a

x
bxy −±=   .                                                                                                        (2.5) 
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Similarly, Eq. (2.1) can be extended for the inner surface where u−=ξ , 

  

.1
2

2

2

2

2

2

=
−

+
−

+
− uc

z

ub

y

ua

x
                                                                                            (2.6) 

 

In case of two-dimensional plot, Eq. (2.6) is reduced to 1
2

2

2

2

=
−

+
− ub

y

ua

x
, leading to  

 

( ) 








−
−−±=

ua

x
ubxy

2

2
2 1)( .                                                                                        (2.7) 

 

Plots of the outer and the inner surface of the spheroid (Fig. 2.2) are based on Eqs. (2.5) 

and (2.7), respectively, where 15,6,10 ==== ucba , ,8515102 =−=oa  

21156,851510 22 =−==−= oo ba . These parameters were defined by Stratton 

(1941) and can be expanded to yield the following:   

 

spheroid:                   ,1
2

2

2

2

2

2

=
+

+
+

+
+ ξξξ b

z

b

y

a

x
         )( 2

b−>ξ                                (2.8) 

 

hyperboloid of one sheet: ,1
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2

2
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=
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+
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x
       )( 22 bc −>>− η                  (2.9) 

 

hyperboloid of two sheets:  ,1
2

2

2

2

2

2

=
+

+
+

+
+ ζζζ c

z

b

y

a

x
   )( 22 ab −>>− ζ               (2.10)                              

 

where ζηξ ,,  represents a family of confocal spheroids in three-dimensions i.e. in x, y, 

and z (Stratton, 1941, pp. 52-59). These three parameters will be employed in derivation 

of the effective complex permittivity in the next section. However, here mathematical - 
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Fig. 2.2     A plot of a shelled spheroid from Eqs. (2.5) and (2.7) in x-y plane using Maple 

software version 9.01 (MapleSoft) where c was measured perpendicular to x-y plane.  

The following parameters were assumed for this plot: 15,6,10 ==== ucba  (u was 

calculated from Eq. 2.2) and 21156,851510 22 =−==−= oo ba . 
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tractibility, the shell thickness (δ ) is considered as an averaged value (see Fig. 2.1b) so 

that the membrane capacitance is constant over the shell.  

 

 

2.2.2 An Effective Complex Relative Permittivity  

 

 

            As shown in Fig. 2.1, the spheroid possesses two different dielectric 

compartments. To depict the dielectric properties, the effective permittivity of the whole 

spheroid becomes a complex function ( *

effε ) as suggested by Pohl (1978) and Jones 

(1995). In AC electric field )(E
ρ

, the *

effε is also frequency dependent.   

            In order to solving for *

effε , Laplace’s equation is employed to analyze the 

electrical potentials (ψ ). The spheroid is placed in external homogeneous 

field ),,( zyx EEEE
ρ

. The potential is then given by a solution of Laplace’s equation, 

 

,0. =∇∇ ψ
ρρ

                                                                                                                     (2.11) 

or  

02 =∇ ψ
ρ

,                                                                                                                       (2.12) 

 

Applying Eq. 2.8, Stratton (1941) showed that Laplace’s equation can be written in form 
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The ηξ , and ζ in this equation will be represented as s . Then ξR  ηR and ζR can be re-

written as sR , hence ))()(( 222 csbsasRs +++= . To satisfy equation (2.13), the 

potential ψ  must fulfill the following conditions: 

 

(a) be regular at infinity, and 

(b) be constant over the given spheroid  

 

             The variables η and ξ are the parameters of confocal hyperboloids and 

serve to measure position on any spheroid with ξ = constant (see explanations of Eqs. 

2.1). On the surface 0=ξ , ψ must be independent of η andζ . If one can find a function 

depending only on ξ which satisfies those conditions, it can be adjusted to represent the 

potential correctly at any point outside the spheroid at 0=ξ . It is evident 

that )(ξψψ = and the Laplace’s equation reduces to  

 

,02 =







∂
∂

∂
∂

=∇
ξ
ψ

ξ
ψ ζR

ρ
                                                                                              (2.14) 

 

where ))()(( 222
cbaR +++= ξξξξ .  

 

It should be noted that the condition of cba =>  was kept through this study for the 

“prolate” spheroid (for “an oblate”, if cba =< ). If 0=ξ  and u−=ξ , these represent the 

outer and the inner surface of the shelled spheroid, respectively (see Fig. 2.2 also). 

Integration of Eq. (2.14) over the volume from ξ to infinity yields ,)( ∫
∞

=
ξ ξ

ξ
ξψ

R

d
c where 

c is an arbitrary constant which can be obtained by using the method described by 

Stratton (1941).  
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           The electrical potential at a point which is infinitely remote from the 

spheroid )( oψ relates directly to that of the original field, i.e.  

 

At   ,∞→ξ             .zyxo zEyExE ++=−ψ                                                                (2.15) 

 

From the continuity principle, the electric potential along the normal component (n), as 

considered through the shell, from the inner to the outer surface can be expressed as 
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nn

c
c

m
m ∂

∂
=

∂
∂ ∗∗ ψ

ε
ψ

ε                                                          (2.17) 

 

where the asterisks represents the complex, the subscripts c and m indicate the cytoplasm 

and the membrane regions, respectively. Stratton (1941) showed that the potentials at the 

inner and the outer of the spheroid can be expressed as a function of the effective complex 

relative permittivity ( *

)(keffε ) in three-dimension, i.e.  
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and 
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where  
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and k=x, y, z. It should be noted that 
0ωε

σ
εε m

mm j−=∗ , 
0ωε

σ
εε c

cc j−=∗ and v  represents 

the fractional volume of the spheroid. The ikL and jkL are the depolarization factors 

depending on the value of a, b and c (the geometry of the spheroid). Explanations 

of ikL and jkL  are given in the next section.  

 

 

2.2.3 Depolarization Factors  

 

 

           Asami et al. (1980) defined the depolarization factors along k axis as ikL  

(the outer surface) and the jkL  (the inner surface) as the function of 

∫
∞

+
=

0

2 )(2 isik

ik
RRs

dsabc
L  and ∫

∞

+
=

0

2 )(2 jsjk

jk
RRs

dsabc
L , respectively. The parameters of 

ikR and jkR are the semiaxes of the outer and the inner surface along k-axis, respectively, 

))()(( 222
sRsRsRR izijixis +++= and sRR jkik −= 22 where s = ζηξ ,, is the parameter representing 

a family of the confocal surface (Eqs. 2.8 to 2.10). For the spheroid where s =ξ and b=c 
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(see the geometry of the model in section 2.2.1), the following equations are the 

expansions of the depolarization factors along x, y and z of the outer and the inner surface.   

                          

                The outer surface cbaiLik ,,, =      The inner surface ooojk cbajL ,,, =  

                 ∫
∞

+
=

0

2 )(2 ax

ax
Ra

dabc
L

ξ
ξ

,            ∫
∞

+
=

0

2
)(2

xao

ooo
xa

o

o
Ra

dcba
L

ξ
ξ

, 

 

                ∫
∞

+
=

0

2 )(2 by

by
Rb

dabc
L

ξ
ξ

,            ∫
∞

+
=

0

2
)(2

ybo

ooo
yb

o

o Rb

dcba
L

ξ
ξ

, 

 

                bycz LL = ,                                 ybzc LL
o 0

= , 

 

where 1=++ czbyax LLL  and 1=++ zcybxa ooo
LLL .  

 

Analytical solutions of these equations are not simple. However, approximations of the 

depolarization factors can be made. Consider a point of interest located far away outside 

the spheroid (see Fig. 2.1), at a distance r from the center which is much greater than the 

length of each semi-axes, that is ooo cbar ,,>> (see Fig. 2.2). Then Eq. (2.1) can be 

reduced to  

 

,1
222

=++
ξξξ
zyx

                                                                                                          (2.21) 

 

where 2r≅ξ . Under the assumed location, ikL′ is reduced to the following forms, 

 

,
1

33

2

22)(2 3

2/32/5

2
r

abcabc
d
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Ri

dabc
L

is

ik ≈=≈
+

= −
∞

−
∞

∫∫ ξξξ
ξ

ξ

ξξ

                                (2.22) 
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with ,
1

3 3
r

abc
LLL czbyax ≈′=′=′                                                                                       (2.23) 

 

In case of the prolate spheroid ( cba => ), the function ikR may be written in forms 

 

ikczbyax RbaRRR =++=== 222 ))(( ξξ .                                                                   (2.24) 

 

Then Eq. (2.22) can be simplified to the form 
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222

2
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2
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b

a
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













+−

+

=

−

ξ

ξ

ξ

.                                                          (2.25) 

 

Substituting 0=ξ and 
b

a
q = in Eq. (2.25), a family of depolarization factors can be obtain 

by using Maple software (version 9.01). These are, 

 

For a prolate spheroid ( cba => ),  

 

( )2/12

2/322
)1(ln

)1(1

1
−+




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



−
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





−
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= qq
q

q

q
Lx ,                                                             (2.26) 

,
2

1 x
zy

L
LL

−
==                                                                                                            (2.27) 

1>=
b

a
q  .                                                                                                                     (2.28) 
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It should be noted that if c =0, the spheroid degenerates into a circular disk, such as the 

frog lens (Watanabe et al., 1991).  

 

For a oblate spheroid ( cba >= ),     

 

q
q

q

q
Lx

1

2/322
cos

)1(1

1 −








−

−







−

=  ,                                                                               (2.29) 

,
2

1 x
zy

L
LL

−
==                                                                                                            (2.30) 

 1<=
b

a
q .                                                                                                                     (2.31) 

 

For a sphere, then 

 

3

1
=kL and 1=q .                                                                                                           (2.32) 

 

Further simplification of
ikL and

jkL can be made. Considering that the membrane is very 

thin with thickness of about 6 nm (of C. corallina) (Coster and Chilcott, 2002). In this 

case the membrane thickness is negligible compared to a, b and c. Examples of a spheroid 

are yeast cells and Tetraselmis sp. The longest axes (a) are ranged from 8 to10µm . As a 

consequence, the axial ratio for the outer surface of the shell )( outerq  is nearly equal to that 

of the inner )( innerq  that is   

 

 
o

o
innerouter

b

a
q

b

a
q =≈= .                                                                                                 (2.33) 

 

Hence, the depolarization factor of the outer spheroid is equal to that of the inner spheroid 

i.e. 
ikL =

jkL , then the Eq. (2.20) becomes   
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 

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where v was directly obtained by using some algebra and v =
2

11 






 −





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ba

δδ . Since Eq. 

(2.34) can be resolved along three orthogonal axes, it can be written in a matrix form as 
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Such expression is known in mathematic term as biaxial in which each component is 

expressed as 

 


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For the homogeneous dielectric, these three components are equal, i.e. 

 

*
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*
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*
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These can be rewritten in terms of a complex relative permittivity as 

 

o

eff

effeffeffeff jj
ωε

σ
εεεε +=+= ∗∗ ]Im[]Re[* ,                                                                    (2.40) 

 

or rewritten in terms of a conductance form as   

 

oeffeffeffeffeff jj εωεσσσσ +=+= ]Im[]Re[ *** ,                                                              (2.41) 

 

The imaginary term (Im[…]) is known as “the loss factor” and the ration of
]Re[

]Im[
∗

∗

eff

eff

ε

ε
is 

called “the loss tangent” (for more details see Cheng, 1991). The latter represents the 

power loss of the spheroid in the suspending medium. Both effσ  and effε  represent the 

DC conductivity (S/m) and the dielectric constant of the spheroid, respectively. The 
oε  is 

the dielectric constant of vacuum (= 121085.8 −× 1. −mF ). A circular frequency is defined 

as fπω 2= , where f is the field frequency in Hertz and 1−=j .   

 

           According to Eqs. (2.40) and (2.41), the expressions for dielectric 

properties of the cytoplasm (c), membrane (m) and suspending medium (s) for the 

spheroidal model are given by the following: 

 

o

c
cc j

ωε
σ

εε −=∗
   and  occc j εωεσσ +=∗ ,                                                                    (2.42)  

o

m
mm j

ωε
σ

εε −=∗
 and  

ommm j εωεσσ +=∗
,                                                                 (2.43) 

o

s
ss j

ωε
σ

εε −=∗
and 

osss j εωεσσ +=∗
.                                                                  (2.44) 
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Substituting Eqs. (2.42) and (2.43) into Eq. (2.34) yields  
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where the real and imaginary parts of Eq. (2.45) are 
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The constants A, B, C and D are 
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and )1(),1( vLLvL kkk −=−+= βα .                                             

 

Plots of ]Re[ ∗
effε (Eq. 2.46) and ]Im[ ∗

effε (Eq. 2.47) as functions of electric field 

frequency were shown in Fig. 2.3. As described by Cheng (1991), the loss factor 

calculated from
]Re[

]Im[
∗

∗

eff

eff

ε

ε
was also presented in Fig. 2.3, where the peak of the loss factor is 

nearly equal to the point of intersection between curves of ]Re[ ∗
effε and ]Im[ ∗

effε . The 
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complex plane plot between ]Re[ ∗
effε and ]Im[ ∗

effε , the so called “Cole-Cole plot” is 

shown in Fig. 2.4. Interpretations of the loss factor and the Cole-Cole plot were given in 

details elsewhere (Asami et al. 1980; Gimsa and Wachner, 1998; Asami, 2002).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 Theoretical plots of the real and the imaginary parts of the effective complex 

relative permittivity of a spheroid. 
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Fig. 2.4 The complex plane plot (the Cole-Cole plot) of the effective complex relative 

permittivity obtained from the Laplace approach. 

 

 

2.2.4 The Clausius-Mossotti Factor [CMF] 

 

 

           In this section, the above ]Re[ ∗
effε and ]Im[ ∗

effε as in Eqs. (2.46) and (2.47) 

will be substituted in 
∗
effε (Eq. 2.40). The aim was to calculate the critical frequencies at 

which the DEP force )( DEPF
ρ

(Eq. 1.1 in chapter 1), is zero. The DEP force is given by the 

]Re[ *
effε  

]Im[ *
effε  
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real part of the Clausius-Mossotti (Re[CMF]). Details of the calculations for [CMF] and 

then for Re[CMF] are as followed.   

           As described in Eq. 1.1 (chapter 1), Landua and Lifschitz (1985) defined 

kseffs

seff

L)(
]CMF[ ∗∗∗

∗∗

−+

−
=

εεε

εε
 . For a spheroid with the volume of 2

3

4
abV π= (Fig. 2.1a), the 

value of the depolarization factor kL when k = x and y were calculated from Eqs. (2.26) 

and (2.27), respectively. It should be noted that the value of
kL reflects the shape of the 

spheroid. For example, if 
b

a
q = >1, the spheroid is prolate and xL < 1(calculated from Eq. 

2.26). When
kL =1/3, the spheroid is transformed to a sphere with radius of a=b=c) and the 

[CMF] reduces to the familiar expression of 
)2(

)(3
∗∗

∗∗

+

−

seff

seff

εε

εε
 proposed by Sauer (1985) and 

Kaler and Jones (1990). Substituting the values of 
∗
effε (Eq. 2.45), 

∗
sε (Eq. 2.44) and 

kL (Eq. 2.26) into Eq. 1.1 (chapter 1). The real and the imaginary parts of the [CMF] are 

then expressed as 
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where 12
0 1085.8 −×=ε F.m

-1
, fπω 2= (rad.s

-1
), f in Hertz and ]Re[ ∗

effε  and the ]Im[ ∗
effε  

are from Eqs. (2.46) and (2.47), respectively.  

           Plots of both Re[CMF] (Eq. 2.48) and Im[CMF] (Eq. 2.49) as a function of 

electric field frequency are shown in Fig. 2.5. When using dielectric parameters for yeast 

cells (Saccharomyces cervisiate) as reported by Zhou et al. (1996), the spectra of the real 

and imaginary parts of [CMF] showed the positive and negative regions of the [CMF]. 

Two critical values, λf  and hf , appear lower and higher frequency range. It is interesting 

that the Re[CMF] does not show a plateau at the middle frequency range as appeared a 

spherical shell model (Mahaworasilpa et al. 1994; Jones 1995 ).  

           Figure 2.6 and 2.7 show the spectra of Re[CMF] and Im[CMF] under 

variations of cell geometry ( a andδ ) (Figs. 2.6a,  2.6b, 2.7a and 2.7b) and dielectric 

parameters of the cytoplasm (
cc σε , ) (Figs. 2.6c,  2.6d, 2.7c and 2.7d), the membrane 

( mm σε , ) (Figs. 2.6e,  2.6f, 2.7e and 2.7f), the suspending medium ( ss σε , ) (Figs. 2.6g,  

2.6h, 2.7g and 2.7h). As is seen from Figs. 2.6a, increasing a shifts λf  to lower values and 

the peak magnitude of Re[CMF] decreases. In contrast, in Fig. 2.6b, increasing δ  shifts 

λf  to higher values and the peak magnitude of Re[CMF] increases. Figure 2.6c shows 

that decreasing cε  only affects the negative Re[CMF] at higher frequency range.   The 

peak of Re[CMF] shown in Fig. 2.6d is diminished when cσ is decreased to 0.1 S.m
-1

. 

Decreasing cσ to 0.01 S.m-1 gives the same result as for the case of cσ = 0.1 S.m-1 which 

is the optimized value to obtain the plateau spectra. It should be noted that the variation of 

cσ  used for Fig. 2.6d is based on reported by Zhou et al. (1996). In case of change in 

mε and mσ as shown in Figs. 2.6e and 2.6f, λf is shifted to higher values and the peak 

magnitude of Re[CMF] is decreased when mε and mσ  are reduced. The negative 

Re[CMF] at higher frequency range as shown in Fig. 2.6g is only affected by change of 

sε which is similar to that of Fig. 2.6c, but the shifts go in opposite direction for both 

cases. 
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Fig. 2.5. Re[CMF] and Im[CMF] were plotted as a function of electric field frequency. 

Three field frequency ranges indicate the frequency regions where positive and negative 

DEP occur. The following parameters were employed for these plots: 

1
s

1
m

1 S.m0.01σ,µS.m0.1σ,S.m0.5 −−− ===cσ  , 78,10,60 === smc εεε , 

 nm15=δ  and 276.0=xL . 

 

 

For change of sσ shown Fig. 2.6h, the reduced peak of Re[CMF] results from increasing 

sσ from 0.01 to 0.03 S.m
-1

. It is interesting that when a spheroid is transformed into a 

sphere by choosing three equal semi-axes (the ratio of a/b =1) (Fig. 2.6i), the peak of 

Re[CMF] is diminished and the curve is similar to that of a sphere (Pohl, 1978; 

Mahaworasilpa et al. 1994; Jones 1995 ). Plot of depolarization factor (
kL ) (Eq. 2.26) as a 

function of a/b was shown in Fig. 2.6j.  
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Fig.2.6 The spectra of the real part of the Clausius-Mossotti factor [CMF] are affected by 

changing electrical parameters as described in the model. All solid lines were plotted 

using the parameters as shown in Fig. 2.5. 
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Fig.2.7 The spectra of the imaginary part of the Clausius-Mossotti factor [CMF] are 

affected by changing electrical parameters as described in the model. The solid lines were 

plotted using the parameters as shown in Fig. 2.5. 
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 2.2.5 Two Critical Frequencies  

 

 

           Fig. 2.5 shows two critical frequencies where there is a transition from 

positive to the negative DEP. To obtain an express for these frequencies via Eq. (2.48) is 

quite complex. The lower ( λf ) and the higher ( hf ) critical frequencies of the model can, 

however, be separately derived from the condition Re[CMF]=0 as follows.  

          According to dielectric dispersion as suggested by Schwan (1988), the 

dielectric properties of the membrane are prominent in the lower frequencies range 

( βα , dispersions). The complex relative permittivity for each compartment of the model 

(see Eqs. (2.42-2.44)) becomes 

 

o

c
c j

ωε
σ

ε −≈∗
   and  

cc σσ ≈∗ ,                                                                                     (2.50)  

o

m
mm j

ωε
σ

εε −=∗
 and  

ommm j εωεσσ +=∗
,                                                                 (2.51) 

o

s
s j

ωε
σ

ε −≈∗
and 

ss σσ ≈∗ .                                                                                         (2.52)         

 

On the other hand, those of the cytoplasm are dominant in the higher frequency range 

providing 

 

o

c
cc j

ωε
σ

εε −=∗
   and occc j εωεσσ +=∗ ,                                                                    (2.53)  

mm εε ≈∗
 and  0=∗

mσ ,                                                                                                (2.54) 

o

s
ss j

ωε
σ

εε −=∗
and 

osss j εωεσσ +=∗
.                                                                 (2.55)                          
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Substituting Eqs. (2.50-2.52) and (2.53-2.55) to Eqs. (2.34) and (2.47) yield the angular 

frequency (ω  ) dependence of the Re[CMF] for the lower and the higher frequencies, 

respectively. For the lower case, the Re[CMF] is expressed as 
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Setting Eq. (2.56) = 0 and then solving forω , yields the functions 
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A similar procedure was applied for the higher critical frequency, yielding 
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Theoretical plots of the lower and the higher critical frequencies were shown in Fig. 2.8.  
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Fig. 2.8 Theoretical plot of two critical frequencies, predicted from the Laplace approach. 

The λf  and hf were plotted by using the parameters as shown in Fig. 2.5. 
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2.3 An Impedance Approach (RC model) 

 

  

2.3.1 The Clausius-Mossotti Factor [CMF] 

 

 

           Gimsa and Wachner (1998) proposed a spheroidal model through an 

equivalent RC-circuit, using resistors (R) and capacitors (C) to represent the conductive 

and the capacitive properties instead of conductivities )(σ  and dielectric constants )(ε , 

respectively. Based on the model, the [CMF] was expressed in term of the specific 

complex impedance (
∗
iZ ).   

           An illustration of the RC-model is shown in Fig. 2.9. The conductive and 

capacitive properties of each compartment of the spheroid are given as: 

 

oiii j εωεσσ +=∗   and                                                                                                  (2.62) 

 

δεε /AC oii =∗ .                                                                                                              (2.63) 

 

Here subscripts i were used for c, m and s, henceforth for the sake of simplicity, and A 

denotes a specific area.  The relation of ∗
iσ and a specific complex impedance )(

*
iZ  is 

given by 

 

( ) 1

0

* −+= iii jZ εωεσ .                                                                                                  (2.64) 
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Fig. 2.9 The equivalent RC-model consists of 2 branches of the parallel of  

resistor-capacitor pairs. 

 

 

According to Gimsa and Wachner (1998), the induced dipole moment of a homogeneous 

ellipsoid then could be written in form  
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where 
∗

sψ  and 
∗

fψ represent electrical potentials of the medium and of the cell/medium 

interface, respectively. Later, Gimsa and Wachner (1999) proposed the [CMF] as 

 

=][CMF )(
1

*

*

s

fs

kL ψ

ψψ ∗−
.                                                                                                 (2.66) 

 

The relations between ∗
sψ  and ∗

fψ with the specific complex impedance )( *
iZ  were defined 

as 
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where =infr  

kL

r

−1
and r  is the radius measured from the center of the spheroid. 

Substituting Eq.(2.66) into Eq. (2.66), [CMF] along k axis can be obtained as 
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Since Eq. (2.68) can be resolved along three orthogonal axes, it can be written in a matrix 

form as 
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Similarly, Eq. (2.64) can be resolved into three components as  
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The [CMF] (Eq. 2.68) was written in matrix form and all-off diagonal terms are zero. 

However, in practical, the exact value of [CMF] of the remainder can not be calculated 

(Gimsa, 2001). Hence, only one axis should be examined. From Jones (1995), a spheroid 

always responds to an external electric field by aligning its longest axis i.e. x -direction 

(see Figs. 2.1 and 2.9) parallel to the vector field E
ρ

. Hence, only [CMFx] was examined 

for the present study. For simplicity, it is reasonable to set [CMFx]=[CMF] for the current 

study presented in this thesis. This is true only if the longest axis of the spheroid is 

parallel to the vector field. Substituting Eqs. (2.67) and (2.70) into Eq. (2.68), it follows 

that 
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The RC-circuit equivalent to Eq. (2.71) is presented in Fig. 2.9. Again, solving Eq. (2.71) 

for the critical frequencies is not a simple task since it is complicated function. To 

manipulate it, the dielectric properties of the spheroid relevant at the lower frequencies 

must be simplified. By using the principle of dielectric dispersion proposed by Schwan 

(1988), the capacitive and conductive properties of the membrane are usually dominant at 

lower electric field frequency while that of the cytoplasm, only the capacitive properties 

are dominant at the higher frequency. This means that if one considers the capacitive and 

conductive properties from the value of *
iZ , the capacitive term of the cytoplasm and  

suspending medium at the lower frequency can be neglected i.e. 
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( ) 1

0

* −+= mmm jZ εωεσ ,                                                                                                  (2.72) 

( ) 1* −= ccZ σ ,                                                                                                                  (2.73)     

( ) 1* −= ssZ σ .                                                                                                                   (2.74) 

 

Substituting Eqs. (2.72), (2.73) and (2.74) into (2.71) yields the [CMF] at the lower 

frequencies low
ModelRC[CMF] − , i.e.  
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where 








−
=

kL1

1
α . Similarly, for the higher frequencies, the capacitive and conductive 

terms of the membrane can be neglected i.e. 

 

0* =mZ ,                                                                                                                          (2.76) 

( ) 1

0

* −+= ccc jZ εωεσ  ,                                                                                                   (2.77) 

( ) 1

0

* −+= sss jZ εωεσ .                                                                                                    (2.78) 

 

Substituting equations (2.76), (2.77) and (2.78) into equation (2.71) yields the [CMF] at 

the higher frequencies high
ModelRC[CMF] − , i.e.  
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LZZ

ZZ
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1
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+
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α
  ,                                                                                (2.79) 

 

With these simplifications, the RC-circuit relevant for the lower and the higher 

frequencies are shown in Fig. 2.10a and 2.10b, respectively. 
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Fig. 2.10   Simplifications of two critical frequencies of the spheroidal model.  

Schemes for (a) a lower and (b) higher frequencies. 
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2.3.2 Two Critical Frequencies 

 

 

           To determine the lower ( λf ) and the higher ( hf ) critical frequencies from 

the RC approach, the real parts of Eqs. (2.75) and (2.79) are set to zero. By extracting the 

ω   from Re[CMF] yields two expressions of the critical frequency that are 

             

D

GFE
f o

π
ε

2

)( +−
−=λ ,                                                                                                   (2.80) 

 

C

AB
f o

h π
ε

2

−
= ,                                                                                                               (2.81) 

 

where         

 

222 2 ssscsccA εβεβεεεεε −++−−=  , 

scsscscB σσσβσσβσσ 2222 −−++−= , 

AC o

2ε= , 

ED om

2εε= , 

222
2 sscsccsE σσσβσσσβσ −−+−= , 

)222
22222222

smsmcscmscmscscmF σσσσσσσσσσβσσσσσβσ −−−−+= , 

22222222 2)( cmsmcmscscsmG σσσσσσσσσσσσβ −−++= . 

 

Theoretical plots of two theoretical critical frequencies are shown in Fig. 2.11. The effects 

of dielectric parameters on both λf and 
hf are shown in Fig. 2.12. Variations of dielectric 

properties of the cytoplasm ( cσ and cε ) and membrane ( mσ and mε ) are based on 

dielectric values shown in Fig. 2.5. As is seen in Fig. 2.12a, increasing cσ  leads to the-  
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Fig. 2.11. Theoretical plots of two critical frequencies for the lower ( λf ) and the higher 

( hf ) as a function of depolarizations factor (Lk). After adjusting the Lk value properly, the 

tips of two curves are jointed together. The following parameters were employed for these 

plots: 1
s

1
m

1 S.m0.01σ,µS.m0.1σ,S.m0.5 −−− ===cσ  

, 78,10,60 === smc εεε and nm15=δ . 

 

 

convergence of λf  and hf to join at the critical conductivity of the medium ( ctσ ). From 

Fig. 2.12b, variation of 
mσ in range of 47 1010 −− −  S.m

-1
 affects λf  particularly at lower

sσ . 

When cε is decreased as shown in Fig. 2.12c, hf is shifted to lower frequencies. Change of 

mε affects only λf  as shown in Fig. 2.12d.  
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Fig. 2.12. Theoretical plots show the lower ( λf ) and the higher (
hf ) critical frequency as a 

function of medium conductivity (
sσ ). Effects of changes in 

cmc εσσ ,, and 
mε is  

shown in (a) (b) (c) and (d), respectively. 
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2.3.3 The Critical Conductivity 

 

 

The critical conductivity is the value at which hff =λ . Equating Eqs. (2.80) and 

(2.81) then  

 

)1(2

)2(

−
−

=
β

βσ
σ c

ct
,                                                                                                          (2.82)  

 

where
)1(

1

kL−
=β . 

  

Equations (2.80) to (2.82) allow one to vary sσ at arbitrary low values so that λf and 
hf can 

be obtained. When the sσ  reaches ctσ , the two frequencies merge at the zero DEP force. 

Note that the derived 
ctσ  is a constant function and solely depends on sσ  and

kL . At the 

critical value, ctσ = cσ and 
3

4
=β  .  

 

 

2.4 Discussions and Conclusions  

 

           The present study shows that the spectrum of Re[CMF] of the spheroid 

possessing the single peak is different from that of the sphere, viz. there is no-peak for 

Re[CMF] of the spherical model (Pohl, 1978; Mahaworasilpa et al., 1994; Jones, 1995). 

The single peak may be the identity of the single shelled spheroidal model.  As seen from 

Laplace approach, it is difficult to derive the two critical frequencies because of the 

complex nature of the effective permittivity of the spheroid (
*

)(keffε ) and the fact that the 

Re[CMF] is a complicated function of many parameters. For the impedance approach, it 
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was easier to obtain an expression for the two critical frequencies since [CMF] can be 

defined in term of the effective complex impedance which can be written in a compact 

form. For experimental studies in which the two critical frequencies are determined, a 

computer program such as Excel (Microsoft Office 2007) and Maple software (version 

9.01) were employed to relate the numerical value of two critical frequencies as a function 

of the conductivity of the suspending medium )( sσ . The values of sσ used for the present 

study were directly obtained from measurements. The key equations for the computations 

on microcomputer are summarized in Table 2.1. 
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TABLE 2.1 

Summary of the key equations derived in the present study for the computations. 

 

 

Laplace Approach Impedance Approach 

The  Clausius-Mossotti factor :  
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                                                                                         To be continued 

  Depolarization factor kL  (In case of the spheroid is prolate, 
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                                                                                      To be continued 
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Complex permittivity:   

                  
o

c
cc j

ωε
σ
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occc j εωεσσ +=∗ ,                       
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m
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o

s
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osss j εωεσσ +=∗ . 

where 1−=j and oε  = 121085.8 −× 1. −
mF . 

Complex impedance:   
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Two Critical Frequencies: 
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CHAPTER 3 

THEORETICAL APPROACH FOR DIELECTROPHORETIC 

VELOCITY AND FORCES RELATION 

 

 

3.1 Introduction  

 

 

           Last chapter, the sensitivity of each dielectric parameter of a single shell 

spheroidal model has been pointed out, and it affects the spectrum of Re[CMF].  Since 

the spheroid in travelling electric field is the first time presented in this study, this 

chapter will relate the Re[CMF] and Im[CMF] to forces acting on the spheroid.  

           Previously, Wang et al. (1995) proposed that an induced spherical cell 

in travelling electric field could be translated either toward the tips of the electrode or 

along the electrode track of a parallel array of an interdigitated electrode. This results 

from two orthogonal forces of the conventional dielectrophoretic force (
cDEPF
ρ

) and 

travelling wave dielectrophoretic force (
twDEPF
ρ

) which are a function of the real 

(Re[CMF]) and the imaginary part (Im[CMF]) of the Clausius-Mossotti factor [CMF]. 

This principle is applied for an analysis of translations of a spheroidal cell in traveling 

electric field (Fig. 3.1). When appropriate signals are applied to the electrodes as the 

sequence as shown in the figure, the direction of the two force indicates the direction 

of cell movements, whether the forces are positive, negative or zero. For the present 

study, this is the first time to analyze the function of both forces acting on a spheroid. 

Theoretical analysis of a relation between 
cDEPF
ρ

 
and

twDEPF
ρ

was provided to obtain cell 

velocities.   
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(a) 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 Two orthogonal forces acting on the cells are presented in (a) top view (x-y 

plane) and (b) side view. The cDEPF
ρ

 directs the cell toward the tip of the electrode (1) 

or repelled from the tip (2) where the electric field strengths are larger or smaller, 

respectively. The travelling wave dielectrophoretic force ( twDEPF
ρ

) directs the cell 

toward the regions where the electrical phase is smaller (3) or larger (4). Noted that, 

the shape factor 05.1=′K  and )(N.s.m1020.1 25 −−×=η was used for the calculation. 

 

 

x 

y 

z 

(b) 
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3.2 Co-Relation between the Conventional DEP and twDEP Forces  

 

 

           As was seen in Eq. 1.1, the time-average dielectrophoretic force (
tF
ρ

) 

acting on a dielectric particle in a non-uniform sinusoidal electric field )(tEk

ρ
 can be 

written in form  

                 

k
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k
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∂
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∂
+

∂

∂
= µµµ

ρ
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where
 ),,(ˆ zyxkak =  are unit vectors in Cartesian co-ordinate frame, 

∑
=

+=
zyxk

kkkk atEtE
,,

ˆ)cos()( φω
ρ

and the effective dipole moment (
)(keffµ

ρ
). The value of an 

electrical phase of the electric field ( kφ ) was taken into account corresponding with k 

axis. For a spheroid of volume 2

3

4
abπ , the dipole moment in vector form can be written 

as: 
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Substituting Eq. (3.2) into (3.1) gives 
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which can be re-arranged as  
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where Re[CMF] and Im[CMF] were presented in Eqs. (2.48) and (2.49), respectively, 

and 2
E

 
represents of the square of electric field strength (in root mean square value).  

Three orthogonal components of 2
E are presented by 2

xE ,
 

2
yE and 2

zE  (see Figs. 

3.2).The factor xφ∇
ρ

, 
yφ∇

ρ
and zφ∇

ρ
are electrical phases along x, y and z components, 

respectively. To compute the electric field gradient ( 2
E∇

ρ
), the electric field strength 

( E ) and its three components (
zyx EEE ,, ) were simulated through the finite elements 

analysis computer software, Quick Field™ version 5.5. Simulation with the software 

in the AC conduction mode was used with the phase sequence as shown in Figs. 3.2. 

Numerical values of the field strengths between two close positions are computed in 

sequence to obtain the exact value of the electric field gradient ( 2
E∇

ρ
).  

           As is seen from Eq. (3.4), the time-average dielectrophoretic force (
tF
ρ

) 

of the spheroid is the summation of the conventional dielectrophoretic force ( cDEPF
ρ

) 

(the first term in the bracket) and travelling wave dielectrophoretic force ( twDEPF
ρ

) (the 

second term). The cDEPF
ρ

 attracts the spheroid to the tip of the electrode while the 

twDEPF
ρ

 pushes spheroids along the track. The magnitude of the cDEPF
ρ

depends on both 

Re[CMF] and 2
E∇ while the force direction depends on whether Re[CMF]> 0 or 

Re[CMF]< 0. For travelling wave dielectrophoresis, the Im[CMF] and kφ∇
ρ

influence 

the magnitude and direction of the twDEPF
ρ

, respectively. It should be noted that 

twDEPF
ρ

force directs the spheroid towards the regions where the phase of the field 

component are larger (for Im[CMF] >0) or smaller (for Im[CMF] <0). Both forces are 

not synchronized as shown in Fig. 3.3.   
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Fig.3.2 Electric field strengths generated from the interdigitated electrode were 

calculated from the Quick Field™ program. The contour was plotted using the  

signal amplitude of )rms(V83.2 , the electric field frequency MHz1=f , the  

conductivity of the suspending medium 1S.m01.0 −=sσ . The maximum  

value of electric field gradient 3292 .mV103.3 −×=∇E
ρ

 

locates near the tip of the electrode. 
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Fig. 3.3 Plots of dielectrophoretic and travelling wave dielectrophoretic forces acting 

on a spheroid. The following parameters were employed for these plots: 

1

s

1

m

1 S.m0.01σ,µS.m0.17σ,S.m0.37 −−− ===cσ , 78,8,480 === smc εεε  

nm13=δ and 276.0=xL . 
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3.3 Dielectrophoretic Velocity   

 

 

                  As mentioned in section 3.2, two orthogonal forces of the conventional 

dielectrophoretic force ( cDEPF
ρ

) and travelling wave dielectrophoretic force ( twDEPF
ρ

) 

direct a spheroid to the tip of the electrode and along the central channel, respectively.  

A forces diagram acting on the spheroid being levitated above the electrode in the 

viscous medium with a viscosityη is shown in Fig. 3.1b. Evaluation of the 

translational speed of the spheroid was made through the Newton’s first law of 

motion. Since the thickness of the electrode is too small compared to cell size, to 

simplify the mathematical analysis, cell translations were restricted only in xy-plane 

(see Fig. 3.1b) where the gravitational force (
gF
ρ

) acting on the spheroid can be 

neglected. The drag force for the spheroid (Happel and Brenner, 1983) is now given 

by 

    

kD aKavF ˆ6 ′=
ρρ

πη                                                                                                         (3.5) 

 

where η  is a viscosity of the suspending medium and K ′ is a shape factor as   

   

[ ]
.,
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3

4

2/12

2/12

2

2

a

b
K =

−−+
−

−

−
=′ γ

γγγ
γ
γ

γ
                                                                  (3.6)                         

                                                                                                                                      

In case of a constant velocity, 0]CMFIm[ =  and 0]CMFRe[ ≠ , Eq. (3.4) becomes  

                                                                               

DcDEP FF
ρρ

−= ,                                                                                                               (3.7)                               

 

and if 0]CMFRe[ =  and 0]CMFIm[ ≠ ), then  

                   

DtwDEP FF
ρρ

−= .                                                                                                              (3.8)                                                   
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Substituting the first and the second terms of Eq. (3.4) into Eqs. (3.7) and (3.8), 

respectively, yields the translational speeds for dielectrophoresis and travelling wave 

dielectrophoresis as the following 

 

x

s

cDEP a
K

Eb
v ±′

∇
= ˆ

9

]CMFRe[ 22

0

η
εερ ,                                                                                  (3.9)   

 

and   

 
z

zyxi

iis

twDEP a
K

Eb

v ±
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′
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=
∑

ˆ
9

)(]CMFIm[
,,

22
0

η

φεε
ρ ,                                                                   (3.10) 

 

where 
xa±ˆ and 

ya±ˆ are the unit vector along x and y directions, respectively (see the co-

ordinate in Fig. 3.1). It is clear that the direction of 
cDEPv
ρ

and 
twDEPv
ρ

 depend on a sign of 

the Re[CMF] and Im[CMF], respectively. Both velocities are functions of the 

dielectric properties and they are frequency dependent. The values of Re[CMF] and 

Im[CMF] can be directly calculated from Eqs.(2.48) and (2.49), respectively. In the 

case of the spheroid undergoes positive dielectrophoresis, two critical frequencies ( λf  

and hf ) can be determined (see also section 2.3.2 in chapter 2). Theoretical plots of 

dielectrophoretic velocity (
cDEPv
ρ

) as a function of electric field frequency is shown in 

Fig. 3.4. Comparison of 
cDEPv
ρ

as simulated from the spheroidal to the spherical model 

is presented in Fig. 3.5. Since the frequency dependence of 
cDEPv
ρ

is solely depended on 

the Re[CMF], the effects of the dielectric parameters on 
cDEPv
ρ

are thus similar to that of 

Re[CMF] presented in Fig. 2.6  (Figs. 2.6).  
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Fig. 3.4 Theoretical plots of the dielectrophoretic velocity of spheroid as a function of 

electric field frequencies during dielectrophoresis (solid line). The parameters used for 

these plots are the same as for Fig. 3.2. 

 

 

Fig. 3.5 Theoretical plots of dielectrophoretic velocity as transformed from the 

spheroidal model (Eq. 3.9) to a sphere by choosing three equal semi-axes (a = b = c) 

(see Fig. 2.1a also). The parameters used for these plots are the same as for Fig. 3.2. 

           5                     6                     7                   8  

Log AC field frequency (Hz) 

D
ie

le
ct

ro
p

h
o

re
ti

c 
v

el
o

ci
ty

 (
µ

m
/s

) 
Velocity 

Log AC field frequency (Hz)  

D
ie

le
ct

ro
p

h
o

re
ti

c 
v

el
o

ci
ty

 (
µ

m
/s

) 

0  

5  

10  Velocity 



77 

 

 

 

3.4 Discussions and Conclusions  

 

 

           Althrough Eqs. (3.7) and (3.8) describe the balance force between
DF
ρ

, 

cDEPF
ρ

and twDEPF
ρ

, it is possible that the direction of 
cDEPF
ρ

and 
twDEPF
ρ

 in Fig. 3.1b might 

inclines from the horizontal line with an angleθ  due to the nonuniformity of the 

imposed field E
ρ

. The 
cDEPF
ρ

and twDEPF
ρ

 may be expressed with an additional function 

of θcos . Nevertheless, ≈θcostwDEPF
ρ

twDEPF
ρ

 when 1≥
d

y
and θcos =1 as assumed in 

theoretical approach of electromagnetic wave (Morgan et al. 2001). In addition, the 

thickness of the electrode is very small (0.2µm ) compared with cell sizes (4µmof 

S.cervisiate and 10µm  of Tetraselmis). This leads to the assumption of small 

nonuniformity of the field. The approximation is only reliable in particular case 

of ddd == 21 .  

            To compute term of travelling electric field strength ( E ) and its 

gradient ( 2E∇
ρ

) generated from the electrode, some approximations was made during 

operating the Quick Field
TM

 program, viz. the thickness of the electrode was neglected 

compared with the electrode width and length. In case of a thick electrode, a numerical 

method might be taken into account, as suggested by Morgan et al. (2001), to calculate 

the exact value of E . According to his work, a Fourier series wave was solved for the 

E and followed with the finite element method as conducted by Green et al. (2002). 

Analyses of numerical method for solving the solutions of travelling electric field were 

given in details elsewhere (Chang et al., 2003; Feng et al.; Fu et al., 2004).  
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CHAPTER 4 

MATERIALS AND METHODS 

 

 

4.1 Cell Preparations   

 

 

           Cell suspensions in a low conducting medium were employed for the 

present study. Cells were electrically induced in traveling electric field with in an 

appropriate conductivity of the medium. Cell velocity and two critical frequencies 

during dielectrophoresis were observed through experiments. Interactions among the 

dipole moment of neighbor cells might affect each cell velocity. Measurements of the 

cell velocity might be disturbed, leading to pearl chain formation (Pohl, 1978). To 

avoid this problem, dilute cell density was used. Cell densities to be used for 

experiments were thus considered as two values for a comparison study.  

           Saccharomyces cervisiate (TISTR 5088) (Fig. 4.1) and Tetraselmis sp. 

(marine phytoplankton) (Fig. 4.2) were prepared as a model for this study. The former 

was supplied by Department of Biotechnology, Faculty of Agro-Industry, Prince of 

Songkhla University and the latter from the National Institute for Coastal Aqua-

Culture (NICA). Suspensions of both cells were prepared as a control (living) and 

heated cells as well as arsenic pre-treated cells for experimentations. Details of the 

cells preparations are described below. Experiments of these cells were carried out for 

comparisons with the theoretical analysis. This analysis was deduced to the dielectric 

properties of the cells.   

 

 

4.1.1 Yeast Cells 

 

           S. cervisiate (Fig. 4.1) were grown in 70 1. −λg  of Peptone Yeast Extract 

Agar (PDA, Criterion) at 27
  
� C in an incubator-shaker (Jecons Scientific, model 

JS201) at  200 rpm (Raicu et al. 1996). 
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Fig. 4.1 S.cervisiate (TISTR 5088) were suspended in 0.5 M sorbitol.  

 

 

                                     

                               

Fig. 4.2 Tetraselmis sp. suspended in the 0.5 M sorbitol medium. 
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                       The cells were harvested in the stationary phase after 24 hr and washed 

twice with deionized water, then centrifuged (Denver Instrument, M0009861, USA) at 

1,000 rpm for 2 min and re-suspended twice in a 0.5 M sorbitol (Fluka Biochemika 

Assay> 98%) of 0.01 S.m
-1

. The solution conductivity )( sσ was measured using a 

conductivity meter (Tetracon 325, LF318, Germany) and the conductivity was 

adjusted from 0.01 to 0.40 S.m
-1

 by adding 0.1M KCλ  solution, with a micropipette 

(Nichipet, model 5000DG, Japan).       

           To induce cell translation in a traveling electric field, the cell densities 

were diluted and fixed as 1.15 x 10
5 

and 5.75 x 10
4 

cell/mλ. Cell suspensions were 

dropped onto the glass slide between the electrodes. To assure that all the TPI electrode 

tips were submerged in the suspension drop, a volume (V) of the cell suspension was 

estimated from V= 3

6

4
rπ , where )(4 21 ddr +≥ (see Fig. 4.3). The estimated value of r 

was about 2-2.5 mm and the volume was about 100 λµ .  

           In the case of heated cells, the method described by Wanichapichart et 

al., (2007) was employed. They were heated at 75 � C for 10 min., cooled down at 

room temperature 25 � C then centrifuged as described for viable cells.   

 

 

4.1.2 Tetraselmis sp. 

 

 

           Tetraselmis cells are spheroids ( 7.00.10 ± µm ×  5.00.8 ± µm ) (Fig. 4.2). 

The cells were cultured in an artificial sea-water (ACW), Sato and Serikawa’s medium 

(Sato and Serikawa, 1978). To change the solution conductivity, the cells were 

centrifuged using 7,000 rpm for 2 min. They were then re-suspended twice in the 0.5 

M sorbitol of 0.01 S.m
-1

 conductivity, using the same rotation speed. The conductivity 

of the solution )( sσ was later adjusted using 0.1 M KC λ solution.  
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           The cell density of Tetraselmis to be used for each experiment was fixed 

at 9.2 x 10
6 and 4.0 x 10

5 cell/mλfor a comparison study. It was determined using a 

hemocytometer (BOECO, Germany). Cell samples of about 100 λµ  were dropped in 

the middle of the TPI electrode by using a micropipette (see Fig. 4.3b).  

           As reported by Wanichapichart et al. (2007), dead cells were prepared 

by heating at 80
o
C for 10 min, cooling down to room temperature and then 

centrifugation.  Arsenic pretreated cells were prepared by adding an arsenic solution 

(NaAsO2, Sigma- Aldrich 99%) to the cell culture at concentration varying from 1 to 

150 ppm and left at room temperature for 24 hrs.  Then, the cells were centrifuged and 

washed as described for the control. 

 

 

4.2 Electrode Fabrications  

 

 

4.2.1 Preliminary Micro-channel TPI Electrode 

 

 

                        In a preliminary study, cell induction in travelling electric field was 

performed by using a peristaltic pump (MP-3N, Japan) to feed cell suspensions 

through the microchannel (Fig. 4.4a) of the interdigitated electrode (Fig. 4.4b). The 

cell suspension was fed via the microtube (1 mm in diameter) with a constant 

minimum flow rate of 10 1min. −λµ .  

                       With the lowest flow rate, it was found that the pressure damaged the 

gold tips as an example shown in Fig. 4.5. To circumvent this problem, all flow was 

replaced by a drop on to the TPI electrode and the plastic wall (Fig. 4.4a) was 

removed.   
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(Not to scale) 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Fig. 4.3 Drop of cells suspension on the electrode was illustrated in (a) Side view and 

(b) Top view. The volume (V) of hemisphere of radius (r) was estimated from 3

6
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(a) 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

Fig. 4.4 The previous microchannel-TPI electrode. (a) Simulation of the microchannel 

of the electrode by using Coventor Ware
TM

 and (b) the electrode connecting with 

microtube was mounted on the electrode’s base. 
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Fig. 4.5 One tip of the TPI electrode was damaged while the suspension was being 

feed through the microchannel. 

 

 

 4.2.2 Micro Electrode Array 

 

 

            The electrode used throughout experimentations for the present study 

was fabricated by National Electronics and Computer Technology Center (NECTEC) 

on a microscope glass slide of dimension 80×30×1 mm (Marienfeld, Germany) (Fig. 

4.6a).  The slide was first annealed at 400 � C for 4 hr to relieve internal residual 

stress. Photomasks defining the bar shaped electrode “interdigitated electrode” were 

generated using a layout software (AutoCAD) and were then printed on a transparent 

film using a high-resolution laser printer (10 000 dpi).  

           Electrodes fabrication commenced with the standard wafer-cleaning 

process. Process solutions were prepared using deionized (DI) water. The glass 

substrates were immersed in a Piranha solution at 120 � C for 10 min and then rinsed 

in DI water and blown-dry with nitrogen gas. Using an E-beam evaporation process, 

an adhesion layer  
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                                                              (a)  

                

                                          

                                                           (b) 

 

Fig. 4.6 A configuration of the TPI electrode and the quadrature phase sequence as 

shown in (a) three dimensional view (not to scale) and (b) diagram of electrical set up 

with an adjustable phase shift unit (PSU) connecting with an interjunction unit (IJU). 

 

Glass slide 

Function generator 
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-of 0.02 µm chromium (Cr) was deposited onto the glass substrate, followed by 

deposition of a 0.2 µm layer of gold. The bar-shaped array of microelectrodes was 

then patterned using a standard photolithography and metal etching process. Finally, 

the photoresist layer was striped by a KOH solution at 50 �C. An upper 

polydimethlysiloxane “PDMS” plate with a microchannel (60 µm in width and 100 

µm in depth) was used to cover the cell chamber. Detailed information relating to all 

process was provided by Fu et al. (2004). The PDMS plate was oxygen-plasma-treated 

with gold (99%) and then bonded with the glass substrate. All processes were taken 

place in a clean room of class 100 (TIDI, MEMS-NECTEC).  

            The gold electrodes so formed on the slide were 200 µm long, 100 µm 

wide (
1d ), and 0.2 µm thick (t). The separation of the adjacent bars on the same array 

(
2d ) was 100 µm and that for the central channel (

3d ) is 300 µm (see Fig. 4.6a). 

 

 

4.3 Electrical Set-Up and Data Collection 

 

 

           To induce cell suspensions in travelling electric field, the electrode array 

was energized with four sinusoidal signals (a quadrature phase) varied from 1to 10 

Vpp in amplitude, in a phase sequence as described by Wang et al. (1995). This was 

achieved by setting electrical set-up as shown in Fig. 4.6b.  

            A synthesized function generator (Standford Research Systems, 30 

MHz Model DS345, and California) was connected to the adjustable phase shift unit 

(PSU) (Fig. 4.7a) to split an AC signal into a quadrature phase with the same 

frequency. The quadrature phase was 1φ =0, 2φ =π/2, 3φ =π and 4φ =3π/2. These phases 

were connected to the sixteen bars of the electrode array via a home-made 

interjunction unit (IJU) (Fig. 4.7b). An example of output signals for the quadrature 

phase with zero time-delay is shown in Fig. 4.8. Figure 4.9 shows the instantaneous 

signals with 200 ms time-delay, due to appropriate chosen signal phases.  
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                                                            (a) 

                

                                                            (b) 

Fig. 4.7 Pictures of (a) the adjustable Phase Shifted Unit (PSU) connected with (b) the 

Inter-Junction Unit (IJU). 
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Fig. 4.8 Four output AC signals with zero time-delay measured from oscilloscope (100 

MHz oscilloscope 2245A). 
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                                          (b) 

 

0º

90º

180º

270º

90º

180º

270º

0º

180º

270º

0º

90º

270º

0º

90º

180º

0º

90º

180º

270º

State 1 State 4 State 3 State 2 State 1

1 Loop

Output A

Output B

Output C

Output D

t t t t t

0º

90º

180º

270º

90º

180º

270º

0º

180º

270º

0º

90º

270º

0º

90º

180º

0º

90º

180º

270º

State 1 State 4 State 3 State 2 State 1

1 Loop

0º

90º

180º

270º

0º0º0º

90º90º90º

180º180º180º

270º270º270º

90º

180º

270º

0º

90º90º

180º180º

270º270º

0º0º

180º

270º

0º

90º

180º180º

270º270º

0º0º

90º90º

270º

0º

90º

180º

270º270º

0º0º

90º90º

180º180º

0º

90º

180º

270º

0º0º0º

90º90º90º

180º180º180º

270º270º270º

State 1 State 4 State 3 State 2 State 1State 1 State 4 State 3 State 2 State 1

1 Loop1 Loop

Output A

Output B

Output C

Output D

Output A

Output B

Output C

Output D

t t t t ttt tt tt tt tt

 

                                          (c) 

Fig. 4.9 The “PSU” generated the quadrature phases with time-delay of 200 ms. When 

instantaneous states of four signals driven through cable A, B, C and D changed from 

state 1 to state 4 (a), the signals shifted to the right (b),  or to the left (c) depending on 

operating knobs. 
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           Images of cell translational motion were recorded using a CCD camera 

(Sony SLV-Japan), which was connected to a microcomputer (Acer, Aspire 4310 

Vista) via the Winfast PVR™ program. Computations of 
cDEPv
ρ

 were made through the 

Winfast PVR™ program with a time-accuracy of 0.01 sec. Three separate 

measurements were made to obtain the velocity data and two critical frequencies 

(
λf ,

hf  ) were investigated. To determine λf and hf , the frequency of the applied 

signals was gradually decreased from the upper (30 MHz limit) to the lower values. 

Each experiment took place within 5 min. 

 

 

4.4 Calculations of Electric field Strengths 

 

 

           Electric field intensities were calculated using the Quick Field™ 

program version 5.5 and the finite element analysis in the AC conduction mode (Tera 

Analysis Ltd., freeware from www.quickfield.com ). The simulation of electric field 

profile in two-dimension has been shown in Fig. 3.3 (in chapter 3). The accuracy for 

the electric field simulations depended on RAM capacity in the microcomputer 

employed (Acer Aspire 4310, 1.0 GB).  

            To operate the Quick Field™ program in the AC conduction mode, field 

sources (electrode type and geometry) and boundary conditions were taken into account. 

The electrode geometry was fixed as 1d , 2d and 3d  shown in Fig. 4.6a. For the present 

study the phase sequence was shifted to 2/π with time delay chosen. 
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CHAPTER 5 

CELL DIELECTRIC USING LAPLACE APPROACH 

 

 

 

5.1 Introduction 

 

 

           In chapter 3, theoretical analysis of dielectrophoretic velocity ( cDEPv
ρ

) of 

a spheroid in travelling electric field was presented in Eq. (3.9) (page 75). The 

amplitude of cDEPv
ρ

 is dependent on the gradient of electric field ( 2
E∇
ρ

), which is 

equivalent to changes of the amplitude ( 0V ) of the applied signal described in section 

4.4. The cDEPv
ρ

is also a function of the real part of the Clausius-Mossotti factor 

(Re[CMF]), which reflects the cell dielectric properties. Hence, determinations of the 

cell dielectric parameters can be made through a comparison of the experimental and 

theoretical cDEPv
ρ

values.  

           To verify the theoretical predictions for a spheroidal model used in the 

present study, experimental cDEPv
ρ

values for living S. cervisiate and Tetraselmis 

undergoing dielectrophoresis were measured over a AC field frequency range of 10 

kHz to 30 MHz. Data fittings were carried out on the effect of the conductivity of the 

suspending medium ( sσ ), electric field (E) strengths as described in chapter 4. In 

addition the cell densities were also varied.  

            To investigate how cell stages under environmental changes can be 

meaningful explained with the theory developed, experiments were also carried out 

with non-living (dead) cells of S. cervisiate and arsenic pretreated Tetraselmis. These 

will be presented in chapter 7.  
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5.2 Materials and Methods 

 

 

            For the travelling electric field dielectrophoresis experiments, 

S.cervisiate and Tetraselmis were prepared as described in chapter 4, section 4.1.1 and 

4.1.2, respectively. Investigations of experimental values of cDEPv
ρ

for both cells were 

made over AC field frequency range from 10 kHz to 30 MHz. The frequency of the 

applied signals was initially set to the highest frequency and then gradually reduced to 

the lower frequencies so that “Joule-heating” was minimized. It should be noted that 

Joule-heating problem can be significant at the lower frequencies because the current 

is then largely an ionic current whilst at high frequencies this is less of a problem 

because the current is then largely a non-dissipative displacement current. The highest 

frequency was 30 MHz, the limitation of the function generator used for the present 

study. The conductivity of the suspending medium )( sσ  was varied from 0.01 to 0.30 

S.m
-1

. It should be noted that the lowest value of sσ  of 0.5 M sorbitol solution 

employed for the present study was about 0.010± 0.003 S.m
-1

. The higher values of 

sσ were attained by addition of 0.1M KCλ  solution.  

           Cells were exposed to electric field strengths of various values, by 

increasing the voltage across the electrodes 0V from 1 to 10 Vpp, the maximum 

voltage of the function generator used for the present study.  However, to compare 

experimental data with the theory (Eq. 3.9), the electric field were adjusted by varying 

the amplitude of the applied signal, 0V  to values of 1, 2, 4, and 10 Vpp, which 

corresponded to field strengths of  14, 28, 57, and 143 kV.m
-1

, respectively.  

Calculations of electric field strengths were made using the Quick Field™ program (see 

explanations in section 4.4, chapter 4).   

           The dielectric properties obtained for S.cervisiate were compared with 

those in the literatures and extensions of the model were made with Tetraselmis.  
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5.3 Dielectrophoretic velocity  

 

 

5.3.1 S.cervisiate  

 

 

5.3.1.1 Effect of cell densities 

 

 

            Experimental results show that cells exhibited both positive and 

negative dielectrophoresis where only the cross over frequency to the negative 

dielectrophoresis region, that is the lower critical frequency ( λf  ) was found. Plots of 

cell velocity 
cDEPv
ρ

as a function of AC electric field frequency are shown in Figs. 5.1 

and 5.2. Experimental results show no differences in 
cDEPv
ρ

spectra for the two cell 

densities used. In Fig. 5.1, the cDEPv
ρ

spectra of 1.15 x 10
5 

and 5.75 x 10
4 

cell/mλ are 

compared when sσ was fixed as 0.01 S.m
-1 

and electric field strengths (E) are changed 

from 28 to 143 kV.m
-1

 (Figs. 5.1a to 5.1c). Increasing E enhances the cDEPv
ρ

magnitude 

and vice versa. The same results were found with the case of sσ = 0.03 S.m
-1

 which is 

shown in Fig. 5.2. It should be noted that the value of both E
 
and

 sσ  affect the 

magnitude of cDEPv
ρ

as the following reports.  

 

 

5.3.1.2 Effect of electric field strengths (E) 

 

 

            Effects of electric field strength (E) on the cDEPv
ρ

spectra are also found 

in Figs. 5.1 and 5.2. In case of 1
S.m01.0

−=sσ as shown in Figs. 5.1a, b and c; 

increasing E from 28 to 143 kV.m
-1

 enhance the peak of the cDEPv
ρ

spectra from 1.25 ± 

0.12 to 3.38 ± 0.4 µm.s
-1

. It should be note that changes in E only affect the 
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magnitudes of the 
cDEPv
ρ

spectra. Again, the λf is not affected by the change of E.  The 

maximum value of the 
cDEPv
ρ

 spectrum of experiments with a cell density of 1.15 x 10
5 

cells/mλ was 3.38 ± 0.4 µm.s
-1

 at 3.5 kHz when E=143 kV.m
-1

(Fig. 5.3a). Similar 

results were obtained in experiments with 5.75x10
4
 cells.ml

-1
 density (Fig. 5.3b). 

These results agreed well with the above finding.  

 

 

5.3.1.3 Effect of the Conductivity of the Suspending Medium ( sσ ) 

 

 

            When the values of sσ were increased in steps to 0.03, 0.06 and 0.10 

S.m
-1

, the magnitudes of 
cDEPv
ρ

spectra were decreased dramatically as shown in Figs. 

5.4, 5.5 and 5.6, respectively. As seen from Fig. 5.4a and b, for 1
S.m03.0

−=sσ , 

E=143 kV.m
-1

, the maximum value of the 
cDEPv
ρ

 spectrum was 2.23 ± 0.26 µm.s
-1

 at 14 

kHz, the same for both cell densities. The same experiment was carried in Figs. 5.5 

and 5.6, only sσ was increased. The increased sσ shifted the λf towards higher 

frequency in all cases, while the maximum 
cDEPv
ρ

value was reduced. As found in 

5.3.1.2, the maximum E used in the present study (E=143 kV.m
-1

) gave a maximum 

value of the 
cDEPv
ρ

 spectrum, reaching 1.65 ± 0.21 µm.s
-1

 at 19 kHz. This study was 

also found that if sσ was larger than 0.25± 0.04 1S.m− , dielectrophoresis of yeast cells 

in travelling wave could be induced.  

 

 

 5.3.2 Tetraselmis   

 

 

            The experimental conditions used to measure the
cDEPv
ρ

spectra for 

Tetraselmis were the same as described for yeast cells. The following are each effect. 
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5.3.2.1 Effect of cell densities 

 

 

            Figures 5.7 and 5.8 showed no differences in 
cDEPv
ρ

spectra for the two 

cell densities of Tetraselmis used and this was the case for each sσ used. Similar to 

what was observed in yeasts, the value of both sσ and E did not affect the cross over 

frequency to the negative dielectrophoresis region. Hence the lower critical 

frequency λf  was not dependent on either sσ  or E.  

 

 

5.3.2.2 Effect of electric field strengths (E) 

 

 

            Figure 5.9 shows the results for 1
S.m01.0

−=sσ when E was varied. It 

was found that increasing the values of E result in increasing the magnitude of
cDEPv
ρ

.  

For cells densities of 9.2 x 10
6 

cells.ml
-1
 and E=143 kV.m

-1 
(Fig. 5.9a), the maximum 

value of the 
cDEPv
ρ

 was 29.5 ± 0.3 µm.s
-1

 at 50 kHz.  

 

 

5.3.2.3 Effect of the Conductivity of the Suspending Medium ( sσ ) 

 

 

            When the values of sσ were increased in steps to 0.03, 0.06 and 0.10 

S.m
-1

, the magnitudes of 
cDEPv
ρ

spectra were decreased dramatically as shown in Figs. 

5.10, 5.11 and 5.12, respectively. For 1
S.m03.0

−=sσ and cells density of 1.15 x 10
5 

cells.ml
-1

, the maximum value of the 
cDEPv
ρ

 was 2.23 ± 0.26 µm.s
-1

 at 14 kHz when 

E=143 kV.m
-1

. Similar results were also obtained in experiments using cell densities. 

It was clear that there were no differences in 
cDEPv
ρ

spectra between two cases of cell 
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densities for each sσ  used for the present study, even through the values of E and 

sσ were changed.   

            The maximum values of sσ at which travelling wave dielectrophoresis 

could be induced with Tetraselmis was 1S.m03.037.0 −± .  

 

5.4 Data Fittings 

 

            From Eq. 3.9 (chapter 3), the dielectrophoretic velocities are solely 

dependent on the dielectric and conduction properties of the cytoplasm ( cc σε , ), the 

membrane ( mm σε , ), and the suspending medium ( ss σε , ), respectively. These 

parameters generally affect different characteristic features of dielectrophoresis 

spectrum. It is clear from Figs. 2.6c and d, the conductivity and permittivity of the 

cytoplasm has a more pronounced affect on the magnitude of the positive velocity part 

of the spectra and the value of the higher critical frequency. As seen from Figs. 2.6e 

and f, the dielectric properties of the membrane dominate the spectrum at lower 

frequencies and determine the magnitude of the negative velocity spectra. The cell size 

and the membrane thickness also play a role in determining the spectra.  

            In order to fit the experimental data to the theoretical expressions, it is 

necessary to take into account experimental errors. This allows one to deduce the 

values of the parameters with a quantitative estimate of the best fit. For the 

cDEPv
ρ

spectra, the error χ in fitting the data to the theoretical expression can be defined 

as:  
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where ).(exp iv and )(itheoryv are the magnitudes of the experimental and the theoretical 

dielectrophoretic velocity and N is the number of data points (frequencies). 

            To obtain the best fit it is necessary to minimize Eq. (5.1) by adjusting 

the parameters in the theoretical expressions. However, there are at least 4 parameters 

(conductivities and dielectric constants) that cannot be independently measured. In 

addition the cell membrane thickness is not precisely known.  

             The method to fit the theoretical curve with that of the experiments to 

obtain cell dielectric parameters were made based on the knowledge of sensitivities of 

dielectric parameters shown in Fig. 2.6. Theoretical plots in Figs. 5.13 and 5.14 

showed the fitting results for the dielectrophoretic velocity spectrum of S. cervisiate 

and Tetraselmis, respectively, which gave a value of Chi (Eq. 5.1) of less than 10%. 

 

5.5 Discussions and Conclusions  

 

 

            The experimental results show that for both cells, electric field 

strengths (E) and the conductivity of the suspending medium ( sσ ) affected the 

magnitudes of the cDEPv
ρ

spectra. Decreasing the values of E reduced the magnitudes of 

the cDEPv
ρ

spectra. In contrast, decreasing the values of sσ enhanced the magnitudes of 

the cDEPv
ρ

spectra. The two cell densities used for the present study had no effect on the 

cDEPv
ρ

spectra.  

             In this chapter the dielectric properties of the membrane and the 

cytoplasm of S. cervisiate and Tetraselmis were determined by curve-fitting the 

dielectrophoretic velocity ( cDEPv
ρ

) to the theoretical expressions for dielectrophoresis. 

The estimated dielectric parameters were shown in Table 5.1. The parameters obtained 

for yeast cells agree well with control experiments reported in the literatures (Zhou et 

al., 1996; Raicu et al., 1996), when electrorotation technique and two-shell model 

were studied under the effect of contamination. However, the value of the relative 
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permittivity of the membrane ( mε ) estimated from the present study was greater than 

that of the literatures about two times. In case of Tetraselmis, the parameters obtained 

are slightly different from the control experiments reported in Wanichapichart et al. 

(2002) and (2007) when a single cell dielectrophoresis and electrorotation techniques 

were employed, respectively. As seen from the later works the specific capacitance of 

the membrane (Cm) estimated from the present study is greater than that of the 

literatures, while the specific conductance of the membrane (Gm) reported by the 

literature is much greater than that of the present study (see Table 5.2).  

            In the present study, the cDEPv
ρ

spectra were obtained directly from cell 

suspensions instead and each cell was selected for the measurement, whereas only one 

cell was induced in previous report by Mahaworasilpa et al. (1994). It should be noted 

that the characteristic spectra of cDEPv
ρ

, especially the peak value, can be more readily 

determined when the conductivity of the suspending medium sσ is low. For higher 

values of sσ , the peak of the Re[CMF] was diminished. Note that this form of spectra 

is the same as appearing in a spherical model occurs only if sσ reaches 0.04 1S.m− in 

S. cervisiate and 0.06 1S.m−  in Tetraselmis. 

             It was found that the cDEPv
ρ

spectra of both cells were not dependent on 

the two cell densities used for the present study. This implies that any cell-to-cell 

interaction among neighbor cells in the suspension was very small. To verify this, a 

calculation was made of the total work (U) to bring two polarized cells to a center-to-

center separation. The calculation for the total work was carried out as a function of a 

radial distance r. As seen from Fig. 5.15, for values of r/R ≥  6, the work U becomes 

negligibly small. This means that two spheroids which are separated about six times 

the cell radius (R) interact negligibly with each other. As observed from experiments 

through the microscope, a value of the ratio of r/R = 6 is relevant to cell densities 

which are less than 9.2 x 10
6
 cells/mλ. Thus in the all the present experiments the 

average value for r/R ≥  6.  
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CHAPTER 6 

CELL DIELECTRIC PROPERTIES USING  

THE IMPEDANCE, RC-MODEL, APPROACH   

 

 

6.1 Introduction 

 

 

            In the previous chapter it was shown that determinations of cell 

dielectric properties could be made from measurement of the dielectrophoretic 

velocity ( cDEPv
ρ

) by curve fitting to a theoretical model. However, zero value of 

cDEPv
ρ

at higher frequencies was not found. This led to the absence of the 

negative cDEPv
ρ

in chapter 5. This brought about the ambiguous of the dielectric value 

the cytoplasm obtained by cDEPv
ρ

curve-fitting.   

            As seen in chapter 2, two critical frequencies ( λf , hf ) could be 

identified by both Laplace and RC approaches. The Laplace approach, however, 

involves very complicated mathematical functions (see section 2.2.5, chapter 2). In 

contrast, based on the impedance approach, the values Re[CMF] could be written in a 

compact form in term of the effective complex impedance ( ∗

eff
Z ) (Eq. 2.67), in which 

the Re[CMF] was easily solved for two the critical frequencies where Re[CMF]=0 

(Eqs. 2.79 and 2.80).   

            This chapter deals with the impedance approach to determine cell 

dielectric properties using the knowledge of λf alone. Experiments were carried out 

under changes in sσ .  Tetraselmis and S. cervisiate were so used as models. This is 

also to verify Eq. (2.29) after adequate experimental data is obvious. The relationships 

between λf , hf , cDEPv
ρ

and cDEPF
ρ

 will be discussed in chapter 7.  
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6.2 Cell Preparation and Density 

 

 

            Observations of the critical frequencies of S. cervisiate and Tetraselmis 

were the same as described before in chapter 4. Data of λf and sσ from chapter 5was 

re-plotted in this chapter. Since the plotting is essential for the determination of all 

parameters, the sσ was finely adjusted. As reported previously, the lowest sσ value of 

0.5 M sorbitol solution was about 0.010± 0.003 S.m
-1

, and the higher values used in 

this chapter was 0.35± 0.01 S.m
-1

.  

 

 

6.3 Critical Frequencies  

 

 

6.3.1 S. cervisiate  

 

 

6.3.1.1 Effect of electric field strengths and cell densities 

 

           Only the lower critical frequency λf was obtained and shown in Figure 

6.1against sσ . Changes in electric field strengths (E) from 28 kV.m
-1

, 57 kV.m
-1

 and 

143 kV.m
-1

(Fig. 6.1a, b and c), did not affect the λf . As reported in section 5.3.1.1 to 

5.3.1.2, the λf on both cell density is independent on the sσ and E used, but it increases 

with sσ . Again, Fig. 6.2 shows that λf  is independent of E.  

 

6.3.2 Tetraselmis sp. 

 

 

6.3.2.1 Effect of electric field strengths and cell densities 
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            Plot of λf  against sσ for both cell densities are shown in Figure 6.3. 

Again, only λf was observed. Changes in E from 28 kV.m
-1

 to 143 kV.m
-1

(Figs. 6.3a 

to b) did not affect the λf . Again, Fig. 6.4 shows that λf  is independent of E.  

 

6.4 Data Fittings 

 

            The method of curve fitting was made based on the basis of the 

procedure as described before (see Eq. 5.1 in section 5.4). Figures 6.5 and 6.6 show 

that the curves seem to fit well with the experimental data. The error as computed 

from Eq. 5.1, using 3 replicates and the value of 7.34 ± 0.28 % was obtained. 

Deviation from each curve-fitting (Figs. 6.1 to 6.4) was then calculated to sum up the 

average error. Numerical calculations of standard deviation were given in details 

elsewhere (Hoffman, 1993). 

    

6.5 Discussions and Conclusions 

 

            This chapter described how the relative permittivity and the 

conductivity of the membrane and the cytoplasm of S. cervisiate and Tetraselmis were 

obtained by using λf curve-fitting and the impedance approach. It was found that hf  of 

both cells could not be detected in the experiments; this was also the case for the work 

reported by other researchers (Gimsa and Wachner, 1998 and 1999). One possibility 

explaining this is that the induced dipole cannot follow the rapid changes in the 

electric field, or other dissipative effects limit the magnitude of the induced dipole 

moment. Although the lack of data on the higher critical frequency effects the 

estimations of dielectric properties of the cytoplasm (see Fig. 2.12a), the latter could be 
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estimated from dielectrophoretic velocity spectra. The estimation of dielectric 

parameters from the critical frequency provides a simpler technique to use.  

            By increasing the solution conductivity )( sσ , λf increases and when 

sσ reaches a critical value )( ctσ where λf = hf , the cell experiences a zero force. Hence, 

there is no cDEPF
ρ

on the cell. To find this ctσ , one can simply increase the sσ  until no 

dielectrophoresis can be observed. In this work, the “banana” shape as called by Gimsa 

and Wachner (1999) can be plotted from Eq. 2.79, and the ctσ can be theoretically 

obtained as 0.24 and 0.37 for S. cervisiate and Tetraselmis, respectively.   

            Dielectric values in Table 6.1 agree well with the range reported by the 

literatures (Radu et al., 1996; Zhou et al., 1996; Raicu et al., 1996; Wanichapichart et 

al., 2007). As mentioned in chapter 1 (section 1.3) and 5 (section 5.5), determinations 

of the parameters could be made through an electrorotation technique (Raicu et al., 

1996; Zhou et al. 1996). By this method, only a, b and sσ (see Fig. 2.1) were 

measured directly. The comparison between the dielectric properties obtained from the 

present work and that in the literatures are shown in Table 6.1.  

            It should be noted that the rather high value for mε  andδ of S. 

cervisiate in Table 6.1 implies a special attribute of TISTR 5088 yeast cells directly or 

it indicates that the double-shelled spheroid should be used to derive the dielectric 

parameters (Zhou et al., 1996).  
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CHAPTER 7 

CHARACTERIZATION OF DEAD  

AND ARSENIC PRETREATED CELLS  

 

 

7.1 Introduction 

 

 

            Heated cells and arsenic contaminated cells were determined for 

dielectric properties before by Wanichapichart and her colleague (2007) using 

electrorotation technique. A cell was induced in a rotating electric field in a four-

electrode system. They showed that the rotation of heated Tetraselmis cells diminished 

at the lower frequency range, while that of the arsenic pretreated cells was smaller 

than that of the control.  Curve-fitting of rotation speeds were employed to estimated 

the dielectric properties of the cells. It was found that the specific membrane 

conductance was increased from 0.5 kS.m
-1 

for the control to 90 kS.m
-1

for the heated 

cells. Cells pretreated with arsenic solution from 10 to 100 ppm levels increased in the 

membrane conductance to 8.8 kS.m
-1

; a much smaller effect compared to heated cells. 

In addition, for arsenic pretreated cells, it was found that the membrane and the 

cytoplasmic permittivity were reduced from 39εo to about 13εo, at all levels of arsenic 

used in that study. The study also found that it was possible to distinguish the viable 

from the non-viable cells at certain selected conditions for electric field, frequency 

range and solution conductivity. The method of cell rotation in a rotating electric field 

requires measurements of the cell spin speed using one cell at a time.  

            In chapters 5 and 6 the dielectric properties of the living S.cervisiate 

and Tetraselmis were obtained from dielectrophoretic measurements by fitting the 

DEP data to twDEP theory and utilizing a spheroidal cell model. Each of the dielectric 

parameters was estimated from two techniques i.e. dielectrophoretic velocity (in 

chapter 5) and the critical frequencies (in chapter 6). For further verification of the 

model developed, experiments will be carried out with heated and arsenic pretreated 



145 

 

cells in this chapter. The present study will repeat the above experiments with the TPI 

electrode. 

 

 

7.2 Cell Preparations 

 

 

           S.cervisiate and Tetraselmis were prepared as described in section 4.1 

(chapter 4). The method of cell induction was the same as in section 4.3.  

 

 

7.3 Dielectrophoretic velocity and Critical frequency 

 

 

7.3.1 S. cervisiate 

 

             Figure 7.1 shows dielectrophoretic velocity (
cDEPv
ρ

) of the control and 

heated S. cervisiate under two solution conductivities. It reveals that the control cells 

translate to electrode tips with a much higher speed than the heated cells. In Fig. 7.1a, 

for 1
S.m01.0

−
=sσ and E=28 kV.m

-1
, the maximum 

cDEPv
ρ

 of the control and heated 

1.15 x 10
5 

cells.ml
-1

 cells were 1.20 ± 0.81 µm.s
-1

 at 200 kHz and 0.25 ± 0.08 µm.s
-1

 at 

1 MHz, respectively. It is interesting to point out that this is the first time to observe 

the higher critical frequency ( hf ) of 
cDEPv
ρ

 measurement for heated cell at 8 MHz, 

while hf of the control could not be observed. In contrast, at the lower frequency, 

λf of heated cell could not be found while that of the control cell was 50 kHz. Below 

50 kHz ( λf ), the control cell exhibited negative 
cDEPv
ρ

started from zero to -0.80 ± 0.07 

µm.s
-1

. At 30 MHz limit, 
cDEPv
ρ

of the control was 0.6 ± 0.05 µm.s
-1 

where the negative 

value of heated cell could not be found. 
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             In Fig. 7.1b, when sσ  was increased to 1S.m04.0 − , 
cDEPv
ρ

of both 

control and heated cells were dramatically reduced with a much less speed than that of 

cells in Fig. 7.1a. The maximum 
cDEPv
ρ

 of the control and heated cells were 0.23 ± 0.02 

µm.s
-1

 at 8 MHz and 0.05 ± 0.01 µm.s
-1

 at 1 MHz, respectively. It is surprising that 

both λf and hf  of heated cell could be observed viz. at 0.5 MHz and 3 MHz, 

respectively. As seen from the figure, the frequency range between λf and hf is 

narrow. For the control, λf  was 2 MHz and hf could not be observed beyond 30 

MHz limit. At that limit, 
cDEPv
ρ

of the control was 0.06 ± 0.01 µm.s
-1

. It was found that 

dielectrophoresis could not be observed for heated cell when sσ  was higher 

than 1S.m04.0 − .  

            Figure 7.2 shows λf of the control and heated 1.15 x 10
5 

cells.ml
-1

 cells 

when E=28 kV.m
-1

. It reveals that the value of λf shifts to higher frequencies when 

sσ was ranged from 0.01 to 0.30 S.m
-1

. As seen in Fig. 7.2a, for the control, λf starts 

from 50 kHz at sσ = 0.01 S.m
-1

 to 30 MHz at 0.25 S.m
-1

. For heated cell, λf starts 

from 100 kHz at sσ = 0.03 S.m
-1

 to 0.5 MHz at 0.04 S.m
-1

.  

 

 

7.3.2 Tetraselmis  

 

 

            Figure 7.3 shows 
cDEPv
ρ

spectra of the control and arsenic pretreated 

cells. When increasing arsenic concentrations from of 1 to 150 ppm as step shown in 

the figure, the maximum 
cDEPv
ρ

 of the control and pretreated 1.15 x 10
5 

cells.ml
-1

 cells 

were fixed at 9.4± 0.3 µm.s
-1

while the peak shifts to lower frequencies. The value 

of λf decreased from 35 kHz to 15 kHz when the arsenic concentration was increased 

under sσ used as 0.01 S.m
-1

. As seen in Fig. 7.4, λf curves were shifted when sσ was 

ranged between 0.10 to 0.35 S.m
-1

. At the lower sσ , increasing arsenic concentration 
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from 1 to 150 ppm, λf shifts from 40 kHz to 10 kHz, respectively. At the higher sσ , 

λf shifts from 7 MHz to 2 MHz. It should be noted that hf  could not be observed in 

all cases.  

            Figure 7.5 shows 
cDEPv
ρ

 of the control and heated cells under 0.01 S.m
-

1
sσ . It reveals that the control cells translate to electrode tips with a higher speed than 

the heated cells. The maximum 
cDEPv
ρ

 of the control and heated 1.15 x 10
5 

cells.ml
-1

 

cells were 9.0 ± 0.4 µm.s
-1

 at 200 kHz and 4.4 ± 0.2 µm.s
-1

 at 600 kHz, respectively. It 

is interesting that there are no λf and hf  of 
cDEPv
ρ

 measurement for heated cell, while 

λf was found only for the control cell.  

 

7.4 Data Fittings 

 

            The method to fit the theoretical curve to the experimental data in order 

to obtain dielectric parameters of the cells were made on the basis of the known 

sensitivities of the dielectrophoretic velocity and critical frequencies on the dielectric 

parameters (shown in Fig. 2.6 and and Fig. 2.12). The error as computed from Eq. 5.1, 

using 3-replicates and the value of 6.87 ± 0.29 % was obtained. Dielectric parameters 

obtained from both approaches for both cells were reported in Table 7.1.  

 

7.5 Discussions and Conclusions  

 

           Dielectric parameters obtained were listed in Table 7.1 and compared 

with the literatures (Radu et al., 1996; Raicu et al., 1996 and 1998; Wanichapichart et 

al., 2007) in Table 7.2. The parameters obtained for the present study were used to 

investigate the Clausius-Mossotti factor [CMF] spectra of the control and heated S. 
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cervisiate. As shown in Fig. 7.6, both real part (Re[CMF]) and imaginary part 

(Im[CMF]) of the control is higher than that of heated cells. This infers the different 

conductivity of the cytoplasm ( cσ ) between the control and heated cells. From Table 

7.1, it is interesting that the value of mσ of heated yeast cells was much higher than that 

of the control and this was responsible for the absence of λf . These results are in good 

agreement with those previously shown in Fig. 2.6f (chapter 2). For higher 

frequencies, the control yeast cells possess a higher cσ than that of the heated cells. 

            Velocity spectra of arsenic pretreated cells (Fig. 7.3) showed the 

correlation between changes of arsenic concentrations used in the present study and 

the values of λf  while the peak velocity is not affected. It appears that the shifting of 

the critical frequency to lower values might be cause of changes in the dielectric 

property of the membrane. It is possible that the membrane proteins are affected by 

arsenic. This result is in consistency with the λf  
vs.

 sσ  plots, using our RC model 

(Fig. 7.4).  It should be noted that on increasing sσ , the cell velocity was reduced and 

became negligible a 0.37 S.m
-1

 solution was used. This implies that the critical 

conductivity of Tetraselmis is 0.37 S.m
-1

, which provides an indication of the 

conductivity of cytoplasm ( cσ ). The previous work done by Wanichapichart et al. 

(2007) showed that arsenic pretreatment increased the membrane conductance similar 

to what found in dead cells, but cell proliferation ceased only when the arsenic reached 

100 ppm level.  Wanichapichart and her colleagues proposed therefore, that the arsenic 

pretreated cells were still alive, and the cessation of cell growth could be due to some 

metabolic inhibition.  

            As is seen, the Cm of arsenic pretreated cells is increased with 

increasing arsenic levels. Both Gm and Cm were estimated by assuming a thickness of 

the membrane with the cell wall of 35 nm (for Wanichapichart et al., 2007) and 13 nm 

(for the present study). In a previous work (Wanichapichart et al., 2002) theoretical 

estimations made by curve fitting using dielectrophoretic data revealed possible 

thicknesses of the wall including, the membrane, of plankton cells to be from 20 to 50 

nm.  The 13 nm used in this study refers to the thickness of the membrane only. 
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           The specific capacitance (
mC ) and conductance (

mG ) of the membrane 

in all cases were calculated and compared with the literature is shown in Table 7.2. 

For the present study, the results showed that 
mC  and 

mG of the control and heated S. 

cervisiate were 11.06 mF.m
-2

, 8.33 S.m
-2

 and 18.44 mF.m
-2

, 33.33 3
10×  S.m

-2
, 

respectively. The values of 
mC  and 

mG of the control Tetraselmis were 5.45 mF.m
-2

 

and 13.08 S.m
-2

, respectively, which were smaller than that of the arsenic pretreated 

cells. For arsenic levels of 1, 5, 10, 50, and 150 ppm; the 
mC values of the pretreated 

cells were 6.81, 8.17, 10.89, 14.30 and 21.79, respectively. It was interesting that 

while the 
mC values of the arsenic pretreated cells were increased, the value of 

mσ remained constant at 23.08 S.m
-2

. Following exposure to arsenic, the velocity 

spectrum remained similar to that of the control, except that the membrane 

conductivity increased.  

            In general conclusion, the present study also shows comparison of 

dielectric properties obtained from the Laplace and impedance approaches as shown in 

Table.   
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CHAPTER 8 

PROOF OF IMAGINARY FUNCTIONS  

 

 

8.1 Introduction 

 

 

           As seen in chapter 5, S. cervisiate and Tetraselmis exhibited 

dielectrophoresis in travelling electric field by moving towards the tips of two parallel 

arrays inter- digitated electrode (TPI electrode) with different dielectrophoretic 

velocity (
cDEPv
ρ

 ). When the values of the conductivity of the suspending medium ( sσ ) 

and electric field strengths (E) were changed, Re[CMF] (Eq. 2.48) and the cell 

velocity (Eq. 3.9) were affected and hence 
cDEPF
ρ

was estimated. Nevertheless, the 

value of the imaginary function (Im[CMF]) of the model had not been verified yet 

since travelling wave dielectrophoretic velocity (
twDEPv
ρ

) could not be observed. Even 

though the electrical phase sequences (φ ) of the TPI electrode were alternated at 2/π  

phase shift (see details in section 4.3, chapter 4), the twDEP velocity was not 

observed. This chapter thus concentrates at the particular frequencies around λf to find 

out possibility of the
twDEPv
ρ

. 

           According to Eq. 3.4, it is possible to move a cell along the central 

channel (see Fig. 3.1) with velocity 
twDEPv
ρ

 (Eq. 3.10) resulting from twDEP forces 

(
twDEPF
ρ

). The magnitude and direction of such velocity depends on changes in 

complex dielectric parameters which are frequency dependence and this reflects the 

imaginary function (Im[CMF]) (Eq. 2.49).  Effort of finding 
twDEPv
ρ

 through out 

experimentations was focused by changing the external parameters of the cell such as 

electric field strengths (E) and the conductivity of the suspending medium ( sσ ), as 

appeared in Eq. 3.10. In addition, the phase difference between consecutive electrodes 

could also be varied but electrode circuit for this study must be modified.  
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8.2 Methods to Investigate twDEPv
ρ

  

 

 

           Cells were prepared as mentioned in chapter 4, section 4.1.1 and 4.1.2. 

Cell inductions in travelling electric field were performed by changes in electric field 

strength (E) and the medium conductivity ( sσ ) as mentioned in section 4.3. The 

frequency of the applied signals was gradually decreased from the upper (30 MHz 

limit) to lower values, to examine two critical frequencies ( λf and hf ). When cell 

exhibited the negative 
cDEPv
ρ

 and λf was found, the frequency of the signals was then 

finely adjusted as a step of 0.01 Hz, especially the frequency that closes to the value 

of λf . Under such circumstance, the translation of cell being repelled from the 

electrode tip was monitored through a microscope until the cell moves along the 

central channel of the TPI electrode.   

 

 

8.3 Results 

 

 

           Due to small thickness of the TPI electrode (0.2 µm) compared to the 

cell size (4-10 µm), cell disappearance from focal plane of the microscope along the 

electric field lines and then escape from the field was possible. The electric force 

twDEPF
ρ

 
 could be significant only in a small volume of field propagation. The same 

result was found even if E was increased to 143 kV.m
-1

 (the maximum limit) 

and sσ was reduced to 0.01 S.m
-1

 (the minimum limit of the medium conductivity).  

           It should be noted that cell moving away from the TPI electrode was in 

the resultant direction between 
cDEPF
ρ

and
twDEPF
ρ

, as shown in Fig. 8.1, where of 

solution covering the TPI electrode was about 100 µ λ(section 4.1), hence the cell 

escaped from the propagating field to the remaining volume ( ≈100 µ λ).  This 

explained why the twDEPv
ρ

could not be measured in this study. However, the following 
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section shows how sσ  and other dielectric parameters affect the disappearance of 

twDEPv
ρ

 in this work. 

 

8.4 Changes in Dielectric Parameters and sσ   

 

 

            According to mathematical expression of travelling wave 

dielectrophoretic velocity 
twDEPv
ρ

 in Eq. (3.10), the direction and magnitude of the 

velocity depended on only Im[CMF]. The value of Im[CMF] can either be positive 

and negative resulting in positive and negative 
twDEPv
ρ

, respectively, since other 

parameters appearing in Eq. (3.10) are all positive constant. From theoretical analysis 

in chapter 2, it was found that the expression of Im[CMF] was termed as a function of 

the conductive (σ ) and capacitive )(ε  properties of the membrane ( mm εσ , ), the 

cytoplasm ( cc εσ , ) and the suspending solution ( ss εσ , ), as in Eq. (2.49). Plots of the 

Eq. (2.49) as a function of electric field frequency were shown in Fig. 2.7. As is seen, 

the Im[CMF] is sensitive to change in these parameters.  It is interesting that the 

magnitude of the positive peak is affected by the values of a ,δ , cσ , mε , mσ , and sσ as 

shown in Figs. 2.7a, 2.7b, 2.7d, 2.7e, 2.7f, and 2.7h, respectively. For the negative 

peak at the higher frequency, its magnitude is affected by the values of cc σε , and sε as 

shown in Figs. 2.7c, 2.7d, 2.7g, respectively. The Im[CMF] magnitude affected 

directly to 
twDEPF
ρ

 and hence to 
twDEPv
ρ

. It should be noted that changes in cσ from 0.1 to 

1.0, the crossover points of the spectra were shifted from lower to higher frequencies 

and vice versa for mε . In practical, only sσ was known from experiments since the 

conductivity of the suspending medium could be adjusted by using 0.1 M 

KCλ solution (see chapter 4 for more details).    

          With a focus on changes in ,sσ  Figs. 8.2 and 8.3 show that the 

magnitude of 
twDEPv
ρ

 of S. cervisiate and Tetraselmis should be observed when 

sσ were ranged from 0.01to 0.25 S.m
-1

, and 0.01to 0.37 S.m
-1

, respectively. This is 

true only if the phase difference 0≠∇ iφ , Im[CMF] 0≠  and Re[CMF]= 0. Figure 8.4 
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shows Re[CMF] and Im[CMF] spectra of the control and heated yeast cells. The 

regions of 
cDEPF
ρ

± and 
twDEPF
ρ

± are shown in the figure. Therefore, 
twDEPF
ρ

of heated 

yeast cells should exhibit near 60 kHz while at the higher region it should be at 95 

MHz. This explains why the hf was not found in this work. In Figs. 8.5a and b, the 

twDEPF
ρ

of Tetraselmis should be found at the lower frequency region of 20 to 48 kHz. 

In both cases (Figs. 8.4 and 8.5), although 
cDEPF
ρ

− is larger than 
twDEPF
ρ

+ but 

incompatible electrode geometry did not allow the repellent cell to be in the 

corresponding plane of the
twDEPF
ρ

, as shown in Fig. 8.1b.  

   

 

8.5 Discussion and Conclusions 

 

 

          This chapter deal with experiments emphasizing on the
twDEPv
ρ

. Since it 

was overshadowed with the greater
cDEPF
ρ

− , the finding of 
twDEPv
ρ

was then employed 

using theoretical data based on changes in sσ . The twDEP could not be observed 

through out the present study even through the experiments were carefully performed 

under predicted frequencies. Considering the forces 
cDEPF
ρ

− and 
twDEPF
ρ

+ , it is 

concluded that electrode geometry; such as thickness and spacing between the central 

channels, are not suitable to perform the 
twDEPv
ρ

.  
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                                                                         (a) 

 

 

 

 

 

 

 

                                                                         (b) 

 

Fig. 8.1 Top view of the cell being repelled from the electrode tip showed the resultant force 

RF
ρ

(a) acting on the cell where the strong propagating field area was shown in side view (b). 
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Fig. 8.2 Plot of magnitude of travelling wave dielectrophoretic velocity (
twDEPv
ρ

 ) of the 

controlled yeast cells by using the dielectric parameters shown in Table 6.1. 
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Fig. 8.3 Plot of magnitude of travelling wave dielectrophoretic velocity (
twDEPv
ρ

 ) of the 

controlled Tetraselmis by using the dielectric parameters shown in Table 6.1. 
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Fig. 8.4 Plots of ]CMFRe[  and ]CMFIm[ of the controlled and the boiled yeast cells by using 

the dielectric parameters as shown in Table 7.1. Three frequency ranges were indicated at the 

lower, intermediate and the higher frequency which relate with
cDEPF
ρ

±  and
twDEPF
ρ

±   at the 

lower and the higher, respectively. 
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(b) 

Fig. 8.5 Comparisons of ]CMFRe[  and ]CMFIm[ of (a) the controlled and the 1 ppm arsenic 

pretreated Tetraselmis sp. cells and several of (b) 5, 10, 50, 150 ppm arsenic concentrations. 

All curves were plotted by using the dielectric parameters as shown in Table 7.1. Cross-over 

points of each curve indicated twDEP frequency which relate with
twDEPF
ρ

±  at the lower and 

the higher frequencies. 
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CHAPTER 9 

SUGGESTIONS FOR FUTURE WORK  

 

 

            This study has shown theoretical approached i.e. the Laplace and 

impedance (RC model) approaches and has proved only the first half of the Eq. 3.4. 

The experiments could not reveal all movements in the central electrode channel. To 

explain why both cells (S. cervisiate TISTR 5088 and Tetraselmis sp.) could not 

exhibit travelling wave dielectrophoresis (twDEP) and none of twDEP velocity 

( twDEPv
ρ

) data was obtained; theoretical analysis was taken into account. Drawback of 

the TPI electrode was mentioned here again to look overview of what should be 

extended from the one used for the present study.  

            As seen from chapter 8, travelling wave dielectrophoresis could be 

employed to distinguish cells with different dielectric properties which benefits cells 

separation work. It is possible to apply this technique with cell infection, being a 

carrier of foreign biological materials, for a diagnostic tool. To achieve that, a 

microchannel electrode with microfluidic feed should be developed. This stage should 

be done after the TPI electrode can be strengthened. The process of fabrication of 

microelectrode should be improved to be long-lasting uses. Material to be use for the 

electrode’s base may be plastic to enhance the adhesion between electrode bar and the 

substrate. Also, the electrode spacing and the thickness should be minimized to be fit 

with the cell size (4-10 µm). Optimization of the electrode sizes should be examined 

for further study, at least to verify the assumptions proposed in section 8.5 (chapter 8).   

            To verify the model with other cells, the time-averaged force acting on 

a spheroid (Eq. 3.4) can be adapted for a sphere of which a, b, and c are equal and the 

kL  is 
3

1  instead. It should be noted that twDEP force on a spheroid can be calculated 

so that the optimization of microfluidic rate-flow in a microchannel TPI electrode can 

be estimated. Calculations of the complicated functions such as Re[CMF], Im[CMF] 

and twDEP forces should be computer-based approach in sequence.  It is interesting 

that combinations of both cell velocity measurements and the lower critical frequency 

value can be integrated with other related techniques such as cell electro-orientation , 
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as suggested by Jones (1995) and Lippert and Gimsa (2002), to improve accuracy of 

data obtained.  Particular interest should be aimed at spheroidal cells since in reality it 

is not possible to choose identical cells to prove the approaches.  
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