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ABSTRACT 

Music selection is difficult without an efficient organization based on 

metadata or tags, and one effective tag scheme is based on the emotion expressed by 

the music. The main drawback of such a system is that manually tagging music files 

because tagging a large number of files is a tedious work and emotional perception of 

each person is different. Therefore, this thesis presents a music emotion classification 

system for eight emotional classes with cascaded model. Russell’s emotion model was 

adopted as a common ground for emotional annotation. The system implements on 

MATLAB using MIR toolbox to extract acoustic features from audio files and 

employed a supervised machine learning technique to recognize acoustic features to 

create predictive models. Four predictive models were proposed and compared. The 

models were composed by crossmatching two types of neural networks, i.e., 

Levenberg-Marquardt (LM) and resilient backpropagation (Rprop) with two types of 

structures: a traditional multiclass unit and multiple units of binary-class with a 

cascaded structure. The performance of each model was evaluated via the DEAM 

benchmark. The best result was achieved by the model trained with a cascaded Rprop 

neural network (accuracy of 89.5%). In addition, correlation coefficient analysis 

showed that timbre features were the most impactful for prediction. Our work offers an 

opportunity for a competitive advantage because only a few music providers currently 

tag music with emotional terms. 
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บทคัดย่อ 

กำรเลือกเพลงให้ตรงกับควำมต้องกำรนั นไม่ใช่เรื่องง่ำย หำกเพลงเหล่ำนั นไม่ได้รับ

กำรจัดหมวดหมู่มำก่อนโดยใช้ข้อมูลอภิพันธุ์ กำรจัดหมวดหมู่รูปแบบหนึ่งที่มีประสิทธิภำพคือ กำรจัด

หมวดหมู่ตำมอำรมณ์ดนตรี แต่ทว่ำกำรจัดหมวดหมู่รูปแบบดังกล่ำวดัวยมนุษย์ ส ำหรับไฟล์เพลง

จ ำนวนมหำศำลนั น ไม่อำจจะกระท ำได้อย่ำงมีประสิทธิภำพ เนื่องจำกควำมเหนื่อยล้ำ และจินตคติที่

แตกต่ำงกันไปในแต่ละบุคคล งำนวิจัยชิ นนี จึงขอเสนอ ระบบจ ำแนก และตัวแบบ แบบน  ำตก ส ำหรับ

ใช้ในกำรจ ำแนกเพลงออกเป็นแปดกลุ่มของอำรมณ์ดนตรี โดยได้อ้ำงอิงควำมหมำยของอำรมณ์ต่ำงๆ 

ตำมแบบของ “รัสเซลล์” เพ่ือใช้เป็นหลักเกณฑ์ในกำรจ ำแนกเพลงไปตำมหมวดหมู่ต่ำงๆ ระบบ

ต้นแบบพัฒนำบน “แมทแลป” โดยใช้ “เอ็มไออำร์ ทูลบอกซ์” เป็นเครื่องมือสกัดคุณลักษณะทำงเสียง 

ตัวแบบสี่แบบถูกเปรียบเทียบ โดยใช้โครงข่ำยประสำทเทียมสองชนิด (ประสำทเทียมตำมแบบของ  

“ลีเวนเบิร์ก-มัลล์กำร์ท” และประสำทเทียมแบบยืดหยุ่น) จับคู่กับวิธีจัดโครงสร้ำงสองวิธี (โครงข่ำย
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ถูกประเมินด้วย “ดีม เบนช์มำร์ค” ผลลัพธ์แสดงให้เห็นว่ำ กรรมวิธีสังเครำะห์ตัวแบบด้วยโครงข่ำย

ประสำทเทียมแบบยืดหยุ่นหลำยหน่วยแบบน  ำตก ให้ควำมถูกต้องอยู่ที่ 89.5 เปอร์เซ็นส ำหรับกำร

จ ำแนกเป็นแปดกลุ่มอำรมณ์ อีกทั งจำกกำรวิเตรำะห์ค่ำสหสัมพันธ์ของคุณลักษณะทำงเสียงแสดงให้

เห็นว่ำ คุณลักษณะประเภท อัตลักษณ์ของเสียงจำกเครื่องดนตรี มีผลต่อกำรท ำนำยมำกที่สุด งำนวิจัย
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CHAPTER 1  

INTRODUCTION 

1.1 Motivation 

The appearance of digital music providers such as “iTunes” has changed 

the way people listen to music by offering more direct access to a vast collection of 

music. However, finding the right music is not easy without appropriate tags or 

metadata to help the search. Creating metadata manually is expensive and time 

consuming. Music information retrieval (MIR) attempts to address these problems. 

MIR is an interdisciplinary science that combines musicology, psychology, signal 

processing, and machine learning [1].  

Emotional adjectives, such as search keywords, are particularly effective 

for nonvocal music, such as classical music and film soundtracks, and 28% of people 

use emotional keywords to search for music [1]. Unfortunately, most music providers 

tag music by genre, the artist’s name, year of production, and type of instrument, and 

rarely provide tags such as emotional terms. A branch of MIR known as music emotion 

recognition (MER) attempts to address this problem.  
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1.2 Outline 

Yang and Chen proposed the conceptual framework for an MER system, 

as shown in Figure 1.1 [1]. 

 

Figure 1.1 A music emotion classification system framework [1] 

First, music was collected and annotated with one of the emotion models 

mentioned in Chapter 2.1, while acoustic features were extracted from the audio file. 

Then, a supervised machine learning technique was applied to reveal the relationship 

between music emotions and acoustic features. 

In Chapter 2.2, We briefly review 14 publications since 2008. Several 

studies using four to six emotional classifications obtained over 80% accuracy [2–6], 

but six classes are insufficient in practice. Some studies used a small dataset with a 

limited variety [2][3][5][7], which could be a problem when the system tried to predict 

songs that were not in the dataset. According to the results of earlier studies using 

multiple models for prediction is more accurate than using a traditional multiclass 

model [2][3][8]. We hypothesized that using multiple models with cascaded structures 

could reduce the number of false predictions because each model is specifically trained 

to discriminate only two classes at a time. Therefore, this study makes a major 

contribution to classifying eight music emotions via a neural network with a cascaded 

structure while maintaining an accuracy greater than 80%. The models were trained 
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with a large dataset of 1,802 songs. Additionally, a large number of acoustic features 

were extracted. 

We conducted four experiments using two types of neural networks and 

two methods of constructing the networks. The Levenberg-Marquardt backpropagation 

(LM) algorithm was investigated using a traditional structure and a cascaded structure. 

Additionally, the resilient backpropagation (Rprop) algorithm was examined with the 

same two types of structure. 

We found that the cascaded Rprop algorithm achieves the best accuracy 

compared not only to the other three methods but also previously proposed methods. A 

comparison of the results is shown in Table 4.17 of Chapter 4.4.3. 
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1.3 Objectives 

To design and develop music emotion recognition modeling method. 

1.4 Scopes 

1. Dataset: DEAM Benchmark 

2. Number of emotional class: eight. 

3. Implementation tool: MATLAB 

4. Features extraction tool: Music Information Retrieval Toolbox. 

5. Recognition algorithm: supervised machine learning technic using shallow 

neural network. 

1.5 Contributions 

1. The modeling method using traditional Levenberg-Marquardt backpropagation 

neural network algorithm. 

2. The modeling method using cascaded structure of Levenberg-Marquardt 

backpropagation neural network algorithm. 

3. The modeling method using traditional resilient backpropagation neural 

network algorithm. 

4. The modeling method using cascaded structure of resilient backpropagation 

neural network algorithm. 
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CHAPTER 2  

LITERATURE REVIEW 

 There are five subchapters in this chapter, firstly we will discuss about 

how psychologist define each motion. Then we will survey some recent studies on MER 

including available datasets. The last two subchapters are about acoustic features, the 

description acoustic features are given in Chapter 2.4 and we will introduce some tools 

to extract those features at the last subchapter. 

2.1 Emotion Model 

Emotions have been measured in two ways in psychological studies. 

Some psychologists believe that emotions are discrete perceptions and propose models 

based on categorical psychometrics. Others believe that emotion is a continuous level 

of perception and have proposed models employing dimensional psychometrics. We 

describe the most influential models from each psychometric perspective below. 

2.1.1 Categorical Psychometrics 

Categorical psychometrics represent emotional perception by a finite set 

of emotional descriptors. One of the earliest models, proposed by Hevner, consists of 

66 emotional adjectives. Similar adjectives are arranged into related emotional groups, 

forming eight clusters of emotions [9]. Similar adjectives are arranged into related 

emotional groups, forming eight groups in total as shown on Table 2.1. 

Table 2.1 Hevner’s emotion adjectives [9] 

Clusters Emotional Adjectives 

Cluster 1 
spiritual, lofty, awe-inspiring, dignified, sacred, solemn, sober, 

serious 

Cluster 2 
pathetic, doleful, sad, mournful, tragic, melancholy, frustrated, 

depressing, gloomy, heavy, dark 

Cluster 3 
dreamy, yielding, tender, sentimental, longing, yearning, pleading, 

plaintive 

Cluster 4 lyrical, leisurely, satisfying, serene, tranquil, quiet, soothing 

Cluster 5 
humorous, playful, whimsical, fanciful, quaint, sprightly, delicate, 

light, graceful 
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Table 2.1 (Continued) Hevner’s emotion adjectives [9] 

Clusters Emotional Adjectives 

Cluster 6 merry, joyous, gay, happy, cheerful, bright 

Cluster 7 
exhilarated, soaring, triumphant, dramatic, passionate, sensational, 

agitated, exciting, impetuous, restless 

Cluster 8 vigorous, robust, emphatic, martial, ponderous, majestic, exalting 

This approach is easy to understand and more meaningful than 

dimensional psychometrics. However, some emotional adjectives do not exist in some 

languages, or have different meanings, and emotions are difficult to compare to each 

other. 

2.1.2 Dimensional Psychometrics 

 

Figure 2.1 Russell’s emotion adjectives [10] 
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Dimensional psychometrics represent emotional perception by numeric 

values plotted along fundamental emotional axes. The most influential model, proposed 

by Russell, uses two dimensions of fundamental factors, i.e., valence (pleasantness, 

positive, and negative affective states) and arousal (danceability, activation, energy, and 

stimulation levels), to form the valence–arousal (VA) plane as shown in Figure 2.1 [10]. 

Various valence and arousal coordinates define 28 emotional adjectives. 

For example, “happy” is assigned arousal equal to 0.11 and valence equal to 0.83 with 

the axes scaled to be between -1 and +1. This approach is flexible, measurable, and 

comparable, but the relationships between valence and arousal can be difficult to 

explain. 

We adopted Russell’s model, with only eight groups of emotion as our 

goal for classification. The emotional octant and their emotional adjectives are listed in 

Table 2.2. 

Table 2.2 Emotional octant and their emotional adjectives 

# VA Logical Range Emotions 

1 
High Arousal & Positive Valence 

(Valence < Arousal) 
Aroused, Astonished, Excited 

2 
High Arousal & Positive Valence 

(Valence > Arousal) 
Delighted, Happy 

3 
Low Arousal & Positive Valence 

(Valence > |Arousal|) 

Pleased, Glad, Serene, Content, At Ease, 

Satisfied, Relaxed 

4 
Low Arousal & Positive Valence 

(Valence < |Arousal|) 
Calm, Sleepy 

5 
Low Arousal & Negative Valence 

(|Valence| < |Arousal|) 
Tired, Droopy, Bored 

6 
Low Arousal & Negative Valence 

(|Valence| > |Arousal|) 
Depressed, Gloomy, Sad, Miserable 

7 
High Arousal & Negative Valence 

(|Valence| > Arousal) 
Frustrated, Distressed 

8 
High Arousal & Negative Valence 

(|Valence| < Arousal) 
Annoyed, Afraid, Angry, Tense, Alarmed 

∑ 8 28 
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2.2 Previously Methodologies 

Music processing retrieves information in many forms, such as score 

notes, lyrics, audio signals, and chords [11–13]. Music emotion is often annotated via 

people’s verbal reports of emotional responses, although some studies have gathered 

data by monitoring biological or physical expressions [14]. However, we are interested 

only in the retrieval of information from audio signals and annotations from verbal 

reports. 

Systems recognize music by referring to the psychometrics described 

above by means of two approaches. For dimensional psychometrics, a regression 

approach estimates the valence and arousal, whereas for categorical psychometrics, a 

classification approach is employed. 

2.2.1 Regression Approach 

Yang et al. employed a support vector machine (SVM) as the regressor 

and ranked the importance of the predictors using the ReliefF algorithm for feature 

selection. The performance was evaluated with respect to the 𝑅2 statistic, and 28.1% 

valence and 58.3% arousal was achieved [7]. 

Weninger et al. captured time-varying emotion through a music piece 

by recurrent neural networks (RNNs). The performance was evaluated by 𝑅2 statistics, 

and 50% valence and 70% arousal was achieved [15]. 

One of the common problems with multiple-feature input data is the 

importance ranking of features. The features that have a substantial effect on estimation 

should be given some bias weight to improve the results of the calculation. For example, 

Fukayama and Goto utilized adaptive aggregation to obtain the feature ranking and 

estimated the VA-value via Gaussian process regressors. Figure 2.2 illustrate the 

concept of Fukayama’s method [16]. 
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Figure 2.2 Fixed aggregation (left), adaptive aggregation (right) [16] 

The inputs 𝑥₁, 𝑥₂, 𝑥₃ appear on Figure 2.2 refer to the feature 

elements. The fixed aggregation takes these features equally, but adaptive aggregation 

also considers variation range of those features too. The smaller circle area means the 

features have lower scatter and rarely to find these patterns of feature elsewhere on the 

VA-plane. The result show that adaptive aggregation overperform the fixed aggregation 

by 4% and 2.7% for valence and arousal estimation respectively, The performance 

evaluated in terms of the root-mean-square error (RMSE) reached 77% for valence and 

80% for arousal [16]. 

A recent study proposed by Malik et al. used stacked neural networks. 

The authors employed a convolutional neural network (CNN) on the top layer, followed 

by two RNN branches, each trained separately, for valence and arousal. The RNNs were 

applied to time-varying features, while the CNN handled time-invariant features. The 

CNN’s features map was the input to both RNNs. The performance was evaluated in 

terms of RMSE, which was 73% for valence and 80% for arousal [17]. 

Fukayama’s Method Earlier Method 
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Even though most of VA-value estimation problems can be solved by 

regression algorithm, but some researchers think of the problem as classification 

problems by convert a continuous range to a finite range. Nguyen et al., divided valence 

and arousal level into six segments eventually, coordinate of those segment gave 36 

segments in total [18]. Figure 2.3 show how Nguyen et al., divided valence and arousal 

level. 

 

Figure 2.3 Nguyen’s Segmented VA-plane [18] 

Then, RandomForest algorithm is employed by implemented on 

WEKA, to classify valence and arousal to one of these six level. The accuracies are 

57.3% for valence 70% for arousal. 

Hu and Yang created dataset of Chinese-pop music (C-pop) for MER 

task, this is a rare work since most of MER task conducted on western music [6]. The 

dataset has tested by both regression and classification approach. First, the dataset is 

tested by Support Vector Machine (SVM) and got 85% of accuracy for six emotion 

classification. Then the dataset is tested again by Support Vector Regressor (SVR), the 

accuracies are 25% for valence 79% for arousal. 
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2.2.2 Classification Approach 

A small-scale experiment demonstrated that music could be classified 

into four emotional classes with the help of a hierarchical SVM by using only two 

features, tempo and mutation degree. Three SVM nodes were utilized, with each node 

trained for a specific purpose. The first node was trained to discriminate high and low 

tempo: high-tempo songs are happy or aggressive, while low-tempo songs are sad or 

soft. The second and third nodes were trained to discriminate between those emotions. 

The results were impressive, with 95% accuracy [2]. 

 

Figure 2.4 Wang and Xin modeling methodology [2] 

A similar concept was investigated again but scaled up to larger number 

of feature and sample. The same SVM structure was employed, and the result were 

satisfactory, with 89.64% accuracy [3]. 

 

 

Figure 2.5 Chiang et al., modeling methodology [3] 

An investigation of six algorithms, i.e., SVM, k-nearest neighbors 

(KNN), neuro-fuzzy network classification (NFNC), fuzzy KNN (FKNN), a Bayes 
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classifier, and linear discriminant analysis (LDA), for classifying four emotional classes 

showed that the accuracy of the LDA, SVM, and FKNN algorithms was higher than 

80% [4]. 

Nalini et al. investigated auto associative neural networks (AANN) and 

SVM for classifying five music emotions. The accuracies were 94.4% and 85.0%, but 

the models were trained with a small dataset [5]. The accuracy results were 94.4% and 

85.0% respectively, but were conducted on a small dataset. Another study applying a 

nearest multiprototype classifier to a huge dataset achieved only 56.43% accuracy [19]. 

Trohidis et al. investigated how four algorithms handled six emotional 

classes. The four algorithms were binary relevance (BR), label powerset (LP), random 

k-labelsets (RAKEL), and multilabel k-nearest neighbor (MLkNN), and all achieved 

approximately 70% accuracy [20]. 

Deng et al., conducted a study of classifying eight music emotions by 

employing eight regressors to estimate the likelihood of each emotional class, with each 

regression model trained individually. This method did not classify each song 

separately but rated the likelihood of each emotion in each song. Therefore, more than 

one emotion could be assigned to each song. The accuracy was almost 60%, which was 

impressive considering the number of samples, number of emotional classes, and the 

proposed method [8]. 

Most MER studies focus on only acoustic features as inputs and ignore 

non-acoustic features, such as artist and genre. However, the impact of these non-

acoustic features on the classification of four music emotions was studied by Vale et al. 

The experiment considered twenty-eight cases obtained by combining three groups of 

features (artist, genre, and acoustic features) and four types of classification algorithms 

(SVM, naïve Bayes, decision trees, and KNN). The models were evaluated with the 

DEAM benchmark, and their F-scores were 46%, 40%, 37%, and 41% respectively. 

The artist feature was not impactful, and the genre feature was only slightly beneficial 

for the decision trees method. The overall accuracy was not high because the 

experiments considered a limited number of acoustic features [21]. 
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The exact numbers of samples and features and the results of the 

research mentioned in this chapter are reported in Table 4.17, which includes the results 

of our work for comparison. 

In this work, we have employed the technique of using multiple models, 

training each model separately, and constructing a hierarchical classifier. We believe 

that multiple models with a cascaded structure would enhance the number of emotional 

classes. 

2.3 Datasets for Music Emotion Recognition. 

Most music datasets do not include audio files because of intellectual 

property concerns. Instead, the datasets provide emotional annotations, and lists of 

songs and where to find them [22–24]. Some datasets include extracted features [25], 

and some datasets consider the cultural background of the annotators [6][26]. Datasets 

that do not provide audio files can lead to problems because we cannot make any 

potentially required changes to the process. 

Fortunately, the MediaEval Database for Emotional Analysis (DEAM) 

benchmark includes a dataset with audio files that can be redistributed under a Creative 

Commons (CC) license, so it was utilized in this work. The DEAM benchmark includes 

1,802 songs. The audio files are in stereo MP3 format with a 44.1 kHz sampling rate. 

The music was collected from three sources (freemusicarchive.org, jamendo.com, and 

the medleyDB dataset) and includes a variety of genres (rock, pop, soul, blues, 

electronic, classical, hip-hop, experimental, folk, jazz, country, pop, rap, and reggae) in 

many languages. No more than five songs from the same artist are include [27–29]. The 

annotators were paid $8 per hour to rate the valence and arousal separately via the 

crowdsourcing platform Amazon's Mechanical Turk (MTurk), and the annotators’ 

background was not considered [30–32]. Each song was annotated by five to ten people, 

and we used the average of the annotations. Figure 2.6 shows the number of music 

samples in the DEAM dataset associated with each of the eight emotions, where 

numbers 1 to 8 refer to the emotional octant in Figure 2.1 and Table 2.2.  
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Figure 2.6 Number of music samples in the DEAM dataset associated with the eight 

emotions 

As shown in Figure 2.6, the number of samples in each class is unequal. 

The inequality of training samples can bias the results, e.g., the prediction of classes 1 

and 2, which have the largest populations, might achieve high accuracy, while the other 

classes might have low accuracy. The equalization of training samples by taking the 

number of samples in the smallest class as the ceiling and removing the excessive 

samples might solve this problem, but a previous study using the same dataset showed 

that even when the number of samples in each class was equalized, the prediction 

accuracy for classes 3, 4, 7, and 8 was not significantly improved [21]. The incorrect 

prediction of these classes must be caused by other characteristics; therefore, we did 

not equalize the number of samples. 

2.4 Acoustic Features 

The acoustic features were extracted using the MIR toolbox, which was 

run on MATLAB. The MIR toolbox relies on a built-in auditory toolbox and the 

Musical Instrument Digital Interface (MIDI) toolbox, which must be installed 

separately [33–35]. This tool was chosen because it can extract numerous features, 

including the five groups of features described below [22][36]. 

2.4.1 Dynamic 

Dynamics is the physical intensity of a sound, and is often described as 

loudness, energy, volume, or audio power. This feature can be varied along the length 

of the song Different dynamics audio waves are represented by amplitude height: the 

louder sound has a higher amplitude as shown in Figure 2.7. 
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Figure 2.7 The comparison of louder and lighter audio wave 

2.4.2 Rhythm 

Rhythm is a periodic pattern of changes or events of pitch level, 

dynamics, or pulses. Pulse speed is known as meter, phrasing, tempo, or BPM (beat-

per-minute). Figure 2.8 shows rhythm as part of the dynamics: at the beginning a low 

note is played with increasing loudness, then becomes steady, then suddenly changes 

to a higher note with the same pattern of dynamics. 

 

 

Figure 2.8 The illustration of dynamic pattern 

2.4.3 Timbre 

When a guitar or a violin plays the same note, the sound is similar, but 

we hear a difference which we call timbre. Each music instrument and sound-producing 

devices has its own timbre, which is particularly useful for musical instrument 

recognition. This appears in Figure 2.9 as imperfection in the sine wave. Difference 

musical instruments produce different characteristic wave forms. These characteristics 

are caused by the material and maintenance methods of the instruments. 
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Figure 2.9 The close-up audio wave reveals a timbre 

2.4.4 Pitch 

Pitch is the different levels of sound, with Western music pitch encoded 

by the letters C, D, E, F, G, A, B. While a piano changes pitch level discretely, some 

instruments, such as a violin, can produce continuously change. In term of signal 

processing, the bass sound of a lower note is represented by less frequent oscillation, 

while the treble sound of a higher note is represented by more frequent oscillation, as 

shown in Figure 2.10. 

Combinations of notes and their duration form a harmony, which is 

known as a chord or triad. There are two types of interval: those that sound harmonious 

or consonant as in Figure 2.10 (A), and those that sound dissonant as in Fig. 5 (B). 

Multiple consonant intervals sound naturally pleasant to our ears, but dissonant 

intervals conflict or clash with each other. 

 

Figure 2.10 The comparison of consonant and dissonant audio waves 

(A) 

(B) 
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The brighter line in Figure 2.10 (A) is note A5 and the darker line is A4. 

When A4 completes one cycle, A5 has finished two, forming a consonance pattern. In 

Figure 2.10 (B), the brighter line is A5 and the darker line is B5, and are largely out of 

synchronization, and almost never complete their cycles together, thereby forming a 

dissonance pattern. Mostly consonance relates to positive valence, while dissonance 

corresponds to negative valence [6]. 

2.4.5 Tonality 

Tonality is the arrangement of pitches and/or chords onto major and 

minor scales and keys. Major and minor scales refer to the spaces between notes, with 

note separation measured in whole and half steps. Figure 2.11 (A) illustrates a C major 

chord and their wave form is given in Figure 2.11 (a). Figure 2.11 (B) illustrates a C 

minor chord and their wave form is given in Figure 2.11 (b). On a piano keyboard, 

every half-step separates one-note and every whole-step is a two-note interval. 

 

Figure 2.11 The comparison of C major and C minor and their audio wave 

2.5  Music Information Retrieval Tools 

Since the variety of tools for acoustic features extraction has been 

proposed to the community, choosing a suitable one for the project without any clue 
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could be a time-consuming process. Fortunately, D. Moffat et al., have evaluated ten 

libraries and toolboxes for acoustic features extraction and propose a choosing method 

for a particular project [37]. Figure 2.12 shows the tool choosing path and the chosen 

path for this work is highlighted with the thicker arrows. 

 

Figure 2.12 Acoustic feature extraction tools choosing path [37] 

Since this work was conducted on MATLAB programing environment 

and it was not a real time processing, for those reason the suitable tools must be MIR 

toolbox, Timbre toolbox, and Essentia. Moreover, we have found other toolboxes which 

are compatible with MATLAB those are Tempogram and Chromagram toolbox. We 

will introduce these toolboxes in subchapters below. 

2.5.1 MIR Toolbox 

Music Information Retrieval (MIR) toolbox is a MATLAB library 

developed by O. Lartillot and P. Toiviainen [33][35]. The MIR toolbox relies on a built-

in auditory toolbox for basic audio processing. However, some additional function need 

Musical Instrument Digital Interface (MIDI) toolbox, which must be installed 

separately [34]. The advantage of the MIR toolbox its ability to extract all kinds of 
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acoustic feature mentioned in Chapter 2.4, number of features those can be extracted 

by this toolbox is more than one-hundred, but that ability sacrifices with heavy 

computational load. Nonetheless, this is the most powerful tool for music information 

retrieval task. 

2.5.2 Timbre Toolbox 

Timbre toolbox is a MATLAB library developed by G. Peeters et al., 

[38][39], The timbre toolbox is especial made for musical instrument recognition 

problem, is able to distinguish the sound of the same note played by different kind of 

instrument or even the same kind of instrument but different model. The number of 

features that can be extracted by this toolbox is 32. 

2.5.3 Tempogram Toolbox 

Tempogram toolbox is a MATLAB library developed by P. Grosche and 

M. Müller for measure pulse speed of music [40][41]. The tempogram toolbox works 

base on Fourier and autocorrelation methods. This tool widely uses of beat or pulse 

tracking. 

2.5.4 Chromagram Toolbox 

Chromagram toolbox is a MATLAB library developed by  M. Müller 

and S. Ewert design for extract Chroma-based (pitch or note) audio features [42][43]. 

Chromagram is representation of pitch level inform of spectrogram as shown in Figure 

2.13. 

 

Figure 2.13 Comparation of musical note and chromagram [44] 

(A) 

(B) 
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Figure 2.13 shows the conversion of note Do middle C (C4) to higher 

Do (C5) to chromagram. Notes C to B represent by row of the chart, while the same 

note but difference tone such as C4 and C5 represented by tone of color, lower note has 

more intensity of sound or air pressure. Therefore, lower tone is represented by darker 

color. This feature useful for pitch tracking and these pitches also lead to harmony 

feature. 

2.5.5 Essentia 

Essentia is a standalone application developed by D. Bogdanov et al., 

[45][46]. Even though it is a standalone application, it also provides application 

programming interface (API) so it is compatible with variety of programing 

environment (i.e. C, C++, Python, MATLAB). Essentia is the most flexible tool we 

have found. 
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2.6 Artificial Neural Network 

The artificial neural network algorithm is an algorithm for recognized 

pattern of data to give a prediction or estimation. The algorithm inspired by biological 

neural network. A biological neural cell consists of three principle components: 

Dendrites, Cell Body, and Axon as illustrated in Figure 2.14. The dendrites are 

receptive nerves that collect electrical signals into the cell body. The cell body is 

computational unit for these signals then axon carries the output signal from the cell 

body out to other neurons or make a response to other organs [47]. 

 

Figure 2.14 Schematic drawing of biological neurons [47] 

2.6.1 Network Architecture 

The artificial neural network inherits three principle components of 

biological neural network by these three layers: Input Layer, Hidden Layer, and Output 

Layer as illustrated in Figure 2.15. Each node in hidden layer similar to the dendrite 

which collects input signal (𝑥𝑛) from many sources then nodes in hidden layer compute 

these input signals with mathematical function. The output layer compute output from 

hidden layer again to make the last result compatible with desire output (𝑦𝑛) [47]. 
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Figure 2.15 Schematic of artificial neurons 

The training algorithms work in a similar way to the artillery discipline: 

“Ready-Fire-Aim”. There is no need to be precise initially: the firing trajectory is 

continuously adjusted until the artillery shells hit the target. The network parameter 

adjustment uses the same principle. The input nodes are passive node which contain 

static values while hidden and output nodes are active node which produce dynamic 

values with backpropagation algorithm. The backpropagation algorithm similar to 

trajectory adjustment of fire-control system in artillery. 

Figure 2.16 reveal the inside of hidden and output node which consist of 

two mathematical functions: Input Functions (𝑓1) and Transfer Functions (𝑓2). The 

backpropagation algorithm adjusts the network’s output by feedbacks the 

differentiation between actual outputs and predicted or estimated outputs to weight (𝑤𝑛) 

and bias (𝑏) and recalculate the entire network and keep repeating this procedure until 

predicted outputs are closest to actual outputs (an iteration of this procedure call epoch). 

There are many kinds of function as list on Table 2.3 and Table 2.4. and also, many 
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backpropagation algorithms have been proposed. In order to choose the suitable 

function and algorithm goal of the task, data type of inputs and desire outputs are needed 

to be consider. 

Even though MATLAB Neural Network toolbox™ provide many 

instant functions for construct such a network but in this work we use only four 

functions: summation function was used as input function, hyperbolic tangent sigmoid 

function was used as transfer function of hidden layer because our input data have both 

negative and positive value, linear and softmax functions were use as transfer function 

of output layer of regression and classification neural network respectively. The 

Levenberg-Marquardt and resilient backpropagation algorithms have been chosen for 

regression and classification neural network respectively, detail of these two algorithms 

will be discussed in next two subchapters and further implementation guide can be 

found in [48]. 

 

Figure 2.16 Function of hidden node (left) and output node (right) 

 

Table 2.3 List of input functions (𝑓1) 

No. Name Icon 
MATLAB 

Function 

1 Summation 
 

netsum 

2 Production 
 

netprod 
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Table 2.4 List of transfer functions (𝑓2) 

No. Name Input/Output Relation Icon 
MATLAB 

Function 

1 Hard Limit 

𝑎 = 0         𝑛 < 0 

𝑎 = 1         𝑛 ≥ 0  
hardlim 

2 
Symmetrical 

Hard Limit 

𝑎 = −1      𝑛 < 0 

𝑎 = +1      𝑛 ≥ 0  
hardlims 

3 Linear 𝑎 = 𝑛 

 
purelin 

4 
Saturating 

Linear 

𝑎 = 0        𝑛 < 0 

𝑎 = 𝑛        0 ≤ 𝑛 ≤ 1 

𝑎 = 1        𝑛 > 1 
 

satlin 

5 
Symmetric 

Saturating 

Linear 

𝑎 = −1      𝑛 < −1 

𝑎 = 𝑛        −1 ≤ 𝑛 ≤ 1 

𝑎 = 1         𝑛 > 1 
 

satlins 

6 Log-Sigmoid 𝑎 =
1

1 + ⅇ−𝑛
 

 
logsig 

7 
Hyperbolic 

Tangent 

Sigmoid 

𝑎 =
ⅇ𝑛 − ⅇ−𝑛

ⅇ𝑛 + ⅇ−𝑛
 

 
tansig 

8 
Positive 

Linear 

𝑎 = 0          𝑛 < 0 

𝑎 = 𝑛          0 ≤ 𝑛  
poslin 

9 Competitive 

 
 

compet 

10 Softmax 

 
 

softmax 
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2.6.2 Backpropagation Algorithms  

Backpropagation stand for “the backward propagation of errors”. This 

algorithm used for network adjustment to update weight and bias value by errors. in 

There are many backpropagation algorithms for regression and classification in 

MATLAB. We took two algorithms which highly recommend by MATLAB, one for 

regression approach another one for classification approach.  

Levenberg–Marquardt backpropagation algorithm (LM) was chosen for 

regression approach. The Levenberg–Marquardt algorithm also known as damped 

least-squares (DLS). This algorithm used for solving nonlinear equations systems or 

generic curve-fitting problems, first developed by Kenneth Levenberg in 1944 and 

improved by Donald W. Marquardt in 1963. Implemented in MATLAB by Martin T. 

Hagan in 1994.  

Resilient backpropagation algorithm (Rprop) was chosen for 

classification approach. This algorithm was developed by Martin Riedmiller and 

Heinrich Braun in 1992 for solving classification problem. To overcome the inherent 

disadvantages of the pure gradient descent technique of the original backpropagation 

algorithm by performs an adaptive weight according to the behavior of the 

errorfunction. For further instruction and description of these algorithms please see 

[49–53]. 
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2.7 Summary 

Psychological studies have proposed two major approaches to give the 

definition on each emotion. Some psychologist proposed categorical psychometrics 

which completely separate each emotional definition, while some other psychologist 

think dimensional psychometrics is more flexible each emotion definition based on 

fundamental factors valence and arousal. We introduced Heavner’ model and Russell’s 

model as an example of each psychometrics. We adopted Russell’s model, but with 

only eight group of emotion to be our goal for classification. 

Commonly, goal of MER task is prediction of music emotion on one of 

psychometric mentioned above. In order to do so, classification algorithm has been 

employed to approach categorical psychometrics problem, while regression algorithm 

has been employed to approach dimensional psychometrics problem. We reviewed 14 

work on both approach since 2008, the interested one is using multiple model and 

hierarchy structure to discriminate only two classes at the time. 

We graphical demonstrated five group of acoustic features of i.e. 

1.Dynamic (level of loudness) 2.Rhythm (speed and pattern of note or pulse, tempo, 

beat per minute (BPM)) 3.Timbre (auditory characteristic of each musical instrument) 

4.Pitch (level of sound frequency) 5.Tonality (arrangement of pitches and/or chords 

onto major and minor scales). 

We have introduced five acoustic features extraction tools which 

compatible with MATLAB including MIR toolbox, Timbre toolbox, Tempogram 

toolbox, Chromagram toolbox, and Essentia. All of these tools are MATLAB library 

except Essentia which is a standalone application. Each tool is made for different 

purpose, the interested one is MIR toolbox because this toolbox able to extract all kinds 

of acoustic features. The only drawback of MIR toolbox is heavy computational 

resources are need. 

We have introduced two neural network algorithms one for regression 

approach and another one for classification approach. We employed these two 

algorithms for train the predictive models (details are in the Chapter 3.5).  
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CHAPTER 3  

METHODOLOGY 

3.1 System Environment 

The system runs on a workstation using a CPU Xeon E3-1270 with 

48GB of 2133MHz ECC memory. A Samsung SSD 960 PRO is used for storage rather 

than an HDD to increase read/write speed to match the performance of the CPU and 

RAM. 

The work was conducted in MATLAB version 2017b using its Music 

Information Retrieval (MIR) toolbox which was chosen to extract the acoustic features 

described in Chapter 2.4. The MIR toolbox relies on a built-in auditory toolbox and the 

Musical Instrument Digital Interface (MIDI) toolbox, which must be installed 

separately [33–35][37]. 

3.2 Data Preparation 

MediaEval Database for Emotional Analysis in music (DEAM) is a 

benchmark for a dimensional MER system. This benchmark contains dataset with good 

quality control over the annotation process [30]. In order to utilize this dataset, first we 

need to understand how this dataset provides music and annotation data. Then 

converted into prefer format if it is necessary. The subchapters below described how 

audio files and annotation files are dealt. 

3.2.1 Audio files 

The dataset consists of 58 full-length songs, and 1,774 excerpts of 45 

seconds length 1,802 songs in total, and the audio files are in stereo MP3 format at an 

audio CD sampling rate (44.1kHz). Audio files are named by serial number from 2.mp3 

to 2058.mp3, some numbers are missing because during developing process the 

developer cancel some files. Files name 2.mp3 to 2000.mp3 are excerpts and files name 

2001.mp3 to 2058.mp3 are full length songs. 

3.2.2 Annotations 

The emotional annotation files are in spreadsheet (.cvs) format. There 

are two types of annotation static annotation and dynamic annotation. Static annotation 
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gives a couple value of valence and arousal while dynamic annotation gives VA values 

second-by-second over the duration of song. In this work, we use dynamic annotation 

only. The spreadsheet files are given individually (i.e. there is a file for valence of each 

song and there is a one another file for arousal of each song that mean there are 3,604 

spreadsheet files in total to deal with) which each file contain 61 valence or arousal 

values in range -1 to 1 with fifth decimal depth annotate by 10 people or more. The 

annotation is in table form each column contains valence or arousal value by the time 

of song and each row is people who annotated it.  

We converted dynamic annotation to static annotation for each song by 

using average VA-value at each point of time from many annotators, and then find 

average VA-value along the length of each song. How dynamic annotation is converted 

to static annotation, is illustrated in Figure 3.1. 

 

Figure 3.1 Dynamic annotation to static annotation transformation 

We can visualize the entire dataset by implementing a scatterplot as 

shown in Figure 3.2, also we can classify the songs into 8 classes as shown in Table 3.1 
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Table 3.1 Number of populations in each class 

Class No. Excerpt Full length Total 

1 588 7 595 

2 405 14 419 

3 93 6 99 

4 95 4 99 

5 213 7 220 

6 138 4 142 

7 70 11 81 

8 142 5 147 

∑ 1,744 58 1,802 

 

Figure 3.2 The visualization of the dataset on VA plane 

Each circle on Figure 3.2 is a song and it is pinpointed by its VA-values. 

For example, point (A) is file No. 584 name 745.mp3 class No. 6 Sentimental, which 
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possess -0.64 of valence and -0.12 of arousal. Plotting in this way also shows the density 

of population of each emotional class. 

3.3 Feature Extraction 

Since, using multiple tools cloud be too complex and unnecessary if the 

final result is acceptable. Therefore, this work utilized only the MIR toolbox because 

this toolbox covers wide range of features including those features which Timbre, 

Tempogram, Chromagram toolbox able to extract.  

The audio files were processed in term of signal processing by MIR 

toolbox to retrieve acoustic features. There were five types of acoustic features and each 

type has different numbers of elements as shown in Figure 3.3, the number in the 

bracket is number of elements of each featured type. 

In total 122 features were extracted by the 37 functions. Some feature 

extractors produced errors for some songs, which were ignored by the model training 

process. 

 

Figure 3.3 The acoustic features exacted by MIR toolbox 

Some functions produced a continuous numerical value, some gave a 

time series, and some generated a discrete value from a finite set. To make the data 

compatible, we transformed time series and discrete class data into individual numerical 

values by using the “mirmean” and “mirgetdata” functions. Figure 3.4. shows how to 

transform raw extracted feature data to numerical data. 

Audio file 

Tonality (57) 

Dynamics (2) 

Rhythm (30) 

Timbre (31) 
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MIR 

Toolbox 
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Figure 3.4 Feature extraction post process flow chart 

3.4 System Structure 

Two different structures of system were built-up and compared to find 

out which way was better to pursue our goal, between regression approach which 

classify VA-response to class at the output of predictive model and classification 

approach which classify VA-response to class at the input of predictive model. 

The previous work on DEAM dataset got low accuracy because using 

limited number of features and SVM, Naïve Bayes, Decision Trees, and k-NN 

algorithm did not work well on this dataset though [21]. Therefore, we chose the LM 

algorithm for handling the regression approach and the Rprop algorithm for dealing 

with the classification approach. 
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3.4.1 Regression Approach 

 

Figure 3.5 Framework for regression approach system 

The dataset provided annotations in the form of valence and arousal 

responses. The regression approach can use these annotations directly, Figure 3.5 shows 

the framework of the system. The LM algorithm was employed at the regression model 

trainer module. The regressor module produced estimated VA-responses. In order to 

determine these predictions, correct or wrong. The acceptable areas of error were 

setting up at the classifier module, as can be seen in Figure 3.6. 

 

Figure 3.6 Circular acceptable areas of error (left), triangular acceptable areas of error 

(right) 
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3.4.2 Classification Approach 

 

Figure 3.7 Framework for classification approach system 

Figure 3.7 shows the framework of the system. The labeler module 

converts the VA response to classes before they were used as annotation in the model 

trainer module because raw annotations cannot be used directly, then Rprop algorithm 

was employed at the classification model trainer module. 

3.5 Model Structure 

The predictive model in each system was customized to have two 

different structures (traditional and cascaded) to determine which way is better to train 

the model. 

3.5.1 Traditional Multiclass Model 

The LM and Rprop algorithms in the model trainer module were trained 

with 122 acoustic features of 1,802 song to predict music emotion, but the outputs of 

the model were different as illustrated in Figure 3.8. 
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Figure 3.8 Traditional structure of predictive model, LM algorithm (left) & Rprop 

algorithm (right) 

3.5.2 Cascaded Model 

The cascaded model was obtained by connecting several traditional 

multiclass models as a cascaded structure, as shown in Figure 3.9. Each unit was 

specifically trained to discriminate only two classes as reported in Table 3.2. 

Previous works that utilized a similar model structure demonstrated that 

the accuracy was better when discrimination started with arousal than when 

discrimination started with valence [2][3][6][8]. Additionally, many regression 

approach studies have shown that arousal prediction is always more accurate than 

valence prediction [6][7][15–18]. Therefore, we initiated unit 1 to discriminate between 

high- and low-arousal songs by training the model with the entire dataset. Unit 2 was 

trained with only high-arousal songs to discriminate positive valence songs from 

negative valence songs among those high-arousal songs that were predicted by unit 1, 

and so on. (Quadrants 1 to 4 and classes 1 to 8 refer to the quadrant of the VA plane 

and emotional octant in Figure 2.1; see Table 2.2 for the definition of each class.) 
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Figure 3.9 Schematic cascaded structure diagram of multi-model neural network 

Table 3.2 Training dataset and purpose of each unit in Figure 3.9 

Unit Trained with  to Discriminate 
Number of 

Training Sample 

1 Entire Dataset High & Low Arousal 1,802 

2 High Arousal Quadrant 1 & 2 1,242 

3 Low Arousal Quadrant 3 & 4 560 

4 Quadrant 1 Class 1 & 2 1,014 

5 Quadrant 2 Class 7 & 8 228 

6 Quadrant 3 Class 3 & 4 198 

7 Quadrant 4 Class 5 & 6 362 

3.6 Model Training 

Before feed in training algorithm some preprocessing such as 

standardization, cleansing defect or unrelated data, and dividing data are needed. The 

neural network toolbox provides these functions, we can instantly use these functions 

as describe in first subchapter below. During the training process several parameters of 

neural network must be adjusted for several time until by observed the result. 
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3.6.1 Preprocessing 

All the neural networks use pre and post processing described in Figure 

3.10, to standardize the data and reduce the computational power requirements. 

Constant rows are removed when there are unchanged elements in the data, because 

there is no need to count them in the calculations. The Min-Max function standardizes 

the data by equalizing the ranges of all the data to between -1 and 1. The “Fix 

Unknowns” function is applied to incomplete data by adding elements. Principle 

Component Analysis (PCA) finds out which input elements have a major effect or 

influence upon the output, and then applies some bias to those elements. 

 

Figure 3.10 Pre/Post processing of input/output data 

The dataset was divided into three parts to evaluate the performance of 

the models: 15% of the data was randomly selected as the validation, another 15% was 

assigned to the testing set, and the rest was used as the training set. The networks were 

trained with the training set and then tested with the validation and testing sets. The 

result on the validation set was used to update the weight parameter in the next epoch 

(a completed iteration of the training procedure) to shift the accuracy closer to perfect 

accuracy. The result on the testing set was completely independent from the training 

process. Accuracy on the training set that is much higher than that on the validation set 

and/or the testing set indicates overfitting, and we need to reconfigure the model. 
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3.6.2 Parameter Configuration 

Basically, neural networks consist of layers: Input layer, Hidden layer, 

and output layer. Input layer is passive node, while hidden and output layer are active 

node always update until one of the stopping criteria has been reach. Figure 3.12 shows 

the actual structure of LM neural network including require number node in each layer 

and type of transfer function in each active node. 

 

Figure 3.11 Schematic of artificial neurons using in this study 

It is inconvenient to display the actual structure of neural network if 

there are large number of nodes so MATLAB represent this structures by simple block 

diagram as shown in Figure 3.12-14. 

The traditional multiclass and each unit of cascaded LM models were 

constructed based on the diagram show in Figure 3.12. There are 122 feature inputs, 

with 10 hidden layers by default. Each hidden layer is a summation of weight (w) and 

bias (b), using a tangent sigmoid transfer function. Each output layer has the same 

structure as the hidden layer except that the transfer function is linear. The network 

estimates the values for valence and arousal as two outputs. 
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Figure 3.12 Structure of traditional multiclass and each unit of cascade LM neural 

network 

The classification neural network employs a softmax transfer function 

in the output layer. This transfer function assigns probabilities to the eight outputs, and 

the output with the largest probability is taken as the predicted class. The structure is 

shown in Figure 3.13. 

 

Figure 3.13 Structure of traditional multiclass Rprop neural network 

The structure of the cascade classification network is similar to the 

traditional multiclass model, but the number of possible outputs is only two as shown 

in Figure 3.14. The networks are trained separately in order to discriminate only two 

classes, then the networks are composed using the same cascade structure as the 

cascaded LM (see Figure 3.9), but with the core algorithm changed to Rprop as shown 

in Figure 3.14. 

 

Figure 3.14 Structure of each unit of cascaded Rprop neural network 

Various algorithms have different parameters that commonly include 

maximum number of epochs, elapsed time, acceptable error rate, minimum gradient 
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(convergent slope of training, validation, and testing subdatasets), and maximum failing 

(no improvement in accuracy). We attempted to maximize the accuracy, so we defined 

the acceptable error rate as zero and allowed the maximum number of epochs, and the 

elapsed time to be infinite. We concentrated on the minimum gradient and maximum 

failing adjustment as stopping criteria for the training process and left the other 

parameters at their default values (Maximum Failing or Validation Checks: number of 

epoch pass when performance no longer improve). The models in the same depth of 

cascaded structures were constructed with the parameter values reported in Table 3.3. 

The list of parameters and their default values can be found in [54]. 

Table 3.3 The parameters configuration 

Model Architecture 
Min 

Gradient 

Max 

Failing 
Learning 

Rate 

Traditional Multiclass LM 122-10-2 1.0E-07 10 1.0E-02 

Level 1 of Cascaded LM 122-10-2 1.0E-07 10 1.0E-02 

Level 2 of Cascaded LM 122-10-2 1.0E-07 10 1.0E-02 

Level 3 of Cascaded LM 122-10-2 1.0E-21 10 1.0E-02 

Traditional Multiclass Rprop 122-10-8 1.0E-50 300 1.0E-02 

Level 1 of Cascaded Rprop 122-10-2 1.0E-50 300 1.0E-02 

Level 2 of Cascaded Rprop 122-10-2 1.0E-100 300 1.0E-02 

Level 3 of Cascaded Rprop 122-10-2 1.0E-100 300 1.0E-02 

The number in the architecture column refers to the number of nodes in 

the neural network layer structure: “Input node - Hidden node – Output node”. The 

number of input nodes is the number of extracted features (122 features for all models). 

The number of hidden nodes remained 10 by default, and the number of output nodes 

of each model was set based on the number of desired outputs. The desired output of 

the LM algorithm was the estimated valence and arousal, so the number of desired 

outputs was 2. The desired output of the Rprop algorithm was the specific classes, 

differed between the traditional multiclass model and the cascaded model. The desired 

number of output classes of the traditional multiclass model was 8, while that of the 

cascaded model was 2, as previously noted. The reported values in the min gradient and 

max failing columns were the results of trial and error by observing the relationship 
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between changes in parameter values and accuracy: the values that gave the highest 

accuracy were selected. 

We observe the mean squared error (MSE) of these three subdatasets, 

the lower the MSE the higher the accuracy. The value of the MSE on these three 

subdatasets should be almost equal. If the MSE of the training set is low, but the 

validation set and/or the testing set is high, then an overfitting problem has occurred, 

and we need to reconfigure the trial network. The network is trained with the training 

set, and then the network is tested with the validation and testing sets. The results for 

the validation set are used to update the weight in the next epoch to bring it closer to 

the target. This cycle repeats until one of the stopping criteria is reached. Figure 3.15 

shows that the sixth epoch is the best-fitting; before sixth epoch there is underfitting 

and beyond sixth epoch there is overfitting. Figure 3.16 shows stopping criteria 

approaching during the training process.  

 

Figure 3.15 Mean Squared Error (MSE) display 

 

Figure 3.16 Stopping criteria display 
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The accuracies always vary slightly when the network is retrained 

because of the variation in the randomly selected parameters such as weight, bias, and 

sample selection of subdatasets, so the network must be retrained several times to 

reduce the variation in the results. The accuracy can be improved by approximately 5% 

by selecting the best result from 11,000 rounds of training. 
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3.7 Summary 

We started this chapter with detailed information about dataset and how 

we used it. The most audio files in the dataset are 45 second excerpts from songs with 

each song annotated with valence and arousal levels along the song length by multiple 

annotators. We collapsed dynamic annotation to static annotation then converted these 

VA-value to eight emotional classes. 

The acoustic features are extracted from audio files by 37 functions of 

MIR toolbox. We got 122 acoustic features as a result, but these features are divers. 

Some features data are time series data, some are discrete class, or continuous numerical 

data. Thus, we standardized these data by transforming them to numerical data in range 

of -1 to 1. We can see the relationship of VA-value and feature value by plot feature 

value of all sample against VA-plane.  

We implemented model training by four methods i.e. 1) train with a 

traditional multiclass unit of Levenberg-Marquardt algorithm. 2) train with multiple 

units with cascaded structure of Levenberg-Marquardt algorithm. 3) train with a 

traditional multiclass unit of resilience algorithm. 4) train with multiple units with 

cascaded structure of resilience algorithm. The entire process is shown in Figure 3.17. 
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Figure 3.17 The entire system flow chart
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CHAPTER 4  

RESULTS AND DISCUSSIONS 

4.1 Feature Extraction 

The functions of MIR toolbox used for feature extraction, and their 

running time over the entire dataset are given in Table 4.1. Most of the feature 

extractions were completed in a few hours, but some took more than a day.  

Table 4.1 List of MIR toolbox’s function for acoustic feature extraction 

# 
Featured 

Type 
Function Name 

Output 

Data Type 

Featured 

Element 

Featured 

Number 

Elapsed 

Time (h) 

1 Dynamics mirrms Time Series 1 1 0.89 

2 Dynamics mirlowenergy Time Series 1 2 0.92 

3 Rhythm mirfluctuation Time Series 24 3-26 0.93 

4 Rhythm mirbeatspectrum Time Series 1 27 4.82 

5 Rhythm mirevents Time Series 1 28 3.46 

6 Rhythm mireventdensity Time Series 1 29 4.00 

7 Rhythm mirtempo Numeric 1 30 3.62 

8 Rhythm mirmetroid Time Series 1 31 5.85 

9 Rhythm mirpulseclarity Time Series 1 32 3.74 

10 Timbre mirattacktime Time Series 1 33 33.51 

11 Timbre mirattackslope Time Series 1 34 35.44 

12 Timbre mirattackleap Time Series 1 35 33.86 

13 Timbre mirdecaytime Time Series 1 36 34.72 

14 Timbre mirdecayleap Time Series 1 37 34.03 

15 Timbre mirdecayslope Time Series 1 38 33.67 

16 Timbre mirduration Time Series 1 39 33.73 

17 Timbre mirzerocross Time Series 1 40 0.97 

18 Timbre mirrolloff Time Series 1 41 1.33 

19 Timbre mirbrightness Time Series 1 42 1.08 

20 Timbre mircentroid Numeric 1 43 1.12 

21 Timbre mirspread Numeric 1 44 1.39 

22 Timbre mirskewness Numeric 1 45 1.52 

23 Timbre mirkurtosis Numeric 1 46 1.51 
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Table 4.1 (Continued) List of MIR toolbox’s function for acoustic feature extraction 

# 
Featured 

Type 
Function Name 

Output 

Data Type 

Featured 

Element 

Featured 

Number 

Elapsed 

Time (h) 

24 Timbre mirflatness Time Series 1 47 1.22 

25 Timbre mirentropy Time Series 1 48 1.01 

26 Timbre mirmfcc Time Series 13 49-61 1.32 

27 Timbre mirroughness Time Series 1 62 2.08 

28 Timbre mirregularity Time Series 1 63 325.32 

29 Pitch mirpitch Numeric 1 64 1.51 

30 Pitch mirmidi Time Series 1 65 12.10 

31 Tonality mirchromagram Time Series 12 66-77 1.02 

32 Tonality mirkeystrength Time Series 12 78-89 1.02 

33 Tonality mirkey Classes 1 90 1.40 

34 Tonality mirmode Time Series 1 91 1.18 

35 Tonality mirkeysom Time Series 24 92-115 1.01 

36 Tonality mirtonalcentroid Time Series 6 116-121 1.01 

37 Tonality mirhcdf Time Series 1 122 3.58 

In total, 122 features were extracted by the 37 functions. All features 

extracted by MIR toolbox version 1.7 except function No. 30 extracted by the toolbox 

version 1.6 because in version 1.7 this function cause error. The tool is not perfect, for 

some extractor functions the error occurs for some song, so we employed error 

exception by give “NaN” as a result of the error process. In model training process, 

training algorithms will ignore “NaN” value by default. 

4.2 Feature Correlation 

We measured linear correlation between features and fundamental 

factors of emotion by Pearson correlation coefficient which is defined as (1). 

𝑟 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)

𝑖

√∑ (𝑥𝑖−𝑥̅)2
𝑖 √∑ (𝑦𝑖−𝑦̅)2

𝑖

    (1) 

We measured the linear correlation between features and the 

fundamental factors of emotion using a linear correlation coefficient. The correlations 
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of each feature with valence and arousal were measured separately, as shown in Figure 

4.1. 

 

Figure 4.1 Scatter plot of feature No. 49, 80, and 29 against valence and arousal 

A correlation coefficient (r) of 1 or -1 indicates, a perfect linear 

relationship, and r equal to 0 indicates the absence of a linear relationship. The most 

important features for prediction are those with r values close to 1 or -1. The features 

with r values close to 0 are still useful (unless r value is exactly 0) but have a lesser 

impact [55]. The correlation coefficient values of all features can be found in Table A 

in Appendix. 

We ranked the feature correlations in ascending order to identify the 

impactful features; we present the partial correlation ranking in Table 4.2. The 

correlations of features with valence and arousal were ranked separately, as shown in 

the “Rank by V” and “Rank by A” columns. 

Some features, such as feature No. 62, have a weak effect on valence 

but a strong effect on arousal. The most impactful feature for both valence and arousal 

is feature No. 29. Furthermore, most of the impactful features are timbre features. 
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On the basis of these correlation rankings, in scenarios with time or 

resource limitations we can select only impactful features to train the model rather than 

considering all the features, but this process may reduce the accuracy. However, the 

optimized model in the case of limited time and resources is not the focus of this work, 

so we included all 122 acoustic features as inputs for model training. 

Table 4.2 Correlation values between extracted features and VA-ratings 

Feature 

No. 
Valence r Arousal r 

Rank by 

V 

Rank by 

A 

Correlation 

status 

49 -0.3339 -0.5241 1 1 

Negative 

Correlation 

45 -0.3262 -0.4497 2 2 

39 -0.2882 -0.2463 3 7 

36 -0.2410 -0.3667 5 3 

62 0.0065 0.2300 60 108 

Poor 

Correlation 

80 0.0081 0.0145 61 62 

90 0.0095 0.0294 62 65 

112 0.0015 0.0088 57 60 

99 -0.0206 0.0095 45 61 

48 0.3933 0.6232 120 122 

Positive 

Correlation 

29 0.4196 0.6286 121 121 

32 0.4266 0.3351 122 113 

42 0.3577 0.5828 116 120 

4.3 Modeling Results 

The model performances are present with tables, and the accuracies are 

explained with confusion matrices. The tables give the accuracy for training, validation, 

testing subdataset, and the entire dataset. They also include elapsed time for training 

each model, captured during the definite network training process, and show the round 

which the modeling performs the best.  

While the confusion matrices show the detail of population in each class. 

Each cell shows the density of the population in terms of number and percentage. The 

summation of all the cell numbers, should equal the sample size of the dataset and the 

percentage summation should be 100%. The summation of the numbers in the vertical 
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cells is the total number of samples in each class. Summations of the horizontal cells 

are the total number of predicted classes. Diagonal cells from the top left to bottom 

right show the corrected prediction for each class (true positive). The accuracy (ACC) 

is shown on the bottom right corner of the matrices. The bottom of the matrices shows 

the True Positive Rate (TPR), sometime called sensitivity or recall. The right of the 

matrices shows the Positive Predictive Value (PPV), sometime called precision. The 

definition of ACC, TPR, and PPV are given by (2-4). 

𝑃𝑃𝑉 =  
∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
    (2) 

𝑇𝑃𝑅 =  
∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

∑ 𝐴𝑐𝑡𝑢𝑎𝑙 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
    (3) 

𝐴𝐶𝐶 =  
∑ 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + ∑ 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

∑ 𝑇𝑜𝑡𝑎𝑙 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
   (4) 

Measuring performance by ACC alone may not give the details how the 

samples were incorrectly classified. Therefore, TPR and PPV were used to fulfill this 

weakness by showing how the model fail. The error of TPR (red number) indicates 

failure by omitting to count the samples from an actual class into a predicted class on 

the other hand the error of PPV indicates failure by incorrectly counting the samples in 

into a predicted class. The error of TPR and/or PPV could be high in some class if the 

models were train by imbalance class training data. To measure harmonic average of 

the TPR and PPV F1-score measurement was employed in every model and separately 

in each class. The definition of F1-score (F) are given by (5), number of class denoted 

by the symbol nC. The best value of F1-score is 1 (perfect TPR and PPV) and the worst 

is 0.  

𝐹 =  𝑛𝐶 ∙
𝑃𝑃𝑉 ∙ 𝑇𝑃𝑅

𝑃𝑃𝑉+ 𝑇𝑃𝑅
     (5) 

Chapter 4.3.1 to 4.3.6 contain the results of the LM network, Chapter 

4.3.1 and 4.3.2 carrying out binary classification of valence and arousal: class 1 of 

valence binary classification is labeled as positive valence and class 2 is negative 

valence on the other hand class 1 of arousal binary classification labeled as high arousal 
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and class 2 is low arousal. Chapter 4.3.3 and 4.3.4 carrying out four and eight emotional 

classification results with a traditional multiclass model. The class labels 1 to 4 of four 

emotional classification refer to emotional four quadrant as shown in Figure 2.1: i.e. 

class 1 is high arousal and positive valence, class 2 is high arousal but negative valence, 

class 3 is low arousal and negative valence, and class 4 is low arousal but positive 

valence. The class labels 1 to 8 of eight emotional classification refer to emotional 

octant as shown in Figure 2.1. Chapter 4.3.5 and 4.3.6 carrying out four and eight 

emotional classification results as well but with the cascaded structure of multiple 

model. The presentation order of Chapter 4.3.7 to 4.3.12 repeat the order of the first six 

subchapter but change the algorithm to Rprop network. 

4.3.1 Binary-Class LM Network for Valence Prediction 

The simplest task is binary classification of fundamental factors of 

emotion, firstly valence level is discriminated by traditional multiclass LM neural 

network to discriminate positive and negative valence. The modeling performance is 

shown in Table 4.3, and the classification result is shown in Figure 4.2.  

Table 4.3 The performance of binary-class LM networks for valence discrimination 

Model 
Train 

(%) 

Val. 

(%) 

Test 

(%) 

Entire 

(%) 

F1-

score 

Best 

Epoch 

Best 

Round 

Time 

(h) 

Traditional 

multiclass LM 

for Valence 

77.5 80.7 83.7 78.9 0.8475 5 2 7.02 

 

Figure 4.2 The confusion matrix of binary-class LM networks for valence 

discrimination 
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4.3.2 Binary-Class LM Network for Arousal Prediction 

Another fundamental factor of emotion is arousal. These are result of 

arousal discrimination by LM neural network to discriminate high and low arousal. 

Table 4.4 shows that all subdataset gained a little bit accuracy when the evaluate in term 

of arousal, the detailed accuracy of entire dataset shows in Figure 4.3.  

Table 4.4 The performance of binary-class LM networks for arousal discrimination 

Model 
Train 

(%) 

Val. 

(%) 

Test 

(%) 

Entire 

(%) 
F1-score 

Best 

Epoch 

Best 

Round 

Time 

(h) 

Traditional 

Multiclass LM 

for Arousal 

85.9 86.7 84.8 85.8 0.8980 5 2 7.02 

 

Figure 4.3 The confusion matrix of binary-class LM networks for arousal 

discrimination 

4.3.3 Traditional Multiclass LM Network for Four Emotions Prediction 

The four emotional classification is a combination of fundamental 

factors valence and arousal. The modeling performance is shown in Table 4.5, and the 

classification result is shown in Figure 4.4.  
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Table 4.5 The performance of traditional multiclass LM networks for four emotions 

prediction 

Model 
Train 

(%) 

Val. 

(%) 

Test 

(%) 

Entire 

(%) 
F1-score 

Best 

Epoch 

Best 

Round 

Time 

(h) 

Traditional 

Multiclass LM 

for 4 Emotion 

70.6 70.7 70.4 70.6 
See Table 

4.15 
5 2 7.02 

 

Figure 4.4 The confusion matrix of traditional multiclass LM networks for four 

emotions prediction 

4.3.4 Traditional Multiclass LM Network for Eight Emotions Prediction 

The eight emotional classification is a combination of fundamental 

factors valence and arousal with a more specific emotion. The modeling performance 

is shown in Table 4.6, and the classification result is shown in Figure 4.5. This result 

and the result in previous subchapter show that the more classes to predict, the lesser 

accuracy we might got. 
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Table 4.6 The performance of traditional multiclass LM networks for eight emotions 

prediction 

Model 
Train 

(%) 

Val. 

(%) 

Test 

(%) 

Entire 

(%) 
F1-score 

Best 

Epoch 

Best 

Round 

Time 

(h) 

Traditional 

Multiclass LM 

for 8 Emotion 

50.6 42.2 40.0 47.8 
See Table 

4.16 
5 2 7.02 

 

Figure 4.5 The confusion matrix of traditional multiclass LM networks for eight 

emotions prediction 

4.3.5 Cascaded LM Network for Four Emotions Prediction 

Instead of using only one network to predict all four emotional classes, 

the cascaded LM network for four emotions consist of three LM network to took 

advantage of binary classification of arousal (see Chapter 4.3.2). The modeling 

performance is shown in Table 4.7, and the classification result is shown in Figure 4.6.  
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Table 4.7 The performance of cascaded LM networks for four emotions prediction 

Model 
Train 

(%) 

Val. 

(%) 

Test 

(%) 

Entire 

(%) 
F1-score 

Best 

Epoch 

Best 

Round 

Time 

(h) 

Cascaded LM 

Unit 1 
85.9 86.7 84.8 85.8 0.8980 5 2 7.0 

Cascaded LM 

Unit 2 
83.9 81.7 84.9 83.7 0.9055 1 8 6.1 

Cascaded LM 

Unit 3 
76.8 81.0 81.0 78.0 0.6886 1 27 4.1 

 

Figure 4.6 The confusion matrix of cascaded LM networks for four emotions prediction 

4.3.6 Cascaded LM Network for Eight Emotions Prediction 

Instead of using only one network to predict all eight emotional classes, 

the cascaded LM network for eight emotions which is developed from cascaded LM 

network for four emotions. The model consists of seven LM network to took advantage 

of binary classification of arousal and valence. Nonetheless this result and the result of 

previous subchapter show that the overall accuracy of both cascaded LM higher than 

traditional multiclass LM only a little as shown in Table 4.8 and Figure 4.7. 
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Table 4.8 The performance of cascaded LM networks for eight emotions prediction 

Model 
Train 

(%) 

Val. 

(%) 

Test 

(%) 

Entire 

(%) 
F1-score 

Best 

Epoch 

Best 

Round 

Time 

(h) 

Cascaded LM 

Unit 1 
85.9 86.7 84.8 85.8 0.8980 5 2 7.0 

Cascaded LM 

Unit 2 
83.9 81.7 84.9 83.7 0.9055 1 8 6.1 

Cascaded LM 

Unit 3 
76.8 81.0 81.0 78.0 0.6886 1 27 4.1 

Cascaded LM 

Unit 4 
69.9 67.1 64.5 68.6 0.7531 1 2,018 4.8 

Cascaded LM 

Unit 5 
78.8 79.4 64.7 76.8 0.6667 1 946 2.9 

Cascaded LM 

Unit 6 
79.0 63.3 70.0 75.3 0.7656 1 1,084 2.0 

Cascaded LM 

Unit 7 
71.7 59.3 74.1 70.2 0.7882 1 24 3.8 

 

Figure 4.7 The confusion matrix of cascaded LM networks for eight emotions 

prediction 
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4.3.7 Binary-Class Rprop Network for Valence Prediction 

Training the model with Rprop algorithm not only took lesser time than 

the LM algorithm but also better accuracy. The modeling performance is shown in 

Table 4.9, and the classification result is shown in Figure 4.8. 

Table 4.9 The performance of binary-class Rprop networks for valence discrimination 

Model 
Train 

(%) 

Val. 

(%) 

Test 

(%) 

Entire 

(%) 
F1-score 

Best 

Epoch 

Best 

Round 

Time 

(h) 

Traditional 

Multiclass 

Rprop for 

Valence 

76.6 76.3 77.4 76.7 0.8306 4 2,778 1.79 

 

Figure 4.8 The confusion matrix of binary-class Rprop networks for valence 

discrimination 

4.3.8 Binary-Class Rprop Network for Arousal Prediction 

The binary classification of arousal with Rprop algorithm returned 

higher accuracy than valence which is similar to the LM algorithm but much better 

accuracy (see Chapter 4.3.2). The modeling performance is shown in Table 4.10, and 

the classification result is shown in Figure 4.9. 
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Table 4.10 The performance of binary-class Rprop networks for arousal discrimination 

Model 
Train 

(%) 

Val. 

(%) 

Test 

(%) 

Entire 

(%) 
F1-score 

Best 

Epoch 

Best 

Round 

Time 

(h) 

Traditional 

Multiclass 

Rprop for 

Arousal 

96.7 94.8 96.3 96.3 0.9737 18 3,455 2.6 

 

Figure 4.9 The confusion matrix of binary-class Rprop networks for arousal 

discrimination 

4.3.9 Traditional Multiclass Rprop Network for Four Emotions Prediction 

This result is comparable to four emotions prediction with traditional 

multiclass LM network (see the result in Chapter 4.3.3). The traditional multiclass 

Rprop for four classes returned higher accuracy about ten percent than the traditional 

multiclass LM for four classes as Table 4.11 and Figure 4.10 have shown.   

Table 4.11 The performance of traditional multiclass Rprop networks for four emotions 

prediction 

Model 
Train 

(%) 

Val. 

(%) 

Test 

(%) 

Entire 

(%) 
F1-score 

Best 

Epoch 

Best 

Round 

Time 

(h) 

Traditional 

Multiclass 

Rprop for 4 

Emotion 

81.9 76.7 68.1 79 
See Table 

4.15 
15 391 2.18 
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Figure 4.10 The confusion matrix of traditional multiclass Rprop networks for four 

emotions prediction 

4.3.10 Traditional Multiclass Rprop Network for Eight Emotions Prediction 

This result is comparable to eight emotions prediction with traditional 

multiclass LM network (see Chapter 4.3.4), similar to the result of four emotion 

classification in the previous subchapter, the accuracy of traditional multiclass Rprop 

for eight classes higher than traditional multiclass LM for eight classes about ten 

percent as well. The modeling performance is shown in Table 4.12, and the 

classification result is shown in Figure 4.11. 

Table 4.12 The performance of traditional multiclass Rprop networks for eight 

emotions prediction 

Model 
Train 

(%) 

Val. 

(%) 

Test 

(%) 

Entire 

(%) 
F1-score 

Best 

Epoch 

Best 

Round 

Time 

(h) 

Traditional 

Multiclass 

Rprop for 8 

Emotion 

59.6 62.2 52.2 58.9 
See Table 

4.16 
8 6 2.79 
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Figure 4.11 The confusion matrix of traditional multiclass Rprop networks for eight 

emotions prediction 

4.3.11 Cascaded Rprop Network for Four Emotions Prediction 

Instead of using only one network to predict all four emotional classes, 

the cascaded Rprop network for four emotions consist of three Rprop network to took 

advantage of binary classification of arousal. This result is comparable to four emotions 

prediction with  traditional multiclass Rprop network and both LM networks for four 

emotions (The results in Chapter 4.3.3, 4.3.5, and 4.3.9). The modeling performance is 

shown in Table 4.13, and the classification result is shown in Figure 4.12. These result 

show that the cascaded Rprop network is the winner among their competitors for four 

emotions prediction. 
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Table 4.13 The performance of cascaded Rprop networks for four emotions prediction 

Model 
Train 

(%) 

Val. 

(%) 

Test 

(%) 

Entire 

(%) 
F1-score 

Best 

Epoch 

Best 

Round 

Time 

(h) 

Cascaded 

Rprop Unit 1 
96.7 94.8 96.3 96.3 0.9737 18 3,455 2.6 

Cascaded 

Rprop Unit 2 
96.6 95.2 96.2 96.3 0.9774 4 3,074 2.2 

Cascaded 

Rprop Unit 3 
98.7 97.6 96.4 98.2 0.9749 1 3,484 1.6 

 

Figure 4.12 The confusion matrix of cascaded Rprop networks for four emotions 

prediction 

4.3.12 Cascaded Rprop Network for Eight Emotions Prediction 

Instead of using only one network to predict all eight emotional classes, 

the cascaded Rprop network for eight emotions consist of seven Rprop network to took 

advantage of binary classification of arousal and valence. This result is comparable to 

eight emotions prediction with traditional multiclass Rprop network and both LM 

networks for eight emotions (see Chapter 4.3.4, 4.3.6, and 4.3.10). The modeling 

performance is shown in Table 4.14, and the classification result is shown in Figure 

4.13. These result show that the cascaded Rprop network is the winner among their 

competitors for eight emotions prediction. 
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Table 4.14 The performance of cascaded Rprop networks for eight emotions prediction 

Model 
Train 

(%) 

Val. 

(%) 

Test 

(%) 

Entire 

(%) 
F1-score 

Best 

Epoch 

Best 

Round 

Time 

(h) 

Cascaded 

Rprop Unit 1 
96.7 94.8 96.3 96.3 0.9737 18 3,455 2.6 

Cascaded 

Rprop Unit 2 
96.6 95.2 96.2 96.3 0.9774 4 3,074 2.2 

Cascaded 

Rprop Unit 3 
98.7 97.6 96.4 98.2 0.9749 1 3,484 1.6 

Cascaded 

Rprop Unit 4 
95.6 95.4 91.4 95.0 0.9574 2 10,603 1.6 

Cascaded 

Rprop Unit 5 
96.9 97.1 85.3 95.2 0.9308 1 122 0.3 

Cascaded 

Rprop Unit 6 
96.4 100.0 96.7 97.0 0.9706 19 9,950 0.1 

Cascaded 

Rprop Unit 7 
95.7 96.3 94.4 95.6 0.9644 1 357 0.1 

 

Figure 4.13 The confusion matrix of cascaded Rprop networks for eight emotions 

prediction 

1 

2 

3 

4 

5 

6 

7 

8 

1 2 3 4 5 6 7 8 

Actual class 

P
re

d
ic

te
d

 c
la

ss
 



61 

 

4.4 Discussions 

The modeling results will be discussed in three term in this subchapter. 

Firstly, relationship between accuracy of submodels and final accuracies of cascaded 

model will be explained in Chapter 4.4.1. The model performance measured by F1-

score will be discussed in Chapter 0 and compared to the other proposed models in 

Chapter 4.4.3. 

4.4.1 The Relationship of Submodels in Cascaded Models 

As mentions in Chapter 3.5.2 that, cascaded structure (see Figure 3.9) 

composed of multiple submodels which each one has its own accuracy but these 

accuracies were not used to calculate the final accuracy. The final accuracies of 

cascaded models were evaluated as the same as traditional multiclass models i.e. output 

or predicted class of sample was compared to actual class of sample directly and 

calculated by a simple true or false logic. These accuracies are the number that reported 

at the bottom right of every confusion matrix in earlier subchapters. However, these 

number are able to calculate by the rule of three combines with the fractional percentage 

either. This calculation method also uses to verify the final accuracy of each cascaded 

model. 

We have setup a simulation of accuracy calculation on spreadsheet 

“Excel” to verify the results of model. In this place we will give an example of finding 

number of correctly predicted sample in submodel unit two of cascaded model only. 

This calculation could be applied to every unit of cascade structure. The calculation 

begins with finding the percentage of actual sample in each unit as shown in Figure 

4.14. The total sample number of each level is 1,802 which is equal to 100%, therefore 

the number of 1,242 in the unit two in level two is equal to 68.92%. When all of the 

ratio of sample was found out, the triangle of the rule of three is ready to apply. We will 

have four variables, first is number of Sample in Current Unit (nSCU) (red frame) 

which we want to find out. The second is percentage of Sample in Current Unit (pSCU) 

(yellow frame). The third is percentage of Accuracy in Parent Unit (pAPU) (green 
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frame). The fourth is number of Sample in Parent Unit (nSPU) (blue frame). These four 

variables have the relationship as defined by (6). 

𝑛𝑆𝐶𝑈 =  
𝑝𝑆𝐶𝑈

100
×

𝑝𝐴𝑃𝑈 ∙ 𝑛𝑆𝑃𝑈

100
      (6) 

The results can be seen in Figure 4.15 and Figure 4.16, on the left is 

accuracy of cascaded submodels which were the same as reported in Table 4.8 and 

Table 4.14 and on the right is the calculated nSCU. The calculation shows that, the total 

correctly predicted sample of cascaded LM is 895 or 49.7% which is slightly difference 

about 0.5% from the actual accuracy of cascaded LM model. The total correctly 

predicted sample of cascaded Rprop is 1,604 or 89.0% which is only 0.5% difference 

from the actual accuracy of cascaded Rprop model as well. This error might be caused 

by the difference of dept of decimal between real accuracies on MATLAB and 

simulated accuracies on Excel. 
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Figure 4.14 Number of correctly predicted sample in each submodel in case of perfect 

accuracy (left), ratio of sample in each submodel (right) 

 

Figure 4.15 Submodel accuracies of cascaded LM model (left), number of correctly 

predicted sample in each submodel in case of cascaded LM model (right) 

 

Figure 4.16 Submodel accuracies of cascaded Rprop model (left), number of correctly 

predicted sample in each submodel in case of cascaded Rprops model (right)  
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There are two drawbacks associated with using cascaded structures are. 

The first drawback is the complexity of the cascaded model. For the three-levels depth, 

a sample must pass through three models. The processing time can be slow if the next 

sample has to wait until the previous sample has passed the last level, but it would be 

more efficient if the next sample can be inputted while the previous sample is processed 

at level 2; then, when these two samples move to levels 3 and 2, the next sample can 

follow them, and so on. Additionally, programing for connecting each submodel to 

form a cascaded structure can be complicated.  

The second is performance of the first level is crucial. If the submodel 

in the previous level fails to predict a sample, the levels after that are useless because 

the accuracy of the submodel in the first level greatly affects the final accuracy and the 

second level has more of an effect than the third, as these following three simulations 

shown. 

In the simulation, if the accuracy of unit 1 (level 1) is 80% and that of 

the rest is 100%, then the final accuracy will be 80% because the total number of 

samples passing through unit 1 is 1,442, and so a loss 20% of unit 1 will be equal to 

360 samples or also 20% of entire dataset (1,802 samples).  

If the accuracy of unit 3 (level 2) is 80% and that of the rest is 100%, 

then the final accuracy will be 93.8% because the total number of samples passing 

through unit 3 is 560, and so a loss 20% of unit 3 will be equal to 112 samples or 

approximately 6.3% of entire dataset.  

If the accuracy of unit 6 (level 3) is 80% and that of the rest is 100%, 

then the final accuracy will be 97.8% because the total number of samples passing 

through unit 6 is 198, and so a loss of 20% of unit 6 will be equal to 40 samples, or only 

2.2% of the entire dataset. 
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4.4.2 Performance Measurement using F1-score 

This subchapter present comparison tables of F1-score in each class for 

four and eight emotions classification separately in Table 4.15 and Table 4.16 

respectively.  

In four emotions classification, when classified the samples with 

cascaded Rprop model the F1-score of class two and four were much better than 

traditional multiclass Rprop as we can see in Figure 4.17. On the other hand, there was 

no significant different between traditional multiclass LM and cascaded LM. 

Table 4.15 The F1-score of four emotions classification 

Model 
F1-score 

of Class 1 

F1-score 

of Class 2 

F1-score 

of Class 3 

F1-score 

of Class 4 

Average 

F1-score 
Accuracy 

Traditional 

Multiclass LM 
0.8729 0.3081 0.6424 0.3291 0.5381 70.6% 

Cascaded LM 0.8828 0.4231 0.6907 0.3407 0.5843 73.4% 

Traditional 

Multiclass Rprop 
0.9112 0.4765 0.7598 0.4220 0.6424 79.0% 

Cascaded Rprop 0.9708 0.8491 0.9199 0.8698 0.9024 93.5% 

 

Figure 4.17 The comparison of F1-score of four emotion classification 

The aim of the work is eight emotional prediction therefore we will pay 

more attention on Table 4.16 and Figure 4.18. The relationship of F1-score and number 

of training data can be seen by comparing bar chart of number of sample in Figure 2.6 
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with bar chart of F1-score in Figure 4.18. The height of each class and model of F1-

score correspond to number of samples in each class. F1-score of the traditional 

multiclass LM, cascaded LM, and traditional multiclass Rprop, are similar to each other 

where the problematic predicted classes are one, two, five, and six. Since the samples 

are often wrongly predicted to belong to one of these classes because the population of 

these classes are larger and has a more uncertain pattern of data than the others. The 

prediction accuracy for the cascaded LM model is disappointing because it offers no 

significant improvement over the traditional multiclass LM. This means that, the LM 

algorithm is not suitable for a cascaded structure.  
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Table 4.16 The F1-score of eight Emotion Classification 

Model 
F1-score 

of Class 1 

F1-score 

of Class 2 

F1-score 

of Class 3 

F1-score 

of Class 4 

F1-score 

of Class 5 

F1-score 

of Class 6 

F1-score 

of Class 7 

F1-score 

of Class 8 

Average 

F1-score 
Accuracy 

Traditional 

Multiclass LM 
0.7816 0.6176 0.1453 0.1390 0.4943 0.2940 0.1197 0.2086 0.3500 47.8% 

Cascaded LM 0.8009 0.6108 0.1941 0.1823 0.5755 0.2274 0.1249 0.1823 0.3623 50.2% 

Traditional 

Multiclass Rprop 
0.8293 0.7534 0.0795 0.0414 0.6405 0.4696 0.1394 0.3683 0.4152 58.9% 

Cascaded Rprop 0.9593 0.9406 0.7688 0.7796 0.8975 0.8324 0.7293 0.8382 0.8432 89.5% 

 

Figure 4.18 The comparison of F1-score of eight emotion classification 
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4.4.3 Results Comparison using Key Performance Indicators 

We compared the performance of our work with that of other 

approaches, although direct comparison is impossible due to the different goals, 

resources, and achievement metrics. However, the progress of development and 

improvement can be observed in Table 4.17 by sorting the studies by time and capture 

mutual information or key performance indicators (KPIs) to compare these studies in 

terms of several factors such as methodology, number of samples, number of features, 

number of emotional classes, and percentage of achievement claimed by the 

measurement method of each work. 

Normally a lower RMSE is better, but we invert the values such that a 

higher value is better to make the values comparable to those from other measurement 

methods. We also expanded our results to four emotions and valence/arousal level 

prediction to make our results comparable. When we measured our accuracy with only 

valence and arousal level, the results were similar to those of every work that measured 

their results in terms of valence/arousal level. Arousal prediction is always better than 

valence prediction, as observed in experiments No. 1, 9, 13, 14, 22, 27 and 28. 

Among the four emotional classification works, our work (No. 32 to 34) 

performs at an average level, but No. 35 outperforms the others. Experiments No. 8 and 

10 are comparable to No. 33 and 35. These works were conducted based on the same 

concept of using cascaded structures to distinguish only two classes at a time to classify 

a total of four emotional classes. Experiments No. 24 to 27 were conducted based on 

the same dataset that we used. However, the numbers of samples associated with each 

emotion were equalized, and the performance metric was the F1-score, while our work 

took the entire dataset and our performance metric was accuracy. 

Among the eight-emotion classification works, our methods (No. 36 to 

39) are comparable to experiment No. 11, which also employed multiple models. 

However, No. 11 simply employed eight models to regress each class simultaneously 

to form a structure, while No. 37 and 39 employed a cascaded structure of seven models 

to discriminate two classes at a time.  
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Table 4.17 The comparison of key performance indicators in each previous work 

# 
Key Algorithms 

and/or Methods 
Year Extractor 

Sampling 

Rate (Hz) 

File 

Format 

Audio 

Channel 

No. of 

Sample 

No. of 

Feature 

No. of 

Class 

Achievement 

(%) 

Measurement 

Method 

Ref. 

No. 

1 

SVM Regressor with 

RReliefF feature 

selection 

2008 

Psysound, Marsyas, 

Spectral contrast, 

DWCH1 

22.05k WAV Mono 195 114 V/A 28.1/58.3 𝑅2 [7] 

2 Binary Relevance 

2008 Marsyas 22.05k WAV Mono 593 74 6 

73.78 Accuracy 

[20] 

3 Label Powerset 76.69 Accuracy 

4 Random k-Labelsets 79.54 Accuracy 

5 
Multilabel k-Nearest 

Neighbor 
71.04 Accuracy 

6 
Auto Associative 

Neural Networks 
2013 

Praat (wav converter), 

MFCC2 
44.1k MP3 Mono 85 52 5 

94.4 Accuracy 

[5] 

7 
Support Vector 

Machine 
85 Accuracy 

8 

Hierarchical SVM 

based on tempo & 

mutation degree 

2013 N/A N/A MIDI N/A 80 2 4 95 Accuracy [2] 

9 
Recurrent Neural 

Networks 
2014 ComParE3 N/A MP3 N/A 1,000 70 V/A 50/70 𝑅2 [15] 

10 Hierarchical SVM 2014 NWFE, KBCS 22.05k N/A Mono 219 35 4 89.64 Accuracy [3] 

 

1 Daubechies wavelets coefficient histogram 
2 Mel-frequency cepstral coefficient 
3 Computational Paralinguistics Evaluation 
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Table 4.17 (Continued) The comparison of key performance indicators in each previous work 

# 
Key Algorithms 

and/or Methods 
Year Features Extractor 

Sampling 

Rate (Hz) 

File 

Format 

Audio 

Channel 

No. of 

Sample 

No. of 

Feature 

No. of 

Class 

Achievement 

(%) 

Measurement 

Method 

Ref. 

No. 

11 
Eight Regressors, 

Individually trained 
2015 

Sound Description 

toolbox, MIR toolbox, 

PsySound 

22.05k WAV Mono 385 117 8 59.35 Accuracy [8] 

12 
Nearest multi-

prototype classifier 
2015 MIR toolbox N/A MP3 N/A 903 59 5 56.43 Accuracy [19] 

13 

Adaptive Aggregation 

of Gaussian Process 

Regressors 

2016 MediaEval 2014 N/A N/A N/A 744 65 V/A 77/80 RMSE [16] 

14 Stacked CNN & RNN 2017 openSMILE toolbox N/A N/A N/A 431 260 V/A 73/80 RMSE [17] 

15 k-Nearest Neighbors 

2017 
Sound Description 

toolbox, MIR toolbox 
44.1k MP3 N/A 1,000 548 4 

62 Accuracy 

[4] 

16 Bayes Classifier 69 Accuracy 

17 
Linear Discriminant 

Analysis 
80.4 Accuracy 

18 
Neuro-Fuzzy Network 

Classification 
79.3 Accuracy 

19 Fuzzy KNN 83 Accuracy 

20 
Support Vector 

Machine 
82.7 Accuracy 

21 RandomForest 2017 

Sound Description 

toolbox, PsySound3, 

Marsyas 

44.1k N/A N/A 300 397 V/A 57.3/70 Accuracy [18] 

22 
Support Vector 

Machine 
2017 

MIR, Tempogram, 

Chroma toolbox, 

PsySound 

N/A N/A N/A 818 539 

6 85 
Accuracy 

[6] 

23 
Support Vector 

Regressor 
V/A 25/79 

Accuracy 
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Table 4.17 (Continued) The comparison of key performance indicators in each previous work 

# 
Key Algorithms 

and/or Methods 
Year Features Extractor 

Sampling 

Rate (Hz) 

File 

Format 

Audio 

Channel 

No. of 

Sample 

No. of 

Feature 

No. of 

Class 

Achievement 

(%) 

Measurement 

Method 

Ref. 

No. 

24 
Support Vector 

Machine 

2017 MIR toolbox 44.1k MP3 Stereo 943 33 4 

46 F1-score 

[21] 25 Naïve Bayes 40 F1-score 

26 Decision Trees 37 F1-score 

27 k-Nearest Neighbors 41 F1-score 

28 
LM Networks for 

Valence  

2018 MIR toolbox 44.1k MP3 Stereo 1,802 122 

2(V) 

78.9 Accuracy 

This 

Work 

29 
Rprop Networks for 

Valence  
76.7 Accuracy 

30 
LM Networks for 

Arousal  
2(A) 

85.8 Accuracy 

31 
Rprop Networks for 

Arousal  
96.3 Accuracy 

32 

Traditional Multiclass 

LM Networks for 4 

Emotions 

4 

70.6 Accuracy 

33 
Cascaded LM 

Networks 4 Emotions 
73.4 Accuracy 

34 

Traditional Multiclass 

Rprop Networks 4 

Emotions 

79.0 Accuracy 

35 
Cascaded Rprop 

Networks 4 Emotions 
93.5 Accuracy 
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Table 4.17 (Continued) The comparison of key performance indicators in each previous work 

# 
Key Algorithms 

and/or Methods 
Year Features Extractor 

Sampling 

Rate (Hz) 

File 

Format 

Audio 

Channel 

No. of 

Sample 

No. of 

Feature 

No. of 

Class 

Achievement 

(%) 

Measurement 

Method 

Ref. 

No. 

36 

Traditional Multiclass 

LM Networks 8 

Emotions 

2018 MIR toolbox 44.1k MP3 Stereo 1,802 122 8 

47.8 Accuracy 

This 

Work 

37 
Cascaded LM 

Networks 8 Emotions 
50.2 Accuracy 

38 

Traditional Multiclass 

Rprop Networks 8 

Emotions 

58.9 Accuracy 

39 
Cascaded Rprop 

Networks 8 Emotions 
89.5 Accuracy 
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4.5 Summary 

The 122 acoustic feature elements were extracted form audio files by 

MIR toolbox. The extracted features cover five types of acoustic features i.e. dynamics, 

rhythm, timbre, pitch, and Tonality. A drawback of using MIR toolbox is processing 

time. Elapsed time for each song is unequal up to fluctuation and complexity of each 

song, most of extraction task could be done in few hours for entire dataset. 

The music emotion prediction results are presented step by step. Begin 

with such a simple task like valence or arousal discrimination to the most complicate 

task of eight music emotional classification at the end, 12 results in total. We present 

the model performance in table form, and accuracy is explained with a confusion 

matrix. The results show that cascaded Rprop gave the best accuracy at 89.5% for eight 

music emotion prediction. The result of traditional multiclass LM, cascaded LM and 

traditional multiclass Rprop model training methods have the similar problem, that is 

predicted confusion of class 1,2,5, and 6. The predicted class 1 confused with class 2 

and predicted class 5 confused with class 6. The cascaded LM modeling method did 

not work well as were expected, perhaps LM neural network dose not fits for cascaded 

structure. However, the cascaded Rprop modeling method able to reduce confusion 

significantly. 

The accuracies of cascaded models were verified with calculation using 

the rule of three and fractional percentage. These simulations have been shown to 

correspond well with actual accuracies. In order to explain how the models made 

incorrectly prediction, F1-score was employed to measure harmonic average of the 

precision and recall. The results were compared in various aspect with the other work. 

The comparation reveal that our work (cascaded Rprop) is the best in term of number 

of samples, number of emotional classes and accuracy. 
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CHAPTER 5  

CONCLUSION 

5.1 Conclusion 

We have designed a music emotion recognition system using eight 

emotion classes. The system was developed on MATLAB, 122 acoustic features were 

extracted by the MIR toolbox, and four modeling methods were investigated: traditional 

multiclass LM, cascaded LM, traditional multiclass Rprop, and cascaded Rprop. We 

evaluated the system with the DEAM benchmark. The dataset was divided into a 7/3 

ratio (training set/testing set). The accuracies were 47.8%, 50.2%, 58.9%, and 89.5%, 

respectively. The results for the cascaded Rprop model confirm the scalability of 

prediction with multimodel methods demonstrated in previous work [2][3][8]. We also 

found that timbre features were the most important for music emotion prediction. 

There are some difficulties in the prediction of class No. 3, 4, 7, and 8. 

This may be due to a lack of uniqueness of the features or because the annotation 

process contains ambiguity at first. Perhaps the music in these classes has a complex 

texture that is hard to distinguish in term of valence and arousal.  

A major drawback of the proposed method is its heavy computational 

requirements, but this was handled by using high performance hardware. We have 

provided elapsed time data for features extraction, details on the model training process, 

and our hardware specification for reference, which should be helpful for reproducing 

or extending this work. We found that with our system environment mentioned in 

Chapter 3.1, the CPU was only fully loaded when eight extraction tasks were executing 

at the same time, which consumed approximately 30GB of RAM. During the modeling, 

we were able to run two LM algorithm tasks at the same time and five tasks for the 

Rprop algorithm. Therefore, the total elapsed time is not the summation of the reported 

elapsed times in Table 4.1 and 4.3 to 4.14. 

The cascaded structure could be both advantage and drawback up to how 

its submodels were trained. The submodel in level 1 is the most significant and lesser 

and lesser in level 2 and level 3 as explained by simulations in Chapter 4.4.1. 
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5.2 Future Work 

Future work should investigate how to index the minimum cost in terms 

of computational time and hardware requirements, while maintaining acceptable 

accuracy. One approach would be to consider only high-impact features, as 

demonstrated in Chapter 4.2. The overall accuracy might decrease slightly, but the 

elapsed time will decrease significantly. For instance, when we removed feature No. 

63, which is the most time-consuming feature to extract, and trained the model with 

only the other 121 features, the accuracy of the cascaded Rprop model was still high 

(84.1%). Parallel processing and cloud base system could be beneficial to cascade 

model training because submodels able to be trained simultaneously. 

In this work we use mean value of VA-values annotated by many people 

as described in Chapter 3.1. However, it possible to change annotation methods. Since, 

the DEAM benchmark provided raw annotation data. For instance, convert VA-values 

of each annotator then employ majority vote to pick up the most frequent annotated 

emotion. 

Our work aims to encourage music providers to categorize music by 

using emotional terms. The benefits will be a more efficient search and better access to 

music. This work may also lead to additional applications, such as music playlist 

generation based on listener heart rate and automatic stage-lighting control based on 

music emotions [56][57].  
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Table A. Correlation values between extracted features and VA-ratings 

Feat. 

No. 
Feat. Type 

Raw Data 

Type 

Valence 

Correlation 

Valence 

Correlation 

Ranking 

Arousal 

Correlation 

Arousal 

Correlation 

Ranking 

1 Dynamics time series 0.0393 84 0.1883 104 

2 Dynamics time series -0.1562 8 -0.2996 5 

3 Rhythm time series -0.0029 50 -0.1480 30 

4 Rhythm time series -0.0311 38 -0.1689 28 

5 Rhythm time series -0.0628 16 -0.2000 26 

6 Rhythm time series -0.0700 12 -0.2080 18 

7 Rhythm time series -0.0730 11 -0.2123 16 

8 Rhythm time series -0.0672 13 -0.2068 21 

9 Rhythm time series -0.0652 14 -0.2061 24 

10 Rhythm time series -0.0579 17 -0.2066 22 

11 Rhythm time series -0.0574 18 -0.2079 19 

12 Rhythm time series -0.0549 19 -0.2070 20 

13 Rhythm time series -0.0488 23 -0.2041 25 

14 Rhythm time series -0.0483 24 -0.2062 23 

15 Rhythm time series -0.0482 25 -0.2106 17 

16 Rhythm time series -0.0497 21 -0.2142 14 

17 Rhythm time series -0.0489 22 -0.2171 13 

18 Rhythm time series -0.0516 20 -0.2222 12 

19 Rhythm time series -0.0480 26 -0.2225 11 

20 Rhythm time series -0.0426 29 -0.2247 10 

21 Rhythm time series -0.0392 32 -0.2278 9 

22 Rhythm time series -0.0232 44 -0.2128 15 

23 Rhythm time series -0.0005 54 -0.1856 27 

24 Rhythm time series 0.0192 68 -0.1565 29 

25 Rhythm time series 0.0318 75 -0.1376 31 

26 Rhythm time series 0.0433 86 -0.1256 33 

27 Rhythm time series -0.2297 6 -0.2392 8 

28 Rhythm time series 0.1860 108 0.4642 117 

29 Rhythm time series 0.4196 121 0.6232 121 

30 Rhythm numeric 0.0998 100 0.1415 97 

31 Rhythm time series 0.3184 115 0.2857 111 

32 Rhythm time series 0.4266 122 0.3351 113 
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Table A. (Continued) Correlation values between extracted features and VA-ratings 

Feat. 

No. 
Feat. Type 

Raw Data 

Type 

Valence 

Correlation 

Valence 

Correlation 

Ranking 

Arousal 

Correlation 

Arousal 

Correlation 

Ranking 

33 Timbre time series -0.1403 9 -0.1307 32 

34 Timbre time series 0.2708 111 0.2552 109 

35 Timbre time series 0.2851 114 0.2049 106 

36 Timbre time series -0.241 5 -0.3667 3 

37 Timbre time series 0.2089 109 0.2904 112 

38 Timbre time series 0.1776 107 0.0376 68 

39 Timbre time series -0.2882 3 -0.2463 7 

40 Timbre time series 0.2804 113 0.5099 119 

41 Timbre time series 0.3847 119 0.4623 116 

42 Timbre time series 0.3577 116 0.5828 120 

43 Timbre numeric 0.3827 118 0.5068 118 

44 Timbre numeric 0.3748 117 0.4294 115 

45 Timbre numeric -0.3262 2 -0.4497 2 

46 Timbre numeric -0.2235 7 -0.3286 4 

47 Timbre time series 0.2788 112 0.3431 114 

48 Timbre time series 0.3933 120 0.6286 122 

49 Timbre time series -0.3339 1 -0.5241 1 

50 Timbre time series 0.1281 104 0.0491 70 

51 Timbre time series -0.1342 10 -0.1226 34 

52 Timbre time series 0.1157 103 0.033 67 

53 Timbre time series -0.0009 53 -0.047 40 

54 Timbre time series 0.047 89 0.0627 75 

55 Timbre time series 0.0428 85 0.0617 74 

56 Timbre time series 0.0693 92 0.0896 88 

57 Timbre time series 0.0376 82 0.0867 86 

58 Timbre time series 0.0949 98 0.18 103 

59 Timbre time series 0.0293 74 0.1055 93 

60 Timbre time series 0.0799 95 0.087 87 

61 Timbre time series 0.0003 56 0.0898 89 

62 Timbre time series 0.0065 60 0.23 108 

63 Timbre time series -0.2567 4 -0.2769 6 

64 Pitch numeric 0.1012 102 0.2823 110 
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Table A. (Continued) Correlation values between extracted features and VA-ratings 

Feat. 

No. 
Feat. Type 

Raw Data 

Type 

Valence 

Correlation 

Valence 

Correlation 

Ranking 

Arousal 

Correlation 

Arousal 

Correlation 

Ranking 

65 Pitch time series 0.018 66 0.1794 101 

66 Tonality time series 0.0795 94 0.1148 95 

67 Tonality time series 0.0909 97 0.1685 100 

68 Tonality time series 0.0686 91 0.0938 92 

69 Tonality time series 0.0467 88 0.1136 94 

70 Tonality time series 0.0363 79 0.1211 96 

71 Tonality time series 0.0459 87 0.0744 79 

72 Tonality time series 0.0202 69 0.0554 73 

73 Tonality time series 0.0742 93 0.0932 91 

74 Tonality time series 0.1749 106 0.2297 107 

75 Tonality time series 0.1346 105 0.1796 102 

76 Tonality time series 0.09 96 0.1463 98 

77 Tonality time series 0.0996 99 0.203 105 

78 Tonality time series -0.0004 55 -0.006 55 

79 Tonality time series 0.0186 67 0.0009 58 

80 Tonality time series 0.0081 61 0.0145 62 

81 Tonality time series -0.013 47 -0.0442 44 

82 Tonality time series 0.0164 64 0.0824 84 

83 Tonality time series -0.0013 52 -0.0335 47 

84 Tonality time series -0.038 35 -0.0485 39 

85 Tonality time series 0.003 58 0.0054 59 

86 Tonality time series 0.0345 78 0.0189 63 

87 Tonality time series 0.0278 72 0.0722 78 

88 Tonality time series -0.0251 43 -0.0705 35 

89 Tonality time series -0.0387 33 -0.0065 54 

90 Tonality classes 0.0095 62 0.0294 65 

91 Tonality time series 0.0999 101 -0.03 50 

92 Tonality time series -0.0373 36 -0.0445 43 

93 Tonality time series -0.0407 31 -0.0458 41 

94 Tonality time series -0.043 28 -0.0447 42 

95 Tonality time series -0.0435 27 -0.0391 45 

96 Tonality time series -0.0424 30 -0.0307 48 
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Table A. (Continued) Correlation values between extracted features and VA-ratings 

Feat. 

No. 
Feat. Type 

Raw Data 

Type 

Valence 

Correlation 

Valence 

Correlation 

Ranking 

Arousal 

Correlation 

Arousal 

Correlation 

Ranking 

97 Tonality time series -0.0382 34 -0.0194 51 

98 Tonality time series -0.0304 39 -0.0049 56 

99 Tonality time series -0.0206 45 0.0095 61 

100 Tonality time series -0.0091 49 0.0253 64 

101 Tonality time series 0.0032 59 0.0405 69 

102 Tonality time series 0.0132 63 0.0537 72 

103 Tonality time series 0.0223 70 0.0668 77 

104 Tonality time series 0.0289 73 0.075 80 

105 Tonality time series 0.0338 77 0.0807 82 

106 Tonality time series 0.0375 81 0.0829 85 

107 Tonality time series 0.0383 83 0.0807 83 

108 Tonality time series 0.0373 80 0.0758 81 

109 Tonality time series 0.0334 76 0.0653 76 

110 Tonality time series 0.0276 71 0.0528 71 

111 Tonality time series 0.0165 65 0.0323 66 

112 Tonality time series 0.0015 57 0.0088 60 

113 Tonality time series -0.0136 46 -0.0134 52 

114 Tonality time series -0.0254 42 -0.0306 49 

115 Tonality time series -0.0324 37 -0.0388 46 

116 Tonality time series -0.0016 51 0.0005 57 

117 Tonality time series -0.0096 48 -0.0567 38 

118 Tonality time series -0.0278 40 -0.0089 53 

119 Tonality time series 0.0591 90 0.0898 90 

120 Tonality time series -0.0637 15 -0.0575 36 

121 Tonality time series -0.0277 41 -0.0569 37 

122 Tonality time series 0.2275 110 0.1684 99 
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