

Fungal Metabolites from the Endophytic Fungi Aspergillus aculeatus PSU-D2, Pestalotiopsis microspora PSU-A70, Phomopsis sp. PSU-D15 and Xylariaceae PSU-A80

Ubonta Sommart

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Organic Chemistry Prince of Songkla University

2007

Copyright of Prince of Songkla University

Thesis Title Fungal Metabolites from the Endophytic Fungi Aspergillus aculeatus
 PSU-D2, Pestalotiopsis microspora PSU-A70, Phomopsis sp. PSU-D15
 and Xylariaceae PSU-A80
 Author Miss Ubonta Sommart
 Major Program Organic Chemistry

Advisory Committee

Examining Committee

V. Ruhacharoinhul Chairman (Assoc. Prof. Dr. Vatcharin Rukachaisirikul)

Orasa Penscharoen Chairman

(Asst. Prof. Dr. Orasa Pancharoen)

Kanda Panthong.....Committee (Dr. Kanda Panthong)

(Assoc. Prof. Dr. Vatcharin Rukachaisirikul)

Kanda Panthong...Committee

(Dr. Kanda Panthong)

The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Master of Science Degree in Organic Chemistry

Kreekofi R

(Assoc. Prof. Dr. Krerkchai Thongnoo) Dean of Graduate School

22

ชื่อวิทยานิพนธ์	องค์ประกอบทางเคมีจากเชื้อราเอนโคไฟท์ Aspergillus aculeatus PSU-
	D2, Pestalotiopsis microspora PSU-A70, Phomopsis sp. PSU-D15 และ
	Xylariaceae PSU-A80
ผู้เขียน	นางสาวอุบลทา สมมารถ
สาขาวิชา	เกมีอินทรีย์
ปีการศึกษา	2549

บทคัดย่อ

งานวิจัยนี้เป็นการศึกษาองค์ประกอบทางเคมีจากเชื้อราจำนวน 4 ชนิดได้แก่ Aspergillus aculeatus PSU-D2, Pestalotiopsis microspora PSU-A70, Phomopsis sp. PSU-D15 และ Xylariaceae PSU-A80 โดยนำส่วนสกัดหยาบเอทิลอะซิเตทจากส่วนน้ำเลี้ยงเชื้อและ/หรือเซลล์ ของเชื้อราดังกล่าวมาทำให้บริสุทธิ์ด้วยวิธีทางโครมาโทกราฟี สามารถแยกสารบริสุทธิ์ประเภท ต่างๆ ดังนี้

- สารที่มีการรายงานโครงสร้างแล้วคือ paraherquamide E (US1) จากส่วนสกัด หยาบจากเซลล์ของเชื้อรา A. aculeatus PSU-D2
- สารที่มีการรายงานโครงสร้างแล้วจำนวน 6 สารได้แก่ อนุพันธ์ของ terrein (US2) และ coumarin (US3) ประเภทละ 1 สาร และอนุพันธ์ของ phenol จำนวน 4 สาร (US4-US7) จากส่วนสกัดหยาบจากน้ำเลี้ยงเชื้อและเซลล์ของ เชื้อรา *P.* microspora PSU-A70
- สารใหม่จำนวน 4 สารได้แก่ อนุพันธ์ของ amide จำนวน 2 สาร (US10 และ US11) อนุพันธ์ของ nitroester (US13) และ hydroxanthone dimer (US15) ประเภทละ 1 สาร และสารที่มีการรายงานโครงสร้างแล้วจำนวน 5 สารได้แก่ อนุพันธ์ของ tetralactone (US12) cyclohexane (US8) amide (US9) hydroxanthone dimer (US14) และ nucleoside (US16) ประเภทละ 1 สาร จากส่วน สกัดหยาบจากน้ำเลี้ยงเชื้อและเซลล์ของเชื้อรา *Phomopsis* sp. PSU-D15
- สารใหม่จำนวน 3 สารได้แก่ อนุพันธ์ของ pentacyclic จำนวน 1 สาร (US20) อนุพันธ์ ของ dienoic acid (US25) และ tetralone (US26) ประเภทละ 1 สาร และสารที่มีการ รายงานโครงสร้างแล้วจำนวน 10 สารได้แก่ อนุพันธ์ของ coumarin (US3) phenol

(US4) naphthol (US17) mellein (US18) tetralone (US19) pentacyclic (US21)
 octadien-2,3-diol (US24) และ lactone (US27) ประเภทละ 1 สาร และอนุพันธ์ของ
 benzylidene จำนวน 2 สาร (US22 และ US23) จากส่วนสกัดหยาบจากน้ำเลี้ยงเชื้อ
 และเซลล์ของเชื้อรา Xylariaceae PSU-A80

โครงสร้างของสารทั้งหมดวิเคราะห์โดยใช้ข้อมูลทางสเปกโทรสโกปี โดยเฉพาะ 1D และ 2D NMR สเปกโทรสโกปี และการเปรียบเทียบข้อมูลกับสารที่มีการรายงานโครงสร้างแล้ว

US26 : R = Me

Me

US20 : R = H

US21 : R = Me

US24

US25

US22 : R = Me **US23 :** R = H

″он

Me

US27

Thesis TitleFungal Metabolites from the Endophytic Fungi Aspergillus aculeatus
PSU-D2, Pestalotiopsis microspora PSU-A70, Phomopsis sp. PSU-
D15 and Xylariaceae PSU-A80AuthorMiss Ubonta SommartMajor ProgramOrganic ChemistryAcademic Year2006

ABSTRACT

This work involved chemical investigation of the ethyl acetate extracts from culture broth and/or mycelia of four endophytic fungi: *Aspergillus aculeatus* PSU-D2, *Pestalotiopsis microspora* PSU-A70, *Phomopsis* sp. PSU-D15 and Xylariaceae PSU-A80. Each extract was subjected to various chromatographic techniques. Many types of compounds were isolated as follows.

- The known paraherquamide E (US1) from the mycelial extract of *A*. *aculeatus* PSU-D2.
- Six known compounds: one terrein derivative (US2), one coumarin derivative (US3) and four phenol derivatives (US4-US7), from the broth and mycelial extracts of *P. microspora* PSU-A70.
- Four new compounds: two amide derivatives (US10 and US11), one nitroester derivative (US13) and one hydroxanthone dimer (US15), and five known compounds: one tetralactone derivative (US12), one cyclohexane derivative (US8), one amide derivative (US9), one hydroxanthone dimer (US14) and one nucleoside derivative (US16), from the broth and mycelial extracts of *Phomopsis* sp. PSU-D15.
- Three new compounds: one pentacyclic derivative (US20), one dienoic acid derivative (US25) and one tetralone derivative (US26), and ten known compounds: one coumarin derivative (US3), one phenol derivative (US4), one naphthol derivative (US17), one mellein derivative (US18), one tetralone derivative (US19), one pentacyclic derivative (US21), one octadien-2,3-diol (US24), one lactone derivative

(US27) and two benzylidine derivatives (US22 and US23), from the broth and mycelial extracts of Xylariaceae PSU-A80.

The structures were determined by analysis of 1D and 2D NMR spectroscopic data and comparison of the NMR data with those reported in the literatures.

US12

 $\mathbf{US26}:\mathbf{R}=\mathbf{Me}$

US20 : R = H US21 : R = Me

US24

US25

CONTENTS

	Page
CONTENTS	xi
LIST OF TABLE	xiv
LIST OF ILLUSTRATIONS	xxi
LIST OF ABBREVIATIONS AND SYMBOLS	xxxi
PART I CHEMICAL CONSTITUENTS FROM THE ENDOPHYTIC	1
FUNGUS ASPERGILLUS ACULEATUS PSU-D2	
CHAPTER 1.1 INTRODUCTION	2
1.1.1 Introduction	2
CHAPTER 1.2 EXPERIMENTAL	5
1.2.1 Instruments and chemicals	5
1.2.2 Fermentation and extraction	5
1.2.3 Purification of the broth extract	6
1.2.4 Purification of the mycelial extract	8
CHAPTER 1.3 RESULTS AND DISCUSSION	15
1.3.1 Compound US1	15
PART II CHEMICAL CONSTITUENTS FROM THE ENDOPHYTIC	20
FUNGUS PESTALOTIOPSIS MICROSPORA PSU-A70	
CHAPTER 2.1 INTRODUCTION	21
2.1.1 Introduction	21
CHAPTER 2.2 EXPERIMENTAL	23
2.2.1 Fermentation and extraction	23
2.2.2 Purification of the broth extract	23
2.2.3 Purification of the mycelial extract	39
CHAPTER 2.3 RESULTS AND DISCUSSION	42
2.3.1 Compound US2	42
2.3.2 Compound US3	43
2.3.3 Compound US4	45

CONTENTS (Continued)

	Page
2.3.4 Compound US5	47
2.3.5 Compound US6	48
2.3.6 Compound US7	49
PART III CHEMICAL CONSTITUENTS FROM THE ENDOPHYTIC	51
FUNGUS PHOMOPSIS SP. PSU-D15	
CHAPTER 3.1 INTRODUCTION	52
3.1.1 Introduction	52
CHAPTER 3.2 EXPERIMENTAL	63
3.2.1 Fermentation and extraction	63
3.2.2 Purification of the broth extract	63
3.2.3 Purification of the mycelial extract	91
CHAPTER 3.3 RESULTS AND DISCUSSION	100
3.3.1 Compound US8	100
3.3.2 Compound US9	103
3.3.3 Compound US10	104
3.3.4 Compound US11	105
3.3.5 Compound US12	106
3.3.6 Compound US13	107
3.3.7 Compound US14	108
3.3.8 Compound US15	112
3.3.9 Compound US16	115
PART IV CHEMICAL CONSTITUENTS FROM THE ENDOPHYTIC	117
FUNGUS XYLARIACEAE PSU-A80	
CHAPTER 4.1 INTRODUCTION	118
4.1.1 Introduction	118
CHAPTER 4.2 EXPERIMENTAL	122
4.2.1 Fermentation and extraction	122

CONTENTS (Continued)

	Page
4.2.2 Purification of the broth extract	122
4.2.3 Purification of the mycelial extract	154
CHAPTER 4.3 RESULTS AND DISCUSSION	165
4.3.1 Compound US17	165
4.3.2 Compound US18	167
4.3.3 Compound US19	169
4.3.4 Compound US20	171
4.3.5 Compound US21	174
4.3.6 Compound US22	177
4.3.7 Compound US23	179
4.3.8 Compound US24	181
4.3.9 Compound US25	183
4.3.10 Compound US26	184
4.3.11 Compound US27	186
BIBLIOGRAPHY	341
VITAE	349

LIST OF TABLES

Table	Page
1 Metabolites from the fungus Aspergillus aculeatus and the biological activit	ty 2
2 Fractions obtained from the broth extract by column chromatography	6
over Sephadex LH-20	
3 Subfractions obtained from the methanol soluble fraction of fraction B	7
by column chromatography over silica gel	
4 Fractions obtained from the mycelial extract by column chromatography	8
over Sephadex LH-20	
5 Subfractions obtained from fraction B by column chromatography	9
over silica gel	
6 Subfractions obtained from fraction C by column chromatography	13
over silica gel	
7 The 1 H and 13 C NMR data of compound US1 in CDCl ₃ and	17
the ¹ H NMR data of paraherquamide E in CD_2Cl_2	
8 The HMBC, COSY and NOE data of compound US1 in $CDCl_3$	18
9 Metabolites from the fungus <i>Pestalotiopsis microspora</i>	21
and the biological activity	
10 Fractions obtained from the broth extract by column chromatography	23
over Sephadex LH-20	
11 Subfractions obtained from Fraction B by column chromatography	24
over silica gel	
12 Subfractions obtained from Fraction C by column chromatography	26
over silica gel	
13 Subfractions obtained from Subfraction C7 by column chromatography	29
over Sephadex LH-20	
14 Subfractions obtained from Subfraction C11 by column chromatography	32
over reverse phase C ₁₈ silica gel	
15 Subfractions obtained from Subfraction C11a by column chromatography	32
over Sephadex LH-20	

Та	ble	Page
16	Subfractions obtained from Fraction D by column chromatography	35
	over silica gel	
17	Subfractions obtained from Subfraction D7 by column chromatography	37
	over silica gel	
18	Subfractions obtained from Fraction E by column chromatography	38
	over Sephadex LH-20	
19	Fractions obtained from the mycelial extract by column chromatography	39
	over Sephadex LH-20	
20	Subfractions obtained from Fraction A by column chromatography	40
	over silica gel	
21	The NMR data of compound US2 in CDCl ₃	43
22	The NMR data of compound US3 in CDCl ₃	44
23	The HMBC, COSY and NOE data of compound US3 in CDCl ₃	45
24	The NMR data of compound US4 in CDCl ₃	46
25	The HMBC and NOE data of compound US4 in CDCl ₃	47
26	The NMR data of compound US5 in CDCl ₃	48
27	The NMR data of compound US6 in CDCl ₃ +CD ₃ OD	49
28	The NMR data of compound US7 in CDCl ₃ +CD ₃ OD	50
29	Metabolites from the fungus Phomopsis sp. and	52
	the biological activity	
30	Fractions obtained from the broth extract by column chromatography	63
	over Sephadex LH-20	
31	Subfractions obtained from fraction A by column chromatography	64
	over Sephadex LH-20	
32	Subfractions obtained from the fraction B by column chromatography	66
	over Sephadex LH-20	
33	Subfractions obtained from subfraction B1 by column chromatography	67
	over reverse phase C_{18} silica gel	

Ta	ble	Page
34	Subfractions obtained from subfraction BK by column chromatography	71
	over Sephadex LH-20	
35	Subfractions obtained from subfraction B2 by column chromatography	73
	over Sephadex LH-20	
36	Subfractions obtained from subfraction B21 by column chromatography	74
	over silica gel	
37	Subfractions obtained from subfraction B3 by column chromatography	79
	over Sephadex LH-20	
38	Subfractions obtained from subfraction B34 by column chromatography	80
	over Sephadex LH-20	
39	Subfractions obtained from subfraction B4 by column chromatography	81
	over Sephadex LH-20	
40	Subfractions obtained from subfraction B43 by column chromatography	82
	over Sephadex LH-20	
41	Fractions obtained from subfraction B5 by column chromatography	84
	over Sephadex LH-20	
42	Subfractions obtained from subfraction B53 by column chromatography	85
	over Sephadex LH-20	
43	Fractions obtained from the mycelial extract by column chromatography	91
	over Sephadex LH-20	
44	Fractions obtained from Fraction B by column chromatography over	92
Ś	Sephadex LH-20	
45	Fractions obtained from Fraction C by column chromatography over	93
	Sephadex LH-20	
46	Subfractions obtained from Subfraction C2 by column chromatography	94
	over Sephadex LH-20	
47	Subfractions obtained from Subfraction C4 by column chromatography	97
	over Sephadex LH-20	

Та	ble	Page
48	The NMR data of compound US8 in CDCl ₃	102
49	The HMBC, COSY and NOE data of compound US8 in $CDCl_3$	102
50	The NMR data of compound US9 in CDCl ₃	103
51	The NMR data of compound US10 in CDCl ₃	105
52	The NMR data of compound US11 in CDCl ₃	106
53	The NMR data of compound US12 in CDCl ₃	107
54	The NMR data of compound US13 in CDCl ₃	108
55	The 1 H and 13 C NMR data of compound US14 in CDCl ₃ and	110
	the ¹ H NMR data of dicerandrol A in CD ₃ CN	
56	The HMBC, COSY and NOE data of compound US14 in $CDCl_3$	111
57	The NMR data of compound US15 in CDCl ₃	113
58	The NMR data of compound US16 in Acetone- d_6	116
59	Metabolites from the Xylariaceae fungus and	118
	the biological activity	
60	Fractions obtained from the broth extract by column chromatography	122
	over Sephadex LH-20	
61	Subfractions obtained from Fraction B by column chromatography	123
	over silica gel	
62	Subfractions obtained from Subfraction B2 by column chromatography	124
	over silica gel	
63	Subfractions obtained from Subfraction B25 by column chromatography	126
	over silica gel	
64	Subfractions obtained from Subfraction B26 by column chromatography	128
	over silica gel	
65	Subfractions obtained from Subfraction B27 by column chromatography	134
	over silica gel	
66	Subfractions obtained from Subfraction B27b by column chromatography	135
	over silica gel	

Ta	ble	Page
67	Subfractions obtained from Subfraction B27b2 by column chromatography	136
	over Sephadex LH-20	
68	Subfractions obtained from Subfraction B27d by column chromatography	137
	over silica gel	
69	Subfractions obtained from Subfraction B28 by column chromatography	138
	over silica gel	
70	Subfractions obtained from Subfraction B28c by column chromatography	139
	over silica gel	
71	Subfractions obtained from Subfraction B28e by column chromatography	140
	over silica gel	
72	Subfractions obtained from Subfraction B29 by column chromatography	142
	over silica gel	
73	Subfractions obtained from Subfraction B3 by column chromatography	144
	over silica gel	
74	Subfractions obtained from Fraction B33 by column chromatography	145
	over silica gel	
75	Subfractions obtained from Fraction B36 by column chromatography	146
(over silica gel	
76	Fractions obtained from Subfraction B4 by column chromatography	147
	over Sephadex LH-20	
77	Subfractions obtained from Fraction C by column chromatography	148
	over silica gel	
78	Subfractions obtained from Subfraction C4 by column chromatography	150
	over silica gel	
79	Subfractions obtained from Subfraction C6 by column chromatography	151
	over silica gel	
80	Subfractions obtained from Fraction D by column chromatography	153
	over Sephadex LH-20	

Та	ble	Page
81	Fractions obtained from the mycelial extract by column chromatography	154
	over Sephadex LH-20	
82	Subfractions obtained from Fraction B by column chromatography	155
	over silica gel	
83	Subfractions obtained from Subfraction B4 by column chromatography	157
	over silica gel	
84	Subfractions obtained from Subfraction B42 by column chromatography	158
	over reverse phase C_{18} silica gel	
85	Subfractions obtained from Subfraction B42a by column chromatography	158
	over Sephadex LH-20	
86	Subfractions obtained from Subfraction B42a2 by column chromatography	159
	over Sephadex LH-20	
87	Subfractions obtained from Subfraction B5 by column chromatography	161
	over silica gel	
88	Subfractions obtained from Fraction B8 by column chromatography	163
	over silica gel	
89	The NMR data of compound US17 in CDCl ₃	166
90	The HMBC, COSY and NOE data of compound US17 in CDCl ₃	166
91	The NMR data of compound US18 in CDCl ₃	168
92	The HMBC, COSY and NOE data of compound US18 in CDCl ₃	168
93	The NMR data of compound US19 in CDCl ₃	170
94	The HMBC, COSY and NOE data of compound US19 in CDCl ₃	170
95	The NMR data of compound US20 in CDCl ₃	173
96	The HMBC, COSY and NOE data of compound US20 in CDCl ₃	174
97	The NMR data of compound US21 in CDCl ₃	175
98	The HMBC, COSY and NOE data of compound US21 in CDCl ₃	176
99	The NMR data of compound US22 in CDCl ₃	178
100) The HMBC, COSY and NOE data of compound US22 in $CDCl_3$	179

Tab	le	Page
101	The NMR data of compound US23 in CDCl ₃	180
102	The HMBC, COSY and NOE data of compound US23 in $CDCl_3$	180
103	The NMR data of compound US24 in CDCl ₃	182
104	The HMBC, COSY and NOE data of compound US24 in $CDCl_3$	182
105	The NMR data of compound US25 in CDCl ₃	184
106	The HMBC, COSY and NOE data of compound US25 in $CDCl_3$	184
107	The NMR data of compound US26 in CDCl ₃	185
108	The HMBC, COSY and NOE data of compound US26 in $CDCl_3$	186
109	The NMR data of compound US27 in CDCl ₃	187
110	The HMBC, COSY and NOE data of compound US27 in CDCl ₃	188

LIST OF ILLUSTRATIONS

Figure	Page
1 UV (MeOH) spectrum of compound US1	189
2 FT-IR (neat) spectrum of compound US1	189
3 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound US1	190
4 DEPT 90° spectrum of compound US1	191
5 DEPT 135° spectrum of compound US1	191
6 13 C NMR (75 MHz) (CDCl ₃) spectrum of compound US1	191
7 HMQC spectrum of compound US1	192
8 HMBC spectrum of compound US1	192
9 COSY spectrum of compound US1	193
10 UV (MeOH) spectrum of compound US2	194
11 FT-IR (neat) spectrum of compound US2	194
12 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound US2	195
13 DEPT 90° spectrum of compound US2	196
14 DEPT 135° spectrum of compound US2	196
15 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound US2	196
16 HMQC spectrum of compound US2	197
17 HMBC spectrum of compound US2	197
18 COSY spectrum of compound US2	198
19 UV (MeOH) spectrum of compound US3	199
20 FT-IR (neat) spectrum of compound US3	199
21 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound US3	200
22 DEPT 90° spectrum of compound US3	201
23 DEPT 135° spectrum of compound US3	201
24 ¹³ C NMR (125 MHz) (CDCl ₃) spectrum of compound US3	201
25 HMQC spectrum of compound US3	202
26 HMBC spectrum of compound US3	202
27 COSY spectrum of compound US3	203
28 UV (MeOH) spectrum of compound US4	204

Fig	gure	Page
29	FT-IR (neat) spectrum of compound US4	204
30	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound US4	205
31	DEPT 135° spectrum of compound US4	206
32	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound US4	206
33	HMQC spectrum of compound US4	207
34	HMBC spectrum of compound US4	207
35	UV (MeOH) spectrum of compound US5	208
36	FT-IR (neat) spectrum of compound US5	208
37	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound US5	209
38	DEPT 90° spectrum of compound US5	210
39	DEPT 135° spectrum of compound US5	210
40	¹³ C NMR (125 MHz) (CDCl ₃) spectrum of compound US5	210
41	HMQC spectrum of compound US5	211
42	HMBC spectrum of compound US5	211
43	COSY spectrum of compound US5	212
44	UV (MeOH) spectrum of compound US6	213
45	FT-IR (neat) spectrum of compound US6	213
46	¹ H NMR (300 MHz) (CDCl ₃ +CD ₃ OD) spectrum of compound US6	214
47	¹³ C NMR (125 MHz) (CDCl ₃ +CD ₃ OD) spectrum of compound US6	215
48	HMQC spectrum of compound US6	216
49	HMBC spectrum of compound US6	216
50	Mass spectrum of compound US6	217
51	UV (MeOH) spectrum of compound US7	218
52	FT-IR (neat) spectrum of compound US7	218
53	¹ H NMR (300 MHz) (CDCl ₃ +CD ₃ OD) spectrum of compound US7	219
54	DEPT 90° spectrum of compound US7	220
55	DEPT 135° spectrum of compound US7	220
56	¹³ C NMR (75 MHz) (CDCl ₃ +CD ₃ OD) spectrum of compound US7	220

Fig	jure	Page				
57	HMQC spectrum of compound US7	221				
58	HMBC spectrum of compound US7221					
59	COSY spectrum of compound US7 222					
60	UV (MeOH) spectrum of compound US8	223				
61	FT-IR (neat) spectrum of compound US8	223				
62	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound US8	224				
63	3 DEPT 90° spectrum of compound US8					
64	4 DEPT 135° spectrum of compound US8					
65	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound US8	225				
66	HMQC spectrum of compound US8	226				
67	HMBC spectrum of compound US8	226				
68	COSY spectrum of compound US8	227				
69	NOE difference spectra of compound US8 after irradiation	228				
	at $\delta_{\rm H}$ 1.45 ppm (H-5) and 1.75 ppm (H _b -3)					
70	UV (MeOH) spectrum of compound US9	229				
71	FT-IR (neat) spectrum of compound US9	229				
72	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound US9	230				
73	DEPT 135° spectrum of compound US9	231				
74	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound US9	231				
75	HMQC spectrum of compound US9	232				
76	HMBC spectrum of compound US9	232				
77	COSY spectrum of compound US9	233				
78	UV (MeOH) spectrum of compound US10	234				
79	FT-IR (neat) spectrum of compound US10	234				
80	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound US10	235				
81	¹³ C NMR (125 MHz) (CDCl ₃) spectrum of compound US10	236				
82	HMQC spectrum of compound US10	237				
83	HMBC spectrum of compound US10	237				

Figure					
84 COSY spectrum of compound US10	238				
Mass spectrum of compound US10 239					
86 UV (MeOH) spectrum of compound US11	240				
87 FT-IR (neat) spectrum of compound US11	240				
88 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound US11	241				
89 ¹³ C NMR (125 MHz) (CDCl ₃) spectrum of compound US11	242				
90 HMQC spectrum of compound US11	243				
91 HMBC spectrum of compound US11	243				
92 COSY spectrum of compound US11	244				
93 Mass spectrum of compound US11	245				
94 UV (MeOH) spectrum of compound US12	246				
95 FT-IR (neat) spectrum of compound US12	246				
96 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound US12	247				
97 DEPT 135° spectrum of compound US12	248				
98 13 C NMR (75 MHz) (CDCl ₃) spectrum of compound US12	248				
99 HMBC spectrum of compound US12	249				
100 Mass spectrum of compound US12	250				
101 UV (MeOH) spectrum of compound US13	251				
102 FT-IR (neat) spectrum of compound US13	251				
103 1 H NMR (300 MHz) (CDCl ₃) spectrum of compound US13	252				
104 DEPT 135° spectrum of compound US13	253				
105 13 C NMR (125 MHz) (CDCl ₃) spectrum of compound US13	253				
106 HMQC spectrum of compound US13	254				
107 HMBC spectrum of compound US13	254				
108 COSY spectrum of compound US13	255				
109 Mass spectrum of compound US13	256				
110 UV (MeOH) spectrum of compound US14	257				
111 FT-IR (neat) spectrum of compound US14	257				

Figure	Page				
112 ¹ H NMR (500 MHz) (CDCl ₃) spectrum of compound US14	258				
113 DEPT 90° spectrum of compound US14259					
114 DEPT 135° spectrum of compound US14	259				
115 13 C NMR (125 MHz) (CDCl ₃) spectrum of compound US14	259				
116 HMQC spectrum of compound US14	260				
117 HMBC spectrum of compound US14	260				
118 COSY spectrum of compound US14	261				
119 NOE difference spectra of compound US14 after irradiation	262				
at $\delta_{\rm H}$ 3.47 ppm (H _b -12) and 5.69 ppm (H-5)					
120 Mass spectrum of compound US14	263				
121 UV (MeOH) spectrum of compound US15	264				
122 FT-IR (neat) spectrum of compound US15	264				
123 ¹ H NMR (500 MHz) (CDCl ₃) spectrum of compound US15	265				
124 DEPT 90° spectrum of compound US15	266				
125 DEPT 135° spectrum of compound US15	266				
126 ¹³ C NMR (125 MHz) (CDCl ₃) spectrum of compound US15	266				
127 HMQC spectrum of compound US15	267				
128 HMBC spectrum of compound US15	267				
129 COSY spectrum of compound US15	268				
130 Mass spectrum of compound US15	269				
131 UV (MeOH) spectrum of compound US16	270				
132 FT-IR (neat) spectrum of compound US16	270				
133 ¹ H NMR (500 MHz) (Acetone- d_6) spectrum of compound US16	271				
134 DEPT 90° spectrum of compound US16	272				
135 DEPT 135° spectrum of compound US16	272				
136 ¹³ C NMR (125 MHz) (Acetone- d_6) spectrum of compound US16	272				
137 HMQC spectrum of compound US16	273				
138 HMBC spectrum of compound US16	273				

Figure	Page				
139 COSY spectrum of compound US16	274				
Mass spectrum of compound US16275					
UV (MeOH) spectrum of compound US17 276					
142 FT-IR (neat) spectrum of compound US17	276				
143 1 H NMR (300 MHz) (CDCl ₃) spectrum of compound US17	277				
144 DEPT 135° spectrum of compound US17	278				
145 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound US17	278				
146 HMQC spectrum of compound US17	279				
147 HMBC spectrum of compound US17	279				
148 COSY spectrum of compound US17	280				
149 NOE difference spectrum of compound US17	281				
after irradiation at $\delta_{\rm H}$ 4.05 ppm (H ₃ -9)					
150 UV (MeOH) spectrum of compound US18	282				
151 FT-IR (neat) spectrum of compound US18	282				
152 1 H NMR (300 MHz) (CDCl ₃) spectrum of compound US18	283				
153 DEPT 90° spectrum of compound US18	284				
154 DEPT 135° spectrum of compound US18	284				
155 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound US18	284				
156 HMQC spectrum of compound US18	285				
157 HMBC spectrum of compound US18	285				
158 COSY spectrum of compound US18	286				
159 UV (MeOH) spectrum of compound US19	287				
160 FT-IR (neat) spectrum of compound US19	287				
161 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound US19	288				
162 DEPT 90° spectrum of compound US19	289				
163 DEPT 135° spectrum of compound US19	289				
164 ¹³ C NMR (125 MHz) (CDCl ₃) spectrum of compound US19	289				
165 HMQC spectrum of compound US19	290				

Figu	ire	Page				
166	HMBC spectrum of compound US19	290				
167	COSY spectrum of compound US19291					
168	UV (MeOH) spectrum of compound US20 292					
169	FT-IR (neat) spectrum of compound US20 292					
170	¹ H NMR (500 MHz) (CDCl ₃) spectrum of compound US20 29					
171	DEPT 90° spectrum of compound US20 2					
172	DEPT 135° spectrum of compound US20	294				
173	¹³ C NMR (125 MHz) (CDCl ₃) spectrum of compound US20	294				
174	HMQC spectrum of compound US20	295				
175	HMBC spectrum of compound US20	295				
176	COSY spectrum of compound US20	296				
177	NOE difference spectra of compound US20	297				
	after irradiation at $\delta_{\rm H}$ 3.39 ppm (H _a -7) and 5.28 ppm (H-3)					
178	Mass spectrum of compound US20	298				
179	UV (MeOH) spectrum of compound US21	299				
180	FT-IR (neat) spectrum of compound US21	299				
181	¹ H NMR (500 MHz) (CDCl ₃) spectrum of compound US21	300				
182	DEPT 90° spectrum of compound US21	301				
183	DEPT 135° spectrum of compound US21	301				
184	¹³ C NMR (125 MHz) (CDCl ₃) spectrum of compound US21	301				
185	HMQC spectrum of compound US21	302				
186	HMBC spectrum of compound US21	302				
187	COSY spectrum of compound US21	303				
188	Mass spectrum of compound US21	304				
189	UV (MeOH) spectrum of compound US22	305				
190	FT-IR (neat) spectrum of compound US22	305				
191	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound US22	306				

Figure	Page
192 DEPT 90° spectrum of compound US22	307
193 DEPT 135° spectrum of compound US22	307
194 13 C NMR (75 MHz) (CDCl ₃) spectrum of compound US22	307
195 HMQC spectrum of compound US22	308
196 HMBC spectrum of compound US22	308
197 COSY spectrum of compound US22	309
198 NOE difference spectrum of compound US22	310
after irradiation at $\delta_{\rm H}$ 7.15 ppm (H _a -10)	
199 Mass spectrum of compound US22	311
200 UV (MeOH) spectrum of compound US23	312
201 FT-IR (neat) spectrum of compound US23	312
202 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound US23	313
203 DEPT 90° spectrum of compound US23	314
204 DEPT 135° spectrum of compound US23	314
205 ¹³ C NMR (125 MHz) (CDCl ₃) spectrum of compound US23	314
206 HMQC spectrum of compound US23	315
207 HMBC spectrum of compound US23	315
208 COSY spectrum of compound US23	316
209 UV (MeOH) spectrum of compound US24	317
210 FT-IR (neat) spectrum of compound US24	317
211 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound US24	318
212 DEPT 90° spectrum of compound US24	319
213 DEPT 135° spectrum of compound US24	319
214 13 C NMR (75 MHz) (CDCl ₃) spectrum of compound US24	319
215 HMQC spectrum of compound US24	320
216 HMBC spectrum of compound US24	320
217 COSY spectrum of compound US24	321

Figu	gure Pa					
218	NOE difference spectrum of compound US24					
	after irradiation at $\delta_{\rm H}$ 6.39 ppm (H-6)					
219	UV (MeOH) spectrum of compound US25 32					
220	FT-IR (neat) spectrum of compound US25 32					
221	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound US25	324				
222	DEPT 90° spectrum of compound US25	325				
223	DEPT 135° spectrum of compound US25	325				
224	¹³ C NMR (125 MHz) (CDCl ₃) spectrum of compound US25	325				
225	HMQC spectrum of compound US25	326				
226	HMBC spectrum of compound US25	326				
227	COSY spectrum of compound US25	327				
228	Mass spectrum of compound US25	328				
229	UV (MeOH) spectrum of compound US26	329				
230	FT-IR (neat) spectrum of compound US26	329				
231	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound US26	330				
232	DEPT 90° spectrum of compound US26	331				
233	DEPT 135° spectrum of compound US26	331				
234	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound US26	331				
235	HMQC spectrum of compound US26	332				
236	HMBC spectrum of compound US26	332				
237	COSY spectrum of compound US26	333				
238	NOE difference spectrum of compound US26	334				
	after irradiation at $\delta_{\rm H}$ 6.91 ppm (H-7)					
239	Mass spectrum of compound US26	335				
240	UV (MeOH) spectrum of compound US27	336				
241	FT-IR (neat) spectrum of compound US27	336				
242	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound US27	337				
243	DEPT 90° spectrum of compound US27	338				

Figure		
244 DEPT 135° spectrum of compound US27	338	
245 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound US27	338	
246 HMQC spectrum of compound US27	339	
247 HMBC spectrum of compound US27	339	
248 COSY spectrum of compound US27	340	

LIST OF ABBREVIATIONS AND SYMBOLS

S	=	singlet
d	=	doublet
t	=	triplet
q	=	quartet
т	=	multiplet
brs	=	broad singlet
dd	=	doublet of doublet
brd	=	broad doublet
brt	=	broad triplet
quint	=	quintet
sept	=	septet
ddd	=	doublet of doublet of doublet
tdd	=	triplet of doublet of doublet
dqd	=	doublet of quartet of doublet
dm	=	doublet of multiplet
δ	=	chemical shift relative to TMS
J	=	coupling constant
m/z	=	a value of mass divided by charge
°C	=	degree celcius
R_{f}	=	retention factor
g	=	gram
mL	=	milliliter
cm^{-1}	=	reciprocal centimeter (wavenumber)
nm	=	nanometer
$\lambda_{ m max}$	=	maximum wavelength
ν	=	absorption frequency
ε	=	Molar extinction coefficient
Hz	=	Hertz

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

MHz	=	megaHertz
ppm	=	part per million
$[\alpha]_{\rm D}$	=	specific rotation
c	=	concentration
UV	=	Ultraviolet Visible
IR	=	Infrared
NMR	=	Nuclear Magnetic Resonance
2D NMR	=	Two Dimensional Nuclear Magnetic Resonance
MS	=	Mass spectroscopy
HMQC	=	Heteronuclear Multiple Quantum Coherence
HMBC	=	Heteronuclear Multiple Bond Correlation
COSY	=	Correlation spectroscopy
DEPT	=	Distortionless Enhancement by Polarization Transfer
NOE	=	Nuclear Overhauser Effect
TLC	=	Thin-Layer Chromatography
HCl	=	hydrochloric acid
NaOH	=	sodium hydroxide
NaHCO ₃	=	sodium bicarbonate
MeOH	=	methanol
CD ₃ OD	=	deuteromethanol
CDCl ₃	=	deuterochlorofrom
Acetone-d	' ₆ =	hexadeuteroacetone
DMSO-d ₆	=	hexadeuterodimethylsulphoxide
ASA	=	anisaldehyde-sulphuric acid in acetic acid solution

part I

CHEMICAL CONSTITUENTS FROM THE ENDOPHYTIC FUNGUS ASPERGILLUS

ACULEATUS PSU-D2

CHAPTER 1.1

INTRODUCTION

1.1.1 Introduction

Endophytic fungi grow in the intercellular spaces of higher plants. Many endophytic fungi have the ability to produce substances with antimicrobial (Phongpaichit, *et al.*, 2006.), antioxidant (Strobel, *et al.*, 2002), antifungal (Li, *et al.*, 2001), and herbicidal (Dai, *et al.*, 2005) activities. *Aspergillus aculeatus* produces various bioactive natural products as shown in **Table 1**. In an ongoing search for bioactive fungal metabolites, we discovered that the ethyl acetate extract from the culture broth of the endophytic fungus *Aspergillus aculeatus* PSU-D2 exhibited interesting antioxidation activity with the IC₅₀ value of 0.21 mg/mL (DPPH assay) and antimycobacterial activity with a MIC value of 200 \Box g/mL. Moreover, the mycelial extract displayed antioxidation activity with the IC₅₀ value of 0.37 mg/mL, antimycobacterial and antimalarial activities with the MIC values of 50 and 6.6 \Box g/mL, respectively. This fungus was isolated from the leaves of *Garcinia dulcis*.

Table 1 Metabolites from the fungus Aspergillus aculeatus and the biological activity

Compound	Structure	Activity	Reference
aculeacin A	1	antibiotic	Mizuno, et al., 1977
aurasperone A	2	antitumor	Compos, et al., 2005,
			Akiyama and Sugita,
			1991
fonsecinone A	3	inhibitory activity on Taq DNA	Compos, et al., 2005,
		polymerase	Akiyama, <i>et al.</i> , 2003

Table 1 (continued)

Compound	Structure	Activity	Reference
emodin	4	antitumour	Kurobane, et al., 1979,
			Lee, 2001
endocrocin	5	-	Kurobane, et al., 1979
secalonic acid B	6	cytostatic	Kurobane, et al., 1979,
			Kurobane, <i>et al.</i> , 1987
secalonic acid D	7	antimicrobial, antitumor and	Anderson, et al., 1977,
		immunostimulation	Ishida, 2000
secalonic acid F	8	inhibited the seedling growth of	Anderson, et al., 1977,
		sorghum (Sorghum vulgare	Zeng, et al., 2001
		Pers.), hairy beggarticks (Bidens	
		pilosa L.) and barnyard grass	
		(Echinochloa crus-galli (L.)	
		Beauv).	
okaramine A	9	insecticidal	Hayashi <i>et al</i> ., 1999
okaramine B	10	insecticidal	>>
okaramine H	11	insecticidal	"
okaramine I	12	insecticidal	,,

Structures of the metabolites from A. aculeatus _{OH}

1 : aculeacin A

2 : aurasperone A

3 : fonsecinone A

- $4: R_1 = R_2 = H, R_3 = OH:$ emodin
- $\mathbf{5}: \mathbf{R}_1 = \mathbf{OH}, \mathbf{R}_2 = \mathbf{H}, \mathbf{R}_3 = \mathbf{CO}_2\mathbf{H}:$ endocrocin

 $\mathbf{6}: \mathbf{R}_1 \!=\! \mathbf{R}_4 \!=\! \mathbf{H}, \, \mathbf{R}_2 \!=\! \mathbf{R}_3 \!=\! \mathbf{OH}:$ secalonic acid B

7 : $R_1 = R_4 = OH$, $R_2 = R_3 = H$: secalonic acid D

 $\mathbf{8}: \mathbf{R}_1 = \mathbf{R}_3 = \mathbf{H}, \mathbf{R}_2 = \mathbf{R}_4 = \mathbf{OH}:$ secalonic acid F

10 : R = okaramine B

12 : R = H : okaramine I
CHAPTER 1.2

EXPERIMENTAL

1.2.1 Instruments and chemicals

Melting points were determined on an electrothermal melting point apparatus (Electrothermal 9100) and reported without correction. Infrared spectra (IR) were obtained on a Perkin Elmer Spectrum GX FT-IR system and recorded on wavenumber (cm⁻¹). ¹H and ¹³C Nuclear magnetic resonance spectra (¹H and ¹³C NMR) were recorded on a FTNMR, Bruker Avance 300 MHz or 500 MHz spectrometers using tetramethylsilane (TMS) as an internal standard. Spectra were recorded as chemical shift parameter (!) value in ppm down field from TMS (! 0.00). Ultraviolet spectra (UV) were measured with an UV-160A spectrophotometer (SHIMADSU). Principle bands (! _{max}) were recorded as wavelengths (nm) and log ! in MeOH solution. Specific rotations were measured in methanol solution or chloroform solution with sodium D line (590 nm) on a JASCO P-1020 automatic polarimeter. Solvents for extraction and chromatography were distilled at their boiling point ranges prior to use except for ethyl acetate which was an analytical grade reagent. Thin-layer chromatography (TLC) and precoated TLC plate were performed on silica gel 60 GF₇₅₄ (Merck). Column chromatography was performed on

silica gel (Merck) type 100 (70-230 mesh ASTM), Sephadex LH-20 or reverse phase C_{18} silica gel.

1.2.2 Fermentation and extraction

The flask culture of the fungus *Aspergillus aculeatus* PSU-D2 (15 L) was filtered to separate into the filtrate and wet mycelia. The filtrate was divided into five portions (5 L each). Each portion was extracted three times with equal volumes of EtOAc (600 mL). The combined EtOAc extracts were dried over anhydrous Na_2SO_4 and evaporated to dryness under reduced pressure to give a brown gum (260.0 mg). The wet mycelia were extracted twice with 500 mL of MeOH in 2 days. The aqueous MeOH layer was concentrated under reduced pressure. To the extract was added H_2O (50 mL), and the mixture washed with hexane (700 mL). The aqueous residue was extracted three times with equal volumes of EtOAc (300 mL). The combined EtOAc extracts were dried over anhydrous Na_2SO_4 and then evaporated to dryness under reduced pressure to give a brown gum (545.0 mg).

1.2.3 Purification of the broth extract

The broth extract of *A. aculeatus* PSU-D2 (260.0 mg) was chromatographed on Sephadex LH-20 column chromatography using 100% methanol as eluent to

afford thirty fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford three fractions, as shown in **Table 2**.

Table 2 Fractions obtained from the broth extract by column chromatography over Sephadex LH-20

Fraction	Weight (mg)	Physical appearance
А	8.0	Dark-brown gum
В	167.6	Brown gum
С	5.9	Dark-brown gum

Fraction A Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane as a mobile phase demonstrated no definite spots under UV-S. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further studied.

Fraction B was separated into two fractions by dissolving in methanol. The methanol soluble (31.1 mg) and insoluble (130.1 mg) fractions were obtained as a brown gum and a dark brown solid, respectively. Chromatogram characteristics of the soluble fraction on normal phase TLC with 5% methanol-dichloromethane as a mobile phase demonstrated two spots with the R_f values of 0.48 and 0.70 under UV-S and other spots with the R_f values of 0.75 and 0.78 as

violet spots after dipping in ASA reagent and subsequently heating the TLC plate. Further separation by column chromatography over silica gel was performed using a gradient system of methanol-dichloromethane. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give four subfractions, as shown in **Table 3**.

Table 3 Subfractions obtained from the methanol soluble fraction of fraction B by column

Subfraction	Eluent	Weight (mg)	Physical appearance
B1	100% CH ₂ Cl ₂ -	1.7	Colorless gum
	1% MeOH/CH ₂ Cl ₂		
B2	1% MeOH/CH ₂ Cl ₂	7.8	Pale brown gum
В3	2-3 % MeOH/CH ₂ Cl ₂	12.9	Pale brown gum
B4	3% MeOH/CH ₂ Cl ₂ -100%	8.7	Brown gum
	MeOH		

chromatography over silica gel

Subfraction B1 Chromatogram characteristics on normal phase TLC with

100% dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.50 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. The ¹H NMR spectrum indicated that the major components might be a mixture of long chain hydrocarbons. No attempted investigation was carried out.

Subfraction B2 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane as a mobile phase demonstrated no definite spots. The ¹H NMR spectrum indicated that it contained many components. Therefore, it was not further investigated.

Subfraction B3 Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at the high field, it was not further investigated.

Subfraction B4 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated no spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Fraction C Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane as a mobile phase demonstrated no definite spots under UV-S. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further studied.

1.2.4 Purification of the mycelial extract

The mycelial extract of *A. aculeatus* PSU-D2 (545.0 mg) was chromatographed on Sephadex LH-20 column chromatography using 100% methanol as eluent to afford twenty six fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford five fractions, as shown in **Table 4**.

Table 4 Fractions obtained from the mycelial extract by column chromatography over

Fraction	Weight (mg)	Physical appearance
А	41.5	Dark-brown gum
В	260.9	Dark-brown gum
С	36.4	Brown gum mixed with brown solid
D	2.8	Brown gum mixed with brown solid
Е	2.0	Brown gum mixed with brown solid

Sephadex LH-20

Fraction A Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated one spot near the baseline under UV-S and the other spot with the R_f value of 0.88 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. The ¹H NMR spectrum indicated that the major components might be a mixture of long chain hydrocarbons. No attempted investigation was carried out.

Fraction B Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated two spots with the R_f values of 0.44 and 0.65 under UV-S and other spots with the R_f values of 0.59 and 0.88 as violet spots after

dipping in ASA reagent and subsequently heating the TLC plate. Further separation by column chromatography over silica gel was performed using a gradient system of methanoldichloromethane to yield seventy fractions. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give nine subfractions, as shown in **Table 5**.

Table 5 Subfractions obtained from fraction B by column chromatography over silica gel

Subfraction	Eluent	Weight (mg)	Physical appearance
B1	100% CH ₂ Cl ₂ -	54.7	Yellow gum
	0.5% MeOH/CH ₂ Cl ₂		
B2	1% MeOH/CH ₂ Cl ₂	10.7	Yellow gum
			mixed with white solid
В3	2-3% MeOH/CH ₂ Cl ₂	43.4	Yellow gum
В4	3% MeOH/CH ₂ Cl ₂	20.3	Colorless gum
В5	3% MeOH/CH ₂ Cl ₂	6.6	Yellow gum
В6	3-4% MeOH/CH ₂ Cl ₂	17.1	Brown gum
В7	5% MeOH/CH ₂ Cl ₂	2.3	Yellow gum
			mixed with white solid
В8	6% MeOH/CH ₂ Cl ₂	4.0	Pale brown gum
В9	7% MeOH/CH ₂ Cl ₂ -	88.5	Brown gum
	100% MeOH		

Subfraction B1 Chromatogram characteristics on normal phase TLC with

100% dichloromethane as a mobile phase demonstrated two spots with the R_f values of 0.53 and 0.71 as violet spots after dipping in ASA reagent and subsequently heating the TLC plate. The ¹H NMR spectrum indicated that the major components might be a mixture of long chain hydrocarbons. No attempted investigation was carried out.

4% methanol-dichloromethane as a mobile phase demonstrated one spot under UV-S with the R_f value of 0.40 and other spots with the R_f values of 0.51 and 0.58 as violet spots after dipping in ASA reagent and subsequently heating the TLC plate. Further purification by precoated TLC with 4% methanol-dichloromethane as a mobile phase (2 runs) afforded two bands.

Band 1 was obtained as a colorless gum (5.0 mg). Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane as a mobile phase demonstrated one spot under UV-S with the R_f value of 0.83 and the other spot with the R_f value of 0.70 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. The ¹H NMR spectrum indicated that the major components might be a mixture of long chain hydrocarbons. No attempted investigation was carried out.

Band 2 was obtained as a colorless gum (2.0 mg). Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.56 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B3 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated two spots under UV-S with the R_f values of 0.23 and 0.36 and the other spot with the R_f value of 0.27 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. The ¹H NMR spectrum indicated that the

major components might be a mixture of long chain hydrocarbons. No attempted investigation was carried out.

Subfraction B4 (US1) Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated one spot with the R_r value of 0.23 under UV-S.

²⁸ [<i>O</i>] _D	-18.16 (c = 0.43, MeOH)
UV (MeOH) $\lambda_{_{\rm max}}$ nm (log \mathcal{E})	224 (4.39), 260 (3.62), 296 (2.93)
FT-IR (neat) V_{cm-1}	2929 (C-H stretching), 1696 (C=O stretching),
¹ H NMR (CDCl ₃) (δ ppm)	8.37 (s, 1H), 6.82 (<i>d</i> , <i>J</i> = 8.1 Hz, 1H), 6.68 (<i>d</i> , <i>J</i>
(300 MHz)	= 8.1 Hz, 1H), 6.33 (<i>d</i> , <i>J</i> = 7.5 Hz, 1H), 4.90 (<i>d</i> , <i>J</i> = 7.5
	Hz, 1H), 3.62 (d , J = 11.1 Hz, 1H), 3.20 (td , J = 8.7,
	3.9 Hz, 1H), 3.08 (m , 1H), 3.04 (s , 3H), 2.70 (d , $J =$
	15.6 Hz, 1H), 2.56 (<i>d</i> , <i>J</i> = 9.9 Hz, 1H), 2.32 (<i>dd</i> , <i>J</i> =
	5.1, 9.3 Hz, 1H), 2.29 (m, 1H), 2.04 (<i>dd</i> , <i>J</i> = 10.2, 12.0
	Hz, 1H), 1.95 (<i>m</i> , 1H), 1.88 (<i>d</i> , <i>J</i> = 15.6 Hz, 1H), 1.86
	(m, 2H), 1.44 (dd, J = 9.0, 12.0 Hz, 1H), 1.43 (s, 3H),
	1.42 (<i>d</i> , <i>J</i> = 7.5 Hz, 3H), 1.11 (<i>s</i> , 3H), 0.86 (<i>s</i> , 3H)
¹³ C NMR (CDCl ₃) (δ ppm)	182.84, 177.00, 172.07, 146.04, 139.02, 135.28,

Subfraction B5 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.23 under UV-S. The ¹H NMR spectrum indicated that the major compounds was US1.

Subfraction B6 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated three spots with the R_f values of 0.11, 0.18 and 0.23 under UV-S. Further purification by precoated TLC with 4% methanol-dichloromethane as a mobile phase (5 runs) afforded three bands.

Band 1 was obtained as a yellow gum (2.9 mg). Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (2 runs) as a mobile phase demonstrated one spot with the R_f value of 0.43 under UV-S. The ¹H NMR spectrum indicated that the major compounds was US1.

Band 2 was obtained as a colorless gum (2.0 mg). Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (2 runs) as a mobile

phase demonstrated one spot with the R_f value of 0.29 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Band 3 was obtained as a colorless gum (1.1 mg). Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (2 runs) as a mobile phase demonstrated one spot with the R_f value of 0.29 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B7 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.16 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B8 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated many spots near the baseline under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B9 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated one spot near the baseline under UV-S and the other spot with the R_f value of 0.27 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. The ¹H NMR spectrum indicated that the major components might be a mixture of long chain hydrocarbons. No attempted investigation was carried out.

Fraction C Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated three spots with the R_r values of 0.57, 0.71 and 0.77 under UV-S and the other spot with the R_r value of 0.88 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. Further separation by column chromatography over silica gel using a gradient system of methanol-dichloromethane was performed. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give four subfractions, as shown in **Table 6**.

Subfraction	Eluent	Weight (mg)	Physical appearance
C1	100% CH ₂ Cl ₂ -	2.5	Yellow gum
	2% MeOH/CH ₂ Cl ₂		
C2	2-3% MeOH/CH ₂ Cl ₂	1.2	Yellow gum
C3	4-6% MeOH/CH ₂ Cl ₂	6.0	Brown gum
C4	6-100% MeOH/CH ₂ Cl ₂	11.1	Dark-brown gum

Table 6 Subfractions obtained from fraction C by column chromatography over silica gel

Subfraction C1 Chromatogram characteristics on normal phase TLC with

2% methanol-dichloromethane as a mobile phase demonstrated five spots with the R_f values of 0.19, 0.22, 0.29, 0.37 and 0.44 under UV-S. Because of the minute quantity, it was not further purified.

Subfraction C2 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.19 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction C3 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane as a mobile phase demonstrated three spots with the R_f values of 0.22, 0.24 and 0.46 and one spot near the baseline under UV-S. Because of the minute quantity, it was not further purified.

2% methanol-dichloromethane as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction C4 Chromatogram characteristics on normal phase TLC with

Fraction D Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated two spots with the R_f values of 0.62 and 0.64 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Fraction E Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated no spots under UV-S. Because of the minute quantity, it was not further purified.

CHAPTER 1.3

RESULTS AND DISCUSSION

Attempted purification of the crude EtOAc extract from the broth of *A. aculeatus* PSU-D2 led to the isolation of a mixture of long-chain hydrocarbons. Compound **US1** was the only metabolite isolated from the mycelail extract. The structure was identified by spectroscopic methods.

1.3.1 Compound US1

Compound **US1** was obtained as a colorless gum. It exhibited UV absorption bands at 224, 260, and 296 nm (**Figure 1**) while a carbonyl absorption band was found at 1696 cm⁻¹, in the IR spectrum (**Figure 2**). The ¹H NMR spectrum (**Figure 3**) (**Table 7**) displayed characteristic signals for one amino proton ($\delta_{\rm H}$ 8.37, *s*), two *ortho*-coupled aromatic protons [$\delta_{\rm H}$ 6.82 (*d*, *J* = 8.1 Hz, 1H) and 6.68 (*d*, *J* = 8.1 Hz, 1H)], two *cis*-olefinic protons [$\delta_{\rm H}$ 6.33 (*d*, *J* = 7.5 Hz, 1H) and 4.90 (*d*, *J* = 7.5 Hz, 1H)], two methine protons [$\delta_{\rm H}$ 3.08 (*m*, 1H) and 1.95 (*m*, 1H)], four sets of nonequivalent methylene protons [$\delta_{\rm H}$ 3.62 (*d*, *J* = 11.1 Hz, 1H) and 2.56 (*d*, *J* = 11.1 Hz, 1H),

3.20 (*td*, J = 8.7 and 3.9 Hz, 1H) and 2.29 (*m*, 1H), 2.70 (*d*, J = 15.6 Hz, 1H) and 1.88 (*d*, J = 15.6 Hz, 1H), and 2.04 (*dd*, J = 12.0 and 10.2 Hz, 1H) and 1.44 (*dd*, J = 12.0 and 9.0 Hz, 1H)], one set of equivalent methylene protons (δ_{H} 1.86, *m*, 2H) and six methyl groups [δ_{H} 3.04 (*s*, 3H) 1.45 (*s*, 3H), 1.43 (*s*, 3H), 1.42 (*s*, 3H), 1.11 (*s*, 3H) and 0.86 (*s*, 3H)]. The ¹³C NMR spectrum (**Figure 6**) (**Table 7**) showed two carbonyl carbons (δ_{C} 182.84 and 172.07), six aromatic carbons (δ_{C} 139.02 and 146.04, 135.28, 132.42, 125.35, 120.41 and 117.27), two *cis*-olefinic carbons (δ_{C} 67.72, 65.15, 62.99 and 46.26), two methine carbons (δ_{C} 52.09 and 40.17), five methylene carbons (δ_{C} 59.87, 53.27, 37.40, 30.16 and 27.49) and six methyl carbons (δ_{C} 29.94, 29.77, 25.54, 23.93, 20.70 and 13.03). Two *ortho*-coupled aromatic protons resonating at δ_{H} 6.82 and 6.68

were assigned as H-4 and H-5, respectively. ³J HMBC correlations (**Figure 8**) (**Table 8**) of H-4/C-3 (δ_{c} 62.99), C-6 (δ_{c} 146.04) and C-8 (δ_{c} 132.42), H-5/ C-7 (δ_{c} 135.28) and those of the amino proton (δ_{H} 8.37) with C-3, C-8 and C-9 (δ_{c} 125.35) constructed an indoline-2-one skeleton with two oxysubstituents at C-6 and C-7. One of the *cis*-olefinic protons (H-24, δ_{H} 6.33) displayed HMBC cross peaks with C-7, C-26 (δ_{c} 79.75), C-27 (δ_{c} 29.94) and C-28 (δ_{c} 29.77). These data together with the chemical shift of C-26 resulted in the formation of ring A. HMBC cross peaks of H_{ab}-10 (δ_{H} 2.70 and 1.88), Me-22 (δ_{H} 1.11) and Me-23 (δ_{H} 0.86)/C-3, C-11 (δ_{C} 65.15), C-20 (δ_{C} 52.09) and C-21 (δ_{c} 46.26) linked a spirocyclopentane skeleton at C-3 of the indolinone unit having two methyl groups attached at C-21. In the ¹H-¹H COSY spectrum (**Figure** 9) (**Table 8**), H₂-15 (δ_{H} 1.86) were coupled with the H_{ab}-16 (δ_{H} 2.29 and 3.20) and H-14 (δ_{H} 1.95) which was further coupled with methyl protons ($\delta_{\rm H}$ 1.42). These results revealed the presence of -CH₂CH₂CH(CH₃)- unit. HMBC cross peaks of H-14/C-13 ($\delta_{\rm C}$ 62.72) and C-18 ($\delta_{\rm C}$ 172.07), H_{ab}-16/C-13, H_{ab}-12 ($\delta_{\rm H}$ 2.56 and 3.62)/C-13, H_{ab}-19 ($\delta_{\rm H}$ 2.04 and 1.44)/C-14 ($\delta_{\rm C}$ 40.17) and C-16 ($\delta_{\rm C}$ 53.27) established a pyrrolidine skeleton having one methyl group at C-14, one amide carbonyl unit and one methylene group at C-13, and one methylene group attached at the nitrogen atom. HMBC cross peaks of H_{ab}-12/C-10 ($\delta_{\rm C}$ 37.40), Me-29 ($\delta_{\rm H}$ 3.04)/C-18 and H_{ab}-19/C-11 and C-20 of the cyclopentane unit constructed a spiro piperazinone at C-11 of the cyclopentane and fused 2-piperidinone with C-11 and C-20 of the cyclopentane. Therefore, the structure of **US1** was identical to that of paraherquamide E which was previously isolated from *Penicillium charlesii* (Liesch and Wichmann, 1990). Comparison of their specific rotation ([α l_p = -18.16, c = 0.43, MeOH for **US1** and [α l_p = -28.00, c = 0.43, MeOH for paraherquamide E)

(Yamazaki and Okuyama, 1981) indicated that they possessed the same relative configuration.

Table 7 The ¹H and ¹³C NMR data of compound US1 in CDCl₃ and the ¹H NMR

data of paraherquamide E in CD₂Cl₂

Position	US1		paraherquamide E
	$\delta_{\!\scriptscriptstyle\mathrm{H}}(\mathit{mult.}, J_{\scriptscriptstyle Hz})$	$\delta_{ m c}$ (C-type)	$\delta_{\rm H}(mult., J_{\rm Hz})$ 25
1-NH	8.37 (s)		7.57 (brs)
2	-	182.84 (C=O)	-
3	-	62.99 (C)	-
4	6.82 (<i>d</i> , 8.1)	120.41 (CH)	6.84 (<i>d</i> , 8.5)
5	6.68 (<i>d</i> , 8.1)	117.27 (CH)	6.67 (<i>d</i> , 7.5)
6	-	146.04 (C)	-
7	-	135.28 (C)	-
8	-	132.42 (C)	-
9	-	125.35 (C)	-
10	a: 2.70 (<i>d</i> , 15.6)	37.40 (CH ₂)	a: 2.66 (<i>d</i> , 15.9)
	b: 1.88 (<i>d</i> , 15.6)		b: 1.86 (<i>d</i> , 16.0)
11	-	65.15 (C)	-
12	a: 2.56 (<i>d</i> , 11.1)	59.87 (CH ₂)	a: 2.51 (<i>brd</i> , 10.6)
	b: 3.62(<i>d</i> , 11.1)		b: 3.56 (<i>brd</i> , 10.7)
13	-	67.72 (C)	-
14	1.95 (<i>m</i>)	40.17 (CH)	1.89 (<i>m</i>)
15	1.86 (<i>m</i>)	30.16 (CH ₂)	a: 1.75 (<i>dddd</i> , 4.5, 10.7, 10.7,
			10.7)
			b: 1.97 (<i>m</i>)
16	a: 2.29 (<i>m</i>)	53.27 (CH ₂)	a: 2.20 (<i>m</i>)
	b: 3.20 (<i>td</i> , 8.7, 3.9)		b: 3.13 (<i>m</i>)
18	-	172.07 (C=O)	-
19	a: 2.04 (<i>dd</i> , 12.0, 10.2)	27.49 (CH ₂)	a: 2.00 (<i>dd</i> , 11.0, 11.2)
	b: 1.44 (<i>dd</i> , 12.0, 9.0)		b: 1.38 (<i>m</i>)

Position	US1		paraherquamide E
	$\delta_{_{ m H}}(mult.,J_{_{Hz}})$	$\delta_{ m c}$ (C-type)	$\delta_{_{ m H}}(mult.,J_{_{Hz}})$
21	-	46.26 (C)	-
22	1.11 (s)	20.70 (CH ₃)	1.08 (s)
23	0.86 (s)	23.93 (CH ₃)	0.84 (<i>s</i>)
24	6.33 (<i>d</i> , 7.5)	139.02 (CH)	6.33 (<i>d</i> , 8.2)
25	4.90 (<i>d</i> , 7.5)	115.09 (CH)	4.90 (<i>d</i> , 8.0)
26	-	79.75 (C)	-
27	1.45 (s)	29.94 (CH ₃)	1.41 (s)
28	1.43 (s)	29.77 (CH ₃)	1.43 (s)
29	3.04 (s)	25.54 (CH ₃)	2.97 (s)
30	1.42 (s)	13.03 (CH ₃)	1.36 (<i>d</i> , 6.8)

Proton	HMBC correlations	COSY	NOE
1-NH	C-3, C-8, C-9	-	-
H-4	C-3, C-6, C-8, C-9	Н-5	-
Н-5	C-3, C-6, C-7, C-9	H-4	-
H _a -10	C-2, C-3, C-9, C-11,	H _b -10	H _b -10, H-14, H-29
	C-12, C-20, C-21		
H _b -10	C-2, C-3, C-9, C-11,	H _a -10	H _a -10, H _a -12, H _a -16
	C-12, C-20, C-21		
H _a -12	C-10, C-11, C-13,	H _b -12, H-20	H _b -10, H _b -12, H-22
	C-20		
H _b -12	C-10, C-11, C-13,	H _a -12	H _a -12
	C-20		
H-14	C-13, C-14, C-18,	H-15, H-30	Н-30
	C-30		

Table 8 (continued)

Proton	HMBC correlations	COSY	NOE
H-15	C-14, C-16, C-30	H-14, H _{ab} -16	-
H _a -16	C-13, C-14, C-15	H-15, H _b -16,	H _a -12, H _b -16, H-23
		H _a -19	
H _b -16	C-13, C-14, C-15	H-15, H _a -16, H _a -19	H-15, H _a -16
H _a -19	C-11, C-13, C-14,	H _{ab} -16, H-20	-
	C-16, C-20		
H _b -19	C-11, C-13, C-14,	-	-
	C-16, C-20		
Н-20	C-11, C-12, C-19,	H _a -12, H _{ab} -19	H _a -10, H _a -12, H _{ab} -19,
	C-21, C-22, C-23		H-23
Н-22	C-3, C-20, C-21, C-23	-	H-5, H _b -12, H-23
Н-23	C-3, C-20, C-21, C-22	-	H _a -16, H-20
Н-24	C-7, C-25, C-26, C-27, C-	H-25	H-25
	28		
Н-25	C-24, C-26, C-27,	H-24	H-24, H-27, H-28
	C-28		
H-27	C-25, C-26, C-28	-	H-25, H-28
H-28	C-25, C-26, C-27	-	H-25, H-27
Н-29	C-13, C-18	-	H-24
H-30	C-13, C-14, C-15	H-14	-

PART II

CHEMICAL CONSTITUENTS FROM THE ENDOPHYTIC FUNGUS *PESTALOTIOPSIS MICROSPORA* PSU-A70

CHAPTER 2.1

INTRODUCTION

2.1.1 Introduction

Pestalotiopsis microspora is one of the most widely distributed endophytic fungi (Harper, *et al.*, 2003). This microorganism produces bioactive natural products as summarized in **Table 9**. In an ongoing search for bioactive fungal metabolites, we discovered antioxidation activity with IC_{50} values of 0.17 and 0.22 mg/mL (DPPH assay) in the extracts of the broth and mycelia of *P. microspora* PSU-A70, respectively. *P. microspora* PSU-A70 was an endophytic fungus isolated from the leaves of *Garcinia atroviridis*.

Table 9 Metabolites from the fungus Pestalotiopsis microspora and the biological activity

Compound	Structure	Activity	Reference
ambuic acid	13	antifungal	Li, et al., 2001
isopestacin	14	antifungal and antioxidant	Strobel, et al., 2002
pestacin	15	antioxidant and antimycotic	Harper, et al., 2003
taxol	16	anticancer	Strobel, et al., 1996,
			Metz, et al., 2000
torreyanic acid	17	cytotoxic	Lee, et al., 1996

Structures of the metabolites from P. microspora

13 : ambuic acid

16 : taxol

17 : torreyanic acid

CHAPTER 2.2

EXPERIMENTAL

2.2.1 Fermentation and extraction

The fermentation and extraction were performed using the same procedure as those of *A. aculeatus* PSU-D2. The crude EtOAc extracts from the culture broth and mycelia were obtained both as a brown gum in 1.20 g and 120.0 mg, respectively.

2.2.2 Purification of the broth extract

The broth extract of the fungus *P. microspora* PSU-A70 (1.20 g) was chromatographed on Sephadex LH-20 column chromatography using 100% methanol to afford seventy fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford six fractions, as shown in **Table 10**.

Fraction	Weight (mg)	Physical appearance
А	250.3	Brown gum mixed with brown solid
В	407.6	Dark-brown gum
С	306.7	Dark-brown gum
D	100.8	Dark-brown gum
Е	40.6	Brown gum mixed with brown solid
F	43.8	Brown gum mixed with brown solid

 Table 10 Fractions obtained from the broth extract by column chromatography

 over Sephadex LH-20

Fraction A Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane (2 runs) and 6% methanol-dichloromethane as mobile phases demonstrated none of UV-active spots. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further studied.

Fraction B Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane (2 runs) and 6% methanol-dichloromethane as mobile phases demonstrated a long tail and one major spot with the R_f value of 0.27 under UV-S. Further separation by column chromatography over silica gel using a gradient system of methanol-dichloromethane was performed. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give five subfractions, as shown in **Table 11**.

Subfraction	Eluent	Weight (mg)	Physical appearance
B1	4% MeOH/CH ₂ Cl ₂	22.2	Brown gum
B2	4% MeOH/CH ₂ Cl ₂	15.5	Brown gum
B3	4% MeOH/CH ₂ Cl ₂	37.5	Colorless gum
B4	4-7% MeOH/CH ₂ Cl ₂	32.5	Brown gum
B5	7% MeOH/CH ₂ Cl ₂ -	108.6	Dark-brown gum mixed
	100%MeOH		with brown solid

 Table 11 Subfractions obtained from Fraction B by column chromatography

 over silica gel

Subfraction B1 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (2 runs) and 4% methanol-dichloromethane as mobile phases demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B2 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (2 runs) and 4% methanol-dichloromethane as mobile phases demonstrated one spot with the R_f value of 0.18 under UV-S. The ¹H NMR spectrum indicated that the major compound was US2.

Subfraction B3 (US2) Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (2 runs) and 4% methanol-dichloromethane as mobile phases demonstrated one spot with the R_f value of 0.18 under UV-S.

$[\alpha]_{\rm D}^{^{28}}$		+6.67 (c = 0.22, MeOH)
UV (MeOH) λ_{max} nm (log ε)		223 (4.16), 293 (3.42)
FT-IR (neat) v_{cm-1}		3618 (OH stretching), 2928 (C-H stretching)
		1697 (C=O stretching)
¹ H NMR (CDCl ₃) (δ ppm)		5.86 (s, 1H), 5.23 (brs, 1H), 4.55 (brs, 1H), 4.21
(300 MHz)		(d, J = 2.7 Hz, 1H), 2.38 (m, 2H), 1.53 (m, 2H),
		0.89 (t, J = 7.5 Hz, 3H)
¹³ C NMR (CDCl ₃) (δ ppm)		203.72, 179.66, 126.30, 81.38, 77.56, 31.75,
(75 MHz)		19.86, 13.84
DEPT (135°) (CDCl ₃)	CH :	126.3, 81.38, 77.56
	CH_2 :	31.75, 19.86
	CH_3 :	13.84

Subfraction B4 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (2 runs) and 4% methanol-dichloromethane as mobile phases demonstrated one spot with the R_f value of 0.18 under UV-S. The ¹H NMR spectrum indicated that the major compound was US2.

Subfraction B5 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (2 runs) and 4% methanol-dichloromethane as mobile phases demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Fraction C Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane (2 runs) and 6% methanol-dichloromethane as mobile phases demonstrated a long tail and two major spots with the R_f values of 0.23 and 0.32 under UV-S. Further separation by column chromatography over silica gel using a gradient system of methanol-dichloromethane was performed. Fractions, which

contained the similar components, were combined and evaporated to dryness under reduced pressure to give twelve subfractions, as shown in **Table 12**.

Subfraction	Eluent	Weight (mg)	Physical appearance
C1	4% MeOH/CH ₂ Cl ₂	5.3	Brown gum
C2	4% MeOH/CH ₂ Cl ₂	2.0	Brown gum
C3	4% MeOH/CH ₂ Cl ₂	5.0	Brown gum
C4	4% MeOH/CH ₂ Cl ₂	6.9	Brown gum
C5	4% MeOH/CH ₂ Cl ₂	6.3	Brown gum
C6	6% MeOH/CH ₂ Cl ₂	3.8	Brown gum
C7	6% MeOH/CH ₂ Cl ₂	5.9	Brown gum
C8	6% MeOH/CH ₂ Cl ₂	25.0	Dark-brown gum
С9	6% MeOH/CH ₂ Cl ₂	8.3	Dark-brown gum
C10	6-10% MeOH/CH ₂ Cl ₂	10.2	Dark-brown gum
C11	10-30% MeOH/CH ₂ Cl ₂	69.8	Dark-brown gum mixed
			with brown solid
C12	30% MeOH/CH ₂ Cl ₂ -	16.7	Dark-brown gum mixed
	100% MeOH		with brown solid

Table 12 Subfractions obtained from Fraction C by column chromatography over silica gel

Subfraction C1 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (3 runs) as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction C2 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (3 runs) as a mobile phase demonstrated one major spot with the R_f value of 0.54 under UV-S. Further purification by precoated TLC with 1% methanol-dichloromethane (7 runs) as a mobile phase afforded a colorless gum (0.7 mg) (US3). Its chromatogram characteristics on normal phase TLC

with 1% methanol-dichloromethane (2 runs) as a mobile phase demonstrated one spot with the R_f value of 0.39 under UV-S.

$[\alpha]_{\rm D}^{^{28}}$		-40.66 (c = 0.07, MeOH)
UV (MeOH) λ_{max} nm (log ε)		215 (3.35), 268 (3.13)
FT-IR (neat) v_{cm-1}		3741 (OH stretching), 2928 (C-H stretching)
		1648 (C=O stretching)
¹ H NMR (CDCl ₃) (δ ppm)		11.14 (s, 1H), 6.25 (d, $J = 1.2$ Hz, 1H), 6.14
(300 MHz)		(brs, 1H), 4.61 (m, 1H), 2.82 (d, J = 16.2 Hz,
		1H), 2.78 (d , J = 16.2 Hz, 1H), 1.44 (d , J = 6.3
		Hz, 3H)
¹³ C NMR (CDCl ₃) (δ ppm)		168.82, 163.50, 161.34, 140.71, 105.39, 100.99,
(125 MHz)		74.47, 33.80, 19.69
DEPT (135°) (CDCl ₃)	CH :	105.39, 100.99, 74.47
	CH_2 :	33.80
	CH_3 :	19.69

Subfraction C3 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (3 runs) as a mobile phase demonstrated one major spot with the R_f value of 0.54 under UV-S. Further purification by precoated TLC with 1% methanol-dichloromethane (7 runs) as a mobile phase afforded two bands.

Band 1 was obtained as a colorless gum (1.2 mg). Chromatogram characteristics on normal phase TLC with 1% methanoldichloromethane (2 runs) as a mobile phase demonstrated one UV-active spot with the same R_f value as US3. Thus, it was combined with US3.

Band 2 was obtained as a yellow gum (0.7 mg). Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (2 runs) as a mobile phase demonstrated none of UV-active spots. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further studied.

Subfraction C4 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (3 runs) as a mobile phase demonstrated one major spot with the R_f value of 0.54 under UV-S. Further purification by precoated TLC with 1% methanol-dichloromethane (7 runs) as a mobile phase afforded two bands.

Band 1 was obtained as a yellow gum (1.0 mg). Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (2 runs) as a mobile phase demonstrated one spot with the R_f value of 0.39 under UV-S. The ¹H NMR spectrum indicated that the major compound was **US3**.

Band 2 was obtained as a yellow gum (1.0 mg). Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (2 runs) as a mobile phase demonstrated none of UV-active spots. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further studied.

Subfraction C5 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (3 runs) as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction C6 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (3 runs) as a mobile phase demonstrated one major spot with the R_f value of 0.25 under UV-S. Further purification by precoated TLC with 80% ethyl acetate-hexane (5 runs) as a mobile phase afforded a colorless gum (1.0 mg) (US4). Its chromatogram characteristics on normal phase TLC with 70% ethyl acetate-hexane as a mobile phase demonstrated one spot with the R_f value of 0.20.

UV (MeOH) λ_{max} nm (log ε)	222 (2.94), 279 (2.36)
FT-IR (neat) v_{cm-1}	3617 (OH stretching), 2925 (C-H stretching)
	1699 (C=Cstretching)
¹ H NMR (CDCl ₃) (δ ppm)	7.11 (d , $J = 9.0$ Hz, 2H), 6.79 (d , $J = 9.0$ Hz,
(300 MHz)	2H), 3.83 (t , J = 6.0 Hz, 2H), 2.81 (t , J = 6.0 Hz,
	2H)

¹³ C NMR (CDCl ₃) (δ ppm)		154.22, 130.55, 130.15, 115.45, 63.80, 38.27
(75 MHz)		
DEPT (135°) (CDCl ₃)	CH :	130.15, 115.45
	CH_2 :	63.80, 38.27

Subfraction C7 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (3 runs) as a mobile phase demonstrated a long tail and two major spots with the R_f values of 0.12 and 0.19 under UV-S. Further separation by column chromatography over Sephadex LH-20 using 50% methanol-dichloromethane was performed. All subfractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford three subfractions, as shown in Table 13.

Table 13 Subfractions obtained from Subfraction C7 by column chromatography over Sephadex LH-20

Subfraction	Weight (mg)	Physical appearance
C71	1.3	Brown gum
C72	1.7	Brown gum
C73	3.6	Brown gum

Subfraction C71 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane and 2% methanol-dichloromethane (3 runs) as mobile phases demonstrated none of UV-active spots. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further studied.

Subfraction C72 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane and 2% methanol-dichloromethane (3 runs) as mobile phases demonstrated one spot with the R_f value of 0.12 under UV-S. The ¹H NMR spectrum indicated that the major compound was US2.

Subfraction C73 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane and 2% methanol-dichloromethane (3 runs)

as mobile phases demonstrated two spots with the R_f values of 0.14 and 0.23 under UV-S and the other spot near the baseline as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. Further purification by precoated TLC with 2% methanol-dichloromethane (13 runs) as a mobile phase afforded four bands.

Band 1 was obtained as a yellow gum (1.3 mg). Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane (3 runs) as a mobile phase demonstrated none of UV-active spots. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further studied.

Band 2 (US5) was obtained as a colorless gum (0.9 mg). Chromatogram characteristics on normal phase TLC with 3% methanoldichloromethane (3 runs) as a mobile phase demonstrated one spot with the R_f value of 0.26.

UV (MeOH) λ_{max} nm (log ε)		216 (3.80), 275 (3.29), 282 (3.21)
FT-IR (neat) v_{cm-1}		3264 (OH stretching), 2925 (C-H stretching)
		1593 (C=C stretching)
¹ H NMR (CDCl ₃) (δ ppm)		7.25 (t , J = 8.0 Hz, 1H), 6.92 (brd , J = 8.0 Hz,
(300 MHz)		1H), 6.87 (<i>brs</i> , 1H), 6.76 (<i>dd</i> , <i>J</i> = 8.0, 2.0 Hz,
		1H), 4.67 (<i>s</i> , 2H)
¹³ C NMR (CDCl ₃) (δ ppm)		155.85, 142.85, 129.85, 119.17, 114.56, 113.73,
(125 MHz)		65.06
DEPT (135°) (CDCl ₃)	CH :	129.85, 119.17, 114.56, 113.73
	CH_2 :	65.06

Band 3 was obtained as a yellow gum (0.5 mg). Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane (3 runs) as a mobile phase demonstrated one spot with the R_f value of 0.16. The ¹H NMR spectrum indicated that the major compound was **US2**.

Band 4 was obtained as a yellow gum (0.5 mg). Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane (3 runs) as a mobile phase demonstrated one pale spot near the baseline as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further studied.

Subfraction C8 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (3 runs) as a mobile phase demonstrated one spot with the R_f value of 0.16 under UV-S. The ¹H NMR spectrum indicated that the major compound was US2.

Subfraction C9 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (3 runs) and 4% methanol-dichloromethane (3 runs) as mobile phases demonstrated one major spot with the R_f value of 0.33 under UV-S. The ¹H NMR data indicated that it contained a mixture of US2 and US6.

Subfraction C10 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (3 runs) and 4% methanol-dichloromethane (3 runs) as mobile phases demonstrated one spot with the R_f value of 0.32 under UV-S. The ¹H NMR spectrum indicated that the major compound was US6.

Subfraction C11 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (3 runs) and 4% methanol-dichloromethane (3 runs) as mobile phases demonstrated a long tail and two major spots with the R_f values of 0.12 and 0.19 under UV-S. Further purification by column chromatography over reverse phase C_{18} silica gel was performed using 30% methanol-water and gradually enriched with methanol until pure methanol. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give five subfractions, as shown in **Table 14**.

Subfraction	Eluent	Weight (mg)	Physical appearance
C11a	30% MeOH/H ₂ O	31.0	Brown gum
C11b	30% MeOH/H ₂ O	5.2	Brown gum
C11c	50-70% MeOH/H ₂ O	6.6	Brown gum
C11d	70% MeOH/H ₂ O	9.1	Brown gum
C11e	70% MeOH/H ₂ O-	13.9	Brown gum mixed with
	100% MeOH		Brown solid

Table 14 Subfractions obtained from Subfraction C11 by column chromato-
graphy over reverse phase C18 silica gel

Subfraction C11a Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane as a mobile phase demonstrated three spots with the R_f values of 0.11, 0.23 and 0.32 under UV-S. Further separation on column chromatography over Sephadex LH-20 using 50% methanol-dichloromethane was performed. All subfractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford four subfractions, as shown in Table 15.

Table 15 Subfractions obtained from Subfraction C11a by column chromato-graphy over Sephadex LH-20

Subfraction	Weight (mg)	Physical appearance
C11a1	1.0	Brown gum
C11a2	15.9	Brown gum
C11a3	4.9	Brown gum
C11a4	6.0	Brown gum mixed with brown solid

Subfraction C11a1 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane and 5% methanol-dichloromethane as mobile phases demonstrated none of UV-active spots. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further studied.
Subfraction C11a2 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane and 5% methanol-dichloromethane as mobile phases demonstrated two spots with the R_f values of 0.14 and 0.23 and other spots with the R_f values of 0.18 and 0.43 as violet spots after dipping in ASA reagent and subsequently heating the TLC plate. This subfraction was dissolved in acetic anhydride (2 mL) in the presence of pyridine (0.5 mL). The reaction mixture was stirred at room temperature, overnight. The reaction mixture was poured into water and then extracted with ethyl acetate (3 x 15 mL). The combined ethyl acetate extracts were washed with 10% aqueous HCl (2 x 20 mL), 10% aqueous NaHCO₃ (3 x 20 mL) and water (3 x 20 mL), respectively, and then dried over anhydrous sodium sulphate. After removal of ethyl acetate, the acetate derivative (C11a21) was obtained as a pale brown gum (10.0 mg). Further purification by precoated TLC with 30% ethyl acetate-dichloromethane (3 runs) as a mobile phase afforded two bands.

Band 1 was obtained as a pale brown gum (4.0 mg). Chromatogram characteristics on normal phase TLC with 30% ethyl acetatedichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.34 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Band 2 was obtained as a pale brown gum (3.7 mg). Chromatogram characteristics on normal phase TLC with 30% ethyl acetatedichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.18 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction C11a3 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane and 5% methanol-dichloromethane as mobile phases demonstrated one spot with the R_f value of 0.20 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction C11a4 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane and 5% methanol-dichloromethane as

mobile phases demonstrated none of UV-active spots. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further studied.

Subfraction C11b Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.32 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction C11c Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane as a mobile phase demonstrated two spots with the R_f values of 0.29 and 0.36 as violet spots after dipping in ASA reagent and subsequently heating the TLC plate. This subfraction was subjected to acetylation reaction. After work up, the acetate derivative (C11c1) was obtained as a pale brown gum (2.3 mg). Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-dichloromethane (2 runs) as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction C11d Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane as a mobile phase demonstrated a long tail under UV-S. This subfraction was subjected to acetylation reaction. After work up, the acetate derivative (C11d1) was obtained as a pale brown gum (3.6 mg). Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-dichloromethane (2 runs) as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction C11e Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane as a mobile phase demonstrated none of UV-active spots. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further studied.

Subfraction C12 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (3 runs) and 4% methanol-dichloromethane (3 runs) as mobile phases demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Fraction D Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane (2 runs) and 6% methanol-dichloromethane as mobile phases demonstrated a long tail and three major spots with the R_f values of 0.14, 0.23 and 0.32 under UV-S. Further separation by column chromatography over silica gel using a gradient system of methanol-dichloromethane was performed. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give eight subfractions, as shown in **Table 16**.

Table 16 Subfractions obtained from Fraction D by column chromatography over silica gel

Subfraction	Eluent	Weight (mg)	Physical appearance
D1	4% MeOH/CH ₂ Cl ₂	4.8	Brown gum
D2	4% MeOH/CH ₂ Cl ₂	6.8	Brown gum
D3	4% MeOH/CH ₂ Cl ₂	1.1	Brown gum
D4	4% MeOH/CH ₂ Cl ₂	1.6	Brown gum
D5	4% MeOH/CH ₂ Cl ₂	9.7	Colorless gum
D6	6% MeOH/CH ₂ Cl ₂	6.3	Brown gum
D7	6-10% MeOH/CH ₂ Cl ₂	15.9	Brown gum
D8	20% MeOH/CH ₂ Cl ₂ -	10.2	Dark-brown gum
	100% MeOH		

Subfraction D1 Chromatogram characteristics on normal phase TLC with 100% dichloromethane as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction D2 Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane as a mobile phase demonstrated three spots with the R_f values of 0.32, 0.40 and 0.50 under UV-S. The ¹H NMR spectrum indicated that it was a mixture of US3 and US6.

Subfraction D3 Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane as a mobile phase demonstrated two spots with the R_f values of 0.23 and 0.27 under UV-S. The ¹H NMR spectrum indicated that the major compound was US4.

Subfraction D4 Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction D5 (US6) Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.20 under UV-S.

UV (MeOH) λ_{max} nm (log ε)		296 (3.18)	
FT-IR (neat) v_{cm-1}		3395 (OH stretching), 2931 (C-H	
		stretching) 1651 (C=C stretching)	
¹ H NMR (CDCl ₃ + CD ₃ OD) (δ ppr	n)	6.69 (d , $J = 2.7$ Hz, 1H), 6.53 (d , $J = 2.7$	
(300 MHz)		Hz,1H), 4.60 (s, 2H)	
¹³ C NMR (CDCl ₃ + CD ₃ OD) (δ pp	m)	148.94, 142.57, 127.33, 119.49, 114.22,	
(125 MHz)		112.86, 61.09	
DEPT (135°) (CDCl ₃)	CH :	114.22, 112.86	
	CH_2 :	61.09	

Subfraction D6 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction D7 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated a long tail under UV-S. Further separation by column chromatography over silica gel was performed using 70% ethyl acetate-dichloromethane and gradually enriched with ethyl acetate and then methanol until pure methanol. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give three subfractions, as shown in **Table 17**.

Table 17 Subfractions obtained from Subfraction D7 by column chromatography over silica gel

Subfraction	Eluent	Weight (mg)	Physical appearance
D71	70-80% EtOAc/CH ₂ Cl ₂	6.5	Dark-brown gum
D72	80% EtOAc/CH ₂ Cl ₂ -	3.4	Dark-brown gum
	100% EtOAc		
D73	1% MeOH/EtOAc-100%	5.8	Dark-brown gum
	МеОН		

Subfraction D71 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction D72 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated many spots under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction D73 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction D8 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Fraction E Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane (2 runs) and 6% methanol-dichloromethane as mobile phases demonstrated a long tail under UV-S. Further separation by column

chromatography over Sephadex LH-20 using 100% methanol was performed. All subfractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford four subfractions, as shown in **Table 18**.

SubfractionWeight (mg)Physical appearanceE19.3Dark-brown gumE28.7Dark-brown gumE37.5Colorless gumE47.5Dark-brown gum mixed with brown solid

Table 18 Subfractions obtained from Fraction E by column chromatographyover Sephadex LH-20

Subfraction E1 Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (4 runs) as a mobile phase demonstrated none of UV-active spots. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further studied.

Subfraction E2 Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (4 runs) as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction E3 (US7) Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (4 runs) as a mobile phase demonstrated one spot with the R_f value of 0.10 under UV-S.

UV (MeOH) λ_{max} nm (log ε)	233 (3.56), 323 (3.31)
FT-IR (neat) v_{cm-1}	3400 (OH stretching), 2925 (C-H stretching)
	1670 (C=O stretching)
¹ H NMR (CDCl ₃ + CD ₃ OD) (δ ppm)	7.29 (d , J = 3.0 Hz, 1H), 6.96 (dd , J = 9.0, 3.0
(300 MHz)	Hz, 1H), 6.79 (<i>d</i> , <i>J</i> = 9.0 Hz, 1H)
¹³ C NMR (CDCl ₃ + CD ₃ OD) (δ ppm)	73.10, 154.79, 148.71, 123.25, 117.52, 115.20,

(75 MHz)		114.28
DEPT (135°) (CDCl ₃)	CH :	123.25, 117.52, 115.20

Subfraction E4 Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (4 runs) as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Fraction F Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane (2 runs) and 6% methanol-dichloromethane as mobile phases demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

2.2.3 Purification of the mycelial extract

The mycelial extract of the fungus *P. microspora* PSU-A70 (120.0 mg) was chromatographed on Sephadex LH-20 column chromatography using 100% methanol to afford thirty fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford three fractions, as shown in **Table 19**.

Table 19 Fractions obtained from the mycelial extract by column chromato-graphy over Sephadex LH-20

Fraction	Weight (mg)	Physical appearance
А	79.9	Brown gum mixed with brown solid
В	10.1	Brown gum mixed with brown solid
С	8.6	Dark-brown gum

Fraction A Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane and 3% methanol-dichloromethane (3 runs) as mobile phases demonstrated one spot with the R_f value of 0.21 under UV-S and other violet spots with the R_f values of 0.28, 0.44 and 0.76 after dipping in ASA reagent and

subsequently heating the TLC plate. Further separation by column chromatography over silica gel was performed using a gradient system of methanol-dichloromethane. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give five subfractions, as shown in **Table 20**.

Subfraction	Eluent	Weight (mg)	Physical appearance
A1	3% MeOH/CH ₂ Cl ₂	12.7	Brown gum
A2	3% MeOH/CH ₂ Cl ₂	3.2	Brown gum
A3	3% MeOH/CH ₂ Cl ₂	5.5	Brown gum
A4	7-30% MeOH/CH ₂ Cl ₂	7.3	Brown gum
A5	30% MeOH/CH ₂ Cl ₂ -	9.6	Dark-brown gum
	100%MeOH		

 Table 20 Subfractions obtained from Fraction A by column chromatography

 over silica gel

Subfraction A1 Chromatogram characteristics on normal phase TLC with 100% dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.78 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. The ¹H NMR spectrum indicated that the major components might be a mixture of long chain hydrocarbons. No attempted investigation was carried out.

Subfraction A2 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated many spots under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction A3 Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.16 under UV-S. The ¹H NMR spectrum indicated that the major compound was US2.

Subfraction A4 Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane as a mobile phase demonstrated none of

definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction A5 Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Fraction B Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Fraction C Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane as a mobile phase demonstrated one major spot with the R_f value of 0.50 under UV-S. The ¹H NMR spectrum indicated that the major compound was US3.

CHAPTER 2.3

RESULTS AND DISCUSSION

Six known compounds (**US2-US7**) were obtained from the broth extract of *P. microspora* PSU-A70. Only two compounds (**US2** and **US3**) were found in the mycelial extract. The structures were elucidated by spectroscopic methods.

2.3.1 Compound US2

Compound US2 was obtained as a colorless gum. It exhibited UV absorption bands at 223 and 293 nm (Figure 10) while hydroxyl and carbonyl absorption bands were found at 3618 and 1697 cm⁻¹, respectively, in the IR spectrum (Figure 11). The ¹H NMR spectrum (Figure 12) (Table 21) contained signals of two hydroxy protons ($\delta_{\rm H}$ 5.23, brs, 2H), one olefinic proton ($\delta_{\rm H}$ 5.86, s, 1H), two oxymethine protons [$\delta_{\rm H}$ 4.55 (*brs*, 1H) and 4.21 (*d*, *J* = 2.7 Hz, 1H)] and one propyl moiety [$\delta_{\rm H}$ 2.38 (*m*, 2H), 1.53 (*m*, 2H) and 0.89 (*t*, *J* = 7.5 Hz, 3H)]. The ¹³C NMR spectrum (Figure 15) (Table 21) showed one carbonyl carbon ($\delta_{\rm C}$ 203.72), one quaternary carbon ($\delta_{\rm C}$ 179.66), two oxymethine carbons ($\delta_{\rm C}$ 81.38 and 77.56), two methylene carbons ($\delta_{\rm C}$ 31.75 and 19.86) and one methyl carbon ($\delta_{\rm C}$ 13.84). The signals at $\delta_{\rm C}$ 31.75, 19.81 and 13.84 confirmed the presence of the propyl unit. In the COSY spectrum (Figure 18) (Table 21), ¹H-¹H couplings were observed between H-2 ($\delta_{\rm H}$ 4.21) and H-3 ($\delta_{\rm H}$ 4.55) and between H-3 and H-5 ($\delta_{\rm H}$ 5.86). HMBC cross peaks of both H-2 and H-5 with C-1 ($\delta_{\rm C}$ 203.72), C-3 ($\delta_{\rm C}$ 77.56) and C-4 ($\delta_{\rm C}$ 179.66) (Figure 17) (Table 21) constructed a cyclopentenone skeleton. Moreover, H₂-1' ($\delta_{\rm H}$ 2.38) of the propyl unit gave HMBC cross peaks with C-3, C-4 and C-5 ($\delta_{\rm C}$ 126.30), indicating the attachment of the propyl moiety at C-4 of the cyclopentenone skeleton. Since H-2 was coupled with H-3 with a small coupling constant of 2.7 Hz, H-2 and H-3 had *trans* relationship. Therefore, **US2** was identified as dihydroterrein (Malmstrø m, et al., 2002).

Table 21 The NMR data of compound US2 in CDCl₃

Position	$\delta_{ m H}$	$\delta_{\rm C}$ (C-type)	HMBC	COSY	NOE
	(mult., J_{Hz})		correlations		
1	-	203.72 (C=O)	-	-	-
2	4.21 (<i>d</i> , 2.7)	81.38 (CH)	C-1, C-3,	H-3	H-3, H-5
			C-4		
2-OH	5.23 (brs)	-	-	-	-
3	4.55 (brs)	77.56 (CH)	C-2, C-4,	H-2, H-5, H-1'	H-2, H-5,
			C-5		H-1', H-2'
4	-	179.66 (C)	-	-	-
5	5.86 (s)	126.30 (CH)	C-1, C-2,	H-3, H-1′	Н-2, Н-3,
			C-3, C-4,		H-1', H-2'
			C-1′		
1'	2.38 (m)	31.75 (CH ₂)	C-3, C-4,	H-3, H-5, H-2'	H-5
			C-5, C-2′,		
			C-3′		
2'	1.53 (m)	19.86 (CH ₂)	C-4, C-1′,	H-1', H-3'	H-3, H-1′,
			C-3′		Me-3'
3'	0.89 (<i>t</i> , 7.5)	13.84 (CH ₃)	C-1′, C-2′	H-2'	H-3, H-5,
					H-1', H-2'
				1	

2.3.2 Compound US3

Compound **US3** was obtained as a colorless gum. It exhibited an UV absorption band at 268 nm (Figure 19) while hydroxyl and carbonyl absorption bands were found at 3741 and 1648 cm⁻¹, respectively, in the IR spectrum (Figure 20). The ¹H NMR spectrum (Figure 21) (Table 22) displayed characteristic signals for one

chelated hydroxyl proton at $\delta_{\rm H}$ 11.14 (s) and a 1,2,3,5-tetrasubstituted benzene at $\delta_{\rm H}$ 6.25 (d, J = 1.2 Hz, 1H) and 6.14 (brs, 1H). The chelated hydroxyl group was placed at C-8 ($\delta_{\rm C}$ 163.50), peri position to a carbonyl group. This hydroxy proton gave a HMBC correlation with C-7 ($\delta_{\rm C}$ 100.99) (Figure 26) (Table 23) which exhibited a HMQC cross peak with the aromatic proton at $\delta_{\rm H}$ 6.25 (Figure 25) (Table 22). Thus, the remaining aromatic proton resonating at $\delta_{\rm H}$ 6.14 was attributed to H-5. In addition, the ¹H NMR spectrum showed signals for one methyl group at $\delta_{\rm H}$ 1.44 (*d*, *J* = 6.3 Hz, 3H), one methylene group at $\delta_{\rm H}$ 2.82 (*d*, *J* = 16.2 Hz, 1H) and 2.78 (*d*, *J* = 16.2 Hz, 1H) and one methine group at $\delta_{\rm H}$ 4.61 (*m*, 1H). In the ¹H-¹H COSY spectrum (**Figure 27**) (**Table 23**), H-3 ($\delta_{\rm H}$ 4.61) was coupled with H_{ab}-4 ($\delta_{\rm H}$ 2.78 and 2.82) and Me-9 (δ $_{\rm H}$ 1.44). These data together with the chemical shift of H-3 indicated the presence of – CH₂CH(OR)CH₃ unit. HMBC correlations of H_{ab}-4 with C-4a (δ_{C} 140.71), C-5 (δ_{C} 105.39) and C-8a ($\delta_{\rm C}$ 100.99) linked this unit at C-4a of the aromatic ring. Comparison of the NMR data and specific rotation [US3: $[\alpha]_D$ -40.66 (c = 0.07, MeOH)] with 3,4-dihydro-6,8-dihydroxy-3-methylisocoumarin ($[\alpha]_D$ -33 (c = 0.07, MeOH) (Warashina, 2004) indicated that **US3** was (R)-(-)-3,4-dihydro-6,8-dihydroxy-3-methylisocoumarin, which was previously isolated from Ceratocystis minor (Ayer, et al., 1987).

Table 22 The NMR data of compound US3 in CDCl₃

Position	US3		3,4-dihydro-6,8-dihydroxy-3- methylisocoumarin	
	$\delta_{\rm H}(mult., J_{Hz})$	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}(mult., J_{Hz})$	$\delta_{\rm C}$ (C-type)
1	-	168.82 (C=O)	-	170.69 (C=O)
3	4.61 (<i>m</i>)	74.47 (CH)	4.70 (<i>m</i>)	76.33 (CH)
4	a: 2.82 (<i>d</i> , 16.2)	33.80 (CH ₂)	a: 2.85 (<i>d</i> , 16)	35.03 (CH ₂)
	b: 2.78 (<i>d</i> , 16.2)		b: 2.96 (<i>d</i> , 16)	
4a	-	140.71 (C)	-	143.21 (C)

Table 22	(continue	ed)
----------	-----------	-----

Position	US3		3,4-dihydro-6,8-dihydroxy-3- methylisocoumarin	
	$\delta_{\rm H}(mult., J_{Hz})$	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}(mult., J_{Hz})$	$\delta_{\rm C}$ (C-type)
5	6.14 (brs)	105.39 (CH)	6.27 (s)	107.41 (CH)
6	-	161.34 (C)	-	165.23 (C)
7	6.25 (<i>d</i> , 1.2)	100.99 (CH)	6.29 (s)	101.92 (CH)
8	-	163.50 (C)	-	165.09 (C)
8-OH	11.14 (s)	-	11.30 (s)	-
8a	-	100.99 (C)	-	101.71 (C)
9	1.44 (<i>d</i> , 6.3)	19.69 (CH ₃)	1.45 (<i>d</i> , 6.3)	20.82 (CH ₃)

Table 23 The HMBC, COSY and NOE data of compound US3 in CDCl₃

Proton	HMBC correlations	COSY	NOE
Н-3	C-4a, C-9	H-4, H-9	H-4, H-9
H _a -4	C-3, C-4a, C-5, C-8a, C-9	Н-3	H-3, H _b -4, H-5
H _b -4		Н-3	H-3, H _a -4, H-5
H-5	C-4, C-6, C-7	H-7	H-4
H-7	C-5, C-6, C-8, C-8a	H-5	-
8-OH	C-7, C-8, C-8a	-	-
H-9	C-1, C-7, C-8	-	-

2.3.3 Compound US4

Compound **US4** was obtained as a colorless gum. It exhibited UV absorption bands at 222 and 279 nm (**Figure 28**) while a hydroxyl absorption band was found at 3617 cm⁻¹ in the IR spectrum (**Figure 29**). The ¹H NMR spectrum (**Figure 30**) (**Table 24**) displayed characteristic signals for a 1,4-disubstituted benzene [$\delta_{\rm H}$ 7.11 (d, J = 9.0 Hz, 1H) and 6.72 (d, J = 9.0 Hz, 1H)] and a hydroxyethyl group [$\delta_{\rm H}$ 3.83 (t, J = 6.0 Hz, 2H) and 2.81 (t, J = 6.0 Hz, 2H)]. The ¹³C NMR

spectrum (**Figure 32**) (**Table 24**) showed one oxyquaternary carbon ($\delta_{\rm C}$ 154.22), one quaternary carbon ($\delta_{\rm C}$ 130.55), two carbon resonances for four aromatic carbons ($\delta_{\rm C}$ 130.15 and 115.45) and two methylene carbons ($\delta_{\rm C}$ 63.80 and 38.27). These data revealed that one of the substitutents on the 1,4-disubstituted benzene was a hydroxyl group. The aromatic protons at $\delta_{\rm H}$ 7.11 were attributed to H-3 and H-5, on the basis of their chemical shifts and HMBC correlations with C-1 ($\delta_{\rm C}$ 154.22), C-2, C-6 ($\delta_{\rm C}$ 115.45) and C-7 ($\delta_{\rm C}$ 38.27) (**Figure 34**) (**Table 25**). Thus, the remaining aromatic protons resonating at $\delta_{\rm H}$ 6.79 were attributed to H-2 and H-6 according to their multiplicity, coupling constant and HMBC correlations. Consequently, the hydroxyethyl group was attached at C-4 ($\delta_{\rm C}$ 130.55). ³*J* HMBC correlations of H₂-7 ($\delta_{\rm H}$ 2.81) with C-3 and C-5 ($\delta_{\rm C}$ 130.15) supported the assigned location. The chemical shifts of H₂-8 ($\delta_{\rm C}$ 3.83) and C-8 ($\delta_{\rm C}$ 63.80) confirmed the attachment of a hydroxyl group at C-8. Therefore, **US4** was identified as tyrosol (Capasso, *et al.*, 1992).

Table 24 The NMR data of compound US4 in CDCl₃

Position	US4		tyrosol
	$\delta_{\rm H}(mult., J_{Hz})$	$\delta_{\rm C}$ (C-type)	$\delta_{\rm C}$ (C-type)
1	-	154.22 (C)	156.70 (C)
2,6	6.79 (<i>d</i> , 9.0)	115.45 (CH)	116.00 (CH)
3, 5	7.11 (<i>d</i> , 9.0)	130.15 (CH)	130.80 (CH)
4	-	130.55 (C)	130.90 (C)
7	2.81 (<i>t</i> , 6.0)	38.27 (CH ₂)	39.30 (CH ₂)
8	3.83 (<i>t</i> , 6.0)	63.80 (CH ₂)	64.50 (CH ₂)

Table 25 The HMBC and NOE data of compound US4 in CDCl₃

Proton	HMBC correlations	NOE
H-2, H-6	C-1, C-3, C-5	H-3, H-5
H-3, H-5	C-1, C-2, C-6, C-7	H-2, H-6, H-7
H-7	C-3, C-5, C-8	H-3, H-5, H-8
H-8	C-4, C-7	H-7

2.3.4 Compound US5

Compound US5 was obtained as a colorless gum. It exhibited UV absorption bands at 275 and 282 nm (Figure 35) while a hydroxyl absorption band was found at 3264 cm⁻¹ in the IR spectrum (Figure 36). The ¹H NMR spectrum (Figure 37) (Table 26) displayed typical signals for a 1,3-disubstituted benzene [$\delta_{\rm H}$ 7.25 (t, J = 8.0 Hz, 1H), 6.92 (brd, J = 8.0 Hz, 1H), 6.87 (brs, 1H) and 6.76 (dd, J =8.0 and 2.0 Hz, 1H)] and one hydroxymethyl group ($\delta_{\rm H}$ 4.67, s, 2H). The ¹³C NMR spectrum (Figure 40) (Table 26) showed one oxyquaternary carbon ($\delta_{\rm C}$ 155.85), one quaternary carbon ($\delta_{\rm C}$ 142.85), four methine carbons ($\delta_{\rm C}$ 129.85, 119.17, 114.56 and 113.73) and one hydroxymethylene carbon ($\delta_{\rm C}$ 65.06). The aromatic proton at $\delta_{\rm H}$ 6.76 was attributed to H-4 on the basis of HMBC correlations with C-2 ($\delta_{\rm C}$ 113.73), C-3 (δ _C 155.85) and C-6 (δ_{C} 119.17) (Figure 42) (Table 26). Thus, the remaining aromatic protons resonating at $\delta_{\rm H}$ 7.25, 6.92 and 6.87 were assigned as H-5, H-6 and H-2, respectively, according to their multiplicity, coupling constants and HMBC correlations. From these results, the hydroxymethyl group became a C-1 substituents. This was confirmed by HMBC correlations of H₂-7($\delta_{\rm H}$ 4.67)/ C-1 ($\delta_{\rm C}$ 142.85), C-2 and C-6. Therefore, US5 was identified as 3-hydroxybenzyl alcohol (Alfaro, et al., 2003).

Table 26 The NMR data of compound US5 in CDCl₃

Position	$\delta_{\rm H}$ (mult., J_{Hz})	$\delta_{\rm C}$ (C-type)	HMBC correlations	COSY
1	-	142.85(C)	-	-
2	6.87 (<i>brs</i>)	113.73 (CH)	C-3, C-4, C-6, C-7	H-4, H-6, H-7
3	-	155.85 (C)	-	-
4	6.76 (<i>dd</i> , 8.0, 2.0)	114.56 (CH)	C-2, C-3, C-6	H-2, H-5
5	7.25 (<i>t</i> , 8.0)	129.85 (CH)	C-1, C-3, C-4, C-6	H-4, H-6
6	6.92 (brd, 8.0)	119.17 (CH)	C-2, C-4, C-5, C-7	H-5, H-7
7	4.67 (s)	65.06 (CH ₂)	C-1, C-2, C-6	H-2, H-6

2.3.5 Compound US6

Compound US6 was obtained as a colorless gum. It exhibited UV (Figure 44) and IR (Figure 45) absorption bands similar to those of US5. The ¹H NMR spectrum (Figure 46) (Table 27) indicated that US6 was a derivative of US5. In addition, the ¹H NMR spectrum displayed the replacement of characteristic signals of the 1,3-disubstituted benzene in US5 with typical signals for a 1,2,3,5tetrasubstituted benzene [$\delta_{\rm H}$ 6.69 (d, J = 2.7 Hz, 1H), and 6.53 (d, J = 2.7 Hz, 1H)] in US6. The ¹³C NMR spectrum (Figure 47) (Table 27) showed two oxyquaternary carbons (δ_c 148.94 and 142.57), two quaternary carbons (δ_c 127.33 and 119.49), two methine carbons ($\delta_{\rm C}$ 114.22 and 112.86) and one hydroxymethylene carbon ($\delta_{\rm C}$ 61.09). The aromatic proton at $\delta_{\rm H}$ 6.53 was attributed to H-6 on the basis of its HMBC correlations with C-2 (δ_{C} 142.57), C-4 (δ_{C} 114.22) and C-5 (δ_{C} 148.94) (Figure 49) (**Table 27**). Thus, the other aromatic proton resonating at $\delta_{\rm H}$ 6.69 was attributed to H-4 according to its multiplicity, coupling constant and HMBC correlations. HMBC correlations of H₂-7 ($\delta_{\rm H}$ 4.60) with C-1 ($\delta_{\rm C}$ 127.33), C-2 and C-6 ($\delta_{\rm C}$ 112.86) linked the hydroxymethyl group at C-1. According to the carbon chemical shifts, the substituents at C-2 and C-5 were hydroxyl groups. The low resolution mass spectrum (Figure 50) showed the molecular ion at m/z 174/176 in a ratio of 3:1, thus indicating that a chlorine atom was attached at C-3. Therefore, US6 was identified as 3chlorogentisyl alcohol (McCorkindale, et al., 1972).

Position	δ_{H} (mult., J_{Hz})	$\delta_{\rm C}$ (C-type)	HMBC correlations
1	-	127.33 (C)	-
2	-	142.57 (C)	-
3	-	119.49 (C)	-
4	6.69 (<i>d</i> , 2.7)	114.22 (CH)	C-2, C-3, C-5, C-6
5	-	148.94 (C)	-
6	6.53 (<i>d</i> , 2.7)	112.86 (CH)	C-2, C-4, C-5
7	4.60 (<i>s</i>)	61.09 (CH ₂)	C-1, C-2, C-6

Table 27 The NMR data of compound US6 in CDCl₃+CD₃OD

2.3.6 Compound US7

Compound **US7** was obtained as a colorless gum. The IR spectrum (**Figure 52**) showed typical absorption bands of a benzoic acid derivative at 3400 and 1670 cm⁻¹. The ¹³C resonance at $\delta_{\rm C}$ 172.00 (**Figure 56**) (**Table 28**) supported the IR data. The ¹H NMR spectrum (**Figure 53**) (**Table 28**) displayed typical signals for a 1,2,5-trisubstituted benzene [$\delta_{\rm H}$ 7.29 (d, J = 3.0 Hz, 1H), 6.96 (dd, J = 9.0 and 3.0 Hz, 1H) and 6.79 (d, J = 9.0 Hz, 1H)]. The aromatic proton at $\delta_{\rm H}$ 7.29 was attributed to H-6 on the basis of HMBC correlations with C-1 ($\delta_{\rm C}$ 114.28), C-2 ($\delta_{\rm C}$ 154.79), C-5 ($\delta_{\rm C}$ 148.71) and C-7 ($\delta_{\rm C}$ 172.00) (**Figure 58**) (**Table 27**). Thus, the remaining aromatic protons resonating at $\delta_{\rm H}$ 6.96 and 6.79 were attributed to H-3 and H-4, respectively, according to their multiplicity, coupling constants and HMBC correlations. The substituents at C-2 and C-5 were the hydroxyl groups on the basis of their carbon chemical shifts. Therefore, **US7** was identified as gentisic acid (Marzouk, *et al.*, 1999).

Position	δ_{H} (mult., J_{Hz})	$\delta_{\rm C}$ (C-type)	HMBC correlations	COSY
1	-	114.28 (C)	-	-
2	-	154.79 (C)	-	-
3	6.79 (<i>d</i> , 9.0)	117.52 (CH)	C-1, C-2, C-5, C-7	H-4
4	6.96 (<i>dd</i> , 3.0, 9.0)	123.25 (CH)	C-2, C-5, C-6	H-3, H-6
5	-	148.71 (C)	-	-
6	7.29 (<i>d</i> , 3.0)	115.20 (CH)	C-1, C-2, C-5, C-7	H-4
7	-	172.00 (C=O)	-	-

Table 28 The NMR data of compound US7 in CDCl₃+CD₃OD

PART III

CHEMICAL CONSTITUENTS FROM THE ENDOPHYTIC FUNGUS PHOMOPSIS SP. PSU-D15

CHAPTER 3.1

INTRODUCTION

3.1.1 Introduction

The genus *Phomopsis* has been known to be a rich source of bioactive secondary metabolites of diverse structures (Isaka, *et al.*, 2001). This microorganism produces bioactive natural products as summarized in **Table 29**. In connection with our ongoing research for bioactive fungal metabolites, the ethyl acetate extracts from the culture broth and mycelia of the endophytic fungus *Phomopsis* sp. PSU-D15 was found to exhibit interesting antimycobacterial activity with MIC values of 12.5 and 100 μ g/mL, respectively. This fungus was isolated from the leaves of *Garcinia dulcis*.

Compound	Structure	Activity	Reference
chaetoglobosin M	18	-	Burlot, et al,
			2003
chaetoglobosin N	19	-	,,
chaetoglobosin O	20	growth-inhibition	Burlot, et al,
			2003, Ichihar, et
			<i>al</i> , 1996
chaetoglobosin 510	21	antimicrofilament	Christain, et al,
		and cytotoxic	2005
chaetoglobosin 540	22	,,	,,
chaetoglobosin 542	23	,,	,,
convolvulanic acid A	24	phytotoxic	Tsantrizos, et al,
			1992

Table 29 Metabolites from the fungus *Phomopsis* sp. and the biological activity

Compound	Structure	Activity	Reference
convolvulanic acid B	25	phytotoxic	Tsantrizos, et al,
			1992
onvolvulol	26	,,	,,
cytochalasin H	27	inhibited the	Izawa, <i>et al</i> .,
		growth of wheat	1989, Cole, et
		coleoptiles	<i>al.</i> , 1981
cytochalasin J	28	-	Izawa, <i>et al.</i> ,
			1989
epoxcytochalasin H	29	-	, ,
epoxcytochalasin J	30	-	, ,
cytochalasin N	31	-	,,
cytochalasin O	32	-	,,
cytochalasin P	33	-	,,
cytochalasin Q	34	-	,,
cytochalasin R	35	-	,,
cytochalasin S	36	-	, ,
dicerandrol A	37	antibiotic and	Wagenaar and
		cytotoxic	Clardy, 2001
dicerandrol B	38	,,	,,
dicerandrol C	39	,,	, ,
phomodiol	40	antifungal	Horn, et al., 1994
phomol	41	antiinflammatory	Weber, et al,
			2004
phomopsichalasin	42	antimicrobial	Horn, et al., 1995
phomopsidin	43	anti-microtubule	Kobayashi , <i>et</i>
			u., 2005

Compound	Structure	Activity	Reference
phomopsin A	44	anti-microtubule	Lacey, et al,
			1987, luduena,
			1989
phomopsin B	45	anti-microtubule	Lacey, et al,
			1987
phomosine A	46	antibacterial,	Krohn, et al.,
		fungicidal and	1995
		algicidal activity	
phomosine B	47	,,	,,
phomosine C	48	,,	, ,
phomosine D	49	antibacterial,	Dai, <i>et al</i> , 2005
		fungicidal and	
		algicidal activity	
phomosine E	50	,,	,,
phomosine F	51	,,	,,
phomosine G	52	,,	,,
Phomoxanthone A	53	antimalarial,	Isaka, <i>et al.</i> , 2001
		antitubercular	
		and cytotoxicity	
Phomoxanthone B	54	, ,	, ,
phenochalasin A	55	Inhibitor of lipid	Tomoda, <i>et al</i> ,
		droplet	1999
		formation	
phenochalasin B	56	, ,	, ,
(+)-fusicocca-3(16),10(14)-	57	-	Sassa, <i>et al</i> , 2004
diene			
(+)- β -araneosene	58	-	,,
(+)- & -araneosene	59	-	,,

Compound	Structure	Activity	Reference
1-Methyl-3-(4'-hydroxy-	60	antifungal	Svetaz, et al,
phenyl)propyl caffeate			2004
α -pyrone convolvulopyrone	61	phytotoxic	Tsantrizos, et al,
			1992
(1a <i>S</i> ,3 <i>R</i> ,4 <i>R</i> ,4a <i>R</i> ,6 <i>S</i> ,7 <i>R</i> ,8a <i>S</i>)-	62	antibacterial,	Dai, et al., 2005
7-chloro-3,6-dihydroxy-		fungicidal and	
3,4a,8,8-tetramethyl-octa-		algicidal activity	
hydro-1a <i>H</i> -naphtho[1-b]-			
oxirene-4-carboxylic acid			
(2 <i>S</i> ,3 <i>S</i>)-3,6-dihydro-6-oxo-	63	cytokine	Wrigley, et al.,
2-(1 <i>E</i>)-1-propenyl-2 <i>H</i> -		production	1999
pyran-3-yl 4,6-dimethyl-2,4-		inhibitory	
dodecadienoate			
(2 <i>S</i> ,3 <i>S</i>)-2-[(1 <i>E</i>)-2-carboxy-	64	,,	, ,
ethenyl]-3,6-dihydro-6-oxo-			
2H-pyran-3-yl 4,6-dimethyl-			
2,4-dodecadienoate			
(2 <i>S</i> ,3 <i>S</i>)-2-[(1 <i>E</i>)-2-carboxy-	65	"	2 2
ethenyl]-3,6-dihydro-6-oxo-			
2H-pyran-3-yl 11-hydroxy-			
4,6-dimethyl-2,4-dodeca-			
dienoate			
3a,5a,6,7,8,9,9a,9b-octa-	66	-	Begley and
hydro-7,9b-dimethyl-			Grove 1985
naphtho[1,2-c]furan-1(3H)-			
one			

Compound	Structure	Activity	Reference
$6\alpha, 7\beta, 9\alpha$ -trihydroxy-8	67	cytotoxic	Morooka, et al.,
(14),15-isopimaradiene-			1986
20,6 <i>7</i> -lactone			
6-hydroxy-6-	68	antibacterial,	Dai, <i>et al</i> , 2005
isopropylcyclo-hex-1-		fungicidal and	
enecarboxylic acid		algicidal activity	
Phomozin	69	phytotoxin	Mazars, et al,
			1990

Structures of the metabolites from *Phomopsis* sp.

18 : chaetoglobosin M

19 : chaetoglobosin N

20 : chaetoglobosin O

27 : R = Ac : cytochalasin H28 : R = H : cytochalasin J

но ме

ÖR

l

M

PhH₂C

29 : R = Ac : epoxcytochalasin H
30 : R = H : epoxcytochalasin J

31 : R = Ac : cytochalasin N

32: R = H: cytochalasin O

35 : cytochalasin R

33 : R = Ac : cytochalasin P

34 : R = H : cytochalasin Q

36 : cytochalasin S

42 : phomopsichalasin

43 : phomopsidine

45 : R = H : phomopsin B

 $\label{eq:46} \begin{array}{l} \textbf{46}: R_1 = \text{Me}, R_2 = \text{CHO}: \text{phomosine A} \\ \textbf{47}: R_1 = \text{Me}, R_2 = \text{CH}_2\text{OMe}: \text{phomosine B} \end{array}$

48: R₁ = H, R₂ = CHO : phomosine C

- **49** : R = H : phomosine D
- **50** : $R = CH_2OMe$: phomosine E
- 51 : R = Ac : phomosine F

52 : phomosine G

54 : phomoxanthones B

55 : phenochalasin A

56 : phenochalasin B

57: (+)-fusicocca-3(16),10(14)-diene

60 : 1-Methyl-3-(4'-hydroxyphenyl)propyl caffeate

61 : α -pyrone convolvulopyrone

62 : (1a*S*,3*R*,4*R*,4a*R*,6*S*,7*R*,8a*S*)-7-chloro-3,6-dihydroxy-3,4a,8,8tetramethyloctahydro-1a*H*-naphtho[1-b]oxirene-4-carboxylic acid

 $\mathbf{63}: \mathbf{R} = \mathbf{Me}: (2S, 3S) - 3, 6 - \mathbf{dihydro} - 6 - \mathbf{oxo} - 2 - (1E) - 1 - \mathbf{propenyl} - 2H - \mathbf{pyran} - 3 - \mathbf{yl}$

4,6-dimethyl-2,4-dodecadienoate

 $64: R = CO_2H: (2S,3S)-2-[(1E)-2-carboxyethenyl]-3,6-dihydro-6-oxo-2H-pyran-$

3-yl 4,6-dimethyl-2,4-dodecadienoate

 $\mathbf{65}: (2S,3S)-2-[(1E)-2-\operatorname{carboxy-ethenyl}]-3,6-\operatorname{dihydro-6-oxo-}{2H-pyran-3-yl}$

11-hydroxy-4,6-dimethyl-2,4-dodecadienoate

66: 3a,5a,6,7,8,9,9a,9b-octahydro-7,9b-dimethylnaphtho[1,2-c]furan-1(3H)-one

67 : 6α , 7β , 9α -trihydroxy-8(14), 15-isopimaradiene-20, 6γ -lactone

68: 6-hydroxy-6-isopropylcyclohex-1-enecarboxylic acid

69: phomozin

CHAPTER 3.2

EXPERIMENTAL

3.2.1 Fermentation and extraction

The fermentation and extraction were performed using the same procedure as those of *A. aculeatus* PSU-D2. The crude EtOAc extracts from the culture broth and mycelia were obtained in 1.00 g and 340.0 mg, respectively, both as a brown gum.

3.2.2 Purification of the broth extract

The broth extract of *Phomopsis* sp. PSU-D15 (1.00 g) was chromatographed on Sephadex LH-20 using 100% methanol to afford forty fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford four fractions, as shown in **Table 30**.

Fraction	Weight (mg)	Physical appearance
А	32.6	Dark-brown gum
В	785.9	Dark-brown gum
С	46.2	Dark-brown gum
D	7.2	Dark-brown gum

Table 30 Fractions obtained from the broth extract by column chromatographyover Sephadex LH-20

Fraction A Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane as a mobile phase demonstrated a long tail under UV-S. Further separation on column chromatography over Sephadex LH 20 using 50%

methanol-dichloromethane was performed. All subfractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford seven subfractions, as shown in **Table 31**.

Subfraction	Weight (mg)	Physical appearance
A1	0.8	Pale brown gum
A2	5.3	Brown gum mixed with brown solid
A3	9.9	Brown gum mixed with brown solid
A4	1.6	Brown gum mixed with brown solid
A5	4.7	Brown gum
A6	0.7	Brown gum
A7	1.9	Brown gum mixed with brown solid

 Table 31 Subfractions obtained from fraction A by column chromatography

 over Sephadex LH-20

Subfraction A1 Chromatogram characteristics on normal phase TLC with 6% methanol-dichloromethane (2 runs) as a mobile phase showed one pale purple spot with the R_f value of 0.61 after dipping in ASA reagent and subsequently heating the TLC plate. Because the ¹H NMR spectrum showed signals at the high field, it was not further investigated.

Subfraction A2 Chromatogram characteristics on normal phase TLC with 6% methanol-dichloromethane (2 runs) as a mobile phase showed one pale purple spot with the R_f value of 0.57 after dipping in ASA reagent and subsequently heating the TLC plate. Because the ¹H NMR spectrum showed signals at the high field, it was not further investigated.

Subfraction A3 Chromatogram characteristics on normal phase TLC with 6% methanol-dichloromethane (2 runs) as a mobile phase showed one spot with the R_f value of 0.57 after dipping in ASA reagent and subsequently heating the TLC plate. Further separation with precoated TLC on silica gel plates with 6% methanol-dichloromethane (2 runs) as a mobile phase afforded two bands.

Band 1 was obtained as a colorless gum (1.0 mg). Its chromatogram characteristics on normal phase TLC with 2% methanoldichloromethane as a mobile phase showed one pale spot under UV-S with the R_f value of 0.84. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Band 2 was obtained as a colorless gum (0.7 mg). Its chromatogram characteristics on normal phase TLC with 2% methanoldichloromethane as a mobile phase showed one pale spot under UV-S with the R_f value of 0.81. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction A4 Chromatogram characteristics on normal phase TLC with 6% methanol-dichloromethane (2 runs) as a mobile phase showed one pale spot under UV-S with the R_f value of 0.24 and the other spot with the R_f value of 0.53 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. Because of the minute quantity, it was not further purified.

Subfraction A5 Chromatogram characteristics on normal phase TLC with 6% methanol-dichloromethane (2 runs) as a mobile phase showed one pale spot with the R_f value of 0.53 after dipping in ASA reagent and subsequently heating the TLC plate. Because the ¹H NMR spectrum showed signals at the high field, it was not further investigated.

Subfraction A6 Chromatogram characteristics on normal phase TLC with 6% methanol-dichloromethane (2 runs) as a mobile phase showed one pale spot under UV-S with the R_f value of 0.10 and the other spot with the R_f value of 0.53 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. Because of the minute quantity, it was not further purified.

Subfraction A7 Chromatogram characteristics on normal phase TLC with 6% methanol-dichloromethane (2 runs) as a mobile phase showed one pale spot with the R_f value of 0.55 after dipping in ASA reagent and subsequently heating the TLC plate. Because the ¹H NMR spectrum showed signals at the high field, it was not further investigated.

Fraction B Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane as a mobile phase showed a long tail and a major spot

under UV-S with the R_f value of 0.10. Further separation on column chromatography over Sephadex LH-20 using 100% methanol was performed. All subfractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford seven subfractions, as shown in **Table 32**.

Subfraction	Weight (mg)	Physical appearance	
B1	132.1	Dark-brown gum	
B2	59.3	Brown gum	
B3	157.4	Brown gum	
B4	135.6	Brown gum	
B5	136.3	Brown gum	
B6	208.4	Brown gum	
B7	15.7	Dark-brown gum	

Table 32 Subfractions obtained from the fraction B by column chromatographyover Sephadex LH-20

Subfraction B1 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane as a mobile phase demonstrated a long tail under UV-S and showed two spots with the R_f values of 0.27 and 0.51 and three spots near baseline after dipping in ASA reagent and subsequently heating the TLC plate. Further separation on column chromatography over reverse-phase C_{18} silica gel using a gradient system of methanol-water was performed. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give eleven subfractions, as shown in Table 33.

Subfraction	Eluent	Weight (mg)	Physical appearance
BA	20% MeOH/H ₂ O	3.0	Brown gum
BB	20% MeOH/H ₂ O	6.4	Pale brown gum
BC	20% MeOH/H ₂ O	4.4	Pale brown gum
BD	20-40% MeOH/H ₂ O	6.1	Pale brown gum
BE	20-40% MeOH/H ₂ O	3.4	Pale brown gum
BF	20-40% MeOH/H ₂ O	4.8	Pale brown gum
BG	20-40% MeOH/H ₂ O	5.0	Pale brown gum
BH	50% MeOH/H ₂ O	4.3	Pale brown gum
BI	50% MeOH/H ₂ O	9.2	Pale brown gum
BJ	50-70% MeOH/H ₂ O	7.5	Brown gum
ВК	90% MeOH/H ₂ O -	45.0	Brown gum
	100%MeOH		

Table 33 Subfractions obtained from subfraction B1 by column chromatographyover reverse phase C18 silica gel

Subfraction BA Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (3 runs) as a mobile phase demonstrated a long tail under UV-S. Because of the minute quantity, it was not further purified.

Subfraction BB Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase showed one spot near the baseline under UV-S and other spots with the R_f values of 0.16, 0.25 and 0.43 as violet spots after dipping in ASA reagent and subsequently heating the TLC plate. The ¹H NMR spectral data indicated that the major compounds were **US9** and **US12**. Because of the minute quantity, it was not further purified.

Subfraction BC Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane as a mobile phase showed one spot under UV-S with the same R_f value as US9. Thus, it was combined with US9.

Subfraction BD Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (3 runs) as a mobile phase demonstrated one spot near the baseline under UV-S and other spots with the R_f values of 0.14 and 0.27

as violet spots after dipping in ASA reagent and subsequently heating the TLC plate. Further purification by precoated TLC with 5% methanol-dichloromethane as a mobile phase (7 runs) afforded three bands.

Band 1 was obtained as a colorless gum (1.3 mg). Chromatogram characteristics on normal phase TLC with 6% methanoldichloromethane as a mobile phase demonstrated one pale spot with the R_f value of 0.4 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Band 2 was obtained as a brown gum (1.0 mg). Chromatogram characteristics on normal phase TLC with 6% methanol-dichloromethane as a mobile phase demonstrated one major spot with the R_f value of 0.40 and two pale spots with the R_f values of 0.11 and 0.22 under UV-S. Because of the minute quantity, it was not further purified.

Band 3 was obtained as a brown gum (0.8 mg). Chromatogram characteristics on normal phase TLC with 6% methanol-dichloromethane as a mobile phase demonstrated one pale spot with the R_f value of 0.11 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction BE Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (3 runs) as a mobile phase demonstrated one violet spot near the baseline under UV-S and the other spot with the R_f value of 0.27 after dipping in ASA reagent and subsequently heating the TLC plate. Further purification by precoated TLC with 5% methanol-dichloromethane as a mobile phase (7 runs) afforded three bands.

Band 1 was obtained as a yellow viscous liquid mixed with a white solid (1.5 mg). Chromatogram characteristics on normal phase TLC with 6% methanol-dichloromethane as a mobile phase showed one violet spot with the R_f value of 0.53 after dipping in ASA reagent and subsequently heating the TLC plate. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Band 2 was obtained as a brown gum (0.5 mg). Chromatogram characteristics on normal phase TLC with 6% methanol-dichloromethane as a mobile
phase demonstrated two spots near the baseline under UV-S and the other spot with the R_f value of 0.22 after dipping in ASA reagent and subsequently heating the TLC plate. Because of the minute quantity, it was not further purified.

Band 3 was obtained as a brown gum (0.2 mg). Chromatogram characteristics on normal phase TLC with 6% methanol-dichloromethane as a mobile phase demonstrated one pale spot near the baseline under UV-S. Because the ¹H NMR spectrum showed signals at the high field, it was not further investigated.

Subfraction BF Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (3 runs) as a mobile phase demonstrated one spot near the baseline under UV-S and the other violet spot with the R_f value of 0.27 after dipping in ASA reagent and subsequently heating the TLC plate. Further purification by precoated TLC with 5% methanol-dichloromethane as a mobile phase (7 runs) afforded two bands.

Band 1 was obtained as a yellow gum mixed with a colorless solid (1.9 mg). Chromatogram characteristics on normal phase TLC with 6% methanol-dichloromethane as a mobile phase showed one pale violet spot with the R_f value of 0.53 after dipping in ASA reagent and subsequently heating the TLC plate. The ¹H NMR spectrum indicated that it was **US8**.

Band 2 was obtained as a pale brown gum (0.9 mg). Chromatogram characteristics on normal phase TLC with 5% methanoldichloromethane as a mobile phase showed one spot with the R_f value of 0.24 and two spots near the baseline under UV-S. Because of the minute quantity, it was not further purified.

Subfraction BG Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (3 runs) as a mobile phase demonstrated one spot near the baseline under UV-S and the other violet spot with the R_f value of 0.27 after dipping in ASA reagent and subsequently heating the TLC plate. Further purification by precoated TLC with 5% methanol-dichloromethane as a mobile phase (7 runs) afforded two bands.

Band 1 was obtained as a brown gum mixed with a brown solid (1.6 mg). Chromatogram characteristics on normal phase TLC with 6%

methanol-dichloromethane as a mobile phase showed three spots with the R_f values of 0.24, 0.56 and 0.62. Because of the minute quantity, it was not further purified.

Band 2 was obtained as a pale yellow gum (0.6 mg). Chromatogram characteristics on normal phase TLC with 6% methanoldichloromethane as a mobile phase showed two spots near the baseline. Because of the minute quantity, it was not further purified.

Subfraction BH Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (2 runs) as a mobile phase demonstrated one spot with the R_f values of 0.71 and two spots near the baseline under UV-S and other spots with R_f values of 0.31 and 0.36 after dipping in ASA reagent and subsequently heating the TLC plate. Because of the minute quantity, it was not further purified.

Subfraction BI Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (3 runs) as a mobile phase demonstrated two spots with the R_f values of 0.14 and 0.32 under UV-S and other spots with the R_f values of 0.54 and 0.61 as violet spots after dipping in ASA reagent and subsequently heating the TLC plate. Further purification by precoated TLC with 5% methanol-dichloromethane as a mobile phase (10 runs) afforded three bands.

Band 1 was obtained as a colorless gum (1.0 mg). Chromatogram characteristics on normal phase TLC with 5% methanoldichloromethane (2 runs) and 6% methanol-dichloromethane (2 runs) as mobile phases showed no definite spots under UV-S. Because of the minute quantity, it was not further purified.

Band 2 was obtained as a colorless gum mixed with a white solid (0.6 mg). Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (2 runs) and 6% methanol-dichloromethane as (2 runs) showed one spot with the R_f value of 0.19 and one spot near the baseline under UV-S. Because of the minute quantity, it was not further purified.

Band 3 was obtained as a pale yellow gum (0.8 mg). Chromatogram characteristics on normal phase TLC with 5% methanoldichloromethane (2 runs) and 6% methanol-dichloromethane (2 runs) showed one spot near the baseline under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated. Subfraction BJ Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (3 runs) as a mobile phase demonstrated two spots near the baseline under UV-S and the other spot with the R_f value of 0.36 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. Further purification by precoated TLC with 5% methanol-dichloromethane as a mobile phase (10 runs) afforded two bands.

Band 1 was obtained as a white gum mixed with a white solid (1.3 mg). Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (2 runs) and 6% methanol-dichloromethane (2 runs) showed no definite spots under UV-S. Because of the minute quantity, it was not further purified.

Band 2 was obtained as a brown gum mixed with a brown solid (3.0 mg). Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (2 runs) and 6% methanol-dichloromethane (2 runs) showed one major spot near the baseline under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction BK Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (3 runs) as a mobile phase demonstrated a long tail and one spot near the baseline under UV-S and the other spot near the baseline as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. Further purification by column chromatography over Sephadex LH-20 using 50% methanol-dichloromethane was performed. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give seven subfractions, as shown in **Table 34**.

Table 34 Subfractions obtained from subfraction BK by column chromatography over Sephadex LH-20

Subfraction	Weight (mg)	Physical appearance
BK1	4.8	Brown gum mixed with brown solid
BK2	16.7	Brown gum mixed with brown solid
BK3	11.9	Brown gum
BK4	1.9	Brown gum

Table 34 (continued)

Subfraction	Weight (mg)	Physical appearance
BK5	2.6	Brown gum
BK6	1.7	Brown gum
BK7	2.7	Brown gum

Subfraction BK1 Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (2 runs) as a mobile phase demonstrated a long tail under UV-S. The ¹H NMR spectrum indicated that the major component was US8.

Subfraction BK2 Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (2 runs) as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction BK3 Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (2 runs) as a mobile phase demonstrated a long tail and one spot near the baseline under UV-S and four spots with the R_f values of 0.38, 0.71, 0.83 and 0.95 as violet spots after dipping in ASA reagent and subsequently heating the TLC plate. Because of the minute quantity, it was not further purified.

Subfraction BK4 Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (2 runs) as a mobile phase demonstrated a long tail and one spot near the baseline under UV-S and three spots with the R_f values of 0.38, 0.71 and 0.95 as violet spots after dipping in ASA reagent and subsequently heating the TLC plate. Because of the minute quantity, it was not further purified.

Subfraction BK5 Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (2 runs) as a mobile phase demonstrated a long tail and one spot near the baseline under UV-S and many violet spots after dipping in ASA reagent subsequently heating the TLC plate. Because of the minute quantity, it was not further purified.

Subfraction BK6 Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (2 runs) as a mobile phase demonstrated one spot near the baseline under UV-S and the other spot near the baseline as a violet spot after dipping in ASA reagent subsequently heating the TLC plate. The ¹H NMR spectral data indicated that it contained a mixture of **US9** and **US11**. Because of the minute quantity, it was not further purified.

Subfraction BK7 Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (2 runs) as a mobile phase demonstrated no UV-active spots. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B2 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane as a mobile phase demonstrated a long tail under UV-S. Further purification by column chromatography over Sephadex LH-20 using 50% methanol-dichloromethane was performed. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give four subfractions, as shown in **Table 35**.

Table 35 Subfractions obtained from subfraction B2 by column chromatography over Sephadex LH-20

ñ		-	
	Subfraction	Weight (mg)	Physical appearance
	B21	21.4	Dark-brown gum
	B22	5.0	Dark-brown gum
	B23	9.5	Dark-brown gum
	B24	2.9	Dark-brown gum

Subfraction B21 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane as a mobile phase demonstrated two spots with the R_f values of 0.20 and 0.50 under UV-S. The ¹H NMR spectrum indicated that it was a mixture. It was further combined with B31 and then purified by column chromatography over silica gel using a gradient system of methanol-dichloromethane.

Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give ten subfractions, as shown in **Table 36**.

Subfraction	Eluent	Weight (mg)	Physical appearance
B211	100% CH ₂ Cl ₂ -2%	1.1	Colorless gum mixed with
	MeOH/CH ₂ Cl ₂		white solid
B212	2% MeOH/CH ₂ Cl ₂	3.1	Pale brown gum
B213	3% MeOH/CH ₂ Cl ₂	3.0	Pale brown gum
B214	3% MeOH/CH ₂ Cl ₂	1.5	Pale brown gum
B215	3-5% MeOH/CH ₂ Cl ₂	1.5	Colorless gum
B216	3-5% MeOH/CH ₂ Cl ₂	3.7	Pale brown gum mixed
			with white solid
B217	5-7% MeOH/CH ₂ Cl ₂	1.1	Colorless gum
B218	7-10% MeOH/CH ₂ Cl ₂	1.2	Pale brown gum mixed
			with pale brown solid
B219	10% MeOH/CH ₂ Cl ₂	2.1	Pale brown gum mixed
			with pale brown solid
B2110	10% MeOH/CH ₂ Cl ₂ -	11.8	Dark-brown gum
	100% MeOH		

Table 36 Subfractions obtained from subfraction B21 by column chromato-graphy over silica gel

Subfraction B211 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (2 runs) as a mobile phase demonstrated five spots with the R_f values of 0.24, 0.31, 0.40, 0.47 and 0.64 under UV-S and two other spots with the R_f values of 0.17 and 0.52 as violet spots after dipping in ASA reagent and subsequently heating the TLC plate. Because of the minute quantity, it was not further purified.

Subfraction B212 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (2 runs) and 4% methanol-dichloromethane as mobile phases demonstrated one spot with the R_f value of 0.21 under UV-S and the

other violet spot with the R_f value of 0.17 after dipping in ASA reagent and subsequently heating the TLC plate. Because of the minute quantity, it was not further purified.

Subfraction B213 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.19 under UV-S. Further purification by precoated TLC with 4% methanol-dichloromethane (12 runs) as a mobile phases afforded a colorless gum (1.0 mg). Its chromatogram characteristic on normal phase TLC with 5% methanol-dichloromethane (2 runs) as a mobile phase demonstrated two pale spots with the R_f values of 0.57 and 0.67 under UV-S. Because of the minute quantity, it was not further investigated.

Subfraction B214 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (2 runs) and 4% methanol-dichloromethane demonstrated one spot with the R_f value of 0.21 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B215 (US8) Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (2 runs) and 4% methanol-dichloromethane demonstrated one spot with the R_f value of 0.19 after dipping in ASA reagent and subsequently heating the TLC plate.

$\left[\alpha\right]_{\mathrm{D}}^{^{28}}$	+5.11 (c = 0.15, EtOH)
FT-IR (neat) v_{cm-1}	3391 (OH stretching), 2925 (C-H stretching)
¹ H NMR (CDCl ₃) (δ ppm)	4.02 (brd, 1H), 3.66 (s, 1H), 3.54 (brs, 1H), 3.52
(300 MHz)	(s, 1H), 2.02 (dt, J = 13.5, 3.9 Hz; 1H), 1.95 (dd,
	J = 13.5, 3.9 Hz, 1H), 1.82 (dt , $J = 13.5, 3.9$ Hz,
	1H), 1.75 (dd, 13.5, 3.9 Hz, 1H), 1.60 (septet, J
	= 6.9 Hz, 1H), 1.45 (m, 1H), 1.33 (s, 3H), 0.93
	(d, J = 6.9 Hz, 6H)
¹³ C NMR (CDCl ₃) (δ ppm)	75.31, 74.85, 71.62, 38.44, 33.78, 29.55, 29.17,
(75 MHz)	27.68, 16.66, 16.63

DEPT (90°) (CDCl ₃)	CH : 74.84, 38.44
DEPT (135°) (CDCl ₃)	CH ₂ : 33.78, 29.55, 29.17
	CH ₃ : 27.68, 16.66, 16.63

Subfraction B216 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.19 under UV-S. Further purification by precoated TLC with 4% methanol-dichloromethane (8 runs) as a mobile phase afforded two bands.

Band 1 was obtained as a pale yellow gum (1.1 mg). It chromatogram characteristics on normal phase TLC with 6% methanoldichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.51 after dipping in ASA reagent and subsequently heating the TLC plate. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Band 2 was obtained a brown gum (1.9 mg). It chromatogram characteristics on normal phase TLC with 6% methanol-dichloromethane as a mobile phase demonstrated two spots with the R_f values of 0.42 and 0.51 after dipping in ASA reagent and subsequently heating the TLC plate. Because of the minute quantity, it was not further investigated.

 $\label{eq:subfraction B217 (US9) Chromatogram characteristics on normal phase TLC with 2\% methanol-dichloromethane (2 runs) and 4\% methanol-dichloromethane (2 runs) demonstrated one spot with the R_f value of 0.12 under UV-S.$

$\left[\alpha\right]_{\mathrm{D}}^{28}$	-8.33 (c = 0.10, MeOH)
UV (MeOH) λ_{max} nm (log ε)	233 (3.66)
FT-IR (neat) $v_{\rm cm-1}$	3354 (OH stretching), 1667 (C=O stretching),
	1278 (C-N stretching)
¹ H NMR (CDCl ₃) (δ ppm)	6.25 (brs, 1H), 5.65 (brs, 1H), 3.95 (brs, 1H),
(300 MHz)	2.10 (m, 1H), 0.98 (d, $J = 9.0$ Hz, 3H), 0.84 (d, J
	= 6.0 Hz, 3H

¹³ C NMR (CDCl ₃) (δ ppm)		175.89, 76.20, 31.91, 19.06, 15.45
(75 MHz)		
DEPT (135°) (CDCl ₃)	CH :	76.20, 31.91
	CH ₃ :	19.06, 15.45

Subfraction B218 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (2 runs) and 4% methanol-dichloromethane (2 runs) demonstrated one spot with the R_f value of 0.12 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B219 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (2 runs) and 4% methanol-dichloromethane (2 runs) demonstrated no UV-active spots. Because of the minute quantity, it was not further investigated.

Subfraction B2110 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (2 runs) and 4% methanol-dichloromethane (2 runs) demonstrated two spots near the baseline under UV-S, and other two spots with the R_f values of 0.36 and 0.45 as violet spots after dipping in ASA reagent and subsequently heating. Further purification by precoated TLC with 4% methanol-dichloromethane (10 runs) as a mobile phase afforded two bands.

Band 1 was obtained as a pale yellow gum (1.0 mg). Its chromatogram characteristics on normal phase TLC with 6% methanol-dichloromethane as a mobile phase demonstrated a long tail under UV-S. Because of the minute quantity, it was not further investigated.

Band 2 was obtained as a pale yellow gum (1.2 mg). Its chromatogram characteristics on normal phase TLC with 6% methanoldichloromethane as a mobile phase demonstrated a long tail under UV-S. Because of the minute quantity, it was not further investigated.

Subfraction B22 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane demonstrated one spot with the R_f value of 0.50 under UV-S. The ¹H NMR spectrum indicated that the major component was US3.

Subfraction B23 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane (2 runs) demonstrated two spots with the R_f values of 0.20 and 0.43 under UV-S. Further purification by precoated TLC with 5% methanol-dichloromethane (8 runs) as a mobile phase affords three bands.

Band 1 was obtained as a brown gum (4.6 mg). Its chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (3 runs) and 6% methanol-dichloromethane (2 runs) demonstrated one spot with the R_f value of 0.39 under UV-S. The ¹H NMR spectrum indicated that the major component was US3.

Band 2 was obtained as a colorless gum (0.3 mg). Its chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (3 runs) and 6% methanol-dichloromethane (2 runs) demonstrated one spot near the baseline under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Band 3 was obtained as a colorless gum (0.3 mg). Its chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (3 runs) and 6% methanol-dichloromethane (2 runs) demonstrated one spot near the baseline under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B24 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane (2 runs) as a mobile phase demonstrated two spots with the R_f values of 0.20 and 0.43 under UV-S. Because of the minute quantity, it was not further investigated.

Subfraction B3 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane as a mobile phase demonstrated a long tail under UV-S. Further purification by column chromatography over Sephadex LH-20 using 50% methanol-dichloromethane was performed. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give five subfractions, as shown in **Table 37**.

Subfraction	Weight (mg)	Physical appearance
B31	13.4	Brown gum
B32	24.7	Brown gum
B33	37.9	Brown gum
B34	17.6	Brown gum
B35	3.0	Brown gum

Table 37 Subfractions obtained from subfraction B3 by column chromatography over Sephadex LH-20

Subfraction B31 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane as a mobile phase demonstrated two spots with the same R_f values as B21. Thus, it was combined with B21.

Subfraction B32 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.20 under UV-S. The ¹H NMR spectrum indicated that it contained a mixture of US10 and US11 in the ratio of 1:2.

Subfraction B33 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.20 under UV-S. The ¹H NMR spectrum indicated that it consisted of a mixture of US10 and US11 in the ratio of 4:3.

Subfraction B34 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.20 under UV-S. It was separated by column chromatography over Sephadex LH-20 using 50% methanol-dichloromethane was performed. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give five subfractions, as shown in Table 38.

Subfraction	Weight (mg)	Physical appearance
B341	3.1	Yellow gum
B342	2.8	Colorless gum
B343	5.0	Colorless gum
B344	9.9	Colorless gum
B345	3.0	Colorless gum

Table 38 Subfractions obtained from subfraction B34 by column chromato-graphy over Sephadex LH-20

Subfraction B341 Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (2 runs) as a mobile phase demonstrated no UV-active spots. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Therefore, it was not further studied.

Subfraction B342 Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (2 runs) as a mobile phase demonstrated one spot with the R_f value of 0.27 under UV-S. The ¹H NMR spectrum indicated that the major component was US10.

$\left[\alpha\right]_{\mathrm{D}}^{^{26}}$	+32.64 (c = 0.13, CHCl ₃)
UV (MeOH) λ_{max} nm (log ε)	260 (3.97)
FT-IR (neat) v_{cm-1}	3374 (OH, NH stretching), 1665 (C=O
	stretching), 1622 (N-H bending), 1023 (C-N
	stretching)
¹ H NMR (CDCl ₃) (δ ppm)	10.97 (d , J = 10.8 Hz, 1H), 7.50 (dd , J = 10.8,
(300 MHz)	8.7 Hz, 1H), 6.49 (brs, 1H), 5.15 (d, $J = 8.7$ Hz,
	1H), 4.07 (d , J = 3.3 Hz, 1H), 2.13 (m , 1H), 0.99
	(d, J = 6.9 Hz, 3H), 0.82 (d, J = 6.9 Hz, 3H)

¹³ C NMR (CDCl ₃) (δ ppm)	172.41, 138.63, 96.80, 76.16, 32.17, 18.90,
(125 MHz)	15.69
EIMS <i>m/z</i> (% relative intensity):	284 (0.4), 146 (5.5), 98 (8), 96 (49), 87 (100), 73
	(74)

Subfraction B344 Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (2 runs) as a mobile phase demonstrated one spot with the R_f value of 0.27 under UV-S. The ¹H NMR spectrum indicated that it contained a mixture of US10 and US11 in the ratio of 2:1.

Subfraction B345 Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.27 under UV-S. The ¹H NMR spectrum indicated that it consisted of a mixture of US10 and US11 in the ratio of 2:3.

Subfraction B35 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at the high field, it was not further investigated.

Subfraction B4 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane as a mobile phase demonstrated a long tail. Further purification by column chromatography over Sephadex LH-20 using 50% methanol-dichloromethane was performed. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give six subfractions, as shown in **Table 39**.

Table 39 Subfractions obtained from subfraction B4 by column chromatography over Sephadex LH-20

Subfraction	Weight (mg)	Physical appearance
B41	3.4	Brown gum
B42	22.7	Brown gum
B43	50.1	Brown gum
B44	27.8	Brown gum

Table 39 (continued)

Subfraction	Weight (mg)	Physical appearance
B45	9.9	Brown gum
B46	2.8	Brown gum

Subfraction B41 Chromatogram characteristics on normal phase TLC with 7% methanol-dichloromethane (3 runs) as a mobile phase demonstrated one spot near the baseline under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B42 Chromatogram characteristics on normal phase TLC with 7% methanol-dichloromethane (3 runs) as a mobile phase demonstrated a long tail and one major spot with the R_f value of 0.15 under UV-S. The ¹H NMR spectrum indicated that the major compound was US10.

Subfraction B43 Chromatogram characteristics on normal phase TLC with 7% methanol-dichloromethane (3 runs) as a mobile phase demonstrated a long tail and two major spots with the R_f values of 0.15 and 0.29 under UV-S. Further purification by column chromatography over Sephadex LH-20 using 50% methanol-dichloromethane was performed. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give six subfractions, as shown in Table 40.

Table 40 Subfractions obtained from subfraction B43 by column chromatography over Sephadex LH-20

Subfraction	Weight (mg)	Physical appearance
B431	3.2	Brown gum
B432	3.9	Pale brown gum
B433	17.4	Pale brown gum
B434	14.7	Pale brown gum
B435	3.1	Colorless gum
B436	1.8	Brown gum

Subfraction B431 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane (2 runs) as a mobile phase demonstrated one spot with the R_f value of 0.20 under UV-S. Because the ¹H NMR spectrum showed signals at the high field, it was not further investigated.

Subfraction B432 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane (2 runs) as a mobile phase demonstrated one spot with the R_f value of 0.24 under UV-S. The ¹H NMR spectrum indicated that it contained a mixture of US10 and US11 in the ratio of 2:1.

Subfraction B433 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane (2 runs) as a mobile phase demonstrated one spot with the R_f value of 0.24 under UV-S. The ¹H NMR spectrum indicated that it consisted of a mixture of US10 and US11 in the ratio of 1:1.

Subfraction B434 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane (2 runs) as a mobile phase demonstrated one spot with the R_f value of 0.24 under UV-S. The ¹H NMR spectrum indicated that it contained a mixture of US10 and US11 in the ratio of 2:3.

Subfraction B435 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane (2 runs) as a mobile phase demonstrated one spot with the R_f value of 0.24 under UV-S. The ¹H NMR spectrum indicated that it consisted of a mixture of US10 and US11 in the ratio of 1:2.

Subfraction B436 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane (2 runs) as a mobile phase demonstrated one spot with the R_f value of 0.20 under UV-S. The ¹H NMR spectrum indicated the presence of many compounds. Thus, it was not further investigated.

Subfraction B44 Chromatogram characteristics on normal phase TLC with 7% methanol-dichloromethane (3 runs) as a mobile phase demonstrated one spot with the R_f value of 0.15 under UV-S. The ¹H NMR spectrum indicated that it contained a mixture of US10, US11 and US12 in the ratio of 3:1:2.

Subfraction B45 Chromatogram characteristics on normal phase TLC with 7% methanol-dichloromethane (3 runs) as a mobile phase demonstrated one spot with the R_f value of 0.15 under UV-S. The ¹H NMR spectrum indicated that the major compound was US12.

Subfraction B46 Chromatogram characteristics on normal phase TLC with 7% methanol-dichloromethane (3 runs) as a mobile phase demonstrated one spot near the baseline under UV-S. The ¹H NMR spectrum indicated that the major compound was **US12**.

Subfraction B5 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane as a mobile phase demonstrated a long tail under UV-S. Further purification by column chromatography over Sephadex LH-20 using 50% methanol-dichloromethane was performed. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give seven subfractions, as shown in **Table 41**.

Subfraction	Weight (mg)	Physical appearance
B51	0.8	Pale brown gum
B52	2.6	Dark-brown gum
B53	17.3	Pale brown gum
B54	13.6	Yellow gum
B55	14.9	Brown gum
B56	32.4	Dark-brown gum
B57	7.4	Colorless gum

Table 41 Subfractions obtained from subfraction B5 by column chromatography over Sephadex LH-20

Subfraction B51 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane as a mobile phase showed one pale spot with the R_f value of 0.17 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B52 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane as a mobile phase showed one pale spot with the R_f value of 0.17 under UV-S. The ¹H NMR spectral data indicated that it contained a mixture of US10 and US11 in the ratio of 2:1.

Subfraction B53 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane as a mobile phase showed a long tail and two major spots under UV-S with the R_f values of 0.32 and 0.41. Further purification by column chromatography over Sephadex LH-20 using 50% methanol-dichloromethane was performed. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give ten subfractions, as shown in Table 42.

Subfraction Weight (mg) **Physical appearance** B531 4.5 Brown gum B532 0.2 Brown gum B533 0.9 Pale Brown gum B534 0.9 Pale Brown gum B535 4.4 Pale Brown gum 2.6 B536 Pale Brown gum B537 2.5 Colorless gum **B538** 0.3 Pale Brown gum B539 0.5 Pale Brown gum B5310 1.1 Brown gum

Table 42 Subfractions obtained from subfraction B53 by column chromato-graphy over Sephadex LH-20

Subfraction B531 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane as a mobile phase showed no UV-active spots. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further studied.

Subfraction B532 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane as a mobile phase showed one pale spot under UV-S with the R_f value of 0.12. According to its ¹H NMR spectrum, it was not further isolated.

Subfraction B533 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane as a mobile phase showed one pale spot under UV-S with the R_f value of 0.21. The ¹H NMR spectrum indicated that the major compound was US10.

Subfraction B534 Chromatogram characteristics on normal phase TLC with Chromatogram characteristics on normal phase TLC with 10% methanoldichloromethane as a mobile phase showed a long tail and one major spot under UV-S with the R_f value of 0.21. The ¹H NMR spectrum indicated that it contained a mixture of US10 and US11 in the ratio of 2:1.

Subfraction B535 Chromatogram characteristics on normal phase TLC with Chromatogram characteristics on normal phase TLC with 10% methanoldichloromethane as a mobile phase showed one spot under UV-S with the R_f value of 0.21. The ¹H NMR spectrum indicated that it consisted of a mixture of US10 and US11 in the ratio of 5:4.

Subfraction B536 Chromatogram characteristics on normal phase TLC with Chromatogram characteristics on normal phase TLC with 10% methanoldichloromethane as a mobile phase showed one spot under UV-S with the R_f value of 0.21. The ¹H NMR spectrum indicated that it contained a mixture of US10 and US11 in the ratio of 4:5.

Subfraction B537 (US11) Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane (2 runs) as a mobile phase showed one spot under UV-S with the R_f value of 0.18.

$[\alpha]_{\mathrm{D}}^{^{27}}$	+137.84 (c = 0.13, CHCl ₃)
UV (MeOH) λ_{max} nm (log ε)	260 (3.87)
FT-IR (neat) v_{cm-1}	3362 (OH, NH stretching), 1665 (C=O
	stretching), 1625 (N-H bending), 1024 (C-N
	stretching)
¹ H NMR (CDCl ₃) (δ ppm)	11.05 (d , $J = 10.8$ Hz, 1H), 7.55 (dd , $J = 10.8$,
(300 MHz)	9.0 Hz, 1H), 6.43 (brs, 1H), 6.10 (brs, 1H), 5.23

	(d, J = 9.0 Hz, 1H), 4.03 (d, J = 3.3 Hz, 1H),
	2.15 (m, 1H), 1.06 (d, $J = 6.9$ Hz, 3H), 0.91 (d, J
	= 6.9 Hz, 3H)
¹³ C NMR (CDCl ₃) (δ ppm)	176.43, 138.16, 97.11, 76.43, 31.86, 19.05,
(125 MHz)	15.44
EIMS <i>m/z</i> (% relative intensity):	284 (0.1), 146 (1), 98 (4), 87 (84), 73 (100)

Subfraction B538 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane as a mobile phase showed one spot under UV-S with the R_f value of 0.23. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B539 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane as a mobile phase showed one pale spot under UV-S with the R_f value of 0.14. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B5310 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane as a mobile phase showed one pale spot under UV-S with the R_f value of 0.16. The ¹H NMR spectrum indicated that the major compound was US11.

Subfraction B54 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane as a mobile phase showed a long tail and three major spots under UV-S with the R_f values of 0.19, 0.32 and 0.44. The ¹H NMR spectrum indicated that it contained a mixture of US10 and US11 in the ratio of 3:2.

Subfraction B55 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane as a mobile phase showed a long tail and two major spots under UV-S with the R_f values of 0.32 and 0.44. The ¹H NMR spectrum indicated that the major compounds were a mixture of US10, US11 and US12 in the ratio of 1:2:4.

Subfraction B56 Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane as a mobile phase showed a long tail and the major spot under UV-S with the R_f value of 0.44. The ¹H NMR spectrum indicated that the major compound was US12.

Subfraction B57 (US12) Chromatogram characteristics on normal phase TLC with 10% methanol-dichloromethane as a mobile phase showed one spot under UV-S with the R_f value of 0.36.

FT-IR (neat) v_{cm-1}	2927 (C-H stretching), 1717 (C=O stretching),	
	1402 (C-O stretching)	
¹ H NMR (CDCl ₃) (δ ppm)	4.65 (t, J = 6.0 Hz, 2H), 3.05 (t, J = 6.0 Hz, 2H)	
(300 MHz)		
¹³ C NMR (CDCl ₃) (δ ppm)	174.49, 69.30, 30.73	
(75 MHz)		
EIMS <i>m/z</i> (% relative intensity):	287 (10), 120 (100), 107 (48)	

Subfraction B6 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane as a mobile phase showed a long tail after dipping in ASA reagent and subsequently heating the TLC plate. The ¹H NMR data indicated that it consisted of a mixture of **US10** and **US12**.

Subfraction B7 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane and 4% methanol-dichloromethane showed two spots near the baseline under UV-S. The ¹H NMR data indicated that the major component was **US12**.

Fraction C Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane as a mobile phase showed two major spots with the R_f values of 0.17 and 0.29 after dipping in ASA reagent and subsequently heating the TLC plate. Further purification by precoated TLC with 5% methanol-dichloromethane (7 runs) as mobile phase afforded five bands.

Band 1 was obtained as a brown gum (1.4 mg). Chromatogram characteristics on normal phase TLC with 100% dichloromethane and 2% methanoldichloromethane showed no spots after dipping in ASA reagent and subsequently heating the TLC plate. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further studied. **Band 2** was obtained as a brown gum (1.3 mg). Chromatogram characteristics on normal phase TLC with 100% dichloromethane and 2% methanoldichloromethane as mobile phases showed one spot with the R_f value of 0.33 after dipping in ASA reagent and subsequently heating the TLC plate. The ¹H NMR spectrum indicated the presence of many components. Therefore, it was not further studied.

Band 3 was obtained as a pale brown gum (1.3 mg). Chromatogram characteristics on normal phase TLC with 100% dichloromethane and 2% methanol-dichloromethane showed no spots after dipping in ASA reagent and subsequently heating the TLC plate. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Therefore, it was not further studied.

Band 4 (US13) was obtained as a colorless gum (1.3 mg). Chromatogram characteristics on normal phase TLC with 100% dichloromethane and 2% methanol-dichloromethane showed one spot with the R_f value of 0.38.

UV (MeOH) λ_{max} nm (log ε)		221 (3.83), 277 (2.96)
FT-IR (neat) v_{cm-1}		3409 (OH stretching), 1730 (C=O stretching),
		1613 (C=C stretching), 1556 (N=O stretching),
		1377 (C-N stretching)
¹ H NMR (CDCl ₃) (δ ppm)		7.00 (d , J = 8.4 Hz, 1H), 6.70 (d , J = 8.4 Hz,
(300 MHz)		1H), 4.55 (t , J = 6.3 Hz, 2H), 4.25 (t , J = 7.2 Hz,
		2H), 2.89 (t , J = 6.3 Hz, 2H), 2.80 (t , J = 7.2 Hz,
		2H)
¹³ C NMR (CDCl ₃) (δ ppm)		169.00, 153.90, 130.00, 129.99, 115.45, 69.66,
(125 MHz)		66.11, 34.06, 31.09
DEPT (135°) (CDCl ₃) CH :		129.99, 115.45
	CH_2 :	69.66, 66.11, 34.06, 31.09
EIMS m/z (% relative intensity):		239 (5), 193 (1), 121 (97), 107 (100), 77 (40)

Band 5 was obtained as a dark-brown gum (10.1 mg). Chromatogram characteristics on normal phase TLC with 100% dichloromethane and 2% methanol-dichloromethane showed two spots near the baseline after dipping in ASA reagent and subsequently heating the TLC plate. Further purification by precoated TLC with 5% methanol-dichloromethane (17 runs) as mobile phase afforded five bands.

Band 51 was obtained as a brown gum mixed with a brown solid (1.0 mg). Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane (2 runs) as a mobile phase showed one spot with the R_f value of 0.38. The ¹H NMR spectrum suggested that it was a mixture. Because of the minute quantity, it was not further separated.

Band 52 was obtained as a brown gum mixed with a brown solid (1.0 mg). Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane (2 runs) as a mobile phase showed one spot with the R_f value of 0.16. The ¹H NMR spectrum suggested that the major component was **US12**. Because of the minute quantity, it was not further separated.

Band 53 was obtained as a brown gum mixed with a brown solid (2.0 mg). Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane (2 runs) as a mobile phase showed one spot with the R_f value of 0.13. The ¹H NMR spectrum suggested that it was **US12**.

Band 54 was obtained as a brown gum mixed with a brown solid (1.5 mg). Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane (2 runs) and 6% methanol-dichloromethane showed one spot with the R_f value of 0.18. The ¹H NMR spectrum suggested that it was a mixture. Because of the minute quantity, it was not further separated.

Band 55 was obtained as a brown gum mixed with a brown solid (0.7 mg). Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane (2 runs) and 6% methanol-dichloromethane showed no spots. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Therefore, it was not further studied.

Fraction D Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane as a mobile phase showed no spots after dipping in ASA reagent and subsequently heating the TLC plate. The ¹H NMR spectrum

indicated the absence of olefinic and aromatic protons. Thus it was not further studied.

3.2.3 Purification of the mycelial extract

The mycelial extract of *Phomopsis* sp. PSU-D15 (335.0 mg) was chromatographed on Sephadex LH-20 using 100% methanol to afford fifty six fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford ten fractions, as shown in **Table 43**.

Table 43 Fractions obtained from the mycelial extract by column chromato-graphy over Sephadex LH-20

Fraction	Weight (mg)	Physical appearance
А	99.9	Brown gum mixed with brown solid
В	41.3	Brown gum mixed with brown solid
С	23.1	Brown gum mixed with brown solid
D	2.6	Brown gum mixed with pale brown solid
E	4.9	Brown gum mixed with brown solid
F	4.1	Brown gum mixed with brown solid
G	4.6	Brown gum mixed with brown solid

Fraction A Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane as a mobile phase showed no UV-active spots. The ¹H NMR spectrum indicated that the major components might be a mixture of long chain hydrocarbons. No attempted investigation was carried out.

Fraction B Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane as a mobile phase demonstrated four spots with the R_f values of 0.45, 0.52, 0.60, 0.75 and one spots near the baseline under UV-S. Further separation on by column chromatography over Sephadex LH-20 using 50% methanol-dichloromethane was performed. All subfractions were examined by TLC, combined

on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford five subfractions, as shown in **Table 44**.

Subfraction	Weight (mg)	Physical appearance
B1	1.9	Brown gum
B2	8.7	Yellow gum
B3	2.4	Pale brown gum
B4	4.5	Colorless gum
B5	22.2	Colorless gum
	1	

Table 44 Subfractions obtained from Fraction B by column chromatographyover Sephadex LH-20

Subfraction B1 Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane (2 runs) as a mobile phase demonstrated no UV-active spots. Because the ¹H NMR spectrum showed signals at the high field, it was not further investigated.

Subfraction B2 Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane as a mobile phase demonstrated three spots with the R_f values of 0.41, 0.43 and 0.90 under UV-S. The ¹H NMR spectrum indicated that it was a mixture. It was further combined with fraction C.

Subfraction B3 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated one spot near the baseline under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B4 Chromatogram characteristics on normal phase TLC with 6% methanol-dichloromethane (3 runs) as a mobile phase demonstrated one spot with the R_f value of 0.28 under UV-S. The ¹H NMR spectrum indicated that it contained a mixture of US10 and US11 in the ratio of 2:1.

Subfraction B5 Chromatogram characteristics on normal phase TLC with 6% methanol-dichloromethane (3 runs) as a mobile phase demonstrated one

spot with the R_f value of 0.28 under UV-S. The ¹H NMR spectrum indicated that it consisted of a mixture of **US10** and **US11** in the ratio of 1:2.

Fraction C Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane as a mobile phase demonstrated three spots with the same R_f values as **B2**. Thus, it was combined with **B2** and separated by column chromatography over Sephadex LH-20 using 50% methanol-dichloromethane. All subfractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford six subfractions, as shown in **Table 45**.

Table 45 Subfractions obtained from Fraction C by column chromatography over Sephadex LH-20

Subfraction	Weight (mg)	Physical appearance
C1	1.2	Brown gum
C2	9.0	Yellow gum
C3	6.0	Yellow gum
C4	5.7	Yellow gum
C5	3.1	Colorless gum
C6	4.8	Pale brown gum
	1	

Subfraction C1 Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane (2 runs) as a mobile phase demonstrated no spots under UV-S. Because the ¹H NMR spectrum showed signals at the high field, it was not further investigated.

Subfraction C2 Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane (2 runs) as a mobile phase demonstrated three spots with the R_f values of 0.48, 0.68 and 0.88 under UV-S. Further separation on column chromatography over Sephadex LH-20 using 50% methanol-dichloromethane was performed. All subfractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford two subfractions, as shown in Table 46

Table 46 Subfractions obtained from Subfraction C2 by column chromatography over Sephadex LH-20

Subfraction	Weight (mg)	Physical appearance
C21	1.4	Yellow gum
C22	7.4	Yellow gum

Subfraction C21 Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane (2 runs) as a mobile phase demonstrated no UV-active spots. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction C22 Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane (2 runs) as a mobile phase demonstrated three spots with the R_f values of 0.24, 0.36 and 0.50 under UV-S. Further purification by precoated TLC with 2% methanol-dichloromethane (7 runs) as a mobile phase afforded three bands.

Band 1 was obtained as a yellow gum (1.1 mg). Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane and 4% methanol-dichloromethane demonstrated one spot with the R_f value of 0.50. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Band 2 was obtained as a yellow gum (1.2 mg). Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane and 4% methanol-dichloromethane demonstrated one spot with the R_f value of 0.36. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Band 3 (US14) was obtained as a yellow gum (1.2 mg). Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane and 4% methanol-dichloromethane demonstrated one spot with the R_f value of 0.30.

$[\alpha]_{\mathrm{D}}^{^{26}}$		-61.67 (c = 0.01 , CHCl ₃)		
UV (MeOH) λ_{max} nm (log ε)		218 (4.69), 237 (4.61), 346 (4.63)		
FT-IR (neat) v_{cm-1}		3501 (OH stretching), 2925 (C-H stretching),		
		1740 and 1606 (C=O stretching), 1402 (C-O		
		stretching), 1024 (C-N stretching)		
¹ H NMR (CDCl ₃) (δ ppm)		13.92 (s, 1H), 11.86 (s, 1H), 7.33 (d, $J = 8.4$ Hz,		
(500 MHz)		1H), 6.44 (d , J = 8.4 Hz, 1H), 5.69 (s , 1H), 4.03		
		(d, J = 13.2 Hz, 1H), 3.47 (brd, J = 13.2 Hz,		
		1H), 2.41 (<i>m</i> , 1H), 2.36 (<i>m</i> , 1H), 2.32 (<i>m</i> , 1H),		
		2.03 (s , 3H), 1.01 (d , J = 6.0 Hz, 3H)		
¹³ C NMR (CDCl ₃) (δ ppm)		187.73, 178.02, 170.51, 159.50, 157.12,		
(125 MHz)		140.07, 117.92, 107.83, 106.42, 100.83, 82.49,		
		70.24, 65.56, 33.40, 27.67, 20.83, 17.53		
DEPT (135°) (CDCl ₃)	CH :	140.07, 107.83, 70.24, 27.67		
	CH_2 :	65.56, 33.40		
	CH_3 :	20.83, 17.53		
EIMS m/z (% relative intensity):		664 (1), 648 (2), 647 (7), 430 (6), 396 (5), 368		
		(7), 290 (8), 284 (11), 279 (15), 256 (18), 149		
		(100)		

Subfraction C3 Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane (2 runs) as a mobile phase demonstrated two spots with the R_f values of 0.42 and 0.48 under UV-S. Further purification by precoated TLC with 2% methanol-dichloromethane (13 runs) as a mobile phase afforded four bands.

 $\label{eq:Band 1} \mbox{ (US15) was obtained as a yellow gum (1.5 mg)}.$ Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane and 4% methanol-dichloromethane demonstrated one spot with the R_f value of 0.36.

$\left[\alpha\right]_{\mathrm{D}}^{^{26}}$		+106.8 (c = 0.10, CHCl ₃)		
UV (MeOH) λ_{max} nm (log ε)		212 (4.45), 243 (4.35), 345 (4.30)		
FT-IR (neat) v _{cm-1}		3345 (OH stretching), 2926 (C-H stretching),		
		1740 and 1606 (C=O stretching), 1402 (C-O		
		stretching)		
¹ H NMR (CDCl ₃) (δ ppm)		13.85 (s, 1H), 13.82 (s, 1H), 11.95 (s, 1H), 11.36		
(500 MHz)		(s, 1H), 7.21 (d, J = 8.5 Hz, 1H), 7.06 (d, J =		
		8.5 Hz, 1H), 6.52 (d , J = 8.5 Hz, 1H), 6.41 (d , J		
		= 8.5 Hz, 1H), 5.59 (s, 1H), 5.46 (d, $J = 1.5$ Hz,		
		1H), 3.95 (d , J = 10.0 Hz, 1H), 3.92 (d , J = 12.0		
		Hz, 1H), 3.58 (d , J = 10.0 Hz, 1H), 3.33 (d , J =		
		12.0 Hz, 1H), 2.39 (m, 1H), 2.38 (m, 1H), 2.37		
		(m, 1H), 2.31 (m, 2H), 2.20 (m, 1H), 2.07 (s,		
		3H), 1.90 (s, 3H), $1.01(d, J = 6.0 \text{ Hz}, 3\text{H})$, 0.92		
		(d, J = 6.5 Hz, 1H)		
¹³ C NMR (CDCl ₃) (δ ppm)		186.98, 177.33, 176.64, 169.70, 169.40, 160.93,		
(125 MHz)		158.44, 156.63, 153.30, 138.12, 137.44, 117.29,		
		115.86, 109.15, 107.21, 105.59, 100.11, 99.99,		
		81.69, 81.22, 70.13, 68.31, 64.67, 64.02, 32.49,		
		32.12, 26.71, 26.64, 19.89, 19.73, 16.52, 16.29		
DEPT (135°)	CH :	138.12, 137.44, 109.15, 107.21, 70.13, 68.31,		
(CDCl ₃)		26.71, 26.64, 16.52		
	CH_2 :	64.67, 64.02, 32.49, 32.12		
	CH ₃ :	19.89, 19.73, 16.52, 16.29		
EIMS m/z (% relative intensity):		666 (7), 665 (26), 635 (31), 634 (100)		

Band 2 was obtained as a yellow gum (0.4 mg). Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane and 4% methanol-dichloromethane demonstrated two spots with the R_f values of 0.43 and 0.32. The ¹H NMR spectrum indicated that major component was **US14**. Because of the minute quantity, it was not further investigated.

Band 3 was obtained as a yellow gum (1.0 mg). Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane and 4% methanol-dichloromethane demonstrated one spot with the R_f value of 0.23. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Band 4 was obtained as a yellow gum (1.2 mg). Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane and 4% methanol-dichloromethane demonstrated a long tail from the baseline. Because the ¹H NMR spectrum showed signals at the high field, it was not further investigated.

Subfraction C4 Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane (2 runs) as a mobile phase demonstrated a long tail from the baseline under UV-S. Further separation on column chromatography over Sephadex LH-20 using 50% methanol-dichloromethane was performed. All subfractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford three subfractions, as shown in **Table 47**.

Table 47 Subfractions obtained from Subfraction C4 by column chromatography over Sephadex LH-20

Subfraction	Weight (mg)	Physical appearance
C41	0.7	Dark-brown gum
C42	1.6	Brown gum
C43	3.7	Brown gum

Subfraction C41 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (2 runs) and 4% methanol-dichloromethane (2 runs) demonstrated no UV-active spots. Because the ¹H NMR spectrum showed signals at the high field, it was not further investigated.

Subfraction C42 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (2 runs) and 4% methanol-dichloromethane

(2 runs) demonstrated one spot with the R_f value of 0.12. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction C43 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (2 runs) and 4% methanol-dichloromethane (2 runs) demonstrated one spot with the R_f value of 0.14. Further purification by precoated TLC with 4% methanol-dichloromethane (10 runs) and 6% methanol-dichloromethane (3 runs) afforded two bands.

Band 1 was obtained as a brown gum (1.6 mg). Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane, 4% methanol-dichloromethane and 6% methanol-dichloromethane (3 runs) demonstrated one spot with the R_f value of 0.45. Because the ¹H NMR spectrum showed signals at the high field, it was not further investigated.

Band 2 was obtained as a brown gum (1.5 mg). Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane and 4% methanol-dichloromethane demonstrated no UV-active spots. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction C5 (US16) Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane (2 runs) as a mobile phase demonstrated one spot with the R_f value of 0.20 under UV-S.

$\left[\alpha\right]_{\mathrm{D}}^{^{29}}$	+20.50 (c = 0.11, MeOH)
UV (MeOH) λ_{max} nm (log ε)	215 (3.35), 260 (3.33)
FT-IR (neat) v_{cm-1}	3399 (OH stretching), 2926 (C-H stretching),
	1606 (C=O stretching), 1402 (C-O stretching)
¹ H NMR (Acetone- d_6) (δ ppm)	0.09 (<i>brs</i>), 7.99 (<i>d</i> , <i>J</i> = 8.5 Hz, 1H), 5.92 (<i>d</i> ,
(500 MHz)	J = 5.0 Hz, 1H), 5.60 ($d, J = 8.5$ Hz, 1H), 4.29
	(t, J = 5.0 Hz, 1H), 4.26 (t, J = 5.0 Hz, 1H), 4.02
	(td, J = 2.5, 5.0 Hz, 1H), 3.84 (dd, J = 12.0, 2.5)
	Hz, 1H), 3.78 (<i>dd</i> , <i>J</i> = 12.0, 2.5 Hz, 1H)
¹³ C NMR (Acetone- d_6) (δ ppm)	163.63, 151.69, 140.79, 101.61, 89.25,
(125 MHz)	85.17, 74.43, 70.27, 61.25

DEPT (135°) (Acetone-
$$d_6$$
) CH : 140.79, 101.61, 89.25, 85.17, 74.43, 70.27
CH₂ : 61.25
EIMS *m*/*z* (% relative intensity): 244 (2), 226 (19), 141 (22), 133 (69), 73 (70),
113 (100)

Subfraction C6 Chromatogram characteristics on normal phase TLC with 3% methanol-dichloromethane (2 runs) as a mobile phase demonstrated one spot with the R_f value of 0.20 under UV-S. The ¹H NMR spectrum indicated that the major component was US9.

Fraction D Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane as a mobile phase demonstrated three spots with the R_f values of 0.20, 0.29 and 0.34 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Fraction E Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane as a mobile phase demonstrated two spots with the R_f values of 0.20 and 0.36 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Fraction F Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.27 under UV-S. Because the ¹H NMR spectrum showed signals at the high field, it was not further investigated.

CHAPTER 3.3

RESULTS AND DISCUSSION

Three new compounds (US10, US11 and US13) were isolated from the broth extract together with four known compounds (US8, US9, US12 and US16) while one new unsymmetrical dihydroxanthone dimer (US15) and one known symmetrical dimer (US14) were obtained from the mycelial extract. The structures were identified by spectroscopic methods.

3.3.1 Compound US8

Compound **US8** was obtained as a colorless gum. It exhibited a hydroxyl absorption band at 3391 cm⁻¹ in the IR spectrum (**Figure 61**). The ¹H NMR spectrum (**Figure 62**) (**Table 48**) contained signals for one isopropyl group [$\delta_{\rm H}$ 1.60 (*septet*, J = 6.9 Hz, 1H) and $\delta_{\rm H}$ 0.93 (d, J = 6.9 Hz, 6H)], one oxymethine proton [$\delta_{\rm H}$ 3.54 (*brs*, 1H)], two sets of nonequivalent methylene protons [$\delta_{\rm H}$ 2.02 (dt, J = 3.9 and 13.5 Hz, 1H), 1.82 (td, J = 3.9 and 13.5 Hz, 1H) and $\delta_{\rm H}$ 1.95 (dd, J = 3.9 and 13.5 Hz, 1H), 1.75 (*brd*, J = 13.5 Hz, 1H)], one set of equivalent methylene protons [$\delta_{\rm H}$ 1.45 (m, 2H)] and one methyl group [$\delta_{\rm H}$ 1.33 (s, 3H)]. The ¹³C NMR spectrum (**Figure 65**) (**Table 48**) showed two quaternary carbons ($\delta_{\rm C}$ 75.31 and 71.62), one oxymethine carbon ($\delta_{\rm C}$ 33.78, 29.55 and 29.17) and three methyl carbons ($\delta_{\rm C}$ 27.68, 16.66 and 16.63). In the ¹H-¹H COSY spectrum (**Figure 68**) (**Table 48**), the oxymethine proton, H-2 ($\delta_{\rm H}$ 3.54), showed cross peaks with H_{ab}-3 ($\delta_{\rm H}$ 1.95 and 1.75) while the methylene protons, H₂-5 ($\delta_{\rm H}$ 1.45), caused cross peaks with the methylene protons, H_{ab}-6 ($\delta_{\rm H}$ 2.02 and 1.82). These indicated the presence of three subunits in the structure of US8.

The units 1 and 2 were jointed together with two oxyquaternary carbons, C-1 ($\delta_{\rm C}$ 71.62) and C-4 ($\delta_{\rm C}$ 75.31), according to the HMBC cross peaks of H_{ab} -3 and H_{ab} -6 with C-1 and C-4 (Figure 67) (Table 49) to form a 1,2,4trihydroxycyclohexane skeleton. In addition, both Me-8 ($\delta_{\rm H}$ 0.93) and Me-9 ($\delta_{\rm H}$ 0.93) of unit 3 showed correlations with C-4, in the HMBC spectrum, indicating that the isopropyl group was located at C-4. HMBC correlations of Me-10 ($\delta_{\rm H}$ 1.33) with C-1, C-2 ($\delta_{\rm C}$ 74.85) and C-6 ($\delta_{\rm C}$ 29.17) connected the methyl group at C-1 of the cyclohexane skeleton. The relative stereochemistry of US8 was established by the NOEDIFF results and coupling constant. Since H-2 appeared as a broad singlet, it was assigned at equatorial position. Irradiation of H-5 did not enhance the signal intensity of Me-10 (Figure 69) (Table 49), indicating that Me-10 was at equatorial position. Therefore, the hydroxyl groups at C-1 and C-2 had trans diaxial relationship. The isopropyl group at C-4 was also at equatorial position according to the enhancement of Me-8 and Me-9 signals upon irradiation of H_b-3 (Figure 69) (Table 49). Therefore, **US8** had the same structure as (1*S*,2*S*,4*S*)-*p*-mentane-1,2,4-triol which was previously reported (Thappa, et al., 1976). Since US8 displayed the same sign of the specific rotation, $[\alpha]_D$ +5.11 (c = 0.15, EtOH), as that of (1*S*,2*S*,4*S*)-*p*-mentane-1,2,4-triol, $[\alpha]$ $_{\rm D}$ +24.00 (c = 0.15, EtOH), all chiral carbons in **US8** might have S configuration.

Position	$\delta_{\rm H}(mult., J_{Hz})$	$\delta_{\rm C}$ (C-type)
1	-	71.62 (C)
2	3.54 (brs)	74.85 (CH)
3	a: 1.95 (<i>dd</i> , 13.5, 3.9)	33.78 (CH ₂)
	b: 1.75 (<i>brd</i> , 13.5)	-
4	-	75.31 (C)
5	1.45 (<i>m</i>)	29.55 (CH ₂)
6	a: 2.02 (<i>dt</i> , 13.5, 3.9)	29.17 (CH ₂)
	b: 1.82 (<i>dt</i> , 13.5, 3.9)	-
7	1.60 (septet, 6.9)	38.44 (CH)
8	0.93 (<i>d</i> , 6.9)	16.63 (CH ₃)
9	0.93 (<i>d</i> , 6.9)	16.66 (CH ₃)
10	1.33 (s)	27.68 (CH ₃)
1,2,4-ОН	3.52 (<i>s</i>), 3.66 (<i>s</i>), 4.02(<i>s</i>)	-

Table 48 The NMR data of compound US8 in CDCl₃

Position	HMBC correlations	COSY	NOE
H-2	-	H _{ab} -3	H _{ab} -3
H _a -3	C-1, C-2, C-4	H-2, H _b -3	-
H _b -3	C-1, C-2, C-4	H-2, H _a -3	Me-8, Me-9, H-5
H-5	C-3, C-4, C-6	H _{ab} -6	H _{ab} -6, Me-8, Me-9
H _a -6	C-1, C-4, C-5	H-5, H _b -6	H-5, H _b -6, Me-8, Me-9
H _b -6	C-1, C-4, C-5	H-5, H _a -6	H-5, H _a -6, Me-8, Me-9
H-7	C-3, C-4, C-5, C-8, C-9	H-8, H-9	-
H-8	C-4, C-7, C-9	H-7	H _{ab} -3, H-5, H-7
H-9	C-4, C-7, C-8	H-7	H _{ab} -3, H-5, H-7
H-10	C-1, C-2, C-6	-	-

Table 49 The HMBC, COSY and NOE data of compound US8 in CDCl₃

3.3.2 Compound US9

Compound **US9** was obtained as a colorless gum. It exhibited UV absorption band at 233 nm (**Figure 70**) while hydroxyl and carbonyl absorption bands were found at 3354 and 1667 cm⁻¹, respectively, in the IR spectrum (**Figure 71**). The ¹H NMR spectrum (**Figure 72**) (**Table 50**) contained signals of amino protons [$\delta_{\rm H}$ 6.25 (*brs*) and 5.65 (*brs*)], one oxymethine proton ($\delta_{\rm H}$ 3.95, *brs*, 1H), one methine proton ($\delta_{\rm H}$ 2.10, *m*), and two methyl groups [$\delta_{\rm H}$ 0.98 (*d*, *J* = 9.0 Hz, 3H) and 0.84 (*d*, *J* = 6.0 Hz, 3H)]. The ¹³C NMR spectrum (**Figure 74**) (**Table 50**) showed one carbonyl carbon ($\delta_{\rm C}$ 175.89), one oxymethine carbon ($\delta_{\rm C}$ 76.20), one methine carbon ($\delta_{\rm C}$ 31.91) and two methyl carbons ($\delta_{\rm C}$ 19.06 and 15.45). The correlations of H-3 ($\delta_{\rm H}$ 2.10) with H-2 ($\delta_{\rm H}$ 3.95), Me-4 ($\delta_{\rm H}$ 0.98) and Me-5 ($\delta_{\rm H}$ 0.84) in the ¹H-¹H COSY spectrum (**Figure 77**) (**Table 50**) indicated the presence of a 1-hydroxy-2-methylpropyl unit. The appearance of H-2 and C-2 at low field connected this unit with the amide carbonyl C-1 ($\delta_{\rm C}$ 175.89). Therefore, **US9** was identified as 2-hydroxy-3-methylbutanamide (Nakajima and Ubukata, 1998).

Position	$\delta_{ m H}$	$\delta_{\rm C}$ (C-type)	HMBC correlations	COSY
	(mult., J_{Hz})			
1	-	175.89 (C=O)	-	-
2	3.95 (brs)	76.20 (CH)	-	H-3
3	2.10 (<i>m</i>)	31.91 (CH)	-	H-2, H-4, H-5
4	0.98 (<i>d</i> , 9.0)	19.06 (CH ₃)	C-2, C-3, C-5	H-3
5	0.84 (<i>d</i> , 6.0)	15.45 (CH ₃)	C-2, C-3, C-4	H-3
NH ₂	6.25 (brs)	-	-	-
	5.65 (brs)	-	-	-

Table 50 The NMR data of compound US9 in CDCl₃

3.3.3 Compound US10

Compound **US10** with the molecular formula $C_{14}H_{24}N_2O_4$ from EIMS (*m*/*z* 284) (**Figure 85**) was obtained as a colorless gum with [α]_D +32.64 (c = 0.13, CHCl₃). It exhibited an UV absorption band at 260 nm (**Figure 78**). Hydroxyl and amino absorption bands were found at 3374 cm⁻¹ while carbonyl absorption band was observed at 1665 cm⁻¹, in the IR spectrum (**Figure 79**). The ¹H NMR spectrum (**Figure 80**) (**Table 51**) contained signals of the 1-hydroxy-2-methylpropyl group [δ_{H} 4.07 (*d*, *J* = 3.3 Hz, 1H), 2.13 (*m*, 1H), 0.99 (*d*, *J* = 6.9 Hz, 3H) and 0.82 (*d*, *J* = 6.9 Hz, 3H)], one amino proton (δ_{H} 10.97, *d*, *J* = 10.8 Hz), two *cis*-olefinic protons [δ_{H} 7.50 (*dd*, *J* = 10.8 and 8.7 Hz, 1H) and 5.15 (*d*, *J* = 8.7 Hz, 1H)] and one hydroxy proton (δ_{H} 6.49, *brs*). Apart from four carbon signals of the 1-hydroxy-2-methylpropyl group I solved one carbonyl carbon (δ_{C} 172.41) and two olefinic carbons (δ_{C} 138.63 and 96.80). The lower-field olefinic proton, H-6 (δ_{H} 7.50), gave a ¹H-¹H COSY cross peak with the amino proton, H-5 (δ_{H} 10.97) (**Figure 84**) (**Table 51**), suggesting the presence of *cis*-aminovinyl moiety. HMBC correlations of both H-6 of the aminovinyl
group and H-3 ($\delta_{\rm H}$ 4.07) of the 1-hydroxy-2-methylpropyl group with the carbonyl carbon ($\delta_{\rm C}$ 172.41) (**Figure 83**) (**Table 51**) established the attachment of both units with the same carbonyl carbon. These data together with the molecular formula C₁₄H₂₄N₂O₄ suggested that compound **US10** was a symmetrical molecule. Therefore, compound **US10** was identified as a new enamide dimer.

Table 51 The NMR data of compound US10 in CD0	Cl
---	----

Position	$\delta_{ m H}$	$\delta_{\rm C}$ (C-type)	HMBC	COSY	NOE
	(mult., J_{Hz})		correlations		
1	0.82 (<i>d</i> , 6.9)	15.69 (CH ₃)	C-2, C-3, C-8	H-2	H-2, H-3,
					H-8
2	2.13 (<i>m</i>)	32.17 (CH)	C-1, C-3, C-8	H-1, H-3,	H-1, H-3,
				H-8	H-8
3	4.07 (<i>d</i> , 3.3)	76.16 (CH)	C-1, C-2, C-4	H-2	H-1, H-2,
			C-8		H-8
3-ОН	6.49 (<i>brs</i>)	-	-	-	-
4	-	172.41 (C=O)	-	-	-
5-NH	10.97 (<i>d</i> , 10.8)	-	-	H-6	-
6	7.50 (<i>dd</i> , 10.8, 8.7)	138.63 (CH)	C-4, C-7	5-NH, H-7	H-5, H-7
7	5.15 (<i>d</i> , 8.7)	96.80 (CH)	C-4, C-6	H-6	H-6
8	0.99 (<i>d</i> , 6.9)	18.90 (CH ₃)	C-1, C-2, C-3	H-2	H-1, H-2,
					Н-3
1	1	1	1	1	1

3.3.4 Compound US11

Compound **US11** with the molecular formula $C_{14}H_{24}N_2O_4$ from EIMS (*m/z* 284) (**Figure 93**) was obtained as a colourless gum [α]_D +137.84 (c = 0.13, CHCl₃). It exhibited similar UV (**Figure 86**) and IR (**Figure 87**) absorption bands to those of **US10**. The ¹H (**Figure 88**) (**Table 52**) and ¹³C (**Figure 89**) (**Table 52**) NMR data were almost identical to those of compound **US10** except for the appearance of 3-OH as two broad singlets. In addition, compound **US11** demonstrated HMBC correlations (**Figure 91**) (**Table 52**) similar to those of compound **US10**. However, they gave different specific rotation. Therefore, compound **US11** had the same structure as compound **US10** with the difference in the configuration of one of the hydroxycarbons.

Table 52 The NMR data of compound US11 in CDCl₃

Position	$\delta_{ m H}$	$\delta_{\rm C}$ (C-type)	HMBC	COSY
	(mult., J_{Hz})		correlations	
1	0.91 (<i>d</i> , 6.9)	15.44 (CH ₃)	C-2, C-3, C-8	H-2
2	2.15 (<i>m</i>)	31.86 (CH)	C-1, C-3, C-4, C-8	H-1, H-3,
				H-8
3	4.03 (<i>d</i> , 3.3)	76.43 (CH)	C-1, C-2, C-4, C-8	H-2
3-OH	6.43 (<i>brs</i>), 6.10 (<i>brs</i>)	-	-	-
4	-	176.43 (C=O)	-	-
5	11.05 (<i>d</i> , 10.8)	-	-	-
6	7.55 (<i>dd</i> , 10.8, 9.0)	138.16 (CH)	C-7	H-5, H-7
7	5.23 (d, 9.0)	97.11 (CH)	C-6	H-6
8	1.06 (<i>d</i> , 6.9)	19.05 (CH ₃)	C-1, C-2, C-3	H-2

3.3.5 Compound US12

Compound **US12** with the molecular formula $C_{12}H_{16}O_8$ from EIMS (*m/z* 288) (**Figure 100**) was obtained as a colorless gum. It exhibited a carbonyl absorption band at 1717 cm⁻¹ in the IR spectrum (**Figure 95**). The ¹H NMR spectrum (**Figure 96**) (**Table 53**) contained signals for two sets of coupled methylene protons $[\delta_H 4.65 (t, J = 6.0 \text{ Hz}, 2\text{H}) \text{ and } \delta_H 3.05 (t, J = 6.0 \text{ Hz}, 2\text{H})]$. The ¹³C NMR spectrum (**Figure 98**) (**Table 53**) showed one ester-carbonyl carbon (C-1, δ_C 174.49), one oxymethylene carbon (C-2, δ_C 69.30) and one methylene carbon (C-3, δ_C 30.73). HMBC cross peaks (**Figure 99**) (**Table 53**) of H-2 with C-1 and C-3 indicated the presence of the following structural unit with the molecular weight of 72 mass unit.

The low resolution mass² spectrum showed the molecular ion at m/zlished the structure of compound **US12** to be a tetralactone (Zhang *et al.*)

288 established the structure of compound **US12** to be a tetralactone (Zhang, *et al.*, 2004).

Table 53 The NMR data of compound US12 in CDCl₃

Position	$\delta_{\rm H} (mult., J_{Hz})$	& (C-type)	HMBC correlations
1	-	174.49 (C=O)	-
2	4.65 (<i>t</i> , 6.0)	69.30 (CH ₂)	C-1, C-3
3	3.05 (<i>t</i> , 6.0)	30.73 (CH ₂)	C-1, C-2

3.3.6 Compound US13

Compound **US13** with the molecular formula $C_{11}H_{13}NO_5$ from EIMS (*m/z* 239) (**Figure 109**) was isolated as a colorless gum. It exhibited UV (**Figure 101**) absorption bands at 221 and 277 nm while hydroxyl and carbonyl absorption bands

were found at 3409 and 1730 cm⁻¹, respectively, in the IR spectrum (Figure 102). The ¹H NMR spectrum (Figure 103) (Table 54) revealed the presence of a 1,4disubstituted benzene [$\delta_{\rm H}$ 7.00 (*d*, *J* = 8.4 Hz, 2H) and 6.70 (*d*, *J* = 8.4 Hz, 2H)] and four sets of methylene protons [$\delta_{\rm H}$ 4.55 (*t*, *J* = 6.3 Hz, 2H), 4.25 (*t*, *J* = 7.2 Hz, 2H), 2.89 (t, J = 6.3 Hz, 2H) and 2.80 (t, J = 7.2 Hz, 2H)]. The ¹³C NMR spectrum (Figure 105) (Table 54) showed one carbonyl carbon ($\delta_{\rm C}$ 169.00), one oxyquaternary carbon ($\delta_{\rm C}$ 153.90), one quaternary carbon ($\delta_{\rm C}$ 130.00), two carbon resonances for four aromatic carbons ($\delta_{\rm C}$ 115.45 and 129.99) and four methylene carbons ($\delta_{\rm C}$ 31.09, 34.06, 66.11 and 69.66). These data revealed that one of the substituents on the 1,4disubstituted benzene was a hydroxyl group. In the ¹H-¹H COSY spectrum (Figure 108) (Table 54), two sets of coupled methylene protons were observed: H-1 ($\delta_{\rm H}$ 4.55) with H-2 ($\delta_{\rm H}$ 2.89) and H-5 ($\delta_{\rm H}$ 4.25) with H-6 ($\delta_{\rm H}$ 2.80). HMBC correlations (**Figure** 107) (Table 54) of H-5 with C-3 ($\delta_{\rm C}$ 169.00) and C-7 ($\delta_{\rm C}$ 130.00) of the 4hydroxyphenyl unit and that of H-2 with C-3 established the ester linkage between C-2 and C-5 with an oxygen atom attached to C-5 and further linked C-6 with C-7 of the 4-hydroxyphenyl unit. The chemical shifts of C-2 and C-5 supported the assigned linkage. These results together with the molecular formula $C_{11}H_{13}NO_5$ suggested that the substituent at C-1 was a nitro group. Therefore, compound US13 was identified as a new nitroester compound.

Table 54 The NMR data of compound US13 in CDCl₃

Position	$\delta_{ m H}$	$\delta_{\rm C}$ (C-type)	HMBC	COSY	NOE
	(mult., J_{Hz})		correlations		
1	4.55 (<i>t</i> , 6.3)	69.66 (CH ₂)	C-2, C-3	H-2	H-2
2	2.89 (<i>t</i> , 6.3)	31.09 (CH ₂)	C-1, C-3	H-1	H-1
3	-	169.00 (C=O)	-	-	-
5	4.25 (<i>t</i> , 7.2)	66.11 (CH ₂)	C-3, C-6, C-7	H-6	H-6
6	2.80 (<i>t</i> , 7.2)	34.06 (CH ₂)	C-5, C-8	H-5	H-5, H-8
7	-	130.00 (C)	-	-	-
8	7.00 (<i>d</i> , 8.4)	129.99 (CH)	C-6, C-9, C-10	H-9	H-6, H-9
9	6.70 (<i>d</i> , 8.4)	115.45 (CH)	-	H-8	H-8
10	-	153.90 (C)	C-7, C-10	-	-

3.3.7 Compound US14

Compound US14 with the molecular formula $C_{34}H_{34}O_{14}$ from EIMS (Figure 120) was isolated as a yellow gum. The ¹³C NMR spectrum (Figure 115) (Table 55) consisted of 17 carbon resonances, indicating that compound US14 must be symmetrical. It exhibited UV (Figure 110) absorption bands at 218, 237 and 346 nm while hydroxyl and carbonyl absorption bands were found at 3501 and 1606 cm⁻¹, respectively, in the IR spectrum (Figure 111). The ¹H NMR spectrum (Figure 112) (Table 55) contained signals of two H-bonded hydroxyl groups [$\delta_{\rm H}$ 13.92 (s, 1H) and 11.86 (s, 1H)], two methyl protons [$\delta_{\rm H}$ 2.03 (s, 3H) and 1.01 (d, J = 6.0 Hz, 3H)], two sets of nonequivalent methylene protons [($\delta_{\rm H}$ 4.03, d, J = 13.2 Hz, 1H and 3.47, brd, J = 13.2 Hz, 1H) and ($\delta_{\rm H}$ 2.41, m, 1H and 2.32, m, 1H)], one oxymethine proton [$\delta_{\rm H}$ 5.69 (s, 1H)], two ortho-coupled aromatic protons [$\delta_{\rm H}$ 7.33 (d, J = 8.4 Hz, 1H) and 6.44 (d, J = 8.4 Hz, 1H)] and one methine proton ($\delta_{\rm H}$ 2.36, s) in each monomer. The connectivity of the spin systems into the carbon skeleton of compound US14 was established using HMBC correlations (Figure 117) (Table 56). One of the chelated hydroxy protons at $\delta_{\rm H}$ 11.86 gave ³J correlation with C-2 ($\delta_{\rm C}$ 117.92) and C-9a ($\delta_{\rm C}$ 106.42) while one of the *ortho*-coupled aromatic protons resonating at $\delta_{\rm H}$ 6.44

showed these correlations with C-2 and C-9a. These established the location of the hydroxyl group and the aromatic proton at C-1 ($\delta_{\rm C}$ 159.50) and C-4 ($\delta_{\rm C}$ 107.83), respectively. The remaining *ortho*-coupled proton ($\delta_{\rm H}$ 7.33) was then placed at C-3. In addition, HMBC correlations of H-4 to a carbonyl carbon ($\delta_{\rm C}$ 187.73) and an oxygenated carbon (C-4a, $\delta_{\rm C}$ 157.12) confirmed the presence of the carbonyl group at C-9a and established an oxysubstituent at C-4a. The substituent at C-2 remained unidentified at this stage. The other chelated hydroxyl group, resonating at δ_H 13.92, was assigned to be located at C-8 ($\delta_{\rm C}$ 178.02) as the ¹³C NMR spectrum consisted of only one carbonyl carbon of an unsaturated ketone. This hydroxy proton gave ${}^{3}J$ HMBC correlations with C-7 ($\delta_{\rm C}$ 33.40) and C-8a ($\delta_{\rm C}$ 100.83). The nonequivalent methylene protons ($\delta_{\rm H}$ 2.32 and 2.41), which showed a HMQC cross peak with C-7, exhibited HMBC cross peaks with C-5 ($\delta_{\rm C}$ 70.24) and C-6 ($\delta_{\rm C}$ 27.67). These data together with HMBC correlations of the doublet methyl protons ($\delta_{\rm H}$ 1.01) with C-5, C-6 and C-7 indicated the presence of -C=C(OH)CH₂CH(Me)CH- unit. The chemical shifts of H-5 ($\delta_{\rm H}$ 5.69) and H_{ab}-12 ($\delta_{\rm H}$ 4.03 and 3.47), the ³J HMBC correlations of H-5/C-8a, C-11 ($\delta_{\rm C}$ 17.53), C-12 ($\delta_{\rm C}$ 65.56), and C-13 ($\delta_{\rm C}$ 170.51) and that of Me-14/C-13 established the cyclohexene ring having an acetoxyl group at C-5 and a hydroxymethyl group at C-10a. The other substituent at C-10a was an oxysubstituent according to its chemical shift. On the basis of the molecular formula, each monomer contained 9 degrees of unsaturation, thus indicating an ether linkage between C-4a and C-10a to form a hydroxanthone unit. Therefore, the remaining substituent at C-2 must be the other identical hydroxyxanthone unit. The relative stereochemistry of US14 was established by the NOEDIFF results. The signal intensity of H-6 was enhanced when either H-5 or $H-12_b$ was irradiated (Figure 119) (Table 56), indicating their cis-relationship. The appearance of H-5 as a singlet established the location of H-5 at equatorial position. Therefore, the structure of US14 was identical to that of dicerandrol A which was previously isolated from Phomopsis longicalla (Wagenaar and Clardy, 2001). They also possessed similar specific rotation (US14: $[\alpha]_{D}$ -61.67, c = 0.01, CHCl₃ and dicerandrol A: $[\alpha]_{D}$ -50.9, c = 0.01, CHCl₃).

Position	US14		dicerandrol A	
	$\delta_{\rm H}(mult., J_{Hz})$	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}(mult., J_{Hz})$	$\delta_{\rm C}$ (C-type)
1, 1'-OH	11.86 (s)	159.50 (C)	11.83 (s)	160.3 (C)
2, 2'	-	117.92 (C)	-	118.5 (C)
3, 3'	7.33 (<i>d</i> , 8.4)	140.07 (CH)	7.39 (<i>d</i> , 8.5)	141.1 (CH)
4, 4'	6.44 (<i>d</i> , 8.4)	107.83(CH)	6.43 (<i>d</i> , 8.5)	109.0 (CH)
4a, 4a'	-	157.12 (C)	-	158.9 (C)
5, 5'	5.69 (s)	70.24 (CH)	5.61 (<i>d</i> , 1.5)	71.8 (CH)

Table 55 The ¹H and ¹³C NMR data of compound US14 in CDCl₃ and the ¹H NMR data of dicerandrol A in CD₃CN

Table 55 (continued)

Position	US14		dicerandrol A	
	$\delta_{\rm H}(mult., J_{Hz})$	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}(mult., J_{Hz})$	$\delta_{\rm C}$ (C-type)
6, 6'	2.36 (<i>m</i>)	27.67 (CH)	2.46 (<i>m</i>)	28.5 (CH)
7, 7′	a: 2.32 (<i>m</i>)	33.40 (CH ₂)	a: 2.33 (<i>m</i>)	34.1 (CH ₂)
	b: 2.41 (<i>m</i>)		b: 2.50 (<i>m</i>)	-
8, 8'-OH	13.92 (s)	178.02 (C)	13.94 (<i>bs</i>)	179.9 (C)
8a, 8a'	-	100.83 (C)	-	102.3 (C)
9, 9′	-	187.73 (C=O)	-	189.1 (C=O)
9a, 9a'	-	106.42 (C)	-	107.3 (C)
10a, 10a'	-	82.49 (C)	-	83.8 (C)

11, 11′	1.01 (<i>d</i> , 6.0)	17.53 (CH ₃)	1.00 (<i>d</i> , 6.5)	17.8 (CH ₃)
12, 12′	a: 4.03 (<i>d</i> , 13.2)	65.56 (CH ₂)	a: 3.90 (<i>dd</i> , 4.5,	65.8 (CH ₂)
			13.0)	
	b: 3.47 (<i>brd</i> ,		b: 3.55 (<i>dd</i> , 7.0,	-
	13.2)		13.0)	
13, 13′	-	170.51 (C=O)	-	171.4 (C=O)
14, 14′	2.03 (s)	20.83 (CH ₃)	2.03 (s)	21.0 (CH ₃)

Table 56 The HMBC, COSY and NOE data of compound US14 in CDC
--

Position	HMBC correlations	COSY	NOE
1-OH	C-1, C-2, C-9a	-	-
H-3	C-1, C-2, C-4a	H-4	H-4
H-4	C-2, C-4a, C-9, C-9a	H-3	H-3
H-5	C-6, C-7, C-8a, C-9, C-10a, C-11, C-12, C-13	-	H-6, H-11
H-6	C-5, C-11	H-11	H-5, H-11
H _a -7	C-5, C-6	H _b -7	H _b -7
H _b -7	C-5, C-6	H _a -7	H _a -7, H-11
8-OH	C-7, C-8, C-8a	-	-
H-11	C-5, C-6, C-7	H-6	H-5, H-6, H _a -7

Table 56 (continued)

Position	HMBC correlations	COSY	NOE
H _a -12	C-5, C-10a	H _b -12	H _b -12
H _b -12	C-5, C-10a	H _a -12	H-6, H _a -12
H-14	C-13		

3.3.8 Compound US15

Compound **US15** with the molecular formula $C_{34}H_{34}O_{14}$ from EIMS (*m/z* 666) (**Figure 130**) was isolated as a yellow gum. Its UV (**Figure 121**) and IR (**Figure 122**) absorption bands were similar to those of **US14**. These results suggested the presence of a dimer-tetrahydroxanthone as found in **US14**. The ¹H NMR spectrum

(Figure 123) (Table 57) revealed two sets of signals as follows: four H-bonded hydroxy protons [$\delta_{\rm H}$ 13.85 (s, 1H), 13.82 (s, 1H), 11.95 (s, 1H) and 11.36 (s, 1H)], four methyl protons [$\delta_{\rm H}$ 2.07 (s, 3H), 1.90 (s, 3H), 1.01 (d, J = 6.0 Hz, 3H) and 0.92 (d, J = 6.5 Hz, 3H)], four sets of nonequivalent methylene protons [$\delta_{\text{H}} 3.95 (d, J =$ 10.0 Hz, 1H) and 3.58 (d, J = 10.0 Hz, 1H)], [$\delta_{\rm H}$ 3.92 (d, J = 12.0 Hz, 1H) and 3.33 (d, J = 12.0 Hz, 1H)], $[\delta_{\text{H}} 2.39 (m, 1\text{H}) \text{ and } 2.31 (m, 1\text{H})]$, $[\delta_{\text{H}} 2.37 (m, 1\text{H}) \text{ and } 2.20 \text{ Hz})$ (m, 1H)], two oxymethine protons [$\delta_{\rm H}$ 5.59 (s, 1H) and 5.46 (d, J = 1.5 Hz, 1H)], four ortho-coupled aromatic protons [$\delta_{\rm H}$ 7.21 (d, J = 8.5 Hz, 1H) and 6.52 (d, J = 8.5 Hz, 1H), $\delta_{\rm H}$ 7.06 (d, J = 8.5 Hz, 1H) and 6.41 (d, J = 8.5 Hz, 1H)] and two methine protons [$\delta_{\rm H}$ 2.38 (*m*, 1H) and 2.31 (*m*, 1H)]. The ¹³C NMR spectrum (Figure 126) (Table 57) confirmed the above conclusion by the presence of 32 carbon resonances for 34 carbon atoms. These results indicated that US15 was unsymmetrical. The HMBC correlations of 1-OH with C-1 ($\delta_{\rm C}$ 158.44), C-2 ($\delta_{\rm C}$ 117.29) and C-9a ($\delta_{\rm C}$ 105.59) (Figure 128) (Table 57) indicated that two ortho-coupled aromatic protons were attributed to H-3 ($\delta_{\rm H}$ 7.06, $\delta_{\rm C}$ 137.44) and H-4 ($\delta_{\rm H}$ 6.41, $\delta_{\rm C}$ 107.21). The position of the attachment of the left-handed tetrahydroxanthone monomer must be C-2, the same position as found in US14. In addition, the HMBC cross peaks of 15-OH with C-15 ($\delta_{\rm C}$ 160.93), C-16 ($\delta_{\rm C}$ 109.15) and C-23a ($\delta_{\rm C}$ 105.59) revealed that two orthocoupled aromatic protons were H-16 ($\delta_{\rm H}$ 6.52, $\delta_{\rm C}$ 109.15) and H-17 ($\delta_{\rm H}$ 7.21, $\delta_{\rm C}$ 138.12). Consequently, the position of the attachment of the other tetrahydroxanthone monomer must be C-18. Bond formation between C-2 of the left-handed tetrahydroxanthone monomer and C-18 of the other tetrahydroxanthone monomer was confirmed by ³J HMBC correlation of H-3/C-18 and H-17/C-2. Therefore, US15 was assigned as the new tetrahydroxanthone dimer. Because of the overlap of proton signals in US15, its relative stereochemistry was determined by comparison of proton chemical shifts and coupling constants with those of compound US14. Compounds **US14** and **US15** were assumed to have the same relative stereochemistry on the basis of these similar data.

Position	$\delta_{ m H}$	$\delta_{\rm C}$ (C-type)	HMBC correlations	COSY	NOE
	(mult., J_{Hz})				
1-OH	11.95 (s)	158.44 (C)	C-1, C-2, C-9a	-	-
2	-	117.29 (C)	-	-	-
3	7.06 (<i>d</i> , 8.5)	137.44 (CH)	C-2, C-4a, C-18	H-4	H-4
4	6.41 (<i>d</i> , 8.5)	107.21 (CH)	C-2, C-4a, C-9a	H-3	H-3
4a	-	156.63 (C)	-	-	-

Table 57 The NMR data of compound US15 in CDCl_3

 Table 57 (continue)

Position	$\delta_{ m H}$	$\delta_{\rm C}$ (C-type)	HMBC correlations	COSY	NOE
	(mult., J_{Hz})				
5	5.46 (<i>d</i> , 1.5)	68.31 (CH)	C-7, C-8a, C-10a,	-	-
			C-11, C-13		
6	2.31 (<i>m</i>)	26.71 (CH)	C-5, C-11	H-11	-
7	a : 2.31 (<i>m</i>)	32.12 (CH ₂)	C-5, C-6, C-8a	-	-
	b : 2.39 (<i>m</i>)			-	-
8-OH	13.85 (s)	177.33 (C)	C-7, C-8, C-8a	-	-
8a	-	99.99 (C)	-	-	-
9	-	186.98 (C=O)	-	-	-
9a	-	105.59 (C)	-	-	-
10a	-	81.22 (C)	-	-	-
11	0.92 (<i>d</i> , 6.5)	16.29 (CH ₃)	C-5, C-6, C-7	H-6	Н-6,
					H _a -7
12	a : 3.33 (<i>d</i> , 12.0)	64.02 (CH ₂)	C-5, C-10a	-	-
	b : 3.92 (<i>d</i> , 12.0)			-	-
13	-	169.40 (C=O)	-	-	-
14	1.90 (s)	19.73 (CH ₃)	C-13	-	-
15-OH	11.36 (s)	160.93 (C)	C-15, C-16, C-23a	-	-
16	6.52 (<i>d</i> , 8.5)	109.15 (CH)	C-18, C-23a	H-17	H-17
17	7.21 (<i>d</i> , 8.5)	138.12 (CH)	C-2, C-15, C-18a	H-16	H-16
18	-	115.86 (C)	-	-	-
18a	-	153.30 (C)	-	-	-
19	5.59 (s)	70.13 (CH)	C-6, C-7, C-22a,	-	-
			C-24a, C-25, C-27		
20	2.38 (m)	26.64 (CH)	C-19, C-25	H-25	
21	a : 2.20 (<i>m</i>)	32.49 (CH ₂)	C-20	-	-
	b : 2.37 (<i>m</i>)			-	-
22-OH	13.82 (s)	176.64 (C)	C-21, C-22, C-22a	-	-

Position	$\delta_{ m H}$	$\delta_{\rm C}$ (C-type)	HMBC correlations	COSY	NOE
	(mult., J_{Hz})				
22a	-	100.11 (C)	-	-	-
23	-	186.98 (C=O)	-	-	-
23a	-	105.59 (C)	-	-	-
24a	-	81.69 (C)	-	-	-
25	1.01 (<i>d</i> , 6.0)	16.52 (CH ₃)	C-19, C-20, C-21	H-20	H-19
26	a: 3.58 (<i>d</i> , 10.0)	64.67 (CH ₂)	C-19, C-24a	-	-
	b: 3.95 (<i>d</i> , 10.0)			-	-
27	-	169.70 (C=O)	-	-	-
28	2.07 (s)	19.89 (CH ₃)	C-27	-	-

Table 57 (Continued)

3.3.9 Compound US16

Compound US16 with the molecular formula C₉H₁₂N₂O₆ from EIMS (*m/z* 244) (Figure 140) was obtained as a colorless gum with $[\alpha]_{\rm D}$ +20.50 (c = 0.11, MeOH). It exhibited UV (Figure 131) absorption bands at 215 and 260 nm while hydroxyl and carbonyl absorption bands were found at 3399 and 1606 cm⁻¹, in the IR spectrum (Figure 132). The ¹H NMR spectrum (Figure 133) (Table 58) contained signals of a ribose moiety [four methine protons at $\delta_{\rm H}$ 5.92 (d, J = 5.0 Hz, 1H), 4.29 (t, J = 5.0 Hz, 1H), 4.26 (t, J = 5.0 Hz, 1H), 4.02 (td, J = 2.5 and 5.0 Hz, 1H) and one set of methylene protons at $\delta_{\rm H}$ 3.84 (dd, J = 2.5 and 12.0 Hz, 1H), 3.78 (dd, J = 2.5 and 12.0 Hz, 1H) and a cytosine moiety [$\delta_{\rm H}$ 10.09 (*brs*, 1H), 7.99 (*d*, *J* = 8.5 Hz, 1H) and 5.60 (d, J = 8.5 Hz, 1H)]. The ¹³C NMR spectrum (Figure 136) (Table 58) showed two carbonyl carbons ($\delta_{\rm C}$ 163.63 and 151.69), six methine carbons ($\delta_{\rm C}$ 140.79, 101.61, 89.25, 85.17, 74.43, 70.27) and one methylene carbon ($\delta_{\rm C}$ 61.25). HMBC cross peaks (Figure 138) (Table 58) of H-7 of the ribose moiety with the carbonyl carbon, C-6 (δ $_{\rm C}$ 151.69), and the methine carbon, C-4 ($\delta_{\rm C}$ 140.79), linked C-7 of the ribose unit with N-5 of the cytosine group. Therefore, compound US16 was identified as uridine (Rosemeyer, et al., 1990).

Table 58 The NMR data of compound US16 in Acetone- d_6

Position	$\delta_{ m H}$	$\delta_{\rm C}({\rm C-type})$	HMBC	NOE
	(mult., J_{Hz})		correlations	
1	10.09 (brs)	-	-	-
2	-	163.63 (C=O)	-	-
3	5.60 (<i>d</i> , 8.5)	-	C-2, C-4	H-4
4	7.99 (<i>d</i> , 8.5)	101.61 (CH)	C-2, C-3, C-6,	H-3, H-7, H-8
			C-7	
6	-	140.79 (CH)	-	-
7	5.92 (<i>d</i> , 5.0)	151.69 (C=O)	C-4, C-6, C-8,	H-4, H-8
			C-9	
8	4.29 (<i>t</i> , 5.0)	89.25 (CH)	C-10	H-4
9	4.26 (<i>t</i> , 5.0)	74.43 (CH)	C-7, C-11	H _b -11
10	4.02 (<i>dt</i> , 5.0, 2.5)	70.27 (CH)	C-9	H _{ab} -11
11	a: 3.84 (<i>dd</i> , 12.0, 2.5)	85.17 (CH)	C-9, C-13	H-10, H _b -11
	b: 3.78 (<i>dd</i> , 12.0, 2.5)	61.25 (CH ₂)	-	H-10, H _a -11

PART IV

CHEMICAL CONSTITUENTS FROM THE ENDOPHYTIC FUNGUS XYLARIACEAE PSU-A80

CHAPTER 4.1

INTRODUCTION

4.1.1 Introduction

The Xylariaceae is a large family (Xylariales, Ascomycotina) of 36 or more genera (Whalley and Edwards, 1995). The perithecia and stromata are typically dark with black spores (<u>http://www</u>. hiddenforest.co.nz/fungi/family/xylariaceae/xylariaceae.htm). Secondary metabolites produced by this family are summarized in **Table 59**. In an ongoing search for bioactive fungal metabolites, we discovered antioxidation activity with IC₅₀ values of 0.20 and 1.37 mg/mL (DPPH assay) in the extracts of the broth and mycelia of the Xylariaceae fungus PSU-A80, respectively. The Xylariaceae fungus PSU-A80 was an endophytic fungus isolated from the leaves of *Garcinia atroviridis*.

Table 59	Metabolites	from the	Xylariaceae	fungus and	the biological	activity
			•	0	0	•

Compound	Structure	Activity	Reference
carneic acid A	70	antimicrobial	Quang, et al., 2006a
carneic acid B	71	antimicrobial	"
cohaerin A	72	-	Quang, et al., 2005b
cohaerin B	73	-	"
cohaerin C	74	antioxidant and	Quang, et al., 2006b
		antimicrobial	
cohaerin D	75	antioxidant and	"
		antimicrobial	
cohaerin E	76	antioxidant and	"
		antimicrobial	
cohaerin F	77	antioxidant and	"
		antimicrobial	

Table 59 (continued)

Compound	Structure	Activity	Reference
daldinin C	78	antioxidant	Quang, et al., 2004
daldinin E	79	antioxidant	,,
daldinin F	80	antioxidant	"
isoorchracein	81	-	Anderson, et al.,
			1983
Ramulosin	82	antimicrobial	Anderson, et al.,
			1983, Takano, et al.,
			1992
Mellein	83	phytotoxic and antifungal	Anderson, et al.,
			1983, Cabras, et al.,
			2006
4-hydroxy-	84	-	Anderson, et al.,
isoochracein			1983
4,4',5,5'-tetrahydroxy-	85	antioxidant	Quang, et al., 2004
1,1'-binaphthalene			
sassafrin A	86	antimicrobial	Quang, <i>et al.</i> ,2005a
sassafrin B	87	antimicrobial	,,
sassafrin C	88	antimicrobial	"
sassafrin D	89	antimicrobial	"
07H239-A	90	cytotoxic	McDonald, et al.,
			2004
			1

70 : R = H : carneic acid A

71 : R = OH : carneic acid B

73 : cohaerin B

75 : cohaerin D

77 : cohaerin F

74 : cohaerin C

76 : cohaerin E

CHAPTER 4.2

EXPERIMENTAL

4.2.1 Fermentation and extraction

The fermentation and extraction were performed using the same procedure as those of Xylariaceae PSU-A80. The crude EtOAc extracts from the culture broth and mycelia were obtained in 1.0 g and 1.0 g, respectively, both as a brown gum.

4.2.2 Purification of the broth extract

The broth extract of the fungus Xylariaceae PSU-A80 (1.0 g) was chromatographed on Sephadex LH-20 column chromatography using 50% methanoldichloromethane to afford forty fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford six fractions, as shown in **Table 60**.

Table 60 Fractions obtained from the broth extract by column chromatographyover Sephadex LH-20

Fraction	Weight (mg)	Physical appearance
А	41.0	Dark-brown gum
В	581.8	Dark-brown gum
С	235.3	Dark-brown gum
D	71.9	Dark-brown gum
E	40.0	Brown gum mixed with brown solid
F	30.0	Brown gum mixed with brown solid

Fraction A Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane as a mobile phase demonstrated none of UV-active

spots. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further studied.

Fraction B Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane as a mobile phase demonstrated four spots with the R_f values of 0.37, 0.44, 0.51 and 0.72 and two spots near the baseline under UV-S. Further separation by column chromatography over silica gel using a gradient system of methanol-dichloromethane was performed. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give four subfractions, as shown in **Table 61**.

Table 61 Subfractions obtained from Fraction B by column chromatography over silica gel

Eluent	Weight (mg)	Physical appearance
100% CH ₂ Cl ₂	1.4	Yellow gum
1% MeOH/CH ₂ Cl ₂	358.3	Dark-brown gum
1-2% MeOH/CH ₂ Cl ₂	107.2	Dark-brown gum
3% MeOH/CH ₂ Cl ₂ -	106.4	Dark-brown gum
100% MeOH		
	Eluent 100% CH ₂ Cl ₂ 1% MeOH/CH ₂ Cl ₂ 1-2% MeOH/CH ₂ Cl ₂ 3% MeOH/CH ₂ Cl ₂ - 100% MeOH	Eluent Weight (mg) 100% CH2Cl2 1.4 1% MeOH/CH2Cl2 358.3 1-2% MeOH/CH2Cl2 107.2 3% MeOH/CH2Cl2- 106.4 100% MeOH 100% MeOH

Subfraction B1 Chromatogram characteristics on normal phase TLC with 30% dichloromethane-petroleum ether as a mobile phase demonstrated none of UV-active spots. Because of the minute quantity, it was not further investigated.

Subfraction B2 Chromatogram characteristics on normal phase TLC with 30% dichloromethane-petroleum ether as a mobile phase demonstrated six spots with the R_f values of 0.16, 0.18, 0.23, 0.32, 0.36 and 0.59 and two spots near the baseline under UV-S and two other spots with the R_f values of 0.45 and 0.52 as violet spots after dipping in ASA reagent and subsequently heating the TLC plate. Further separation by column chromatography over silica gel was performed using 20% dichloromethane-petroleum ether and gradually enriched with dichloromethane and then methanol until pure methanol. Fractions, which contained the similar

components, were combined and evaporated to dryness under reduced pressure to give ten subfractions, as shown in **Table 62**.

Table 62 Subfractions obtained	from Subfraction B2 I	by column o	chromatography
over silica gel			

Subfraction	Eluent	Weight	Physical appearance
		(mg)	
B21	20-30% CH ₂ Cl ₂ /Petrol	15.9	Colorless gum
B22	30% CH ₂ Cl ₂ /Petrol	3.6	Pale brown gum
B23	30-40% CH ₂ Cl ₂ /Petrol	5.1	Colorless gum
B24	50% CH ₂ Cl ₂ /Petrol	14.3	Brown gum
B25	60-90% CH ₂ Cl ₂ /Petrol	34.8	Pale brown gum
B26	100% CH ₂ Cl ₂ -	45.5	Brown gum
	1% MeOH/CH ₂ Cl ₂		
B27	2% MeOH/CH ₂ Cl ₂	30.0	Brown gum
B28	3-5% MeOH/CH ₂ Cl ₂	75.8	Brown gum
B29	7-10% MeOH/CH ₂ Cl ₂	40.0	Brown gum
B210	10% MeOH/CH ₂ Cl ₂ -	30.7	Brown gum mixed
	100%MeOH		with pale brown solid

 $\label{eq:subfraction B21 (US17) Chromatogram characteristics on normal phase TLC with 100\% dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.73 under UV-S.$

UV (MeOH) λ_{max} nm (log ε)	279 (3.22)
FT-IR (neat) v_{cm-1}	3419 (OH stretching), 2928 (C-H stretching)
	1641 (C=C stretching)
¹ H NMR (CDCl ₃) (δ ppm)	9.32 (s, 1H), 7.41 (d, $J = 7.8$ Hz, 1H), 7.35 (t, J
(300 MHz)	= 8.1 Hz, 1H), 7.30 (t, $J = 7.8$ Hz, 1H), 7.29 (dd,
	J = 8.1, 1.8 Hz, 1H), 6.87 (dd , $J = 8.1, 1.8$ Hz,
	1H), 6.76 (d , J = 7.8 Hz, 1H), 4.05 (s , 3H)

```
    <sup>13</sup>C NMR (CDCl<sub>3</sub>) (δ ppm)
    (75 MHz)
    DEPT (135°) (CDCl<sub>3</sub>)
    CH : 127.72, 125.60, 121.87, 118.87, 110.42, 103.91
    CH<sub>3</sub>: 56.10
```

Subfraction B22 Chromatogram characteristics on normal phase TLC with 100% dichloromethane as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B23 (US18) Chromatogram characteristics on normal phase TLC with 100% dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.50 under UV-S.

$[\alpha]_{\rm D}^{^{28}}$		$-79.20 (c = 0.25, CHCl_3)$
UV (MeOH) λ_{max} nm (log ε)		249 (3.72), 326 (3.49)
FT-IR (neat) v_{cm-1}		3419 (OH stretching), 2925 (C-H stretching)
		1664 (C=O stretching)
¹ H NMR (CDCl ₃) (δ ppm)		11.01 (s, 1H), 7.29 (d, $J = 8.4$ Hz, 1H), 6.82 (d,
(300 MHz)		J = 8.4 Hz, 1H), 4.69 (m , 1H), 2.95 (dd , $J =$
		16.5, 3.3 Hz, 1H), 2.72 (<i>dd</i> , <i>J</i> = 16.5, 11.4 Hz,
		1H), 2.20 (<i>s</i> , 3H), 1.50 (<i>d</i> , <i>J</i> = 6.5 Hz, 3H)
¹³ C NMR (CDCl ₃) (δ ppm)		170.33, 160.54, 137.92, 115.72, 108.11,
(75 MHz)		75.41, 31.94, 20.92, 18.07
DEPT (135°) (CDCl ₃)	CH :	137.92, 115.72, 75.41
	CH_2 :	31.94
	CH_3 :	20.92, 18.07

Subfraction B24 Chromatogram characteristics on normal phase TLC with 100% dichloromethane as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B25 Chromatogram characteristics on normal phase TLC with 100% dichloromethane (4 runs) as a mobile phase demonstrated three spots with the R_f values of 0.11, 0.29 and 0.45 and one spot near the baseline under UV-S. Further separation by column chromatography over silica gel was performed using 60% dichloromethane-petroleum ether and gradually enriched with dichloromethane and then methanol until pure methanol. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give three subfractions, as shown in Table 63.

Table 63 Subfractions obtained from Subfraction B25 by column chromatography over silica gel

Subfraction	Eluent	Weight (mg)	Physical appearance
B25a	60-70% CH ₂ Cl ₂ /Petrol	9.0	Brown gum
B25b	80-90% CH ₂ Cl ₂ /Petrol	12.5	Brown gum
B25c	100%CH ₂ Cl ₂ -100%MeOH	14.7	Brown gum

Subfraction B25a Chromatogram characteristics on normal phase TLC with 1% ethyl acetate-petroleum ether as a mobile phase demonstrated two spots with the R_f values of 0.47 and 0.58 under UV-S. Further purification by precoated TLC with 15% ethyl acetate-petroleum ether (14 runs) as a mobile phase afforded three bands.

Band 1 was obtained as a yellow gum (1.1 mg). Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether (2 runs) as a mobile phase demonstrated one spot with the R_f value of 0.29 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Band 2 was obtained as a yellow gum (0.9 mg). Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether (2 runs) as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Band 3 (US19) was obtained as a colorless gum (0.9 mg). Chromatogram characteristics on normal phase TLC with 20% ethyl acetatepetroleum ether (2 runs) as a mobile phase demonstrated one spot with the R_f value of 0.33.

$\left[\alpha\right]_{\mathrm{D}}^{^{28}}$		+12.3 (c = 0.03, CHCl ₃)
UV (MeOH) λ_{max} nm (log ε)		258 (3.47), 319 (3.27)
FT-IR (neat) v_{cm-1}		3387 (OH stretching), 2926 (C-H stretching)
		1673 (C=O stretching)
¹ H NMR (CDCl ₃) (δ ppm)		7.50 (t , J = 8.0 Hz, 1H), 7.03 (dt , J = 8.0, 0.5
(300 MHz)		Hz, 1H), 6.93 (dd , $J = 8.0$, 0.5 Hz, 1H), 4.93
		(dd, J = 6.5, 3.0 Hz, 1H), 3.01 (ddd, J = 18.0,
		8.0, 4.5 Hz, 1H), 2.66 (ddd , $J = 18.0$, 8.5, 5.0
		Hz, 1H), 2.35 (m, 1H), 2.22 (m, 1H)
¹³ C NMR (CDCl ₃) (δ ppm)		204.10, 160.34, 145.85, 136.94, 117.83, 117.32,
(125 MHz)		115.20, 67.76, 34.55, 31.24
DEPT (135°) (CDCl ₃)	CH :	136.94, 117.83, 117.32, 67.76
	CH_2 :	34.55, 31.24

Subfraction B25b Chromatogram characteristics on normal phase TLC with 1% ethyl acetate-petroleum ether as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B25c Chromatogram characteristics on normal phase TLC with 1% ethyl acetate-petroleum ether as a mobile phase demonstrated none of UV-active spots. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Subfraction B26 Chromatogram characteristics on normal phase TLC with 100% dichloromethane (4 runs) as a mobile phase demonstrated three spots with the R_f values of 0.11, 0.25 and 0.34 under UV-S. Further separation by column chromatography over silica gel was performed using 20% ethyl acetate-petroleum

ether and gradually enriched with ethyl acetate and then methanol until pure methanol. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give ten subfractions, as shown in **Table 64**.

Subfraction	Eluent	Weight (mg)	Physical appearance
B26a	20-30% EtOAc/Petrol	4.2	Yellow gum
B26b	30% EtOAc/Petrol	3.3	Yellow gum
B26c	40% EtOAc/Petrol	6.5	Brown gum
B26d	50% EtOAc/Petrol	5.9	Brown gum
B26e	60% EtOAc/Petrol	3.2	Brown gum
B26f	70% EtOAc/Petrol	5.5	Brown gum
B26g	70-80% EtOAc/Petrol	5.8	Pale yellow gum
B26h	90% EtOAc/Petrol	3.3	Brown gum
B26i	100% EtOAc	1.0	Pale yellow gum
B26j	1% MeOH/EtOAc-100%	4.0	Brown gum
	МеОН		

Table 64 Subfractions obtained from Subfraction B26 by column chromato-graphy over silica gel

Subfraction B26a Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether (4 runs) as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B26b Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether (4 runs) as a mobile phase demonstrated one pale spot with the R_f value of 0.42 under UV-S. The ¹H NMR spectrum indicated that it contained many components. Therefore, it was not further investigated.

Subfraction B26c Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether (4 runs) as a mobile phase demonstrated one major spot with the R_f value of 0.41 under UV-S. Further purification by

precoated TLC with 2% ethyl acetate-dichloromethane (8 runs) as a mobile phase afforded three bands.

Band 1 was obtained as a colorless gum (0.8 mg). Chromatogram characteristics on normal phase TLC with 2% ethyl acetatedichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.66 under UV-S. The ¹H NMR spectrum indicated that the major compound was **US3** which was isolated from *P. microspora* PSU-A70 (see Chapter 2)

Band 2 was obtained as a yellow gum (0.9 mg). Chromatogram characteristics on normal phase TLC with 2% ethyl acetate-dichloromethane as a mobile phase demonstrated two pale spots with the R_f values of 0.34 and 0.41 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Band 3 was obtained as a yellow gum (0.7 mg). Chromatogram characteristics on normal phase TLC with 2% ethyl acetate-dichloromethane as a mobile phase demonstrated none of UV-active spots. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Therefore, it was not further studied.

Subfraction B26d Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether (4 runs) as a mobile phase demonstrated one major spot with the R_f value of 0.29 under UV-S. Further purification by precoated TLC with 2% ethyl acetate-dichloromethane (8 runs) as a mobile phase afforded three bands.

Band 1 was obtained as a yellow gum (0.7 mg). Chromatogram characteristics on normal phase TLC with 1% ethyl acetate-dichloromethane as a mobile phase demonstrated one pale spot with the R_f value of 0.75 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Band 2 (US20) was obtained as a pale yellow gum (0.7 mg). Chromatogram characteristics on normal phase TLC with 1% ethyl acetatedichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.61 under UV-S.

$\left[\alpha\right]_{\mathrm{D}}^{^{26}}$		-70.4 (c = 0.04, CH ₃ OH)
UV (MeOH) λ_{max} nm (log ε)		223 (3.23), 251 (3.20), 265 (3.17), 289 (3.10),
		389 (2.80)
FT-IR (neat) v_{cm-1}		3774 (OH stretching), 2926 (C-H stretching)
		1670 (C=O stretching)
¹ H NMR (CDCl ₃) (δ ppm)		12.60 (s , 1H), 8.22 (s , 1H), 7.53 (dd , J = 8.5,
(500 MHz)		7.5, Hz, 1H), 7.36 (dd , J = 7.5, 0.5 Hz, 1H), 7.24
		(d, J = 8.0 Hz, 1H), 6.92 (dd, J = 8.5, 0.5 Hz,
		1H), 6.77 (d , J = 8.0 Hz, 1H), 5.67 (t , J = 4.5
		Hz, 1H), 5.28 (dd , $J = 10.0$, 4.5 Hz, 1H), 4.05
		(dd, J = 14.5, 5.5 Hz, 1H), 3.39 $(dd, J = 16.5,$
		5.5 Hz, 1H), 2.80 (dt , $J = 12.5$, 4.5 Hz, 1H), 2.39
		(dd, J = 16.5, 14.5 Hz, 1H), 2.02 (m, 1H)
¹³ C NMR (CDCl ₃) (δ ppm)		204.21, 163.45, 155.10, 142.36, 137.54, 137.02,
(125 MHz)		135.87, 135.40, 123.15, 117.69, 117.25, 116.33,
		114.62, 72.96, 62.47, 48.91, 42.80. 36.25
DEPT (135°) (CDCl ₃)	CH :	137.02, 123.15, 117.69, 116.33, 114.62,
		72.96, 62.47, 48.91
	CH_2 :	42.80, 36.25
EIMS m/z (% relative intensi	ty):	336 (6), 319 (27), 318 (100), 300 (50), 290 (28)

Band 3 was obtained as a yellow gum (1.3 mg). Chromatogram characteristics on normal phase TLC with 1% ethyl acetate-dichloromethane as a mobile phase demonstrated none of UV-active spots. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Subfraction B26e Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether (4 runs) as a mobile phase demonstrated two spots with the R_f values of 0.32 and 0.36 under UV-S. Further purification by precoated TLC with 4% ethyl acetate-dichloromethane (8 runs) as a mobile phase afforded three bands.

Band 1 was obtained as a yellow gum (0.9 mg). Chromatogram characteristics on normal phase TLC with 4% ethyl acetate-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.23 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Band 2 was obtained as a yellow gum (1.0 mg). Chromatogram characteristics on normal phase TLC with 4% ethyl acetate-dichloromethane as a mobile phase demonstrated one pale spot with the R_f value of 0.18 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Band 3 was obtained as a yellow gum (1.2 mg). Chromatogram characteristics on normal phase TLC with 4% ethyl acetate-dichloromethane as a mobile phase demonstrated none of UV-active spots. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further studied.

Subfraction B26f Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether (4 runs) as a mobile phase demonstrated two spots with the R_f values of 0.23 and 0.50 under UV-S. Further purification by precoated TLC with 4% ethyl acetate-dichloromethane (10 runs) as a mobile phase afforded two bands.

Band 1 was obtained as a yellow gum (0.9 mg). Chromatogram characteristics on normal phase TLC with 4% ethyl acetate-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.55 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Band 2 (US21) was obtained as a pale yellow gum (1.0 mg). Chromatogram characteristics on normal phase TLC with 4% ethyl acetatedichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.50 under UV-S.

 $[\alpha]_{D}^{26} -23.5 (c = 0.04, MeOH)$ UV (MeOH) λ_{max} nm (log ε) 226 (2.10), 249 (2.03), 266 (1.92), 294 (1.93),

		388 (1.71)
FT-IR (neat) v_{cm-1}		3774 (OH stretching), 2927 (C-H stretching)
		1697 (C=O stretching)
¹ H NMR (CDCl ₃) (δ ppm)		12.60 (s, 1H), 8.00 (s, 1H), 7.53 (t, $J = 8.0$ Hz,
(500 MHz)		1H), 7.37 (dd , J = 8.0, 1.0 Hz, 1H), 7.24 (d , J =
		8.0 Hz, 1H), 6.92 (dd , J = 8.0, 1.0 Hz, 1H), Hz,
		1H), 6.78 (d , J = 8.0 Hz, 1H), Hz, 1H), 5.67 (t , J
		= 3.0 Hz, 1H), 5.19 (dd , J = 10.0, 4.0 Hz, 1H),
		4.07 (dd, J = 14.5, 6.0 Hz, 1H), 3.64 (s, 1H),
		3.40 (dd, $J = 16.5$, 5.5 Hz, 1H), 2.80 (dt, $J =$
		13.0, 4.0 Hz, 1H), 2.39 (dd , $J = 16.5$, 14.0 Hz,
		1H), 2.02 (<i>ddd</i> , <i>J</i> = 13.0, 10.5, 3.0 Hz, 1H)
¹³ C NMR (CDCl ₃) (δ ppm)		204.27, 163.45, 155.03, 142.40, 137.51, 137.02,
(125 MHz)		135.87, 135.37, 123.26, 117.72, 116.40, 114.61,
		74.37, 62.44, 56.03, 48.94, 42.76, 35.60
DEPT (135°) (CDCl ₃)	CH :	137.02, 123.26, 117.72, 116.40, 114.61, 74.37,
		62.44, 48.94
	CH_2 :	42.76, 35.60
	CH_3 :	56.03
EIMS <i>m/z</i> (% relative intensity):		350 (28), 318 (100), 300 (62), 290 (34), 271 (29)

$\left[\alpha\right]_{\mathrm{D}}^{27}$	-33.3 (c = 0.03, MeOH)
UV (MeOH) λ_{max} nm (log ε)	220 (4.38), 293 (4.35)
FT-IR (neat) v_{cm-1}	3419 (OH stretching), 2927 (C-H stretching)
	1683 (C=O stretching)
¹ H NMR (CDCl ₃) (δ ppm)	7.33 (m , 5H), 7.15 (s , 1H), 4.25 (dd , $J = 9.3$, 6.9

(300 MHz)		Hz, 1H), 3.65 (m, 1H), 2.90 (m, 3H), 2.42 (m,
		1H), 2.22 (<i>m</i> , 1H), 2.06 (<i>m</i> , 1H), 1.98 (<i>m</i> , 1H)
¹³ C NMR (CDCl ₃) (δ ppm)		167.98, 161.42, 133.62, 133.58, 129.52, 128.57,
(75 MHz)		128.44, 128.07, 121.19, 58.85, 45.29, 34.72,
		28.01, 22.84
DEPT (135°) (CDCl ₃)	CH :	129.52, 128.57, 128.44, 121.19, 58.85
	CH_2 :	45.29, 28.01, 22.84
	CH_3 :	34.72

Subfraction B26h Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether (4 runs) as a mobile phase demonstrated one spot with the R_f value of 0.11 under UV-S. The ¹H NMR spectrum indicated that the major compound was US17.

Subfraction B26i (US23) Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-dichloromethane (4 runs) as a mobile phase demonstrated one spot with the R_f value of 0.11 under UV-S.

$[\alpha]_{\rm D}^{26}$		-12.8 (c = 0.03, MeOH)
UV (MeOH) λ_{max} nm (log ε)		225 (3.85), 302 (3.70)
FT-IR (neat) v_{cm-1}		3364 (OH stretching), 2926 (C-H stretching)
		1680 (C=O stretching)
¹ H NMR (CDCl ₃) (δ ppm)		7.76 (s, 1H), 7.43 (t, $J = 7.5$ Hz, 1H), 7.37 (d,
(300 MHz)		J = 7.5 Hz, 1H), 7.32 ($t, J = 7.5$ Hz, 1H), 7.00
		(s, 1H), 4.32 (dd, J = 10.0, 7.0 Hz, 1H), 3.82 (dt, J = 10.0, 7.0 Hz, 1H)
		J = 8.5 Hz, 1H), 3.65 (m, 1H), 2.48 (m, 1H),
		2.12 (<i>m</i> , 1H), 2.03 (<i>m</i> , 1H), 1.97 (<i>m</i> , 1H)
¹³ C NMR (CDCl ₃) (δ ppm)		165.83, 157.86, 133.23, 129.39, 128.61, 128.45,
(125 MHz)		115.86, 59.18, 45.67, 28.94, 21.83
DEPT (135°) (CDCl ₃)	CH :	129.39, 128.61, 128.45, 115.86, 59.18
	CH_2 :	45.67, 28.94, 21.83

Subfraction B26j Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether as a mobile phase demonstrated none of UV-active spots. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B27 Chromatogram characteristics on normal phase TLC with 0.5% methanol-dichloromethane (3 runs) as a mobile phase demonstrated a long tail under UV-S. Further separation by column chromatography over silica gel was performed using 30% ethyl acetate-petroleum ether and gradually enriched with ethyl acetate and then methanol until pure methanol. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give four subfractions, as shown in **Table 65**.

Subfraction	Eluent	Weight (mg)	Physical appearance
B27a	30-50% EtOAc/Petrol	9.1	Yellow gum
B27b	60-70% EtOAc/Petrol	53.0	Yellow gum
B27c	80% EtOAc/Petrol-	13.7	Brown gum
	100% EtOAc		
B27d	1% MeOH/EtOAc-	12.4	Brown gum
	100% MeOH		

Table 65 Subfractions obtained from Subfraction B27 by column chromatography over silica gel

Subfraction B27a Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether (4 runs) as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B27b Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether (4 runs) as a mobile phase demonstrated one spot with the R_f value of 0.42 under UV-S and other violet spots with the R_f values of 0.54 and 0.68 after dipping in ASA reagent and subsequently heating the TLC plate. Further separation by column chromatography over silica gel using 30%

ethyl acetate-petroleum ether and gradually enriched with ethyl acetate and then methanol until pure methanol was performed. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give four subfractions, as shown in **Table 66**.

Subfraction	Eluent	Weight (mg)	Physical appearance
B27b1	30-50% EtOAc/Petrol	2.9	Yellow gum
B27b2	60-70% EtOAc/Petrol	16.9	Yellow gum
B27b3	80-90% EtOAc/Petrol	6.5	Brown gum
B27b4	100% EtOAc-100%	18.5	Brown gum
	MeOH		

Table 66 Subfractions obtained from Subfraction B27b by column chromatography over silica gel

Subfraction B27b1 Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether (4 runs) as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B27b2 Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether (4 runs) as a mobile phase demonstrated one spot with the R_f value of 0.34 under UV-S and the other violet spot with the R_f value of 0.68 and one spot near the baseline after dipping in ASA reagent and subsequently heating the TLC plate. Further separation on column chromatography over Sephadex LH-20 using 50% methanol-dichloromethane was performed. All subfractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford three subfractions, as shown in Table 67.

Subfraction	Weight (mg)	Physical appearance
B27b21	7.3	Pale brown gum
B27b22	6.1	Pale brown gum
B27b23	1.5	Brown gum

Table 67 Subfractions obtained from Subfraction B27b2 by column chromatography over Sephadex LH-20

Subfraction B27b21 Chromatogram characteristics on normal phase TLC with 30% ethyl acetate-petroleum ether (2 runs) as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B27b22 Chromatogram characteristics on normal phase TLC with 30% ethyl acetate-petroleum ether (2 runs) as a mobile phase demonstrated two pale spots with the R_f values of 0.34 and 0.49 under UV-S and many spots after dipping in ASA reagent and subsequently heating the TLC plate. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B27b23 Chromatogram characteristics on normal phase TLC with 30% ethyl acetate-petroleum ether (2 runs) as a mobile phase demonstrated many spots near the baseline after dipping in ASA reagent and subsequently heating the TLC plate. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Subfraction B27b3 Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether (4 runs) as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B27b4 Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether (4 runs) as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Subfraction B27c Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether (4 runs) as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B27d Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-petroleum ether (4 runs) as a mobile phase demonstrated a long tail under UV-S and the other violet spot with the R_f value of 0.34 after dipping in ASA reagent and subsequently heating the TLC plate. Further separation by column chromatography over silica gel was performed using 20% ethyl acetate-petroleum ether and gradually enriched with ethyl acetate and then methanol until pure methanol. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give two subfractions, as shown in Table 68.

Table 68 Subfractions obtained from Subfraction B27d by column chromatography over silica gel

Subfraction	Eluent	Weight (mg)	Physical appearance
B27d1	20-60% EtOAc/Petrol	3.3	Brown gum
B27d2	70% EtOAc/Petrol-100%	7.7	Dark-Brown gum
	MeOH		

Subfraction B27d1 Chromatogram characteristics on normal phase TLC with 30% ethyl acetate-petroleum ether (2 runs) and 50% ethyl acetate-petroleum ether (2 runs) as mobile phases demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B27d2 Chromatogram characteristics on normal phase TLC with 30% ethyl acetate-petroleum ether (2 runs) and 50% ethyl acetate-petroleum ether (2 runs) as mobile phases demonstrated a long tail after dipping in ASA reagent and subsequently heating the TLC plate. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B28 Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (2 runs) as a mobile phase demonstrated four spots with the R_f values of 0.33, 0.37, 0.42 and 0.53 under UV-S. Further separation by column chromatography over silica gel was performed using a gradient system of methanol-dichloromethane. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give six subfractions, as shown in Table 69.

Table 69 Subfractions obtained from Subfraction B28 by column chromatography over silica gel

Subfraction	Eluent	Weight (mg)	Physical appearance	
B28a	100% CH ₂ Cl ₂ -	6.9	Pale brown gum	
	0.5% MeOH/CH ₂ Cl ₂			
B28b	1% MeOH/CH ₂ Cl ₂	10.2	Pale brown gum	
B28c	1-1.5% MeOH/CH ₂ Cl ₂	20.6	Pale brown gum	
B28d	2% MeOH/CH ₂ Cl ₂	7.1	Pale brown gum	
B28e	3% MeOH/CH ₂ Cl ₂	18.6	Pale brown gum	
B28f	4% MeOH/CH ₂ Cl ₂ -	10.6	Brown gum	
	100% MeOH			

Subfraction B28a Chromatogram characteristics on normal phase TLC with 100% dichloromethane (4 runs) as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B28b Chromatogram characteristics on normal phase TLC with 4% ethyl acetate-dichloromethane (2 runs) as a mobile phase demonstrated two spots with the R_f values of 0.20 and 0.27 under UV-S. Further purification by precoated TLC with 4% ethyl acetate-dichloromethane (6 runs) as a mobile phase afforded two bands.

Band 1 was obtained as a pale brown gum (1.2 mg). Its chromatogram characteristics on normal phase TLC with 4% ethyl acetate-

dichloromethane (2 runs) as a mobile phase demonstrated two pale spots with the R_f values of 0.25 and 0.54 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Band 2 was obtained as a pale brown gum (1.3 mg). Its chromatogram characteristics on normal phase TLC with 4% ethyl acetatedichloromethane (3 runs) as a mobile phase demonstrated one major spot with the R_f value of 0.18 under UV-S. Further purification by precoated TLC with 70% ethyl acetate-hexane (3 runs) as a mobile phase afforded a pale brown gum (0.4 mg). Its chromatogram characteristics on normal phase TLC with 4% ethyl acetatedichloromethane (3 runs) as a mobile phase afforded a pale brown gum (0.4 mg). Its chromatogram characteristics on normal phase TLC with 4% ethyl acetatedichloromethane (3 runs) as a mobile phase demonstrated one spot under UV-S with the same R_f value as **US26**.

Subfraction B28c Chromatogram characteristics on normal phase TLC with 4% ethyl acetate-dichloromethane (2 runs) as a mobile phase demonstrated two spots near the baseline under UV-S. Further separation by column chromatography over silica gel was performed using 4% ethyl acetate-dichloromethane and gradually enriched with ethyl acetate and then methanol until pure methanol. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give three subfractions, as shown in **Table 70**.

Table	70 Subfraction	s obtained f	from Subf	raction B28	Sc by col	lumn cl	nromato-
	graphy over	r silica gel					

Subfraction	Eluent	Weight (mg)	Physical appearance
B28c1	4-80% EtOAc/CH ₂ Cl ₂	6.8	Pale brown gum
B28c2	80% EtOAc/CH ₂ Cl ₂ -	4.9	Brown gum
	100% EtOAc		
B28c3	1% MeOH/EtOAc-	7.9	Brown gum
	100% MeOH		

Subfraction B28c1 Chromatogram characteristics on normal phase TLC with 5% ethyl acetate-dichloromethane as a mobile phase demonstrated no
definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B28c2 Chromatogram characteristics on normal phase TLC with 5% ethyl acetate-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.18 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B28c3 Chromatogram characteristics on normal phase TLC with 5% ethyl acetate-dichloromethane as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B28d Chromatogram characteristics on normal phase TLC with 4% ethyl acetate-dichloromethane (2 runs) as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B28e Chromatogram characteristics on normal phase TLC with 8% ethyl acetate-dichloromethane (3 runs) as a mobile phase demonstrated three spots with the R_f values of 0.14, 0.25 and 0.66 under UV-S. Further separation by column chromatography over silica gel was performed using 20% ethyl acetate-dichloromethane and gradually enriched with dichloromethane and then methanol until pure methanol. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give four subfractions, as shown in Table 71.

Table 71 Subfractions obtained from Subfraction B28e by column chromatography over silica gel

Subfraction	Eluent	Weight (mg)	Physical appearance
B28e1	20-80% EtOAc/CH ₂ Cl ₂	2.5	Pale brown gum
B28e2	80% EtOAc/CH ₂ Cl ₂ -	5.4	Dark-brown gum
	1% MeOH/EtOAc		
B28e3	2-10% MeOH/EtOAc	4.5	Dark-brown gum

Table 71 (continued)

Subfraction	Eluent	Weight (mg)	Physical appearance
B28e4	10% MeOH/EtOAc -	5.8	Dark-brown gum
	100% MeOH		

Subfraction B28e1 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (4 runs) as a mobile phase demonstrated one pale spot with the R_f value of 0.38. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Subfraction B28e2 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (4 runs) as a mobile phase demonstrated one major spot with the R_f value of 0.19 under UV-S. The ¹H NMR spectrum indicated that the major compound was US24.

Subfraction B28e3 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (4 runs) as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B28e4 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (4 runs) as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Subfraction B28f Chromatogram characteristics on normal phase TLC with 8% ethyl acetate-dichloromethane (3 runs) as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Subfraction B29 Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (2 runs) as a mobile phase demonstrated one spot with the R_f value of 0.20 and one spot near the baseline under UV-S. Further separation by column chromatography over silica gel was performed using a gradient system of methanol-dichloromethane. Fractions, which contained the similar

components, were combined and evaporated to dryness under reduced pressure to give four subfractions, as shown in **Table 72**.

Table 72 Subfractions obtained from Subfraction B29 by column chromato-graphy over silica gel

Subfraction	Eluent	Weight (mg)	Physical appearance
B29a	5% MeOH/CH ₂ Cl ₂	8.3	Brown gum
B29b	5% MeOH/CH ₂ Cl ₂	7.5	Colorless
B29c	5-7% MeOH/CH ₂ Cl ₂	6.1	Brown gum
B29d	8% MeOH/CH ₂ Cl ₂ -	16.5	Brown gum
	100% MeOH		

Subfraction B29a Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (4 runs) as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B29b (US24) Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (4 runs) as a mobile phase demonstrated one spot with the R_f value of 0.19 under UV-S.

-

$[\alpha]_{\mathrm{D}}^{^{28}}$	-8.88 (c = 0.23, MeOH)
UV (MeOH) λ_{max} nm (log ε)	234 (4.06), 394 (3.49)
FT-IR (neat) v_{cm-1}	3394 (OH stretching), 2928 (C-H stretching)
	1640 (C=C stretching)
¹ H NMR (CDCl ₃) (δ ppm)	6.09 (<i>d</i> , <i>J</i> = 11.1 Hz, 1H), 6.39 (<i>ddd</i> , <i>J</i> = 15.0,
(300 MHz)	1.5 Hz, 1H), 5.84 (dq , $J = 15.0$, 6.6 Hz, 1H),
	4.34 (d , $J = 11.7$ Hz, 1H), 4.25 (d , $J = 11.7$ Hz,
	1H), 4.02 (d , J = 6.3 Hz, 1H), 3.95 (quintet, J =
	6.3 Hz, 1H), 1.81 (<i>dd</i> , <i>J</i> = 6.6, 1.5 Hz, 1H), 1.15
	(d, J = 6.3 Hz, 1H)

```
<sup>13</sup>C NMR (CDCl<sub>3</sub>) (\delta ppm)
(75 MHz)
DEPT (135°) (CDCl<sub>3</sub>)
(CDCl_3)
(CDCl_3)
(CDCl_3)
(CDCl_3)
(CDCl_3)
(CDCl_3)
(CDCl_3)
(CDCl_3)
(CDCl_3)
(CH : 133.34, 132.80, 126.07, 80.40, 70.11)
(CH_2 : 56.83)
(CH_3 : 18.78, 18.42)
```

Subfraction B29c Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (4 runs) as a mobile phase demonstrated one major spot with the R_f value of 0.19 under UV-S. The ¹H NMR spectrum indicated that the major compound was US24.

Subfraction B29d Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (4 runs) as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B210 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (4 runs) as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Subfraction B3 Chromatogram characteristics on normal phase TLC with 30% dichloromethane-petroleum ether as a mobile phase demonstrated four spots with the R_f values of 0.16, 0.18, 0.23 and 0.32 and two spots near the baseline under UV-S. Further separation by column chromatography over silica gel was performed using 20% dichloromethane-petroleum ether and gradually enriched with dichloromethane and then methanol until pure methanol. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give seven subfractions, as shown in Table 73.

Subfraction	Eluent	Weight (mg)	Physical appearance
B31	20-30% CH ₂ Cl ₂ /Petrol	9.6	Pale brown gum
B32	30-40% CH ₂ Cl ₂ /Petrol	13.1	Pale brown gum
B33	50% CH ₂ Cl ₂ /Petrol	20.2	Pale brown gum
B34	60-90% CH ₂ Cl ₂ /Petrol	6.2	Pale brown gum
B35	100% CH ₂ Cl ₂ -	1.7	Brown gum
	1% MeOH/CH ₂ Cl ₂		
B36	2-7% MeOH/CH ₂ Cl ₂	24.1	Brown gum
B37	8% MeOH/CH ₂ Cl ₂ -	8.4	Brown gum
	100%MeOH		
			1

Table 73 Subfractions obtained from Subfraction B3 by column chromatographyover silica gel

Subfraction B31 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (6 runs) as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B32 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (6 runs) as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B33 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (6 runs) as a mobile phase demonstrated a long tail and one major spot near the baseline under UV-S. Further separation by column chromatography over silica gel was performed using a gradient system of methanol-dichloromethane. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give three subfractions, as shown in **Table 74**.

Subfraction	Eluent	Weight (mg)	Physical appearance
B33a	1-1.5% MeOH/CH ₂ Cl ₂	7.3	Dark-brown gum
B33b	2-70% MeOH/CH ₂ Cl ₂	6.9	Dark-brown gum
B33c	80% MeOH/CH ₂ Cl ₂ -100%	2.7	Dark-brown gum
	MeOH		

 Table 74 Subfractions obtained from Fraction B33 by column chromatography

 over silica gel

Subfraction B33a Chromatogram characteristics on normal phase TLC with 100% dichloromethane and 2% methanol-dichloromethane as mobile phases demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B33b Chromatogram characteristics on normal phase TLC with 100% dichloromethane and 2% methanol-dichloromethane as mobile phases demonstrated one major spot with the R_f value of 0.23 under UV-S. Further purification by precoated TLC with 2% methanol-dichloromethane (9 runs) as a mobile phase afforded a brown gum (1.2 mg). Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.23 under UV-S. The ¹H NMR spectrum indicated that the major compound was US24.

Subfraction B33c Chromatogram characteristics on normal phase TLC with 100% dichloromethane and 2% methanol-dichloromethane as mobile phases demonstrated one major spot with the R_f value of 0.23 under UV-S. The ¹H NMR spectrum indicated that the major compound was US24.

Subfraction B34 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (6 runs) as a mobile phase demonstrated a long tail and one major spot near the baseline under UV-S. Further purification by precoated TLC with 2% methanol-dichloromethane (7 runs) as a mobile phase afforded a brown gum (2.3 mg). Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane as a mobile phase demonstrated one spot with the

 R_f value of 0.20 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B35 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (6 runs) as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B36 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (6 runs) as a mobile phase demonstrated a long tail and one major spot with the R_f value of 0.20 under UV-S. Further separation by column chromatography over silica gel was performed using a gradient system of methanol-dichloromethane. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give three subfractions, as shown in Table 75.

 Table 75 Subfractions obtained from Fraction B36 by column chromatography

 over silica gel

Subfraction	Eluent	Weight (mg)	Physical appearance
B361	1-2% MeOH/CH ₂ Cl ₂	6.2	Dark-brown gum
B362	3-50% MeOH/CH ₂ Cl ₂	5.5	Dark-brown gum
B363	60% MeOH/CH ₂ Cl ₂ -100%	10.0	Dark-brown gum
	MeOH		

Subfraction B361 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (6 runs) as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B362 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (6 runs) as a mobile phase demonstrated many spots under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B363 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (6 runs) as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Subfraction B37 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (6 runs) as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Subfraction B4 Chromatogram characteristics on normal phase TLC with 1% dichloromethane-petroleum ether (6 runs) as a mobile phase demonstrated a long tail and two major spots with the R_f value of 0.20 and 0.32 under UV-S. Further separation by column chromatography over Sephadex LH-20 using 50% methanol-dichloromethane was performed. All subfractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford four subfractions, as shown in Table 76.

Table 76 Subfractions obtained from Subfraction B4 by column chromatographyover Sephadex LH-20

Subfraction	Weight (mg)	Physical appearance
B41	16.5	Brown gum
B42	15.0	Brown gum
B43	35.0	Brown gum mixed with brown solid
B44	31.5	Brown gum mixed with brown solid

Subfraction B41 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (2 runs) as a mobile phase demonstrated a long tail and one major spot with the R_f value of 0.23 under UV-S. The ¹H NMR spectrum indicated that the major components might be a mixture of long chain hydrocarbons. No attempted investigation was carried out.

Subfraction B42 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (2 runs) as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B43 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (2 runs) as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Subfraction B44 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (2 runs) as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Fraction C Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane as a mobile phase demonstrated four spots with the R_f values of 0.20, 0.36, 0.45 and 0.57 and two spots near the baseline under UV-S. Further separation by column chromatography over silica gel using a gradient system of methanol-dichloromethane was performed. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give seven subfractions, as shown in **Table 77**.

Subfraction	Eluent	Weight (mg)	Physical appearance
C1	1% MeOH/CH ₂ Cl ₂	4.8	Pale brown gum
C2	1% MeOH/CH ₂ Cl ₂	6.9	Pale brown gum
C3	1% MeOH/CH ₂ Cl ₂	9.7	Pale brown gum
C4	1% MeOH/CH ₂ Cl ₂	25.1	Brown gum mixed with
			brown solid
C5	1% MeOH/CH ₂ Cl ₂	31.4	Brown gum mixed with
			brown solid

Table 77 Subfractions obtained from Fraction C by column chromatography over silica gel

Subfraction	Eluent	Weight (mg)	Physical appearance
C6	2-40% MeOH/CH ₂ Cl ₂	91.1	Brown gum mixed with
			brown solid
C7	50% MeOH/CH ₂ Cl ₂ -	29.5	Brown gum mixed with
	100% MeOH		brown solid

Subfraction C1 Chromatogram characteristics on normal phase TLC with 100% dichloromethane as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction C2 Chromatogram characteristics on normal phase TLC with 100% dichloromethane as a mobile phase demonstrated one major spot with the R_f value of 0.80 under UV-S. The ¹H NMR spectrum indicated that the major compound was US24.

Subfraction C3 Chromatogram characteristics on normal phase TLC with 100% dichloromethane as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction C4 Chromatogram characteristics on normal phase TLC with 100% dichloromethane as a mobile phase demonstrated four spots with the R_f values of 0.19, 0.23, 0.34 and 0.43 under UV-S. Further separation by column chromatography over silica gel was performed using a gradient system of methanol-dichloromethane. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give three subfractions, as shown in Table 78.

Subfraction	Eluent	Weight (mg)	Physical appearance
C41	100% CH ₂ Cl ₂	2.0	Brown gum
C42	1% MeOH/CH ₂ Cl ₂	12.9	Brown gum
C43	2-100% MeOH/CH ₂ Cl ₂	5.9	Brown gum

Table 78 Subfractions obtained from Subfraction C4 by column chromatography over silica gel

Subfraction C41 Chromatogram characteristics on normal phase TLC with 100% dichloromethane and 1% methanol-dichloromethane (2 runs) as a mobile phase demonstrated one pale spot with the R_f value of 0.70 under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction C42 Chromatogram characteristics on normal phase TLC with 100% dichloromethane and 1% methanol-dichloromethane (2 runs) as mobile phases demonstrated four spots with the R_f values of 0.36, 0.45, 0.54 and 0.70 under UV-S. Further purification by precoated TLC with 2% ethyl acetate-dichloromethane (8 runs) as a mobile phase afforded three bands.

Band 1 was obtained as a yellow gum (0.3 mg). Chromatogram characteristics on normal phase TLC with 100% dichloromethane and 1% methanoldichloromethane as mobile phases demonstrated one spot with the R_f value of 0.57 under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Band 2 was obtained as a yellow gum (3.0 mg). Chromatogram characteristics on normal phase TLC with 100% dichloromethane and 1% methanoldichloromethane as mobile phases demonstrated one spot with the R_f value of 0.27 under UV-S. The ¹H NMR spectrum suggested that it was **US19**.

Band 3 was obtained as a brown gum (6.0 mg). Chromatogram characteristics on normal phase TLC with 100% dichloromethane and 1% methanoldichloromethane as mobile phases demonstrated one major spot with the R_f value of 0.27 under UV-S. The ¹H NMR data indicated that it contained a mixture of **US17** and **US19**. **Subfraction C43** Chromatogram characteristics on normal phase TLC with 100% dichloromethane and 1% methanol-dichloromethane (2 runs) as mobile phases demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Subfraction C5 Chromatogram characteristics on normal phase TLC with 100% dichloromethane as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction C6 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (2 runs) as a mobile phase demonstrated a long tail under UV-S. Further separation by column chromatography over silica gel was performed using a gradient system of methanol-dichloromethane. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give five subfractions, as shown in **Table 79**.

Table 79 Subfractions obtained from Subfraction C6 by column chromatography over silica gel

Subfraction	Eluopt	Woight (mg)	Dhysical appearance
Subfraction	Liuent	weight (ing)	r nysicar appearance
C61	1% MeOH/CH ₂ Cl ₂	4.7	Brown gum
C62	1-10% MeOH/CH ₂ Cl ₂	1.2	Colorless gum
C63	10-15% MeOH/CH ₂ Cl ₂	7.3	Brown gum
C64	15-70% MeOH/CH ₂ Cl ₂	15.0	Brown gum mixed with
			brown solid
C65	70% MeOH/CH ₂ Cl ₂ -	20.7	Brown gum mixed with
	100% MeOH		brown solid

Subfraction C61 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (4 runs) as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction C62 (US25) Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (4 runs) as a mobile phase demonstrated one spot with the R_f value of 0.18 under UV-S.

UV (MeOH) λ_{max} nm (log ε)		257 (1.84)
FT-IR (neat) v_{cm-1}		3373 (OH stretching), 2923 (C-H stretching)
		1720 and 1689 (C=O stretching)
¹ H NMR (CDCl ₃) (δ ppm)		7.47 (<i>d</i> , <i>J</i> = 11.5 Hz, 1H), 6.54 (<i>ddd</i> , <i>J</i> = 15.0,
(300 MHz)		11.5, 1.5 Hz, 1H), 6.32 (dq , $J = 15.0$, 6.9 Hz,
		1H), 4.92 (s, 1H), 2.07 (s, 3H), 1.94 (dd, $J = 6.9$,
		1.5 Hz, 3H)
¹³ C NMR (CDCl ₃) (δ ppm)		169.99, 168.63, 145.49, 142.44, 125.61, 120.95,
(125 MHz)		56.90, 19.89, 18.10
DEPT (135°) (CDCl ₃)	CH :	145.49, 142.44, 125.61, 76.19
	CH_2 :	56.90
	CH_3 :	19.89, 18.10
EIMS m/z (% relative intensity):		184 (5), 141 (12), 125 (15), 124 (100), 123 (30),
		95 (35), 81 (42)

Subfraction C63 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (4 runs) as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction C64 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (4 runs) as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction C65 Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (4 runs) as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Subfraction C7 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (2 runs) as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Fraction D Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (2 runs) and 6% methanol-dichloromethane as mobile phases demonstrated a long tail under UV-S. Further separation on column chromatography over Sephadex LH-20 using 50% methanol-dichloromethane was performed. All subfractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford two subfractions, as shown in **Table 80**.

Table 80 Subfractions obtained from Fraction D by column chromatography over Sephadex LH-20

Subfraction	Weight (mg)	Physical appearance
D1	23.6	Brown gum mixed with brown solid
D2	37.6	Brown gum mixed with brown solid

Subfraction D1 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (4 runs) as a mobile phase demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction D2 Chromatogram characteristics on normal phase TLC with 1% methanol-dichloromethane (4 runs) as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Fraction E Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (2 runs) and 6% methanol-dichloromethane as mobile phases demonstrated no definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Fraction F Chromatogram characteristics on normal phase TLC with 2% methanol-dichloromethane (2 runs) and 6% methanol-dichloromethane as mobile phases demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

4.2.3 Purification of the mycelial extract

The mycelial extract of the fungus Xylariaceae PSU-A80 (1.0 g) was chromatographed on Sephadex LH-20 column chromatography using 100% methanol to afford fifty fractions. All fractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford four fractions, as shown in **Table 81**.

Table 81 Fractions obtained from the mycelial extract by column chromato-graphy over Sephadex LH-20

Fraction	Weight (mg)	Physical appearance
А	100.2	Brown gum mixed with brown solid
В	750.0	Dark-brown gum
С	36.8	Dark-brown gum
D	11.5	Brown gum mixed with brown solid

Fraction A Chromatogram characteristics on normal phase TLC with 100% dichloromethane as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Fraction B Chromatogram characteristics on normal phase TLC with 5% methanol-dichloromethane (2 runs) as a mobile phase demonstrated two spots with the R_f values of 0.14 and 0.36 and two spots near the baseline under UV-S. Further separation by column chromatography over silica gel was performed using a gradient system of methanol-dichloromethane. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give nine subfractions, as shown in **Table 82**.

Table 82 Subfractions obtained from Fraction B by column chromatography over silica gel

Subfraction	Eluent	Weight (mg)	Physical appearance
B1	5% MeOH/CH ₂ Cl ₂	15.0	Brown gum mixed with
			brown solid
B2	5% MeOH/CH ₂ Cl ₂	13.4	Brown gum
B3	5% MeOH/CH ₂ Cl ₂	11.5	Brown gum
B4	5% MeOH/CH ₂ Cl ₂	150.0	Brown gum
B5	5% MeOH/CH ₂ Cl ₂	65.8	Brown gum
B6	7% MeOH/CH ₂ Cl ₂	18.1	Brown gum
B7	7% MeOH/CH ₂ Cl ₂	25.5	Brown gum
B8	7% MeOH/CH ₂ Cl ₂	134.7	Brown gum
B9	10% MeOH/CH ₂ Cl ₂ -	137.3	Brown gum mixed with
	100%MeOH		brown solid

Subfraction B1 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated none of UV-active spots. The ¹H NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further studied.

Subfraction B2 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B3 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.27 under UV-S and the other spot with the R_f value of 0.34 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. Further purification by precoated TLC with 70% ethyl acetate-hexane (3 runs) as a mobile phase afforded two bands.

Band 1 was obtained as a yellow gum (1.1 mg). Chromatogram characteristics on normal phase TLC with 70% ethyl acetate-hexane as a mobile phase demonstrated one spot with the R_f value of 0.29 under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Band 2 (US26) was obtained as a colorless gum (1.8 mg). Chromatogram characteristics on normal phase TLC with 70% ethyl acetate-hexane displayed one spot with the R_f value of 0.20.

$\left[\alpha\right]_{\mathrm{D}}^{^{25}}$		+21.3 (c = 0.03, CHCl ₃)	
UV (MeOH) λ_{max} nm (log ε)		214 (3.99), 254 (3.64), 317 (3.34)	
FT-IR (neat) v _{cm-1}		3419 (OH stretching), 2934 (C-H stretching)	
		1663 (C=C stretching)	
¹ H NMR (CDCl ₃) (δ ppm)		7.46 (<i>dd</i> , <i>J</i> = 9.0, 6.0 Hz, 1H), 7.11 (<i>d</i> , <i>J</i> = 6.0	
(300 MHz)		Hz, 1H), 6.91 (<i>d</i> , <i>J</i> = 9.0 Hz, 1H), 4.83 (<i>dd</i> , <i>J</i> =	
		9.0, 6.0 Hz, 1H), 3.86 (s, 3H), 2.85 (<i>ddd</i> , <i>J</i> =	
		18.0, 9.0, 3.0 Hz, 1H), 2.52 (ddd , $J = 18.0$, 9.0,	
		3.0 Hz, 1H), 2.25 (<i>m</i> , 1H), 2.10 (<i>m</i> , 1H)	
¹³ C NMR (CDCl ₃) (δ ppm)		197.00, 160.08, 120.10, 147.76, 134.69, 118.77,	
(75 MHz)		111.97, 68.47, 56.14, 36.34, 31.33	
DEPT (135°) (CDCl ₃)	CH :	134.69, 118.77, 111.97, 68.47	
	CH_2 :	36.34, 31.33	
	CH_3 :	56.14	
EIMS m/z (% relative intensi	ty):	192 (100), 164 (61), 135 (31), 136 (23)	

Subfraction B4 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated one major spot with the R_f value of 0.30 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. Further separation by column chromatography over silica gel was performed using 80% ethyl acetate-hexane and gradually enriched with ethyl acetate and then methanol until pure methanol. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give four subfractions, as shown in Table 83.

 Table 83 Subfractions obtained from Subfraction B4 by column chromatography

 over silica gel

Subfraction	Eluent	Weight (mg)	Physical appearance
B41	80% EtOAc/hexane	7.3	Brown gum
B42	100% EtOAc	16.7	Brown gum
B43	1-7% MeOH/EtOAc	74.5	Brown gum
B44	7% MeOH/EtOAc -	15.0	Brown gum mixed with
	100%MeOH		brown solid

Subfraction B41 Chromatogram characteristics on normal phase TLC with 70% ethyl acetate-hexane as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B42 Chromatogram characteristics on normal phase TLC with 70% ethyl acetate-hexane as a mobile phase demonstrated one spot with the R_f value of 0.18 under UV-S and the other spot with the R_f value of 0.25 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. Further purification by column chromatography over reverse phase C_{18} silica gel was performed using 30% methanol-water and gradually enriched with methanol until pure methanol. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give four subfractions, as shown in Table 84.

Table 84 Subfractions obtained from Subfraction B42 by column chromato-
graphy over reverse phase C18 silica gel

Subfraction	Eluent	Weight (mg)	Physical appearance
B42a	30-50% MeOH/H ₂ O	10.9	Brown gum
B42b	60% MeOH/H ₂ O	1.3	Brown gum
B42c	70% MeOH/H ₂ O	0.5	Brown gum
B42d	70% MeOH/H ₂ O-	0.7	Brown gum mixed with
	100%MeOH		brown solid

Subfraction B42a Chromatogram characteristics on normal phase TLC with 70% ethyl acetate-dichloromethane (2 runs) as a mobile phase demonstrated two spots with the R_f values of 0.32 and 0.45 as violet spots after dipping in ASA reagent and subsequently heating the TLC plate. Further separation on column chromatography over Sephadex LH-20 using 50% methanol-dichloromethane was performed. All subfractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford five subfractions, as shown in Table 85.

Table 85 Subfractions obtained from Subfraction B42a by column chromatography over Sephadex LH-20

Subfraction	Weight (mg)	Physical appearance
B42a1	1.1	Colorless gum
B42a2	2.4	Colorless gum
B42a3	3.5	Colorless gum
B42a4	3.5	Colorless gum
B42a5	2.4	Colorless gum

Subfraction B42a1 Chromatogram characteristics on normal phase TLC with 65% ethyl acetate-dichloromethane as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B42a2 Chromatogram characteristics on normal phase TLC with 65% ethyl acetate-dichloromethane as a mobile phase demonstrated one major spot with the R_f value of 0.25 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. Further separation on column chromatography over Sephadex LH-20 using 50% methanol-dichloromethane was performed. All subfractions were examined by TLC, combined on the basis of their chromatogram characteristics and then evaporated to dryness under reduced pressure to afford two subfractions, as shown in Table 86.

Table 86 Subfractions obtained from Subfraction B42a2 by column chromatography over Sephadex LH-20

Subfraction	Weight (mg)	Physical appearance
B42a21	1.2	Colorless gum
B42a22	1.1	Colorless gum

Subfraction B42a21 Chromatogram characteristics on normal phase TLC with 60% ethyl acetate-dichloromethane as a mobile phase demonstrated a long tail after dipping in ASA reagent and subsequently heating the TLC plate. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B42a22 Chromatogram characteristics on normal phase TLC with 60% ethyl acetate-dichloromethane as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the presence of many compounds, it was not further investigated.

Subfraction B42a3 Chromatogram characteristics on normal phase TLC with 65% ethyl acetate-dichloromethane as a mobile phase demonstrated one

spot with the R_f value of 0.25 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B42a4 Chromatogram characteristics on normal phase TLC with 65% ethyl acetate-dichloromethane as a mobile phase demonstrated one spot with the R_f value of 0.25 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. The ¹H NMR spectrum indicated that the major compound was US27.

Subfraction B42a5 Chromatogram characteristics on normal phase TLC with 65% ethyl acetate-dichloromethane as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B42b Chromatogram characteristics on normal phase TLC with 70% ethyl acetate-dichloromethane (2 runs) as a mobile phase demonstrated one spot with the R_f value of 0.27 under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B42c Chromatogram characteristics on normal phase TLC with 70% ethyl acetate-dichloromethane (2 runs) as a mobile phase demonstrated one pale spot with the R_f value of 0.43 under UV-S. The ¹H NMR spectrum indicated that the major compound was US27.

Subfraction B42d Chromatogram characteristics on normal phase TLC with 70% ethyl acetate-dichloromethane (2 runs) as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B43 Chromatogram characteristics on normal phase TLC with 70% ethyl acetate-hexane as a mobile phase demonstrated one spot with the R_f value of 0.20 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. The ¹H NMR spectrum indicated that the major compound was US27.

Subfraction B44 Chromatogram characteristics on normal phase TLC with 70% ethyl acetate-hexane as a mobile phase demonstrated a long tail under

UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Subfraction B5 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated two spots with the R_f values of 0.14 and 0.20 and the other spot with the R_f value of 0.28 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. Further separation by column chromatography over silica gel was performed using 80% ethyl acetate-hexane and gradually enriched with ethyl acetate and then methanol until pure methanol. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give seven subfractions, as shown in **Table 87**.

Table 87	Subfractions	obtained fr	om Subfract	tion B5 by col	umn chromate	ography
	over silica ge	1				

Subfraction	Eluent	Weight (mg)	Physical appearance
B51	80% EtOAc/hexane	1.7	Brown gum
B52	80% EtOAc/hexane	3.1	Colorless gum
B53	90% EtOAc/hexane	8.2	Brown gum
B54	90% EtOAc/hexane	10.6	Brown gum
B55	90% EtOAc/hexane	19.3	Colorless gum
B56	90% EtOAc/hexane-	74.5	Brown gum
	1% MeOH/EtOAc		
B57	2% MeOH/EtOAc-	15.0	Brown gum mixed with
	100% MeOH		brown solid

Subfraction B51 Chromatogram characteristics on normal phase TLC with 80% ethyl acetate-hexane as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B52 Chromatogram characteristics on normal phase TLC with 80% ethyl acetate-hexane as a mobile phase demonstrated one spot with the

 R_f value of 0.50 under UV-S. The ¹H NMR data indicated that it contained **US4** (see Chapter 2).

Subfraction B53 Chromatogram characteristics on normal phase TLC with 80% ethyl acetate-hexane as a mobile phase demonstrated one pale spot with the R_f value of 0.43 under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B54 Chromatogram characteristics on normal phase TLC with 80% ethyl acetate-hexane as a mobile phase demonstrated one spot with the R_f value of 0.32 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. The ¹H NMR spectrum indicated that the major compound was US4.

Subfraction B55 (US27) Chromatogram characteristics on normal phase TLC with 80% ethyl acetate-hexane as a mobile phase demonstrated one spot with the R_f value of 0.32 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate.

$[\alpha]_{\rm D}^{27}$		+0.75 (c = 0.95, CHCl ₃)
FT-IR (neat) V_{cm-1}		3394 (OH stretching), 2930 (C-H stretching)
		1734 (C=O stretching)
¹ H NMR (CDCl ₃) (δ ppm)		4.86 (<i>dqd</i> , <i>J</i> = 11.1, 6.3, 3.3 Hz, 1H), 4.37
(300 MHz)		(<i>dddd</i> , <i>J</i> = 4.8, 3.6, 3.6, 3.3 Hz, 1H), 2.75 (<i>dd</i> , <i>J</i>
		= 17.7, 4.8 Hz, 1H), 2.61 (<i>ddd</i> , <i>J</i> = 17.7, 3.6, 1.5
		Hz, 1H), 2.00 (dm , $J = 14.4$ Hz, 1H), 1.71 (ddd ,
		J = 14.4, 11.1, 3.3 Hz, 1H), 1.39 ($d, J = 6.3$ Hz,
		1H)
¹³ C NMR (CDCl ₃) (δ ppm)		171.15, 72.56, 62.54, 38.32, 37.51, 21.35
(75 MHz)		
DEPT (135°) (CDCl ₃)	CH :	72.56, 62.54
	CH_2 :	38.32, 37.51
	CH_3 :	21.35

Subfraction B56 Chromatogram characteristics on normal phase TLC with 80% ethyl acetate-hexane as a mobile phase demonstrated one spot with the R_f value of 0.32 as a violet spot after dipping in ASA reagent and subsequently heating the TLC plate. The ¹H NMR spectrum indicated that the major compound was US27.

Subfraction B57 Chromatogram characteristics on normal phase TLC with 80% ethyl acetate-hexane as a mobile phase demonstrated none of definite spots under UV-S. Because the ¹H NMR spectrum indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B6 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated one major spot with the R_f value of 0.16 under UV-S. The ¹H NMR data indicated that the major compound was US24.

Subfraction B7 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated many spots near the baseline under UV-S. The ¹H NMR spectral data indicated that it contained a mixture of **US24** and **US27**.

Subfraction B8 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated many spots near the baseline under UV-S. Further separation by column chromatography over silica gel was performed using a gradient system of methanol-dichloromethane. Fractions, which contained the similar components, were combined and evaporated to dryness under reduced pressure to give two subfractions, as shown in **Table 88**.

Table 88 Subfractions obtained from Fraction B8 by column chromatography over silica gel

Subfraction	Eluent	Weight (mg)	Physical appearance
B81	100% CH ₂ Cl ₂ -10%	40.0	Brown gum
D 01	MeOH/CH ₂ Cl ₂		
B82	10% MeOH/CH ₂ Cl ₂ -	47.5	Brown gum mixed with
	100% MeOH		brown solid

Subfraction B81 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated none of UV-active spots. Because the ¹H NMR data indicated the absence of olefinic and aromatic protons, it was not further studied.

Subfraction B82 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Subfraction B9 Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Fraction C Chromatogram characteristics on normal phase TLC with 20% ethyl acetate-dichloromethane and 50 % ethyl acetate-dichloromethane (2 runs) as mobile phases demonstrated a long tail under UV-S. Because the ¹H NMR spectrum showed signals at high field, it was not further investigated.

Fraction D Chromatogram characteristics on normal phase TLC with 4% methanol-dichloromethane as a mobile phase demonstrated none of definite spots under UV-S. Because of the minute quantity, it was not further investigated.

CHAPTER 4.3

RESULTS AND DISCUSSION

Two new compounds (US20 and US25) were isolated from the broth extract while one new compound (US26) was obtained from the mycelial extract. In addition, investigation of the broth and mycelial extracts led to the isolation of ten known compounds (US3-4, US17-19, US21-24 and US27). The structures were identified by analysis of spectroscopic data and comparison of these data with those previously reported.

4.3.1 Compound US17

Compound US17 was obtained as a colorless gum. It exhibited an UV absorption band at 279 nm (Figure 141) while a hydroxyl absorption band was found at 3419 cm⁻¹ in the IR spectrum (Figure 142). The ¹H NMR spectrum (Figure 143) (**Table 89**) displayed characteristic signals for one hydroxy proton [$\delta_{\rm H}$ 9.32 (s)], six aromatic protons for two sets of 1,2,3-trisubstituted benzenes [7.41 (d, J = 7.8 Hz, 1H), 7.35 (t, J = 8.1 Hz, 1H), 7.30 (t, J = 7.8 Hz, 1H), 7.29 (dd, J = 8.1 and 1.8 Hz, 1H), 6.87 (dd, J = 8.1 and 1.8 Hz, 1H) and 6.76 (d, J = 7.8 Hz, 1H)] and one methoxyl group [$\delta_{\rm H}$ 4.05 (s, 3H)]. The ¹³C NMR spectrum (Figure 145) (Table 89) contained 10 aromatic carbon resonances of a naphthalene skeleton and one methoxy carbon at $\delta_{\rm C}$ 56.10. The hydroxy proton at $\delta_{\rm H}$ 9.32 was attributed to 1-OH on the basis of HMBC correlations with C-1 ($\delta_{\rm C}$ 154.50), C-2 ($\delta_{\rm C}$ 110.42) and C-8a ($\delta_{\rm C}$ 115.00) (Figure 147) (Table 90). The aromatic proton resonating at $\delta_{\rm H}$ 6.87 was assigned as H-2 because of its HMQC cross peak with C-2 (Figure 146) (Table 89). According to the ¹H-¹H coupling in the COSY spectrum (Figure 148) (Table 90), multiplicities and coupling constants, H-3 and H-4 resonated at $\delta_{\rm H}$ 7.35 and 7.29, respectively. Signal enhancement of both 1-OH and H-7 upon irradiation of Me-9 in the NOEDIFF experiment (Figure 149) (Table 90) established the attachment of the methoxyl group

at C-9 and the chemical shift of H-7 at $\delta_{\rm H}$ 6.76. Consequently, two remaining aromatic protons, resonating at $\delta_{\rm H}$ 7.30 and 7.41, were attributed to H-6 and H-5, respectively. Therefore, **US17** was identified as 8-methoxy-1-naphthol (Thines, *et al.*, 1995).

Table 89 The NMR data of compound US17 in CDCl_3

Position	$\delta_{\rm H}(mult., J_{Hz})$	$\delta_{\rm C}$ (C-type)
1	-	154.50 (C)
1-OH	9.32 (<i>s</i>)	-
2	6.87 (<i>dd</i> , 8.1, 1.8)	110.42 (CH)
3	7.35 (<i>t</i> , 8.1)	127.72 (CH)
4	7.29 (<i>dd</i> , 8.1, 1.8)	118.87 (CH)
4a	-	136.76 (C)
5	7.41 (<i>d</i> , 7.8)	121.87 (CH)
6	7.30 (<i>t</i> , 7.8)	125.60 (CH)
7	6.76 (<i>d</i> , 7.8)	103.91 (CH)
8	-	156.17 (C)
8a	-	115.00 (C)
9	4.05 (s)	56.10 (CH ₃)

Proton	HMBC correlations	COSY	NOE
1-OH	C-1, C-2, C-8a	-	Me-9
H-2	C-1, C-4, C-8a	H-3	1-OH
H-3	C-1, C-4a	H-2, H-4	-
H-4	C-2, C-4a, C-5	Н-3	-
H-5	C-4, C-4a, C-7, C-8a	Н-6	-
H-6	C-4a, C-5, C-7, C-8	H-5, H-7	-

Table 90 The HMBC, COSY and NOE data of compound US17 in CDCl₃

Table 90 (continued)

Proton	HMBC correlations	COSY	NOE
1-OH	C-1, C-2, C-8a	-	Me-9
H-7	C-5, C-8, C-8a	H-6, H-9	H-6, Me-9
H-9	C-8	-	1-OH, H-7

4.3.2 Compound US18

Compound **US18** was obtained as a colorless gum. The UV (**Figure 150**) and IR (**Figure 151**) spectra were almost identical to those of **US3**. The ¹H NMR spectral data (**Figure 152**) (**Table 91**) were similar to those of **US3** except for the replacement of two-*meta*-coupled aromatic protons in **US3** with two-*ortho*-coupled aromatic protons ($\delta_{\rm H}$ 7.29 and 6.82). The aromatic proton resonating at $\delta_{\rm H}$ 6.82 was attributed to H-7 according to its HMBC correlations with C-1 ($\delta_{\rm C}$ 170.33), C-5 ($\delta_{\rm C}$ 108.11), C-8 ($\delta_{\rm C}$ 160.54) and C-8a ($\delta_{\rm C}$ 108.11) (**Figure 157**) (**Table 92**). The remaining aromatic proton was then assigned as H-6. In addition, the ¹H NMR spectrum displayed one singlet of a methyl group at $\delta_{\rm H}$ 2.20. HMBC correlations of the methyl protons with C-4a ($\delta_{\rm C}$ 137.92), C-5 ($\delta_{\rm C}$ 108.11) and C-6 ($\delta_{\rm C}$ 137.92) indicated the attachment of the methyl group at C-5. Comparison of the NMR data and specific rotation of **US18**: [α]_D –79.2 (c = 0.25, CHCl₃), with those of

methylmellein: $[\alpha]_D$ -118 (c = 0.60, CHCl₃), indicated that **US18** was (-)-5methylmellein which was previously isolated from *Euphorbia fidjiana* (Cambie, *et al.*, 1991).

Table 91 The NMR data of compound US18 in CDCl₃

Position	$\delta_{\rm H}$ (mult., J_{Hz})	$\delta_{\rm C}$ (C-type)
1	-	170.33 (C=O)
3	4.69 (<i>m</i>)	75.41 (CH)
4	a: 2.95 (<i>dd</i> , 16.5, 3.3)	31.94 (CH ₂)
	b: 2.72 (<i>dd</i> , 16.5, 11.4)	
4a	-	137.92 (C)
5	-	108.11 (C)
6	7.29 (<i>d</i> , 8.4)	137.92 (CH)
7	6.82 (<i>d</i> , 8.4)	115.72 (CH)
8	-	160.54 (C)
8-OH	11.01 (s)	-
8a	-	108.11 (C)
9	1.50 (<i>d</i> , 6.5)	20.92 (CH ₃)
10	2.20(s)	18.07 (CH ₃)

Table 92 The HMBC, COSY and NOE data of compound US18 in CDCl₃

Proton	HMBC correlations	COSY	NOE
H-1	-	-	-
H-3	C-4a, C-9	H _{ab} -4, H-9	H _{ab} -4, Me-9
H _a -4	C-3, C-4a, C-5, C-8, C-8a, C-9	H-3, H _b -4	H _b -4, Me-9, Me-10
H _b -4	C-3, C-4a, C-5, C-8, C-8a, C-9	H-3, H _a -4	H _a -4, Me-9, Me-10
H-6	C-4a, C-8, C-10	H-7	Me-10
H-7	C-1, C-5, C-8, C-8a	H-6	8-OH
8-OH	C-4a, C-7, C-8	-	-
H-9	C-1, C-3, C-4,	H-3	H-3, H _{ab} -4
H-10	C-4a, C-5, C-6	-	-

4.3.3 Compound US19

Compound US19 was obtained as a colorless gum. It exhibited UV absorption bands at 258 and 319 nm (Figure 159) while hydroxyl and carbonyl absorption bands were found at 3387 and 1673 cm⁻¹, respectively, in the IR spectrum (Figure 160). The ¹H NMR spectrum (Figure 161) (Table 93) displayed characteristic signals for one chelated hydroxy proton at $\delta_{\rm H}$ 12.43 (s), a 1,2,3trisubstituted benzene [$\delta_{\rm H}$ 7.50 (t, J = 8.0 Hz, 1H), 7.03 (dt, J = 8.0 and 0.5 Hz, 1H) and 6.93 (dd, J = 8.0 and 0.5 Hz, 1H)], one oxymethine proton [$\delta_{\rm H}$ 4.93 (dd, J = 6.5and 3.0 Hz, 1H)] and two sets of nonequivalent methylene protons [$\delta_{\rm H}$ 3.01 (ddd, J = 18.0, 8.0 and 4.5 Hz, 1H), 2.66 (*ddd*, J = 18.0, 8.5 and 5.0 Hz, 1H) and $\delta_{\rm H} 2.35$ (*m*, 1H) and 2.22 (m, 1H)]. The ¹³C NMR spectrum (Figure 164) (Table 93) showed one ketone carbonyl carbon ($\delta_{\rm C}$ 204.10), three quaternary carbons ($\delta_{\rm C}$ 160.34, 145.85 and 115.20), four methine cabons ($\delta_{\rm C}$ 136.94, 117.83, 117.32 and 67.76) and two methylene carbons ($\delta_{\rm C}$ 34.55 and 31.24). These data constructed a tetralone skeleton. The chelated hydroxyl group ($\delta_{\rm H}$ 12.43) was placed at C-8 ($\delta_{\rm C}$ 160.54), peri position to the ketone carbonyl group. This hydroxy proton gave HMBC correlations (Figure **166**) (**Table 94**) with C-8 ($\delta_{\rm C}$ 160.34), C-8a ($\delta_{\rm C}$ 115.20) and C-7 ($\delta_{\rm C}$ 117.83). The

aromatic proton at $\delta_{\rm H}$ 6.93 was attributed to H-7 according to its HMQC cross peak with C-7. Thus, the remaining aromatic protons resonating at $\delta_{\rm H}$ 7.50 and 7.03 were assigned as H-6 and H-5, respectively, on the basis of the multiplicity, coupling constant and HMBC correlations. In the ¹H-¹H COSY spectrum (**Figure 167**) (**Table 94**), the nonequivalent methylene protons ($\delta_{\rm H}$ 2.35 and 2.22) gave cross peak with other nonequivalent methylene protons ($\delta_{\rm H}$ 3.01 and 2.66) and the hydroxymethine proton ($\delta_{\rm H}$ 4.93), thus constructing a -CH₂CH₂CH(OH)- unit. ³*J* HMBC cross peaks of the inner methylene protons/C-1 ($\delta_{\rm C}$ 204.10) and C-4a ($\delta_{\rm C}$ 145.85) revealed that the methylene group was attached at C-3 and the hydroxymethine proton became H-4 of the tetralone unit. Therefore, **US19** was identified as isosclerone which was previously isolated from *Cytospora eucalypticola* (Kokubun, *et al.*, 2003).

Table 93 The NMR data of compound US19 in CDCl₃

Proton	HMBC correlations		COSY		NOE	
H _a -2	C-1, C-3, C-4		H _b -2, H _{ab} -3		H _b -2	
Plas2tion	C-1, C-3, C-4 US19)	H_{a} -2, H_{ab} -3		Hoselero	one
H _a -3	$C-\mathcal{H}_{H}$ Consult., \mathcal{H}_{H} -4a		5 Ң66-2урн) -3,	H-4 $\delta_{\rm H}$ (mult.	, Ы дрэ)2, Н	b-36H(C-type)
H _b -3	_C-1, C-2, C-4, C-4a	20	4H0(EH0) ³ ,	H-4	-	206.3 (C=O)
½ I-4	a: 3.01 (ddd, 18.0,	34	55a(CH2)	a: 2.90 (<i>ddd</i>	<i>l</i> , H , ₽ , H	a36.1 (CH ₂)
H-5	C 840,C475) C-8a		H-6	7.6, 4.7)	H-5	
	b: 2.66 (<i>ddd</i> , 18.0,			b: 2.66 (<i>dda</i>	d, 17.8,	-
	8.5, 5.0)			9.1, 4.8)		
3	a: 2.35 (<i>m</i>)	31	.24 (CH ₂)	a: 2.30 (<i>m</i>)		32.6 (CH ₂)
	b: 2.22 (<i>m</i>)			b: 2.10 (<i>m</i>)		
4	4.93 (<i>dd</i> , 6.5, 3.0)	67	.76 (CH)	4.84 (<i>dd</i> , 8.	0, 3.8)	68.3 (CH)
4a	-	14	5.85 (C)	-		148.6 (C)
5	7.03 (<i>dt</i> , 8.0, 0.5)	11	7.32 (CH)	7.07 (<i>dm</i> , 7	.6)	118.8 (CH)
6	7.50 (<i>t</i> , 8.0)	13	6.94 (CH)	7.50 (<i>dd</i> , 8.	3, 7.6)	137.9 (CH)
7	6.93 (<i>dd</i> , 8.0, 0.5)	11	7.83 (CH)	6.84 (<i>dm</i> , 8	.3)	117.6 (CH)
8	-	16	0.34 (C)	-		163.7 (C)
8-OH	12.43 (s)	-		-		-
8a	-	11	5.20 (C)	-		116.5 (C)

Table 94 The HMBC, COSY and NOE data of compound US19 in CDCl₃

Table 94 (continued)

Proton	HMBC correlations	COSY	NOE
H-6	C-4a, C-8	H-5, H-7	H-6
H-7	C-5, C-8, 8a	H-6	H-5, H-7
8-OH	C-7, C-8, C-8a	-	H-6

4.3.4 Compound US20

Compound US20 with the molecular formula $C_{20}H_{16}O_5$ from EIMS (m/z 336) (Figure 178) was isolated as a pale yellow gum. It exhibited UV absorption bands at 223, 251 265, 289 and 389 nm (Figure 168) while hydroxyl and carbonyl absorption bands were found at 3774 and 1670 cm⁻¹, respectively, in the IR spectrum (Figure 169). The ¹H NMR spectrum (Figure 170) (Table 95) contained signals of one hydrogen bonded hydroxyl group ($\delta_{\rm H}$ 12.60, s, 1H), one phenolic hydroxyl group $(\delta_{\rm H} 8.22, s)$, a 1,2,3-trisubstituted benzene [$\delta_{\rm H} 7.53$ (dd, J = 8.5 and 7.5 Hz, 1H), 7.36 (dd, J = 7.5 and 0.5 Hz, 1H) and 6.92 (dd, J = 8.5 and 0.5 Hz, 1H)], two orthocoupled aromatic protons of a 1,2,3,4-tetrasubstituted benzene [$\delta_{\rm H}$ 7.24 (d, J = 8.0 Hz, 1H) and 6.77 (*d*, J = 8.0 Hz, 1H)], two oxymethine protons [$\delta_{\rm H}$ 5.67 (*t*, J = 4.5 Hz, 1H) and 5.28 (dd, J = 10.0 and 4.5 Hz, 1H)], one methine proton ($\delta_{\rm H} 4.05$ (dd, J =14.5 and 5.5 Hz, 1H) and two sets of nonequivalent methylene protons [$\delta_{\rm H}$ 3.39 (dd, J = 16.5 and 5.5 Hz, 1H), 2.39 (dd, J = 16.5 and 14.5 Hz, 1H)] and [$\delta_{\rm H}$ 2.80 (dt, J = 12.5 and 4.5 Hz, 1H) and 2.02 (m, 1H)]. The presence of -CH(OH)CH₂CH(OH)- unit was realized due to the ${}^{1}\text{H}{}^{-1}\text{H}$ COSY correlations of H_{ab}-2 (δ_{H} 2.80 and 2.02) with H-1 ($\delta_{\rm H}$ 5.67) and H-3 ($\delta_{\rm H}$ 5.28) (Figure 176) (Table 96). In addition, this spectrum displayed ¹H-¹H cross peaks between H-6b ($\delta_{\rm H}$ 4.05) and H_{ab}-7 ($\delta_{\rm H}$ 3.39 and 2.39), thus constructing a -CHCH₂- unit. The chelated hydroxyl group was placed at C-9 (δ _C 163.45), *peri* position to a carbonyl group. This hydroxy proton gave ³J HMBC correlations (Figure 175) (Table 96) with C-8a ($\delta_{\rm C}$ 114.62) and C-10 ($\delta_{\rm C}$ 117.69). The methine carbon (C-10) exhibited a HMQC cross peak (Figure 174) (Table 95) with the aromatic proton of the trisubstituted benzene resonating at $\delta_{\rm H}$ 6.92. Consequently, two remaining aromatic protons resonating at $\delta_{\rm H}$ 7.53 and 7.36 were attributed to H-11 and H-12, respectively. H-12 gave ${}^{3}J$ HMBC correlations with C-12b ($\delta_{\rm C}$ 137.54) while H-6b of the -CHCH₂- unit showed HMBC cross peaks with C-12b and C-12c (δ $_{\rm C}$ 135.87). These results established a naphthalenone skeleton having an exocyclic double bond at C-12b. Nonequivalent methylene protons, Hab-7, displayed HMBC cross peaks with C-6a ($\delta_{\rm C}$ 112.00) of the 1,2,3,4-tetrasubstituted benzene and C-12b, thus connecting the tetrasubstituted benzene with C-6b of the naphthalenone. Signal enhancement of one of the *ortho*-aromatic protons ($\delta_{\rm H}$ 7.24) upon irradiation of H_a-7 (Figure 177) (Table 96) established the attachment of this proton at C-6 ($\delta_{\rm C}$ 123.15).

The remaining aromatic proton ($\delta_{\rm H}$ 6.77) was then assigned as H-5. This assignment was supported by a HMBC correlation of H-5/C-6a. The attachment of a hydroxyl group at C-4 ($\delta_{\rm C}$ 155.10) was established based on HMBC correlations between the ortho-aromatic protons and C-4 together with chemical shift of C-4. HMBC cross peaks of 4-OH ($\delta_{\rm C}$ 8.22) of the tetrasubstituted benzene and H-3 ($\delta_{\rm H}$ 5.28) of the -CH (OH)CH₂CH(OH)- unit with the same carbon, C-3a ($\delta_{\rm C}$ 117.25), joined the dihydroxypropyl unit at C-3a of the tetrasubstituted benzene. According to the molecular formula C₂₀H₁₆O₅, **US20** possessed 13 degrees of unsaturation, thus joining C-12c with C-12d ($\delta_{\rm C}$ 142.36) of the tetrasubstituted benzene and C-1 ($\delta_{\rm C}$ 62.47) of the -CH(OH)CH₂CH(OH)- unit to from a pentacyclic skeketon. Irradiation of H-3 affected the intensity of H_a-2 and 4-OH signals, but did not enhance the H-1 signal (Figure 177) (Table 96), indicating trans relationship between H-1 and H-3. Since H-1 was coupled with H_{ab}-2 with a small coupling constant of 4.5 Hz, it was located at β -equatorial position. Both H-3 and H-6b were placed at α -axial and axial positions, respectively, as they were coupled with vicinal methylene protons with small and large coupling constants. Consequently, US20 was identified as a new pentacyclic compound.

Table 95 The NMR data of compound US20 in CDCl₃

Position	$\delta_{\rm H}$ (mult., J_{Hz})	$\delta_{\rm C}$ (C-type)
1	5.67 (<i>t</i> , 4.5)	62.47 (CH)
2	a: 2.80 (<i>dt</i> , 12.5, 4.5)	36.25 (CH ₂)
	b: 2.02 (<i>m</i>)	
3	5.28 (<i>dd</i> , 10.0, 4.5)	72.96 (CH)
3a	-	117.25 (C)
4	-	155.10 (C)
4-OH	8.22 (s)	-
5	6.77 (<i>d</i> , 8.0)	114.62 (CH)
6	7.24 (<i>d</i> , 8.0)	123.15 (CH)
6a	-	135.40 (C)
6b	4.05 (<i>dd</i> , 14.5, 5.5)	48.91 (CH)
7	a: 3.39 (<i>dd</i> , 16.5, 5.5)	42.80 (CH ₂)
	b: 2.39 (<i>dd</i> , 16.5, 14.5)	
8	-	204.21 (C=O)
8a	-	114.62 (C)
9	-	163.45 (C)
9-OH	12.60 (s)	-
10	6.92 (<i>dd</i> , 8.5, 0.5)	117.69 (CH)
11	7.53 (<i>dd</i> , 8.5, 7.5)	137.02 (CH)
12	7.36 (<i>dd</i> , 7.5, 0.5)	116.33 (CH)
12a	-	135.40 (C)
12b	-	137.54 (C)
12c	-	135.87 (C)
12d	-	142.36 (C)

Table 96 The HMBC, COSY and NOE data of compound US20 in \mbox{CDCl}_3

Proton	HMBC correlations	COSY	NOE
H-1	C-12d	H _{ab} -2	H _{ab} -2, H-12
Ha-2	C-3	H-1, H _b -2, H-3	H-1, H _b -2, H-3
H _b -2	C-3	H-1, H _a -2, H-3	H-1, H _a -2
H-3	C-3a	H _{ab} -2	H _a -2, 4-OH
4-OH	C-3a, C-4, C-5	-	H-3
H-5	C-4, C-6a	H-6	H-6
H-6	C-4, C-12d	H-5	H-5, H _a -7
H-6b	C-6a, C-7, C-12b, C-12c	H _{ab} -7	H _a -7
H _a -7	C-6a, C-6b, C-12b	H-6b, H _b -7	H-6, H-6b, H _b -7
H _b -7	C-6a, C-6b, C-12b	H-6b, H _a -7	H _a -7
9-OH	C-8a, C-9, C-10	-	-
H-10	C-8a, C-9, C-12	H-11	9-OH, H-11
H-11	C-9, C-12	H-10, H-12	H-10, H-12
H-12	C-8a, C-10, C-12b	H-11	H-1, H-11

4.3.4 Compound US21

Compound **US21** with the molecular formula $C_{21}H_{18}O_5$ from EIMS (*m/z* 350) (**Figure 188**) was isolated as a pale yellow gum. The UV (**Figure 179**) and IR (**Figure 180**) spectra were almost identical to those of **US20**, thus indicating that they possessed the same chromophore and functional groups. The ¹H NMR spectral data (**Figure 181**) (**Table 97**) were similar to those of **US20** except that one of the hydroxyl group in **US20** was replaced, in **US21**, by a methoxyl group ($\delta_H 3.64$, *s*). A HMBC correlation of the methoxy protons with C-3 (δ_C 74.37) (**Figure 186**) (**Table 98**) established the location of the methoxyl group at C-3. In addition, the remaining HMBC correlations, NOE and ¹H-¹H COSY data (**Figure 187**) (**Table 98**) were almost identical to those of **US20** (hypoxylonol B) which was previously isolation from *Hypoxylon truncatum* (Koyama, *et al.*, 2002).

Position	US21		hypoxylo	nol B
	δ_{H} (<i>mult.</i> , J_{Hz})	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}$ (mult., J_{Hz})	$\delta_{\rm C}$ (C-type)
1	5.67 (<i>t</i> , 3.0)	62.44 (CH)	5.51 (<i>dddd</i> , 8.8,	63.6 (CH)
			6.4, 4.6, 2.3)	
2	a: 2.80 (<i>dt</i> , 13.0, 4.0)	35.60 (CH ₂)	a: 2.41 (<i>ddd</i> , 13.1,	39.80 (CH ₂)
			6.0, 4.6)	
	b: 2.02 (<i>ddd</i> , 13.0,		b: 2.15 (<i>ddd</i> , 13.1,	
	10.5, 3.0)		8.8, 3.4)	
3	5.19 (<i>dd</i> , 10.0, 4.0)	74.37 (CH)	4.98 (<i>dd</i> , 6.0, 3.4)	73.10 (CH)
3a	-	116.40 (C)	-	119.10 (C)
4	-	155.03 (C)	-	155.20 (C)
4-OH	8.00 (s)	-	8.38 (s)	-
5	6.78 (<i>d</i> , 8.0)	114.61 (CH)	6.75 (<i>d</i> , 8.0)	114.30 (CH)
6	7.24 (<i>d</i> , 8.0)	123.26 (CH)	7.32 (<i>dd</i> , 8.0, 0.7)	124.10 (CH)
6a	-	135.37 (C)	-	137.00 (C)
6b	4.07 (<i>dd</i> , 14.5, 6.0)	48.94 (CH)	4.08 (<i>dddd</i> , 13.9,	50.00 (CH)
			5.5, 2.3, 0.7)	
7	a: 3.40 (<i>dd</i> , 16.5, 5.5)	42.76 (CH ₂)	a: 3.39 (<i>dd</i> , 16.4,	43.80 (CH ₂)
			5.5)	
	b: 2.39 (<i>dd</i> , 16.5,		b: 2.29 (<i>dd</i> , 16.4,	
	14.0)		13.9)	
8	-	204.27 (C=O)	-	206.10 (C=O)
8a	-	114.61 (C)	-	115.80 (C)
9	-	163.45 (C)	-	163.50 (C)
9-OH	12.60 (s)	-	12.59 (s)	-

Table 97 The NMR data of compound US21 in CDCl_3

 Table 97 (continued)

Position	US21	US21		onol B
	$\delta_{\rm H}$ (mult., J_{Hz})	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}$ (mult., J_{Hz})	$\delta_{\rm C}$ (C-type)
10	6.92 (<i>dd</i> , 8.0, 1.0)	117.72 (CH)	6.83 (<i>dd</i> , 7.7, 1.7)	117.00 (CH)
11	7.53 (<i>t</i> , 8.0)	137.02 (CH)	7.54 (<i>t</i> , 7.7)	137.10 (CH)
12	7.37 (<i>dd</i> , 8.0, 1.0)	116.40 (CH)	7.51 (<i>dd</i> , 7.7, 1.7)	120.80 (CH)
12a	-	135.37 (C)	-	139.40 (C)
12b	-	137.51 (C)	-	138.00 (C)
12c	-	135.87 (C)	-	138.90 (C)
12d	-	142.40 (C)	-	145.30 (C)
13	3.64 (s)	56.03 (CH ₃)	3.46 (<i>s</i>)	56.60 (CH ₃)

Table 98 The HMBC, COSY and NOE data of compound US21 in CDCl_3

Proton	HMBC correlations	COSY	NOE
H-1	C-12d	H _{ab} -2	H _{ab} -2, H-12
H _a -2	C-1, C-3	H-1, H _b -2, H-3	H-1, H _b -2, H-3, Me-13
H _b -2	C-1, C-3	H-1, H _a -2, H-3	H-1, H _a -2
H-3	C-3a	H _{ab} -2	H _a -2, 4-OH, Me-13
4-OH	C-3a, C-4, C-5	-	H-3
H-5	C-4, C-6a	H-6	H-6
H-6	C-4, C-12d	H-5	H-5, H _a -7
H-6b	C-6a, C-7, C-8, C-12b, C-12c	H _{ab} -7	H _a -7
H _a -7	C-6b, C-8	H-6b, H _b -7	H-6, H-6b, H _b -7
H _b -7	C-6b, C-8	H-6b, H _a -7	H _a -7
9-OH	C-8a , C-9, C-10	-	-
H-10	C-8a, C-9, C-12	H-11	9-OH, H-11
H-11	C-9, C-12	H-10, H-12	H-10, H-12
H-12	C-8a, C-10, C-12b	H-11	H-1, H-11
H-13	C-3	-	H _a -2, H-3, 4-OH

^{4.3.6} Compound US22

Compound US22 with the molecular formula $C_{15}H_{16}N_2O_2$ from EIMS (m/z 256) (Figure 199) was isolated as a pale yellow gum. It exhibited UV absorption bands at 220 and 293 nm (Figure 189) while hydroxyl and carbonyl absorption bands were found at 3419 and 1683 cm⁻¹, respectively, in the IR spectrum (Figure 190). The ¹H NMR spectrum (Figure 191) (Table 99) displayed characteristic signals for a monosubstituted benzene ($\delta_{\rm H}$ 7.33, m, 5H), one olefinic proton ($\delta_{\rm H}$ 7.15, s, 1H) of an α,β -unsaturated carbonyl unit, one methine proton ($\delta_{\rm H}$ 4.25, dd, J = 9.3 and 6.9 Hz), two sets of nonequivalent methylene protons [($\delta_{\rm H}$ 2.42, m, 1H and 2.22, m, 1H) and (δ $_{\rm H}$ 2.06, m, 1H and 1.98, m, 1H)], one set of equivalent methylene protons ($\delta_{\rm H}$ 3.65, m, 2H) and one methyl group ($\delta_{\rm H}$ 2.90, s, 3H). The ¹³C NMR spectrum (Figure 197) (Table 99) showed two amide carbonyl carbons ($\delta_{\rm C}$ 167.98 and 161.42), two quaternary carbons ($\delta_{\rm C}$ 133.62 and 133.58), three carbons for five aromatic methine carbons ($\delta_{\rm C}$ 129.52, 128.57 and 128.44), one olefinic methine carbon ($\delta_{\rm C}$ 121.19), one methine carbon ($\delta_{\rm C}$ 58.85), three methylene carbons ($\delta_{\rm C}$ 45.29, 28.01 and 22.84) and one methyl carbon ($\delta_{\rm C}$ 34.72). In the ¹H-¹H COSY spectrum (Figure 197) (Table 100), the methylene protons (H_{ab}-8, $\delta_{\rm H}$ 2.06 and 1.98) were coupled with two sets of methylene protons, (H₂-9, $\delta_{\rm H}$ 3.65) and (H_{ab}-7, $\delta_{\rm H}$ 2.42 and 2.22). H_{ab}-7 were further coupled with the methine proton (H-6, $\delta_{\rm H}$ 4.25). These results indicated the presence of -CH₂CH₂CH₂CH- unit. HMBC cross peaks of H-6/C-1 (δ_C 167.98), H₂-9/C-4 (δ_C 161.42) and C-6 ($\delta_{\rm C}$ 58.85) (Figure 196) (Table 100) established a pyrrolidine skeleton having two amide carbonyl functionalities attached at N-5 and C-6. A pyrrolo[1,2a]pyrazine-1,4-dione moiety with an exocyclic trisubstituted double bond at C-3 ($\delta_{\rm C}$ 133.58) and the methyl group at N-2 were constructed on the basis of 3J HMBC cross peaks of Me-17 ($\delta_{\rm H}$ 2.90)/C-1 and C-3 and the olefinic H-10 ($\delta_{\rm H}$ 7.15)/C-4. Consequently, the phenyl group was connected at C-10 ($\delta_{\rm C}$ 121.19). This assigned location was confirmed by HMBC correlations of H-10 with C-12 and C-16 $(\delta_{\rm C}$ 129.52) of the phenyl ring. Irradiation of H-10 enhanced signal intensity of Me-17 (Figure 198) (Table 100) established E configuration for the trisubstituted double bond. Therefore, compound US22 was identified as a (E)-3-benzylidenehexahydro-2methylpyrrolo[1,2-a]pyrazine-1,4-dione (Jin and liebscher, 1999).

Position	$\delta_{\rm H}(mult., J_{Hz})$	$\delta_{\rm C}$ (C-type)
1	-	167.98 (C=O)
3	-	133.58 (C)
4	-	161.42 (C=O)
6	4.25 (<i>dd</i> , 9.3, 6.9)	58.85 (CH)
7	a: 2.42 (<i>m</i>)	28.01 (CH ₂)
	b: 2.22 (<i>m</i>)	
8	a: 2.06 (<i>m</i>)	22.84 (CH ₂)
	b: 1.98 (<i>m</i>)	
9	3.65 (<i>m</i>)	45.29 (CH ₂)
10	7.15 (s)	121.19 (CH)
11	-	133.62 (C)
12, 16	7.33 (<i>m</i>)	129.52 (CH)
13,15	7.33 (<i>m</i>)	128.57 (CH)
14	7.33 (<i>m</i>)	128.44 (CH)
17	2.90 (s)	34.72 (CH ₃)
1		

Table 99 The NMR data of compound US22 in CDCl₃

Proton	HMBC correlations	COSY	NOE
H-6	C-1, C-7, C-8	H _{ab} -7, H-9	H _a -7, H _{ab} -8a
H _a -7	C-1, C-6, C-8, C-9	H-6, H _b -7, H _{ab} -8	H-6, H _b -7, H _a -8
H _b -7	C-1, C-6, C-8, C-9	H-6, H _a -7, H _{ab} -8	H-6, H _a -7, H-9
Ha-8	C-6, C-7, C-9	H _{ab} -7, H _b -8, H-9	H _a -7, H _b -8, H-9
H _b -8	C-6, C-7, C-9	H _{ab} -7, H _a -8, H-9	H-6, H _a -7, H _a -8, H-9
H-9	C-4, C-6, C-7, C-8	H-6, H _{ab} -8	-
H-10	C-4, C-12, C-16	-	H-12, H-16, Me-17
H-12, 16	C-10, C-11	-	-
H-13, H-15	C-12, C-14, C-16	-	-
H-14	C-12, C-16	-	-
H-17	C-1, C-3	-	H-10

Table 100 The HMBC, COSY and NOE data of compound US22 in CDCl₃

4.3.7 Compound US23

Compound US23 was obtained as a pale yellow gum. The UV (Figure 200) and IR (Figure 201) spectra were almost identical to those of US22. The ¹H NMR spectral data (Figure 202) (Table 101) were similar to those of US22 except that the methyl signal at $\delta_{\rm H}$ 2.09 in US22 was replaced, in US23, by a proton resonating at $\delta_{\rm H}$ 7.76 (*s*). These indicated the replacement of the NMe group in US22 with an NH group in US23. The disappearance of the methyl carbon resonance in US23 supported this conclusion. Therefore, compound US23 was identified as a (*E*)-3-benzylidenehexahydropyrrolo[1,2-a]pyrazine-1,4-dione (Jin, *et al.*, 2000).

Position	$\delta_{\rm H}(mult., J_{Hz})$	$\delta_{\rm C}$ (C-type)
1	-	165.83 (C=O)
2-NH	7.76 (s)	-
3	-	133.23 (C)
4	-	157.86 (C=O)
6	4.32 (<i>dd</i> , 10.0, 7.0)	59.18 (CH)
7	a: 2.48 (<i>m</i>)	28.94 (CH ₂)
	b: 2.03 (<i>m</i>)	
8	a: 2.12 (<i>m</i>)	21.83 (CH ₂)
	b: 1.97 (<i>m</i>)	
9	a: 3.82 (<i>dt</i> , 8.5, 1.0)	45.67 (CH ₂)
	b: 3.65 (<i>m</i>)	
10	7.00 (s)	115.86 (CH)
11	-	133.23 (C)
12, 16	7.37 (<i>d</i> , 7.5)	128.45 (CH)
13, 15	7.43 (<i>t</i> , 7.5)	129.39 (CH)
14	7.32 (<i>t</i> , 7.5)	128.61 (CH)

Table 101 The NMR data of compound US23 in CDCl_3

Proton	HMBC	COSY	NOE
	correlations		
H-6	C-1, C-7	H _{ab} -7	H _a -7
H _a -7	C-1, C-6, C-8, C-9	H-6, H _b -7, H _{ab} -8	H-6, H _b -7
H _b -7		H-6, H _a -7, H _{ab} -8	H-6, H _a -7
H _a -8	C-7, C-9	H_{ab} -7, H_{b} -8, H_{ab} -9	H _a -7
H _b -8		H_{ab} -7, H_{a} -8, H_{ab} -9	H _a -7, H _a -9
H _a -9	C-6, C-7, C-8	H_{ab} -8, H_{b} -9	-
H _b -9		H _{ab} -8, H-9 ^a	-
H-10	C-5, C-12, C-16	-	H-12, H-16

Table 102 The HMBC, COSY and NOE data of compound US23 in CDCl₃

 Table 102 (continued)

Proton	HMBC	COSY	NOE
	correlations		
H-12, H- 16	C-10, C-14	-	H-10
H-13, H-15	C-11	-	-
H-14	C-12, C-16	-	-

4.3.8 Compound US24

Compound **US24** was obtained as a colorless gum. It exhibited a hydroxyl absorption band at 3394 cm⁻¹ in the IR spectrum (**Figure 210**). The ¹H NMR spectrum (**Figure 211**) (**Table 103**) contained signals for three olefinic protons [$\delta_{\rm H}$ 6.39 (*ddd*, J = 15.0, 11.1 and 1.5 Hz), 6.09 (*d*, J = 11.1 Hz) and 5.84 (*dq*, J = 15.0 and 6.6 Hz)], two oxymethine protons [$\delta_{\rm H}$ 4.02 (*d*, J = 6.3 Hz) and 3.95 (*quintet*, J = 6.3 Hz)], nonequivalent methylene protons of a hydroxymethyl group [$\delta_{\rm H}$ 4.34 (*d*, J = 11.7 Hz) and 4.25 (*d*, J = 11.7 Hz)] and two methyl groups [$\delta_{\rm H}$ 1.81 (*dd*, J = 6.6 and 1.5 Hz) and 1.15 (*d*, J = 6.3 Hz)]. The ¹³C NMR spectrum (**Figure 214**) (**Table 103**)

showed one quaternary carbon ($\delta_{\rm C}$ 134.65), three olefinic methine carbons ($\delta_{\rm C}$ 133.34, 132.80 and 126.07), two oxymethine carbons ($\delta_{\rm C}$ 80.40 and 70.11), one oxymethylene carbon ($\delta_{\rm C}$ 56.83) and two methyl carbons ($\delta_{\rm C}$ 18.78 and 18.42). The ¹H and ¹³C NMR data indicated the presence of one trisubstituted double bond and one transdisubstituted double bond. In the COSY spectrum (Figure 217) (Table 104), one of the *trans*-olefinic protons ($\delta_{\rm H}$ 5.84) was coupled with the vinylic methyl protons, Me-8 ($\delta_{\rm H}$ 1.81), while the other one ($\delta_{\rm H}$ 6.39) was coupled with the olefinic proton ($\delta_{\rm H}$ 6.09) of the trisubstituted alkene. These results established a trans-1,3-pentadienyl unit. Furthermore, the ¹H-¹H COSY correlations between one of the oxymethine protons ($\delta_{\rm H}$ 3.95) with the methyl protons ($\delta_{\rm H}$ 1.15) and the other oxymethine proton ($\delta_{\rm H}$ 4.02) constructed 1,2-dihydroxypropyl unit. ³J HMBC correlations of the hydroxymethyl protons (H_{ab}-9, $\delta_{\rm H}$ 4.34 and 4.25) with C-5 ($\delta_{\rm C}$ 132.80) of the diene moiety and C-3 ($\delta_{\rm C}$ 80.40) of the dihydroxypropyl moiety (Figure 216) (Table 104) indicated that US24 was (E,E)-4-hydroxymethyl-4,6-octadien-2,3-diol (Fuchser and Zeeck, 1997). Irradiation of H-6 ($\delta_{\rm H}$ 6.39) enhanced signals of Me-8 and H_{ab}-9 (Figure 218) (Table 104), thus supporting the E-configuration of the trisubstituted double bond.

Table 103 The NMR data of compound US24 in CDCl₃

Position	$\delta_{\rm H}(mult., J_{Hz})$	$\delta_{\rm C}$ (C-type)
1	1.15 (<i>d</i> , 6.3)	18.78 (CH ₃)
2	3.95 (quintet, 6.3)	70.11 (CH)
3	4.02 (<i>d</i> , 6.3)	80.40 (CH)
4	-	134.65 (C)
5	6.09 (<i>d</i> , 11.1)	132.80 (CH)
6	6.39 (<i>ddd</i> , 15.0, 11.1, 1.5)	126.07 (CH)
7	5.84 (<i>dq</i> , 15.0, 6.6)	133.34 (CH)
8	1.81 (<i>dd</i> , 6.6, 1.5)	18.42 (CH ₃)
9	a: 4.34 (<i>d</i> , 11.7)	56.83 (CH ₂)
	b: 4.25 (<i>d</i> , 11.7)	

Proton	HMBC correlations	COSY	NOE
H-1	C-2, C-3	H-2	H-2, H-3, H-5
H-2	C-1, C-3, C-4	H-1, H-3	H-1, H-5
H-3	C-1, C-2, C-4, C-5, C-9	H-2	H-1, H-5, H _{ab} -9
H-5	C-3, C-4, C-6, C-7, C-9	Н-6	H-1, H-3, H-7
H-6	C-5, C-8	H-5, H-7, Me-8	Me-8, H _{ab} -9
H-7	C-5, C-6	H-6, Me-8	H-5, Me-8

Table 104 The HMBC, COSY and NOE data of compound US24 in CDCl₃

Table 104 (continued)

Proton	HMBC correlations	COSY	NOE
H-8	C-6, C-7	H-6, H-7	H-6, H-7
H _a -9	C-3, C-4, C-5	H _b -9	H-3
H _b -9		H _a -9	-

4.3.9 Compound US25

Compound **US25** with the molecular formula $C_9H_{12}O_4$ from EIMS (*m/z* 184) (**Figure 228**) was isolated as a yellow gum. It exhibited UV absorption band at 257 nm (**Figure 219**) while hydroxyl and two carbonyl absorption bands were found at 3373, 1720 and 1689 cm⁻¹, respectively, in the IR spectrum (**Figure 220**). The ¹H NMR spectrum (**Figure 221**) (**Table 105**) contained signals of *trans*-1,3-pentadienyl unit [δ_H 7.47 (*d*, *J* = 11.5 Hz), 6.54 (*ddd*, *J* = 15.0, 11.5 and 1.5 Hz), 6.32 (*dq*, *J* = 15.0 and 6.9 Hz) and (δ_H 1.94, *dd*, *J* = 6.9 and 1.5 Hz)], one oxymethylene proton (δ_H 4.92, *s*) and one methyl group (δ_H 2.07, *s*). The ¹³C NMR spectrum (**Figure 224**) (**Table 105**) showed two carbonyl carbons (δ_C 169.99 and 168.63), one quaternary carbon (δ_C 120.95), three olefinic methine carbons (δ_C 145.49, 142.44 and 125.61), one oxymethylene carbon (δ_C 56.90) and two methyl carbons (δ_C 19.89 and 18.10). ³*J* HMBC correlations of H-3 (δ_H 7.47)/C-1 (δ_C 169.99) and C-7 (δ_C 56.90) (**Figure 226**) (**Table 106**) constructed a diene carboxylic acid carrying the oxymethylene group at C-2. The remaining methyl group was connected with the

ester carbonyl carbon ($\delta_{\rm C}$ 168.63) which gave a HMBC correlation with H₂-7 ($\delta_{\rm H}$ 4.92). These results together with the chemical shift of H₂-7 established the substituent at C-7 to be an acetoxyl group. Consequently, **US25** was identified as a new dienoic acid.

Table 105 The NMR data of compound US25 in CDCl₃

Position	$\delta_{\rm H}$ (<i>mult.</i> , J_{Hz})	$\delta_{\rm C}$ (C-type)
1	-	169.99 (C=O)
2	-	120.95 (C)
3	7.47 (<i>d</i> , 11.5)	145.49 (CH)
4	6.54 (<i>ddd</i> , 15.0, 11.5, 1.5)	125.61 (CH)
5	6.32 (<i>dq</i> , 15.0, 6.9)	142.44 (CH)
6	1.94 (<i>dd</i> , 6.9, 1.5)	18.10 (CH ₃)
7	4.92 (<i>s</i>)	56.90 (CH ₂)
9	-	168.63 (C=O)
10	2.07 (s)	19.89 (CH ₃)

Proton	HMBC correlations	COSY	NOE
H-3	C-1, C-2, C-5, C-7	H-4	H-5
H-4	C-3	H-3, H-5, Me-6	Me-6, H-7
H-5	C-3, C-6	H-4, Me-6	H-3, Me-6
H-6	C-4, C-5	H-4, H-5	H-4, H-5
H-7	C-1, C-2, C-3	-	H-4
H-10	C-9	-	-

Table 106 The HMBC, COSY and NOE data of compound US25 in CDCl₃

4.3.10 Compound US26

Compound **US26** with the molecular formula $C_{11}H_{12}O_3$ from EIMS (*m/z* 192) (Figure 239) was obtained as a colorless gum. The UV (Figure 229) and IR (Figure 230) spectra were similar to those of US19. The ¹H NMR spectral data (Figure 231) (Table 107) were similar to those of US19 except that the chelated hydroxyl proton at δ_H 12.43 (*s*) in US19 was replaced, in US26, by a methoxyl group (δ_H 3.86, *s*). A HMBC correlation of the methoxy protons with C-8 (δ_C 160.08) (Figure 236) (Table 108) and signal enhancement of these protons after irradiation of H-7 (δ_H 6.91) (Figure 238) (Table 108) supported the assignment. In addition, the remaining HMBC correlations, NOE and ¹H-¹H COSY data (Figure 237) (Table 108) were almost identical to those of US19. Therefore, compound US26 was identified as a methyl ether of US19, a new tetralone.

Table 107 The NMR data of compound US26 in CDCl₃

Position	$\delta_{\rm H}(mult., J_{Hz})$	$\delta_{\rm C}$ (C-type)
1	-	197.00 (C=O)
2	a: 2.85 (<i>ddd</i> , 18.0, 9.0, 3.0)	36.34 (CH ₂)
	b: 2.52 (<i>ddd</i> , 18.0, 9.0, 3.0)	
3	a: 2.25 (<i>m</i>)	31.33 (CH ₂)
	b: 2.10 (<i>m</i>)	
4	4.83 (<i>dd</i> , 9.0, 6.0)	68.47 (CH)
4a	-	147.76 (C)
5	7.11 (<i>d</i> , 6.0)	118.77 (CH)
6	7.46 (<i>dd</i> , 9.0, 6.0)	134.69 (CH)
7	6.91 (<i>d</i> , 9.0)	111.97 (CH)
8	-	160.08 (C)
8a	-	120.10 (C)
9	3.86 (s)	56.14 (CH ₃)

Proton	HMBC correlations	COSY	NOE
H _a -2	C-1, C-3, C-4	$H_b-2, H_{ab}-3a$	$H_{b}-2, H_{b}-3$
H _b -2	C-1, C-3, C-4	H _a -2, H _{ab} -3	H_a-2, H_b-3
H _a -3	C-1, C-2, C-4, C-4a	H _{ab} -2, H _b -3, H-4	H-4
H _b -3	C-1, C-2, C-4, C-4a	H _{ab} -2, H _a -3, H-4	H _{ab} -2, H-4
H-4	C-2, C-3, C-4a, C-5, C-8a	H _{ab} -3	H _{ab} -3, H-5
H-5	C-4, C-7, C-8a	H-6	H-4, H-6
H-6	C-4a, C-8	H-5, H _{ab} -7	H-5, H _{ab} -7
H-7	C-5, C-8a	H-6	H-6, Me-9
H-9	C-8	-	H-7

Table 108 The HMBC, COSY and NOE data of compound US26 in CDCl₃

4.3.11 Compound US27

Compound **US27** was obtained as a colorless gum. It exhibited hydroxyl and carbonyl absorption bands at 3394 and 1734 cm⁻¹, respectively, in the IR spectrum (**Figure 244**). The ¹H NMR spectrum (**Figure 242**) (**Table 109**) contained signals of two oxymethine protons [$\delta_{\rm H}$ 4.86 (*dqd*, *J* = 11.1, 6.3 and 3.3 Hz, 1H) and 4.37 (*dddd*, *J* = 4.8, 3.6, 3.6 and 3.3 Hz, 1H)], two sets of nonequivalent methylene protons [$(\delta_{\rm H} 2.75, dd, J = 17.7 \text{ and } 4.8 \text{ Hz}, 1\text{ H} \text{ and } 2.61, ddd, J = 17.7, 3.6 and 1.5 Hz, 1H) and (<math>\delta_{\rm H}$ 2.00, *dm*, *J* = 14.4 Hz, 1H and 1.71, *ddd*, *J* = 14.4, 11.1 and 3.3 Hz, 1H)] and one methyl group ($\delta_{\rm H}$ 1.39, *d*, *J* = 6.3 Hz, 1H). The ¹³C NMR spectrum (**Figure 245**) (**Table 109**) showed one carbonyl carbon ($\delta_{\rm C}$ 171.15), two oxymethine carbons ($\delta_{\rm C}$ 72.56 and 62.54), two methylene cabons ($\delta_{\rm C}$ 38.32 and 37.51) and one methyl carbon ($\delta_{\rm C}$ 21.35). In the COSY spectrum (**Figure 248**) (**Table 110**), ¹H-¹H coupling was observed between H_{ab}-3 ($\delta_{\rm H}$ 2.75 and 2.61) and H-4 ($\delta_{\rm H}$ 4.37),

between H-4 and H_{ab}-5 ($\delta_{\rm H}$ 2.00 and 1.71) and between H_{ab}-5 and H-6 ($\delta_{\rm H}$ 4.86). The chemical shifts of C-2 ($\delta_{\rm C}$ 171.15) and C-6 ($\delta_{\rm C}$ 72.56) and HMBC cross peaks (**Figure 247**) (**Table 110**) of H_{ab}-3, H-4 and H-6 with C-2 constructed a lactone skeleton. Moreover, HMBC cross peaks of Me-7 ($\delta_{\rm H}$ 1.39) with C-5 ($\delta_{\rm C}$ 37.51) and C-6 revealed the attachment of the methyl group at C-6 of the lactone skeleton. Since H-4 was coupled with H_{ab}-3 and H_{ab}-5 with small coupling constants of 4.8, 3.6, 3.6 and 3.3 Hz, it was assigned at equatorial position. The large coupling constant (J = 11.1 Hz) between H_b-5 and H-6 established the location of H-6 at axial position. Consequently, **US27** was identified as *trans*-4-hydroxy-6-methyl-3,4,5,6-tetrahydro-2*H*-pyran-2-one, which was previously isolated from *Daldinia* sp. (Buchanan, *et al.*, 1996).

	O U			
Position			Jrans-4-Hydroxy-6-methyl-3,4,5,6- terranyd 6-2 <i>H</i> -pyran-2-one	
	$\delta_{\rm H}(m\bar{u}lt., J_{Hz})$	$\delta_{\rm C}$ (C-type)	$\delta_{\rm H}(mHlt., J_{Hz})$	$\delta_{\rm C}$ (C-type)
2	-	171.15 (C=O)	-	171.51 (C=O)
3	a: 2.75 (<i>dd</i> , 17.7,	38.32 (CH ₂)	a: 2.68 (<i>dd</i> , 18.4, 4.9)	38.31 (CH ₂)
	4.8)			
	b: 2.61 (<i>ddd</i> , 17.7,		b: 2.61 (<i>ddd</i> , 18.4,	
	3.6, 1.5)		3.6, 1.7)	
4	4.37 (<i>dddd</i> , 4.8,	62.54 (CH)	4.35 (<i>dddd</i> , 4.9,3.8,	62.42 (CH)
	3.6, 3.6, 3.3)		3.6, 3.3)	
5	a: 2.00 (<i>dm</i> , 14.4)	37.51 (CH ₂)	a: 2.00 (<i>dddd</i> , 14.5,	37.42 (CH ₂)
			3.8, 3.2, 1.7)	
	b: 1.71 (<i>ddd</i> , 14.4,		b: 1.70 (<i>ddd</i> , 14.5,	
	11.1, 3.3)		11.3, 3.3)	
6	4.86 (<i>dqd</i> , 11.1,	72.56 (CH)	4.85 (<i>ddq</i> , 11.1, 6.5,	72.74 (CH)
	6.3, 3.3)		3.1)	
7	1.39 (<i>d</i> , 6.3)	21.35 (CH ₃)	1.39 (<i>d</i> , 6.4)	21.38 (CH ₃)

Table 109 The NMR data of compound US27 in CDCl₃

Table 110 The HMBC, COSY and NOE data of compound US27 in \mbox{CDCl}_3

Proton	HMBC correlations	COSY	NOE
H _a -3	C-2, C-4, C-5	H _b -3, H-4	-
H _b -3	C-2, C-4, C-5	H _a -3, H-4, H _a -5	-
H-4	C-2, C-3, C-5, C-6	H_{ab} -3, H_{ab} -5	-
H _a -5	C-3, C-4, C-6, C-7	H-4, H _b -5, H-6	H-4, H _b -5, H-6, H-7
H _b -5	C-3, C-4, C-6, C-7	H-4, H _a -5, H-6	H-4, H _a -5, H-7
H-6	C-2, C-4, C-5, C-7	H _{ab} -5, H-7	-
H-7	C-5, C-6	H-6	-

BIBLIOGRAPHY

- Akiyama, K.; Teraguchi, S.; Hamasaki, Y.; Mori, M.; Tatsumi, K.; Ohnishi, K.; Hayashi, H. 2003. "New dimeric naphthopyrones from *Aspergillus niger*", *J. Nat. Prod.* 66 (1), 136-139.
- Akiyama, S.; Sugita, M. 1991. "Aurasperone A derivatives as enhancers for antitumor agents", *Jpn. Kokai Tokkyo Koho*. 7 pp.
- Alfaro, C.; Urios, A.; Gonzalez, M. C.; Moya, P.; Blanco, M. 2003. "Screening for metabolites from *Penicillium novae-zeelandiae* displaying radical-scavenging activity and oxidative mutagenicity: isolation of gentisyl alcohol", *Mutation Res.* 539 (1-2), 187-194.
- Anderson, J. R.; Edwards, R. L.; Whalley, A. J. S. 1983. "Metabolites of the higher fungi. Part 21. 3-Methyl-3,4-dihydroisocoumarins and related compounds from the ascomycete family Xylariaceae", J. Chem. Soc., Perkin Trans. 1 : Organic and Bio-Organic Chemistry. 9, 2185-2192.
- Anderson, R.; Buchi, G.; Kobbe, B.; Demain, Al. 1977. "Secalonic acids D and F are toxic metabolites of *Aspergillus aculeatus*", J. Org. Chem. 42, 352-353.
- Ayer, W. A.; Attah-Poku, S. K.; Browne, L. M.; Orszanska, H. 1987. "The chemistry of the blue stain fungi. Part 3. Some metabolites of *Ceratocystis minor* (Hedgcock) Hunt", *Can. J. Chem.* 65 (4), 765-769.

- Bartels, A.; Jones, P. G.; Liebscher, J. 2003. "Stereoselective epoxidation and bromoalkoxylation with 3-ylidenepyrazine-2,5-diones", *Synthesis*. 1, 67-72.
- Buchanan, M. S.; Hashimoto, T.; Takaoka, S.; Kan, Y.; Asakawa, Y. 1996. "A 10-phenyl-[11]cytochalasan from a species of *Daldinia*", *Phytochemistry*. 42 (1), 173-176.
- Begley, M. J.; Grove, J. F. 1985. "Metabolic products of *Phomopsis oblonga*. Part 1.
 3a,5a,6,7,8,9,9a,9b-octahydro-7,9b-dimethylnaphtho[1,2-c]furan-1(3H)-one (oblongolide)", *J. Chem. Soc., Perkin Trans. 1 : Org. Biomol. Chem.* 4, 861-863.
- Burlot, L.; Cherton, J.-C.; Convert, O.; Correia, I.; Dennetiere, B. 2003. "New chaetoglobosins from maize infested by *Phomopsis leptostromiformis* fungi. Production, identification, and semisynthesis", *Spectroscopy*. 17 (4), 725-734.
- Cabras, A.; Mannoni, M. A.; Serra, S.; Andolfi, A.; Fiore, M.; Evidente, A. 2006. "Occurrence, isolation and biological activity of phytotoxic metabolites produced in vitro by *Sphaeropsis sapinea*, pathogenic fungus of *Pinus radiate*", *Eur. J. Plant. Pathol.* 115 (2), 187-193.
- Cambie, R. C.; Lal, A. R.; Rutledge, P. S.; Woodgate, P. D. 1991. "Chemistry of Fijian plants. Part 7. ent-14[S],16□,17-Trihydroxyatisan-3-one and further constituents from *Euphorbia fidjiana*", *Phytochemistry*. 30 (1), 287-292.
- Campos, F. R.; Barison, A.; Daolio, C.; Ferreira, A. G.; Rodrigues-Fo, E. 2005. "Complete ¹H and ¹³C NMR assignments of aurasperone A and fonsecinone A, two bis-naphthopyrones produced by *Aspergillus aculeatus*", *Magn. Res. Chem.* 43, 962-965.

- Capasso, R.; Cristinzio, G., Evidente, A.; Scognamiglio, F. 1992. "Isolation, spectroscopy and selective phytotoxic effects of polyphenols from vegetable waste waters", *Phytochemistry*. 31 (12), 4125-4128.
- Christian, O. E.; Compton, J.; Christian, K. R.; Mooberry, S. L.; Valeriote, F. A.; Crews, P. 2005. "Using jasplakinolide to turn on pathways that enable the isolation of new chaetoglobosins from *Phomopsis asparagi*", *J. Nat. Prod.* 68 (11), 1592-1597.
- Cole, R. J.; Wells, J. M.; Cox, R. H.; Cutler, H. G. 1981. "Isolation and biological properties of deacetylcytochalasin H from *Phomopsis* sp.", *J. Agric. Food Chem.* 29 (1), 205-206.
- Dai, J.; Krohn, K.; Floerke, U.; Gehle, D.; Aust, H.-J.; Draeger, S.; Schulz, B.; Rheinheimer, J. 2005.
 "Novel highly substituted biraryl ethers, phomosines D-G, isolated from the endophytic fungus *Phomopsis* sp. from *Adenocarpus foliolosus*", *Eur. J. Org. Chem.* 23, 5100-5105.
- Fuchser, J.; Zeeck, A. 1997. "Secondary metabolites by chemical screening. Part 34. Aspinolides and aspinonene/aspyrone co-metabolites, new pentaketides produced by *Aspergillus ochraceus*", *Liebigs Ann./Recueil.* 1, 87-95.
- Harper, J. K.; Arif, A. M.; Ford, E. J.; Strobel, G. A.; Porco, J. A.; Tomer, D. P.; Oneill, K. L.;
 Heider, E. M.; Grant, D. M. 2003. "Pestacin: a 1,3-dihydroisobenzofuran from *Pestalotiopsis* microspora possessing antioxidant and antimycotic activities", *Tetrahedron*. 59 (14), 2471-2476.

- Hayashi, H.; Furutsuka, K.; Shiono, Y. 1999. "Okaramines H and I, new okaramine congeners, from *Aspergillus aculeatus*", *J. Nat. Prod.* 62, 315-317.
- Horn, W. S.; Schwartz, R. E.; Simmonds, M. S. J.; Blaney, W. M. 1994. "Isolation and characterization of phomodiol, a new antifungal from *Phomopsis*", *Tetrahedron Lett.* 35 (33), 6037-6040.
- Horn, W. S.; Simmonds, M. S. J.; Schwartz, R. E.; Blaney, W. M. 1995. "Phomopsichalasin, a novel antimicrobial agent from an endophytic *Phomopsis* sp.", *Tetrahedron*. 51 (14), 3969-3978.
- Ichihara, A.; Katayama, K.; Teshima, H.; Oikawa, H.; Sakamura, S. 1996. "Chateoglobosin O and other phytotoxic metabolites from *Cylindrocladium floridanum*, a causal fungus of alfalfa black rot disease", *Biosci. Biotechnol. Biochem.* 60 (2), 360-361.
- Isaka, M.; Jaturapat, A.; Rukseree, K.; Danwisetkanjana, K.; Tanticharoen, M.; Thebtaranonth, Y. 2001. "Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus *Phomopsis* species", *J. Nat. Prod.* 64 (8), 1015-1018.
- Ishida, T. 2000. "Anti-microbial, anti-tumor and immunostimulation properties of secalonic acid D derivatives", *Suzuka Iryo Kagaku Gijutsu Daigaku Kiyo*. 7, 61-68.
- Izawa, Y.; Hirose, T.; Shimizu, T.; Koyama, K.; Natori, S. 1989. "Six new 10-phenyl-[11] cytochalasans, cytochalasins N-S from *Phomopsis* sp.", *Tetrahedron*. 45 (8), 2323-2335.
- Jin, S.; Liebscher, J. 1999. "Optically active precursors for quaternary amino acids by addition of Nheteroaromatics to 3-alkylidene-2,5-diketopiperazines", *Synlett.* 4, 459-461.

- Jin, S.; Wessig, P.; Liebscher, J. 2000. "Unusual C=C bond migration in 3-ylidene-2,5piperazinediones", *Eur. J. Org. Chem.* 10, 1993-1999.
- Kobayashi, H.; Meguro, S.; Yoshimoto, T.; Namikoshi, M. 2003. "Absolute structure, biosynthesis, and anti-microtubule activity of phomopsidin, isolated from a marine-derived fungus *Phomopsis* sp.", *Tetrahedron*. 59 (4), 455-459.
- Kokubun, T.; Veitch, N. C.; Bridge, P. D.; Simmonds, M. S. J. 2003. "Dihydroisocoumarins and a tetralone from *Cytospora eucalypticola*", *Phytochemistry* 62, 779–782.
- Koyama, K.; Kuramochi, D.; Kinoshita, K.; Takahashi, K. 2002. "Hypoxylonols A and B, novel reduced benzo[*j*]fluoranthene derivatives from the mushroom *Hypoxylon truncatum*", *J. Nat. Prod.* 65, 1489-1490.
- Krohn, K.; Michel, A.; Roemer, E.; Floerke, U.; Aust, H.-J.; Draeger, S.; Schultz, B.; Wray, V. 1995. "Biologically active metabolites from fungi. 6. Phomosines A-C. Three new biaryl ethers from *Phomopsis* sp", *Nat. Prod. Lett.* 6 (4), 309-314.
- Kurobane, I.; Vining, L. C.; McInnes, A. G. 1979. "Biosynthetic relationships among the secalonic acids. Isolation of emodin, endocrocin and secalonic acids from *Pyrenochaeta terrestris* and *Aspergillus aculeatus*,", J. antibiot. 32 (12), 1256-1266.
- Kurobane, I.; Iwahashi, S.; Fukuda, A. 1987. "Cytostatic activity of naturally isolated isomers of secalonic acids and their chemically rearranged dimmers", *Drugs Exptl. Clin. Res.* 13 (6), 339-44.

- Lacey, E.; Edgar, J. A.; Culvenor, C. C. J. 1987. "Interaction of phomopsin A and related compounds with purified sheep brain tubulin", *Biochem. Pharmacol.* 36 (13), 2133-2138.
- Lee, H.-Z. 2001. "Effects and mechanisms of emodin on cell death in human lung squamous cell carcinoma", *Br. J. Clin. Pharmacol.* 134 (1), 11-20.
 - Lee, J. C.; Strobel, G. A.; Lobkovsky, E.; Clardy, J. 1996. "Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus *Pestalotiopsis microspora*", *J. Org. Chem.* 61 (10), 3232-3233.
- Li, J. Y.; Harper, J. K.; Grant, D. M.; Tombe, B. O.; Bashyal, B.; Hess, W. M.; Strobel, G. A. 2001.
 "Ambuic acid, a highly functionalized cyclohexenone with antifungal activity from *Pestalotiopsis* spp. and *Monochaetia* sp.", *Phytochemistry*. 56 (5), 463-468.
- Liesch, J. M.; Wichmann, C. F. 1990. "Novel antinematodal and antiparasitic agents from *Penicillium charlesii* II. Structure determination of paraherquamides B, C, D, E, F, and G", *J. Antibiot.* 43 (11), 1380-1386.
- Luduena, R. F.; Prasad, V.; Roach, M. C.; Lacey, E. 1989. "The interaction of phomopsin A with bovine brain tubulin", *Arch. Biochem. Biophys.* 272 (1), 32-38.
- MalmstrØm, J.; Christophersen, C.; Barrero, A. F.; Oltra, J. E.; Justicia, J.; Rosales, A. 2002. "Bioactive metabolites from a marine-derived strain of the fungus *Emericella varieco*lor", *J. Nat. Prod.* 65 (3), 364-367.

- Marzouk, M. S.; El-Toumy, S. A. A.; Merfort, I.; Nawwar, M. A. M. 1999. "Polyphenolic metabolites of *Rhamnus disperma*", *Phytochemistry*. 52, 943-946.
- Mazars, C.; Rossignol, M.; Auriol, P.; Klaebe, A. 1990. "Phomozin, a phytotoxin from *Phomopsis* helianthi, the causal agent of stem canker of sunflower", *Phytochemistry*. 29 (11), 3441-3444.
- McCorkindale, N. J.; Roy, T. P.; Hutchinson, S. A. 1972. "Isolation and synthesis of 3-chlorogentisyl alcohol. Metabolite of *Penicillium canadense*", *Tetrahedron*. 28 (4), 1107-1111.
- McDonald, L. A.; Barbieri, L. R.; Bernan, V. S.; Janso, J.; Lassota, P.; Carter, G. T. 2004. "07H239-A, a new cytotoxic eremophilane sesquiterpene from the marine-derived Xylariaceous fungus LL- 07H239", J. Nat. Prod. 67 (9), 1565-1567.
- Metz, A. M.; Haddad, A.; Worapong, J.; Long, D. M.; Ford, E. J.; Hess, W. M.; Strobel, G. A. 2000.
 "Induction of the sexual stage of *Pestalotiopsis microspora*, a taxol-producing fungus", *Microbiology*. 146(8), 2079-2089.
- Mizuno, K.; Yagi, A.; Satoi, S.; Takada, M.; Hayashi, M.; Asano, K.; Matsuda, T. 1977. "Studies on aculeacin. I. Isolation and characterization of aculeacin A", *J. antibiot.* 30 (4), 297-302.
- Morooka, N.; Tatsuno, T.; Tsunoda, H.; Kobayashi, K.; Sakurai, T. 1986. "Chemical and toxicological studies of the phytotoxin, 6□,7□,9□-trihydroxy-8(14),15-isopimaradiene-20,6□-lactone, produced by a parasitic fungus, *Phomopsis* sp., in wilting pine trees", *Agr. Biol. Chem.* 50 (8), 2003-2007.

- Nakajima, N.; Ubukata, M. 1998. "Facile synthesis of cyanogen glycosides (*R*)-prunasin, linamarin and (*S*)-heterodendrin", *Biosci. Biotechnol. Biochem.* 62 (3), 453-458.
- Phongpaichit, S.; Rungjindamai, N.; Rukachaisirikul, V.; Sakayaroj, J. 2006. "Antimicrobial activity in cultures of endophytic fungi isolated from *Garcinia* species", *FEMS Immunol. Med. Microbiol.* 48, 367–372.
- Quang, D. N.; Hashimoto, T.; Fournier, J.; Stadler, M.; Radulovic, N.; Asakawa, Y. 2005a. "Sassafrins A-D, new antimicrobial azaphilones from the fungus *Creosphaeria sassafras*", *Tetrahedron*. 61 (7), 1743-1748.
- Quang, D. N.; Hashimoto, T.; Nomura, Y.; Wollweber, H.; Hellwig, V.; Fournier, J.; Stadler, M.; Asakawa, Y. 2005b. "Cohaerins A and B, azaphilones from the fungus *Hypoxylon cohaerens*, and comparison of HPLC-based metabolite profiles in *Hypoxylon* sect. Annulata", *Phytochemistry*. 66 (7), 797-809.
- Quang, D. N.; Hashimoto, T.; Tanaka, M.; Stadler, M.; Asakawa, Y. 2004. "Cyclic azaphilones daldinins E and F from the ascomycete fungus *Hypoxylon fuscum* (Xylariaceae)", *Phytochemistry*. 65 (4), 469-473.
- Quang, D. N.; Stadler, M.; Fournier, J.; Asakawa, Y. 2006a. "Carneic acids A and B, chemotaxonomically significant antimicrobial agents from the xylariaceous ascomycete *Hypoxylon carneum*", *J. Nat. Prod.* 69 (8), 1198-1202.

- Quang, D. N.; Stadler, M.; Fournier, J.; Tomita, A.; Hashimoto, T. 2006b. "Cohaerins C-F, four azaphilones from the Xylariaceous fungus Annulohypoxylon cohaerens", Tetrahedron. 62 (26), 6349-6354.
- Rosemeyer, H.; Toth, G.; Golankiewicz, B.; Kazimierczuk, Z.; Bourgeois, W.; Kretschmer, U.; Muth, H.-P.; Seela, F. 1990. "Syn-anti conformational analysis of regular and modified nucleosides by 1D ¹H NOE difference spectroscopy: a simple graphical method based on conformationally rigid molecules", *J. Org. Chem.* 55 (22), 5784-5790.
- Sassa, T.; Kenmoku, H.; Nakayama, K.; Kato, N. 2004. "Fusicocca-3(16),10(14)-diene, and □- and □-araneosenes, new fusicoccin biosynthesis-related diterpene hydrocarbons from *Phomopsis* amygdali", Biosci. Biotechnol. Biochem. 68 (7), 1608-1610.
- Strobel, G.; Ford, E.; Worapong, J.; Harper, J. K.; Arif, A. M.; Grant, D. M.; Fung, P. C. W.; Chau,
 R. M. W. 2002. "Isopestacin, an isobenzofuranone from *Pestalotiopsis microspora*, possessing antifungal and antioxidant activities", *Phytochemistry*. 60 (2), 179-183.
- Strobel, G.; Yang, X.; Sears, J.; Kramer, R.; Sidhu, R. S.; Hess, W. M. 1996. "Taxol from *Pestalotiopsis microspora*, an endophytic fungus of *Taxus wallachiana*", *Microbiology*. 142 (Pt2), 435-440.
- Svetaz, L.; Tapia, A.; Lopez, S. N.; Furlan, R. L. E.; Petenatti, E.; Pioli, R.; Schmeda-Hirschmann,
 G.; Zacchino, S. A. 2004. "Antifungal chalcones and new caffeic acid esters from *Zuccagnia* punctata acting against soybean infecting fungi", *J. Agric. Food Chem.* 52 (11), 3297-3300.

- Takano, S.; Ogasawara, K.; Shimazaki, Y. 1992. "Preparation of optically active pyran derivatives", Jpn. Kokai Tokkyo Koho. 13 pp.
- Thappa, R. K.; Dhar, K. L.; Atal, C. K. 1976. "A new monoterpene triol from Zanthoxylum budrunga", Phytochemistry. 15 (10), 1568-1569.
- Thines, E.; Daussmann, T.; Semar, M.; Sterner, O.; Anke, H. 1995. "Fungal melanin biosynthesis inhibitors: introduction of a test system based on the production of dihydroxynaphthalene (DHN) melanin in agar cultures", Z. Naturforsch. C. Biosci. 50 (11/12), 813-819.
- Tomoda, H.; Namatame, I.; Si, S.; Kawaguchi, K.; Masuma, R.; Namikoshi, M.; Omura, S. 1999. "Phenochalasins, inhibitors of lipid droplet formation in mouse macrophages, produced by *Phomopsis* sp. FT-0211", *J. Antibiot.* 52 (10), 851-856.
- Tsantrizos, Y. S.; Ogilvie, K. K.; Watson, A. K. 1992. "Phytotoxic metabolites of *Phomopsis* convolvulus, a host-specific pathogen of field bindweed", *Can. J. Chem.* 70 (8), 2276-2284.
- Wagenaar, M. M.; Clardy, J. 2001. "Dicerandrols, new antibiotic and cytotoxic dimers produced by the fungus *Phomopsis longicolla* isolated from an endangered mint", *J. Nat. Prod.* 64, 1006-1009.
- Warashina, T.; Nagatani, Y.; Noro, T. 2004. "Constituents from the bark of *Tabebuia impetiginosa*", *Phytochemistry*. 65 (13), 2003-2011.

- Weber, D.; Sterner, O.; Anke, T.; Gorzalczancy, S.; Martino, V.; Acevedo, C. 2004. "Phomol, a new antiinflammatory metabolite from an endophyte of the medicinal plant *Erythrina crista*galli", *J. Antibiot.* 57 (9), 559-563.
- Whalley, A. J. S.; Edwards, R. L. 1995. "Secondary metabolites and systematic arrangement within the Xylariaceae", *Can. J. Bot.* 73 (Suppl. 1, Sect. E-H, Fifth International Mycological Congress, Sect. E-H, 1994), S802-S810.
- Wrigley, S. K.; Sadeghi, R.; Bahl, S.; Whiting, A. J.; Ainsworth, A. M.; Martin, S. M.; Katzer, W.;
 Ford, R.; Kau, D. A.; Robinson, N.; Hayes, M. A.; Elcock, C.; Mander, T.; Moore, M. 1999.
 "A novel (6*S*)-4,6-dimethyldodeca-2*E*,4*E*-dienoyl ester of phomalactone and related□□pyrone esters from a *Phomopsis* sp. with cytokine production inhibitory activity", *J. Antibiot*. 52 (10), 862-872.
- Yamazaki, M.; Okuyama, E.; Kobayashi, M.; Inone, H. 1981. "The structure of paraherquamide, a toxic metabolite from *Penicillium paraherquei*", *Tetrahedron Lett.* 22, 135-136.
- Zhang, D.; Hillmyer, M. A.; Tolman, W.B. 2004. "A new synthetic route to poly[3-hydroxypropionic acid] (P[3-HP]): ring-opening polymerization of 3-HP macrocyclic esters", *Macromolecules*. 37, 8198-8200.
- Zeng, R. S.; Luo, S. M.; Shi, Y. H.; Shi, M. B.; Tu, C. Y. 2001. "Physiological and biochemical mechanism of allelopathy of secalonic acid F on higher plants", *Agron. J.* 93 (1), 72-79.

http://www.hiddenforest.co.nz/fungi/family/xylariaceae/xylariaceae.htm [Accessed March 11, 2007].