
 i

Improving Response Times in Client/Server 3D Mobile Games

Prapat Lonapalawong

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Computer Engineering

Prince of Songkla University
2008

Copyright of Prince of Songkla University

 ii

Thesis Title Improving Response Times in Client/Server 3D Mobile Games
Author Mr. Prapat Lonapalawong
Major Program Computer Engineering

Major Advisor Examining Committee:

... ……..................................Chairperson
(Dr. Andrew Davison) (Asst. Prof. Dr. Suntorn Witosurapot)

 ...
Co-Advisor (Dr. Andrew Davison)

.. ...
(Asst. Prof. Dr. Pichaya Tandayya) (Asst. Prof. Dr. Pichaya Tandayya)

 ...
 (Asst. Prof. Dr. Chaiwat Oottamakorn)

 The Graduate School, Prince of Songkla University, has approved this thesis as
fulfillment of the requirements for the Degree of Master of Engineering in Computer Engineering

 ..
 (Assoc. Prof. Dr. Krerkchai Thongnoo)
 Dean of Graduate School

 iii

ชื่อวิทยานิพนธ การปรับปรุงเวลาตอบสนองสําหรับการสื่อสารแบบไคลเอนต/เซิรฟเวอร
 ในเกมส 3 มิติบนโทรศัพทมือถือ
ผูเขียน นายประพัฒน โลณะปาลวงศ
สาขาวิชา วิศวกรรมคอมพิวเตอร
ปการศึกษา 2551

บทคัดยอ

 เกมแนวเดินยงิมุมมองบุคคลที่หนึ่ง (First Person Shooters หรือ FPSs) คือเกมที่ใช
มุมมองของบุคคลที่หนึ่ง, แสดงผลแบบภาพ 3 มิติ, มีปนหรืออาวุธชนิดอื่นๆในการโจมตีคูแขง ผู
เลนทําการติดตอส่ือสารกันดวยสถาปตยกรรมแบบไคลเอนต/เซิรฟเวอรซ่ึงมีขอมูลสวนกลาง
เกี่ยวกับผูเลนทั้งหมด (เชนไอดีของผูเลน) โดยปกตใิชโปรโตคอล UDP เพื่อลดภาระในการสง
ขอมูลซํ้าใน โปรโตคอล TCP
เกม FPS มักประสบปญหาเวลาตอบสนองโดยเฉพาะกับการใชการติดตอแบบไรสายหรือโมบาย
เนื่องจากการตดิตอแบบไรสายมีความเสถยีรนอยกวาการติดตอแบบมสีาย และขอมูลมีโอกาสถูก
หนวงเหนีย่วหรือสูญหายมากกวาซึ่งมีผลตอเวลาตอบสนองภายในเกม อาจนําไปสูปญหาอื่นๆ เชน
การอัพเดตเกมที่ติดขัด
เพื่อที่จะทดลองเทคนิคที่ใชในการปรับปรุงเวลาตอบสนอง เกมตอสูไดถูกพัฒนาขึ้น เรียกวา
PenguinM3G เปนเกม FPS 3 มิติจําลองพื้นฐานบนโทรศพัทมือถือดวยการสื่อสารแบบไคลเอนต/
เซิรฟเวอรและโปรโตคอล UDP เซอรฟเวอรสามารถจําลองความเสถียรของการติดตอส่ือสาร แลว
ทําการทดสอบเปรียบเทียบเวลาตอบสนองรูปแบบตางๆของเกมระหวางเกมที่ใชเทคนิคปรับปรุง
เวลาตอบสนองกับเกมที่ไมใชเทคนิคใดๆ ผลลัพธของการทดลองบงบอกวาการใชเทคนิคปรับปรุง
เวลาตอบสนองหลายๆแบบเขาดวยกัน จะชวยปรับปรุงเวลาตอบสนองของเกมในหลายๆรูปแบบ
ไดดีขึ้นตั้งแต 20 ถึง 90 เปอรเซนตเมื่อเปรียบเทียบกับเกมที่ไมไดใชเทคนิคปรับปรุงเวลาตอบสนอง

 iv

Thesis Title Improving Response Times in Client/Server 3D Mobile Games
Author Mr. Prapat Lonapalawong
Major Program Computer Engineering
Academic Year 2008

ABSTRACT

 “First Person Shooters”, or FPSs, are games that use a first person viewpoint, 3D
rendering, and a gun or other weapon to shoot at opponents. The players communicate using a
client/server model, utilizing centralized information about all the players (e.g. the players’ IDs).
Typically, the UDP protocol is employed to avoid the retransmission overheads inherent in the
TCP protocol.
FPSs suffer from “response times” issues, especially if the game is running over a wireless or
mobile network. A wireless network is less reliable than a wired version - packets may be delayed
or dropped more frequently, which can impact on game response times, and cause other issues,
such as flickering updates.
To test our techniques for improving response times, we develop a combat game called
“PenguinM3G”, a simulated mobile phone-based 3D FPS using a UDP client/server model, and a
server which can simulate varying network reliable. Game response times are compared between
a client utilizing various combinations our response time techniques, and a ‘vanilla’ version of the
game with no use of our techniques. The results show that a mix of different techniques is
required to produce across-the-board improvements of the game’s response times, 20% to 90%
better than the response time for the game with no techniques enabled.

 v

ACKNOWLEDGEMENT

 I would like to express my gratitude to all those who gave me the possibility to complete
this thesis. I want to thank the Department of Computer Engineering for giving me permission to
commence this thesis in the first instance, to do the necessary research work and to use
departmental PC and equipment.
 I am deeply indebted to my supervisor Dr. Andrew Davison who helps and supervises me
in all the time of the research and writing of this thesis, and my co-advisor, Asst. Prof. Dr.
Pichaya Tandayya who gives me many useful advices and supports me through out this research.
Asst. Prof. Dr. Suntorn Witosurapot and Asst. Prof. Dr. Chaiwat Oottamakorn of examining
committees who help me pointing out many things which are useful to improve this research.
 I want to thank all of my friends for support and help me with the tests, and especially, I
would like to give my special thanks to my family who patiently support me to complete this
work.

Prapat Lonapalawong

 vi

CONTENTS
Contents .. vi
List of tables.. ix
List of figures .. xi
List of abbreviations.. xiv
1. Introduction...1

1.1 Problem Statement..1
1.2 Objectives ...2
1.3 Scope ..3
1.4 Tools ...4

2. Literature Review..5
2.1 Dead Reckoning ...5
2.2 Smoothing ..6
2.3 The GunnerM3G Program..7
2.4 TCP Client/Server ..10
2.5 UDP Client/Server..12
2.6 J2ME Client Profiling ..14
2.7 Z-Score ...15
2.8 Summary ..16

3. Game Description ...17
3.1 Game Elements and Controls ...18
3.2 Game Rules ..18
3.3 Summary ..19

4. The Game Client ...20
4.1 Overview of Game Client Classes..20
4.2 Game Elements...23
4.3 Network Game Client...25
4.4 Summary ..33

5. The Game Server ..34
5.1 Overview of Game Server Class ..34
5.2 The Unreliable Network Simulation ..35
5.3 Reactivate Life Spots and Bullets Area..36
5.4 Summary ..37

 vii

CONTENTS (CONT.)
6. Response Time Measuring..38

6.1 One-way Response Time..38
6.2 Two-way Response Time...44
6.3 Rendering Update Method ...47
6.4 Packet Statistics ..49
6.5 Summary ..50

7. Techniques for Improving Response Time...51
7.1 General Techniques ..51

7.1.1 Dead Reckoning..51
7.1.2 Smoothing...54
7.1.3 Visual Field Updating ...56

7.2 Game-Specific Techniques...57
7.2.1 Avatar Blinking...57
7.2.2 Avatar Dying...58

7.3 Packets Based Techniques..59
7.3.1 Packets Grouping..59
7.3.2 Duplicate Packets..61

7.4 Summary ..62
8. Game Measurement ..63

8.1 Game Measurement Results for 3 clients with a 90% Reliable Server................................65
8.1.1 Measurement of One-way Response Time for Multiple Packets per Keypress (M1) ..65
8.1.2 Measurement of Interval Update Time of a Remote Avatar Movement or Rotation
(M2) ...67
8.1.3 Measurement of Average % of DR Moving, Rotating Prediction Error Rate (M3).....68
8.1.4 Measurement of One-way Response Time for a Single Packet per Keypress (M4)69
8.1.5 Measurement of Two-way Response Time (M5) ...70
8.1.6 Measurement of Rendering Update method (M6) ..71
8.1.7 Packets Sending (M7)...72
8.1.8 Packets Size (M8) ...74
8.1.9 Summary of a 90% Reliable Server..75

8.2 Game Measurement Results for 3 clients with a 75% Reliable Server................................76
8.2.1 Measurement of One-way Response Time for Multiple Packets per Keypress (M1) ..76
8.2.2 Measurement of Interval Update Time of a Remote Avatar Movement or Rotation
(M2) ...77

 viii

CONTENTS (CONT.)
8.2.3 Measurement of One-way Response Time for a Single Packet per Keypress (M4)78
8.2.4 Measurement of Two-way Response Time (M5) ...80
8.2.5 Measurement of Rendering Update method (M6) ..81
8.2.6 Packets Sending (M7)...82
8.2.7 Packets Size (M8) ...83
8.2.8 Summary of a 75% Reliable Server..84

8.3 Additional Tests..85
8.3.1 Three players with 75% reliable server ..85
8.3.2 Five players with 75% reliable server...87
8.3.3 Increasing the random delay of packets for three players using a 75% reliable server 88
8.3.4 Summary...90

8.4 Test Summaries ..91
9. Summary ...92

9.1 Game Architecture..92
9.2 Measuring Response Time ...93
9.3 Techniques for Improving Response Times...94
9.4 Results ..96
9.5 Results in Percentages for a 75% Reliable Server..99
9.6 Conclusions ..101

References...102
Appendix...103

Appendix A: Published Paper ..104
Vitae ..108

 ix

LIST OF TABLES
Table 2.1: getIpNumber Comparison ...15
Table 8.1: One-way Response Time for Multiple Packets per Keypress66
Table 8.2: The z-scores of One-way Multiple ..66
Table 8.3: Interval Update Time of a Remote Avatar Movement or Rotation...............................67
Table 8.4: The z-scores of Interval Update...68
Table 8.5: Average % of DR Moving, Rotating Prediction Error Rate..69
Table 8.6: The z-scores of DR Prediction Error Rate ...69
Table 8.7: One-way Response Time for a Single Packet per Keypress ...70
Table 8.8: The z-scores of One-way Single..70
Table 8.9: Two-way Response Time Measurement ...71
Table 8.10: The z-scores of Two-way ..71
Table 8.11: Rendering Update Method Measurement..72
Table 8.12: The z-scores of Rendering Update Method ...72
Table 8.13: Packets Sending Measurement ..73
Table 8.14 The z-scores of Packets Sending...73
Table 8.15: Packets Size Measurement ..74
Table 8.16: The z-scores of Packets Size..74
Table 8.17: Summary Detail of a 90% Reliable Server..75
Table 8.18: One-way Response Time for Multiple Packets per Keypress77
Table 8.19: The z-scores of One-way Multiple ..78
Table 8.20: Interval Update Time of a Remote Avatar Movement or Rotation.............................79
Table 8.21: The z-scores of Interval Update...79
Table 8.22: One-way Response Time for Single Packet per Keypress ..80
Table 8.23: The z-scores of One-way Single..80
Table 8.24: Two-way Response Time Measurement ...81
Table 8.25: The z-scores of Two-way ..81

 x

LIST OF TABLES (CONT.)
Table 8.26: Rendering Update Method Measurement..82
Table 8.27: The z-scores of Rendering Update Method ...82
Table 8.28: Packets Sending Measurement ..83
Table 8.29: The z-scores of Packets Sending ...83
Table 8.30: Packets Sending Measurement ..84
Table 8.31: The z-scores of Packets Sending ...84
Table 8.32: Summary Detail of a 75% Reliable Server..85
Table 8.33: One-way Response Time for Multiple Packets per Keypress87
Table 8.34: Interval Update Time of a Remote Avatar Movement or Rotation87
Table 8.35: One-way Response Time for a Single Packet per Keypress..88
Table 8.36: Two-way Response Time ..88
Table 8.37: One-way Response Time for Multiple Packets per Keypress88
Table 8.38: Interval Update Time of a Remote Avatar Movement or Rotation89
Table 8.39: One-way Response Time for a Single Packet per Keypress..89
Table 8.40: Two-way Response Time ..90
Table 8.41: One-way Response Time for Multiple Packets per Keypress90
Table 8.42: Interval Update Time of a Remote Avatar Movement or Rotation91
Table 8.43: One-way Response Time for a Single Packet per Keypress..91
Table 8.44: Two-way Response Time ..92
Table 9.1: Summary Detail of a 90% Reliable Server..99
Table 9.2: Summary Detail of a 75% Reliable Server..100

 xi

LIST OF FIGURES
Figure 1.1: Robot Alliance Screenshot ...1
Figure 2.1: Predict Future Movement with Dead Reckoning. ..5
Figure 2.2: Tracking and Convergence Steps in PHBDR...6
Figure 2.3: DR with Smoothing..7
Figure 2.4: Original GunnerM3G Program. ...7
Figure 2.5: GunnerM3G Class Diagram...8
Figure 2.6: “Gun hand” and “Shot flash”. ..8
Figure 2.7: Shoot the Gun with the “Pick Ray”..9
Figure 2.8: Example of Threaded TCP Clients and Server...11
Figure 2.9: Threaded TCP Clients and Server Class Diagram ...11
Figure 2.10: A Client Sends a Join Message and the Broadcast Response from the Server13
Figure 2.11: Example of J2ME UDP client and J2SE UDP server ..13
Figure 2.12: A Client Sends a Hello Message and the Broadcast Response from the Server14
Figure 2.13: Profiler Screen Example...14
Figure 2.14: Level of Significant of Left-Tailed Test at 0.05 or 95% ..16
Figure 3.1: The Game Architecture ..17
Figure 3.2: Game Elements...18
Figure 4.1: The Game Architecture Again..20
Figure 4.2: Game Client Class Diagram...21
Figure 4.3: Techniques Check Lists..21
Figure 4.4: Game Elements...23
Figure 4.5: Example tree using Sprite3D..23
Figure 4.6: The 3D Axis ...24
Figure 4.7: General Packet Format ...25
Figure 4.8: A JOIN packet ..25
Figure 4.9: A JOINED packet...26
Figure 4.10: Client A Joins the Game...26
Figure 4.11: A QUIT packet ...27
Figure 4.12: A MOVE packet ...27
Figure 4.13: A ROTATE packet ...27
Figure 4.14: A KEY_RELEASE packet ...28
Figure 4.15: A SHOOT packet ...28
Figure 4.16: A SHOOT_RESPONSE packet ...28
Figure 4.17: Client A Shoots a Bullet ...29
Figure 4.18: A SPOTS_STATE packet ..29

 xii

LIST OF FIGURES (CONT.)
Figure 4.19: Updating the Life Spot ...30
Figure 4.20: A BULLETS_AREA_STATE packet..30
Figure 4.21: Updating the Bullets Area ..31
Figure 4.22: A REPLY_CODE packet ...31
Figure 4.23: REPLY_CODE Example ...32
Figure 5.1: Game Server Class Diagrams...34
Figure 5.2: The Stages of a Network Unreliability Simulation ..35
Figure 5.3: The Server Reactivates Life Spots or Bullets Areas ..37
Figure 6.1: Example of Single Packet per Keypress (SPOTS_STATE) ..39
Figure 6.2: Example of Multiple Packets per Keypress ...39
Figure 6.3: Example of Interval Update of Remote Avatar Movement..40
Figure 6.4: The Sequence of One-way Response Time Measuring (steps 1-2)..............................41
Figure 6.5: The Sequence of One-way Response Time Measuring (step 3)...................................41
Figure 6.6: One-way Response Time at One Side of Client (Steps 1-3) ..42
Figure 6.7: One-way Response Time at One Side of Client (Steps 4-6) ..43
Figure 6.8: One-way Response Time Implementation ...44
Figure 6.9: Two-way Response time (Steps 1-3)..45
Figure 6.10: Two-way Response time (Steps 4-6)..45
Figure 6.11: Two-way Response Time Implementation...47
Figure 6.12: Update Method Implementation...48
Figure 6.13: Packet Sending Rate ...49
Figure 7.1: The DR Sequence (Steps 1-2) ..51
Figure 7.2: The DR Sequence (step 3-4)...52
Figure 7.3: DR Activation...53
Figure 7.4: DR Implementation ..53
Figure 7.5: Smoothing ..54
Figure 7.6: Smoothing Implementation ..55
Figure 7.7: Visual Field Updating Vision Area ..56
Figure 7.8: Visual Field Updating Implementation ..56
Figure 7.9: Avatar Blinking ..57
Figure 7.10: Avatar Blinking Implementation..58
Figure 7.11: Avatar Dying ..58
Figure 7.12: Avatar Dying Implementation..59
Figure 7.13: Packets Grouping..60
Figure 7.14: Packets Grouping Implementation ...60

 xiii

LIST OF FIGURES (CONT.)
Figure 7.15: Duplicate Packets Example (Move onto a Life Spot) ..61
Figure 7.16: Duplicate Packets Implementation ...62
Figure 9.1: The Game’s Architecture ...92
Figure 9.2: One-way response time, multiple packets ..99
Figure 9.3: One-way response time, single packet ...99
Figure 9.4: Two-way response time..100

 xiv

LIST OF ABBREVIATIONS
3D Three Dimensional
API Application Programming Interface
DR Dead Reckoning
FPS First Person Shooter
GUI Graphical User Interface
IP Internet Protocol
LAN Local Area Network
J2ME Java 2 Micro Edition
J2SE Java 2 Platform Standard Edition
JSR Java Specification Request
M3G Mobile 3D Graphics
NTP Network Time Protocol
PDA Personal Digital Assistant
PC Personal Computer
PHBDR Position History Based Dead Reckoning
SD Standard Deviation
TCP Transport Control Protocol
UDP User Datagram Protocol
WTK Wireless Toolkit

 1

CHAPTER 1
INTRODUCTION

The mobile phone is becoming one of the most important types of communication, offering many
kinds of services, including games. A popular game type is networked First Person Shooters
(FPSs), such as “Robot Alliance”, a shooting game with massive multiplayer game play over
mobile networks [1]. Though, this game is not about directly players battling each other. The
multiplayer mode is the players join the same faction and try to win the same mission with a
variety of sceneries and animated Three Dimensional (3D) characters. A screenshot of Robot
Alliance is shown in Figure 1.1.

Figure 1.1: Robot Alliance Screenshot

This type of game is suitable for a client/server type architecture since centralized control is more
organized (the information for all the players is stored at one place where it is easy to update and
distribute) and it’s also easier to establish communication (all the players only need to know the
server Internet Protocol (IP), no need to know each of the other players IP). To reduce the amount
of communication, the architecture consists of a fat server and fat clients. The fat server, which
typically is a Personal Computer (PC) cluster, deals with packets routing and clients’ information
such as login/logout of all players, while the fat clients (which are mobile phones) will get some
heavy tasks to do, apart from the communication to the server, such as 3D processing and game
logic. This reduces the cost of the heavy contents of the 3D processing communication between
the client and the server.

1.1 Problem Statement
In general, action games require fast interaction between players, and need fast response times.
Response time can be divided into two types: 1) one-way response time, and 2) two-way response

2

 time. One-way response time is how long before a local avatar (representing the local player)
sees a remote avatar changing due to a change triggered by the remote avatar. E.g. a remote
player moves and the local player sees him. Two-way response time is the period of time from
when a local avatar does something to a remote avatar while the change is shown in the local
space (representing the local game world). For example, a local player shoots his gun at the
remote player and sees that the remote player is shot.
The example 3D FPS mobile game used in this thesis is Penguin Mobile 3D Graphics
(PenguinM3G). The player is a penguin who can shoot bullets and try to kill the other players to
get points. The other elements in the game are the bullets area which can refill the bullets of the
player, and colored spots that can get the scores and increase the player lives. The client uses the
Java 2 Micro Edition (J2ME) Wireless Toolkit (WTK) on a PC and the server is implemented
using Java 2 Platform Standard Edition (J2SE) on the PC for central communication [2][3]. It
simulates mobile network reliability by generating packets delay or loss. For example, 90% stable
(chance of packets delay or loss is 10%) or 75% stable (chance of packets delay or loss is 25%)
which will slow down the response time.
In a mobile environment there are many factors that can slow response time, such as high latency
(the amount of time required to transfer a bit of data from one place to another) [4], limited
bandwidth (the rate at which the network can deliver data from a sender to the destination host),
unreliable connections or packet loss. These problems greatly affect the quality of game play. To
address these problems, three kinds of techniques are introduced to improve the response time in
the game: general techniques which allow any kind of avatar to be updated in the context of poor
network communication [5], PenguinM3G-specific optimizations, and networking techniques (e.g.
packet grouping).

1.2 Objectives
1. Develop a 3D FPS client/server User Datagram Protocol (UDP) mobile game using J2ME
technology. The player represented by the penguin can move, rotate and shoot bullets at the other
players, and also can move onto a bullets area to refill the bullets and onto colored spots to
increase their scores and lives. These actions require different kinds of the response times which
our techniques will try to improve.
2. Study and use different kinds of general techniques like “dead reckoning (DR)”, “smoothing”
[6], “visual field updating”, game specific techniques, e.g. “avatar blinking” and “avatar dying”,
and application-level networking techniques, such as “packets grouping” and “packets priority”,
to help reduce response time in the game.

3

3. Develop a game server using J2SE technology and vary the network characteristics on the
server side, e.g. drop or delay the packets at the rate of 10% or 25%, and see how our techniques
maintain good response time.
4. Test and compare the results of the game between three cases: applying no techniques,
enabling individual techniques and enabling multiple techniques together, in order to see which
can most improve the response times of the game.

1.3 Scope
1. We are using a 3D FPS client/server based game for our case study because it involves avatars,
frequent updates and needs fast response times. Many techniques will be needed to improve the
response time, such as dead reckoning to help the game avatar updating, and avatar blinking to
help give a fast response to the player while waiting for packets to travel over the network.
2. We will develop and compare various measures e.g. one-way response time, two-way response
time, packet details, to decide how to apply our techniques to the game.
3. We will develop and test in a simulation environment using the J2ME WTK emulator. WTK
copies will run as the clients, connected to a central PC server on a Local Area Network (LAN).
Many PCs are already available and the LAN environment is stable enough to get average results.
Real phones are not used since the aim of this thesis is to focus more on response time techniques
rather than on the mobile game itself, so a simulation environment is suitable. The server will
control the characteristic of the mobile environment (unreliable network), delay (wait before
sending packets back to clients) and packet loss (random drop or denial of packets). For 3D
development, the additional WTK Application Programming Interface (API) M3G for J2ME
(Java Specification Request (JSR) 184) is used [2]. M3G has many essential classes for creating a
3D scene for a small device such as a mobile phone. The FileConnection API is also utilized; it is
part of the Personal Digital Assistant (PDA) Profile for J2ME (JSR 75) [2]. The FileConnection
API can access the local file system, which can be used to store the response time results after
testing has finished.
4. We use the UDP transport protocol for data sending between the client and the server. In a
wireless environment with an unreliable connection, as in a game like this, UDP is more suitable
than Transport Control Protocol (TCP) because it does not spend time retransmitting lost packets,
and there is less overhead than TCP in creating communication.
5. We will not develop new transport protocols because the standard hardware and the standard
UDP communication are already sufficient.

4

1.4 Tools
1. Both client and server use the same type of PC: Intel Pentium 4 CPU 2.80 GHz. RAM 1 GB.
The operating system is Microsoft Windows 2000 Service Pack 4, and the monitor card is Asus
Extreme Ax550 256 MB.
2. J2ME WTK emulator version 2.2 with M3G, and FileConnection API for simulating the client
side [2].
3. J2SE version 1.5.3 for the WTK compiler and server side development [3].

 5

CHAPTER 2
LITERATURE REVIEW

This section gives background on dead reckoning and smoothing [6], the prototype 3D standalone
game GunnerM3G [7], and TCP and UDP. WTK client profiling is used for analyzing the work
load of the J2ME program [2], and the statistic significant of the results is measured using z-
scores [8].

2.1 Dead Reckoning
To help the game reduce the effect of packet delay/loss due to the unreliable network, dead
reckoning (DR) can be implemented on the client side to “predict the future movement” of a
remote avatar. This technique can enable the remote avatar to keep moving even when no update
packets arrive due to the packets delay or loss, thus maintaining its response time. For example, in
Figure 2.1, there is an object whose current position is east 1000 feet, north 1000 feet, and it
currently moving east. The predicted position one second later will be east 1050 feet, north 1000
feet, by using the previous position (east at 1000 feet, north at 1000 feet) and its current velocity
(east at 50 feet/sec).

Figure 2.1: Predict Future Movement with Dead Reckoning [6].
There are many types (or ‘orders’) of DR: zero order uses only the previous position, first order
uses velocity, and second order employs acceleration. DR techniques can also vary as how they
employ previous input. The customized DR technique used in this thesis is called Position History
Based Dead Reckoning (PHBDR) [9].

6

Position History Based Dead Reckoning (PHBDR)
PHBDR utilizes only positions, and calculates the velocity and acceleration from the previous few
positions of the avatar. PHBDR consists of two steps:
 Step 1 is a tracking step which predicts the remote position from the available last few positions
of the avatar until the next update arrives. This step also chooses which order of DR is used
depending on the angle between the three most recent update positions. If the angle is small, or
the avatar is turning rapidly, first order is chosen, otherwise, second order is employed.

 Step 2 is a convergence step that adjusts the current display position to converge upon the
future predicted position obtained in step 1.

For example, in Figure 2.2, the gray dots are the real update positions of the avatar and the dashed
line connecting the colored dot is the remote tracking path it is moving along based on the update
history. The past (prior) displayed position (the long black line) is displayed and calculated from
the PHBDR tracking step. After the current time (the vertical dash line), the convergence step
predicts the convergence point. The real update position will be moving along the remote tracking
line (dash and dot line) which should pass the predicted convergence point while the real display
from PHBDR will try to converge to the convergence point along the convergence path (small
dotted line).

Figure 2.2: Tracking and Convergence Steps in PHBDR [6].

2.2 Smoothing
Smoothing reduces the discontinuities after updates by interpolating between the last two known
points [6]. The trade-off of this technique is that the update accuracy is reduced in order to create
a more natural display. Smoothing is used along with DR to gradually move/rotate an avatar from
a predicted position to its correct position and angle.

7

An example of smoothing is shown in Figure 2.3. At time t1, the prediction is started from point
A to point B and C. At time t2, a new state update message arrives with the real position. DR will
calculate the next prediction based on the t2 position which is point E, with smoothing, point D
will be added from interpolating the position between point C and point E.

Figure 2.3: DR with Smoothing [6].

2.3 The GunnerM3G Program
PenguinM3G borrows some elements from a basic M3G game, GunnerM3G (see Figure 2.4), a
standalone FPS demo running on WTK with no network capabilities. When the player fires the
gun, a flash will appear from the gun. If the penguin is hit, an explosion-like fireball, the penguin
ID, and the text “HIT!” are displayed. The penguin will disappear if you shoot it three times.

Figure 2.4: Original GunnerM3G Program [7].

8

The class diagram of GunnerM3G is shown in Figure 2.5:

Figure 2.5: GunnerM3G Class Diagram [7].

GunnerM3G is the top-level of the application; it uses GunnerTimer to periodically update the
canvas by calling update() in GunnerCanvas. GunnerCanvas creates the 3D scene, using
TiledFloor for the floor, and two instances of PenguinModel for the penguins.
MobileGunCamera manages the camera, and utilizes ImageSquare instances for it’s attached
"gun hand" and "shot flash" images as shown in Figure 2.6. Gun hand or GunMesh will be placed
at (-0.1, -0.055) on the yz plane and the shot flash or shotMesh will be placed at (-0.15, -0.05) on
the yz plane. The flash is invisible by default but will appear when the player presses the fire key.

Figure 2.6: “Gun hand” and “Shot flash” [7].

9

ShotManager responds to the user pressing the fire key by making MobileGunCamera's "shot
flash" appear, and playing a laser noise through ShotSounds. The ShotManager sends a pick ray
into the scene as shown in Figure 2.7, which may intersect with a penguin model. Relevant
penguin data is stored in a PenguinInfo object stored in the model, which is used by ShotManager
to report the hit.

Figure 2.7: Shoot the Gun with the “Pick Ray” [7]

The pick ray requires a starting point and direction vector (camPos - camera current position and
camDir - camera current forward direction) and progresses in that direction until it intersects a
pickable mesh. The distance traveled is obtained from a RayIntersection object, and the (x,y,z)
intersection point on the mesh can then be calculated.
The animated fireball is controlled by AnimBillboard, and the explosion sound by ShotSounds.
When implementing the test game for this thesis (PenguinM3G), some GunnerM3G classes will
be reused and changed. All the classes in PenguinM3G are shown and briefly described below.
They can be divided into reused GunnerM3G classes, modified classes, and new (added) classes.
The classes that are reused without change from GunnerM3G are:
 TiledFloor (creates the floor)
 ShotSounds (makes the sound when shooting)
 ImageSquare (displays the penguin beak and shooting flash)
 AnimBillboard (animated shooting explosion)

The modified classes:
 GunnerM3G (becomes PenguinM3G, the main class)
 GunnerCanvas (becomes PenguinCanvas, handles the game graphics)
 PenguinModel (creates the penguin avatar)
 MobileGunCamera (becomes MobilePenguinCamera, and handles the game camera)

10

 ShotManager (handles and checks if the penguin is shot by using a pick ray)
 PenguinInfo (contains penguin information, such as the penguin’s previous positions used in

DR, and timing information.)
The new PenguinM3G classes:
 Spot (creates the life spots and contains the spots status if the spot has already been visited or

not)
 Bullet (creates the bullets area and contains the bullets area status if it’s already been visited or

not)
 FileManager (writes test results into a file)
 PlayerInfo (maintains player information, such as the number of player’s lives, scores, bullets

left)
 TimeMeasure (measures the update method)
 Measuring (calculates mean, Standard Deviation (SD), percentage of response times)
 Sender (sends UDP packets)
 GeneralAndGameTechnique (handles general techniques and game specific techniques)
 ClientHandler (sends/receives, handles packets and network techniques)

The more detailed of GunnerM3G classes are in chapter 4: Game Client.

2.4 TCP Client/Server
An example of network communication taken from “Threaded TCP Clients and Server” [7] was
employed to create the game server, but changed to utilize UDP communication.
The server uses threads to communicate with its clients, and a shared object to maintain client
information. Each client employs a thread to watch for server communication. The client consists
of a Graphical User Interface (GUI) for user input and output that can send messages to the server,
and a thread to wait for a message from the server which is then displayed in the GUI area. There
are special messages, like “who” to retrieve the list of current chat clients. On the server side,
there is a thread spawned to handle each new client since it uses the TCP protocol which needs to
maintain a connection.
An example when two clients connect to the server is shown in Figure 2.8. The message sent
from one client will be received by all the clients, and the client can receive a list of all the online
clients via the Who command button.

11

Figure 2.8: Example of Threaded TCP Clients and Server

The class diagram of Threaded TCP Clients and Server is shown in Figure 2.9:

Figure 2.9: Threaded TCP Clients and Server Class Diagram

ChatClient interacts with the ChatServer. It can send the following messages:
 who - a list of users is returned.
 bye - client is disconnecting.
 any text - which is broadcast to all clients.
In each client, there is a separate threaded ChatWatcher object for processing messages coming
from the ChatServer object.
ChatServer waits for client connections and creates ChatServerHandler threads to handle them.
Details about each client are maintained in a ChatGroup object which is referenced by each
thread.
ChatServerHandler is a thread dealing with a client. Details about a client are maintained in a
ChatGroup object, which is referenced by all the threads.
ChatGroup maintains info about all the current clients. It handles the addition/removal of client
details, the answering of "who" messages, and the broadcasting of a message to all the clients.

12

Chatter stores information about a single client e.g. the client's IP address, port, and output stream.
The output stream is used to send messages to the client. The address and port are used to
“uniquely” identify the client.
When implementing the game server in PenguinM3G, these classes will be reused and changed.
All the classes in the PenguinM3G game server are briefly described below. They can be divided
into modified classes and newly added classes.
The modified classes are:
 ChatServer (the main class)
 ChatServerHandler (extracts packet details)
 ChatGroup (maintains information on all clients)
 Chatter (stores information on a single client)

The new classes are:
 ReceiveMsg (handles the simulation reliability (random delays packets or drops them))
 PacketDelay (the thread to delay packets)
 RefreshObj (the thread to re-enable the life spots and bullets areas after a player has visited

them)

2.5 UDP Client/Server
The threaded TCP application of the last section is modified to use the UDP protocol. The first
step is to create a J2SE UDP client and server, and the next is to implement a J2ME UDP client.

J2SE UDP Chat Client and Server
Several clients can connect to a server and broadcast messages to each other. A client can request
a list of current chat users from the server by using a Who button. With no long term TCP
connection, a client must now send an initial “join” message to the server when connecting for the
first time. The original TCP client created a socket to connect to the server, without the need for a
join message.
For example in Figure 2.10, Client1 joins the server by sending a join message to the server.
When the server receives the join message, it broadcasts a welcome message with client1’s IP
address and port to all the other clients which informs them that there is a new client.

13

Figure 2.10: A Client Sends a Join Message and the Broadcast Response from the Server

J2ME UDP Chat Client
The J2ME UDP client is much the same as the J2SE version but it is reimplemented to run on a
mobile device. It still connects to the J2SE UDP server, and the clients can send message to each
other, as shown in Figure 2.11.

Figure 2.11: Example of J2ME UDP client and J2SE UDP server

14

An example of a J2ME client sending messages to the J2SE server is shown in Figure 2.12.
Client1 sends a “hello” message to the server. The server receives the message, and broadcasts it
to all the clients, along with client1’s address and port.

Figure 2.12: A Client Sends a Hello Message and the Broadcast Response from the Server

2.6 J2ME Client Profiling
The Profiler tool in the WTK can be used to find which parts of an application are slow so the
code can be optimized. The profiler records the time used by each method at run time. After the
application exits, a Profiler screen will appear as in Figure 2.13.

Figure 2.13: Profiler Screen Example

15

The important column in the output number is %Cycles (the third column from the right, the
percentage of total execution time that is spent in the method). In Figure 2.13, getIpNumber(),
which gets the IP address of the datagram, takes 29.8% of the processor time, and so should be
optimized, if possible.
PenguinM3G was optimized in several ways due to Profiler information:
 getIpNumber() has the highest process time because it creates a datagram objects every time the

program uses Sender.connect() or ClientHandler.run(). In the original code, a new datagram is
created when there is a message need to send to the server. This overhead can be fixed by reusing
one datagram object instead of creating many new ones. The example of fixing result is shown in
Table 2.1.

 Counts Cycles %Cycles
Original getIpNumber() 68 8903476 9.5
Modified getIpNumber() 2 58329 0.0

Table 2.1: getIpNumber Comparison
The original getIpNumber() creates a new datagram every time, while the modified version reuses
a datagram. Table 2.1 shows that reusing the datagram can reduce the work load greatly, by
99.3% in this case.
 drawString() has a high process time because it displays the player information on the screen.

Since it is displayed every frame, it is one of the most CPU intensive operations. The overhead
can be reduced if StringBuffer is used instead of String.

2.7 Z-Score
In order to compare the response times between tests, the z-test is used to determine if the
difference between the sample mean (when our techniques are enabled) and the population mean
(when no techniques are enabled) is large enough to be statistically significant [8]. The z-test
requires two means (X for the enabled techniques, µ for no techniques), two standard deviations
(SDx for the enabled techniques, SDµ for no techniques) and the total number of tests (nx for the
enabled techniques, nµ for no techniques).
The means (X) are calculated like so (the same formulae also applies to µ):

x is the response time result of enabled techniques. n is number of test.
The standard deviations (SDx) are calculated like so (the same formulae also applies to SDµ):

16

After obtaining the SDx, σx

2, which is the variance of the mean (X), is calculated (also applies to
σµ2):

SDx1 is the SD of the first test on the response time result of enabled techniques. nx1 is the number
of the first test, and so on.
The standard error (SE) from the σ is:

The z-score for the z-test is:

Z = (X - µ) / SE

X is the sample mean (when the techniques are enabled), µ is the population mean (when no
techniques are used) and SE is the standard error.

Figure 2.14: Level of Significant of Left-Tailed Test at 0.05 or 95%

The null hypothesis (H0) will be:
no techniques response time mean = enabled techniques response time mean

The alternative hypothesis (H1) will be:
no techniques response time mean > enable technique response time mean

Figure 2.14 shows a one-tailed test for whether the techniques make the response time
significantly faster. At a 0.05 level of significant (α), if the z-score is less than -1.645, then the
alternative hypothesis can be accepted.
Our results will be judged significant only if the z-score is less than -1.645, or more than 1.645 in
the case of the enabled techniques comparison or the same technique with different parameters.
2.8 Summary
This chapter introduced PHBDR and smoothing, details of the test game prototype, and TCP and
UDP client/server communication. WTK client profiling can be employed to measure and
optimize J2ME applications, and z-scores will be utilized to judge the significance of our results.

 17

CHAPTER 3
GAME DESCRIPTION

The test game used in this thesis is “PenguinM3G”, a 3D FPS client/server based game. The
server employs J2SE and the clients use J2ME on WTK Emulator. The game involves “a local
player” (who plays the game on their own simulated device) interacting with “remote players”
(who play the game on other simulated devices). Due to the rapid play inherits in FPSs, the
variation in the network characteristics (random delay or dropped packets), and a visual rich 3D
GUI, the game must include optimization techniques to improve its response times. The test game
is developed in order to test these response time issues, not as a marketable game, so some
features such as a high scores table and help screens are left out.
The local player is a penguin that can shoot fire from its mouth at remote avatars (the penguins
representing remote players on the local player’s device). The main objective of the game is to
score as much as possible while being challenged by other players as shown in Figure 3.1. All the
clients connect to a central server via a UDP based protocol, so they can exchange information
(packets).

Figure 3.1: The Game Architecture

The following sections will describe more on the game architecture e.g. about the game elements,
how the player controls the game, and about the game rules.

18

3.1 Game Elements and Controls
Figure 3.2 illustrates many elements of the game. There is a status bar at the top of the screen
which displays the lives remaining, the score, and the bullets the player has left. On the bottom of
the screen, there is a player beak which shoots at the other players. On the field, the player can
move onto life spots which increase the player’s score and regains one life as well. Also, there are
bullets areas where the player can renew his bullets. The player sees other players as penguin-like
remote avatars.

Figure 3.2: Game Elements

The player can move forward, backward, rotate left, and rotate right. The player can shoot bullets
from his beak by pressing the Select key or the Enter key.

3.2 Game Rules
The primary aim of the game rules and elements (e.g. the life spots and the bullets areas) are to
make the game’s network packets behavior more complex, so that general and packets-based
optimization techniques become useful.
 In order to play the game, the local player must first connect to the game server.
 After successfully connecting, the player will receive remote avatar information, ten lives, zero

 score points, and six bullets.
 The player can quit the game at any time.
 There is no time limit or ‘winning’ end to the game.

19

 When the local player shoots a remote avatar, the local player’s bullets and the remote player’s
 life are reduced by one, and the local player gets twenty points.
 If a player’s life count is reduced to zero, the game is over for that player, and he will be

 automatically disconnected from the server.
 Moving onto a life spot gives the local player thirty extra points and one more life (up to a

 maximum of ten). Then the life spot changes from active (colored) to inactive (white). There
 are four life spots in the game.
 Moving onto a bullets area gives the local player a maximum of six bullets, and the bullets area

 changes from available to unavailable (the bullets area vanishes from the player’s view). There
 are two bullets areas in the game.
 Inactive life spots and unavailable bullets areas will be reactivated after thirty seconds out of

 the game.
 Remote players can shoot at the local player at any time.
 Statistics related to response times are measured and collected by each client, but this activity is

 not shown in the game.

3.3 Summary
This chapter explained the basic PenguinM3G architecture, game elements such as the status bar
and life spots, and game rules. These make the game’s network behavior more complex.

 20

CHAPTER 4
THE GAME CLIENT

The design and implementation of the game will be explained over two chapters. This chapter is
concerned with the client side, and Chapter 5 with the server.
A game client is divided into two main parts: the game part and the network part. The prototype
of the game part was developed using parts of the GunnerM3G program, described in section 2.3.
The new game elements include trees, life spots, and bullets areas, as well as collision detection
between objects and with the game boundary. The network part employs the UDP protocol to
connect to the server, and to handle remote avatar events. An overview of the game architecture is
shown in Figure 4.1.

Figure 4.1: The Game Architecture Again

4.1 Overview of Game Client Classes
Class diagrams for the game client are shown in Figure 4.2. The classes are grouped into three
categories which identify their relationship to the GunnerM3G example. The shaded boxes are the
classes reused without changes, the striped boxes are changed classes, with new or modified
methods, and the unshaded boxes are new classes.

21

Figure 4.2: Game Client Class Diagram

PenguinM3G is the top-level class of the application. PenguinM3G uses the PenguinTimer class
to periodically update the game canvas. The canvas is updated by calling the update() method in
the PenguinCanvas class. The additional code in PenguinM3G is for a user interface that allows
the player to enable different techniques, as shown in Figure 4.3.

Figure 4.3: Techniques Check Lists

The PenguinCanvas class handles the 3D scene, using the TiledFloor class to create the floor.
The PenguinCanvas class also creates game elements like trees, life spots, bullets areas, the status
bar, and creates the penguins representing the remote avatars using the PenguinModel class.

22

The PlayerInfo class holds the information for the local player lives, scores, and bullets left.
The PenguinInfo class contains the information on the remote avatar id, position, angle, lives, and
time statistics (e.g. the one-way response time between the local player and this remote player). It
also stores the past moves and rotations of the remote avatar, used DR.
The Spot class and the Bullet class contain information on the available/unavailable state of the
life spots and bullets areas.
The MobilePenguinCamera class deals with the game camera and attaches the ImageSquare class
to make the penguin beak and the shot flash. This class also checks for collision detection with
the life spots, bullets areas, and the boundary of the game field. More details on the original
MobileGunCamera are available in section 2.3.
The ShotManager class makes a shot flash appear in response to the shot key, and triggers the
ShotSounds class to play the shot noise.
The AnimBillboard class controls the animated fireball when the penguin is shot, and the
explosion sound is controlled by the ShotSounds class.
The GeneralAndGameTechnique class processes general techniques (e.g. DR and smoothing) and
game-specific techniques.
The ClientHandler class manages both incoming and outgoing network packets. Incoming
packets are parsed and sent to the PenguinCanvas class to update the game state. Outgoing
packets are sent to the Sender class for output as UDP packets. The ClientHandler class also
handles the network techniques (e.g. packets grouping).
The TimeMeasure class measures the update() method of the PenguinCanvas.
The Measuring class calculates the means, standard deviations, and percentages necessary for
measuring the techniques effectiveness.
The FileManager class automatically saves all the measuring results into a text file when the
player quits the game.
The following classes which are the client’s game elements will be described in more detail in
section 4.2:
 The Bullet class is used to create the bullets area (section 4.2.1)
 The Spot class is used to create the life spots (section 4.2.2)
 The part of PenguinCanvas which creates the trees and status bar (sections 4.2.1 and 4.2.3

respectively)

23

 The part of MobilePenguinCamera class which handles collision detection (section 4.2.4)

4.2 Game Elements
The elements added to those originally in GunnerM3G are: trees, bullets areas, life spots, and a
player status bar, as shown in Figure 4.4.

Figure 4.4: Game Elements

4.2.1 Trees and Bullets Area
The trees and the bullets area are not implemented with 3D models, instead, they are made from
2D images drawn on flat screens (called billboards) which stay oriented towards the camera.
There are two ways to create a billboard: one is by using the Sprite3D class in the M3G library
[7], the other is to implement a customized billboard class. For making the trees and the bullets
area in this thesis, the Sprite3D class was chosen because Sprite3D automatically faces the
camera while a customized billboard needs extra code to make it always face the camera. A
bullets area is shown in Figure 4.4, and a tree is shown in Figure 4.5.

Figure 4.5: Example tree using Sprite3D

24

4.2.2 Life Spots
The spots on the field are implemented with a customized billboard which employs a camera
alignment and a partially transparent flat mesh (a mesh is a 3D geometry of (x,y,z) points with
associated appearance characteristics). Sprite3D can not be used since it always rotates about the
y axis. The life spots need to lie on the floor, which is the xz plane (see Figure 4.6).

Figure 4.6: The 3D Axis

4.2.3 Status Bar
Player information (Lives, Score and Bullets Left) is shown in a status bar by using clipping. This
uses repaint(x, y, width, height) which paints only a certain area of the screen, reducing redrawing
costs for every frame. It also improves the update() method because less string objects are created
in every frame. The status bar can be seen in Figure 4.4 at the top of the screen.

4.2.4 Collision Detection
There are two types of collision detection. The first detects the life spots and bullets areas on the
field, and the second detects the boundary field of the game world. The trees are not involved in
collision detection, so players can hide behind them and ambush other players.
After putting the life spots and bullets areas on the field, the next step is to detect if the player
moves into them. There are two ways to detect something on the floor. The first way is by using a
picking ray with M3G’s RayIntersection class by rotating the camera down 90 degrees, firing a
picking ray, then rotating the camera back to normal. The other way, which is easier, is to store
the position of each life spots and bullets areas, and check them while the player is moving.

25

The other form of collision detection is to prevent the player traveling beyond the boundary of the
game world. The position detection method used for detects life spots and bullets areas can also
be employed here since the size of the floor is known. Collision detection is done before the
player makes a move by testing the move to see if it goes out of bounds. If not, then the move is
carried out.

4.3 Network Game Client
The local client sends packets to the server which forwards them onto the remote clients to update
their game states. Section 4.3.1 describes the types of packets being sent. Section 4.3.2 explains
how the packets are grouped into two categories: single packet per keypress and multiple packets
per keypress, so that different types of optimization techniques can be employed. Section 4.3.3
discusses how remote avatars are integrated into the game client.
4.3.1 Types of Packets
A packet has a header which matches the role of the packet, an ID which identifies who sent the
packet, and assorted other information. An example of the packet structure is shown in Figure 4.7.
All the packets include a timestamp in order to calculate how long the packet takes to travel from
one client to another. In the rest of this section, the timestamp field will be emitted from the
figures to emphasize the more important fields.

Figure 4.7: General Packet Format

The game packets will be explained with the following categories: joining/quitting,
moving/rotating, shooting, state change (when the player moves onto the life spots/bullets areas),
and a reply code.
Joining/Quitting
Three kinds of packets are sent in order to join or quit the game: JOIN, JOINED and QUIT
packets.
A JOIN packet is sent from the local player to the server to indicate that he/she wants to join the
game. The position and the angle of the local player are sent (as shown in Figure 4.8) to allow the
other players to create a penguin representing the player.

Figure 4.8: A JOIN packet

26

After the server has processed a JOIN packet, it broadcasts a JOINED packet to all the clients.
The local player gets the status of current life spots and bullets areas state, while the other players
get the local player’s ID, position and angle, which they use to create a remote avatar for this
player. The structure of a JOINED packet is shown in Figure 4.9.

Figure 4.9: A JOINED packet

The fields of a JOINED packet are:
o ID, a unique integer representing the player who has just joined the game, given by server.
o Coordinate represents the new player’s (x, z) position. E.g. (2.31, -1.45)
o Angle represents the new player’s angle in degrees relative to -z axis. E.g. 57.0
o Spots state are four numbers representing the game’s life spots: 1 is active, 0 is inactive. E.g.

 1110 means that the fourth life spot is inactive.
o Bullets areas state are two numbers representing the game’s bullets areas: 1 is available, 0 is

 unavailable. E.g. 01 means that the first bullets area is unavailable.
An example join event is shown in Figure 4.10. Client A joins the game by sending a JOIN
packet to the server. Then, the server broadcasts a JOINED packet to all the clients to notify them
of client A’s joining.

Figure 4.10: Client A Joins the Game

27

When the player wants to quit the game, or he loses all his lives, a QUIT packet is sent from the
local player to the server. The server accepts the quit state and broadcasts the QUIT packet to all
the clients to inform them of the departure of the player. They can then remove the remote avatar
representing this player. The structure of a QUIT packet is shown in Figure 4.11.

Figure 4.11: A QUIT packet

Moving/Rotating
A remote avatar can move and rotate, represented by three kinds of packets: MOVE, ROTATE,
and KEY_RELEASE.
A MOVE packet is sent from the local player to the server when the player moves forward or
backward. The server then broadcasts the MOVE packet to all the other players. The structure of
a MOVE packet is shown in Figure 4.12.

Figure 4.12: A MOVE packet

This packet includes an angle field for use in the smoothing, and a move type field.
o Move type is a number representing a player’s possible moves: Forward = 1, Turn right = 2,

 Turn left = 3, Backward = 4.
A ROTATE packet is sent from the local player to the server when the player rotates left or right.
The server then broadcasts it to all the other players. The structure of a ROTATE packet is shown
in Figure 4.13.

Figure 4.13: A ROTATE packet

The move type in a ROTATE packet has only two possible values: turn right and turn left.
A KEY_RELEASE packet is sent when a local player releases the moving or rotation key to
indicate the finish of the current move. This packet is used by the dead reckoning technique. This
packet is broadcast by the server to all the other remote players. The structure of KEY_RELEASE
is shown in Figure 4.14.

28

Figure 4.14: A KEY_RELEASE packet

Shooting
There are two kinds of shooting-related packets: SHOOT and SHOOT_RESPONSE.
A SHOOT packet is sent from the local player to the server when the player thinks that a bullet
has hit the targeted remote player. The server sends the SHOOT packet onto the remote player.
The structure of a SHOOT packet is shown in Figure 4.15.

Figure 4.15: A SHOOT packet

A SHOOT_RESPONSE packet is sent by the remote player to the server in reply to a SHOOT
packet, to indicate if the remote player was hit by the bullet or not. The server sends this packet
onto the local player. The structure of the packet is shown in Figure 4.16.

Figure 4.16: A SHOOT_RESPONSE packet

The SHOOT_RESPONSE‘s was hit flag represents whether the remote player was shot by the
local player or not. E.g. was shot = 1, was not shot = 0
An example of shooting is shown in Figure 4.17. Client A shoots a bullet at client B, and sends a
SHOOT packet to client B. Client B checks if it’s hit or not and replies with a SHOOT_
RESPONSE packet.

29

Figure 4.17: Client A Shoots a Bullet

State change
The game state is modified by changing the life spots and bullets areas with SPOTS_STATE and
BULLETS_AREA_STATE packets.
A SPOTS_STATE packet is sent to the server when the player moves onto an active life spot.
The server broadcasts it to all the remote players to change the global state of that life spot.
Another way of using this packet is when the server reactivates the life spots after 30 seconds.
This packet originates at the server, and is broadcast to all the clients. The structure of
SPOTS_STATE is shown in Figure 4.18.

Figure 4.18: A SPOTS_STATE packet

The ID field in a SPOTS_STATE packet is used to differentiate between two uses of the packet.
ID 10001 indicates that this packet originates from the server, and its use for updating the life
spots is shown in Figure 4.19. Client A moves onto the life spot and sends a SPOT_STATE
packet to the server. The server then sends SPOT_STATE packets to all the clients to update their
life spot states. Also, when the server wants to reactive a life spot, it sends a SPOT_STATE
packet to all the clients.

30

Figure 4.19: Updating the Life Spot

A BULLETS_AREA_STATE packet is sent from the local player to the server when the player
moves onto an available bullets area. The server then broadcasts the packet to all the remote
players. This packet is also used by the server to make a deactivated bullets area available again
after 30 seconds. The BULLETS_AREA_STATE structure is shown in Figure 4.20.

Figure 4.20: A BULLETS_AREA_STATE packet

The ID field in BULLETS_AREA_STATE packet is used the same way as in SPOTS_STATE
packet. An example of updating the bullets area is shown in Figure 4.21. When client A moves
onto the bullets area, he sends a BULLETS_AREA_STATE packet to the server. The server then
sends the BULLETS_AREA_STATE to all the clients in order to update their bullets areas. This
is also done by the server when it reactivates a bullets area.

31

Figure 4.21: Updating the Bullets Area

Reply Code
A REPLY_CODE packet is used for measuring the response times of MOVE, ROTATE,
BULLETS_AREA_STATE, and SPOTS_STATE packets. A REPLY_CODE packet is sent from
a remote client back to the local client in reply to the one of these packets arriving at the remote
client. The REPLY_CODE structure is shown in Figure 4.22.

Figure 4.22: A REPLY_CODE packet

The action header field is the name of the packet this REPLY_CODE packet is measuring:
MOVE, ROTATE, BULLETS_AREA_STATE, or SPOTS_STATE.
An example of how REPLY_CODE is used is shown in Figure 4.23. Client A sends a MOVE
packet to client B. When client B gets the packet, it sends a REPLY_CODE packet back to client
A along with client A’s ID taken from the MOVE packet timestamp. When client A gets the
REPLY_CODE, it can calculate the one-way response time of the MOVE packet by subtracting
the REPLY_CODE’s timestamp from the source timestamp, and dividing by two. The result
becomes the one-way response time for the MOVE packet sent from client A to client B.

32

Figure 4.23: REPLY_CODE Example

4.3.2 Packets and Keypresses
When measuring response time, it’s useful to distinguish between packets in terms of how many
are generated when the user presses a key. We utilize two categories: “single packet per keypress”
and “multiple packets per keypress”.
Single packet per keypress is the situation when holding a key down generates only one packet.
The packets in this category are SPOTS_STATE, BULLETS_AREA_STATE, JOIN, JOINED,
QUIT, SHOOT, and SHOOT_RESPONSE.
Multiple packets per keypress occurs when holding a key down generates multiple packets. The
packets in this type are MOVE and ROTATE, which are very common user behaviors, and so
many such packets are generated during game play.
As we will see, different response time techniques are best suited to these different packets
categories. For example, a technique very suitable for single packet per keypress is packet
duplication. However, it is not much use to multiple packets per keypress since multiple packets
are already being generated. In fact, duplicate packets will cause too much traffic in its case.
Another example is dead reckoning which needs a lot of data to make its predictions, and so is
more suitable for use with multiple packets per keypress.

33

4.3.3 Remote Avatar
The remote avatar represents the remote player, so duplicates all the moving and rotation actions
of that player.
The move method (called updatePosition()) in PenguinModel, uses an existing setTranslation()
method along with the position coordinate of the remote avatar to move the remote avatar to the
specific location.
For the rotation method, the difference between the rotate avatar’s new angle and its old one is
needed. Once again, a pre-existing method, preRotate() can be utilized, which rotates the penguin
around the y-axis (preRotate() means multiplies the current orientation component from the left
by the given orientation).

4.4 Summary
This chapter gave an overview of the game’s client side classes, and how to implement game
elements such as trees, life spots, the status bar, and collision detection. The chapter also
explained the network packets format, and described each packet type, such as JOIN, MOVE, and
SHOOT_RESPONSE. The implementation of remote avatar moving/rotating was discussed.

 34

CHAPTER 5
THE GAME SERVER

The game server is based on the “Threaded TCP Clients and Server” ChatServer (see section 2.2
[7]), modified to use the UDP protocol. The server uses threads to listen to multiple clients, and
stores a shared object to maintain the clients information. The server does not have a GUI since
its duty is to store clients details, e.g. client IDs, so it can tell a new client which clients are
connected and forward messages among them.
The server’s main task is to forward packets from one player/client to the other clients. It also
simulates an unreliable network connection e.g. packet reliability of 90% or 75%. The packets
can be delayed between 30 ms - 2000 ms, and be lost at the rate of 10% or 25%. The server
supports this feature so that we can test how techniques such as dead reckoning help increase
communication reliability.
The server also reactivates the game’s life spots and bullets areas 30 seconds after they have been
deactivated by a client moving onto them. The server notifies the other clients of a change by
sending packets to them.

5.1 Overview of Game Server Class
Class diagrams for the game server are shown in Figure 5.1. The class boxes are colored
differently to highlight the new classes and the modified classes.

Figure 5.1: Game Server Class Diagrams

The ChatServer class is the top level console application. The program is started with one
command line argument to specify the required network behavior: stable mode where there is no
unreliability, or unstable mode where packets can be dropped or delayed. The ReceiveMsg class
creates a thread to handle the clients’ connection, while ChatServer waits for user input. If the
user inputs the letter ‘q’ and presses enter, the server will shut down.

35

In an unreliable network simulation, ReceiveMsg randomly chooses between passing a packet
normally, delaying it, or dropping it. ReceiveMsg also deals with the reactivation of the life spots
and the bullets areas by sending a SPOTS_STATE or a BULLETS_AREA_STATE packet to all
the clients.
ChatServerHandler extracts information from the client packets. If it sees a “JOIN” packet,
ChatServerHandler will store the client address, port, and the client avatar’s initial position in the
Chatter class object via the ChatGroup class. ChatGroup maintains the Chatter objects, handles
the adding/removal of client information, and creates UDP datagrams to send packets to the
clients.
The PacketDelay class is used to delay packets for random specific durations.
The RefreshObj class creates a thread to handle the reactivation of the life spots and the bullets
areas.
5.2 The Unreliable Network Simulation
The four main stages carried out by the server to simulate network unreliability are shown in the
shaded boxes in Figure 5.2.

Figure 5.2: The Stages of a Network Unreliability Simulation

36

In stage 1, upon receiving packets from the clients, the server random chooses whether to let the
packet pass normally, be delayed in stage 2, or be dropped in stage 3. If the server delays the
packet, the packet will have to wait for between 30 ms and 2000 ms before being processed in
stage 4.
There are two levels of reliability: 90% and 75% reliability, which are set in the ReceiveMsg class.
90% reliability means that the probability that the packet can pass normally is 90%, with 10%
chance of it being delayed or dropped. 75% reliability means that a packet has a 25% chance of
being lost or delayed. Two reliability levels allow us to test the effectiveness of our techniques
under different circumstances.
In the ReceiveMsg class, randompercent() will be called to generate a random probability to
decide whether the server will process a packet normally, delay it, or drop it. Here is the pseudo
code for randompercent():

// in ReceiveMsg class
private int randompercent()
{
 int choice = random in range 0 .. 100 ;

 if (choice < RELIABILITY (75 or 90))
 return NORMAL;

 else
 randomly return DROP or DELAY;
}

When a packet is processed normally, it is sent to the ChatServerHandler class to have its
information extracted. If a packet is delayed, the delay time is randomly generated between 30 ms
to 2000 ms (2 seconds), which is long enough to affect the game play.
The threaded PacketDelay class makes a packet waits for the specific delay time by using
Thread.sleep().

5.3 Reactivate Life Spots and Bullets Area
The two steps involved in reactivating the life spots and the bullets areas are shown in the shaded
boxes of Figure 5.3.

37

Figure 5.3: The Server Reactivates Life Spots or Bullets Areas

In step 1, the server usually forwards a packet to the client after receiving the packet. However, if
the server receives a life spot or bullets area packet, then it processes to step 2 by checking which
life spot or bullets area the client is located on by comparing the current modified state with the
previous state. The server reactivates that life spot or bullets area after 30 seconds.
The ChatServerHandler extracts and processes the “SPOTS_STATE” and “BULLETS_AREA
_STATE” packets (see Appendix S3). ChatServerHandler calls refresh() to send the life spot, or
bullets area, packet to the RefreshObj thread class. RefreshObj reactivates the life spot or bullets
area by sending a reactivation packet to all the clients after waiting 30 seconds.

5.4 Summary
This chapter gave an overview of the game’s server side class. The main tasks of the game server
are to simulate an unreliable network, and reactivate life spots and bullet area during the game.
The server can simulate 90% and 75% packet reliability. The packet delay period is 30 ms and 2
seconds.

 38

CHAPTER 6
RESPONSE TIME MEASURING

We classify response time into one-way response time (described in detail in section 6.1) and
two-way response time (section 6.2). One-way response time is how long the local player must
wait to see a remote avatar change due to remote client activity. Two-way response time is how
long it takes for a local player to see a local change after doing something to a remote avatar.
One-way response time can be further divided into timing statistics for packets where one packet
is sent per keypress, and statistics when multiple packets are sent per keypress.
There are other elements worth measuring to help us judge our techniques: interval update time
for remote avatar movement/rotation which is another way of one-way response time measuring
(section 6.1.3), rendering update speed (section 6.3), and various packet statistics (section 6.4).

6.1 One-way Response Time
One-way response time is the time that an action takes to travel from a remote player to the local
player, and update the remote player’s remote avatar. An example of one-way response time is
the time difference between a remote player moving and the update of his remote avatar on the
screen of the device. One-way response time consists of networking time (from the remote player
to the local player) and processing times on the server and the local player’s device.
One-way response time can be divided into two cases depends on how many packets are sent
when a game key is pressed: single packet per keypress, and multiple packets per keypress.

6.1.1 One-way Response Time for a Single Packet per Keypress
A single packet per keypress occurs when the player presses a key, and only a single packet is
sent. Most of the packets in PenguinM3G are of this type, including JOIN, JOINED, QUIT,
SPOTS_STATE and BULLETS_AREA_STATE. An example is shown in Figure 6.1, when the
life spot is changed.

39

Figure 6.1: Example of Single Packet per Keypress (SPOTS_STATE)

When the remote player moves onto the life spot, a single SPOTS_STATE packet is sent to the
other players to inform them that the life spot is now occupied, and the life spot changes to an
inactive state.
6.1.2 One-way Response Time for Multiple Packets per Keypress
Multiple packets per keypress occur when the player presses a key and multiple packets are sent
to the other players. This type includes the MOVE, ROTATE and KEY_RELEASE packets.
KEY_RELEASE is in this group because it is sent after the MOVE and the ROTATE packets
have finished indicating that the current move or rotation is over. An example of multiple packets
per keypress is given in Figure 6.2.

Figure 6.2: Example of Multiple Packets per Keypress

40

In step (1), when the local player moves, a series of MOVE packets are sent to the server. In step
(2), the server forwards the packets to the remote players so they can update their avatar
representing the local player.

6.1.3 Interval Update Time of a Remote Avatar Movement or Rotation
The interval update time of a remote avatar’s movement is measured to indicate how well the
game is being updated in an unreliable network. This measurement involves moving and rotation
which is a one-way response time type. So, it is categorized in Section 6.1. The measure is the
average time gap between updates of the avatar’s position or rotation on the local player’s device.
An example of interval update for a remote avatar’s movement is shown in Figure 6.3.

Figure 6.3: Example of Interval Update of Remote Avatar Movement

The first MOVE packet arrives from the server at 10.00.00.045 am, and the second arrives at
10.00.00.095 am, so the interval update time is 10.00.00.095 - 10.00.00.045 = 50 ms. The next
interval will be measured between the second and the third MOVE packets, and so on, until a
KEY_RELEASE packet arrives. There is also a threshold interval of 2500 ms to stop the
measurement in case the KEY_RELEASE packet is lost.
The interval update time value should be close to the specified game frame rate. However, if
packets are delayed or lost, then the interval will increase. Therefore, the closeness of the interval
to the frame rate can be employed as another measure of our optimization techniques dealing with
packet delay and loss.

41

6.1.4 One-way Response Time Implementation and Measuring
A packet timestamp field is needed to implement response time measuring. Timestamps are added
at the source and destination clients, so that one-way response times can be calculated as shown
in Figures 6.4 and 6.5.

Figure 6.4: The Sequence of One-way Response Time Measuring (steps 1-2)

Figure 6.5: The Sequence of One-way Response Time Measuring (step 3)

42

Step 1 in Figure 6.4 shows a timestamped packet being sent from the local player to the server.
and step 2 is the processing time on the server. Step 3 in Figure 6.5 shows the packet being sent
from the server to the destination remote player. The difference between the arrival time and the
timestamp extracted from the packet is the one-way response time.
Device Clocks Synchronization Problem
This timestamping approach conduces a problem if the two client devices have involved different
clock settings.
The clocks on client A and client B may be out of synchronization (e.g. at the same instance, the
client A time is 10:00:00:00 but client B shows 10:00:00:05). If a packet takes 300 ms to travel
from client A to client B, then the one-way response time between A and B will be mis-reported
as 305 ms.
I attempted to solve this “out of synchronization” problem in several ways. I tried using a network
time protocol (NTP) server to synchronize the PC times, but its accuracy was over 100
milliseconds which is too poor. This out of synchronization comes from my tests on Windows
2000 machines on a LAN network, where the NTP server is a windows 2000 built-in service.
I solved the problem by using only one client to calculate the one-way response time. A message
is sent round trip between the clients and then divided by two to get the one-way response time,
as shown in Figures 6.6 and 6.7.

Figure 6.6: One-way Response Time at One Side of Client (Steps 1-3)

43

Figure 6.7: One-way Response Time at One Side of Client (Steps 4-6)

In step 1 of Figure 6.6, a timestamp is added to the MOVE packet sent to the server. The server
processes the packet and forwards it onto the remote client in step 3. Instead of the remote client
calculating the one-way response time, it sends the packet back to the sender with a
“REPLY_CODE” header. The local client receives this packet in step 6, and calculates the one-
way response time by subtracting the original timestamp from the current time, and dividing by
two.
Varying network time can affect this calculation, but such variations are very uncommon on the
LAN where I carried out my tests.
The implementation steps for one-way response time measuring are shown in Figure 6.8.

44

Figure 6.8: One-way Response Time Implementation

When ClientHandler gets a reply packet (indicated by the “REPLY_CODE” header), it extracts
the destination client ID and source timestamp. These are sent to PenguinCanvas where the one-
way response time is calculated as the current timestamp minus the source timestamp, divided by
two. PenguinInfo collects these response times in order to calculate the mean and SD.

6.2 Two-way Response Time
Two-way response time is the time that a local player action takes to travel to a remote player,
affect it, and for the remote player’s new state to travel back to the local player and change the
remote avatar. An example of this type of response time is when the local player shoots at a
remote avatar. A packet is sent to the remote player which decides if the bullet hits the player or
not. The remote player sends a reply packet back to the local player. The example is shown in
Figures 6.9 and 6.10.

45

Figure 6.9: Two-way Response time (Steps 1-3)

Figure 6.10: Two-way Response time (Steps 4-6)

In step 1 of Figure 6.9, a timestamp is included in the SHOOT packet sent to server. The server
processes the packet and forwards it to the remote client. In step 4 (Figure 6.10), the remote client
processes the SHOOT packet and sends a reply packet (SHOOT_RESPONSE) back via the server.

46

The server processes the packet and forwards it to the local client. The time duration, from when
the local player sent the SHOOT packet until it receives the SHOOT_RESPONSE packet and
updates the remote avatar, is the two-way response time.
Two-way Response Time Implementation and Measuring
Measuring two-way response time is similar to measuring one-way response. The implementation
is outlined in Figure 6.11.

47

Figure 6.11: Two-way Response Time Implementation

ShotManager checks if the penguin has been hit by a bullet. If it has, then ClientHandler sends a
SHOOT packet to the remote player. When the remote player receives a SHOOT packet in its
ClientHandler, the information is extracted. The hit coordination is compared with the player’s
location to check if the player was actually hit or not. The reason for checking is that the penguin
position, and the remote player position, may be different (due to delay). There is a threshold so
that even if the penguin has moved a bit, the shot may still count as a hit.
After checking if the remote player is hit, a SHOOT_RESPONSE packet is sent to the local
player. SHOOT_RESPONSE indicates whether the remote player has been hit or not and includes
the source timestamp from the SHOOT packet. The local player receives the
SHOOT_RESPONSE packet at its ClientHandler, which extracts the information.
PenguinCanvas displays an explosion if the penguin was hit and calculates the two-way response
time by subtracting the current time from the source timestamp. Step 8 adds the result to the
PenguinInfo object.

6.3 Rendering Update Method
The client processes tasks related to response time which may affect the game’s frame rate. The
effect can be measured by recording the slowdown in the game’s update() method in
PenguinCanvas which deals with the player’s input and scene rendering.

48

Update Method Implementation and Measuring
The update() implementation is illustrated in Figure 6.12.

Figure 6.12: Update Method Implementation

49

PenguinTimer calls the update() every 50 ms, which makes the game executes at 20 frames per
seconds (20 fps =1000/50). update() checks the keypresses and releases and calls GeneralAnd
GameTechnique to check the techniques conditions. In step 4, the game camera is updated by
MobilePenguinCamera, and the repaint() is called. The paint() is not immediately called by
repaint(). So, there may be a delay at this point.
A timestamp is obtained at the beginning of the update() (before step 2) and subtracted from the
time at the end of paint() in step 6. The result is stored in PenguinCanvas at step 8.

6.4 Packet Statistics
The packet statistics gathered include the size of all the packet bodies (in bytes) and the packet
sending frequency (packets/sec). These are used to compare the techniques based on their
reduction of packet size and packet resending compared to the original game.

6.4.1 Packet Size and Measuring
Packet size is measured by the connect() in Sender before sending the packets. Byte.length is
obtained from the byte array that stores the packet information.

6.4.2 Packet Sending and Measuring
The packet sending rate is measured by ClientHandler in term of the interval between sending
two packets.

Figure 6.13: Packet Sending Rate

50

For example, in Figure 6.13, the first packet is sent at 10.00.00.045 am and the second at
10.00.00.075 am, making the sending rate 10.00.00.075 - 10.00.00.045 = 30 ms. There is a
threshold packets sending rate of 3 seconds, which causes packets if which sending rate exceeds
three seconds to be ignored. The threshold of three seconds is chosen from the randomly delay
time of the server is two seconds, plus another second added on for the network time and
processing time of the client. For instance, if a packet is sent at 10.00.00.100 am and the next at
10.00.04.500, then the packet sending rate is 10.00.04.500 - 10.00.00.100 = 4400 ms which,
because it exceeds the threshold of three seconds, will not be counted. This threshold is needed so
that if the player moves, stops, then moves again, then the second move will not be counted
towards the packet sending rate if the player stopped for longer than three seconds.

6.5 Summary
This chapter described response time types: the one-way response time for a single packet per
keypress, the one-way response time for multiple packets per keypress, the interval update time of
a remote avatar movement or rotation, and two-way response time. The problem of device clocks
synchronization was discussed. Other elements are measured to judge our techniques
effectiveness on rendering update time, packet size, and packet sending.

 51

CHAPTER 7
TECHNIQUES FOR IMPROVING RESPONSE TIME

The techniques applied to the game to improve response time can be divided into three groups:
general techniques can be applied to any networked game using avatars, game-specific techniques
are applicable only to this game, and, packets based techniques focus on game packets.

7.1 General Techniques
General techniques can be used in networking game involving avatars. I consider three in this
chapter: dead reckoning, smoothing [6], and, visual field updating.

7.1.1 Dead Reckoning
Dead reckoning (DR) uses previously sent move/rotate packets to predict a remote avatar’s next
movement/rotation when the packets holding that information are lost or delayed.
A penguin can move or rotate, but not both at the same time. This form of movement allows first
order dead reckoning to be used (see section 2.1).

Figure 7.1: The DR Sequence (Steps 1-2)

52

Figure 7.2: The DR Sequence (step 3-4)

For instance, in Figures 7.1 and 7.2, when the remote player presses moving or rotating keys,
MOVE or ROTATE packets are sent to the local player at 1 packet per frame. When the remote
player releases the key, a KEY_RELEASE packet is sent to indicate that this series of moves or
rotates are finished. DR will be activated if the local player gets a series of MOVE or ROTATE
packets but no KEY_RELEASE packet within a threshold time of 1 or optional 2 frames (50 or
100 ms). The DR prediction makes a remote avatar move or rotate based on its history of moves
and rotates.
For example, if the last stored command is MOVE, then first order DR makes the remote avatar
move forward as shown in the Figure 7.3. DR keeps generating moves or rotates until a new
MOVE, ROTATE, or KEY_RELEASE packet arrives, or DR reaches a maximum threshold
prediction set at 10 frames (500 ms) which should be long enough or prediction for too long will
have the chances to make more mistake of prediction. After this, DR is deactivated.

53

Figure 7.3: DR Activation

DR keeps one-way response time small since an update occurs even when some packets are lost
or delayed. The avatar does not need to wait for the next packet to arrive.
The DR implementation stages are shown in Figure 7.4.

Figure 7.4: DR Implementation

54

The DR status is monitored by processTechniques() in GeneralAndGameTechnique. DR is
activated (DR() is called) if the arrival of MOVE/ROTATE packets is not continuous, or some
packets are missed during the processing of the move/rotate. The non-arrival of KEY_RELEASE
within its threshold will also trigger DR.
DR() retrieves the histories of moves/rotates from PenguinInfo. There are two types of history:
one made from the previous MOVE/ROTATE packets, and one based on the history of the DR
processing. When DR is first activated, the move/rotate history is examined, but as DR continues,
the DR history is examined.
In step 4, the remote avatar is moved/rotated according to the DR prediction. This DR prediction
is stored in PenguinInfo separate from the history of MOVE/ROTATE packets. If there is not a
MOVE/ROTATE or KEY_RELEASE packet received in the next frame, DR continues, it makes
use of the history of DR predictions. DR continues until a timing threshold is reached (10 frames
since the start of DR) or until a MOVE/ROTATE or KEY_RELEASE packet arrives.

7.1.2 Smoothing
Smoothing is utilized after DR processing finishes in order to gradually correct the DR generated
move/rotation of a remote avatar to bring it to its actual position/angle.

Figure 7.5: Smoothing

In each frame, smoothing checks the angle and position of the remote avatar against its required
position, and adjusts it to be closer to that position. Smoothing continues until the current avatar
position/angle is equal (or very close) to the required position/angle. If MOVE or ROTATE
packets arrive during smoothing, they are stored and smoothing calculates the position based on
the newest packet.

55

The implementation steps for smoothing are shown in Figure 7.6.

Figure 7.6: Smoothing Implementation

Smoothing is checked in processTechnique() in GeneralAndGameTechnique, and activated when
DR is activated and new MOVE/ROTATE packets arrive. At this point, DR stops and smoothing
takes over. smoothing() in GeneralAndGameTechnique gets the current position/angle of the
remote avatar and compares it to the position/angle of the new MOVE/ROTATE packet in order
to adjust the avatar’s move/rotation toward that of packet. In step 4, the remote avatar is updated
and the current position/angle is stored so it can be used by future smoothing processing.
Smoothing continues until the remote avatar is near enough to the new position/angle.
Combining DR and Smoothing
Since smoothing is used to improve DR prediction, DR and smoothing are treated as one
technique in the measurement performed in chapter 8. DR predicts the next move when there is
no packet and, smoothing corrects the remote avatar position when a packet arrives. It is the most
effective to activate smoothing after the end of DR so that the remote avatar performs natural
movement instead of sudden jumps to a new position.

56

7.1.3 Visual Field Updating
Visual Field Updating uses the player’s visual range to reduce the amount of updates to remote
avatars. If a remote avatar is outside the viewing range, e.g. behind the player as in Figure 7.7,
then there is no need to update its position or angle.

Figure 7.7: Visual Field Updating Vision Area

Visual Field Updating checks every remote avatar to see if it is inside the player’s camera
viewing range. If a remote avatar is outside the vision area, then it is not updated and the
incoming MOVE, and ROTATE packets for that avatar are stored. Also, techniques related to the
avatar, such as DR and smoothing, are deactivated. The implementation steps of Visual Field
Updating are shown in Figure 7.8.

Figure 7.8: Visual Field Updating Implementation

57

Visual Field Updating is enabled by processTechnique() in GeneralAndGameTechnique. The
vision range is calculated from the current angle of the camera, plus and minus 90 degrees around
the xz plane (as shown in Figure 7.7). If the remote avatar is outside the vision area, it will not be
updated and the MOVE/ROTATE packets for that avatar are stored for later. When the remote
avatar does appear in the vision area, it will be updated to its current position/angle.

7.2 Game-Specific Techniques
Game-specific techniques are specified to this game’s remote avatars. I consider two techniques
in this group: Avatar Blinking and Avatar Dying.

7.2.1 Avatar Blinking
The remote avatar blinks (as shown in Figure 7.9) when there is a chance that it has been shot by
the local player. This activity improves the response time (when avatar blinks, it counts as
response to the player) while the local player waits for a shot result packet to arrive from the
remote player. Also, the blinking indicates the chance that the shot may have missed the remote
player since its position on the local client is not its real position due to MOVE/ROTATE packet
delay or lost.

Figure 7.9: Avatar Blinking

When the player shoots, the flash effect is displayed on the screen and the remote avatar blinks.
The blinking is displayed until either a shot result packet arrives or until a blink time threshold of
2 seconds is reached. The threshold may be reached if the result packet is lost on its way from the
remote client or it is delayed for more than 2 seconds which will be discarded.
The implementation steps for avatar blinking are shown in Figure 7.10.

58

Figure 7.10: Avatar Blinking Implementation

The shooting of a remote avatar is checked by checkHit() in ShotManager. hasHit() in
PenguinCanvas determines if the local version of the remote avatar was hit in order to calls
avatarBlinking() in GeneralAndGameTechnique. The blinking is implemented by moving the
penguin under the floor on alternative frames. The maximum threshold for blinking is two
seconds, or until a SHOOT_RESPONSE packet arrives.
7.2.2 Avatar Dying
Avatar dying makes a transparent skull image appear in front of remote avatar (as in Figure 7.11)
when no packet is received from that player for more than 30 seconds. If another 30 seconds
passes without a packet, then the remote avatar is remove from the game.

Figure 7.11: Avatar Dying

59

This technique handles the situation when a remote client exits the game without telling the server
first either intentionally or because of machine or network failure.
The implementation steps for avatar dying are shown in Figure 7.12.

Figure 7.12: Avatar Dying Implementation

avatarDying() in GeneralAndGameTechnique counts every frame when there is no update of a
remote avatar. When the count reach 600, which is equivalent to 30 seconds, a skull image is
displayed in front of the remote avatar. If no update packet arrives (e.g. moving, rotating,
shooting, or quit) for another 30 seconds (i.e. a total inactivity of 1 minute), then the remote
avatar is removed from the game.

7.3 Packets Based Techniques
Packet based techniques deal with game packets. There are two techniques in this group: Packets
Grouping and Duplicate Packets.

7.3.1 Packets Grouping
Multiple packets are grouped into one packet and sent out at once. This reduces the frequency of
packet sending and the use of the UDP header which is more than 100 bytes, and so much bigger
than the information of a single packet. However, packets grouping lengthens one-way response
time due the delay in grouping packets before sending them out.

60

Figure 7.13: Packets Grouping

Packets Grouping has two modes: where a maximum of 2 packets or collected within 100 ms (2
frames), or where a maximum of 3 packets are collected within 150 ms (3 frames). These are
called Packets Grouping (2) and Packets Grouping (3) respectively. An example of Packets
Grouping (2) is shown in Figure 7.13. The packet has an ID, group timestamp (for checking
packet order) and number of packets (in order to extract the packets correctly). It may be that less
than 2 or 3 packets are sent per group if grouping would otherwise take too long.
Packets Grouping is used for MOVE, ROTATE, and KEY_RELEASE packet types. These types
of packet are sent most frequently so grouping them is an effective optimization. Grouping does
not employ 4, 5 or more packets since it would significantly slow down the response time.
The implementation steps for Packets Grouping are shown in Figure 7.14.

Figure 7.14: Packets Grouping Implementation

Packets are stored in a string buffer by sendMsg() at ClientHandler. When enough packets have
been collected (2 or 3), the group packet is built and sent. There is a time-out threshold in case the
group takes too long to collect (100 or 150 ms), in which case a group packet is created with the
existing buffer contexts and sent immediately. This prevents grouping waiting too long.

61

7.3.2 Duplicate Packets
The same packet is sent twice in order to reduce the chance of packet lost. Duplicate Packets are
set for JOIN, JOINED, QUIT, SHOOT, SHOOT_RESPONSE, SPOTS_STATE, and BULLETS_
AREA_STATE, which are all the game packets except for those utilizing Packets Grouping. Loss
of Packet Grouping packets is handled by DR (see section 7.1.1).

Figure 7.15: Duplicate Packets Example (Move onto a Life Spot)

For example, in Figure 7.15, when the local player moves onto a life spot, a SPOT_STATE
packet is sent to the other players. Duplication means that the SPOT_STATE packet is sent twice.
If one of the SPOT_STATE is lost, the receivers (remote players) can process the other
SPOT_STATE packet. If both packets arrive, the receivers will use their timestamps and IDs to
discard one of them. This requires that each player keeps a history of <ID, timestamp> pairs, so if
two copies of the same packet arrive (based on its ID and timestamp), then the later one is
discarded.
There are two types of duplication in the game: Duplicate Packets, and Triplicate Packets.
Duplicate Packets means sending the same packet twice, and Triplicate Packets means sending
the same packet three times. Triplicate Packets makes it much less likely that any given packet
will be lost. However, Triplicate Packets also increase the network traffic more than Duplicate
Packets.

62

The implementation steps for Duplicate Packets are shown in Figure 7.16.

Figure 7.16: Duplicate Packets Implementation

If Duplicate or Triplicate Packets is activated, sendMsg() in ClientHandler will send a packet
twice or three times. On the receiver side, incomeMsg() in ClientHandler receives a packet and
stores its <ID, timestamp> pair. When the next packet arrives, its ID and timestamp are compared
with the stored pairs, and is discarded if it is found to be a duplicate.

7.4 Summary
The game client techniques are divided into three groups: general techniques, game-specific
techniques, and packets based techniques. This chapter explained each technique and its
implementation: DR, Smoothing, Visual Field Updating, Avatar Blinking, Avatar Dying, Packets
Grouping, and Duplicate/Triplicate Packets.

 63

CHAPTER 8
GAME MEASUREMENT

The techniques explained in chapter 7 were tested on a local area network (LAN) with Java
Wireless Toolkit (WTK) clients on three PCs and a J2SE server simulating 90% and 75%
network reliability.
90% network reliability means that the chance of packet being delayed or lost is 10%. A delay
can vary randomly between 30 ms and 2 seconds. 75% network reliability means the chance of
packet delay or loss is 25%.
Z-tests are used to compare the results of enabling various combinations of techniques with the
system with no techniques utilized (z-tests are described in section 2.7). The means of the results
using techniques are compared with the mean of no techniques and the difference is deemed
significant if the z-score is less than -1.645, which is a 0.05 level of significance in a one-tailed
test.

Techniques
The tests consist of 11 combinations of different techniques. The first (T1) is the basic system
with no techniques enabled, which will act as a basis for comparison. T2 to T7 are individual
techniques, and T8 to T11 combine several techniques to see if a combination produces better
results.
T1: No techniques enabled.
T2: Dead reckoning (DR) and smoothing. DR predicts the movement or rotation of a remote
avatar when no update packets arrive (Section 7.1.1). Smoothing corrects the DR prediction by
moving or rotating the remote avatar gradually to its correct position or angle (Section 7.1.2).
There are two versions of this technique:
 T2a: DR (1,10) and smoothing. (1,10) means wait for 1 frame of packet loss before DR is
 activated and stay activated for a maximum of 10 frames.
 T2b: DR (2,10) and smoothing. (2,10) means wait for 2 frames of packets loss before DR is

 activated and stay activated for a maximum of 10 frames.
T3: Visual field updating. Disable the update of the remote avatar if it is outside the player’s view
(Section 7.1.3).
T4: Avatar blinking. Switch on the blink response for remote avatar for at most 3 seconds while
waiting for a shoot result packets to arrive (Section 7.2.1).

64

T5: Avatar dying. Show a skull head image in front of the remote avatar after no response of 30
seconds, and remove the avatar if there is still no response after a further 30 seconds (Section
7.2.2).
T6: Packets grouping. Group packets together before sending them out (Section 7.3.1). There are
two variants of this technique:
 T6a: Packets grouping (2). Group 2 packets or wait at most 2 frames before sending a single
 packet.
 T6b: Packets grouping (3). Group 3 packets or wait at most 3 frames before sending a single
 packet.
T7: Duplicate packets. Send the same packet multiple times in order to reduce the effect of
packets loss (Section 7.3.2). There are two versions:
 T7a: Duplicate packet. Send the same packet twice.
 T7b: Triplicate packet. Send the same packet three times.
T8: All techniques enabled. Combine T2, T3, T4, T5, T6, and T7. The “a” or “b” cases are chosen
depending on which is best for the response time result.
T9: All techniques except avatar dying (T5). Avatar dying is disabled because it does not have an
effect on the response time but uses processing time.
T10: All techniques except avatar dying (T5) and packets grouping (T6). Packets grouping is
disabled because it delays the response time.
T11: All techniques except avatar dying (T5), packets grouping (T6), and visual field updating
(T3). Visual field updating is disabled because it only improves response time by a small amount
compared to the other techniques.

Measurements
The following measurements are used to judge the effectiveness of the techniques:
M1: One-way response time for multiple packets per keypress. See if the technique improves the
response time (Section 6.1.2).
M2: Interval update time of a remote avatar movement or rotation. Shows how a technique
affects the interval update of the game (Section 6.1.3).
M3: Average % of DR moving and rotating prediction error rate. How accurate is DR for
predicting the movement and rotation of a remote avatar (More detail in Section 8.1.3).

65

M4: One-way response time for a single packet per keypress. Check how one-way response time
is affected by a technique (Section 6.1.1).
M5: Two-way response time. Shows how a technique affects two-way response time (Section 6.2).
M6: Rendering update method. Measure how a technique influences the processing in the update()
method (Section 6.3).
M7: Packet sending. Report the average packet sending per second (Section 6.4.2).
M8: Packet size. How does a technique affect the average packet size (Section 6.4.1).

8.1 Game Measurement Results for 3 clients with a 90% Reliable Server
This section describes the measurement results for the game when using a 90% reliable server.
First, I briefly explain the test techniques and their combinations. Then I describe the measures
which include one-way response time, two-way response time, and frequency of packet sending.
The results are presented in tables together with results analyses.

8.1.1 Measurement of One-way Response Time for Multiple Packets per Keypress (M1)
This measurement focuses on the response time of a moving or rotating remote avatar which
generates multiple packets from one keypress. The packets in this category are MOVE, ROTATE,
and KEY_RELEASE (Section 7.1.2).
Techniques that directly affect this measurement
1. “DR and smoothing” (T2) which predicts movement.
2. “Visual field” (T3) reduces the response time of processing load.
3. “Packets grouping” (T6) delays the response time.
Results

 M1 Average mean
(ms)

Variance mean (ms) Total samples

No techniques (T1) 75.17 36677.18 2363
DR (1,10) (T2a) 55.71 (1st) 26429.29 2660
DR (2,10) (T2b) 60.07 29814.22 2947
Visual field (T3) 69.51 35523.65 2856

Grouping (2) (T6a) 79.25 32320.07 2845

66

 M1 Average mean
(ms)

Variance mean (ms) Total samples

Grouping (3) (T6b) 96.77 36598.53 2559
All (T8) 69.99 28759.27 3030

All-Dy-Group (T10) 65.70 32625.42 2876

All-Dy-Group-Visual (T11) 63.05 (2nd) 31424.84 2798
Table 8.1: One-way Response Time for Multiple Packets per Keypress

In the table, the bold rows are the best and the runner up results, labeled as (1st) and (2nd)
respectively.
Analysis

Tech 1 T1 T1 T1 T1 T1 T1 T1 T1 T2a T6a
Tech 2 T2a T2b T3 T6a T6b T8 T10 T11 T2b T6b

Z-scores -3.86 -2.98 -1.07 0.79 3.96 -0.38 -1.00 -2.71 0.97 3.46
Table 8.2: The z-scores of One-way Multiple

In the table, the bold z-scores mean the differences are significant.
T2a is significantly better than T1 because it predicts moves (which count as response time) when
packets are lost, and is the best for this measurement. T2b is better than T1 because it also
predicts moves, but less than T2a since it needs to wait on 2 frames.
T3 is better than T1 because it does not update the unseen remote avatars, but the improvement is
not significant. This means that T3 does not help much for this measurement.
T6a is worse than T1 since it waits to group 2 packets before sending them, but the slow-down is
not significant. However, T6b is significantly worse than T1 because it waits for 3 packets, and
T6b has the worst effect of this measurement.
T8 is better than T1 because of T2a, but the difference is not significant due to the slowdown
effect of T6a.
T10 is better than T1 and T8 because T6a is disabled, but the difference is not significant.
T11 is significantly better than T1 by disabling T6a and T3. This contrasts with enabling T3
individually. This shows that enabling multiple techniques has a processing time overhead that
can ‘eat up’ any improvement offered by a technique used on its own.

67

In summary, dead reckoning (T2a) is the best single technique for improving one-way response
time for multiple packets per keypress. If a combination of techniques are required (to improve
other measurements), then T11 is the best choice.

8.1.2 Measurement of Interval Update Time of a Remote Avatar Movement or
Rotation (M2)
A remote avatar is updated when MOVE or ROTATE packets arrive. Normally, the update time
should be equal to the game frame rate, and any reduction is caused by MOVE or ROTATE
packets not arriving (Section 7.1.3).
Techniques that directly affect this measurement
1. “DR and smoothing” predict movements which trigger updates.
2. “Packets grouping” reduces response time and the number of updates.
Results

 M2 Average mean
(ms)

Variance mean
(ms)

Total samples

No techniques (T1) 73.50 3176.95 2066
DR (1,10) (T2a) 58.79 (1st) 2119.90 2373
DR (2,10) (T2b) 61.62 1901.27 2471

Grouping (2) (T6a) 70.57 2317.31 2592
Grouping (3) (T6b) 71.98 5991.12 2528

All (T8) 68.23 (2nd) 2467.44 2528
All-Dy-Group (T10) 70.07 1849.31 2601

Table 8.3: Interval Update Time of a Remote Avatar Movement or Rotation
Analysis

Tech 1 T1 T1 T1 T1 T1 T1 T2a T6a
Tech 2 T2a T2b T6a T6b T8 T10 T2b T6b

Z-scores -9.43 -7.82 -1.88 -0.76 -2.64 -1.47 2.19 0.78
Table 8.4: The z-scores of Interval Update

68

T2a is significantly better than T1 because it adds extra moves when packets are lost, and is the
best technique for this measurement. T2b is significantly better than T1, but less so than T2a
because it waits 2 frames before activating.
T6a is significantly better than T1 since when packets arrive at the destination, it guarantees 2
updates. T6b is better than T1, but not significantly, and is less beneficial than T6a since it waits
for 3 packets.
T8 is significantly better than T1 due to the effect of T2a and T6a, but less good than T2a alone
because of the overhead multiple techniques have on processing time.
T10 is better than T1, but not significantly, and is less than T8 because T6a is disabled.
In summary, T2a (DR (1,10)) is the best single technique for improve the interval update. T8 is
the best combination techniques.

8.1.3 Measurement of Average % of DR Moving, Rotating Prediction Error Rate
(M3)
The formulas are:
% of DR Moving Prediction Error Rate = ((predicted move distance - real move distance) / real
move distance)*100
% of DR Rotating Prediction Error rate = ((predicted rotate distance - real rotate distance) / real
rotate distance)*100
This measurement, from the game tests, shows the % error in DR, compared to the real update
position or angle.
Results

 M3 Average
mean of Moving

Prediction
Error Rate (%)

Variance
mean (%)

M3 Average
mean of Rotating

Prediction
Error rate (%)

Variance
mean (%)

Total
samples

DR(1,10) (T2a) 1.77 (1st) 0.02 14.43 (1st) 1.10 188
DR(2,10) (T2b) 2.31 0.03 16.40 1.70 157

Table 8.5: Average % of DR Moving, Rotating Prediction Error Rate

69

Analysis
 Moving Prediction Rotating Prediction

Tech 1 T2a T2a
Tech 2 T2b T2b

Z-scores 31.31 15.25
Table 8.6: The z-scores of DR Prediction Error Rate

T2a is significantly more accurate than T2b for both move error and rotate errors. This shows that
predictions are more accurate when performed on each frame rather than every 2 frames.

8.1.4 Measurement of One-way Response Time for a Single Packet per Keypress (M4)
This measurement is of one-way response time when one packet is generated per keypress, as
when the user moves onto a life spot or onto a bullets area (Section 7.1.1).
Techniques that directly affect this measurement
1. “Visual field” may reduce the processing time of a response.
2. “Duplicate/triplicate packets” reduce the chance of packet loss, which improves the response
time.
Results

 M4 Average mean
(ms)

Variance mean (ms) Total samples

No techniques (T1) 89.58 45385.98 50
Visual Field (T3) 82.98 32340.01 49
Duplicate (T7a) 20.40 1359.73 50
Triplicate (T7b) 14.28 20.51 52

All (T8) 14.14 (1st) 65.69 51

All-Dy-Group-Visual (T11) 15.42 (2nd) 33.55 55
Table 8.7: One-way Response Time for a Single Packet per Keypress

70

Analysis
Tech 1 T1 T1 T1 T1 T1 T7a T8
Tech 2 T3 T7a T7b T8 T11 T7b T11

Z-scores -0.17 -2.26 -2.50 -2.50 -2.46 -1.17 0.93
Table 8.8: The z-scores of One-way Single

T3 is better than T1 but not significantly, so reducing the updating load does not much help
response time.
T7a is significantly better than T1 because sending the same packet twice reduces the chance of
packet lost. T7b is also significantly better than T1 because it sends three packets at once.
Although T7b is better than T7a, the difference is not significant, and sending 3 packets at once is
best avoided since it increases the load on the network In that case, it is better to choose T7a
rather than T7b.
T8 is significantly better than T1 because it includes T7a and T3. T8 is the best technique
according to this measurement.
T11 is significantly better than T1 but its difference from T8 is not significant. This means that
disabling T3 does not much affect response time.
In summary, T8 is the best way to improve one-way response time for a single packet per
keypress, and T11 is the runner up.

8.1.5 Measurement of Two-way Response Time (M5)
Two-way response time is the time during a local player doing something to a remote avatar and
seeing the change in his/her local game world. An example is shooting at a remote avatar and
seeing an explosion (Section 7.2).
Techniques that directly affect this measurement
1. “Avatar blinking” makes the remote avatar blink, which counts towards the response time.
2. “Duplicate/triplicate packets” reduces the chance of packet loss, which improves response time.
Results

 M5 Average mean
(ms)

Variance mean (ms) Total samples

No techniques (T1) 230.50 227159.00 52
Blinking (T4) 68.53 (2nd) 635018.90 502

71

 M5 Average mean
(ms)

Variance mean (ms) Total samples

Duplicate (T7a) 80.16 35595.38 60
Triplicate (T7b) 48.18 10894.69 60

All (T8) 18.75 (1st) 5714.69 154
Table 8.9: Two-way Response Time Measurement

Analysis
Tech 1 T1 T1 T1 T1 T7a
Tech 2 T4 T7a T7b T8 T7b

Z-scores -2.16 -2.13 -2.70 -3.15 -1.15
Table 8.10: The z-scores of Two-way

T4 is significantly better than T1 because it makes the remote avatar blink while waiting for a
shooting response.
T7a is significantly better than T1 because it sends the same packet twice which reduces the
chance of packet lost. T7b is also significantly better than T1 by sending the same packet three
times. The difference between T7a and T7b is not significant so T7a is preferable since it reduces
network’s load.
T8 is significantly better than T1 since it includes T4 and T7a, and this offers the best overall
improvement.
In summary, T8 is the best way to improve two-way response time, and T4 is the runner up.

8.1.6 Measurement of Rendering Update method (M6)
This measurement considers update() and paint() to see if the techniques affect their processing
times (Section 7.3).
Techniques that directly affect this measurement
T1 to T5 are measured, but not network techniques (T6 and T7) since they are processed in
ClientHandler.

72

Results
 M6 Average mean

(ms)
Variance mean (ms) Total samples

No techniques (T1) 13.34 (1st) 60.75 15895
DR(1,10) (T2a) 15.52 49.90 21781
DR(2,10) (T2b) 15.70 30.64 18452

Visual Field (T3) 15.74 31.99 18244
Blinking (T4) 15.02 49.70 17416
Dying (T5) 15.22 44.69 16834

All (T8) 16.07 35.20 17458
All-Dy (T9) 15.85 48.94 16483

All-Dy-Group-Visual (T11) 15.24 (2nd) 54.06 14667
Table 8.11: Rendering Update Method Measurement

Analysis
Tech 1 T1 T1 T1 T1 T1 T1 T1 T1
Tech 2 T2a T2b T3 T4 T5 T8 T9 T11

Z-scores -27.98 -31.83 -32.14 -20.56 -23.36 -26.49 -31.12 -18.55
Table 8.12: The z-scores of Rendering Update Method

All the techniques considered here increase the processing time of update() and paint(). However,
the slowdowns are only a few milliseconds (up to 3 ms) which are hard for a player to notice.

8.1.7 Packets Sending (M7)
This measurement shows the frequency of packets sending (Section 7.4.2).
Techniques that directly affect this measurement
1. “Packet grouping” groups multiple packets before sending them out.
2. “Duplicate/triplicate packets” sends the same packet twice/three times.

73

Results
 M7 Average Packets

Sending (packets/sec)
Variance of Packets

Sending (packets/sec)
Total Samples

No techniques (T1) 7.43 51.15 3389
Grouping (2) (T6a) 4.99 (2nd) 23.32 2298
Grouping (3) (T6b) 3.67 13.18 1733

Duplicate (T7a) 7.31 49.75 3613
Triplicate (T7b) 7.86 56.87 4023

All (T8) 4.83 (1st) 24.18 2609
All-Dy-Group (T10) 7.55 52.03 3738

Table 8.13: Packets Sending Measurement
Analysis

Tech 1 T1 T1 T1 T1 T1 T1 T6a T7a
Tech 2 T6a T6b T7a T7b T8 T10 T6b T7b

Z-scores -15.36 -24.96 -0.71 2.52 -16.66 0.70 -9.91 3.29
Table 8.14 The z-scores of Packets Sending

T6a is significantly better than T1 because it waits for 2 frames before sending a packet. T6b is
significantly better than T1 and T6a because it waits for 3 frames. T6b performs best for this
measurement, but it has the drawback of slowing down response time. For this reason, T6a is
chosen instead.
The difference between T7a and T1 is not significant although the packets are sent twice. This is
due to the fact that single packet per keypress packets occur much less frequently than multiple
packets per keypress packets. T7b is significantly worse than T1 because it sends three packets at
once.
T8 is significantly better than T1 due to the effect of T6a. Although T7a is enabled which could
increase the packets sending, T6a has more effect than T7a because multiple packets per keypress
typed packets are sent much more than the single packet per keypress.
T10 does not help because it disables T6a (it is worse than T1, but not significantly).
In summary, T8 is the best technique for reducing packets sending. T6a is the runner up.

74

8.1.8 Packets Size (M8)
This measurement judges how the techniques affect packet size (Section 7.4.1).
Techniques that directly affect this measurement
Packet grouping.
Results

 M8 Average Packets
Size (Bytes)

Variance of Packets
Size (Bytes)

Total Samples

No techniques (T1) 43.09 (1st) 97.51 3389
Grouping (2) (T6a) 82.98 775.37 2298
Grouping (3) (T6b) 101.21 2323.84 1733

All (T8) 80.34 807.04 2609
All-Dy-Group (T10) 42.92 (2nd) 96.43 3738

Table 8.15: Packets Size Measurement
Analysis

Tech 1 T1 T1 T1 T1 T6a
Tech 2 T6a T6b T8 T10 T6b

Z-scores 67.57 50.34 64.06 -0.73 13.92
Table 8.16: The z-scores of Packets Size

T6a and T6b are significantly worse than T1 because they group packets before sending.
T8 is significantly worse than T1 because it includes T6a.
T10 does not have any effect on packet size because it disables T6a.
In summary, packets grouping (T6a and T6b) adversely affect this measurement because they
make the packet size bigger.

75

8.1.9 Summary of a 90% Reliable Server
The best and the runner up techniques for each measurement from M1 to M8 for a 90% reliable
server are shown in Table 8.17.

 Recommendation Runner up
M1 T2a (2nd) T11
M2 T2a (2nd) T8 (1st)
M3 T2a T2b
M4 T8 (1st) T7a
M5 T8 (1st) T4
M6 T1 T11
M7 T8 T6a
M8 T1 T10

Table 8.17: Summary Detail of a 90% Reliable Server
To decide which technique is the best from the eight measurements, we must consider the
measurements that affect response time, which are M1, M2, M4, and M5. M3 is not included
because it considers DR.
From Table 8.17, T8 is the best technique to improve response time (it is best for M4 (Table 8.7)
and M5 (Table 8.9), and runner up for M2 (Table 8.3)). This means that enabling all techniques
can improve the response time better than enabling individual techniques. Although enabling all
techniques leads to an increase in the processing time of update() and paint(), the slowdown is not
noticeable for a player.
The runner up technique is DR (T2a) with two recommendations from M1 (Table 8.1) and M2
(Table 8.3). This means that in comparisons among individual techniques, DR is the best for
improving response time.

76

8.2 Game Measurement Results for 3 clients with a 75% Reliable Server
This section gives the measurement results for a game using a 75% reliable server. The same
techniques (T) and measurements (M) as those listed at the start of this chapter are used again,
with the exclusive of M3 since it was already considered in section 8.1.3.
The other difference is for the multiple techniques (T8 to T11). T7b (triplicate packets) is chosen
instead of T7a (duplicate packets) because T7b performs significantly better at this level of
reliability.

8.2.1 Measurement of One-way Response Time for Multiple Packets per Keypress (M1)
The measurement is the response time of a moving or rotating remote avatar which generates
multiple packets from one keypress (Section 7.1.2).
Techniques that directly affect this measurement
1. “DR and smoothing” (T2) which predicts movements.
2. “Visual field” (T3) reduces the response time of processing load.
3. “Packets grouping” (T6) delays the response time.
Results

 M1 Average mean
(ms)

Variance mean (ms) Total samples

No techniques (T1) 180.35 82106.63 2351
DR (1,10) (T2a) 133.92 (1st) 68612.63 3067
Visual field (T3) 166.39 79989.16 2384

Grouping (2) (T6a) 182.95 82623.80 2247
All (T8) 162.71 76718.38 2453

All-Dy-Group (T10) 157.85 73580.44 2367

All-Dy-Group-Visual (T11) 143.57 (2nd) 73596.05 2982
Table 8.18: One-way Response Time for Multiple Packets per Keypress

77

Analysis
Tech 1 T1 T1 T1 T1 T1 T1
Tech 2 T2a T3 T6a T8 T10 T11

Z-scores -6.13 -1.69 0.31 -2.16 -2.77 -4.76
Table 8.19: The z-scores of One-way Multiple

T2a is significantly better than T1 since it predicts moves when packets are lost, and this is the
best for this measurement. T2b is better than T1 because it also predicts moves, but less than T2a
since it needs to wait on 2 frames.
T3 is significantly better than T1 because it does not update the unseen remote avatars.
T6a is worse than T1 since it waits to group two packets before sending them, but the slow down
is not significant.
T8 is significantly better than T1 because of T2a.
T10 is significantly better than T1 and also T8 because T6a is disabled.
T11 is significantly better than T1 by disabling T6a and T3. This contrasts with enabling T3
individually. This shows that enabling multiple techniques can consume a processing time that
overrides any improvements offered by its technique.
In summary, dead reckoning (T2a) is the best single technique to improve one-way response time
for multiple packets per keypress, and T11 is the best combination technique.

8.2.2 Measurement of Interval Update Time of a Remote Avatar Movement or
Rotation (M2)
A remote avatar is updated when MOVE or ROTATE packets arrive. The update time should be
equal to the game frame rate, but the reduction of update time may be caused by MOVE or
ROTATE packets not arriving (Section 7.1.3).
Techniques on this measurement
1. “DR and smoothing” predict movements and make the updates.
2. “Packets grouping” reduces response time and the number of updates.

78

Results
 M2 Average mean

(ms)
Variance mean (ms) Total samples

No techniques (T1) 111.29 11337.14 1558
DR (1,10) (T2a) 96.40 (2nd) 12435.63 1655

Grouping (2) (T6a) 101.12 12587.64 1672

All (T8) 91.04 (1st) 10353.63 1649
All-Dy-Group (T10) 102.75 18034.75 1400

Table 8.20: Interval Update Time of a Remote Avatar Movement or Rotation
Analysis

Tech 1 T1 T1 T1 T1
Tech 2 T2a T6a T8 T10

Z-scores -3.87 -2.64 -5.50 -1.90
Table 8.21: The z-scores of Interval Update

T2a is significantly better than T1 because it adds extra moves when packets are lost.
T6a is significantly better than T1 since when packets arrive at the destination, it guarantees two
updates.
T8 is significantly better than T1 due to the effect of T2a and T6a, and is also the best technique
on this measurement.
T10 is significantly better than T1, but less than T8 because T6a is disabled.
In summary, T8 is the best combination techniques for improve the interval update and T2a (DR
(1,10)) is the best single technique.

8.2.3 Measurement of One-way Response Time for a Single Packet per Keypress (M4)
This measures one-way response time when one packet is generated per keypress, as when the
user moves onto a life spot or onto a bullets area (Section 7.1.1).
Techniques on this measurement
1. “Visual field” may reduce the process time of a response.
2. “Duplicate/triplicate packets” reduces the chance of packets loss.

79

Results
 M4 Average mean

(ms)
Variance mean (ms) Total samples

No techniques (T1) 227.44 95258.55 34
Visual Field (T3) 171.39 88881.93 49
Duplicate (T7a) 69.88 29576.56 48
Triplicate (T7b) 41.04 (1st) 10543.08 46

All (T8) 52.11 (2nd) 22898.86 45
All-Dy-Group-Visual (T11) 98.13 40922.14 51

Table 8.22: One-way Response Time for Single Packet per Keypress
Analysis

Tech 1 T1 T1 T1 T1 T1 T8
Tech 2 T3 T7a T7b T8 T11 T11

Z-scores -0.83 -2.70 -3.39 -3.05 -2.15 1.27
Table 8.23: The z-scores of One-way Single

T3 is better than T1 but not significantly, so reducing the updating load does not much help
response time.
T7a is significantly better than T1 because it sends the same packet twice, which reduces the
chance of packet lost. T7b is also significantly better than T1 because it sends three packets at
once. T7b is significantly better than T7a. Because the difference is significant, T7b is the best
technique of this measurement.
T8 is significantly better than T1 because it includes T7b and T3.
T11 is significantly better than T1 but its difference from T8 is not significant. This means
disabling T3 does not much affect response time.
In summary, T7b (triplicate packets) is the best way to improve one-way response time for a
single packets per keypress, and T8 is the runner up.

80

8.2.4 Measurement of Two-way Response Time (M5)
Two-way response time is the time between a local player doing something to a remote avatar and
seeing the change in his/her local game world (Section 7.2).
Techniques on this measurement
1. “Avatar blinking” makes the remote avatar blink, which counts towards the response time.
2. “Duplicate/triplicate packets” reduces the chance of packet loss.
Results

 M5 Average mean
(ms)

Variance mean (ms) Total samples

No techniques (T1) 469.66 304675.60 32
Blinking (T4) 21.99 (1st) 33334.34 797

Duplicate (T7a) 371.43 426347.80 51
Triplicate (T7b) 232.57 192906.70 60

All (T8) 44.23 (2nd) 56307.80 302
Table 8.24: Two-way Response Time Measurement

Analysis
Tech 1 T1 T1 T1 T1
Tech 2 T4 T7a T7b T8

Z-scores -4.58 -0.73 -2.10 -4.32
Table 8.25: The z-scores of Two-way

T4 is significantly better than T1 because it makes the remote avatar blink while waiting for a
shooting response, and it is the best technique for this measurement.
T7a is better than T1 because it sends the same packet twice which reduces the chance of packet
lost, but the difference is not significant. This means T7a does not help much for a 75% reliable
server. T7b is also significantly better than T1 by sending the same packet three times.
T8 is significantly better than T1 since it includes T4 and T7b, but less than T4. This means that it
suffers from processing time overhead for enabling multiple techniques.
In summary, T4 (avatar blinking) is the best way to improve two-way response time, and T8 is
the runner up.

81

8.2.5 Measurement of Rendering Update method (M6)
This measurement considers update() and paint() to see if the techniques affect their processing
times (Section 7.3).
Techniques on this measurement
T1 to T5 are measured.
Results

 M6 Average mean
(ms)

Variance mean (ms) Total samples

No techniques (T1) 13.51 (1st) 53.92 16736
DR(1,10) (T2a) 14.59 62.93 16931

Visual Field (T3) 15.45 44.87 16453
Blinking (T4) 15.15 42.76 15809
Dying (T5) 14.79 47.67 18068

All (T8) 15.42 62.77 16464
All-Dy (T9) 15.41 54.71 15688

All-Dy-Group-Visual (T11) 14.03 (2nd) 63.70 15983
Table 8.26: Rendering Update Method Measurement

Analysis
Tech 1 T1 T1 T1 T1 T1 T1 T1
Tech 2 T2a T3 T4 T5 T8 T9 T11

Z-scores 12.97 25.15 21.30 16.72 22.77 23.20 6.13
Table 8.27: The z-scores of Rendering Update Method

All the techniques in Table 8.26 increase the processing time of update() and paint(). However,
the slowdowns are hard for a player to notice.

82

8.2.6 Packets Sending (M7)
This measurement shows how the techniques affect the frequency of packets sending (Section
7.4.2).
Techniques that directly affect this measurement
1. “Packet grouping” groups multiple packets before sending them out.
2. “Duplicate/triplicate packets” sends the same packet twice/three times.
Results

 M7 Average Packets
Sending (packets/sec)

Variance of Packets
Sending (packets/sec)

Total Samples

No techniques (T1) 7.16 47.65 3606
Grouping (2) (T6a) 5.11 (2nd) 23.83 2387

Duplicate (T7a) 7.48 52.23 3549
Triplicate (T7b) 7.60 52.75 3912

All (T8) 4.77 (1st) 23.69 2493
All-Dy-Group (T10) 7.51 53.12 3635

Table 8.28: Packets Sending Measurement
Analysis

Tech 1 T1 T1 T1 T1 T1 T7a T6a
Tech 2 T6a T7a T7b T8 T10 T7b T8

Z-scores -13.46 1.91 2.69 -15.86 2.10 0.71 2.44
Table 8.29: The z-scores of Packets Sending

T6a is significantly better than T1 because it waits for two frames before sending a packet.
T7a is significantly worse than T1 because the packets are sent twice. T7b is significantly worse
than T1 and T7a because it sends three packets at once.
T8 is significantly better than T1 due to the effect of T6a, and is also the best for this
measurement. Although T7b could increase packets sending, T6a has more effect because
multiple packets per keypress typed packets are sent much more often than single packet per
keypress.
T10 is significantly worse than T1 because T6a is disabled.
In summary, T8 is the best technique to reduce packets sending, and T6a is the runner up.

83

8.2.7 Packets Size (M8)
This measurement shows how the techniques affect packet size (Section 7.4.1).
Techniques that directly affect this measurement
Packet grouping.
Results

 M8 Average Packets
Size (Bytes)

Variance of Packets
Size (Bytes)

Total Samples

No techniques (T1) 42.45 (1st) 97.74 3606
Grouping (2) (T6a) 83.30 770.23 2387

All (T8) 78.26 816.93 2493
All-Dy-Group (T10) 44.16 (2nd) 97.23 3635

Table 8.30: Packets Sending Measurement
Analysis

Tech 1 T1 T1 T1
Tech 2 T6a T8 T10

Z-scores 69.07 60.12 7.37
Table 8.31: The z-scores of Packets Sending

The z-scores here are big because of the huge samples.
T6a is significantly worse than T1 because it groups packets before sending them.
T8 is significantly worse than T1 because of T6a.
T10 does not have effect on the packets size because it disables T6a.
In summary, packets grouping (T6a) affects this measurement the most by making packet sizes
bigger.

84

8.2.8 Summary of a 75% Reliable Server
The recommendation and the runner up techniques on each measurement from M1 to M8 of a
75% reliable server are shown in Table 8.32.

 Recommendation Runner up
M1 T2a (2nd) T11
M2 T8 (1st) T2a (2nd)
M4 T7b T8 (1st)
M5 T4 T8 (1st)
M6 T1 T11
M7 T8 T6a
M8 T1 T10

Table 8.32: Summary Detail of a 75% Reliable Server
To decide which technique is the best from the eight measurements, we must consider the
measurements that affect response time, which are M1, M2, M4, and M5.
From Table 8.32, T8 is the best technique to improve response time (it is the best for M2 (Table
8.20), and runner up for M4 (Table 8.22) and M5 (Table 8.24)). This means that enabling all the
techniques can improve the response time better than enabling an individual technique, a finding
similar to the 90% case.
The runner up of the summary is DR (T2a) with one recommendation from M1 (Table 8.18) and a
runner up position for M2 (Table 8.20). This means that in comparisons among individual
techniques, DR is the best for improving response time. This result is similar to what we found in
the 90%.

85

8.3 Additional Tests
This section investigates the effects of increasing the number of players, and delay on game play,
and how the techniques handle these more severe situations.
The tests were carried out on localhost since having many clients on one PC increases the game
load more severly than having one client per PC. The machine specification is:
- Pentium 4 2.4 GHz
- 1.25 GB of RAM
- ATI Radeon 9550
- Windows XP
- WTK 2.5
Three players and five players with a 75% of reliable server are considered (five clients is the
maximum number supported by the test PC). The comparison is between no techniques (T1) and
all techniques except avatar dying (T9). It was dropped to stop remote avatars disappearing before
taking their turn.
Triplicate packets are utilized rather than duplicate packets because 75% reliability triggers loss
severe packet.

8.3.1 Three players with 75% reliable server
One-way Response Time for Multiple Packets per Keypress (M1)
Techniques that directly affect this measurement:
DR and smoothing, Visual field, Packets grouping.

 Average means (ms) Variance mean (ms) Total samples
No techniques (T1) 218.53 96595.85 2535
All-Dy (T9) 166.69 (1st) 69839.66 3725

Table 8.33: One-way Response Time for Multiple Packets per Keypress
The z-score between T1 and T9 is -6.88. (The bold number means z-score is significant.)
T9 is significantly better than T1 because DR predicts moves when packets are lost and the visual
field does not update the many unseen remote avatars.

86

Interval Update Time of a Remote Avatar Movement or Rotation (M2)
Techniques that directly affect this measurement:
DR and smoothing, Packets grouping.

 Average means (ms) Variance mean (ms) Total samples
No techniques (T1) 129.52 14255.11 1784
All-Dy (T9) 92.21 (1st) 9975.46 2824

Table 8.34: Interval Update Time of a Remote Avatar Movement or Rotation
The z-score between T1 and T9 is -10.99.
T9 is significantly better than T1 because of DR.

One-way Response Time for a Single Packet per Keypress (M4)
Techniques that directly affect this measurement:
Visual field, Triplicate packets.

 Average means (ms) Variance mean (ms) Total samples
No techniques (T1) 223.48 68481.95 46
All-Dy (T9) 59.19 (1st) 5170.08 42

Table 8.35: One-way Response Time for a Single Packet per Keypress
The z-scores between T1 and T9 is -4.09.
T9 is significantly better than T1 because triplicate packets overcome the problems with high
packet loss.

Two-way Response Time (M5)
Techniques that directly affect this measurement:
Avatar blinking, Triplicate packets.

 Average means (ms) Variance mean (ms) Total samples
No techniques (T1) 632.82 484716.6 22
All-Dy (T9) 51.98 (1st) 45927.81 171

Table 8.36: Two-way Response Time

87

The z-scores between T1 and T9 is -3.89.
T9 is significantly better than T1 because avatar blinking makes the remote avatar blink while
waiting for a shooting response and, triplicate packets reduces the chances of packets lost.

8.3.2 Five players with 75% reliable server
One-way Response Time for Multiple Packets per Keypress (M1)
Techniques that directly affect this measurement:
DR and smoothing, Visual field, Packets grouping

 Average means (ms) Variance mean (ms) Total samples
No techniques (T1) 259.56 83865.25 1324
All-Dy (T9) 251.75 93582.68 1559

Table 8.37: One-way Response Time for Multiple Packets per Keypress
The z-scores between T1 and T9 is -0.70.
None of the techniques help because the client machine has reached its processing limit with 5
players, and the techniques only add more work. The small improvement probably is DR.

Interval Update Time of a Remote Avatar Movement or Rotation (M2)
Techniques that directly affect this measurement:
DR and smoothing, Packets grouping.

 Average means (ms) Variance mean (ms) Total samples
No techniques (T1) 226.27 50144.03 1101
All-Dy (T9) 157.94 (1st) 27546.11 1449

Table 8.38: Interval Update Time of a Remote Avatar Movement or Rotation
The z-scores between T1 and T9 is -8.50.
T9 is significantly better than T1 because of DR. Although one-way multiple is not much affected
by DR because of processing time constraints, at least DR can maintain responsiveness by
creating extra moves between the updates.

88

One-way Response Time for a Single Packet per Keypress (M4)
Techniques that directly affect this measurement:
Visual field, Triplicate packets.

 Average means (ms) Variance mean (ms) Total samples
No techniques (T1) 283.76 86847.82 17
All-Dy (T9) 191.88 30374.28 25

Table 8.39: One-way Response Time for a Single Packet per Keypress
The z-score between T1 and T9 is -1.16.
T9 is not significantly better than T1. The techniques are affected by processing limitation and
can’t work as well as in the one-way multiple case. The minor speedups are probably to the
triplicate packets.

Two-way Response Time (M5)
Techniques that directly affect this measurement:
Avatar blinking, Triplicate packets.

 Average means (ms) Variance mean (ms) Total samples
No techniques (T1) 995.35 670961.5 17
All-Dy (T9) 118.91 (1st) 99551.24 95

Table 8.40: Two-way Response Time
The z-score between T1 and T9 is -4.35.
T9 is significantly better than T1 because of avatar blinking and triplicate packets. This means
that two-way response time is more affected by network issues than processing limits.

8.3.3 Increasing the random delay of packets for three players using a 75% reliable
server
These tests increase the random delay of packets from between 30 ms - 2 seconds to between 2 -
5 seconds. The tests were carried out on localhost with three players and a 75% reliable server.
We compared the results with no techniques enable (T1) with the results when using all the
techniques except for avatar dying (T9).

89

One-way Response Time for Multiple Packets per Keypress (M1)
Techniques that directly affect this measurement:
DR and smoothing, Visual field, Packets grouping.

 Average means (ms) Variance mean (ms) Total samples
No techniques (T1) 518.23 558133.50 3192
All-Dy (T9) 409.28 (1st) 483568.60 4936

Table 8.41: One-way Response Time for Multiple Packets per Keypress
The z-score between T1 and T9 is -6.60.
T9 is significantly better than T1 because of DR predictions and visual field updating. This shoes
that DR is still useful even when packet delay is increased drastically. Also, the massive amount
of packet sending for this type of response time, means that packet delay tends to have less effect
since many packets are still delivered successfully.

Interval Update Time of a Remote Avatar Movement or Rotation (M2)
Techniques that directly affect this measurement:
DR and smoothing, Packets grouping.

 Average means (ms) Variance mean (ms) Total samples
No techniques (T1) 147.81 57131.58 2140
All-Dy (T9) 88.71 (1st) 32156.77 3674

Table 8.42: Interval Update Time of a Remote Avatar Movement or Rotation
The z-score between T1 and T9 is -9.93.
T9 is significantly better than T1 because of DR. Also, a comparison with the interval update
times for packets delayed by the usual amount (Table 8.3.4) shows that there is very little change
(130 ms compared to 148 ms). This shows that interval update time is not much affected by
packet delay because of the massive numbers of packets which are delivered.

One-way Response Time for a Single Packet per Keypress (M4)
Techniques that directly affect this measurement:
Visual field, Triplicate packets.

90

 Average means (ms) Variance mean (ms) Total samples
No techniques (T1) 545.07 494527.20 42
All-Dy (T9) 212.90 (1st) 186402.10 57

Table 8.43: One-way Response Time for a Single Packet per Keypress
The z-score between T1 and T9 is -2.71.
T9 is significantly better than T1 because of triplicate packets. This type of response time is
affected by increased packet delay, but triplicate packets compensate, and are an effective form of
help.

Two-way Response Time (M5)
Techniques that directly affect this measurement:
Avatar blinking, Triplicate packets.

 Average means (ms) Variance mean (ms) Total samples
No techniques (T1) 2035.33 5293069 42
All-Dy (T9) 75.77 (1st) 178234.40 418

Table 8.44: Two-way Response Time
The z-score between T1 and T9 is -5.51.
T9 is significantly better than T1 because of avatar blinking and triplicate packets. Two-way
response time is the most affected by packet delay because the packets need to travel in two
directions and their sending frequency sending is quite low.

8.3.4 Summary
This section’s tests shows how the techniques help when the number of players is increased, and
packet delay times are lengthened. Increasing the players and limiting processing affect the
techniques that require extra processing time such as DR. The techniques do not improve one-
way response time because the system is already consuming most of processing time, even in the
one-way single case with triplicate packets (Table 8.39). However, avatar blinking and triplicate
packets do help with two-way response time, since it is affected more by the networking state
than limited processing.
When packet delays are increased, one-way multiple and interval updates tend to have less affect
because of massive packets sending, but DR remains effective. Two-way response time is

91

affected the most by increasing packet delays, but avatar blinking and triplicate packets help
improve matters.

8.4 Test Summaries
This chapter provided the game measurement results. The test were carried out on LAN with
three WTK clients, and done once for a 90% reliable server and again for a 75% reliable server.
The techniques were enabled one-by-one, or in combinations, and compared with the results
when no techniques were used. Z-tests were utilized to judge the significance of the comparisons.
For both 90% and 75% reliable servers, enabling all the techniques improves the response times
the most. For some individual tests, a single technique has the best effect. For example, in the
90% case, DR is the best for one-way multiple and interval updates; in the 75% case, triplicate
packets helps the most for one-way single, and avatar blinking for two-way response time.
When there are more players or limited processing time, time consuming techniques such as DR
has less effect on one-way response time. Two-way response time seems to be less affected by
increased loads. One-way multiple and interval updates are less affected by increased packet
delay times because of massive packets sending. Two-way response time is affected the most, but
avatar blinking and triplicate packets help.
Enabling multiple techniques at once introduces additional processing overheads in the game,
which reduce its response time (especially for one-way multiple and rendering), but the effects a
few milliseconds are too small to be noticed by a player.
Enabling multiple techniques is preferable to employing individual techniques because they
improve many types of response times at once, which is more effective than using one technique
to improve one type of response.
From the player’s point of view, penguin movement or rotation is quite responsive even with very
bad packet delay or loss, due to the massive amount of packets sending. However, DR noticeably
helps the penguin move more smoothly. Shooting is the most impacted by packet delay and loss,
since shooting packets need to travel round-trip between two clients. In this case, avatar blinking
improves responsiveness and triplicate packets increase the chance of successful packet delivery.

 92

CHAPTER 9
SUMMARY

A series of experiments were carried out on a client/server 3D mobile first-person shooter (FPS)
to determine the best techniques for improving client-side response times in the presence of
severe network unreliability. Three measures of response time were utilized, to deal with the
different types of communication employed among the clients. The response time techniques
were grouped into three categories: general techniques, game-specific techniques, and packet-
based techniques. A combination of all three types of technique – dead reckoning and smoothing,
visual field updating, avatar blinking, avatar dying, packets grouping, and duplicate/triplicate
packet – produce mean response times that are 20% to 90% less than the mean response time for
the game with no techniques enabled.

9.1 Game Architecture
The game’s client/server architecture is a typical multiplayer mobile game. The J2ME game
clients each render a world of competing penguins; the goals of a player’s penguin are to find
“life spots”, gather bullets, and shoot other penguins. The game’s architecture is summarized in
Figure 9.1.

Figure 9.1: The Game’s Architecture

93

The local player has a first-person view of a world, while the other penguins are remote avatars
representing the other players. In Figure 9.1, the game currently has three users, so each player
can see at most two other penguins (and its own penguin’s red beak).
The rules of the game ensure that player behavior is fairly complicated, making it hard to predict
a player’s actions and the pattern of network activity. All the game’s 3D assets (e.g. the penguins,
the floor) are stored locally on the clients; no 3D models are transmitted via the network.
Game entry, inter-client communication, and game departure are controlled through a J2SE server
which manages the delivery of data in the form of UDP packets. The server can be configured to
delay packet delivery, and to lose a given percentage of datagrams, in order to test the game’s
responsiveness at different levels of network reliability. The system was run across a LAN.
Therefore, real-world latency, bandwidth restrictions, and packet loss were not issues.
Various levels of reliability were investigated, including 90% reliability, which means that there
was a 10% chance of a packet being delayed (i.e. one chance in ten) or lost. 75% reliability means
that there is a 25% chance of packet delay or loss. A packet can be delayed between 30 ms and 2
seconds.

9.2 Measuring Response Time
A more accurate reflection of a game’s responsiveness can be gained by measuring three slightly
different forms of response time: one-way response time for single packet actions, one-way
response time for multiple packet actions, and two-way response time.
One-way response time for an action is the time that a packet representing the action takes to
travel from a remote player to the local player, and includes the time to update the remote player’s
avatar on the local device.
Some complicated types of action require multiple packets to be transmitted, typically for
updating avatar position and orientation. However, most actions can be represented by single
packets, such as when the player loses a life point or picks up a bullet. This distinction between
multiple and single packets is important since it highlights the effectiveness of techniques which
group, delete, or duplicate packets.
Two-way response time is the time for a packet to be sent from the local player to a remote device
to be processed, and for a response packet to arrive back at the local player and update his game
state. An example of two-way response time in the game is when a player shoots at a penguin.
This requires that a message be sent to the remote client represented by the penguin, and for the
local client to wait until the shot’s outcome (e.g. penguin death) is returned.

94

There are other elements worth measuring to help judge the techniques: interval update time for
remote avatar movement/rotation (the average time gap between updates of the avatar’s position
or rotation), rendering update speed (scene rendering), and various packet statistics (packet size
and packet sending rate).

9.3 Techniques for Improving Response Times
A large number of techniques were tested to see which improved the game’s response times.
These techniques can be classified into three groups:
1. General techniques, which can be applied to any networked FPS. They include dead reckoning
and smoothing, and visual field updating.
2. Game-specific techniques, which include avatar blinking and avatar dying (e.g. painting a
translucent skull over a penguin to indicate its probable death).
3. Packets-based techniques, which include duplicate and triplicate packet sending, and packet
grouping.

9.3.1 Dead Reckoning and Smoothing
Dead reckoning (DR) is used to ‘guess’ a penguin’s translation or rotation when the packets
holding that information have failed to arrive at the client. DR is activated after one movement
packet is lost, and to keep it switched on for at most ten screen updates.
This approach requires packets to be time-stamped, and for a client to estimate how long it has to
wait before a packet is judged to be lost. The code must also deal with a ‘lost’ packet turning up
after a lengthy delay.
DR is switched on promptly, after only one packet has been lost, so a penguin will keep moving
rather than appear unresponsive. DR is switched off after at most ten updates (500 ms in the
game), since it becomes very difficult to predict movement accurately after multiple updates.
It is essential to pair DR with smoothing. When a movement packet eventually arrives, smoothing
gradually adjusts the penguin’s position to relocate and reorientate it to the correct spot.
Smoothing is carried out over several screen updates, so a penguin does not ‘jump’ from one
position to another.

9.3.2 Visual Field Updating
This technique uses the range of player’s vision to update remote avatar. If the remote avatar is
far beyond the range of view, e.g. behind the player, then there is no need to update its position or

95

angle if it moves. Related techniques, such as DR and smoothing, are deactivated if the remote
avatar is not in the view range. When the remote avatar enters the vision area, it will be updated
to its new position/angle.

9.3.3 Avatar Blinking
Avatar blinking is triggered when the local player shoots at a penguin, and the client has to wait
for the shooting reply from the remote player. The uncertainty about a penguin’s future is denoted
by making it blink. This offers immediate feedback to the player, which is more reassuring than
have nothing change on screen for perhaps several seconds.
After usability tests, we determined that players find blinking to be helpful for at most a few
seconds, after which time it becomes rather irritating. Consequently, a penguin can blink for at
most three seconds, which is enough time for a shooting response to arrive when the network is
performing at 75% reliability.

9.3.4 Avatar Dying
Avatar dying makes a transparent skull image appear in front of the remote avatar when no packet
is received from this remote player for 30 seconds. After this, the remote avatar will be removed
from the local player’s scene if there is no packet received from the remote player for another 30
seconds (a total of 1 minute of inactivity). This handles the situation when the remote client quits
the game without informing the server.

9.3.5 Packets Grouping
This technique groups multiple packets into one packet and sends them out at once. The benefits
of packets grouping are that it can reduce the frequency of packet sending and reduce the use of
UDP headers. Packets grouping is used on packets which are most frequently sent, e.g. move or
rotation messages. A group can consist of either two or three packets.

9.3.6 Duplicate/Triplicate Packet Sending
Duplicate/triplicate packet sending makes a client transmit the same packet two or three times to
reduce the chance of it being lost. One drawback is that the receiver must be able to detect and
ignore multiple packet copies. Also, indiscriminate multiple packet sending is a serious consumer
of bandwidth. Consequently, this technique is used sparingly, only for important information
whose loss would seriously impact the game. Such packets which are related to important avatar
state changes, such as when a penguin loses life points, or shoots at another penguin. It also helps
to correlate the amount of resending to the unreliability of the network.

96

9.4 Results
The game was run several hundred times with three clients, and results gathered over several
minutes of typical game play in each game, and averaged. The tests reported here were carried out
with the network set to be 90% and 75% reliable.
Three response times measurements were performed: one-way response time for multiple packets
per keypress, one-way response time for a single packet per keypress, and two-way response time.
The other measure elements are interval update time of a remote avatar movement or rotation,
rendering update method, packet sending, and packet size.
The mean response times were calculated when no techniques were applied, and again when each
of the techniques was switched on individually (e.g. DR and smoothing, avatar blinking, and
duplicate/triplicate packets). Finally, the techniques were switched on together with various
combinations.
The mean response times for the techniques were compared with the mean time when no
techniques were enabled, using a standard one-tailed z-test with a 95% level of significance.
The tests consist of 11 combinations of different techniques (T1 to T11) with 8 measurements
(M1 to M8). The definitions of each T and M were defined at the beginning of Chapter 8.

97

9.4.1 Summary of Game Measurement with a 90% Reliable Server
The best (recommendation) and the runner up techniques on each measurement of a 90% reliable
server are shown in Table 9.1 (modified from Table 8.17). The best technique is the technique
which has the most recommendation (at second columns) and runner up (at third columns), from
the measurements that affect response time, which are M1, M2, M4, and M5 or in the bold rows.

 Recommendation Runner up
M1: one-way multiple T2a: DR(1,10) + smoothing (2nd) T11: all - dying - grouping - visual
M2: interval update T2a: DR(1,10) + smoothing (2nd) T8: all techniques (1st)
M3: % DR error T2a: DR(1,10) + smoothing T2b: DR(2,10) + smoothing
M4: one-way single T8: all techniques (1st) T7a: duplicate packet
M5: two-way T8: all techniques (1st) T4: avatar blinking
M6: render update T1: no techniques T11: all - dying - grouping - visual
M7: packet sending T8: all techniques T6a: packets grouping (2)
M8: packet size T1: no techniques T10: all - dying - grouping

Table 9.1: Summary Detail of a 90% Reliable Server
T8 (enable all techniques) is the best technique that affect response time. It is the best for M4
(one-way response time for a single packet per keypress) and M5 (two-way response time), and
runner up for M2 (interval update time of a remote avatar movement or rotation).
The runner up technique is T2a (DR and smoothing) with two recommendations from M1 (one-
way response time for multiple packets per keypress) and M2 (interval update time of a remote
avatar movement or rotation).
From the result, enabling all techniques can improve response time better than enabling individual
techniques. And, in comparisons among individual techniques, DR and smoothing is the best for
improving response time.

98

9.4.2 Summary of Game Measurement with a 75% Reliable Server
The recommendation and the runner up techniques on each measurement of a 75% reliable server
are shown in Table 9.2 (modified from Table 8.32). The best technique is the technique which has
the most recommendation (at second columns) and runner up (at third columns), from the
measurements that affect response time, which are M1, M2, M4, and M5 or in the bold rows.

 Recommendation Runner up
M1: one-way multiple T2a: DR(1,10) + smoothing (2nd) T11: all - dying - grouping - visual
M2: interval update T8: all techniques (1st) T2a: DR(1,10) + smoothing (2nd)
M4: one-way single T7b: triplicate packet T8: all techniques (1st)

M5: two-way T4: avatar blinking T8: all techniques (1st)
M6: render update T1: no techniques T11: all - dying - grouping - visual
M7: packet sending T8: all techniques T6a: packets grouping (2)

M8: packet size T1: no techniques T10: all - dying - grouping
Table 9.2: Summary Detail of a 75% Reliable Server

T8 (enable all techniques) is the best technique that affect response time. It is the best for M2
(interval update time of a remote avatar movement or rotation), and two runners up for M4 (one-
way response time for a single packet per keypress) and M5 (two-way response time).
The runner up technique is T2a (DR and smoothing) with one recommendation from M1 (one-
way response time for multiple packets per keypress) and runner up from M2 (interval update
time of a remote avatar movement or rotation).
The result of 75% test is similar to the 90% test, enabling all techniques can improve response
time better than enabling individual techniques. And, among individual techniques, DR and
smoothing is the best for improving response time.

99

9.5 Results in Percentages for a 75% Reliable Server
Another type of results comparing between the best three techniques (DR and smoothing, avatar
blinking and duplicate/triplicate packets), combined techniques (enable all techniques), with no
enable techniques of the three types of response times (one-way response time for multiple packet
per keypress, one-way response time for single packet per keypress, and two-way response time),
with a 75% reliable server. The results are compared as percentages of the mean response time
when no techniques are enabled (shown as the “No Techniques” bar). Consequently, a technique
that reduces the time will have a percentage less than 100%, as shown in Figure 9.2 to Figure 9.4.
9.5.1 One-way Response Time, Multiple Packets Per Keypress

Figure 9.2: One-way response time, multiple packets

DR and smoothing reduce the mean response time by a tad over 25%, since the technique
compensates for the loss of translation and rotation packets. Avatar blinking and duplicate/
triplicate packets sending have no significant effect on this type of responsiveness, and so are not
listed in Figure 9.2.
9.5.2 One-way Response Time, Single Packet Per Keypress

Figure 9.3: One-way response time, single packet

100

Duplicate and triplicate packet sending reduces the response time drastically: by over 80% for
triplication which sends the same packet three times (see Figure 9.3). This reflects the impact that
poor network reliability has on game play.
As the network becomes more reliable (e.g. moving from 75% to 90%), triplicate packet sending
becomes slower, and duplicate packets becomes the better performer. The slowdown is caused by
the cost of processing and ignoring so many multiple packets.
For this form of response time measurement, DR and smoothing and avatar blinking have no
significant effect, so are not shown in Figure 9.3.
9.5.3 Two-way Response Time Measurements

Figure 9.4: Two-way response time

Two-way response time is very susceptible to packet loss or delay since it depends on request and
response packets both being successfully delivered. The loss of one or both of these packets will
mean that the associated action cannot be completed.
Avatar blinking does a great job of disguising the delay, which under 75% network reliability
conditions may be as much as 2-3 seconds. Duplicate/triplicate packet sending is necessary to
ensure that copies of the lost datagrams eventually arrive.
As with the one-way response times for single packet per keypress in Section 9.5.2, if the
network’s reliability is increased, then the overhead of triplicate packet sending becomes
excessive, and duplicate packet sending becomes the better choice.

101

9.6 Conclusions
The experiments with a client/server 3D mobile game highlight several issues related to
improving client-side response times.
Response time must be measured in multiple ways for a good understanding of how it is affected
by varying network reliability and different techniques. One-way response time for single packet
reflects how simple datagram transfer is affected by the network. One-way response time for
multiple packet focuses on more complex data delivery. Two-way response time deals with
communication that employs a query/response form.
We have classified the techniques for improving response time into three categories: general,
game-specific, and packet-based. A mix of techniques from all these categories gives the best
across-the-board improvements. Combined techniques (e.g. dead reckoning and smoothing,
avatar blinking, and duplicate/triplicate packet sending) produce mean response times 20% to
90% less than the mean response time for the game with no techniques enabled.
Some response time techniques can be politely termed as ‘tricks’, since their aim is to distract the
user from the delays inherit in networks with high latency, limited bandwidth, and unreliable
packet delivery. Avatar blinking is a good example, but is nevertheless a valuable approach.

102

References
[1] Fishlabs Entertainment. (2008, February). Robot Alliance. Online. Available:
http://www.fishlabs.net/en/games/shooter/robot_alliance_3d.php

[2] Sun Microsystems. (2005, March). J2ME Wireless Toolkit. Online. Available:
http://java.sun.com/j2me

[3] Sun Microsystems. (2005, March). The Java 2 SDK, Standard Edition. Online. Available:
http://java.sun.com/j2se

[4] S. Singhal, “Networked Virtual Environments, Design and Implementation,” Addison-Wesley,
1999

[5] L. Pantel and L. C. Wolf, “On the Suitability of Dead Reckoning Schemes for Games,” In
proceedings of the 1st Workshop on Network and System Support for Games, 2002, pp. 79-84

[6] R. M. Fujimoto, “Parallel and Distributed Simulation Systems”, John Wiley & Sons, 2000

[7] A. Davison. (2007, December). Java Games Programming Techniques: Networking and
Mobile3D Chapters. Online. Available: https://fivedots.coe.psu.ac.th/~ad/jg/

[8] F. T. Mario, “Elementary Statistics”, 7th Edition, Addison-Wesley, 1998

[9] S. K. Singhal, “Effective Remote Modeling in Large Scale Distributed Simulation and
Visualization Environments,” In PhD thesis, Department of Computer Science, Stanford
University, 1996

[10] S. Lee and J. Knudsen , “Beginning J2ME: From Novice to Expert,” 3rd Edition, Apress,
2005

[11] J. F. Kurose and K. W. Ross, “Computer Networking: A Top-Down Approach Featuring the
Internet,” 2nd Edition, Pearson Education, 2003

[12] Doctor Robe. (2006, July). Computing Angles of a Right Triangle. Online. Available:
http://mathforum.org/library/drmath/view/51875.html

103

Appendix

104

Appendix A: Published Paper
Improving Response Time in a Client/Server

3D Mobile Game
Prapat Lonapalawong

Dept. of Computer Engineering
Prince of Songkla University

Hat Yai, Songkhla, 90110, Thailand
prapatz@yahoo.com

Andrew Davison
Dept. of Computer Engineering

Prince of Songkla University
Hat Yai, Songkhla, 90110, Thailand

ad@fivedots.coe.psu.ac.th

ABSTRACT
A series of experiments were carried out on a
client/server 3D mobile first-person shooter (FPS) to
determine the best techniques for improving client-
side response times in the presence of severe
network unreliability. We utilized three measures of
response time, which closely parallel the different
types of communication employed between the
clients. The response time techniques were grouped
into three categories: general, game-specific,
packet-based. A combination of the best three –
dead reckoning and smoothing, avatar blinking, and
duplicate/triplicate packet sending – produce mean
response times that are 20% to 90% less than the
mean response time for the game with no techniques
enabled.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]:
Distributed Systems – client/server.

General Terms
Measurement, Performance, Design, Reliability.

Keywords
Client/server, 3D, mobile game, response time
measurement, dead reckoning and smoothing, avatar
blinking, duplicate/triplicate packet sending.

1. INTRODUCTION
Interest in multiplayer 3D gaming has never been
higher, and is starting to gain traction on mobile
devices, with the success of games such as Robot
Alliance and Need for Speed: Carbon. However,
underlying networking issues (e.g. high latency,
limited bandwidth, and lossy/reordered packet
delivery) make it difficult to implement FPS-type
games that offer rapid player interaction [1, 2, 6]. As

a result, many multiplayer mobile games are turn-
based, and use the network primarily for messaging
and accessing server-side databases.

This paper describes experiments carried out upon a
client/server 3D mobile FPS. The game executes on
a LAN, but the server can simulate varying degrees
of communication reliability, thereby emulating
WAN/Internet conditions. A range of techniques for
improving the game’s response time were tested,
which fall into three broad groups: general
(applicable across a wide-range of FPS games),
game-specific (tailored to our game), and packet-
based. The success (or otherwise) of the techniques
was judged by gathering statistics related to three
different measures of response time.

2. GAME ARCHITECTURE
Our game’s client/server architecture is quite typical
of many multiplayer mobile games. The Java ME
(http://java.sun.com/j2me/, [5]) game clients
each render a world of competing penguins; the
goals of a player’s penguin are to find “life spots”,
gather bullets, and shoot other penguins. The
game’s architecture is summarized in Figure 1.

Figure 1. The client/server 3D mobile game.

The local player has a first-person view of a world,
while the other penguins are remote avatars
representing the other players. In Figure 1, the game
currently has three users, so each player can see at
most two other penguins (and its own penguin’s red
beak).

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.
CyberGames 2007, September 10–11, 2007, Manchester,
UK.
Copyright 2007 ??…$??.

105

The rules of the game ensure that player behavior is
fairly complicated, making it hard to predict a
player’s actions and the pattern of network activity.
All the game’s 3D assets (e.g. the penguins, the
floor) are stored locally on the clients; no 3D
models are transmitted via the network.

Game entry, inter-client communication, and game
departure are controlled through a Java SE
(http://java.sun.com/j2se/) server which
manages the delivery of data in the form of UDP
packets. The server can be configured to delay
packet delivery, and to lose a given percentage of
datagrams, in order to test the game’s
responsiveness at different levels of network
reliability. The system was run across a LAN, so
real-world latency, bandwidth restrictions, and
packet loss were not issues.

Various levels of reliability were investigated,
including 75% reliability, which means that there
was a 25% chance of a packet being delayed (i.e.
one chance in four), and a 25% chance that it would
be lost. 90% reliability means that there is a 10%
chance of packet delay, and 10% chance of packet
loss. A packet can be delayed between 30 ms and 2
seconds.

2.1 Measuring Response Time
A more accurate reflection of a game’s
responsiveness can be gained by measuring three
slightly different forms of response time: one-way
response time for single packet actions, one-way
response time for multiple packet actions, and two-
way response time.
One-way response time for an action is the time that
a packet representing the action takes to travel from
a remote player to the local player, and includes the
time to update the remote player’s avatar on the
local device.

Some complicated types of action require multiple
packets to be transmitted, typically for updating
avatar position and orientation. However, most
actions can be represented by single packets, such as
when the player loses a life point or picks up a
bullet. This distinction between multiple and single
packets is important since it highlights the
effectiveness of techniques which group, delete, or
duplicate packets.

Two-way response time is the time for a packet to
be sent from the local player to a remote device to
be processed, and for a response packet to arrive
back at the local player and update his game state.
An example of two-way response time in our game
is when a player shoots at a penguin. This requires
that a message be sent to the remote client
represented by the penguin, and for the local client
to wait until the shot’s outcome (e.g. penguin death)
is returned.

3. TECHNIQUES FOR IMPROV
ING RESPONSE TIMES

We experimented with a large number of techniques
to improve the game’s response times. We classify
these techniques into three groups:

1. General techniques, which can be applied to any
networked FPS. They include dead reckoning and
smoothing, and selective visual field updating [3].

2. Game-specific techniques, which include avatar
blinking and avatar dying (i.e. painting a translucent
skull over a penguin to indicate its probable death).

3. Packets-based techniques, which include
duplicate and triplicate packet sending, and packet
grouping.

Due to space constraints in this paper, we will only
discuss the best performing technique from each of
these groups: dead reckoning and smoothing, avatar
blinking, and duplicate/triplicate packet sending.

3.1 Dead Reckoning and Smoothing
Dead reckoning (DR) is used to ‘guess’ a penguin’s
translation or rotation when the packets holding that
information have failed to arrive at the client [4].
We choose to activate DR after one movement
packet is lost, and to keep it switched on for at most
ten screen updates.

This approach requires packets to be time-stamped,
and for a client to estimate how long to wait before
a packet is deemed to be lost. The code must also
deal with a ‘lost’ packet turning up after a lengthy
delay.

DR is switched on promptly, after only one packet
has been lost, so a penguin will keep moving rather
than appear unresponsive. DR is switched off after
at most ten updates (500 ms in our game), since it
becomes very difficult to predict movement
accurately after multiple updates.

It is essential to pair DR with smoothing. When a
movement packet eventually arrives, smoothing
gradually adjusts the penguin’s position to relocate
and reorientate it to the correct spot. Smoothing is
carried out over several screen updates, so a penguin
doesn’t ‘jump’ from one position to another.

3.2 Avatar Blinking
Avatar blinking is game-specific: it is triggered
when the local player shoots at a penguin, and the
client has to wait for the shooting outcome from the
remote player. The uncertainty about a penguin’s
future is denoted by making it blink. This offers
immediate feedback to the player, which is more
reassuring than have nothing change on screen for
perhaps several seconds.

After usability tests, we determined that players find
blinking to be helpful for at most a few seconds,
after which time it becomes rather irritating.
Consequently, a penguin can blink for at most three
seconds, which is enough time for a shooting
response to arrive when the network is performing
at 75% reliability.

106

3.3 Duplicate/Triplicate Packet
Sending
Duplicate/triplicate packet sending makes a client
transmit the same packet two or three times to
reduce the chance of it being lost en route. One
drawback is that the receiver must be able to detect
and ignore multiple packet copies. Also,
indiscriminate multiple packet sending is a serious
consumer of bandwidth. Consequently, we use the
technique sparingly, only for important information
whose loss would seriously impact the game. Such
packets tend to be related to important avatar state
changes, such as when a penguin loses life points, or
shoots at another penguin. It also helps to correlate
the amount of resending to the unreliability of the
network.

4. RESULTS
The game was run many times with three clients,
and results gathered over several minutes of typical
gameplay in each game, and averaged. The tests
reported here were carried out with the network set
to be 75% reliable.

Three response times measurements were
performed: one-way response time for multiple
packet actions, one-way response time for single
packet actions, and two-way response time.

The mean response times were calculated when no
techniques were applied, and again when each of the
techniques was switched on individually (i.e. DR
and smoothing, avatar blinking, and
duplicate/triplicate packets). Finally, all three
techniques were switched on together.

The mean response times for the techniques were
compared with the mean time when no techniques
were enabled, using a standard one-tailed z-test with
a 95% level of significance [7]. In the figures below,
only the techniques that produced a significant
reduction in the mean response time are reported.

4.1 One-way Response Time, Multi
ple Packet Action
Figure 2 displays mean response times as
percentages of the mean response time when no
techniques are enabled (shown as the “No
Techniques” bar). Consequently, a technique that
reduces the time will have a percentage less than
100%. Data for the other response time measures in
sections 4.2 and 4.3 are reported in a similar way
(see Figures 3 and 4).

Figure 2. One-way response time, multiple
packets.

One-way response times for multiple packet actions
are mostly concerned with the processing of avatar
movement (translations and rotations). This explains
why DR and smoothing reduce the mean response
time by a tad over 25% in Figure 2, since that
technique compensates for the loss of translation
and rotation packets.

Also of interest is that avatar blinking and
duplicate/triplicate packets sending (the other two
techniques tested here) have no significant effect on
this type of responsiveness, and so aren’t listed in
Figure 2.

4.2 One-way Response Time, Single
Packet Action

One-way response times for single packet actions
cover the majority of the packets sent in the game,
where an action can be codified as a single
datagram.

Figure 3. One-way response time, single packets.

Duplicate and triplicate packet sending reduces the
response time drastically: by over 80% for
triplication which sends the same packet three times
(see Figure 3). This reflects the impact that poor
network reliability has on game play – at 75%
reliability, the “No Techniques” version of the game
is almost unplayable.

As the network becomes more reliable (e.g. moving
from 75% to 90%), triplicate packet sending
becomes slower, and duplicate packets becomes the
better performer. The slowdown is caused by the
cost of processing and ignoring so many multiple
packets.

For this form of response time measurement, DR
and smoothing and avatar blinking have no
significant effect, so are not shown in Figure 3.

107

4.3 Two-way Response Time Mea
surements
In our game, the most important two-way response
time measurement is for a player shooting a penguin
and waiting for the outcome. Figure 4 shows that
avatar blinking is very important for maintaining a
good response time, with duplicate/triplicate packet
sending also playing a role.

Figure 4: Two-way response time.

Two-way response time is very susceptible to
packet loss or delay since it depends on request and
response packets both being successfully delivered.
The loss of one or both of these packets will mean
that the associated action cannot be completed.

Avatar blinking does a great job of disguising the
delay, which under 75% network reliability
conditions may be as much as 2-3 seconds.
Duplicate/triplicate packet sending is necessary to
ensure that copies of the lost datagrams eventually
arrive.

As with the one-way response times for single
packet actions in section 4.2, if the network’s
reliability is increased, then the overhead of
triplicate packet sending becomes excessive, and
duplicate packet sending becomes the better choice.

5. CONCLUSIONS
Our experiments with a client/server 3D mobile
game highlight several issues related to improving
client-side response times.

Response time must be measured in multiple ways
for a good understanding of how it is affected by
varying network reliability and different techniques.
One-way response time for single packet actions
reflects how simple datagram transfer is affected by
the network. One-way response time for multiple

packet actions focuses on more complex data
delivery. Two-way response time deals with
communication that employs a query/response form.

We have classified the techniques for improving
response time into three categories: general, game-
specific, and packet-based. A mix of techniques
from all these categories gives the best across-the-
board improvements. Figures 2, 3, and 4 show that
“Combined Techniques” (i.e. dead reckoning and
smoothing, avatar blinking, and duplicate/triplicate
packet sending) produce mean response times that
are 20% to 90% less than the mean response time
for the game with no techniques enabled.

Some response time techniques can be politely
termed ‘tricks’, since their aim is to distract the user
from the delays inherit in networks with high
latency, limited bandwidth, and unreliable packet
delivery. Avatar blinking is a good example, but is
nevertheless a valuable approach.

6. ACKNOWLEDGMENTS
Our thanks to the Department of Computer
Engineering, Faculty of Engineering, at Prince of
Songkla University for generously supporting this
research.

7. REFERENCES
[1] Fujimoto, R.M. 2000, Parallel and Distributed

Simulation Systems, John Wiley.
[2] Singhal, S. 1999, Networked Virtual

Environments, Design and Implementation,
Addison-Wesley.

[3] Singhal, S.K. 1996, Effective Remote Modeling
in Large Scale Distributed Simulation and
Visualization Environments, PhD thesis, Dept.
of Computer Science, Stanford University.

[4] Pantel, L., Wolf, L.C. 2002, “On the
Suitability of Dead Reckoning Schemes for
Games”, Proc. of the 1st Workshop on Network
and System Support for Games, 79-84.

[5] Li, S. and Knudsen, J. 2005, Beginning J2ME:
From Novice to Expert, 3rd Ed., Apress.

[6] Kurose, J.F. and Ross, K.W. 2003, Computer
Networking: A Top-Down Approach Featuring
the Internet, 2nd Ed., Pearson Education.

[7] Mario, F.T. 1998, Elementary Statistics, 7th
Ed., Addison-Wesley .

108

VITAE

Name Mr. Prapat Lonapalawong
Student ID 4712019
Educational Attainment

Degree Name of Institution Year of Graduation
Bachelor of Computer

Engineering
Prince of Songkla University 2002

List of Publication
P. Lonapalawong, and A. Davison, “Improving Response Time in a Client/Server 3D Mobile
Game,” in CyberGames 2007, Manchester, UK, 2007.

