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ABSTRACT 
 

The investigated the potential of using Landsat time series data and 
secondary land use and land cover (LULC) data to identify the ages of para rubber 
plantation in the lowland of Thalang district, Phuket province, southern Thailand. The 
LULC data, including high spatial resolution historical image from Google Earth ProTM, 
were used to identify rubber plantation and the event (year) of rubber planting (T0). 
The inter-annual vegetation profiles of 2,168 rubber plantations were extracted from 
the distribution of sample NDVI values, which depend on the particular plot’s size, for 
each summer period of 129 Landsat NDVI images (October 1991 to April 2018). The 
predictor variables were generated from difference and ratio of NDVI distribution values 
(minimum, Q1, median, Q3, and maximum) at different seasons (two years before and 
six years after T0) for Recursive Partitioning (RP) supervised classification algorithm. 
Modeling data (outcome and predictors) from 336 plantations were divided into the 
training and testing datasets. The predicted RP model was learning on training data (30-
time repeated) and we used testing data for cross-validation assessment to optimize 
an appropriated hyperparameter of the RP model. Then, the RP model with a 
complexity parameter as 0.01 was applied on both modeling data and predicting data 
(1,832 plots that unknowns T0). The predicted T0 for each plantation was selected 
based on the maximum nominated in 100-time repeated prediction. Finally, the result 
validation of T0 prediction was carried out using 131 records of rubber farmers' 
registration from Rubber Authority of Thailand (RAOT). There are 15 plots (11.5%) that 
have a correct prediction, and 54 plots (41.2%) have one-year error prediction because 
many farmers start planting one or two years after approval from RAOT. The average 
error prediction is 3.62 years. We found that there is a possibility of using a 30-meter 
spatial resolution Landsat NDVI time series to identify rubber plantation ages with high 
accuracy, especially in the larger plots. The high precision of para rubber stands ages 
database will enable accurate yield prediction that, subsequently, resulting in better 
decision-making, planning, and development in the agricultural sector. 
Keywords: para rubber, plantation age, machine learning, Landsat, time series 
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บทคัดยอ 

 
การศึกษาถึงศักยภาพของการใชขอมูลหลายชวงเวลาจากดาวเทียม Landsat และ

ขอมูลการใชประโยชนที่ดินและสิ่งปกคลุมดิน (LULC) สําหรับใชในการระบุอายุของสวนยางพาราใน
พื้นที่ราบของอําเภอถลาง จังหวัดภูเก็ต ภาคใตของประเทศไทย ขอมูล LULC รวมไปถึงประวัติของ
ภาพถายดาวเทียมที่มีความละเอียดเชิงพื้นที่สูงจาก Google Earth ProTM ถูกนํามาใชเพื่อระบุ
ขอบเขตของแปลงและปที่พบเหตุการณของการปลูกยางพารา (T0) การสรางขอมูลภาวะการณพืช
พรรณประจําปของสวนยางพาราจํานวน 2,168 แปลง ไดรับการดึงขอมูลจากการกระจายของจุด
ตัวอยางคา NDVI ซึ่งขึ้นอยูกับขนาดของแปลงในแตละชวงฤดูรอนที่มีขอมูล NDVI จากภาพถาย
ดาวเทียม Landsat จํานวน 129 ภาพ (เดือนตุลาคม พ.ศ. 2534 ถึงเดือนเมษายน พ.ศ. 2561) ตัว
แปรสําหรับการทํานายชุดขอมูลถูกสรางขึ้นจากคาความแตกตางและอัตราสวนของคาการกระจาย 
NDVI (คาต่ําสุด, คาควอไทลที่ 1, คามัธยฐาน, คาควอไทลที่ 3, และคาสูงสุด) ในฤดูกาลที่แตกตางกัน 
(สองปกอนและหกปหลังจาก T0) สําหรับอัลกอริทึมการจําแนกประเภทภายใตการกํากับดูแลดวยวิธี 
Recursive Partitioning (RP) ขอมูลการสรางแบบจําลอง (ผลลัพธและตัวทํานาย) จากสวนยาง
จํานวน 336 แปลงถูกแบงออกเปนชุดขอมูลสําหรับใชในการฝกอบรมและการทดสอบ แบบจําลอง 
RP ที่ทํานายไวเปนการเรียนรูบนชุดขอมูลการฝกอบรม (การทําซ้ํา 30 ครั้ง) และใชขอมูลการทดสอบ
สําหรับการประเมินความถูกตองดวยวิธี Cross-validation เพื่อเพิ่มประสิทธิภาพของไฮเปอร
พารามิเตอรใหเหมาะสมกับแบบจําลอง RP จากนั้นนําแบบจําลอง RP ที่มีพารามิเตอรที่ซับซอน
เทากับ 0.01 ไปใชกับขอมูลการสรางแบบจําลองและขอมูลการทํานาย (1,832 แปลงที่ไมรู T0) การ
ทํานายเหตุการณ T0 ของสวนยางแตละแปลงไดรับการคัดเลือกตามการเสนอเหตุการณที่เปนไปได
สูงสุดในการทํานายซ้ําจํานวน 100 ครั้ง สุดทายการตรวจสอบความถูกตองของผลลัพธจากการ
ทํานาย T0 ดวยขอมูลการขึ้นทะเบียนของเกษตรกรชาวสวนยางจากการยางแหงประเทศไทย (RAOT) 
131 แปลง พบวาจํานวน 15 แปลง (11.5%) มีการทํานายวาถูกตอง และจํานวน 54 แปลง (41.2%) 
มีการทํานายที่ผิดพลาดไปหนึ่งป เพราะเกษตรกรจํานวนมากเริ่มปลูกยางในชวงหนึ่งหรือสองป
หลังจากไดรับการอนุมัติจาก RAOT การคาดคะเนขอผิดพลาดเฉลี่ยคือ 3.62 ป เราพบความเปนไปได
ที่จะใชชุดขอมูล NDVI หลายชวงเวลาจากภาพถายดาวเทียม Landsat ที่มีความละเอียดของภาพ 30 
เมตร เพื่อระบุอายุของสวนยางพาราที่มีความแมนยําสูงโดยเฉพาะอยางยิ่งในแปลงที่มีขนาดใหญ 
ความแมนยําสูงของฐานขอมูลอายุยางพาราจะชวยใหสามารถคาดการณผลผลิตไดอยางถูกตอง ซึ่ง
สงผลใหการตัดสินใจ การวางแผน และการพัฒนาในภาคเกษตรกรรมดีขึ้น 
คําสําคัญ: ยางพารา, อายุการปลูก, การเรียนรูของเครื่อง, แลนดแซท, หลายชวงเวลา 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
1.1 Statement of the Problem 
 
 

Para rubber tree (Hevea brasiliensis Muell. Arg.) is one of the significant 
economic crops of Thailand as well as the South East Asian Nation (ASEAN) region both 
in terms of income and employment (Koedsin and Yasen, 2016). Originally, they were 
a native plant in the Amazon Basin of South America. They have grown in numerous 
locations within the equatorial zone between 10°N and 10°S in areas with continuous 
twelve-month rainfall (Ratnasingam, Ioraş, and Wenming, 2011). Para rubber trees grow 
mainly in humid tropical lowlands below 400-meter altitude, covered by dense 
tropical rainforest (Fox and Castella, 2013). It is a quick-growing perennial plant, rarely 
exceeding 25 – 30 meters in height in plantations. The para rubber trees start yield 
rubber latex between 5 – 7 years of age and have a productive lifespan of between 
25 – 30 years (Verheye, 2010). The natural rubber latexes are mainly used as a raw 
material for making various rubber products in many industries, such as vehicle tires, 
surgeons’ gloves, shoes, condoms, sports equipment, balloons, pillow, cosmetics, and 
other relatively high-value products, etc. (Tekasakul and Tekasakul, 2006). The 
rubberwood can also be used in the timber industry in furniture, children toys and fuel 
woods, etc. (Teoh, et al., 2011). Currently, about 90% of the total world production of 
natural rubber is obtained from Hevea brasiliensis Muell. Arg. (Li and Fox, 2012). 

The background, importance, and problems related to para rubber 
plantations and the rubber industry in Thailand. The beginning of this industry was 
1899 – 1901. Phraya Ratsadanupradit Mahison Phakdi (his former name was Khaw Sim 
Bee Na-Ranong) as governor of Trang Province and Monthon Phuket, who is being 
honored as “Father of Thai Rubber”, along with Phra Sathon Sathanphitak, who was 
an adopted son of Phraya Ratsadanupradit Mahison Phakdi and the owner of first para 
rubber plantation of Thailand. They are both famous people brought in the country's 
first para rubber tree which was planted in Thailand (Jawjit, et al., 2010). They both 
visited Malaysia and Indonesia and brought some para rubber varieties from there 
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income to be planted in the governor's residence at Kantang District, Trang Province 
and propagated in Phuket Province to be replaced for the sluggish tin mining industry 
and pepper. They commissioned public servants to go learned how to manage the 
para rubber plantations and rubber tapping technique from the neighboring countries 
and then came back to teach their villagers. Later, the villagers received para rubber 
varieties to propagate species throughout the south of the country (Agricultural 
Research Development Agency (Public Organization), 2018). In the early stages, para 
rubber was planted in 14 southern provinces of the country due to the climate of 
tropical rainforest, which suitable for the growth of para rubber trees (Riwthong, et al., 
2017). In the year 1991, Thailand developed the country into the world's largest rubber 
producer and exporter of natural rubber, accounting for about one-third of global 
supply, which was followed by Indonesia and Malaysia. The rubber price has generally 
increased due to world demand and the expansion of the world economy (Romyen, 
et al., 2018). In the middle of 2002, para rubber cultivations are more popular because 
can export rubber yields to foreign countries, especially China and the USA. The rubber 
prices have risen steadily until the Thai government at the time, issued policies and 
encouraged the farmers to grow para rubber plantations increased up to 1,600 square 
kilometers nationwide (Bhumiratana, et al., 2013). About 35% of the latex produced 
worldwide comes from Thailand in the year 2007 (Jawjit, et al., 2010). The rubber 
prices were up to 180 baht per kilogram in February 2001. The popularity of para 
rubber plantations in Thailand has increased in almost every region of the country 
(Romyen, et al., 2018). China is Thailand’s most important rubber trading partner has 
demanded more natural rubber latex used in the manufacture of tires. China imported 
2,500,000 tons of rubber per year or 32% from abroad in the year 2013 (Gale, et al., 
2015). Southeast Asia suffers about 97% of the world's natural rubber, mainly from 
Thailand 31%, Indonesia 30%, and Malaysia 9% (Li and Fox, 2012). Thailand's rubber 
exports amounted to 170,418.73 million baht, which ranked 6th of all the country's 
exports to the world market in the year 2015 (Wadeesirisak, et al., 2017). Domestic 
rubber production has increased to about 4,500,000 tons per year, without quantitative 
control. Until the world economy slowed down in the later year but the world's 
popularity of natural rubber has remained. As a result, China wants to reduce imports 
of rubber from abroad and turn into a producer. China has invested para rubber 
plantations in the Xishuangbanna, Yunnan, southern China including other neighboring 
countries are Laos, Vietnam, and Cambodia. The results of this have been that rubber 
prices in Thailand have dropped sharply (Smajgl, et al., 2015; Petchseechaung, 2016). 
Nowadays, the situation is that the price of rubber is down to 30 – 45 baht per kilogram 
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(Rubber Authority of Thailand, 2018). Thailand’s rubber industry is still suffering from 
the decline in product prices, due mainly to high global oversupply. The market price 
of raw natural rubber depends on the global market, which in the futures contract 
trading system in the stock market including the lack of an accurate database of para 
rubber plantations to predict natural rubber latex contributions, results in the market 
price of rubber products in Thailand being uncertain (Petchseechaung, 2016; 
Petchsawang, 2018). Thailand is still an agricultural country due to the population more 
than half are cultivators. The government policy of the country is focused on the 
agriculture industry (Singhapreecha, 2014; Boonyanam, 2018). This problem is a very 
important issue that the Thai government, under the management of the Ministry of 
Agriculture and Cooperatives is solving due to the push from the rubber planters 
nationwide reached 1.54 million families (Post Today, 2017). The Ministry of Agriculture 
and Cooperatives of Thailand, 2017 has proposed a solution to three measures: 1) 
increase consumption of domestic rubber products 2) help operators to have the 
ability to buy rubber products and 3) reduce para rubber planting area (Thairath, 2017). 
Recently, the Rubber Authority of Thailand (RAOT) under the management of the 
Ministry of Agriculture and Cooperatives of Thailand, oversees and provides support to 
research, production, and commercialization of rubber across the entire value chain 
nationally, from the cultivation of para rubber trees to final processing, partnership 
with Geo-Informatics and Space Technology Development Agency (GISTDA) under the 
operation of the Ministry of Science and Technology of Thailand, both have interests 
and cooperated to generate the project of a spatial database and mapping for 
monitoring the para rubber plantations nationwide to develop effective monitoring of 
para rubber plantations (Petchsawang, 2018). 

In this study, we need to understand the precision agriculture and yield 
prediction for the management of para rubber re-planting in the future to help solve 
the problem of rubber prices falling long-term and sustainable (Satir and Berberoglu, 
2016; Boonyanam, 2018). Including knowledge on geoinformation and remotely-sensed 
imagery time series combined with machine learning algorithms was introduced to 
investigate the potential of data using precision satellite technology to identify para 
rubber plantation ages systematically and concretely (Brown, 2015). These are the 
basic information needed for the management of government projects that are stable 
and beneficial to all sectors of the rubber industry in the future. We selected Thalang 
District, Phuket Province, located in Southern Thailand as a case study due to mostly 
agricultural areas are para rubber plantations and the second largest industry income 
in the province, after the tourism industry (Phuket Development Strategy, 2016). 
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1.2 Objective 
 
 

The objective of this study is to investigate the potential of using dense 
Landsat time series imagery and land use and land cover (LULC) data to precisely 
identify para rubber plantation ages using a tree-based machine learning algorithm. 
 
 
1.3 Scope 
 
 

The study area was the para rubber plantations situated in lowland 
(below 50 meters above mean sea level) in Thalang District, Phuket Island, Southern 
Thailand. The data used in this study consisted of spectral indices time series derived 
from 30-meter spatial resolution Landsat imagery which obtained in during October 
1991 to April 2018. The secondary LULC data of the year 2016 and the registration 
information of rubber farmers in the study area from 2013 to 2018 acquired from the 
government agencies were used to identify para rubber plantations and validation, 
respectively. The decision tree learning algorithm, one of the well-known Machine 
Learning (ML) techniques, was adopted to examine the potential of using different 
spectral profiles to identify the age of rubber plantation. 
 
 
1.4 Expected 
 
 

A new method of identifying para rubber plantation ages using remote 
sensing data and LULC data will provide the high precision of para rubber plantation 
ages data that could enable accurate yield prediction and, subsequently, resulting in 
better decision-making, management planning and development in the agricultural 
sector. This approach and developed model in this study will also be able to extend 
in other agricultural areas of research in the future.  
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1.5 Definition 
 
 

“Para Rubber (Hevea brasiliensis Muell. Arg.)” means a native rubber 
tree from tropical of South America. That bark is gray, black or brown, and when 
tapping on the bark. It will give natural white latexes. 

“Rubber Plantation” means the agricultural land for planted para 
rubber trees, which has an area of not less than 2 rai (rai is a measure of the area of 
Thailand, 1 rai equal to 1,600 square meters) and easily identified by resolution of 
satellite images. 

“Rubber Farmers” means owners, tenants, growers and tappers who 
are entitled to receive about various yields from para rubber trees in their own para 
rubber plantations. 

“Re-planting” means the planting of new para rubber trees in order to 
replace all or part of the old para rubber trees in that area. 

“Vegetation Index” means a proportion of vegetation-covered surface 
by calculating from the wavelength associated with vegetation proportional mutually. 

“Time Series” means a set of satellite image data that is collected over 
a period of time continuously  

“Geographic Information System” means a computer application used 
to store, analysis, and presentation of geographical and statistical information. 

“Remote Sensing” means a field of science in acquiring information 
related to various objects placed in the area from remote data recording tools 
including aircraft or satellites, based on the properties of electromagnetic waves. 

“Machine Learning” means a learning part of the machine being used 
as a brain of Artificial Intelligence (AI) to create intelligence, often using models derived 
from the learning of AI, not from human writing. 
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CHAPTER 2 

 
 

LITERATURE REVIEW 
 
 
2.1 Para Rubber (Hevea brasiliensis Muell. Arg.) 
 
 

Para Rubber (scientific name is called “Hevea brasiliensis (A. Juss) Muell. 
Arg.”) is a plant in the family Euphorbiaceae. It is a tropical tree and native to the 
Amazon Basin in Brazil and neighboring countries. It was taken from the Amazon region 
to many other tropical regions of the world, such as the South and Southeast Asia 
(ASEAN) by the British Colonial Office (Verheye, 2010). Including Thailand by Phraya 
Ratsadanupradit Mahison Phakdi (Kosimbee Na-Ranong) as the governor of Trang and 
Monthon Phuket (1899 – 1901) (Agricultural Research Development Agency (Public 
Organization), 2018). Para rubber trees grow mainly in tropical lowlands below 400-
meter altitude, originally covered by a dense tropical rainforest (Fox and Castella, 
2013). It grows best at temperatures between 20 – 28°C with an annual rainfall 
distributed between 1,800 – 2,000 millimeters. The mature trees on para rubber 
plantations’ height are 25 – 30 meters, with girth tree between 2.0 – 3.0 meters, 
smooth straight trunks, bark grayish, strong roots, alternate trifoliate leaves, petioles 
long are 7.5 – 10 centimeters, flowers numerous, female flowers apical, fruit the 3-
lobed or 3-seeded ellipsoidal capsule, variable in size between 2.5 – 3 centimeters, 
mottled brown and weighing 2 – 4 grams each. It requires a special fertilizer for growth 
in the first 6 years when biomass is built up. The para rubber trees start yield rubber 
latex between 5 – 7 years of age and have a productive lifespan of a tree between 25 
– 30 years (Verheye, 2010). After that, the area will be cleared for re-planting of para 
rubber trees. The natural rubber latexes are used as a raw material for making various 
rubber products in many industries such as concentrated latex, block rubber and 
rubber smoke sheet (Tekasakul and Tekasakul, 2006). The rubberwood can also be 
used in the timber industry in furniture, children's toys and firewood (Teoh, et al., 
2011). About 90% of the total world production of natural rubber is obtained from 
Hevea brasiliensis Muell. Arg. Rubber species in Thailand, Malaysia, and Indonesia 
(Killmann and Hong, 2000; Li and Fox, 2012). 



7 

2.1.1 Good Agricultural Practice (GAP) for Thailand 
 

Good Agricultural Practice is the manual of principles, regulations and 
technical recommendations applicable to production, processing, human health care, 
environmental protection and improvement of worker conditions and their families for 
applied to agriculture, create nutrition for consumers or further processing safe and 
beneficial. Although the definition of competition is that the method used in good 
agricultural practice, there are many broadly accepted models that manufacturers can 
follow. The GAP farming system must analyze the history of agriculture. This principle 
has been designated by the United Nations Food and Agriculture Organization (FAO) 
(Izquierdo, et al., 2007). 

In Thailand, the agencies responsible for quality assurance certification 
of GAP is the Department of Agriculture, under the management of the Ministry of 
Agriculture and Cooperatives of Thailand, have defined the requirements, rules, and 
methods of auditing, which according to with the GAP principles of international. This 
is used as a standard for crop production at the farm level of the country and to 
prepare a manual for the cultivation of GAP about 24 important plant crops in Thailand 
including 1) Fruits; Durian, Longan, Pineapple, Pomelo, Mango and Tangerine 2) 
Vegetables; Tomatoes, Asparagus, Kale, Onion, Cabbage, Chili, Long bean, Peanuts, 
White cabbage, Baby corn, Onion Sprouts, and Shallots 3) Flowers; Orchid and Siam 
Tulip and 4) Other plants; Robusta coffee, Cassava, and Para rubber (National Bureau 
of Agricultural Commodity and Food Standards of Thailand, 2013). 

Department of Agriculture of Thailand has provided Good Agricultural 
Practice for para rubber cultivation in Thailand. Thailand is located in the tropical zone, 
with an environment is suitable for planting para rubber especially in the southern and 
some of the eastern provinces, where the original para rubber plantations were set up. 
Later, para rubber plantations were expanded to new para rubber plantations in the 
northeast and north, where the environment was less favorable for the para rubber 
planting such as lack moisture, low temperature, strong winds, high elevation, steep 
slopes, low soil depth, low poor drainage, and low soil chemical properties. The para 
rubber trees are adaptable to different environments. The para rubber trees are grown 
in the south can be opened rubber tapping very quickly and given yield more than the 
para rubber planted in the north and northeast for approximately 6 months of the 
year. The yields of para rubber trees are latex or wood. The quality depends on three 
factors: 1) good varieties 2) the suitability of the area and 3) quality of management of 
the cultivation (Rubber Research Institute, 2010), as shown in Table 2.1. 
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Table 2.1 GAP for Thailand’s para rubber. (Surat Thani Rubber Research Center, 2018) 
Para Rubber Varieties for High Yield 

Latex RRIT 408, RRIT 251, RRIT 226, BPM 24, RRIM 600 
Latex and Wood RRII 118, PB 235, PB 255, PB 260, PR 255, RRIC 110 
Wood RRIT 402, BPM 1, AVROS 2037 

Suitability of the Growing Area 
Area Condition - The plain area or slope of less than 35°. 

- If slope exceeds 15° to do the ladder and planted cover 
crops to prevent soil erosion. 

- The elevation of the sea level should not exceed 600-m 
and not flooded. Plants are sensitive to flooding. 

Land Form - The soil is sticky to sandy soil with abundant. 
- The soil depth of not less than 1-m, no solid rock layer. 
- Good drainage and ventilation. 
- The groundwater level less than 1-m. 
- The pH value is 4.5 – 5.5. 

Climate and Weather - Rainfall is not less than 1,250 millimeters per year.  
- The rainy days are about 120 – 150 days per year. 

Water Source - Rainwater 
Managed Plantations 

Preparation Area - Adjusts area to suitable and vegetation clearance. 
- Orient the plantation along the east – west.  
- Interval rows of old plots are 2.5*8.0-m or 3.0*7.0-m.  
- Interval rows of new plots are 2.5*7.0-m or 3.0*6.0-m. 

Cultivation - Plants should grow in the early rainy season.  
- Should repair plots before the end of the rainy season. 
- Planting repair should not be carried out. If age plots 

exceed 2 years. 
Mixed Plants - Should grow short-lived plants in during the first 3 years 

including Banana, Beans, Cane, Cassava, Corn, Forage, 
Papaya, Pineapple, and Watermelon, etc. 

- Do not grow mixed plants after 3 years such as cassava. 
- Understory mixed plants that can tolerate shade trees; 

Acacia, Anthurium, Dahla, Galangal, Ginger, Krachiew, 
Rattan, Salacca, and Turmeric, etc. 
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2.1.2 Rubber Authority of Thailand Act B.E. 2558 (2015) 
 
  Rubber Authority of Thailand (RAOT) originated from the combination 
of three agencies including 1) Office of the Rubber Replanting Aid Fund, 2) Rubber 
Plantation Organization and 3) Rubber Research Institute. According to the Rubber 
Authority of Thailand Act B.E. 2558 (2015), announced in the Government Gazette on 
14 July 2015 and became effective on July 15, 2015 (Thailand Government, 2015). The 
objectives of the Rubber Authority of Thailand are the central organization responsible 
for overseeing the management of the country's rubber system completely, fund 
management, promote and support the country to be the center of the rubber product 
industry by providing education, analysis, research, development, dissemination of 
information about rubber and to ensure stable rubber price levels. As well as providing 
assistance to rubber farmers, rubber farmers institutions, rubber business operators by 
providing knowledge in the terms about academic, finance, manufacturing, processing, 
industry, marketing, business, and other related operations to raise income and quality 
of better life (Rubber Authority of Thailand, 2019). 
 

2.1.3 Precision Agriculture (PA) 
 

Precision Agriculture (also known as “Satellite Agriculture”) is an 
integrated crop management system or application of geospatial techniques that 
combine information technologies including geographic information systems, remote 
sensing, global positioning system with rational agricultural industries to ensure that 
the crops and soil receive exactly what they need for optimum health and productivity. 
The PA's goal is to ensure profitability, sustainability, and environmental protection. 
(Ashwini, 2017). The concept of PA has become an interesting idea for managing natural 
resources and recognizing the development of modern sustainable agriculture. The 
PA’s remote sensing technology is used for collecting and analyzing information about 
crop and soil characteristics using sensors mounted on satellites, aircraft, UAV, or 
ground equipment (Far and Rezaei-Moghaddam, 2018). The PA’s technology in 
Thailand is known as “Smart Farming”, which is used to analyze important agricultural 
products, such as rice, para rubber, sugarcane, vegetables, and fresh fruits, etc. This 
technology helps in the mapping of the growing area and plot area, with accuracy and 
speed, leading to the improvement in managing the means of production (Kraipinit, et 
al., 2017). 
 



10 

2.1.4 Yield Prediction (YP) 
 

Yield Prediction (also called as “Crop Prediction”) is an important 
agricultural problem. This is very popular among farmers these days, which particularly 
contributes to the proper selection of crops for sowing. In the past, yield prediction 
was performed by considering the farmer's previous experience on a particular crop 
such as topography, climate, rainfall and disease in the agricultural area. Therefore, 
there is a need to attempt better technique for yield prediction in order to overcome 
the problem (Paul, et al., 2015). From the study about the crop yield prediction using 
satellite-derived vegetation indices in the year 2016, found that the Normalized 
Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) 
indices are more effective predictors of yield prediction (Satir and Berberoglu, 2016). 
The cultivation of para rubber requires high investment and long-term returns. If the 
rubber farmers decide to invest in a para rubber plantation, then they cannot change 
the para rubber varieties until the time for vegetation clearance area for re-planting. 
The rubber farmers must ensure that they can to survive in the global market situation, 
there are risks and uncertainty in the sustainability of their household because of the 
rubber cultivations are a long-term investment (Kongmanee and Longpichai, 2017).  
 
 
2.2 Landsat Time Series (LTS) 
 
 

Landsat is the name of a series of satellites exploring natural resources 
and record data the Earth's surface for almost four decades. Initially, the phased 
project was under the management of NOAA's US organization. The Earth Resources 
Technology Satellite was launched on July 23, 1972. Then take over by the 
management of Earth Observing Satellite Company (EOSAT) in the year 1984. The U.S. 
government has set an obligation’s government mandate for exploring satellite 
resources continuously in the legal name that “The 1992 Land Remote Sensing Policy 
Act” and Landsat is backed under the management of USGS and NASA in the U.S. 
Global Change Research Program (U.S. Geological Survey, 2016). Nowadays, Landsat’s 
mission is to explore and disseminate information for the benefit of civilians and the 
contained development of satellite-based exploration equipment. Therefore, scientists 
have remote sensing data from four decades of monitoring to analyze changes in the 
world’s phenomena (Loveland and Dwyer, 2012). The information of Landsat TM, 
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ETM+ and OLI satellite imagery including sensor specifications, image characteristics, as 
shown in Tables 2.2, 2.3 and 2.4. 
 

2.2.1 Landsat-5 Thematic Mapper (TM) 
 

Landsat-5 TM satellite was launched by NASA into orbit with a rocket 
of the McDonald Douglas Delta 3920 from the Vandenberg Air Force Base, California 
on March 1, 1984. Landsat 5 transmitted its last image on January 6, 2013. 
 

2.2.2 Landsat-7 Enhanced Thematic Mapper Plus (ETM+) 
 

Landsat-7 ETM+ satellite was launched by NASA, NOAA and USGS into 
orbit with a rocket of the McDonald Douglas Delta II 7920 from the Vandenberg Air 
Force Base, California on April 15, 1999. Currently, still working in orbits and records. 
 

2.2.3 Landsat-8 Operation Land Imager (OLI) 
 

Landsat-8 OLI satellite was launched by USGS into orbit by a rocket of 
the Atlas V401 AV-035 from the Vandenberg Air Force Base, California on February 11, 
2013. Nowadays, still working in orbits and records (U.S. Geological Survey, 2016). 
 
Table 2.2 Specifications of Landsat satellite. (U.S. Geological Survey, 2018) 

Specifications 
Landsat Satellite 

TM ETM+ OLI 
Perigee – Apogee 694 – 701-km 701 – 703-km 701 – 703-km 
Regime Sun-synchronous Sun-synchronous Sun-synchronous 
Inclination 98.2° 98.2° 98.2° 
Period  98.7-minute 98.8-minute 98.8-minute 
Repeat Interval 16-day 16-day 16-day 
Pixel Size 30-meter 30-meter 30-meter 
Width Band 170*185-km 170*185-km 170*185-km 
Quantization 8-bit (0-255) 8-bit (0-255) 16-bit (0-65,535) 
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Table 2.3 Band applications of Landsat TM/ETM+. (U.S. Geological Survey, 2018) * 
Wavelength Applications 

Band 1 Blue (0.45 - 0.52 µm)  Distinguishing Soil and Vegetation 
Band 2 Green (0.52 - 0.60 µm) Assessment Plant Vigor 
Band 3 Red (0.63 - 0.69 µm) Discriminates Vegetation Slopes 
Band 4 NIR (0.76 - 0.90 µm) Biomass and Shorelines 
Band 5 SWIR-1 (1.55 - 1.75 µm) Plants and Soil Moisture, Cloud, Snow 
Band 6 Thermal (10.40 - 12.50 µm) Surface Heat, Soil Moisture, Plant stress 
Band 7 SWIR-2 (2.08 - 2.35 µm) Rocks, Mineral, Deposits 

 
Table 2.4 Band applications of Landsat OLI. (U.S. Geological Survey, 2018) * 

Wavelength Applications 
Band 1 Coastal Aerosol (0.43 - 0.45 µm) Coastal and Aerosol Studies 
Band 2 Blue (0.45 - 0.52 µm)  Distinguishing Soil and Vegetation 
Band 3 Green (0.53 - 0.59 µm) Assessment Plant Vigor 
Band 4 Red (0.64 - 0.67 µm) Discriminates Vegetation Slopes 
Band 5 Near-infrared (0.85 - 0.88 µm) Biomass and Shorelines 
Band 6 SWIR-1 (1.57 - 1.65 µm) Plants and Soil Moisture, Cloud, Snow 
Band 7 SWIR-2 (2.11 - 2.29 µm) Plants and Soil Moisture, Cloud, Snow 
Band 9 Cirrus (1.36 - 1.38 µm) Cirrus Cloud Contamination 

* The band data of Landsat satellite images with 30-meter spatial resolution only. 
 
 
2.3 Vegetation Index (VI) 
 
 

Vegetation Index is the proportion of vegetation-covered surface by 
calculating from the wavelength associated with vegetation proportional mutually. This 
index is useful in monitoring the increase or decrease of vegetation, phenological and 
environmental situations (Fang and Liang, 2008), which one of the most popular 
indexes is called “Normalized Difference Vegetation Index”. 
 

2.3.1 Normalized Difference Vegetation Index (NDVI) 
 

Normalized Difference Vegetation Index is a measure of the ratio 
between two wavelengths, which are normally distributed by the calculation NIR bands 
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(0.86 µm) and Red band (0.66 µm). This index can be used to analyze, measure 
remotely, and evaluate targets or objects that are being observed for the greenness of 
vegetation or biomass. The NDVI was first used and developed in the year 1973 by 
Rouse, et al. from the Remote Sensing Centre of Texas A&M University, USA (Rouse, et 
al., 1973). The NDVI values always range from -1 to +1, which can explain the NDVI 
values, as shown in Table 2.5. The NDVI equation is as follows;  
 

���� =
(��� − ���)

(��� + ���)
 

 
Definition of the Terms: 

NDVI is the Normalized Difference Vegetation Index 
NIR is the Near-infrared band 
RED is the Red band 

 
Table 2.5 NDVI values in the ecosystem. (Muradyan, et al., 2016) 

NDVI Values Biomass and Vegetation Covers 
-1.00 – 0.10 Bare Soil, Water Surface 
0.11 – 0.20 Minimum Biomass, Very Low-standing Grass Vegetation 
0.21 – 0.30 Middle Biomass, Low-standing Grass Vegetation 
0.31 – 0.55 High Biomass, High-standing Grass Vegetation 
0.56 – 0.70 Very High Biomass, High-standing Grass Vegetation 
0.71 – 1.00 Maximum Biomass, Forested Areas 

 
The advantage or benefits of vegetation index as follows; 

- To study the distribution and integrity of plants overall. 
- To study the conditions of drought and integrity of the area over time. 
- To study dynamics and vegetation phenology of plants. 
- To classification of plant types including the amount of vegetation. 
- To calculate relative biomass values. 

 
The relationship between the dynamics of NDVI values associated with 

vegetation phenology of various agricultural areas, including para rubber cultivation 
can be described as follows. If the level of VIs is higher than the minimum value during 
the uptrend graph of the planting cycle, it means that the time is “Seedling” status. 
The VIs increases to a higher level will be considered as a status “Growing”. Until at 
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one level the VIs has the highest value, the plant will be considered as “Complete” 
status. After that, the VIs will be relatively stable according to the lifespan of the plant, 
but the value of VIs maybe changes somewhat depending on the season, leaves or 
climate change. Finally, the level of VIs decreases from the highest to the lowest point 
during the downward graph will be considered as “Harvested” or “Vegetation 
Clearance” for re-planting of plants in the new generation (Glenn, et al., 2008). 
 
 
2.4 Machine Learning (ML) 
 
 

Machine Learning is one of the science that arises from the integration 
of knowledge in various fields such as computer science, and statistics using the brain 
of Artificial Intelligence (AI) for making computer systems can self-learning in analyze, 
predict, and process using data from human input (data scientist) to be used in the 
decision (Shobha and Rangaswamy, 2018). However, the data scientist must design 
various variables and find other algorithms to compare looking for the most suitable 
algorithm in actual use. The current application of ML is widely found in various 
industries such as science, engineering, medicine, and marketing (Willcock, et al., 2018). 
Machine learning has three main forms of learning: 

- Supervised learning is learning under supervision. 
- Unsupervised learning is learning without supervision. 
- Reinforcement learning is learning from the environment. 

For the example of algorithms in ML has been used many purposes 
such as Support Vector Machine, Naive Bayes, Gradient boosting, K-nearest Neighbor, 
K-mean, Markov Decision Processes, Linear Regression, Logistic Regression, and Q-
learning, etc. (Wakefield, 2019). For the methods was used in this study as supervised 
learning, namely Recurve Partitioning algorithm. 
 

2.4.1 Decision Trees (DTs) 
 

Decision Trees is a commonly used data mining method for establishing 
classification systems (supervised learning) based on multiple covariates or for 
developing prediction algorithms for a target variable or regression models in the form 
of a tree structure, which this is an important type of algorithm for predictive modeling 
of ML (Kingsford and Salzberg, 2008). A primary advantage of using a DTs is that it is 



15 

easy to follow and understand (Quinlan, 1986). The capabilities of the method of DTs 
in remote sensing applications such as classification LULC, biomass estimation, etc. 
(Friedl and Brodley, 1997; Graves, et al., 2018). For describing the model result is a tree 
with decision nodes and leaf nodes. A decision node has two or more branches. Leaf 
node represents a classification or decision. For example, the question in the first node 
requires a “Yes” or “No” answer, there will be one leaf node for a “Yes” response, 
and another node for “No”. Figure 2.1 shows an example of a concept of DTs method 
for making a car purchase decision. 
 

 
 
Figure 2.1 A decision tree for making the car purchase. (Gorbachev, Gorbacheva, and 
Koynov, 2016) 
 

2.4.1.1 Recursive Partitioning (RP) 
 

Recursive Partitioning is a method that predicts the value of a response 
variable by forming subgroups of a sample data within which the response is relatively 
homogeneous based on the values of a set of predictor variables (Landau and Barthel, 
2010). This algorithm is part of the DTs, which is an important type of algorithm for 
predictive modeling of ML. It has the same structure as DTs. The RP method was 
developed since the 1980s. Commonly, this algorithm can be used for establishing 
classification systems based on multiple covariates or for developing prediction 
algorithms for a target variable or regression models in the form of a tree structure 
(Song and Lu, 2015). There are advantages and disadvantages of the RP. This algorithm 
can easily generate more intuitive models and does not require users to perform 
calculations, allows for the prioritization of different classifications to create more 
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sensitive or specific decision rules. This algorithm does not work well for situations with 
continuous variables and may overfit data. (Cook and Goldman, 1984). 
 
 
2.5 Training, Cross-Validation and Test Datasets 
 
 

In machine learning, the education and construction of algorithms can 
learn and make predictions about data. The algorithm can work using data-driven of 
predictions or decisions, through creating the mathematical modeling from the input 
of data. Figure 2.2 shows how to divide the dataset into training, cross-validation and 
testing. 

Training Dataset is a set of sample data used for learning, that is to fit 
the parameters of a classifier. Most methods that search through training data for 
empirical relationships tend to overfit data, meaning they can identify apparent 
relationships in training data that are non-conventional. 

Cross-validation Dataset (CV) is a set of sample data, that is used to 
customize the parameters. The datasets can be divided split into training data and 
validation data. These duplicate partitions can be done in several ways, such as dividing 
split into two equal datasets and used as training/validation, and validation/training, or 
select a random subset as the validation dataset repeatedly. In the validation 
performance of modeling, sometimes additional test data that extended from cross-
validation were used (Reunanen, 2003). 

Test Dataset is a set of independent data from the training dataset but 
subsequent probability distributions are the same as training datasets. If that model 
fitting perfectly with a set of training dataset it will also fit the test dataset as well. The 
better fit to the training dataset, as opposed to the test dataset, generally indicates 
overfitting. Therefore, the test dataset is a set of the sample used to estimation the 
performance of a full-specific classifier (Brownlee, 2017). 
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Figure 2.2 Training, cross-validation and testing split. (Bronshtein, 2017) 
 
 
2.6 Accuracy Assessment 
 
 

Accuracy Assessment is a method of determining the interpretation or 
classification of data that has already been analyzed. Accuracy assessment will make 
the data obtained from the analysis quality and reliability. For accuracy assessment for 
research related to data from remote sensing, caused by the comparison between 
data analyzed from satellite imagery and actual data obtained from ground surveys. 
For example, high-resolution satellite imagery and spatial data. For this method, we 
chose to use the “Confusion Matrix” (also known as “Error Matrix”) for evaluating the 
accuracy of the models to find the best algorithm (Story and Congalton, 1986). 
 

2.6.1 Confusion Matrix 
 

Confusion Matrix is a summary table of prediction results on a 
classification problem (GeeksforGeeks, 2018). The number of correct and incorrect 
predictions are summarized with count values and broken down by each class or 
comparison between program results and actual results by human hands (Egghe, 2008; 
Zhang, et al., 2015; Tharwat, 2018) The confusion matrix is the most common way of 
expressing the accuracy assessment of classification data from remote sensing images, 
such as type of LULC, type of plants, plant's age, etc. (Comber, et al., 2012), as shown 
in Table 2.6. 
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Table 2.6 Confusion Matrix Table (Tharwat, 2018)  

Confusion Matrix 
Actual Class 

0 1 Sum 

Predicted 
Class 

0 TP FP TP+FP 
1 FN TN FN+TN 

Sum TP+FN FP+TN Accuracy 
 
Definition of the Terms: 

True Positives (TP) is where positive observation and predicted to be positive. 
True Negative (TN) is where negative observation and predicted to be negative. 
False Positives (FP) is where negative observation but predicted to be positive. 
False Negatives (FN) is where positive observation but predicted to be negative. 

 
2.6.1.1 Precision 

 
Precision is a measure of the accuracy of the data by considering the 

class separately. The ratio of correctly predicted true positive (TP) observations to a 
total predicted positive observation. The high precision is related to a low false positive 
(FP) rate (Tharwat, 2018). The precision equation is as follows; 
 

��������� =
��

(�� + ��)
 

 
2.6.1.2 Recall 

 
A recall is a measure of the accuracy of a model by considering the 

class separately. The ratio of correctly predicted true positive (TP) observations to a 
total observation in the actual class. The high recall is related to a low false negative 
(FN) rate (Tharwat, 2018). The recall equation is as follows; 
 

������ =
��

(�� + ��)
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2.6.1.3 Overall Accuracy 
 

Overall Accuracy is a measure of the accuracy of a model by considering 
all classes. It is the most intuitive performance measure and it is simply a ratio of 
correctly predicted observation to the total observations (GeeksforGeeks, 2018). The 
overall accuracy equation is as follows; 
 

������� �������� =
(�� + ��)

(�� + �� + �� + ��) ∗ 100
 

 
2.6.2 F1-score 

 
F1-score is a measure of the accuracy of a model by considering both 

the measured value of Precision and Recall. It is the weighted average of the precision 
and recall, where an F1-score reaches is the best value at 1 (perfect precision and 
recall) and the worst value at 0 (GeeksforGeeks, 2018). The equation is as follows; 
 

�� − ����� =
2 ∗ (������ ∗ ���������)

(������ + ���������)
 

 
 
2.7 Related Research 
 
 

The related research review of mapping the para rubber plantation age 
using satellite imagery from remote sensing and various approaches to help in this 
study, can be summarized is as follows; 

A study of Zhe Li and Jefferson M. Fox, (2012) about the mapping of 
para rubber plantations in the mainland of Southeast Asia using MODIS NDVI time series 
and statistical data. The mainland of Southeast Asia in the study area included China, 
Thailand, Laos, Vietnam, Cambodia, and Myanmar. This study aims to diagnose the 
potential of using the Mahalanobis typicality method to manage with mixed pixels of 
NDVI grids and to explore the potential for MODIS NDVI time series combining with sub-
national statistical data on LULC of para rubber to mapping the distribution of para 
rubber plantations in the mainland of Southeast Asia. The data used were MODIS NDVI 
time series product (MOD13Q1) from the TERRA satellite between March 2009 and May 
2010. The method used Mahalanobis typicality to identify the planting grids in para 
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rubber plantations had the highest probability of occurring and sub-national statistical 
data about para rubber plantations to quantify the number pixels of para rubber 
plantations map in each administrative unit. They used Relative Operating 
Characteristic (ROC) and error matrix analysis respectively to evaluate the potential of 
Mahalanobis typicality method for validating the accuracy of classification. The high 
ROC values over 0.8 with the Mahalanobis typicality method showed it was successful 
in identifying both mature and young of para rubber tree stand ages. The method 
helped reduce the commission errors for both two types of para rubber plantations to 
1.9% and 2.8%, respectively (It is corresponding with user’s accuracy to 98.1% and 
97.2%, respectively). The results of this study indicated that the integrations used in 
the Mahalanobis typicality method with MODIS NDVI time series and sub-national 
statistical data in Southeast Asia can help to successfully overcome the earlier 
overestimation of plantation survey problems. 

A study of Weili Kou, et al., (2015) about the mapping of deciduous para 
rubber plantation ages using PALSAR and Landsat imagery in Xishuangbanna Dai 
Autonomous Prefecture, Southeast of Yunnan Province, China. This study aimed to 
present the simple methods for mapping the age of para rubber plantations using an 
integration of PALSAR 50-meter mosaic imagery and Landsat TM/ETM+ multi-temporal 
imagery. The mosaic of PALSAR L-band 50-meter images was used for mapping the 
forest and non-forest areas including both two areas are natural forests and para rubber 
plantations for PALSAR-based pixels of forested areas. They analyzed the Landsat TM 
and ETM+ imagery from 2000 to 2009. Firstly, the phenological signatures of deciduous 
para rubber plantations (seasonal) and natural forest areas by analysis of surface 
reflectance, NDVI, EVI, and LSWI for generated mapping of para rubber plantations in 
the year 2009. Then, they analyzed the phenological signatures of para rubber 
plantations with different of para rubber stand ages and generated mapping in the year 
2009 (≤5, 6 – 10, and >10 years) base on Landsat multi-temporal imagery. Finally, they 
generated the map clearly showing that para rubber plantations expanded into the 
mountains in the study area over the year. The results of this study demonstrated the 
potential of integrating microwave using PALSAR imagery and optical remote sensing 
to describe the characteristics of para rubber plantations and their expansion in that 
time. 

A study of Hayder Dibs, et al., (2017) about the mapping of para rubber 
plantations using hierarchical classification approach for per-pixel and object-oriented 
classifiers with SPOT-5 imagery in Hulu Selangor, the state of Selangor, Malaysia. This 
study aimed was to propose a hierarchical classification approach to obtain the 
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accurate mapping of para rubber plantation ages distribution using SPOT-5 satellite 
imagery for performance evaluation of pixel-based and object-oriented classifiers for 
classification of para rubber plantations. The general of land use land cover was 
classified into eight classes using Mahalanobis distance (MD), k-nearest neighbor (k-NN), 
and Support Vector Machine (SVM) classifiers. After that, they generated the best 
mapping from the k-NN for classification used to select only pixels that were in the 
class of para rubber plantations from SPOT-5 imagery. The extracted pixels of imagery 
served as input the hierarchy of classification were divided into four classifiers: MD, k-
NN, SVM and DT classifiers, which were to generated the mapping of para rubber 
plantations into three intra-class are mature, middle and young of para rubber 
plantation ages. The results of this study provided produced overall accuracies of 
97.48%, 96.90%, 96.25% and 80.80% of k-NN, SVM, MD and DTs classifiers respectively. 
This indicates that object-oriented classifiers are better than the pixel-based methods 
for the mapping of para rubber plantations. 

A study of Philip Beckschäfer, (2017) about the obtaining of para rubber 
plantation age information from a dataset of Landsat TM and ETM+ time series and 
pixel-based image compositing of para rubber plantations in Xishuangbanna, China. He 
presented a method that facilitates the rapid assessment of para rubber plantations 
at the regional-scales by using very dense LTS satellite imagery in the second largest 
para rubber plantations of China. He collected 270 Landsat TM and ETM+ satellite 
images into annual best-available-pixel composites using the minimum of Normalized 
Difference Moisture Index (NDMI). The annual composite is classified as pixels of 
vegetated and non-vegetated applying a global NDMI threshold of 0, which is common 
in that area to vegetation clearance on the land in last year before the establishment 
of new-planting in next year. The pixels are located in plantations that classified as 
non-vegetated, being recorded as the year of re-planting. The result of that study is 
para rubber plantation age map that has been validated using a stratified random 
sample of 184 sample points, collected by the visual interpretation of historical 
Landsat imagery. The Root Mean Square Error (RMSE) of 2.5 years was achieved. He 
estimated that in the year 2015, the proportion of those plantations in Xishuangbanna 
was 50% of area that is suitable for natural rubber latexes tapping (8 – 25 years), 27% 
that is the too young trees to tapping (<8 years) and 24% is the rubber age has reduced 
latex productivity (>25 years) and will be cutting timber or clear the land in the near 
future. This proposed technique helps to obtain accurate of para rubber age from NDMI 
dataset of LST satellite imagery over large areas with the potential to provide in-depth 
data about spatial dynamics. 
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A study of Gang Chen, et al., (2018) about the estimation of the stand 
age of para rubber plantations using the integrated pixel and object-based tree growth 
and annual Landsat time series (LTS) in tri-border region along the junction of China, 
Myanmar, and Lao. They generated a map of para rubber stand age at a 30-meter 
spatial resolution to identify para rubber plantations with an accuracy of 87% and an 
average error of 1.53 years in age estimation. The integration of pixel and object-based 
image analysis used shows superior performance in generating the annual NDVI time 
series that reduced spectral noises from ground and vegetation in the canopy of young 
para rubber trees. The parameters of data prediction models remained relatively stable 
during sensitivity analysis of the model, resulting in accurate age estimation robust to 
outliers. They compared to the generally weak statistical relationship between single-
date spectral signatures and para rubber tree age. The LTS analysis coupled with tree 
growth modeling presents a possible alternative for fine-scale age estimation of para 
rubber plantations. 

From the collection or review of relevant research above. This made us 
decide to use NDVI time series from Landsat satellite imagery because this data set is 
accessible to the general public and free to download, with a spatial resolution of 30-
meter and recording data at the same area repeatedly every 16-day, which this is the 
advantage of Landsat time series satellites. 
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CHAPTER 3 
 
 

RESEARCH METHODOLOGY 

 
 

The objective of this study is to investigate the potential of using 16-
day composite Landsat time series at the 30-meter spatial resolution to identify the 
abrupt change of vegetation greenness in para rubber plantations. The inter-annual 
vegetation profile of para rubber planting event that has been extracted and generates 
predictor variables for supervised classification in Machine Learning. The tree-based 
recursive partitioning was used to train a model from the training dataset and predict 
the event of para rubber re-planting and plantation lifespan in Thalang District, Phuket 
Province of Thailand. 
 
 
3.1 Study Area 
 
 

The study area is Thalang District (8° 03' 49.40" N, 98° 21' 03.10" E), the 
Northern part of Phuket island which is the biggest island located in the South of 
Thailand (also known as Andaman Sea region). The small-scale study area covers 252 
square kilometers in total area, as shown in Figure 3.1. Thalang District has a border 
with neighboring districts as follow (Phuket Provincial Governor’s Office, 2018); 

- North is connected to Takua Thung District. (Phang Nga Province). 
- East is connected with the Phang Nga Bay, a part of Andaman Sea. 
- South is connected to Mueang Phuket District and Kathu District. 
- West is connected with the Andaman Sea. 

According to the Phuket Provincial Development Plan (2018 – 2021) 
which based on LULC data in the year 2015, Phuket has a total area of agriculture 
approximately 169.37 square kilometers. Most of the cultivation area is found in 
Thalang District where around 87.32 square kilometers is occupied by the para rubber 
plantations (October 28, 2016) (Phuket Provincial Governor’s Office, 2018). Most of the 
local population is engaged in agricultural occupations and the economic crops are 
para rubber, palm oil, and pineapple. Rubber farmers often grow pineapple mixture in 
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rubber plantations during the early plantation phase because para rubber trees are 
young and non-productive (Phuket Development Strategy, 2016). 

The Köppen climate classification subtype has a specific code for the 
climate in Phuket Province is a tropical monsoon climate (Am = Equatorial Monsoonal), 
under the influence of two seasonal monsoons are southwest monsoon (May – 
September) and northeast monsoon (October – April) (Köppen, 1918). This local 
average temperature is about 27.8°C, by the warmest month in April, with an average 
temperature of about 28.9°C and the coolest month in January, with an average 
temperature of about 27.2°C. The average amount of precipitation is about 2,230.1 
millimeters, by the maximum amount of those in September with about 419.1 
millimeters of precipitation and the minimum amount of those in February with an 
average of about 30.5 millimeters. The average of rainy days during the 1-year period 
in Phuket Province is about 173 days. The month with the rainiest days are about 23 
days in October and the month with the least rainy days are about 4 days in February 
(Meteorological Development Office, 2017). Therefore, Thalang District is located in 
weather condition suitable for the para rubber growth (Maggiotto, et al., 2014). 
 

 
 
Figure 3.1 Map of para rubber plantations in Thalang District, Phuket Province, 
Southern Thailand. 
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3.2 Data and Materials 
 
 

3.2.1 Landsat Surface Reflectance Data Collections (1991 – 2018) 
 

Landsat imagery was available for download from the Earth Explorer 
website (http://earthexplorer.usgs.gov/). We downloaded the multispectral bands 
contain a 30-meter spatial resolution Landsat Surface Reflectance product, Collection 
1 Level-2 (on-demand). The obtained satellite images at path 130 and row 54 were 
covered over the study area. However, we intend to select images available during the 
dry season (October – April) and contain cloud cover less than 15% over the study 
area. There were 129 Landsat images from three Landsat platforms, detailed in Table 
3.1 and Figure 3.2, were used in this study. The technical detail of Landsat satellite 
images is also providing in Appendix A. 
 
Table 3.1 Landsat Data Collection 
Satellite Imagery Period of acquisition  Number of Images 
Landsat-5 TM March 16, 1992 to October 15, 2011 55 
Landsat-7 ETM+ December 27, 2000 to February 28, 2018 56 
Landsat-8 OLI December 23, 2013 to February 4, 2018 18 

 

 
 
Figure 3.2 The collection of Landsat time series. 
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3.2.2 Land Use Land Cover Phuket (2016) 
 

LULC data of the year 2016 for Phuket were obtained from the Land 
Development Department (LDD), under the management of the Ministry of Agriculture 
and Cooperative of Thailand. The secondary data were in a shapefile vector (.shp) 
format. LDD is responsible for land use mapping throughout Thailand and distributes 
the mapping data, based on the interpretation of aerial photography (orthophotos), 
remote sensing images, and field survey. A 3-level hierarchic classification system is 
used, which differentiates at the finest level more than 100-classes. The LULC code 
for para rubber area is A302 (Food and Agriculture Organization of the United Nations, 
2017). In this study, we select only LULC data that classified as A302, including mixed 
A302 with other agriculture plants.  
 

3.2.3 Registration of Rubber Farmers in Thalang District (2013 – 2018) 
 

Registration of Rubber Farmers (2013 – 2018) of Thalang District, Phuket 
Province, were collected by the Rubber Authority of Thailand (RAOT), Phuket Province, 
the state enterprise under the management of the Ministry of Agriculture and 
Cooperative of Thailand. This ground truth data of the study area received and 
supported by the director and officers of the Rubber Authority of Thailand, Phuket 
Province (www.rubber.co.th/phuket/). Figure 3.3 shows the website and the example 
of obtained data. This data has arisen from the registration of Thai's rubber farmers in 
accordance with the Rubber Authority of Thailand Act B.E. 2558 (2015), which has 
established the “Rubber Development Fund”. The objective is to support and 
promote rubber development. The beneficiaries are Thai rubber farmers and Rubber 
Farmers Institute, which must be registered the para rubber plantation area with the 
RAOT (Thailand Government, 2015). 

The rubber planting registration data used in this study consisted of GPS 
coordinates (UTM Zone 47), location and size of plots from a survey by ROAT, the year 
at register and approval for cultivation from RAOT. The summary of the number of 
plots obtained from 2013 to 2018, with a total of 131 plots spread across the area of 
Thalang District, which is shown in Appendix B of the Registration of Rubber Farmers in 
Thalang District.  
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Figure 3.3 The registration of rubber farmers in Thalang District (2013 – 2018).  
 
 
3.3 Programs and Equipment 
 
 

1) Geographic Information Processing Software 
2) R Project for Statistical Computing 
3) RStudio Desktop 
4) Google Earth Pro 
5) Microsoft Office 
6) Computer with Accessories 
7) Digital Camera 
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Figure 3.4 Research Framework 
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3.4 Image Pre-processing 
 
 

Landsat Surface Reflectance (SR) improves the comparison between 
multiple images over the same region by accounting for atmospheric effects such as 
aerosol scattering and thin clouds, which can help in the detection and 
characterization of Earth Surface change (U.S. Geological Survey, 2019a). Since the 
obtained SR products were error and radiometrically corrected, we only processed the 
cloud mask and band combination. Then, the spectral index was calculated before 
spectral profile extraction and data modeling. The value of DNs to SR to be 
standardized in the range of 0 – 1 (López-serrano, Corral-rivas, and Díaz-varela, 2016). 
 

3.4.1 Shadow and Cloud Mask 
 

Figure 3.5 shows the step of shadow and cloud mask. We used the 
information from “Pixel Quality Assessment” or “Pixel QA” for eliminating unwanted 
pixel data, such as cloud and shadows. Based on the differences in Surface Reflectance 
processing algorithms (U.S. Geological Survey, 2019a; U.S. Geological Survey, 2019b), 
the Pixel QA value of the ground surface is 66 and the water surface is 68 for images 
from Landsat TM and ETM+. But the pixel value of the ground and water surface are 
322 and 324, respectively, for Landsat OLI sensor.  
 

 
 
Figure 3.5 The processing of shadow and cloud masking. 
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Shadow and cloud masking were carried out in QGIS program. We set 
the pixel value of Pixel QA band to be less than or equal to the ground and water 
surface in the equation for raster calculating, due to Landsat TM, ETM+ and OLI sensors 
provide different calculation protocols (Zhu, et al., 2018). Therefore, the Pixel QA value 
of Landsat TM and ETM+ has the value ≤70 and Landsat OLI with the value ≤325 
multiplied by the normal value of Pixel QA band, as shown in Table 3.2 
 
Table 3.2 Equation of pixel QA of Landsat TM/ETM+/OLI sensor. 

Sensors Equations 
Landsat TM/ETM+ * (Pixel QA≤70)*Pixel QA 

Landsat OLI (Pixel QA≤325)*Pixel QA 
* Landsat TM and ETM+ sensors have the same wavelength. 
 

Later, we brought the Pixel QA bands from the above process to 
eliminate the pixels of cloud and shadow in other bands of Landsat collection 1 level-
SR in the same set by doing one by one. The results are that the pixels of the cloud 
and shadows are made to zero value. In this calculation, using the raster calculator 
tool in the geographic information processing software by following this equation: 
 

(����� ��  ! = 0) ∗ ������� �� 

 
Definition of the Terms: 

Pixel QA is Pixel Quality Assessment Band 
SR  are Landsat Surface Reflectance 

 
3.4.2 Band Combination 

 
In this process, we used the band combination method by sort the all 

bands from the first band to the last band of each Landsat TM, ETM+ and OLI satellite 
images with a true color combination (including red, green, and blue band) using the 
remote sensing processing software (Pahlevan, et al., 2017), as shown in Table 3.3. The 
results are the Landsat satellite images that have been processed with shadow-cloud 
masking, and band combination successfully modified.  
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Table 3.3 Band combination of Landsat TM/ETM+/OLI imagery. 

Landsat Bands 
Sensors 

TM/ETM+ * OLI 
Coastal Aerosol - Band 1 
Blue Band 1 Band 2 
Green Band 2 Band 3 
Red Band 3 Band 4 
Near-infrared Band 4 Band 5 
SWIR-1 Band 5 Band 6 
SWIR-2 Band 7 Band 7 
Thermal Band 6 - 
Cirrus - Band 9 

* Landsat TM and ETM+ sensors have the same wavelength. 
 

3.4.3 NDVI Calculation 
 

In this study, we used the NDVI equation to calculate the vegetation 
index. The wavelength of related bands is NIR and red band. The NDVI equation of 
Landsat TM, ETM+, and OLI sensor to an analysis using the raster calculator tool in the 
geographic information processing software, as shown in Table 3.4. The NDVI 
calculation was performed for all 129 cloud-free SR images. The results of this step 
are the NDVI data in the form of raster data obtained from the Landsat TM, ETM+, and 
OLI satellite images that have been successfully modified, as shown in Figure 3.6. The 
NDVI color combination makes the pixel color display in satellite images based on the 
amount of vegetation found in that area. The NDVI color combination makes the pixel 
color display in satellite images based on the amount of vegetation found in that area. 
The forestry areas are dark green pixels. The agricultural areas are light green to yellow 
colors. The residential space or esplanades are red or orange colors. The black pixels 
are areas that are water, clouds, and shadows. 
 
Table 3.4 NDVI equation of TM/ETM+/OLI imagery. 

Equation Models 
Instead Equations 

Landsat TM/ETM+ * Landsat OLI 

NDVI = (NIR-RED)/(NIR+RED) 
(Band4-Band3)/ 
(Band4+Band3) 

(Band5-Band4)/ 
(Band5+Band4) 

* Landsat TM and ETM+ sensors have the same wavelength. 
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(A) Landsat TM 
 

(B) Landsat ETM+ (C) Landsat OLI 

 

16 March 1992 
 

29 January 2007 
 

4 February 2018 

 
Figure 3.6 Example of Landsat satellite images with NDVI color-level. 
 
 
3.5 LULC Data Process 
 
 

3.5.1 Updating of A302 LULC data 
 

Figure 3.7 shows the step of updating LULC 2016 to A302 LULC 2018. 
After selecting A302 LULC data (polygons) located in lowlands (less than 50 meters 
above mean sea level) from the original data (LULC 2016), we update and validate the 
A302 polygons from the historical high-resolution aerial images available in Google 
Earth ProTM program. The footprints of rubber plantation and the image interpretation 
were used to update and reshape the A302 polygon, as well as to re-identify and 
correct the type of land use. Also, the registration data of rubber farmers in Thalang 
District from 2013 to 2018 were used to ensure the polygons match with the shape of 
the approved plantation. There are 131 records of plantation registration which also 
used in final validation.  
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Figure 3.7 Updating para rubber LULC data. 
 

As for the reasons that we are interested in researching the para rubber 
plantations in the lowlands has details are as follows: Interpretation visually of satellite 
imagery in order to explore the boundaries of para rubber plots in the lowlands more 
clearly than high areas due to differences in the terrain and characteristics of cultivation 
on the steep areas, unlike in the lowlands that look simpler. Para rubber plots in the 
highlands to explore hard-to-access accuracy. It can be dangerous if we do not 
specialize in sloping areas. Para rubber cultivation in the lowlands has changed more 
than because can manage the planting area more easily than in the sloping areas. The 
expansion of para rubber plots in sloping lands is of more environmental concern (Fox, 
et al., 2014), as shown in Figure 3.8. 
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(A) Lowland Plantation 

 
(B) Highland Plantation 
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Figure 3.8 The difference between A302 lowland and highland plantations. 
 

3.5.2 Extraction NDVI Time Series 
 

Figure 3.9 displays the process of NDVI time series extraction. The main 
objective of this process is to extract NDVI values (in pixels) inside each A302 polygon. 
However, there are many different sizes of a plantation that cover the different number 
of pixels. For efficiency of data processing, we designed to randomly select a set of 
pixels for each plantation according to its size. In the first step, the A302 polygons were 
inward buffered with 15 meters to omit the pixels located at the edge of plantations. 
This means to avoid the effect of a mixed spectral signal. Then, the extracting points 
were generated using “Random Point Inside Polygon” command using QGIS software. 
The maximum number of random points in each polygon was defined by the 
distribution of the logarithm of the plantation area. The conditions to define the 
number of random points is detailed in the next section. We also set the offset when 
randomly generated extracting points to ensure that there are no extracting points 
reside in the same 30-meter pixel and that the creating points are spread over the 
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polygon area. Once the sample points were generated for each polygon, the IDs of 
A302 polygons were added to the points using “Add Polygon Attributes to Points” 
command. The 129 NDVI images were imported into QGIS software as the layers, as 
well as stacked in order of image acquisition time. Finally, the generated points were 
used to extracted NDVI values from stacked images using “Point Sampling Tool” plugin. 
Then, the point layer was saved to the CSV file format for further data modeling. 
 

 
 
Figure 3.9 Extraction NDVI time series. 
 

3.5.3 Number of Random Points 
 

The number of sample points in each rubber plot depends on the size 
of the original plot (A302 polygons). We generating a boxplot of the logarithm of the 
plot’s area to study the proportions of para rubber’s plot size and to determine the 
optimal random points, as shown in Figure 3.10. 
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Figure 3.10 The boxplot of log10(area). 
 

From the above figure, we defined the number of random points 
according to the range of the distribution of log10(area), including the value of the 
highest area (maximum value), the lowest area (minimum value), median value, first 
quartile (Q1), third quartile (Q3), and the interquartile range (IRQ) between Q1 and Q3. 
We used the value of each range from boxplot to calculate the number of random 
points, as shown in Table 3.5.  
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Table 3.5 Equation for the number of random points. 

The Size of log10(Area) 
Number of  

Random Points 
log10(Area)<Minimum rounddown(Area/(900x20)) 
log10(Area)≥Minimum&<Q1 rounddown(Area/(900x21)) 
log10(Area)≥Q1&<Median rounddown(Area/(900x22)) 
log10(Area)≥Median&<Q3 rounddown(Area/(900x23)) 
log10(Area)≥Q3&<Maximum rounddown(Area/(900x24)) 
log10(Area)≥Maximum&<Maximum+(IRQ*1) rounddown(Area/(900x25)) 
log10(Area)≥Maximum+(IRQ*1)&<Maximum+(IRQ*2) rounddown(Area/(900x26)) 
log10(Area)≥Maximum+(IRQ*2) rounddown(Area/(900x27)) 

 
Later, we define the offset of the random sample point with the 

distance between each point to be at least 30-meters apart, which according to the 
resolution of NDVI pixels. The equation for calculating offset denoted as the following: 
 

������ = (������ �� ������ ������ − 1) ∗ 30� 
 
 
3.6 Identify the Occurrence of Vegetation Clearance (T0) 
 
 

3.6.1 Inter-annual NDVI Profile Modeling 
 

We used the value of NDVI time series obtained from a process of 
extraction NDVI time series to generating the graph of inter-annual NDVI profile 
modeling for display the characteristics of the indicative vegetation greenness of a para 
rubber plantation from October 1991 to April 2018 (27 seasons). We must be done 
this process to every plot for identifying an occurrence of the vegetation clearance 
event in the next step (Verbesselt, et al., 2010).  

In this step, we write command for making the inter-annual NDVI profile 
graph using the statistical data analysis program. The results of this process are NDVI 
profile modeling and related the truth event with high-resolution historical satellite 
imagery from Google Earth ProTM program in four time periods, including (1) before 
vegetation clearance event, (2) during the event of re-planted as para rubber trees, (3) 
the period of plant growth, and (4) the condition of para rubber plantations at the 
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present period. Figure 3.11 displays an example of inter-annual NDVI profile modeling 
of para rubber plot ID 1464 was the plot that found the NDVI value to be the lowest 
value at T0 and has historical satellite imagery at T0 to confirm that is the true event. 
We can explain define various symbols in the graph of inter-annual NDVI profile 
modeling, as follows; 

- The y-axis is the level of NDVI values from 0 to 1. 
- The x-axis is a duration from 1991 to 2018 (27 years). 
- The color points are the type of satellite sensors. 
- The graph lines are mean, median and third quartile (Q3) of NDVI values. 
- The boxplots are the NDVI value range in each year. 
- The red dash-line is a year of vegetation clearance event at time T0. 
- The 1st blue dash-line is a previous event of vegetation clearance 2 years (T-2). 
- The 2nd blue dash-line is after the event of para rubber cultivation 6 years (T+6). 
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3.6.2 Identify Event of Re-planting at T0 
 

From the example of inter-annual NDVI profile above. We examined the 
events of the vegetation clearance for para rubber re-planting at T0 using high-
resolution historical satellite imagery from Google Earth ProTM program. It can provide 
historical satellite data in the study area from 2002 to 2018 (present). However, we 
must use the registration of rubber farmers in the year 2013 to 2018 for assembling 
together with this data. This verification process allows us to identify the year for the 
para rubber re-planting. After that, we organized the para rubber plots divided into two 
groups, namely the group that can identify the year of para rubber re-planting and 
group cannot be identified event is clear, this process shown in Figure 3.12. 
 

 
 
Figure 3.12 Identify event of re-planting at T0. 
 

3.6.3 Phenological Profile  
 

In this step, we used the NDVI profiles (30 samples), which found para 
rubber re-planting events at T0, for creating a phenological profile (T-2 – T+6). Then, we 
generated predictor variables from different of the value at T0 to other time for 
machine learning algorithms in data prediction modeling. This profile will display a 
graph of the distribution of NDVI values before cleared area events of old para rubber 
plantations for 2 years (T-2 – T-1), at the event of para rubber re-planting (T0), and after 
the planting of new para rubber for 6 years (T+1 – T+6). To train the data prediction 
model, the ML algorithm learns the values of NDVI time series in the various period of 
planting para rubber event. Figure 3.13 shows the phenological profile of 30 sample 
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lowland plantations. The information about the distribution of NDVI value from the 
training dataset (found T0 in inter-annual NDVI profile) will be used in further modeling.  
 

 
 
Figure 3.13 Phenological profile of 30 sample lowland para rubber plantations. 
 
  
3.7 Data Prediction Modeling 
 
 

3.7.1 Generate Predictor Variables 
 

In this step, we generate predictor variables including the value of the 
maximum (MAX), minimum (MIN), median (MED), first quartile (Q1) and third quartile 
(Q3) and the interquartile range (IRQ) from the inter-annual NDVI profiles during the 
new planting event (T-2 – T+6) For the predictor variables from four equations for being 
used in this study, as shown in Table 3.6. We have set the variables into two groups: 
variables at T0 and variables at T-2, T-1, T+1, T+2, T+3, T+4, T+5 and T+6.  
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Table 3.6 Equation for predictor variables. 
Ti

m
e Predictor Variables 

MAX Q3 MED Q1 MIN IRQ 

T0 ndvi.MAX.t0 ndvi.Q3.t0 ndvi.MED.t0 ndvi.Q1.t0 ndvi.MIN.t0 ndvi.IRQ.t0 
 NDVI.diff.MINt0.MAX NDVI.diff.Q1t0.Q3 NDVI.ratio.MEDt0.Q3 

T-2 ndvi.diff.MINt0.MAXtn2 ndvi.diff.Q1t0.Q3tn2 ndvi.ratio.MEDt0.Q3tn2 
T-1 ndvi.diff.MINt0.MAXtn1 ndvi.diff.Q1t0.Q3tn1 ndvi.ratio.MEDt0.Q3tn1 
T+1 ndvi.diff.MINt0.MAXtp1 ndvi.diff.Q1t0.Q3tp1 ndvi.ratio.MEDt0.Q3tp1 
T+2 ndvi.diff.MINt0.MAXtp2 ndvi.diff.Q1t0.Q3tp2 ndvi.ratio.MEDt0.Q3tp2 
T+3 ndvi.diff.MINt0.MAXtp3 ndvi.diff.Q1t0.Q3tp3 ndvi.ratio.MEDt0.Q3tp3 
T+4 ndvi.diff.MINt0.MAXtp4 ndvi.diff.Q1t0.Q3tp4 ndvi.ratio.MEDt0.Q3tp4 
T+5 ndvi.diff.MINt0.MAXtp5 ndvi.diff.Q1t0.Q3tp5 ndvi.ratio.MEDt0.Q3tp5 
T+6 ndvi.diff.MINt0.MAXtp6 ndvi.diff.Q1t0.Q3tp6 ndvi.ratio.MEDt0.Q3tp6 

 
Definition of the various variables: 

NDVI is the Normalized Difference Vegetation Index. 
MAX is the value of the maximum. 
MIN is the value of the minimum. 
MED is the value of the median. 
Q1 is the value of the first quartile. 
Q3 is the value of the third quartile. 
IRQ is the interquartile range (Q3 – Q1) 
t0 is the NDVI value of para rubber re-planting event. 
tn2 is the NDVI value of before re-planting event 2 years. 
tn1 is the NDVI value of before re-planting event 1 year. 
tp1 is the NDVI value of after re-planting event 1 year. 
tp2 is the NDVI value of after re-planting event 2 years. 
tp3 is the NDVI value of after re-planting event 3 years. 
tp4 is the NDVI value of after re-planting event 4 years. 
tp5 is the NDVI value of after re-planting event 5 years. 
tp6 is the NDVI value of after re-planting event 6 years. 
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3.7.2 Training and Testing Dataset 
 

For the process of generating the model and accuracy assessment of 
data prediction models in this study. The methods of data prediction modeling using 
recursive partitioning (RP). The main reason for adopting the RP algorithm is the ability 
to handle missing data in the training dataset. Since we generated predictor variables 
from the different of NDVI value at T0 and other times (T-2, T-1, T+1, T+2, T+3, T+4, T+5 and 
T+6) there were missing data at the first two and last six variables in some records. To 
train the model, we divided the NDVI profile data from plots that can identify T0 with 
the proportion of 60:40. The 60% of NDVI profile data were used as a training dataset 
and another 40% of data were used as the testing dataset for assessing the 
performance of the training model to ensure there are no under-fit or over-fit of the 
model. The principles of training and testing dataset. We can be explained this process 
as follows. 

- We used the training dataset to learn the appropriate variables and parameters 
for classification data of modeling. 

- We used the testing dataset to determine and customize the parameters need 
to put in the data prediction modeling such as the complexity parameter in 
the RP algorithm. 

The accuracy assessment index of the training model must be accurate, 
not very different. If the value is very different, then the model is not good (Reunanen, 
2003; Brownlee, 2017).  
 
 
3.8 Model Accuracy Assessment 
 
 

In this study, we used the confusion matrix for accurate assessment of 
the classification age of para rubber plantations in the lowland of Thalang District, 
Phuket Province, Southern Thailand, which we designed this table for the accuracy 
assessment of the classification age of para rubber plantations with a training, cross-
validation, and testing dataset, the actual class is the truth data from ground survey, 
and predicted class is the data obtained from the data prediction model, as shown in 
Table 3.7 to determine the best method for identifying the para rubber plantation 
ages. In this step, we accuracy assessment using the statistical data analysis program. 
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Table 3.7 Confusion matrix for accuracy assessment. 

Confusion Matrix 
Actual Class 

Error Matrix 
0 1 Sum 

Pr
ed

ict
ed

 
Cl

as
s 0 TP FP TP+FP OA  

1 FN TN FN+TN F1-score  
Sum TP+FN FP+TN Accuracy   

 
The confusion matrix equation is as follows; 

 

��������� =
��

(�� + ��)
 

 

������ =
��

(�� + ��)
 

 

������� �������� =
(�� + ��)

(�� + �� + �� + ��) ∗ 100
 

 

�� − ����� =
2 ∗ (������ ∗ ���������)

(������ + ���������)
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CHAPTER 4 
 
 

RESULTS 
 
 

Finally, we assessed the accuracy of the predicted model to create a 
spatial database and mapping the age of para rubber plantations classified at the 1-
year level. We found that there is a possibility of using Landsat time series at the 30-
meter spatial resolution to identify para rubber plantation ages, especially in this study 
area, which we can summarize detail of the various results as follows; 
 
 
4.1 Para Rubber Plots 
 
 

4.1.1 Size of Plots and Sample Points 
 

After the process of updating LULC data using high-resolution historical 
images from Google Earth ProTM program and registration data of rubber farmers (2013 
– 2018) of Thalang District, Phuket Province, were collected by the Rubber Authority 
of Thailand (RAOT). Currently, we found 2,196 plots of lowland para rubber plantation 
in Thalang District. The total area is 51,490,442.02 square meters. The largest and 
smallest of plot size were 464,102.28 and 1,037.11 square meters, respectively. The 
area size, mostly at 14,099.10 square meters. Figure 4.1 shows the lowland rubber 
plantations for both training and predicting datasets. 

Then, we generated a boxplot of the logarithm of the plot’s size for 
determining the number of random points, as shown in Figure 4.2. We found that the 
maximum value was 5.668, the minimum value was 3.017, the median value was 4.149, 
the first quartile (Q1) was 3.914, the third quartile (Q3) was 4.410. Thus, the difference 
between Q1 and Q3 (Interquartile Range) was 0.495. We used the value of each range 
from boxplot to calculated the number of random points, as shown in Table 4.1. 
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Figure 4.1 Lowland para rubber plantations in Thalang District. 
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Figure 4.2 The log10(area)’s boxplot of para rubber plantations. 
 
Table 4.1 Equation for the number of random points. 

The log10 of Area Size 
Number of  

Random Points 
log10(Area)<3.017 rounddown(Area/(900x20)) 
log10(Area)≥3.017&<3.914 rounddown(Area/(900x21)) 
log10(Area)≥3.914&<4.149 rounddown(Area/(900x22)) 
log10(Area)≥4.149&<4.410 rounddown(Area/(900x23)) 
log10(Area)≥4.410&<5.668 rounddown(Area/(900x24)) 
log10(Area)≥5.668&<5.668+(0.495*1) rounddown(Area/(900x25)) 
log10(Area)≥5.668+(0.495*1)&<5.668+(0.495*2) rounddown(Area/(900x26)) 
log10(Area)≥5.668+(0.495*2) rounddown(Area/(900x27)) 
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4.2 Data Prediction Model 
 
 

4.2.1 Identify Event of Re-planting at T0 
 

There were 2,196 A302 polygons after updating the original LULC data. 
However, there were 28 small plots which their areas were less than 900 when buffer 
15 meters inward. So, the number of random points is zero when we round-down the 
number. From the interpretation of historical images and the verification of inter-
annual NDVI profile, identified the occurrence of vegetation clearance event at T0 in 
each plot. We found that para rubber plots can identify para rubber re-planting event 
was 336 plots, as shown in Table 4.3. 
 

4.2.2 RP Modeling 
 

Recursive partitioning algorithm was used to train the prediction model. 
The NDVI time series data from 336 plantations were randomly separated into training 
and testing dataset. We have para rubber 202 plots used for training data, which each 
plot has 27 values (season), so the number of sample size is 5,454. Figure 4.3 displays 
the performance of 30 repeated RP algorithm in different complexity parameters 
modeling over the random testing dataset. We found that using 0.01 as complexity 
parameters the RP model performed the best prediction. Figure 4.4 shows the structure 
of a decision tree using 0.01 as a complexity parameter in the RP algorithm. 
 

 
 
Figure 4.3 Distribution of F1-score from 30 repeated RP modeling with different 
complexity parameters. 
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4.2.3 Model Accuracy Assessment 
 

For the accuracy assessment of data prediction models in this study. 
We used the confusion matrix to evaluate the potential of modeling from the recursive 
partitioning algorithm with complexity parameters as 0.01. We can describe the 
accuracy of the models, as shown in Table 4.2. The sample data was divided into the 
training and test dataset are 5427 and 3645, respectively. The overall accuracy of 
training and test datasets were 98.55% and 97.84%, respectively. The accuracy 
assessment of F1-score of a training and test dataset were 0.80 and 0.69, respectively. 
There was insignificant different of F1-score from training and testing dataset. Thus, the 
RP model with complexity parameters as 0.01 was acceptable and used to predict the 
NDVI time series from unknown T0 from 1,832 plots. 
 
Table 4.2 Model accuracy assessment of Recursive Partitioning. 

Training Data 
Actual Class 

Error Matrix 
0 1 Sum 

Pr
ed

ict
ed

 
Cl

as
s  0 5210 37 5247 OA 98.55 

1 42 165 207 F1-score 0.80 
Sum 5252 202 5454   

Test Data 
Actual Class 

Error Matrix 
0 1 Sum 

Pr
ed

ict
ed

 
Cl

as
s  0 3453 47 3500 OA 97.84 

1 31 87 118 F1-score 0.69 
Sum 3484 134 3648   

 
4.2.4 Unknown T0 Prediction 

 
After we know that using 0.01 as the complexity parameters produced 

the best prediction result, we performed model training from training (known T0) 
dataset and then apply the model to the predicting (unknown T0) dataset. The process 
was repeated 100 times and the result of T0 prediction (year of rubber planting) was 
recorded. The maximum the predicted T0 was chosen and the percentage of 
nominated T0 was calculated. Table 4.3 shows the prediction result from both training 
and prediction datasets using the training RP model. 
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Table 4.3 Results of para rubber plantation ages prediction in Thalang District.  
Lowland (plots) 

Num. of Plots 2,196 
Small Plots 28 
Modeling 2,168  
 Training (known T0) Predicting (unknown T0) 
 336 (15.5%) 1,832 (84.5%) 
Corrected  285 (84.8%) 

 

Incorrected  46 (13.7%) 
 

NA 5 (1.5%) 397 (21.7%) 
 
  In training dataset, there are 84.8% of corrected prediction. The miss-
prediction account 13.7% which the average of the incorrect year of prediction is 0.721 
year. The NA (short for “Not Available”) indicates under prediction. The detail of miss-
predicted year is displayed in Figure 4.5. The most miss-predicted year is one year (17 
out of 46). The results of rubber plantation ages prediction are summarized in Table 
4.4 and Figure 4.6 shows the map of predicted rubber plantation ages. The NA indicates 
the under-prediction in case of predicting training dataset. On another hand, it indicates 
both under prediction and year of rubber planting is greater than 27 years old in case 
of predicting dataset.  
 

 
 
Figure 4.5 Number of the miss-predicted year. 
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Table 4.4 Results of para rubber plantation ages prediction in Thalang District. 
Year of Re-planting  Plot Age (years old) Number of Plots 

1992 26 82 
1993 25 18 
1994 24 24 
1995 23 18 
1996 22 54 
1997 21 39 
1998 20 77 
1999 19 63 
2000 18 70 
2001 17 27 
2002 16 92 
2003 15 86 
2004 14 92 
2005 13 188 
2006 12 84 
2007 11 48 
2008 10 67 
2009 9 89 
2010 8 47 
2011 7 79 
2012 6 74 
2013 5 80 
2014 4 20 
2015 3 98 
2016 2 58 
2017 1 36 
2018 < 1 48 
NA  402 

Total  2,168 



53 

 
 
Figure 4.6 Map of lowland para rubber plantation ages in Thalang District, Phuket 
Province, Southern Thailand in the year 2018. 
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Figure 4.7 Map of percent of age prediction for lowland para rubber plantation in 
Thalang District, Phuket Province, Southern Thailand in the year 2018. 
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4.2.5 Prediction Validation 
 

The registration data of rubber plantations from the RAOT then were 
used to validate the prediction result. There were obtained 131 records from RAOT. 
However, those are 28 registrations of rubber planting that have been approved by 
RAOT in the year 2018 which we cannot use as the validated data because the farmers 
normally start planting rubber in their lands one year after approval. Thus, there were 
103 records used in prediction validation. Figure 4.8 summarizes the validation of 
rubber plantation’ age prediction using data from RAOT. The negative number on the 
x-axis indicates the predicted year is less than the actual planting year. The y-axis is 
the number of plots that have error prediction. There were 15 plots that have correct 
prediction and there were 54 plots that have 1-year miss-prediction. The average of 
the in-corrected year of prediction is 3.62 years. 
 

 
 
Figure 4.8 Number of the miss-predicted year using data from RAOT. 
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CHAPTER 5 

 
 

DISCUSSION AND CONCLUSION  
 
 

From this study of investigating the potential of using time series of 
using 16-day composite Landsat time series at the 30-meter spatial resolution to 
identify the abrupt change of vegetation greenness in para rubber plantations. The 
inter-annual vegetation profile of para rubber planting event that has been extracted 
and generates predictor variables for supervised classification in Machine Learning. The 
tree-based recursive partitioning was used to train a model from the training dataset 
and predict the event of para rubber re-planting and plantation lifespan. Last, we 
assessed the accuracy of the predicted model to create a spatial database and 
mapping the age of para rubber plantations classified at the 1-year level in Thalang 
District, Phuket Province, Southern Thailand. We can discuss the advantages and 
disadvantages and summarize all the content from this research as follows. 
 
 
5.1 Discussion 
 
 

There are good reasons for using Landsat satellite images for this study. 
We chose data used NDVI time series every 16-day with a 30-meter spatial resolution 
from Landsat TM, ETM+, and OLI sensors because the finished product and can 
download the data for free. It has the potential to identify the age of para rubber 
plantations that are larger than 30-meter. It can also be used to study other LULC, 
such as oil palm, forestry, or other agricultural areas. All of these offers advantages for 
using Landsat NDVI time series. However, we can come across obstacles or factors that 
affect the accuracy of results from this study are based on seven issues as follows; 

1)  The data of NDVI time series extracted from the Landsat TM, ETM+, and OLI 
satellite images affect the accuracy of the results. From this study, we found that the 
range of NDVI values obtained from Landsat OLI is higher than Landsat TM and ETM+, 
which it affects to display the graph of inter-annual NDVI profiles. 
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2)  Annual seasons or atmospheric phenomena affects the ability to download 
satellite images of each year that can be used, due to the number of satellite images 
affects the accuracy of the results in this study. Also, some satellite images must 
eliminate the pixels of shadow and clouds, which causes the DNs of satellite images 
to be changed to NA. 

3)  The number of sample points will be more or less affect the accuracy of 
results. If there are many sample points, the results are more accurate, which the 
number of sample points depends on the size of para rubber plot. Therefore, it 
indicates that the prediction of large plots is more accurate than small para rubber 
plots. 

4)  The deciduous season of the para rubber trees is between December and 
March. It causes the NDVI values to be lower than usual period, which affects the inter-
annual NDVI Profile graphs resulting in the high variation of predictor variables. 

5)  In this study, we found that the other plants or human-made that are mixed 
in the para rubber plots. It affects the NDVI time series as well. For example, mixed 
young rubber tree with pineapples cause NDVI values to be higher than usual. Buildings 
cause the NDVI value to be lower than average. This negative effect can vary NDVI 
distribution in the second and third year after year of planting. 

6)  During the cleared area for the cultivation of plants (T0). It was found that 
the NDVI value did not reach zero due to farmers gradually cleared the plot by partition 
the area into sections, causing the plants to remain in the plot. In addition, there may 
be objects that are mixed in the plantation such as wood carcasses, plant debris and 
weeds, etc. It affects the reflection values send to the satellite receiver (Adsavakulchai, 
2015). 

7)  These are 28 registrations of para rubber planting that have been approved 
by RAOT in the year 2018, which we cannot use as the validated data because the 
farmers typically start planting rubber in their lands one year after approval. Thus, 
there were 103 records used in prediction validation. 

This presented approach can be applied to other dense satellite time 
series with a higher spatial resolution effectively. However, higher-resolution satellite 
images are also some disadvantages, such as enormous file size, longer download time, 
larger storage space, a longer time for data analysis. 
 
 
 



58 

5.2 Conclusion 
 
 

This research is a study of an abrupt change of vegetation greenness 
and investigates the potential and methods used in a decision tree algorithm to identify 
para rubber plantations from 0 to 27 years using 16-day Landsat time series data of 
the lowland para rubber plantations in Thalang District, Phuket Province, Southern 
Thailand. First, we extracted data from NDVI time series from Landsat imagery to create 
the inter-annual NDVI profile modeling were 2,196 plots para rubber plantation to 
identify the para rubber re-planting event (vegetation clearance occurred) event at T0 
with the high-resolution historical satellite imagery from Google Earth ProTM program. 
We divided the data into two groups: modeling dataset (known T0) and predicting 
dataset (unknown T0) which were 336 and 1,832 plots, respectively. Then, we 
generated the predictors for decision tree classification from inter-annual NDVI profile. 
The sample data was divided into the training, and test dataset are 5427 and 3645, 
respectively. The overall accuracy of training and test dataset was 98.55% and 97.84%, 
respectively. The accuracy assessment of F1-score of a training and test dataset were 
0.80 and 0.69, respectively. There was insignificant different of F1-score from training 
and testing dataset. Thus, the recursive partitioning model with complexity parameters 
as 0.01 was acceptable and used to predict the NDVI time series. Therefore, we used 
the results obtained prediction to identify para rubber plantation ages to generating 
the mapping of para rubber plantation ages in Thalang District, Phuket Province, 
Thailand. The final result is a map of para rubber plantation ages classified at 1-year 
level was generated using a recursive partitioning algorithm. We found that the 30-
meter spatial resolution Landsat NDVI time series successfully identifies para rubber 
plantation ages, especially for large plots than the image resolution (pixel size) of the 
Landsat satellite imagery from the remote sensing technology. In addition, this research 
can be applied research methodology for various research applications, which can be 
used for inspecting other agricultural areas including monitoring for forestry 
encroachment, natural disaster risks, etc. The high precision database will enable 
accurate yield prediction, which help makes the decision-making and planning for 
management in the agricultural sector better. The success of this research results is an 
important fundamental step in the further development of Thailand's agricultural 
technology. 
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Table I – Landsat Collections (Landsat-5 TM) 
ID Date Taken DOY ID Date Taken DOY 
1 1992-03-16 75 35 2006-02-19 50 
2 1992-04-17 107 36 2006-03-07 66 
3 1992-12-29 363 37 2006-11-18 322 
4 1993-03-03 62 38 2006-12-04 338 
5 1994-01-17 17 39 2006-12-20 354 
6 1994-11-17 321 40 2007-02-06 37 
7 1994-12-19 353 41 2007-02-22 53 
8 1995-01-20 20 42 2008-10-06 279 
9 1995-03-09 68 43 2009-01-10 10 
10 1995-04-10 100 44 2009-01-26 26 
11 1996-02-24 55 45 2009-02-11 42 
12 1996-03-11 70 46 2009-02-27 58 
13 1996-04-12 102 47 2009-11-10 314 
14 1997-02-26 57 48 2009-11-26 330 
15 1997-04-15 105 49 2009-12-12 346 
16 1997-11-25 329 50 2010-01-29 29 
17 1998-01-12 12 51 2010-02-14 45 
18 1998-03-01 60 52 2011-01-16 16 
19 1998-03-17 76 53 2011-02-01 32 
20 1999-02-16 47 54 2011-04-22 112 
21 1999-03-04 63 55 2011-10-15 288 
22 1999-03-20 79 Total Images 55 
23 2000-02-03 34   
24 2001-01-04 4    
25 2001-02-05 36    
26 2001-02-21 52    
27 2004-12-30 364    
28 2005-01-15 15    
29 2005-01-31 31    
30 2005-02-16 47    
31 2005-03-04 63    
32 2005-03-20 61    
33 2005-04-21 111    
34 2006-02-03 34    
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Table II – Landsat Collections (Landsat-7 ETM+) 
ID Date Taken DOY ID Date Taken DOY 
1 2000-12-27 361 35 2014-02-01 32 
2 2001-11-28 332 36 2014-02-17 48 
3 2002-01-15 15 37 2014-03-05 64 
4 2002-03-04 63 38 2014-11-16 320 
5 2003-01-18 18 39 2015-01-03 3 
6 2003-03-23 82 40 2015-01-19 19 
7 2003-12-04 338 41 2015-02-04 35 
8 2004-01-21 21 42 2015-02-20 51 
9 2004-04-10 100 43 2015-03-08 67 
10 2004-12-22 356 44 2015-04-09 99 
11 2005-01-23 23 45 2015-12-21 355 
12 2005-02-08 39 46 2016-01-06 6 
13 2005-02-24 55 47 2016-01-22 22 
14 2005-11-23 327 48 2016-02-23 54 
15 2006-10-25 298 49 2016-03-10 69 
16 2006-11-26 330 50 2016-04-11 101 
17 2007-01-29 29 51 2017-02-09 40 
18 2007-02-14 45 52 2017-02-25 56 
19 2007-11-29 333 53 2017-12-10 344 
20 2008-01-16 16 54 2017-12-26 360 
21 2008-04-05 95 55 2018-02-12 43 
22 2009-01-18 18 56 2018-02-28 59 
23 2009-02-19 50 Total Images 56 
24 2010-01-21 21   
25 2010-02-06 37    
26 2010-03-10 69    
27 2011-02-25 56    
28 2011-04-14 104    
29 2011-10-23 296    
30 2011-12-26 360    
31 2012-01-27 27    
32 2012-02-12 43    
33 2013-01-29 29    
34 2013-03-18 77    
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Table III – Landsat Collections (Landsat-8 OLI) 
ID Date Taken DOY    
1 2013-12-23 357    
2 2014-01-24 24    
3 2014-02-25 56    
4 2014-03-13 72    
5 2015-01-11 11    
6 2015-01-27 27    
7 2015-02-12 43    
8 2015-02-28 59    
9 2015-03-16 75    
10 2015-04-17 107    
11 2016-01-14 14    
12 2016-01-30 30    
13 2016-02-15 46    
14 2016-03-18 77    
15 2016-04-03 93    
16 2016-04-19 109    
17 2017-02-17 48    
18 2018-02-04 35    

Total Images 18    
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Appendix B 
Registration of Rubber Farmers in Thalang District 
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Table IV – Registration of rubber farmers in Thalang District 2018 
ID PlotID Latitude Longitude Approved 
1 24 8° 03' 05.88" N 98° 18' 19.24" E 2015 
2 52 8° 01' 41.11" N 98° 21' 36.75" E 2015 
3 65 7° 58' 29.77" N 98° 19' 52.53" E 2018 
4 68 8° 00' 46.89" N 98° 23' 38.94" E 2018 
5 69 8° 01' 53.34" N 98° 21' 15.51" E 2014 
6 83 8° 06' 46.99" N 98° 21' 55.81" E 2014 
7 100 7° 59' 49.02" N 98° 22' 13.11" E 2015 
8 154 8° 10' 53.27" N 98° 18' 59.65" E 2015 
9 157 8° 09' 54.63" N 98° 18' 52.44" E 2015 
10 312 8° 04' 12.92" N 98° 18' 18.19" E 2015 
11 325 8° 07' 03.69" N 98° 18' 52.79" E 2018 
12 390 8° 03' 50.45" N 98° 23' 32.89" E 2015 
13 403 8° 03' 31.84" N 98° 20' 39.78" E 2015 
14 406 8° 02' 57.31" N 98° 20' 16.86" E 2014 
15 408 8° 02' 55.43" N 98° 20' 57.56" E 2015 
16 473 8° 02' 14.67" N 98° 21' 03.91" E 2017 
17 475 8° 02' 12.82" N 98° 21' 05.09" E 2017 
18 481 8° 02' 32.75" N 98° 20' 56.78" E 2015 
19 492 8° 02' 40.30" N 98° 21' 34.10" E 2017 
20 636 8° 04' 32.42" N 98° 21' 13.13" E 2015 
21 693 8° 02' 32.74" N 98° 19' 21.02" E 2017 
22 748 8° 03' 08.42" N 98° 19' 14.23" E 2015 
23 753 8° 04' 53.55" N 98° 21' 10.50" E 2018 
24 785 8° 01' 07.29" N 98° 20' 57.67" E 2017 
25 789 8° 01' 43.17" N 98° 21' 00.72" E 2014 
26 807 8° 00' 50.95" N 98° 21' 45.65" E 2015 
27 839 8° 02' 07.81" N 98° 21' 03.42" E 2015 
28 886 8° 00' 05.21" N 98° 20' 15.69" E 2016 
29 894 7° 59' 40.20" N 98° 19' 21.26" E 2014 
30 895 7° 59' 32.81" N 98° 19' 32.99" E 2015 
31 897 7° 59' 50.41" N 98° 19' 18.82" E 2015 
32 927 7° 59' 45.80" N 98° 21' 39.13" E 2017 
33 953 7° 58' 23.53" N 98° 20' 10.95" E 2015 
34 960 8° 00' 09.92" N 98° 19' 31.25" E 2016 
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Table IV – Registration of rubber farmers in Thalang District 2018 (cont.) 
ID Plot ID Latitude Longitude Approved 
35 1046 7° 59' 37.19" N 98° 19' 07.87" E 2014 
36 1050 8° 05' 58.84" N 98° 22' 02.29" E 2015 
37 1128 8° 09' 46.55" N 98° 19' 09.77" E 2015 
38 1163 7° 59' 34.54" N 98° 19' 15.55" E 2014 
39 1179 8° 02' 22.88" N 98° 20' 51.54" E 2017 
40 1184 8° 09' 59.54" N 98° 18' 50.28" E 2015 
41 1240 8° 07' 05.45" N 98° 18' 59.53" E 2015 
42 1261 8° 07' 21.43" N 98° 18' 34.36" E 2017 
43 1272 8° 05' 48.19" N 98° 18' 52.80" E 2015 
44 1284 8° 02' 11.04" N 98° 19' 12.04" E 2018 
45 1288 8° 02' 45.56" N 98° 19' 13.72" E 2017 
46 1292 8° 02' 42.51" N 98° 19' 25.70" E 2017 
47 1301 8° 03' 33.28" N 98° 19' 59.34" E 2015 
48 1311 8° 04' 33.99" N 98° 21' 08.41" E 2015 
49 1325 8° 04' 34.96" N 98° 22' 53.58" E 2017 
50 1331 8° 03' 36.21" N 98° 23' 40.73" E 2017 
51 1348 8° 04' 22.67" N 98° 25' 07.23" E 2018 
52 1376 8° 00' 03.68" N 98° 23' 07.07" E 2017 
53 1494 8° 00' 14.65" N 98° 19' 45.62" E 2018 
54 1495 8° 00' 17.04" N 98° 19' 49.09" E 2014 
55 1551 8° 02' 11.05" N 98° 21' 07.41" E 2015 
56 1566 8° 03' 32.96" N 98° 18' 52.72" E 2016 
57 1651 8° 03' 30.60" N 98° 21' 08.01" E 2017 
58 1656 8° 02' 58.18" N 98° 23' 36.38" E 2015 
59 1658 8° 04' 35.49" N 98° 21' 21.53" E 2016 
60 1673 8° 10' 51.04" N 98° 19' 00.48" E 2015 
61 1674 8° 10' 00.10" N 98° 18' 45.48" E 2017 
62 1675 8° 09' 48.54" N 98° 18' 35.47" E 2017 
63 1677 8° 05' 10.32" N 98° 21' 26.33" E 2015 
64 1678 8° 03' 45.31" N 98° 21' 01.98" E 2016 
65 1679 8° 04' 13.18" N 98° 21' 17.65" E 2014 
66 1680 8° 04' 12.25" N 98° 18' 21.33" E 2015 
67 1682 8° 04' 54.37" N 98° 22' 33.63" E 2015 
68 1683 8° 04' 35.57" N 98° 22' 55.20" E 2017 
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Table IV – Registration of rubber farmers in Thalang District 2018 (cont.) 
ID Plot ID Latitude Longitude Approved 
69 1684 8° 04' 31.84" N 98° 23' 00.62" E 2017 
70 1685 8° 04' 36.94" N 98° 23' 01.28" E 2017 
71 1686 8° 04' 35.84" N 98° 23' 02.10" E 2017 
72 1688 8° 02' 46.07" N 98° 20' 28.14" E 2015 
73 1689 8° 02' 43.84" N 98° 20' 27.86" E 2015 
74 1690 8° 02' 56.57" N 98° 20' 59.07" E 2015 
75 1691 8° 07' 49.80" N 98° 19' 00.33" E 2015 
76 1694 8° 02' 26.59" N 98° 20' 36.23" E 2017 
77 1696 8° 02' 27.44" N 98° 21' 04.36" E 2015 
78 1697 8° 03' 49.33" N 98° 19' 26.76" E 2014 
79 1700 8° 02' 59.43" N 98° 18' 49.87" E 2015 
80 1701 8° 03' 00.14" N 98° 18' 50.07" E 2015 
81 1702 8° 03' 01.55" N 98° 18' 50.66" E 2015 
82 1703 8° 02' 57.14" N 98° 19' 35.95" E 2016 
83 1704 8° 01' 52.39" N 98° 19' 00.01" E 2017 
84 1706 8° 00' 01.26" N 98° 18' 53.46" E 2014 
85 1707 8° 03' 08.93" N 98° 23' 32.93" E 2017 
86 1708 8° 02' 13.17" N 98° 23' 54.46" E 2017 
87 1709 8° 01' 03.10" N 98° 23' 47.77" E 2016 
88 1710 8° 01' 01.37" N 98° 23' 47.12" E 2016 
89 1711 7° 59' 52.49" N 98° 22' 12.60" E 2015 
90 1712 7° 59' 53.72" N 98° 21' 28.88" E 2016 
91 1713 8° 02' 33.70" N 98° 21' 19.96" E 2018 
92 1714 8° 03' 39.96" N 98° 19' 09.54" E 2018 
93 1715 8° 02' 09.76" N 98° 19' 14.37" E 2018 
94 1716 8° 02' 49.26" N 98° 24' 17.65" E 2018 
95 1717 8° 02' 48.50" N 98° 24' 04.20" E 2018 
96 1718 8° 02' 12.04" N 98° 23' 57.74" E 2018 
97 1719 8° 00' 45.61" N 98° 23' 46.18" E 2018 
98 1720 7° 59' 58.40" N 98° 21' 39.80" E 2018 
99 1721 8° 00' 00.76" N 98° 21' 29.10" E 2017 
100 1722 7° 59' 54.50" N 98° 21' 44.00" E 2018 
101 1723 7° 57' 55.32" N 98° 20' 20.26" E 2017 
102 1756 8° 07' 23.21" N 98° 19' 11.05" E 2017 
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Table IV – Registration of rubber farmers in Thalang District 2018 (cont.) 
ID Plot ID Latitude Longitude Approved 

103 1765 8° 08' 59.00" N 98° 19' 21.10" E 2016 
104 1817 8° 02' 28.79" N 98° 20' 41.07" E 2016 
105 1818 8° 02' 26.33" N 98° 20' 39.13" E 2017 
106 1847 8° 03' 36.84" N 98° 23' 37.44" E 2015 
107 1852 8° 04' 15.27" N 98° 25' 31.52" E 2017 
108 1860 8° 02' 21.56" N 98° 17' 49.21" E 2013 
109 1894 8° 03' 25.06" N 98° 19' 06.69" E 2014 
110 1905 8° 03' 08.15" N 98° 18' 41.23" E 2018 
111 1918 7° 58' 25.82" N 98° 21' 44.05" E 2016 
112 1932 8° 03' 50.11" N 98° 24' 16.84" E 2015 
113 1950 8° 05' 48.47" N 98° 18' 57.32" E 2015 
114 1981 8° 02' 36.63" N 98° 21' 18.90" E 2018 
115 1997 8° 03' 08.00" N 98° 24' 05.79" E 2016 
116 2002 8° 04' 07.12" N 98° 17' 53.36" E 2015 
117 2003 8° 04' 36.16" N 98° 21' 17.98" E 2016 
118 2004 8° 04' 32.97" N 98° 22' 50.16" E 2017 
119 2005 8° 03' 04.70" N 98° 19' 22.92" E 2015 
120 2006 8° 05' 53.03" N 98° 21' 43.92" E 2018 
121 2007 8° 05' 52.76" N 98° 21' 45.24" E 2018 
122 2008 8° 05' 56.88" N 98° 21' 49.75" E 2018 
123 2009 8° 05' 53.13" N 98° 21' 47.58" E 2018 
124 2010 8° 05' 52.62" N 98° 21' 46.51" E 2018 
125 2011 8° 05' 53.82" N 98° 21' 48.59" E 2018 
126 2012 8° 05' 55.57" N 98° 21' 49.10" E 2018 
127 2013 8° 02' 39.14" N 98° 21' 20.98" E 2018 
128 2014 8° 03' 34.80" N 98° 24' 15.21" E 2018 
129 2078 7° 59' 46.65" N 98° 22' 09.29" E 2018 
130 2175 8° 01' 41.50" N 98° 21' 39.53" E 2015 
131 2204 8° 02' 16.32" N 98° 17' 43.75" E 2016 
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