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ABSTRACT

The determination of bloodstain age can link the bloodstain to the
crime, exclude a bloodstain as being irrelevant to the crime, approximate the time
since the event has occurred, and collaborate eyewitness accounts. However,
estimating the age of bloodstain is still a problem in actual forensic science practice.
In this study, we used digital image analysis of bloodstains to estimate the time since
deposition. This method was performed under different controlled conditions, i.e. with
different donors, substrate materials, humidity, light exposure, anticoagulant and
temperatures to determine the effects of each factor on the age estimation process.
Three smartphones (Samsung Galaxy S Plus, Apple iPhone 4, and Apple iPad 2) were
compared. The environmental effects — temperature, humidity, light exposure, and
anticoagulant — on the bloodstain age estimation process were explored. The color
values from the digital images were extracted and correlated with time since
deposition. Magenta had the highest correlation (R*= 0.966) and was selected for
further studies. The Samsung Galaxy S Plus was the most suitable smartphone as its
magenta decreased exponentially with increasing time and had highest repeatability
(low variation within and between pictures). Moreover 83% of mock casework
samples were correctly classified. No significant within-person and between-person
variations (p >0.05) was observed. However, the camera, temperature, humidity, and
substrate color were influenced the color change of magenta and thus they affected
the age determination process. Further improvements to the process could be achieved
by including the environmental factor in the prediction equations.

Our technique provides a cheap, rapid, easy-to-use, and truly portable

alternative to more complicated analysis using specialized equipment, e.g.
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spectroscopy and HPLC. With proper lighting and controls, the method has the

potential to be used in crime scenes directly.
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SUMMARY OF CONTENTS

1.1 INTRODUCTION

Various types of evidence are commonly found in a crime scene, such
as hairs, blood, and saliva. Bloodstains are important evidence that is found in violent
crimes such as homicide, hit-and-run, and assaults (Jerry et al. 2011). In forensic
science, blood is examined to provide numerous information, including an account of
what has taken place (blood pattern analysis). While DNA profiling can identify the
suspects and victims in the scene, blood pattern analysis can elucidate the sequence of
events of the case (Liu et al. 2006). Additionally, determination of bloodstain age can
link the bloodstain to the crime, exclude a bloodstain as being irrelevant to the crime,
approximate the time since the event has occurred, and collaborate eyewitness
accounts.

However, estimating the age of bloodstain is still a problem in actual forensic
science practice. Although various techniques have been used to estimate the age of
bloodstains (Schwarzacher 1930, Miki et al. 1987, Inoue et al. 1991, Matsuoka et al.
1995, Anderson et al. 2005, Strasser et al. 2007, Hanson 2010, Patterson 1960, Inoue
et al. 1992, Andrasko 1997, Kind et al. 1972, Bremmer et al. 2010, Botonjic-Sehic et
al. 2009, Bauer et al. 2003). No method has been put into routine use. The main
techniques are based on spectroscopy (Schwarzacher 1930, Patterson 1960, Kind et
al. 1972, Bremmer et al. 2010, Botonjic-Sehic et al. 2009). However, studies on the
effect of substrate color and composition, humidity, and temperature on the bloodstain
age estimation process are mostly lacking. Alternatively, Miki et al. recorded
hemoglobin derivatives by measuring their electron paramagnetic resonance
properties (Miki et al. 1987), but this approach has not been successful. Due to these
errors, attempts to the techniques and decrease the error rates are constantly being
made, such as by using high performance liquid chromatography (Inoue et al. 1991).
This method is used to determine the relationship between the age of bloodstain and
the ratio of hemoglobin alpha chain peak areas to the heme protein. Other techniques

that have been studied are using oxygen electrode to measure the amount of oxy-



hemoglobin (HbO,) (Matsuoka et al. 1995), as well as measuring the rate of RNA
degradation in aging bloodstains (Anderson et al. 2005). In addition, near infrared
(NIR) spectroscopy and atomic force microscopy (AFM) have also been used
(Strasser et al. 2007, Jiang 2012). Nonetheless, all these methods are complex and
require the use of expensive, specialized equipments, which also limits their use at
crime scenes. Only the most recent age estimation technique using reflectance
spectroscopy is portable and quick enough for use at the scene (Hanson 2010), but it
is still limited to bloodstains found on a white background.

The simplest method for bloodstain age estimation is the observation
for color change in a blood spot. The color of bloodstains changes from red to brown
and can be observed with naked eyes (James 1988). This change is due to the
degradation of hemoglobins. As blood leaves the body, hemoglobin saturate
completely with oxygen in the ambient environment to oxy-Hb (HbO;). Due to the
lack of cytochrome b5 reductase, the autoxidation of HbO, to met-Hb form is not
reversed as in in vivo conditions. (Smith et al. 2004). Patterson et al. utilized this
property to determine the age of bloodstains by measuring the color presented
(Patterson et al. 1960). They also found that the changes in bloodstain’s reflectance
spectra depend on environmental conditions such as exposure to light, temperature
and humidity. It is expected that these color changes should also be detected
quantitatively in a digital image of the bloodstains. Digital image analysis could be
used to extract the color values of the bloodstains in different color spaces available,
e.g. Red-Green-Blue (RGB) and Hue-Saturation-Value (HSV). This technique has
been used to determine the relationship of the color change of peaches to storage time
(Thai et al. 1989) and for a semi-quantitative analysis of amphetamine and
methylamphetamine (Choodum 2011). Unlike the aforementioned techniques, digital
image analysis requires only a digital camera and computer, both of which are readily
available and thus can be easily carried out at crime scenes, making this method low-
cost, simple, rapid, and truly portable.

In this study, we used digital image analysis of bloodstains to estimate
the time since deposition. This method was performed under different controlled
conditions, i.e. with different donors, substrate materials, humidity, light exposure,

anticoagulant and temperatures to determine the effects of each factor on the age



estimation process. Moreover, the study evaluated different smartphone cameras
(iPhone, iPad and Samsung Galaxy) for this purpose. Mock casework samples were

also used to validate the techniques.

1.2 OBJECTIVES

This study focused on the age estimation of bloodstains by smartphone
camera and digital image analysis by Image J program. The objectives are as follows:

1. To determine whether digital image analysis could be used to
estimate the age of bloodstains.

2. To compare the different smartphone cameras for this purpose.

3. To evaluate whether person-to-person variations affect the color
change and subsequently the age estimation process.

4. To investigate the effect of temperature, humidity, light exposure,
anticoagulant and substrate materials on the age estimation of bloodstains using

digital image analysis.

1.3 RESULTS AND DISCUSSION

This new method was simple, rapid, and easy to implement because
the protocol only required a simple, low-cost photographic system. The system
consisted of a white foam light box (2666 cm? inner surface area) illuminated evenly
with a Sylvania Osram DULUX S 9-Watt Cool White bulb (G32-2 pin base, 600
lumens, 4100K color temperature, Sylvania Osram, Thailand) (Figurel) Color
analysis was carried out using an Image J macro — a simple script that extracts color
values from the digital photos taken with a smartphone camera. The color values were
easily quantifiable and indicated that bloodstains color change with time. Many
factors affected the color values, including smartphone camera, temperature,

humidity, light exposure, the addition of anticoagulant, and substrate color.
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Figure 1: A is home-made light box made from a foam box and a desk lamp
and B is a 3D sketch of the photographic system used in this study.

1.3.1 Color value selection

The first experiment was done to determine whether the color changes
with age for bloodstains and also which color changes the most. Blood samples were
collected from four volunteers, three females and one male. 50 microliters of blood
were dropped onto filter paper. A total of five bloodstains were used for each person.
Three smartphone cameras (iPhone 4, iPad 2 and Samsung Galaxy S Plus) were used
to capture digital images at 15 minutes, 30 minutes, 1 hour, 3 hours, 6 hour, 12 hours,
24 hours, then once a day until 7 days and every week until 1.5 month or
approximately 42 days. All settings of smartphone cameras were set to automatic
(white balance, ISO, focusing mode, and metering mode). The smartphone was placed
on the top of a light box that was created to control the amount of light (Figure 1).
Five photographs were taken for each bloodstain. All digital images are formed from
three 8-bit channels: red, green and blue color. The values of RGB range from 0 to
255. RGB can be converted to other color spaces such as cyan, magenta, yellow and
key (CMYK) and hue, saturation, lightness (HSL). Color extraction and conversion
was performed automatically using an in-house Image J (http://imagej.nih.gov) macro
— a computer script — to automate the batch processing (Appendix 1).This enabled
many photographs and stains to be analyzed concurrently. The output comma-
separated-values (CSV) file was imported into Microsoft Excel and R statistical
program for further analysis.


http://imagej.nih.gov/

Each color value from the three color spaces (RGB, CMYK, and HSL)
was linearly regressed to time since deposition. The correlation coefficient of each
relationship was then determined. The statistical linear model has a correlation
coefficient bound 0 and 1.0 (https://en.wikipedia.org/ wiki/Correlation_coefficient)
Highly correlated factors have their correlation coefficients close to 1.0. This process
was done to determine the best predictor for time since deposition. As expected,
collection time was transformed using base-10 logarithm to linearize the relationship
between color values and time (in hours) and the biphasic change of hemoglobin
derivatives build on fitted a local polynomial regression (LOESS). The color values
varied in their correlation with time since deposition. M (magenta) and S (saturation)
correlated highly with time since deposition with R? values of 0.966 and 0.911 (Table
1) using linear modeling. Thus, magenta was selected for further studies due to its
high correlation with time since deposition. The decrease in these color values
followed a logarithm decay pattern — rapid decrease in the beginning followed by a
slow decrease at later time-points (Figure 3). The first two time-point (15 and 30 min)
and the time-points over 6 weeks were excluded from the linear models, as the
decrease in color values in the first hour was even more rapid than a logarithmic
function. The underlying phenomenon has been explained by Bremmer et al
(Bremmer et al. 2010). In the earliest stages when blood leaves the body,
oxyhemoglobin rapidly degrades to methemoglobin and hemichrome. The color of the
bloodstains is determined by the ratio of three hemoglobin derivatives (oxy-
hemoglobin, met-hemoglobin, and hemichrome) in the bloodstain, since each
derivative has a unique absorption spectrum. The fraction of each hemoglobin
derivative changes with time (James et al. 1988, Chen and Ikeda-Saito et al. 2008,
Marrone and Ballantyne 2009). The results of our experiment indicate that the color
change due to this denaturation process was quantifiable using a digital image
analysis. The change in color of blood from bright red to brown can be summarize in
RGB terms as follows: the difference between red (255,0,0) and brown (150,75,0) is

the decrease in R channel and increase in G channel.


https://en.wikipedia.org/%20wiki/Correlation_coefficient

Table 1: The correlation coefficient of each color value and time since

deposition in a regression model

Parameter Calibration equation R’

R and log time y = -6.0x+81.6 0.349
G and log time y = 6.48x+25.6 0.726
B and log time y = 3.78x+25.6 0.434
C and log time y = 0x+0 0.000
M and log time y =-0.119x + 0.688 0.966
Y and log time y = -0.0843x+0.696 0.896
K and log time y = 0.0235x+0.680 0.349
H and log time y =-41.1x+98.9 0.224
S and log time y =-0.0843x+0.531 0.911
L and log time y =-0.00392x+0.209 0.026

1.1.2 Smartphone camera comparison

The bloodstains on filter paper kept in the dark at 25°C were
photographed with three different smartphone cameras (iPhone 4s, iPad 2 and
Samsung Galaxy S Plus). The five pictures at each time-point from each camera were
analyzed. The Samsung Galaxy S Plus was the most suitable camera for bloodstain
age estimation, as it displayed the narrowest 95% confidence interval for magenta
values (Figure 2), meaning that the predictions using a model based on the Galaxy S
Plus would be the most precise. The confidence interval is the interval in which the
true mean would fall in 95% of time. The size of the interval depends on the spread of
the raw data. As such a narrow interval means that there were less variations in the

pictures taken with the Samsung. (http://www.stvc.ac.th/elearning/stat/csu5.html)
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Figure 2: Average and 95% confidence interval of magenta values obtained
from bloodstains (N= 5 for each smartphone) using three smartphone

cameras (red is Galaxy S, green is iPad 2, and blue is iPhone 4)

In the earliest stages, the magenta values of three cameras were different, possibly due
to the differences in both hardware (e.g. sensors type and size) and software (image
processing). The specification of camera smartphone in each brand is shown in Table
2. (http://www.techxcite.com/topic/10984.html; http://www.techmoblog.com/ipad-4-
vs-ipad-3-vs-ipad-2-spec-comparison/;
http://www.thaimobilecenter.com/spec/Samsung_ Galaxy S_Plus_i9001.asp)


http://www.techxcite.com/topic/10984.html;
http://www.techxcite.com/topic/10984.html;
http://www.techmoblog.com/ipad-4-vs-ipad-3-vs-ipad-2-spec-comparison/
http://www.thaimobilecenter.com/spec/Samsung_%20Galaxy_S_Plus_i9001.asp

Table 2: The specification of various smartphone cameras

Smartphone iPhone 4s iPad 2 Samsung Galaxy Plus
Pixel density 3264%x2448 1024x768 2592x1944
Focus autofocus - autofocus
Flash LED flash no flash flash

The Apple iPad 2 and iPhone 4s cameras displayed fluctuating
magenta values with increasing time, while the magenta values obtained from the
Samsung Galaxy S Plus consistently decreased with time. Using linear models,
Samsung Galaxy S Plus had the highest a correlation coefficient (0.935), followed by
iPhone 4s (0.796), and iPad 2 (0.637).

Although, the iPhone’s back-illuminated sensor technology allows
more light to hit the sensor by repositioning the wiring (Choodum 2011), the
improved sensitivity to light did not improve the results obtained when compared to
the smaller, older image sensor in the Galaxy S Plus camera. This could be due to the
evenly lit and bright light box (Figure 1) as well as the software-based color
correlation algorithms. The bright conditions must have negated the need for a bigger
sensor. While humans see the same color from object under different lights, digital
cameras cannot do so and relies on these algorithms to correct for the differences
(Jiang et al. 2012). Unlike the RAW format from digital single-lens reflex (DSLR)
camera, a compressed JPEG file from smartphone cameras has undergone image
processing, including color correction. A DSLR was not used for this study, as similar
studies comparing smartphone cameras and DSLRs did not find any difference
between the two categories or even showed that smartphone cameras had higher
sensitivity and less relative errors than DSLRs for these forensic purposes (Choodum
2011). Our results suggest that the three smartphones used different algorithms for
color balancing, as pictures of the same bloodstains gave different color value. The

goal of a smartphone camera is to produce a good-looking image with the least user



effort required. Apple Inc., the maker of iPad 2 and iPhone 4s, has patents pertaining
to image processing related to color correction and these could have affected the color

values of the bloodstains.

1.1.3 Within and between-person variation

Blood samples were collected from four volunteers to assess person-to-
person variation. The volunteers are three females and one male. All were Asian,
healthy and non-smoker. Five bloodstains from each person were dropped onto filter
paper and kept in a dark room at 25°C. The data were collected at 15 minutes, 30
minutes, 1 hour, 3 hours, 6 hours, 12 hours, 24 hours, then once a day until 7 days and
every week until 42 days. All bloodstains were then analyzed using Samsung Galaxy
S Plus. Figure 3 shows the between-person variation with passing time. The main
trend observed is the biphasic decrease in magenta value. Only minimal variations
were observed within-person, as indicated by the clustering of the magenta values
from the five bloodstains of each donor. As for between-person variation, the overlap
in the confidence interval of each donor’s LOESS fit suggests that there was no
person-to-person variation. Previous studies showed similar results with the findings
in this study. Anderson et al. found an ANOVA value of 0.93 for the ratio (18S: -
actin). Also, for bloodstain age estimation using reflectance spectroscopy, no
significant person-to-person variation was found among 40 bloodstains from eight
donors (Patterson, 1960). The lack of variation could be explained by the similarity in
the amount of hemoglobins, as the volunteers were from the same age group and
healthy (https://sites.google.com/site/bodybalanceu/med-leuxd-laea-swn-prakxb-
khxng-med-leuxd). In summary, the age estimation of bloodstain with digital image
analysis has no significant within-person and between-person variations. As such, it

could be an appropriate technique to estimate bloodstains age.


https://sites.google.com/site/bodybalanceu/med-leuxd-laea-swn-prakxb-khxng-med-leuxd
https://sites.google.com/site/bodybalanceu/med-leuxd-laea-swn-prakxb-khxng-med-leuxd
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Figure 3: The change in magenta value of each donor (N=4) (red is the first
person, green is the second, blue is the third and purple is the fourth)
and 95% confidence intervals of magenta values obtained from five

bloodstains of each donor

1.1.4 Age estimation of bloodstains

We used the data from the person-to-person variation study to assess
prediction accuracy for unknown stains. Bloodstains were divided into two subsets
(training set and validation set), according to a standard statistical approach called one
round cross-validation (Bremmer et al. 2010). The data from training set (70
percentages of all data) and validation set (30 percentages of all data) were used to
create simple linear regression model. The age of blood up to 42 days was estimated.
A simple age estimation method using linear regression with magenta value (m) as the

predictor for time since deposition in hours (t):

_ m-—0.688
-0.119

In this study, we observed better accuracy for younger bloodstains than

older bloodstains, which can be explained because hemoglobin denatures faster in the
beginning of the aging process (Bremmer et al. 2011) (Figure 4). The simple
prediction model using only magenta values tended to underestimate the actual age of

bloodstains. Most points shown after 10 days fall below the line of unity.
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Figure 4. Predicted age of bloodstains versus the actual age. Means are shown
as black dots. The line of unity is plotted as a dashed red line. The
adjusted R- squared of the relationship was 0.830.

As such, the range of predicted time since deposition increased with
the bloodstain age, which is a disadvantage that must be kept in mind in real forensic
casework. In other words, these results demonstrate that image analysis is suitable for
short term age estimation. A similar result was reported by Edelman et al. who used
hyperspectral imaging to estimate the age of bloodstains. However, Edelman et al.’s
method is more difficult and complex than the one proposed here, as a specialized
instrument is needed for the estimation process. However, before the image analysis
for age estimation of bloodstains can be applied in practice, other key factors that
affect the degradation process of hemoglobin must be investigated. These factors
include, but are not limited to, temperature, humidity and light exposure. If the effect
size of these factors could be quantified, a smartphone application could ever create to

estimate bloodstain age in a crime scene.
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1.1.5 Environmental effects on the aging process
1.1.5.1 Temperature

The effect of temperature on digital image analysis technique was
investigated. Five bloodstains on filter paper stored in dark room at -20°C, 4°C and
25°C. The data were collected at 15 minutes, 30 minutes, 1 hour, 3 hours, 6 hours, 12
hours, 24 hours, then once a day until 7 days and every week until 42 days. All data
were plotted for each temperature as a function of average of magenta value with time

since deposition and a 95% confidence interval was calculated for each temperature.

Effect of temperature on color change

0.8
Temperature 4| =5 20 25
0.7 o
-20°C

E L
2
m i = x
=06 o
S 4°C
[=] X
o
E o

0.5 25°C

0.4

1 3 5 12 24(1) 120 (5)240 (10)  S00 (251200 (50)

Time since deposition (in hours)

Figure 5: Average and 95% confidence intervals of magenta values obtained
from bloodstains (N= 5 for each humidity level) kept at-20°C (green),
4°C (red) and 25°C blue). Higher temperature increased the rate of

hemoglobin denaturation.

The initial (0 hour), magenta values were very similar in all
temperatures. The difference in magenta value became more obvious at 15 minute,
when the first measurements were taken. The slopes of three temperature levels were
different, i.e. the rate of change, or slope, of the magenta values increased with
increasing temperature. The slope of bloodstains at -20°C was smallest and at 25°C
was largest. After three hours, the rate of change for all three temperature levels were

constant, as evidenced by the parallel lines seen in Figure 5. From this data, it can be
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concluded that high temperatures sped up the auto-oxidation of oxyhemoglobin to
met-hemoglobin and hemichrome. After 40 days, the data of all temperature levels
fluctuated. This time-point seemed to be the limit of bloodstain age that can be
analyzed by the technique proposed in this study. The analysis of the effect of
temperature was imperative to the bloodstain age estimation process, as the
bloodstains in an actual crime scene will also be affected by the ambient temperature
at the scene. Knowing the effect of temperature can help a forensic investigator obtain
a better estimate of the time since deposition. In Thailand the average temperature is
27.2 + 1.6°C and there is almost no change between each season which is different
form the other country. The variation of temperature affect to the changing the oxidize

rate of hemoglobin.

1.1.5.2 Humidity

Five bloodstains on filter paper and stored at three humidity levels were
compared: 30%, 50% and 80% relative humidity. The data were collected at 15
minutes, 30 minutes, 1 hour, 3 hours, 6 hours, 12 hours, 24 hours, then once a day
until 7 days and every week until 42 days. Average magenta values were plotted
against time since deposition and result is shown in Figure 6. The difference in

magenta values were clear since the first measurements.
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Effect of humidity on color change

0.8+

2 Humidity (in %RH) 30 = 50

0.7+

Magenta value
=

=
tn

04+

1 3 120(5) 240 (10) 600(25) 1200 (50)

6 24(4)
Time since deposition (in hours (days))

Figure 6: Average and 95% confidence intervals of magenta values obtained
from bloodstains (N =5 for each humidity level) kept at 30% (red)
and 50% (blue) relative humidity at 25%°C. Higher humidity slowed

the color change process

With increasing time, the magenta value of bloodstains kept at 30%
RH decreased faster than the bloodstains at 50% RH. This result is consistent with the
study of Bremmer et al. (Bremmer et al. 2011), who reported about the rate of the
change from met-hemoglobin to hemichrome: high humidity sped up oxidation more
than low humidity. Over the course of two months that the color change was
monitored, it was found that magenta values of both humidity levels were fluctuating,
which could be because the camera of smartphone found it difficult to focus on old
stains. Also, humidity level was controlled using an in-house humidity chamber
constructed from a foam box, computer fans, and silica gels. As such, the humidity
level could have fluctuated in between the scheduled silica gel replacements.
Bloodstains kept at 80% RH could not be investigated due to excessive fungal growth

on the stains.
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1.1.5.3 Light exposure

Five bloodstains on filter paper were kept in the dark, under fluorescent
lighting, and under natural sunlight. The data were collected at 15 minutes, 30
minutes, 1 hour, 3 hours, 6 hours, 12 hours, 24 hours, then once a day until 7 days and
every week until 42 days. The averages of magenta values were plotted with time
since deposition. The results indicate that exposure to sunlight produced a different
color change pattern when compared with bloodstains kept in the dark and under
fluorescent light (Figure 7). At 15 min, almost no difference in magenta values were
observed between the different conditions. After 30 min, bloodstains exposed to
sunlight had significantly lower magenta values than bloodstains kept in the dark and
exposed to fluorescent light. After one hour, bloodstains kept in the dark and under
fluorescent light were still indistinguishable. The samples exposed to sunlight had
their colors changed faster in the early hours (larger drop in magenta value). It was
suspected that sunlight accelerated the rate of change from oxy-hemoglobin to met-
hemoglobin and from met-hemoglobin to hemichrome due to two reasons. One,
sunlight increased the temperature of the bloodstains. The previous experiment with
temperature showed that temperature has a positive correlation with the rate of color
change. Two, light could have sped up the rate of oxidization of hemoglobin
(Bremmer et al. 2011).
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Figure 7: Average and 95% confidence intervals of magenta values obtained
from bloodstains (N =5 for each humidity level) kept in the dark
(red), under fluorescent lighting (green), and under natural sunlight
(blue). No difference was observed for the bloodstains in the dark and

under fluorescent light.

1.1.5.4 Anticoagulant

This experiment compared the change in color of blood with and
without added anticoagulant. Two anticoagulants used to study: EDTA and heparin.
All bloodstains were kept at 25°C and the data collected at 15 minutes, 30 minutes, 1
hour, 3 hours, 6 hours, 12 hours, 24 hours, then once a day until 7 days and every
week until 42 days. The averages of magenta value were plotted with time since

deposition. The result of the effect of anticoagulant is shown in Figure 8.
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Figure 8: Average and 95% confidence interval of magenta values obtained
from control bloodstains (red), bloodstains mixed with EDTA (green)
and bloodstains mixed with heparin (blue).

Both EDTA and heparin did not affect the magenta value of
bloodstains, as shown by the overlapping 95% confidence intervals between control
bloodstains and stains mixed with anticoagulants. From Figure 8, only at two time-
points (30 minutes and one hour) were slight differences observed. One previous
study that investigated anti-coagulant effect on bloodstain color also did not find any
influence of anticoagulant on the aging process of bloodstains (Bremmer et al. 2010).
In general, anticoagulant changes red blood cells shape to spherical. Thus, it was
concluded that anti-coagulant did not affect the method for bloodstain age estimation
used in this study

(http://www.microscopy.ahs.chula.ac.th/newmicros/ lecture/bloodcollecting.pdf).

1.1.6 The effect of substrate
In the crime scene, we are not able to control the position of
bloodstains and type of substrate that the blood is found on. As the method proposed

depends on bloodstain color, substrate color might interfere with the measurement


http://www.microscopy.ahs.chula.ac.th/
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process. The study of the effect of substrate is therefore necessary. Five bloodstains
dropped onto various substrates including cotton, denim, filter paper, glass, leather
and wall. All bloodstains were stored in dark at 25°C. The data were collected at 15
minutes, 30 minutes, 1 hour, 3 hours, 6 hours, 12 hours, 24 hours, then once a day
until 7 days and every week until 42 days. The averages of magenta value were
plotted with time since deposition. In Figure 9, two substrates (filter paper and cotton)
showed possibility of allowing prediction of the age of bloodstain. Both substrates
were light color. Although glass, wall (gypsum) and leather were light color like the
filter paper and cotton, they reflect more light. Thus, the average magenta values
obtained were highly variable. The slightly rough surfaces spaced with troughs of the
gypsum and leather also negatively impacted the measurement of magenta values.
Also, it was not possible to obtain enough variations in color from bloodstains on
denim. In summary, the characteristics of substrate affected the process of measuring
bloodstain color and subsequently the prediction of age estimation of bloodstains by
using digital image analysis. The extraction of bloodstains from substrate, as carried
out by Hanson and Ballantyne (Hanson et al. 2010), could be useful for the proposed

method.
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Effect of substrate on color change
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Figure 9: Average and 95% confidence intervals of magenta values from
bloodstains deposited onto six substrates (blue denim is red line, clear
class is brown, leather is green, paper is light blue, gypsum is blue

and white cotton is purple)

1.1.7 Mock case work

Our technique was highly accurate under controlled conditions. In real
life, one is not able to control the substrate that the blood will fall on nor the
environment of the crime scene. The study of mock case work was used to validate
the technique proposed in this study. A number of bloodstains were deposited on
various substrates: cream leather, cloth, denim, brown flagstone, shiny paper, plastic
dish, shoes and stainless steel. These items had been scattered in a room to simulate a
typical apartment. Environmental effects such as temperature, light and humidity was
not controlled for (Appendix B). The data was collected at 15 minutes, 30 minutes 1
hour, 3 hours, 6 hours, 12 hours, 24 hours, and then once a day until 7 days and every
week 42 days. The result showed that the magenta value fluctuated in all substrates

except the bloodstains on cloth (Figure 10 and 11), where the pattern in the data
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suggested that it should be possible to estimate bloodstain age for up to the last day
that the measurement was taken (42 days). The reason for the low variability between
the stains at different time points for cloth was (1) probably the white background of

the cloth and (2) the cloth was not exposed directly to sunlight.
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Figure 10: Average and 95% confidence intervals of magenta values from
bloodstains deposited onto white cloth
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Figure 11: Average and 95% confidence intervals of magenta values from
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The other substrates (Figure 11) had no detectable pattern that could be
used to estimate the bloodstain age. This fluctuation was observed as early as 30
minutes. The variations in the M values differed with each substrate. It was believed
that the substrate characteristics, particularly the color of the substrates themselves,
interfered with the color values that were obtained. For example, it was more difficult
to quantify the change in bloodstain color when the substrates were dark color like
denim. The non-porous nature of stainless steel resulted in clumping of the
bloodstains and uneven distribution of bloodstain thickness and color. As the different
substrates were differently exposed to temperature and humidity (e.g. substrates that
were located closer to the bathroom were probably exposed to higher humidity and
vice versa). The environment can speed up or slow down the denaturation process
such as oxidation of hemoglobin. Further improvements are needed before this

method is applicable to casework samples.

1.4 Concluding remarks

Bloodstains are commonly found in crime scenes, especially in violent
crimes. Being able to predict bloodstain age can aid investigation, for example,
predicting the time of incident in which there is no witness. Many techniques are
employed for said purpose and it is still an active area of research. However, most
studies require complex, dedicated instruments and are expensive. Currently there is
no method that shows high accuracy of prediction and that has been applied in
forensic case work.

This study is a new method to predicted age of bloodstains in the crime
scene that is easy and cheap. We can use digital image analysis to study the change in
color in bloodstains caused by the different ratios of hemoglobin derivatives. Our
result of demonstrated the smartphone brand, temperature, humidity and light
exposure affected the color change process. The brand of smartphone affect the color
values that were extracted. The environment cam speed up or slow down the
denaturation process such as oxidation of hemoglobin. This information is necessary
to select a model or create a model for prediction of age of bloodstain in the future.

The active developer communities of both Google’s Android OS have the potential to
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develop a real-time application and we envision a smartphone that could give more
accurate for prediction of age of bloodstain. Moreover, the smartphone camera is
compact and convenient for using in a crime scene.

This technique has high accuracy and precision in controlled
conditions and can accurately predict bloodstain age of less than 10 days. Similar to
previously used spectroscopy-based technique, our developed method works well
white or light-colored substrates. However, with dark-colored substrates, the
background color interferes with the color analysis. In the future, one might solve this
problem by extracting the bloodstains from the substrate. In an actual crime scene, it
is impossible to dictate the environmental conditions and thus our developed
prediction equation might be too simplistic. Incorporating relevant parameters could
extend the usability of the method to real casework.
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Appendix A

The macro command is a simple script that extracts color values from
the digital photos taken with a smartphone camera. It was used for color analysis
which carried out using the ImageJ program. Multiple images can be analyzed with
only a few mouse clicks, which is an advantage of the method. The work flow of the

macro from start to finish is shown in the following diagram

Open files of users

y

Select folder with all the pictures

Input size of image

y
Read the intensity of image (100

pixels) at center pixel in each [
image

l Loop

Extract all color values (RGB,
CMYK and HSL)

}

Store all color values and all
images
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batch RGB analysis

/lextract surface area and ndvi over the whole plot for trees and grasses

/lrun("Memory & Threads...", "maximum=1600 parallel=8 run");

dir2 = getDirectory("Choose Source Directory *); //prompt user for destination

directory

dir3 = getDirectory("Choose Results Directory "); //[promt user for destination

directory for results file

list2 = getFileList(dir2); //get a list of the files

setBatchMode(true);

//define two new functions to get max and min from 3 values
function minOf3(n1, n2, n3) {
returnminOf(minOf(n1, n2), n3);

ky

function maxOf3(n1, n2, n3) {
returnmaxOf(maxOf(nl, n2), n3);

ky

/Ireset previous runs
run("Clear Results"™);

row=0:

/[Prompt user for the image size and find the midpoint pixel
w = getNumber("Enter image width (x) ", 1);
h = getNumber("Enter image height (y) ", 1);



W =w/2;
h=h/2;

//Loop through the images in the folder and extract interested values
for (z=0; z<list2.length; z++) {
open(dir2+list2[z]); /lopens every image

showProgress(z+1, list2.length);

start = getTime(); /I Get current time for progress bar

/Icalculate RGB

v = getPixel(w, h);

r = (v & 0xff0000)>>16;
g = (v & 0x00ff00)>>8;
b = (v & 0x0000ff);
setResult("R", row, r);
setResult("G", row, g);
setResult("B", row, b);

[/Icalculate CMYK

c=1.0-r/255;

m = 1.0 - g/255;

y = 1.0 - b/255;

k =minOf3(c, m, y);

if (k==1.0){
c=m=y=0;
}

else {
s=1.0 - k;
c=(c-k)/s;
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m=(m-Kk)/s;

y=(y-k)/s;

setResult("C", row, c);
setResult("M", row, m);
setResult("Y", row, y);
setResult("K", row, Kk);

/Icalculate HSV and HSL

rScale = r/255;
gScale = g/255;
bScale = b/255;

M = maxOf3(rScale, gScale, bScale);
m = minOf3(rScale, gScale, bScale);

r=(M -rScale) / (M - m);
g=(M-gScale) / (M - m);

b= (M - bScale) / (M - m);

V = maxOf3(rScale, gScale, bScale);
L=(M+m)/2;

if(M==0){
S=0;
S2=0;
H = 180;

else {
S=(M-m)/V;
S2=(M-m)/(1-abs(2*L - 1));
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if (rScale == M) {

H = 60*(b-g);
}
if (gScale==M) {

H = 60*(2+r-b);
}
if (bScale ==M) {

H = 60*(4+g-n);
}
if (H>=360) {

H =H - 360;
}
if (H<0){

H=H + 360;
}
setResult("H", row, H);
setResult("S", row, S);
setResult("V", row, V);
setResult("S2", row, S2);
setResult("L", row, L);

row++; //increment the row for each image

/lupdateResults();

saveAs("Results"”, dir3+"imageData.txt");
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2. Batch RGB for random point

/lextract surface area and ndvi over the whole plot for trees and grasses

/lrun("Memory & Threads...", "maximum=1600 parallel=8 run");

dir2 = getDirectory("Choose Source Directory *); //prompt user for destination

directory

dir3 = getDirectory("Choose Results Directory "); //[promt user for destination

directory for results file

list2 = getFileList(dir2); //get a list of the files
subloop=0;

pic=1;

setBatchMode(true);

//define two new functions to get max and min from 3 values
function minOf3(n1, n2, n3) {
returnminOf(minOf(n1, n2), n3);

ky

function maxOf3(n1, n2, n3) {
returnmaxOf(maxOf(n1, n2), n3);

¥

/Ireset previous runs
run("Clear Results"™);

row=0:

/[Prompt user for the image size and find the midpoint pixel
w = getNumber("Enter image width (x) ", 640);
h = getNumber("Enter image height (y) ", 480);
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W =w/2;
h=h/2;

//Loop through the images in the folder and extract interested values
for (z=0; z<list2.length; z++) {
open(dir2+list2[z]); /lopens every image

showProgress(z+1, list2.length);

start = getTime(); /I Get current time for progress bar

/lcalculate RGB
subloop=0;
while(subloop<10)

{

w2 = w-15 + 30*random();
h2 = h-15 + 30*random();

v = getPixel(w2, h2);

r = (v & 0xff0000)>>16;
g = (v & 0x00ff00)>>8;
b = (v & 0x0000ff);

if(r<80){
setResult("R", row, r);
setResult("G", row, Q);
setResult("B", row, b);

/Icalculate CMYK
c=1.0-r/255;

m = 1.0 - g/255;
y =1.0 - b/255;
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k = minOf3(c, m, y);

if(k==1.0){
c=m=y=0;
}

else {
s=1.0 - k;
c=(c-k)/s;
m=(m-k)/s;
y=(y-k)/Is;

}

setResult("C", row, c);
setResult("M", row, m);
setResult("Y", row, y);
setResult("K", row, k);

/Icalculate HSV and HSL

rScale = r/255;
gScale = g/255;
bScale = b/255;

M = maxOf3(rScale, gScale, bScale);
m = minOf3(rScale, gScale, bScale);

r=(M-rScale)/ (M -m);
g= (M - gScale) / (M - m);
b= (M - bScale) / (M - m);

V = maxOf3(rScale, gScale, bScale);
L=(M+m)/2;



if(M==0){
S=0;
S2=0;
H = 180;
}
else {
S=(M-m)/V;
S2=(M-m)/(1-abs(2*L - 1));

if (rScale==M) {
H = 60*(b-g);
¥
if (gScale==M) {
H = 60*(2+r-b);
k
if (bScale==M) {
H = 60*(4+g-1);
k
if (H>=360) {
H = H - 360;
¥
if (H<0){
H=H + 360;

setResult("H", row, H);
setResult("S", row, S);
setResult("V", row, V);
setResult("S2", row, S2);
setResult("L", row, L);
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setResult("x", row, w2);
setResult("y", row, h2);
setResult("pic",row,pic);
setResult("subloop”, row, subloop);
row++; //increment the row for each image
subloop++;
Hlend if
}/ end while
pic++;
/lupdateResults();
saveAs("Results", dir3+"imageData.txt");
}/ end for
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Appendix B

The blood was dropped onto different objects in the bedroom,
bathroom and terrace such as cotton cloth, denim, leather bag, plastic cup, plastic
dish, tile dish, canvas shoe, white paper, stainless fence, flagstone and wall. The
samples were naturally exposed to different environmental conditions including heat

and light.

Appendix B. Figure 1 Bloodstains of the mock casework experiment.
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1. Introduction

Blood is commonly found in violent crimes such as homicides
and assaults. Forensic scientists can acquire diverse information
from bloodstains, e.g. sequence of events using blood pattern
analysis and DNA profiles for individualization. Knowing the time
since deposition of bloodstains can provide additional information
to the investigators, as this can corroborate an eyewitness's
account; narrow the time window for a missing person inquiry,
kidnapping, and crimes without any eyewitness; and exclude
bloodstains that are irrelevant to the crime.

Bloodstain age estimation dates back to over 50 years ago, and
was based on spectrophotometric observation of bloodstain’s color
change from red to dark brown [1]. Since then researchers have
tried numerous techniques to estimate time since deposition of
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(P. Thanakiatkrai).
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bloodstains, including RNA analysis [2], high performance liquid
chromatography [3], force spectroscopy [4], near-infrared spec-
troscopy [5], UV-vis spectroscopy [6.7], reflectance spectroscopy
[8,9], and hyperspectral imaging [10,11]. Despite the revival of
research interest in this area in recent years, estimating bloodstain
age has not been implemented in routine crime scene investiga-
tions. The problem lies in the complex procedures requiring
specialist knowledge, low accuracy and precision, and sophisticat-
ed, expensive machines. Spectroscopy-based techniques and
hyperspectral imaging are the closest to being implemented due
to their widespread availability and portability [7].

Once blood leaves the body, hemoglobin (the iron-containing
oxygen transport protein in red blood cells) undergoes a non-
reversible decay process: (1) rapid saturation of oxy- and deoxy-
hemoglobin with oxygen in the atmosphere to form oxy-
hemoglobin (2) oxy-hemoglobin auto-oxidizes into met-hemoglo-
bin in the absence of cytochrome b5 reductase (3) met-hemoglobin
then denatures into hemichrome [12]. This is accompanied by the
change of color from red to dark brown. The rate of change depends
on environmental factors such as exposure to light, temperature,
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Sylvania Osram, Thailand). Fig. 1 shows a schematic drawing of the

and humidity [12,13]. Since this change is porally depend
the amount of these derivatives has been used for estimating time
since deposition of bloodstains [9-11].

As the phenomenon is observable with the naked eyes, we
expected the color change to be quantitatively detectable in a
digital image of the bloodstains. A digital image is formed when an
image sensor converts reflected light that has passes through three
color filters - red, green, and blue (RGB) - into digital signals. The
intensity of the RGB values determines the final color of each pixel
(the 1l 1 in a display device). We hypothesized that
these values and their counterparts, e.g. cyan, magenta, yellow, and
key (CMYK), can be plotted against time since deposition to
generate a calibration curve; subsequently, the time since
deposition of unknown samples can be determined by comparing
their color values to the calibration curve. A similar process has
been used to correlate the color change of chicory to storage time
[14], as well as to determine the concentration of amphetamine,
methylamphetamine [15], and trinitrotoluene (TNT) [16,17].

In this study, we used digital image analysis of bloodstains to
estimate the time since deposition and evaluated the effects of
smartphone camera, person-to-person variation, temperature,
humidity, light exposure, anticoagulant, and substrate on the
estimation process. Our proposed technique requires only a digital
camera and a computer, both of which are readily available in any
forensic laboratory. A smartphone application can be developed to
carry out the technique proposed at crime scenes, making this
method low-cost, simple, rapid, and truly portable.

2. Materials and methods
2.1. Sample collection

light box. The fluorescent lamp all f the visible from
350nm to 750nm [18]. On top of the box was a hole just big enough for a
smartphone camera lens to fit.

A Samsung Galaxy S Plus was used to capture digital images (five images per
stain) of the bloodstains in all studies except in the smartphone study. Five
photographs were taken from each stain to account for variations in precision
due to experimental errors, such as inhomogeneous lighting and flickering of
the fluorescent lamp. Images were taken at 15 min, 30 min, 1 h,3h,6 h,12h, 1
day, 2 days, 3 days, 4 days, 5 days, 6 days. 1 week, 2 weeks, 4 weeks, 6 weeks, 2
months, 3 months, 4 months, 5 months, and 6 months. For blind testing, we

d all the previ: y frozen stains on the 42nd day. All settings
were set to automatic (white balance, ISO, focusing mode, and metering mode).
The file type selected was 24-bit JPEG and the resolution was 2592 x 1944,
2592 x 1936, and 960 x 720 pixels for the Samsung Galaxy S Plus, iPhone 4, and
iPad 2, respectively. The color intensity in four color models (RGB, CMYK, HSV,
HSL) of each image were extracted using an ImageJ macro (http://imagej.-
nih.gov) that we ped. The macro domly selected ten pixels of the
bloodstain and averaged their color values. The color values were then
exported to R statistical program (http://cran.r-project.org) for further
analysis.

2.3. Statistical analysis

We transformed the time since using base-10 il to li
the relationship between color values and time (in hours). Outliers were discarded
prior to further statistical analysis. We then applied a linear regression to each color
value and time and determine the correlation coefficient of each relationship. This
was done to determine the best predictor for time since deposition. To estimate the
effects of different donors, we used linear mixed modeling appropriate to the data
collected.

For the smartphone, light and
studies, we plotted the average (calculated from all photographs of all bloodstains
unless stated otherwise) and 95% bootstrapped confidence interval of the magenta
value at each time-point and fitted a local polynomial regression (LOESS) to reflect
the biphasic change of hemoglobin derivatives. We concluded a significant

difference when there was no overlap b the b
Blood samples were from four to assess p pei intervals of the fit. - _ '
variation and blind test and only from one for all other d (as To the prediction accuracy of the method, we split the bloodstains of

recommended by Bremmer et al. [ 13]) using procedures approved by the Prince of
Songkla L Ethical C (ethical appi no. 56-293-19-2). Informed
written consents were obtained from all volunteers. Three female and one male
volunteers donated blood. All volunteers were Asian, healthy, non-smoker, and ate
a normal diet. None of the females were menstruating at the time of blood
collection. The mean age was 23.5 + 2.4 years. Venous blood was collected from
venipuncture into an additive-free microcentrifuge tube.

All bloodstains were made with 50 pl of blood and kept in the dark at 25 °C
except for the light exposure study, temperature study, and mock casework test.
The time between blood collection and deposition onto substrates was less than
30 s. Five bloodstains were deposited for each study unless otherwise stated:

« Color value selection and within-/b P iation: b ins from
four individuals on filter paper.

« Smartphone: bloodstains on filter paper taken with three smartphone cameras
(iPhone 4, iPad 2, and Samsung Galaxy S Plus).

« Temperature: bloodstains on filter paper kept at —20°C, 4 °C and 25 °C.

« Humidity: bloodstains on filter paper at room temperature with 30% and 50%
relative humidity.

« Light exposure: bloodstains on filter paper kept under direct sunlight, fluorescent
lamp, and in the dark.

« Anticoagulant: blood samples collected in 1.5 mg ethylene diamine tetra acetic
acid (EDTA), 0.2 mg of heparin, and no anticoagulant on filter paper.

« Substrate: bloodstains on denim, filter paper, glass, gypsum board, leather, and
white cotton.

« Blind test: 40 bloodstains deposited on filter paper. Four stains were randomly
chosen, assigned a random five-digit identifier code, and frozen at —80°C at
15 min, 30 min, 1h, 6h, 1 day, 3 days, 7 days, 14 days, 28 days, and 42 days.

» Mock casework: 24 b i d on objects ~
white A4 paper, gray stone slab floor, white plastic dish, white sneakers, white t-
shirt, and cream leather handbag. Temperature and humidity were not controlled
in this study. Eight samples were randomly chosen and frozen at —80 °C at the age
of less than one day, another eight between one day and one week, and the last
eight between one week and one month.

2.2. Photographic system

We set up a simple, low-cost photographic system consisted of a white foam
light box (2666 cm? inner surface area) illuminated evenly with a Sylvania Osram
DULUX S 9-Watt Cool White bulb (G32-2 pin base, 600 lumens, 4100K color

the person-to-person experiment into a training set (70% of data) and validation set
(30% of data). Calibration curves were constructed using the data from the training
set. The values of i idation set were fitted to the training set
calibration curve and their time since itions were esti we
applied a machine learning process called Random Forests™ to predict time since
deposition. The method constructed many decision trees (i.e. forest) from the
bootstrapped samples of the training set (2/3 of the data) and used these forests to
classify unknown samples in the validation set (1/3 of the data) [ 19]. In contrast to
the calibration curve method, the Random Forests™ classification algorithm used
more than one color values measured from the bloodstain images to classify their
time since deposition. The out-of-bag (OOB) of error rate the
prediction error [19].

To further test the prediction accuracy of the Random Forests™ model built from
the person-to-person variation study, we performed additional blind tests with 40
bloodstain samples and 24 mock casework samples. The actual ages of the samples
and the estimated ages using the Random Forests™ model were compared to
determine the prediction accuracy and estimation error. For the blind samples, the
time-points used were the same with the person-to-person variation study. For the

Fig. 1. 3D sketch of the photographic system used in this study. A Sylvania Osram
DULUX S 9-Watt Cool White bulb was used to create an even illumination in the
light box. Photographs were taken by placing a smartphone camera on the viewing
window.
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Table 1
Calibration curve equations from different color values of bloodstains from four
donors. The two relationships with R? highest are bolded.

Parameter Calibration equation R?

R and log time y=-6.0x+816 0349
G and log time y=6.48x+256 0.726
B and log time y=3.78x+252 0434
C and log time y=0x+0 0.000
M and log time y=—0.119x+0.688 0.966
Y and log time y=-0.0843x+0.696 0.896
K and log time y=0.0235x+0.680 0349
H and log time y=-41.1x+989 0224
S and log time y=—0.0843x+0.531 0911
L and log time y=-0.00392x+0.209 0.026

mock casework samples, only a rough estimation window was used: less than one
day old, between one day and one week old, and more than one week old.

3. Results

A new method to determine the time since deposition of
bloodstains through digital image analysis using a smartphone
camera was devised. The results indicate that bloodstain color
changes with time and this change is quantifiable using digital
image analysis. Many factors affected the color values, including
smartphone camera, temperature, humidity, light exposure, the
addition of anticoagulant, and substrate color.

3.1. Color value selection and within- and between-person variation

We compared the correlation coefficient of each color value
in all color models with time since deposition. M (magenta in
CMYK) and S (saturation in HSL) correlated highly with time
since deposition with R? values of 0.966 and 0.911 (Table 1)
using linear modeling. The decrease in these color values
followed a logarithm decay pattern - rapid decrease in the
beginning followed by a slow decrease at later time-points
(Fig. 2). The first two time-points (15 and 30 min) and the
time-points over 6 weeks were excluded from the linear
models, as the decrease in color values in the first hour was
even more rapid than a logarithmic function. Additionally,
magenta values of bloodstains after 6 weeks did not decrease
any further (data not shown). Magenta was selected for
further studies due to its high correlation with time since
deposition.

Fig. 2(top) displays the within-person variation and
Fig. 2(bottom) shows the between-person variation with passing
time. Again, the main trend is the biphasic decrease in magenta
values. Only minimal variations were observed within-person, as
indicated by the clustering of the magenta values from the five
bloodstains of each donor. Linear mixed model with time since
deposition as a fixed effect and with donor and bloodstain nested
within donor as random effects showed that bloodstain was not
significant (p > 0.05), i.e. there was no within-person variation. As
for between-person variation, the overlap in the confidence

Within—person variation
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Fig. 2. Top: The change in

value of each bloodstain (N = 5) for each donor (N = 4) and the line of best fit. Each bloodstain was photographed five times and only the
intervals of values ined from five

of each donor. The overlapped

average of the five photographs is plotted. Bottom: Average and 95%

of the to color in this figure legend, the reader is referred to the web version of

LOESS confidence intervals suggest no person-person ion. (For i
this article.)

39



40

P. Thanakiatkrai et al. / Forensic Science International 233 (2013) 288-297 291

Effect of camera
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Galaxy S Plus ided high ility (narrow intervals at all time-points)and a c 1y ing trend. (For interp ion of the to colorin

this figure legend, the reader is referred to the web version of this article.)

interval of each donor's LOESS fit suggests that there was no  3.2. Smartphone camera comparison

person-to-person variation. We also constructed a linear mixed

model with time since deposition as a fixed effect and donor as a Three different smartphone cameras were compared to
random effect. Only time since deposition was statistically determine the most suitable camera for bloodstain age estimation.
significant (p < 0.001). The variation in magenta due to different ~ The Samsung Galaxy S was the most suitable smartphone, as
donors was less than 2% of the total variation and thus not evidenced by its narrow 95% bootstrapped confidence interval and

statistically significant.

non-fluctuating color values (Fig. 3). The Apple iPad 2 and iPhone 4
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Fig. 4. Predicted age of bloodstains versus the actual age. Means are shown as blue dots. The line of unity is plotted as a dashed red line. The adjusted R-squared of the
relationship was 0.830. (For interpretation of the references to color in this figure iegend, the reader is referred to the web version of this article.)
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Table 2

The confusion matrix using Random Forests™ pe 10-P! Figure in bold refers to the number in each group correctly classified.

Predicted

Actual 1h 3h 6h 12h 1d 2d 3d 4d 5d 6d 7d 14d 28d 42d Error
1h 109 1 9%
3h 10 110 8%
6h 1 119 1%
12h 1 107 12 1%
1d 13 96 11 20%
2d 17 89 13 1 26%
3d 12 93 14 1 23%
4d 2 13 91 2 12 24%
5d 1 1 106 3 9 12%
6d 2 7 96 8 7 20%
7d 7 8 100 3 2 17%
14d 6 1 108 4 1 10%
28d 1 1 1 116 3%
42d 3 114 5%

cameras displayed fluctuating magenta values with increasing
time; thus, both were not suitable for predicting time since
deposition. Using linear models, magenta values had the highest
correlations with all three smartphones. Galaxy S Plus had a
correlation coefficient of 0.935, followed by 0.796 of iPhone 4, and
0.637 of iPad 2. Based on these two reasons - no fluctuation and
high correlation with time since deposition, the Samsung Galaxy S
Plus was selected for further studies.

3.3. Bloodstain age estimation using linear regression and Random
Forests™

We used the data from the person-to-person variation study to
assess prediction accuracy for unknown stains. 2160 bloodstain
images were divided into two sets — training set (70%) and
validation set (30%). A simple age estimation method using linear
regression with magenta value as the predictor for time since
deposition gave highly accurate and precise predictions up to one
day, but both accuracy and precision worsened with increasing
time (Fig. 4).

Effect of temperature on color change

A more complicated machine learning classification algorithm
called Random Forests™ [19] was then applied to use information
from all color values to obtain a more accurate prediction. We
constructed 1000 classification trees using all the color values as
predictors with the number of variables tried at each decision split
set to six. The results are shown in Table 2. As expected, more
accurate predictions were obtained using more color values. The
overall out-of-bag (OOB) error rate (i.e. the prediction error for
Random Forests™) was 12%, with lower error rates for the very
early and late time-points. It was possible to predict the time since
deposition of bloodstains very accurately using this method. For
example, 119 of 120 stains were correctly classified for the stains at
6 h after deposition.

Random single blind trial was performed with forty new
bloodstains on filter paper using the same data collection equipment
and protocols. The previously built Random Forests™ model was
used to predict the age of these forty samples. All samples were
correctly classified at all time-points (15 min, 30 min, 1 h,6 h, 1 day,
3 days, 7 days, 14 days, 28 days, and 42 days). In other words, 100%
estimation accuracy was obtained with blind samples.

0.8+
0.74
3
K
% 06+
=
0.5
0.4+
———— e gy T S Y
1 3 6 12 24(1) 120(5) 240(10) 600 (25) 1200 (S0)
Time since deposition (in hours (days))
Fig. 5. Average and 95% e intervals of values obtained from bl (N=5 for each temp ) kept at ~20 °C, 4 °C, and 25 °C. Higher temperature
increased the rate of h lobi ion. (For i of the references to color in this figure legend, the reader is referred to the web version of this article.)
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We further investigated whether the model built using data
from bloodstains on filter paper could be used to roughly estimate
the age of bloodstains on other substrates in an uncontrolled
environment. The estimation categories were (1) less than one day
old, (2) between one day and one week old and (3) more than one
week old. Twenty-four mock casework stains deposited on white
A4 paper, gray stone slab, white plastic dish, white sneakers, white
t-shirt, and cream leather handbag showed that 7 of 8 stains were
correctly classified to less than one day, 5 of 8 stains were correctly
classified to between one day and one week, and all 8 stains were
correctly classified to more than one week old. Overall, using these
three age groups achieved 83% prediction accuracy for uncon-
trolled mock casework stains.

3.4. Environmental effects on the aging process

3.4.1. Temperature

Temperature affected the color change process of bloodstains.
The three storage temperatures tested (—20 °C, 4 °C, and 25 °C)
produced a different pattern in magenta values (Fig. 5). For the
samples kept at 4 °C and 25 °C, magenta value rapidly decreased
during the first hour followed by a gradual decrease. This pattern
was not seen in the samples kept at —20 °C. The 95% bootstrapped
confidence intervals did not overlap at any time-point except at the
15-min mark.

3.4.2. Humidity

Two humidity levels were compared: 30 and 50 (¥RH) and was
found to have a significant effect on the color change process. The
level of magenta decreased more rapidly in the earlier time-points
at 30%RH when compared with 50%RH (Fig. 6). There were small
overlaps in the 95% confidence interval of the two sets of
bloodstains exposed to different humidity levels between 3 and
24h. The two confidence intervals split after that and re-
overlapped after one month.

293

3.4.3. Light exposure

Exposure to sunlight produced a different color change pattern
when compared with bloodstains kept in the dark and under
fluorescent light in Fig. 7. At 15 min, we observed a difference
between bloodstain samples stored in the dark and exposed to
light (both fluorescent light and sunlight). At 30 min, bloodstains
exposed to sunlight had significantly lower magenta values than
bloodstains kept in the dark and exposed to fluorescent light. After
one hour, bloodstains kept in the dark and under fluorescent light
were indistinguishable. The samples exposed to sunlight had their
colors changed faster in the early hours (larger drop in magenta
value). The LOESS fits of the three exposure conditions overlapped
consistently after one day.

3.4.4. Anticoagulant

The two anticoagulants tested did not affect the magenta value
of the bloodstains in Fig. 8. We observed considerable overlaps in
the 95% bootstrapped confidence intervals between the control
bloodstains and the anticoagulant-mixed bloodstains. The only
difference seemed to be from three to twelve hours after
deposition, where the control bloodstains exhibited higher
magenta values.

3.5. Effect of substrate and substrate color

Only lightly colored substrates exhibited high correlation with
the magenta value (filter paper, cream leather, and white cotton).
Fig. 9 shows highly similar color change patterns with these three
substrates. On the other hand, the magenta values of bloodstains
on blue denim, clear glass, and gray gypsum board had poor
correlation with time since deposition. Denim’s blue color
interfered with the magenta’s color of the bloodstains. Glass did
not absorb bloodstains and caused the stains to crust into varying
thickness, which interfered with the color change and the color
measurement process. Gypsum’s gray color also interfered with

. Effect of humidity on color change
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Fig. 6. Average and 95% ¢ e intervals of values obtained from blood: (N =5 for each humidity level) kept at 30% and 50% relative humidity at 25 °C.

Higher humidity slowed the color change process. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Effect of light on color change
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Effect of anticoagulant on color change
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the color measurement. Furthermore, in the first hour after 4. Discussion
deposition, bloodstains were not absorbed into the gypsum and

this non-uniformity in thickness affected the color change

process.

‘We found that color values from digital image can predict time
since deposition of bloodstains. To the best of our knowledge, this
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is the first time a smartphone camera is used for such purposes.
The change in color of bloodstains depended on many factors, e.g.
humidity, temperature, and light exposure. Smartphone cameras
and their color correction algorithms also influenced the process,
as different color values were obtained from the same blood-
stains. Our proposed technique is cheap, truly portable, accurate,
and quick, requiring only a smartphone camera, a dedicated light
box, and a computer. As such, it can be easily adopted for crime
scene use.

In Random Forests™, there is no need to perform additional
cross-validation to obtain an unbiased estimate of error, as the
estimate of error is performed internally. Each classification
tree is constructed using two-third bootstrapped data. These
trees are then used to classify the other one-third of the data
and the process repeated many times to obtain an out-of-bag
estimate of error [19,20]. Our OOB error compares favorably
against other published methods. Two most recent studies
using hyperspectral imaging obtained an error rate of about 40%
for the whole 30 days [11] and 13.4% for up to 200 days [10].
Ours was 12% for up to 42 days using the Random Forests™
method. It must be noted that Edelman et al. and Li et al.
collected data at a scale that is finer than us and that could be
why our error rate is slightly lower. However, our method was
much simpler because we did not need a hyperspectral imaging
system and high computing power. The 100% prediction
accuracy with blind samples further affirms that the proposed
method has potential to be improved upon and validated. Even
with mock casework samples of unknown age in an uncon-

(N =5 for each
values with increasing time sinct

Only b on white or lightly
to color in this figure legend, the

onto six
of the

(Fori

trolled environment, the Random Forests™ model built on
controlled stains were able to roughly categorized bloodstains
into three age groups with reasonably high accuracy.

The limitation of classification-based methods such as the
Random Forests™ method used here or the linear discriminant
analysis (LDA) method used by other researchers [11,26] is its
categorical nature, i.e. a bloodstain could only be classified to a
time-point that has been used to build the model. A regression-
based method might be more appropriate as bloodstain age could
be predicted in minutes instead, which reflects its continuous
nature. Alternatively, measurements could be at frequent time
intervals (e.g. Liet al. [ 11] collected data every hour for the first day
and every day for 30 days) to increase the categories available for
prediction. In a classification model, probabilities could be
assigned to different time-points for each group of bloodstains
as a way to present the uncertainties of the estimate. A Bayesian
credible interval or a frequentist confidence interval could be used
for a regression-based method.

Overall, the main advantages of our technique are convenience
and cost. Our proposed method is the easiest to implement because
no specialized equipment is needed, i.e. only a smartphone whose
price is about 200 USD, weighs less than 120 g, and only 12 cm
long. The light box is made from a re-used foam box equipped with
a 20 USD lamp, as compared to the 2000 USD solid state plasma
light source used by Li et al. [11]. Other recent studies with
spectroscopy did not provide numerical data in their validation of
prediction accuracy; thus, we could not compare our results to
theirs [7,9].
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4.1. Color change and photographic systems

Hemoglobin makes up 97% of blood’s dry content; thus, it is the
major chromophore in blood. The color of the bloodstain is
determined by the ratio of three hemoglobin derivatives (oxy-

without letting any outside light in; thus the only illumination
source is the light bulb installed in the box. Other light sources
could also be tried, such as LEDs, to explore specific wavelengths
that might be more appropriate for our method.

hemoglobin, met-hemoglobin, and hemichrome) in the blood:
since each derivative has a unique absorption spectrum [12}. The
fraction of each hemoglobin derivative changes with time. The
process is described as biphasic: a rapid auto-oxidation of oxy-
hemoglobin in the first few hours and the slow denature of met-
hemoglobin to hemichrome [12]. We did not test our method with
capillary or arterial blood, because blood from any source will be
fully saturated with oxygen upon exiting the body as all blood-
stains are exposed to the oxygen in the environment [9]. In other
words, although venous blood is darker inside the body due to the
higher percentage of deoxyhemoglobin in the red blood cells of
venous blood, all deoxyhemoglobin will change to oxyhemoglobin
once blood leaves the body; thus all fresh blood will turn bright red
regardless of its source.

The color change due to this denaturation process was
quantifiable using a smartphone camera followed by color analysis
in our study. The change in some color values, e.g. magenta and
saturation values, correlated well with time since deposition.

All digital images are formed from three 8-bit channels: red,
green, and blue. The values of RGB range from 0 to 255. RGB can be
converted to other color spaces such as CMYK (cyan, magenta,
yellow, key) and HSL (hue, saturation, lightness). The change in

4.2. Envir I effects

The rapid color change with higher temperatures in our results
confirmed that high temperature increases the rates of change
from oxy-hemoglobin to met-hemoglobin and from met-hemo-
globin to hemichrome [12]. We also found that higher humidity
slows the color change process, in agreement with Bremmer et al.
who reported that increased humidity slows down the change
from met-hemoglobin to hemichrome [12].

Conflicting reports of the influence of light exposure were found
in the literature and seemed to be method-specific [7,24,25]. In our
case, we observed highly similar degradation pattern between
bloodstains stored in the dark and under fluorescent light, while
the bloodstains kept under natural sunlight changed color faster.
However, this higher rate of change could be due to the difference
in temperature and humidity that the bloodstains were exposed to.
The bloodstains kept under natural sunlight were not kept in the
same room with the other two sets. Direct exposure to sunlight
also raised the temperature of the air and the substrate, which
further confounded our results.

EDTA and heparin did not affect the color change of bloodstains
in our study. No evidence in the literature was found about the

color of blood from bright red to dark brown can be ized in
RGB terms as follows: the difference between red (255, 0, 0) and
brown (150, 75, 0) is the decrease in R channel and increase in G
channel. This simultaneous decrease in red and increase in green
could also be described by magenta color, which is the combina-
tion of red and blue (i.e. the complementary of green).

Although the iPhone's back-illuminated sensor technology
allows more light to hit the sensor by repositioning the wiring [16],
the improved sensitivity to light did not improve the results
obtained when compared to the smaller, older image sensor in the
Galaxy S Plus camera. This could be due to the evenly lit and bright
light box as well as the software-based color correction algorithms.
The bright conditions must have negated the need for a bigger
sensor. While human sees the same color from an object under
different lights, digital cameras cannot do so and relies on these
algorithms to correct for the differences [21]. Unlike the RAW
format from a digital single-lens reflex (DSLR) camera, a
compressed JPEG file from smartphone cameras has undergone
image processing, including color correction. Our resuits suggest
that the three smartphones used different algorithms for color
balancing, as pictures of the same bloodstains gave different color
values. The goal of a smartphone camera is to produce a good-
looking image with the least user effort required. Apple Inc., the
maker of iPad 2 and iPhone 4, has patents pertaining to image
processing related to color correction (e.g. [22,23]) and these could
have affected the color values of the bloodstains.

A simple, truly low-cost light box was built to achieve an even
and consi ill ion throughout the experiment. lllumina-
tion intensity affects the color of the photographs directly and thus
it must be controlled. We used a household lamp with a Sylvania
Osram 9-Watt light bulb that outputs all wavelengths in the visible
spectrum [18]. Our results demonstrate that even a normal
fluorescent light bulb, which costs less than 10 USD and is over 500
times cheaper than a standard light emission system (e.g. Thorlabs
HPLS-30-02 solid state plasma light source used by Li et al. [11]),
produce a consistent, accurate result. A box like ours could be
carried to a crime scene and used there to standardize the
illumination in situ. Improvements to the box can certainly be
made, e.g. modifying the box so that it covers a stain directly

e of antic I on the aging process of bloodstains
[13]. The effects of temperature, humidity, and light exposure must
be considered when applying the technique used in this study.
Further studies must be conducted to validate different smart-
phones and light sources for each temperature and humidity
combination.

Bloodstain thickness was not directly investigated but it could
have influenced the age estimation process. The bloodstains on
glass, a non-absorbent surface, were initially spread out but
gradually formed a thick clump as they dried. Clumping of
bloodstains probably had a two-fold influence: slowing the
exposure of hemoglobin to light, humidity, and temperature and
changing the color of bloodstain due to the longer light path. Other
substrates absorbed blood and formed a thin stain of about
0.1 mm, The slight variations in thickness presented was overcome
by the sampling process used in this study, which was to extract
color values from ten pixels from each of the five photographs of a
single stain.

‘We used 50 .l of blood in our study. This produced a bloodstain
of approximately 20 mm in diameter on filter paper, which
translated to over 50,000 pixels in a 5-megapixel digital image. We
randomly chose only ten pixels around the center area of the stain
and this was sufficient for an accurate estimate of bloodstain age.
Accounting for capillary flow, which makes a stain thicker around
the edge [9], we estimated that a 5-jul bloodstain should still have
around 500 pixels available for analysis. Even a 1-pul bloodstain
should still have around 100 pixels available.

4.3. Substrate material and color

In an actual crime scene, it is impossible to dictate the color of
the substrate that bloodstains will be deposited and other
environmental conditions. Our results suggest that colored
substrates interfere with the color of the bloodstains. Magenta
values of lightly colored substrates correlated well with time since
deposition but for dark or non-absorbent substrates (e.g. jeans,
dark cotton, and glass) it was nearly impossible to see the
bloodstains. Color correction or normalization of color values using
background color did not improve the prediction process (data not
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shown). For bloodstains deposited indoors, the temperature and
humidity levels tend to be stable and an average could be used for
the prediction process. For bloodstains exposed to the environ-
ments such as fluctuating temperature and sunlight, Hanson and
Ballantyne suggested that only a crude approximation to time
since deposition could be made [7]. In countries like Thailand
where the average outdoor temperature, average outdoor humidi-
ty level, and the hours of sunlight are relatively stable day-to-day,
better prediction accuracy is expected. Validation of the method
for each area is necessary before implementation.

As the substrate color interferes with the color detection
process, extraction of bloodstains from substrate could be useful as
an adjunct to this method. Hanson and Ballantyne pre-extracted
the bloodstains in TBE buffer and successfully used UV-vis
spectrophotometry to correlate bloodstains’ spectrograph with
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