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ABSTRACT

Haar wavelet method has become an efficient tool for solving various

types of integral and differential equations. In this thesis, we apply Haar wavelet method

to solve certain second order ordinary differential equations with initial and boundary

conditions and we find the general form for solve of second order linear ordinary differ-

ential equations by Haar wavelet method. Moreover, we extend the interval of second

order ordinary differential equation’s solutions from [0, 1] to [r, r + 1] when r is an in-

teger. Finally, we look into conditions for solve of the Black-Scholes equation by Haar

wavelet method.
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CHAPTER 1

Introduction

1.1 Literature Review

Wavelet, being a powerful mathematical tool, has been widely used in

signal processing and numerical analysis. In the recent years wavelet approach has be-

come more popular in the field of numerical approximations. Different types of wavelets

and approximating functions have been used in numerical solution of initial and bound-

ary value problems. Alfred Haar [4] introduced a group of square waves with magnitude

of −1 and 1 in some intervals and zeros elsewhere then we called Haar function [16].

Among all these wavelet types Haar wavelet is the simplest orthonormal wavelet. Chen

and Hsiao [3] have gained popularity, due to their useful contribution in wavelet. They

first derived a Haar operational matrix for the integrals of Haar function and used it for

solving lumped and distributed-parameter systems.

Next time, most people applied Haar wavelet in solving differential

equations by using Haar method which is based on the operational matrices defined

by them.

In 2007-2008, Lepik [9] and [10] presented methods based on Haar

wavelet for solved differential equations. In 2009, Hariharan [6] shown the numerical

solution of Fisher’s equation using Haar wavelet. Next year, Hariharan and Kannan [7]

solved Fitzhugh-Nagumo equation. In 2013, Berwal [2] using Haar wavelet for solved

Telegraph equation.
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Fischer Black and Myron Scholes [1] constructed the famous theoretical

scheme for options which earned them the 1997 Nobel Prize in Economics. It is celled

the Black-Scholes equation. Since some people applied some type of wavelet in solving

Black-Scholes equation [5] excepted Haar wavelet, so in this thesis we will use Haar

wavelet method for solving the Black-Scholes equation.

1.2 Procedure

This thesis consists of Chapter 1 Introduction, Chapter 2 Preliminar-

ies, Chapter 3 Haar wavelet method for solving differential equations and Chapter 4

Conclusion and Discussion.

In Chapter 1 Introduction, we review literature and research about wavelets,

Haar wavelet, Haar wavelet method for solving differential equations and method for

solving Black-Scholes equation.

In Chapter 2 Preliminaries, we briefly describe Haar wavelets, Inte-

gration of Haar wavelets, The operational matrix of integration, Method for solving

differential equations via Haar wavelet and The Black-Scholes equation.

Next, in Chapter 3 Haar wavelet method for solving differential equa-

tions, we have 2 sections. The first section is Generalized Haar wavelet method for

solving linear ordinary differential equations and the second section is Haar wavelet

method for solving the Black-Scholes equation. In section of Generalized Haar wavelet

method for solving linear ordinary differential equations, we apply Haar wavelets to

solve some second order linear ordinary differential equations with initial and bound-

ary conditions and we find the general form for solve of second order linear ordinary

differential equations by Haar wavelet method. Moreover, we look into conditions for

extend the interval of second order ordinary differential equation’s solutions from [0, 1]

to [r, r + 1] when r is an integer. The second section is Haar wavelet method for solv-

ing the Black-Scholes equation. This section we look into conditions for solve of the

Black-Scholes equation in the case of a European call option by Haar wavelet method.

Finally, in Chapter 4 Conclusions and Suggestions, we summarize the

results and make more suggestions in Chapter 3.
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CHAPTER 2

Preliminaries

We will introduce the notion and the basic properties of Haar wavelets

included The Black-Scholes equation.

2.1 Haar wavelets

Haar function was initially introduced by the Hungarian mathematician

Alfred Haar [4] in 1910. Later on, it is known as the simplest example of an orthogonal

wavelet, which is defined by a square wave function on the unit interval [0, 1]. The first

Haar wavelet is denoted by

h0(t) =

1 ; 0 ≤ t ≤ 1

0 ; t > 1

and called the scaling function. The second Haar wavelet is

h1(t) =


1 ; 0 ≤ t <

1

2

−1 ;
1

2
≤ t < 1

0 ; t ≥ 1

In addition, h1(t) is the fundamental square wave, or the mother wavelet which also

spans the whole interval (0, 1). All the other subsequent curves are generated from

hn(t) with two operations: translation and dilation. In general,

hn(t) = h1

(
2jt− k

2j

)
, (2.1)
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n = 2j + k, j ≥ 0, 0 ≤ k < 2j.

In particular, these of Haar wavelets are orthogonal functions on [0, 1], i.e.

∫ 1

0

hi(t)hl(t) dt =

2−j ; i = l = 2j + k

0 ; i 6= l

Figure 1. Eight first Haar functions

Moreover, the set of Haar wavelets is on orthogonal basis of L2 [0, 1], [12], that is any

square integrable function on the interval [0, 1] y(t) can be represented by the series of

Haar wavelets, [16]

y(t) = a0h0(t) + a1h1(t) + a2h2(t) + . . .

=
∞∑
n=0

anhn(t)

where

ai = 2j
∫ 1

0

y(t)hi(t) dt.
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Observe that if y(t) is piecewise constant by itself, or can be approximated as piecewise

constant during each subinterval, then this equation can be terminated at finite terms,

y(t) = a0h0(t) + a1h1(t) + a2h2(t) + . . .+ am−1hm−1(t)

=
m−1∑
n=0

anhn(t)

≡ atHm(t)

where at =
[
a0 a1 a2 . . . am−1

]
and Hm(t) is called the Haar matrix of order m,

in which each row consists of Haar functions h0(t), h1(t), h2(t), . . . , hm−1(t), i.e.,

Hm(t) ≡



h0(t)

h1(t)

h2(t)
...

hm−1(t)


.

In particular, the interval [0, 1] is divided into m subintervals with length
1

m
where

m = 2k for some k ∈ N. We denote the collocation points by

tl =
2l − 1

2m

where l = 1, 2, . . . ,m

and the first row vector (Haar function) can be expressed as

h0(t) ≡
[
1 1 · · · 1 · · · 1

]
,

and for n = 1, 2, 3, . . . ,m− 1,

hn(t) ≡
[
hn(

1
2m

) hn(
3
2m

) · · · hn(
2l−1
2m

) · · · hn(
2m−1
2m

)
]
,

where hn is defined by (2.1).

For example when m = 4,

H4(t) ≡


h0(t)

h1(t)

h2(t)

h3(t)

 .
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We can find, h0(t), h1(t), h2(t) and h3(t) in a matrix form.

For n = 0, we have

h0(t) ≡
[
h0(t1) h0(t2) h0(t3) h0(t4)

]
.

Since h0(t) = 1 when 0 ≤ t < 1, h0(t1) = h0(t2) = h0(t3) = h0(t) = 1,

we obtain

h0(t) ≡
[
1 1 1 1

]
.

For n = 1

h1(t) ≡
[
h1(t1) h1(t2) h1(t2) h1(t2)

]
.

we have

h1(t) =


1 ; 0 ≤ t <

1

2

−1 ;
1

2
≤ t < 1

0 ; t ≥ 1

thus h1(t1) = h1(t2) = 1 and h1(t3) = h1(t4) = −1,

so that

h1(t) ≡
[
1 1 −1 −1

]
.

For n = 2, 3, the Haar function can be similarly expressed,

h2(t) ≡
[
1 −1 0 0

]
,

h3(t) ≡
[
0 0 1 −1

]
.

Hence the first four Haar functions can be expressed as follows:

H4 ≡


1 1 1 1

1 1 −1 −1

1 −1 0 0

0 0 1 −1


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2.2 Integration of Haar wavelets

Figure 2. Eight first Haar functions and corresponding integrals [8]

In order to solve differential equations the easy technique is to integrate

the equation. Chen and Hsiao [3] introduced the method using the integrals of the first

four Haar wavelets :

∫ t

0

h0(τ) dτ =

t ; 0 ≤ t < 1

0 ; t ≥ 1

∫ t

0

h1(τ) dτ =


t ; 0 ≤ t <

1

2

1− t ;
1

2
≤ t < 1

0 ; t ≥ 1

∫ t

0

h2(τ) dτ =


t ; 0 ≤ t <

1

4
1

2
− t ;

1

4
≤ t < 1

0 ; t ≥ 1
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∫ t

0

h3(τ) dτ =


t− 1

2
;
1

2
≤ t <

3

4

1− t ;
3

4
≤ t < 1

0 ; t ≥ 1

In particular, the integrals of the first four Haar wavelet vectors can be represented by

the following row vectors. ∫ t

0

h0(τ) dτ ≡
[
1

8

3

8

5

8

7

8

]
,

∫ t

0

h1(τ) dτ ≡
[
1

8

3

8

3

8

1

8

]
,∫ t

0

h2(τ) dτ ≡
[
1

8

1

8
0 0

]
,∫ t

0

h3(τ) dτ ≡
[
0 0

1

8

1

8

]
.

Therefore, the integral of the Haar matrix H4 is

∫ t

0

H4(τ) dτ ≡
1

8


1 3 5 7

1 3 3 1

1 1 0 0

0 0 1 1

 .

In general, The integral of the Haar Matrix Hm of order m is defined by

∫ t

0

Hm(τ) dτ ≡



∫ t
0
h0(τ) dτ∫ t

0
h1(τ) dτ

...∫ t
0
hm−1(τ) dτ

 . (2.2)

where the first row vector is∫ t

0

h0(τ) dτ ≡
[

1

2m−1
3

2m−1
5

2m−1
· · · 2m− 1

2m−1

]
,

and for n = 1, 2, . . . ,m− 1, the other subsequence rows are expressed by∫ t

0

hn(τ) dτ ≡
[∫ 1

2m−1

0 hn(τ) dτ
∫ 3

2m−1

0 hn(τ) dτ
∫ 5

2m−1

0 hn(τ) dτ · · ·
∫ 2m−1

2m−1

0 hn(τ) dτ
]
.
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For example, the second row of H4 can be computed by∫ t

0

h1(τ) dτ ≡
[∫ 1

8

0
h1(τ) dτ

∫ 3
8

0
h1(τ) dτ

∫ 5
8

0
h1(τ) dτ

∫ 7
8

0
h1(τ) dτ

]
=
[∫ 1

8

0
1 dτ

∫ 3
8

0
1 dτ

∫ 1
2

0
1 dτ +

∫ 5
8
1
2

−1 dτ
∫ 1

2

0
1 dτ +

∫ 7
8
1
2

−1 dτ
]

=
[
1
8

3
8

1
2
− 1

8
1
2
− 3

8

]
=
[
1
8

3
8

3
8

1
8

]
.

The third row of
∫ t
0
H4(τ) dτ is∫ t

0

h2(τ) dτ ≡
[∫ 1

8

0
h2(τ) dτ

∫ 3
8

0
h2(τ) dτ

∫ 5
8

0
h2(τ) dτ

∫ 7
8

0
h2(τ) dτ

]
=
[∫ 1

8

0
1 dτ

∫ 1
4

0
1 dτ +

∫ 3
8
1
4

−1 dτ
∫ 1

4

0
1 dτ +

∫ 1
2
1
4

−1 dτ
∫ 1

4

0
1 dτ +

∫ 1
2
1
4

−1 dτ
]

=
[
1
8

1
4
− 1

8
0 0

]
=
[
1
8

1
8

0 0
]

and the fourth row can be similarly expressed,∫ t

0

h3(τ) dτ ≡
[
0 0

1

8

1

8

]
.

2.3 The operational matrix of integration

The fundamental idea starts from the approximation of the integral of a

vector φ(t) [17], ∫ t

0

φ(τ) dτ ∼= Qφ(t)

where

φ(t) =



φ0(t)

φ1(t)

φ2(t)
...

φm−1(t)


φi(t) are the orthogonal functions on a some interval [a, b] and Q is called the opera-

tional matrix of integration uniquely determined by the orthogonal functions φi(t).
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Chen and Hsiao [3] were frist authors who introduced an operational matrix of integra-

tion, denoted by Pm. The notion of this operational Pm matrix is based on the integrals

of Haar matrix (2.2), i.e., ∫ t

0

Hm(τ) dτ = PmHm(t).

Note that Pm is a 2m square matrix which can be computed by

Pm =

[∫ t

0

Hm(τ) dτ

]
H−1m (t).

For example,

P4 =

[∫ t

0

H4(τ) dτ

]
H−14

≡ 1

8


1 3 5 7

1 3 3 1

1 1 0 0

0 0 1 1




1 1 1 1

1 1 −1 −1

1 −1 0 0

0 0 1 −1



−1

=
1

8


4 −2 −1 −1

2 0 −1 1

1/2 1/2 0 0

1/2 −1/2 0 0

 .

By the same process, we obtain

P8 =

[∫ t

0

H8(τ) dτ

]
H−18

≡ 1

16



8 −4 −2 −2 −1 −1 −1 −1

4 0 −2 2 −1 −1 1 1

1 1 0 0 −1 −1 0 0

1 −1 0 0 0 0 −1 1

1/4 1/4 1/2 0 0 0 0 0

1/4 1/4 −1/2 0 0 0 0 0

1/4 −1/4 0 1/2 0 0 0 0

1/4 −1/4 0 −1/2 0 0 0 0



.
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Chen and Hsiao [3] showed that the following matrix equation for calculating the matrix

P of order m holds

Pm =

Pma Pmb

Pmc Pmd


where

Pma = Pm/2,

Pmb = −
1

2m
Hm/2,

Pmc =
1

2m
H−1m/2,

Pmd = null matrix.

It should be noted that calculations for Pm and Hm(t) must be carried

out only once; after that they will be applicable for solving whatever differential equa-

tions. Since Hm(t) and H−1m (t) comprise many zeros, this case makes the Haar wavelet

transform must faster than the Fourier transform. This is one of the reasons for fast

convergence of the Haar wavelet transform.

2.4 Method for solving differential equations via Haar

wavelet

In principle, we apply the Haar wavelet in the time domain, and solve

the space domain problem with the conventional method. Let us indicate this idea with

the following example [3].

Example 2.1. Consider the diffusion equation

∂2v(x, t)

∂x2
= RC

∂v(x, t)

∂t
(2.3)

where R resistance, C capacitance per unit length, and the voltage v.
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Haar wavelets are introduced to solve these partial differential equations.

Idea for solving: In the Haar domain, let us assume
∂v(x, t)

∂t
can be expanded in a Haar

series as

∂v(x, t)

∂t
≡ At(x)H(t) (2.4)

Integrating and applying the integration matrix P of previous section (The operational

matrix of integration), we have

v(x, t) ≡ At(x)PH(t) + v(x, 0) (2.5)

Entering equation (2.4) and equation (2.5) into equation (2.3) yields,

d2At(x)

dx2
≡ RCAt(x)P−1 (2.6)

Next, solving equation (2.6), we get At(x).

Finally, substitute At(x) into equation (2.4), we obtain v(x, t).

2.5 The Black-Scholes equation

In mathematical finance, the BlackScholes equation [14], [18] is a partial

differential equation (PDE) governing the price evolution of a European call or Euro-

pean put under the BlackScholes model. Widely speaking, the term may refer to a same

PDE that can be derived for a variety of options, or more generally, derivatives. For a

European call or put [15] on an underlying stock paying no dividends, the equation is

∂

∂t
u(s, t) + rs

∂

∂s
u(s, t) +

σ2s2

2

∂2

∂s2
u(s, t)− ru(s, t) = 0

where u(s, t) is the option price at time t with 0 ≤ t ≤ T , s is the price of stock at time

t, r is the interest rate and σ is the volatility of stock.
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CHAPTER 3

Haar wavelet method for solving

differential equations

The idea in this chapter starts from using an operational matrix for in-

tegration via Haar wavelets for apply this operational matrix to some differential equa-

tions, to demonstrate the other method of the approach.

3.1 Generalized Haar wavelet method for solving linear

ordinary differential equations

In this section, we apply Haar wavelet method to solve some second

order linear ordinary differential equations with initial conditions and boundary condi-

tions. Moreover, we extend this approach for solving the general from of second order

linear boundary value problem. Finally, we look into conditions for extend the interval

of second order ordinary differential equation’s solutions from [0, 1] to [r, r + 1] when

r is an integer.
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3.1.1 Methods of solution of linear ordinary differential equations

with initial conditions

The Initial Value Problem is in the form

y
′′
= φ(t, y, y

′
) (3.1)

with initial conditions

y
′
(0) = α, y(0) = β.

Assume that y′′(t) is square integrable in the interval 0 ≤ t < 1.

Its Haar wavelets expansion can be expressed as

y
′′
(t) =

m−1∑
n=0

anhn(t) ≡ AtHm(t) (3.2)

where At =
[
a0 a1 a2 . . . am−1

]
is the unknown vector of real numbers and

Hm(t) is Haar matrix. The m in Hm(t) will be dropped to simplify the notation.

y
′′
(t) ≡ AtH(t).

Integrating over [0, t] yields

y
′
(t) =

∫ t

0

y
′′
(τ) dτ + y

′
(0) ≡

∫ t

0

AtH(τ) dτ + y
′
(0).

Since
∫ t
0
H(τ) dτ = PH(t), we get

y
′
(t) ≡ AtPH(t) + α. (3.3)

Integrating again, we obtain the solution

y(t) =

∫ t

0

y
′
(τ) dτ + y(0)

≡
∫ t

0

(
AtH(τ) + α

)
dτ + β.

Hence

y(t) ≡ AtP 2H(t) + αt+ β. (3.4)

Next, substituting (3.2), (3.3) and (3.4) into the equation (3.1), we obtain the linear

system with unknown vector At. Finally, solving this system gives the solution of the

form (3.4)
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Example 3.1. Consider the differential equation

y
′′
(t) + y

′
(t) + y(t) = − sin t− sin t(cos t)2 (3.5)

with initial conditions

y
′
(0) = 0, y(0) = 1.

The exact solution is given by

y(t) =
−31
√
3

219
exp

(
−t
2

)
sin

(√
3t

2

)

+
1

73

(
−19 exp

(
−t
2

)
cos

(√
3t

2

))
+

1

73

(
8 sin(t) cos2 (t)− 2 sin(t) + 3 cos3(t) + 89 cos(t)

)
.

Assume that

y
′′
(t) ≡ AtH(t)

where At =
[
a0 a1 a2 . . . am−1

]
and H(t) is Haar matrix.

So we have

y
′
(t) ≡ AtPH(t)

y(t) ≡ AtP 2H(t) + 1.

Substituting y′′(t) ≡ AtH(t), y′(t) ≡ AtPH(t) and y(t) ≡ AtP 2H(t) + 1 into (3.5)

we obtain that

AH(t) + APH(t) + AP 2H(t) ≡ − sin t− sin t(cos t)2 − 1.

Since we know matrices P andH(t), we can compute the vectorAt and get the solution

y(t) as in Table 1, Table 2 and Table 3.

Time (t) Exact Solution Haar Solution Error

0 1.0 0.9963369963 0.003663003663

0.125 0.9918840512 0.9821680151 0.009716036028

0.375 0.9229326726 0.9552691267 0.03233645414

0.625 0.7811469077 0.8707645007 0.08961759292

0.875 0.5749830640 0.7570535347 0.1820704707
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Table 1. The comparison of exact solution and Haar solution when m = 8

Time (t) Exact Solution Haar Solution Error

0 1.0 0.9990539262 0.0009460737938

0.125 0.9918840512 0.9880658880 0.003818163116

0.375 0.9229326726 0.9283967839 0.02449980899

0.625 0.7811469077 0.8308578420 0.07686851128

0.875 0.5749830640 0.7091856004 0.1661928251

Table 2. The comparison of exact solution and Haar solution when m = 16

Time (t) Exact Solution Haar Solution Error

0 1.0 0.9999394417 0.00006055834797

0.125 0.9918840512 0.9915467363 0.0003373148315

0.375 0.9229326726 0.9360012442 0.01306857163

0.625 0.7811469077 0.8412507834 0.06010387567

0.875 0.5749830640 0.7211795486 0.1461964846

Table 3. The comparison of exact solution and Haar solution when m = 64

We see that Haar solutions approximate to the exact solution when m is

increasing. In other word, error values are inversely proportional to m.

3.1.2 Methods of solution of linear ordinary differential equations

with boundary conditions

The Boundary Value Problem is in the form

y
′′
= φ(t, y, y

′
) (3.6)

with boundary conditions a ≤ b.

Case 1: y(a) = α, y(b) = β

Case 2: y′(a) = α, y(b) = β
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Case 3: y(a) = α, y′(b) = β

Case 4: y′(a) = α, y′(b) = β.

Similar to previous subsection, we assume that

y
′′
(t) ≡ AtH(t). (3.7)

By using the integration over [a, t], we obtain

y
′
(t) =

∫ t

a

y
′′
(τ) dτ + y

′
(a) (3.8)

=

∫ t

0

y
′′
(τ) dτ −

∫ a

0

y
′′
(τ) dτ + y

′
(a) (3.9)

≡
∫ t

0

AtH(τ) dτ −
(
y
′
(a)− y′(0)

)
+ y

′
(a) (3.10)

y
′
(t) = AtPH(t) + y

′
(0). (3.11)

Integrating again, we get

y(t) ≡ AtP 2H(t) + y
′
(0)t+ y(0), (3.12)

and

y
′
(0) ≡ y

′
(a) + AtPH(a), (3.13)

y(0) ≡ y(a)− AtP 2H(t)− y′(0)a. (3.14)

Before substituting (3.7), (3.11) and (3.12) into (3.6), we need to compute y(0) and

y
′
(0), which depend on the choice of boundary conditions.

Case 1: y(a) = α, y(b) = β.

Entering t = a and t = b into (3.12) yields,

y(a) ≡ AtP 2H(a) + y
′
(0)a+ y(0),

y(b) ≡ AtP 2H(b) + y
′
(0)b+ y(0).

By solving this equation system, we get

y
′
(0) ≡ 1

(a− b)
[
(y(a)− y(b))−

(
AtP 2H(a)− AP 2H(b)

)]
=

1

(a− b)
[
(α− β)−

(
AtP 2H(a)− AP 2H(b)

)]
.
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Entering y′(0) into (3.14) yields,

y(0) ≡ y(a)− AtP 2H(a)− a

(a− b)
[
(y(a)− y(b))−

(
AtP 2H(a)− AtP 2H(b)

)]
= α− AtP 2H(a)− a

(a− b)
[
(α− β)−

(
AtP 2H(a)− AtP 2H(b)

)]
.

Case 2: y′(a) = α, y(b) = β.

Put t = a and t = b into (3.11) and (3.12) respectively,

y
′
(a) ≡ AtPH(a) + y

′
(0)

y(b) ≡ AtP 2H(b) + y
′
(0)b+ y(0).

We get

y
′
(0) ≡ y

′
(a)− AtPH(a)

= α− AtPH(a),

and

y(0) ≡ y(b)− AtP 2H(b)− y′(0)b

≡ y(b)− AtP 2H(b)−
(
y
′
(a)− AtPH(a)

)
b

= β − AtP 2H(b)−
(
α− AtPH(a)

)
b.

Case 3: y(a) = α, y′(b) = β.

Put t = b and t = a into (3.11) and (3.12) respectively,

y
′
(b) ≡ AtPH(b) + y

′
(0)

y(a) ≡ AtP 2H(a) + y
′
(0)a+ y(0).

We get

y
′
(0) ≡ y

′
(b)− AtPH(b)

= β − AtPH(b),

and

y(0) ≡ y(a)− AtP 2H(a)− y′(0)a

≡ y(a)− AtP 2H(a)−
(
y
′
(b)− AtPH(b)

)
a

= α− AtP 2H(a)−
(
β − AtPH(b)

)
a.
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Case 4: y′(a) = α, y′(b) = β.

In this case a or b must be equal to 0, then we can find y(0) by substituting y′(0) in

(3.12).

All of cases, we have P ,H(t), y(0), y′(0) and we can compute the vector

At. Continuously, combine everything into (3.12) we obtained y(t).

Example 3.2. Consider the differential equation

y
′′
(t) + y

′
(t) + y(t) = sin t (3.15)

with boundary conditions

y
′
(0) = 0, y(0.2) = 1.

The exact solution is given by

y(t) =
exp(−0.5t) sin

(
0.5
√
3t
)
(cos(0.2) + 1)

exp(−0.5t)
(√

3 cos
(
0.2
√
3
)
+ sin

(
0.2
√
3
))

+
exp(−0.5t) cos

(
0.5
√
3t
)
(cos(0.2) + 1)

exp(−0.5t)
(√

3 cos
(
0.2
√
3
)
+ sin

(
0.2
√
3
)) − cos(t).

Assume that

y
′′
(t) ≡ AtH(t).

where At =
[
a0 a1 a2 . . . am−1

]
and H(t) is Haar matrix.

So

y
′
(t) ≡ AtPH(t)

y(t) ≡ AtP 2H(t) + y(0).

We know that

y(0) ≡ y(0.2)− AtP 2H(0.2)−
(
y
′
(0)− AtPH(0)

)
(0.2)

then

y(t) ≡ AtP 2H(t) + 1− AtP 2H(0.2) + 0.2AtPH(0).

Substituting y′′(t), y′(t) and y(t) into (3.15).

We get

AtH(t) + AtPH(t) + AtP 2H(t) = sin t−
(
1− AtP 2H(0.2) + 0.2AtPH(0)

)
.
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We can compute the vector At because we have P and H(t), then we get y(t) as in

Figure 3.

Figure 3. Haar solution when m = 64 (Dashed line) and exact solution (Straight line)

We see that Haar solutions (Dashed line) approximate to the exact solu-

tion (Straight line).

3.1.3 Methods of solution of linear ordinary differential equations

In this subsection, we look into conditions for extend the interval of

second order ordinary differential equation’s solutions from [0, 1] to [r, r+ 1] when r is

an integer [11].

We have ∫ r+t

r

Hm(τ) dτ = PmHm(t).

Consider the initial value problem with conditions

y
′
(a) = α, y(a) = β

where a ∈ [r, r + 1].

Let us apply the Haar transform in the time domain and expand y′′(t) into Haar wavelets

y
′′
(t) ≡ AtH(t).

Integrating y′′(t) from a+ r to r + t,∫ r+t

a+r

y
′′
(τ) dτ = y

′
(t+ r)− y′(a+ r)
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so that

y
′
(t+ r) =

∫ r+t

a+r

y
′′
(τ) dτ + y

′
(a+ r)

=

[∫ r+t

0

y
′′
(τ) dτ −

∫ a+r

0

y
′′
(τ) dτ

]
+ y

′
(a+ r)

=

[(∫ r

0

y
′′
(τ) dτ +

∫ r+t

r

y
′′
(τ) dτ

)
−
∫ a+r

0

y
′′
(τ) dτ

]
+ y

′
(a+ r)

=
(
y
′
(r)− y′(0)

)
+

∫ r+t

r

y
′′
(τ) dτ −

(
y
′
(a+ r)− y′(0)

)
+ y

′
(a+ r)

=

∫ r+t

r

y
′′
(τ) dτ + y

′
(r)

≡
∫ r+t

r

AtH(τ) dτ + y
′
(r)

= At
∫ r+t

r

H(τ) dτ + y
′
(r)

= AtPH(t) + y
′
(r).

Finally, we get

y
′
(t+ r) ≡ AtPH(t) + y

′
(r)

y(t+ r) ≡ AtP 2H(t) + y
′
(r)t+ y(r).

Note that, we can find y′(r) and y(r) by the same method of calculating y′(0) and y(0).

3.2 Haar wavelet method for solving the Black-Scholes

equation

This section we look into conditions for solve of the Black-Scholes

equation by Haar wavelet method.

The Black-Scholes equation is given by

∂

∂t
u(s, t) + rs

∂

∂s
u(s, t) +

σ2s2

2

∂2

∂s2
u(s, t)− ru(s, t) = 0

where u(s, t) is the option price at time t with 0 ≤ t ≤ T , s is the price of stock at time

t, r is the interest rate and σ is the volatility of stock which is r >
σ2

2
.
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Consider the case of a European call option.

Boundary conditions for a call option [15] are

u(0, t) = 0

u(s, t) = s when s→∞

u(s, T ) = max (s− sp, 0) when sp is a strike price.

For simplicity, we set,

u(s, t) = u,

∂

∂t
u(s, t) = ut,

∂

∂s
u(s, t) = us,

∂2

∂s2
u(s, t) = uss.

Consider

ut + rsus +
σ2s2

2
uss − ru = 0. (3.16)

Let

uss ≡ at(t)H(s)

where at(t) is an m-vector function of t.

So

us ≡ at(t)PH(s) + us(0, t)

u ≡ at(t)P 2H(s) + sus(0, t) + u(0, t).

Thus

ut ≡ ȧt(t)P 2H(s) + su̇s(0, t).

Since lim
s→0

u(s, t) = 0, so in this case is not interested.

We know that

lim
s→∞

u(s, t) = s.

So

us(s, t) = 1 = us(0, t).
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Thus

u̇s(0, t) = 0.

Hence

ut ≡ ȧt(t)P 2H(s).

Substituting ut, u, uss and us into (3.16).

We get

ȧt(t)P 2H(s) + rs
(
at(t)PH(s) + 1

)
+
σ2s2

2

(
at(t)H(s)

)
− rs ≡ 0.

Finally, we obtain that

ȧt(t)P 2 +

(
rsP +

σ2s2

2
+ rP 21

)
at ≡ 0. (3.17)

Solving equation (3.17), we get

at(t) ≡ at(0) exp

[
−
(
rsP +

σ2s2

2
− rP 2

)
P−2t

]
.

Hence

u(s, t) ≡ at(0) exp

[
−
(
rsP +

σ2s2

2
− rP 2

)
P−2t

]
P 2H(s) + s.

Now, we can find at(0) by the condition u(s, T ) = sα when α ∈ R [13].

sα = u(s, T ) ≡ aT (0) exp

[
−
(
rsP +

σ2s2

2
− rP 2

)
P−2T

]
P 2H(s) + s.

Finally, we obtain that

u(s, t) ≡ at(0) exp

[
−
(
rsP +

σ2s2

2
− rP 2

)
P−2t

]
P 2H(s) + s.
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CHAPTER 4

Conclusions and Suggestions

In chapter 3, we have 2 sections. The first section is Generalized Haar

wavelet method for solving linear ordinary differential equations and the second section

is Haar wavelet method for solving the Black-Scholes equation.

In section of Generalized Haar wavelet method for solving linear ordi-

nary differential equations, we have 3 subsections.

1. Methods of solution of linear ordinary differential equations with initial condi-

tions

The Initial Value Problem is in the form

y
′′
= φ(t, y, y

′
)

with initial conditions

y
′
(a) = α, y(a) = β.

When a ∈ [0, 1].

In this subsection, we study Haar wavelet method by apply Haar wavelets

to solve some second order linear ordinary differential equation with initial conditions.

Now, we obtained

y
′
(t) ≡ AtPH(t) + y

′
(0)

y(t) ≡ AtP 2H(t) + y
′
(0)t+ y(0).

Substituting P , H(t), initial conditions and then compute At, we obtained y(t).
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Observe that we must have initial conditions y′(0) and y(0). We can

find initial conditions at 0 by this equation

y
′
(0) ≡ y

′
(a)− AtPH(a)

and

y(0) ≡ y(a)− AtP 2H(a)− y′(0)a.

H(a) is The Haar vector at the point a for an mth-order system is defined with m Haar

functions in row vector. It means that,

H(a) ≡ Hm(a) ≡



h0(a)

h1(a)

h2(a)
...

hm−1(a)


.

2. Methods of solution of linear ordinary differential equations with boundary

conditions

The Boundary Value Problem is in the form

y
′′
= φ(t, y, y

′
)

with boundary conditions

Case 1: y(a) = α, y(b) = β

Case 2: y′(a) = α, y(b) = β

Case 3: y(a) = α, y′(b) = β

Case 4: y′(a) = α, y′(b) = β.

By the first subsection, we get

y
′
(t) ≡ AtPH(t) + y

′
(0)

y(t) ≡ AtP 2H(t) + y
′
(0)t+ y(0),

and

y
′
(0) ≡ y

′
(a)− AtPH(a)

y(0) ≡ y(a)− AtP 2H(a)− y′(0)a.
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In this subsection we find y′(0) and y(0).

Finally, we obtained.

Case 1: y(a) = α, y(b) = β.

y
′
(0) ≡ 1

(a− b)
[
(α− β)−

(
AtP 2H(a)− AtP 2H(b)

)]
and

y(0) ≡ α− AtP 2H(a)− a

(a− b)
[
(α− β)−

(
AtP 2H(a)− AtP 2H(b)

)]
.

Case 2: y′(a) = α, y(b) = β.

y
′
(0) ≡ α− AtPH(a)

and

y(0) ≡ β − AtP 2H(b)−
(
α− AtPH(a)

)
b.

Case 3: y(a) = α, y′(b) = β.

y
′
(0) ≡ β − AtPH(b)

and

y(0) ≡ α− AtP 2H(a)−
(
β − AtPH(b)

)
a.

Case 4: y′(a) = α, y′(b) = β.

In this case a or b must be equal to 0, then we can find y(0) by substi-

tuting y′(0) in y(t) ≡ AtP 2H(t) + y
′
(0)t+ y(0).

All of cases, we have P , H(t), y(0), y′(0) and we can compute the vec-

tor At. Continuously, combine everything into y(t) ≡ AtP 2H(t) + y
′
(0)t + y(0) we

obtained y(t).

3. Methods of solution of linear ordinary differential equations

In this subsection, we consider the solutions of second order ordinary

differential equations in [r, r + 1] when r is an integer.

We have ∫ r+t

r

Hm(τ) dτ = PmHm(t)
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Consider the initial value problem with conditions

y
′
(a) = α, y(a) = β

where a ∈ [r, r + 1].

Let us apply the Haar transform in the time domain and expand y′′(t)

into Haar wavelets and integrating y′′(t) from a+ r to r + t.

Finally, we get

y
′
(t+ r) ≡ AtPH(t) + y

′
(r)

y(t+ r) ≡ AtP 2H(t) + y
′
(r)t+ y(r).

We can find y′(r) and y(r) by the same method of calculating y′(0) and y(0).

The second section is Haar wavelet method for solving the Black-Scholes

equation.

The Black-Scholes equation is given by

∂

∂t
u(s, t) + rs

∂

∂s
u(s, t) +

σ2s2

2

∂2

∂s2
u(s, t)− ru(s, t) = 0

where u(s, t) is the option price at time t with 0 ≤ t ≤ T , s is the price of stock at time

t, r is the interest rate and σ is the volatility of stock which is r >
σ2

2
.

This section we solve the Black-Scholes equation in the case of a Euro-

pean call option by Haar wavelet method then we obtained that

u(s, t) ≡ at(0) exp

[
−
(
rsP +

σ2s2

2
− rP 2

)
P−2t

]
P 2H(s) + s.

We can find at(0) by this equation

sα = u(s, T ) ≡ aT (0) exp

[
−
(
rsP +

σ2s2

2
− rP 2

)
P−2T

]
P 2H(s) + s.

The main goal of this thesis is to present that the Haar wavelet method

is a effective tool for solving differential equations. Approximate solution of second

order differential equations, are compared with exact solution. Among the well-known
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wavelets, the Haar wavelet is the simplest one. And you can use the Haar function for

construct the orthogonal basis by the process that not too hard.

We will make more suggestions in Example 3.1 and Example 3.2. Since

we have a problem in program for find solutions of the vector At, so we can choose

m ≤ 64. If some people can choose the big m then Haar solutions approximate to the

exact solution because error values are inversely proportional to m. Moreover, in the

section of Haar wavelet method for solving the Black-Scholes equation, the suggestion

is solving the Black-Scholes equation in the case of a European put option by Haar

wavelet method.
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APPENDIX

In this Chapter, we show codes of program for solving a vector At in

examples of Chapter 3.
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