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Abstract: In this work, flow and heat transfer on a surface mounted dimples and protrusions
were investigated. 5 of dimples and protrusions were formed on the internal surface of wind tunnel
having rectangular cross-section with inline arrangement and perpendicular to the air flow inside the
tunnel. 6 types of dimples and protrusions were considered: (1) spherical protrusions (2) spherical
dimples (3) teardrop protrusions with eccentricity in the upstream (Positive Eccentricity, PE), (4)
teardrop protrusions with eccentricity in the downstream (Negative Eccentricity, NE), (5) conical
protrusions and (6) conical dimple. The printed diameter of dimples and protrusions was D=26.4 mm,
and the height of protrusions or the depth of dimples were H=0.2D. The protrusion-to-protrusion
spacing or the dimple-to-dimple spacing was varied at S=1.125D, 1.25D, 1.5D and 2D. The Reynolds
number of air flow inside the wind tunnel, based on hydraulic diameter of air flow inside the wind
tunnel, was fixed at Rey=20,000. The heat transfer coefficient on the surface was evaluated by
measuring temperature distributions using a thermochromic liquid crystal sheet, and flow
characteristics in the wind tunnel was simulated using Computational Fluid Dynamics (CFD). The results
showed that the heat transfer rate of spherical protrusions was higher than that of the other
protrusions. The heat transfer rate for the case of S=1.125D was the highest.

Keywords: Dimple, Protrusion, Heat transfer enhancement, Heat transfer coefficient
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ABSTRACT

The enhancement of thermal efficiency is very important for energy saving in thermal
equipment. In this article, the heat transfer enhancement on a surface with dimples and protrusions were
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reattachment flow and circulation flow were occurred resulting on increasing turbulent flow and
increasing the heat transfer on the surface. In this article, the heat transfer enhancement by using dimple
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surface of tube using for heat exchanger were presented. In addition, the patents regarding the designing
of thermal equipment with dimples and protrusions technique for increasing thermal efficiency was also
presented.
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(a) hemispherical dimple
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(c) teardrop dimple (d) teardrop protrusion with NE

(e) teardrop protrusion with PE
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(d) teardrop protrusion with NE (¢) teardrop protrusion with PE

(¢) teardrop dimple
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Abstract

This article, the simulation study of flow and heat transfer on the dimple surface
was presented. A 3-D model was wind tunnel with rectangular cross section. A row of
dimples with inline arrangement were formed on the internal surface of wind tunnel, and
the centerline of dimples was perpendicular to air flow. The dimples were sphere with a
diameter of 40 mm, and the printed diameter of dimples on the surface was D=26.4 mm.
The depth of dimple was H=0.2D. A dimple-to-dimple spacing were adjusted at S=1.125D,
1.25D, 1.5D and 2D. The Reynolds numbers of internal flow, based on the hydraulic
diameter of the wind tunnel, was 20,000. The fluid flow and heat transfer were solved
using a Shear Stress Transport (SST) k- turbulence model. The results show that at
S=1.125D, the peak of Nusselt number along downstream of dimples was found into
double regions whereas for the case of S>1.25D, the one was found in single region.

Keywords: CFD; Dimple; Heat transfer; Turbine blade cooling
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1. Introduction

Augmentation of heat transfer in various techniques was used for cooling gas
turbine engine passages and turbine airfoils. Heat transfer convection rate between fluid
and solid surface is the main point to upgrade in various engineering applications such as
automotive and aerospace components, heating and refrigerating, solar collectors,
electronic devices which was described in Heo, Seo, Ku, and Kang (2011); Lan, Xie, and
Zhang (2011). For the past decades, tremendous amount of efforts has been made to
improve efficiency and performance of thermal equipment accompanying on the reduction
in their size, weight and cost. Generally, convective heat transfer can be enhanced using
either active and/or passive techniques. Among the most recognize passive techniques to
enhance heat transfer are swirl flow devices Ligrani, Oliveira, and Blaskovich (2003),
surface tension devices, rough surfaces Kurniawan, Kiswanto, and Ko (2017); Ligrani et al.
(2011), pin fins (Ligrani et al., 2011), ribbed turbulators (Ligrani et al., 2011) and surfaces
with dimple Rao, Li, and Feng (2015); Vorayos, Katkhaw, Kiatsiriroat, and Nuntaphan
(2016); Xie, Qu, and Zhang (2015). Dimple has been regarded as one of the most effective
structure to enhance the heat transfer rates without the significant pressure drop and flow
resistance.

Mahmood et al. (2000) has conducted a wind tunnel investigation on an array of
hemispherical dimple with staggered arrangement. They reported the formation of large
vortexes pair was ejected from the dimple cavity. Other works on flow structure involving
dimples are also being reported by Ligrani, Harrison, Mahmmod, and Hill (2001); Shin,
Lee, Park, and Kwak (2009); Won and Ligrani (2007); Won, Zhang, and Ligrani (2005).

Recent studies on the flow structure involving dimples has been carried out through

CFD technique. The low cost and less time consuming are two significances preferred
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aspect of CFD technique. It can be compared and predicted the experimental results using
CFD technique. Another advantage of CFD is its capability to provide details on the flow
structure which is commonly very difficult to analyze in experiments. Rao et al. (2015)
studied the flow and heat transfer characteristics of hemispherical and tear drop dimples by
using CFD. The dimensions of hemispherical dimples were similar to the case of
Mahmood et al. (2000). The results showed details of heat transfer characteristics on the
dimple surface and agreed well with by the experimental results. In addition, Elyyan and
Tafti (2008); Kim and Shin (2008); Xie et al. (2015); Yoon, Park, Choi, and Ha (2015)

used CFD technique to predict flow and heat transfer of dimple array in channel flow. The

computational modeling have done a part of dimple array for minimizing calculation effort.

Although a lot of efforts such as the aforementioned works were focused on array
of dimples, there is a need to fundamentally understand the effects of single dimple by
eliminating the effects of neighboring dimples: lateral, upstream and downstream dimples.
In orders to eliminate the effect of near boring dimple effects, many researchers such as
Kore, Yadav, and Sane (2015); Isaev, Kornev, Leontiev, and Hassel (2010); Isaev,
Schelchkov, Leontiev, Baranov, and Gulcova (2016); Xia, Tang, Shi, and Tao (2014)
focussed their work on single dimple.

In this work, the hemispherical dimples on the smooth surface was observed to
understand the thermal characteristics and flow structure. The aims of present work
were to investigate the flow interaction between dimple and lateral dimple, and the
effects of hemispherical dimple-to-dimple spacing on flow structure and heat transfer

characteristics by using CFD technique.

2. Methods

3
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ANSYS (Fluent) software was used to simulate the flow and heat transfer characteristics
of the cases. A three dimensional (3D) numerical model was created imitating the
geometrical details of the wind tunnel which involves in the previous experimental work of
Wae-hayee, Tekasakul, Eiamsa-ard, and Nuntadusit (2014) and Wae-hayee, Tekasakul,
Eiamsa-ard, and Nuntadusit (2015). The referred works Wae-hayee et al. (2014) and Wae-

hayee et al. (2015) were also used for validation purpose of the present CFD results.

2.1 Model of dimples
The model of a row of dimples formed on the inner surface of rectangular wind

tunnel is shown in Figure 1. The air with fully developed flow passed through the test
section. The origin of Cartesian coordinate system was located at the centre of middle
dimple. The X-axis was the direction to flow inside the wind tunnel, Y-axis was the
direction of wind tunnel height and Z-axis was perpendicular to the flow.

The details of dimple are shown in Figure 2. The diameter of hemispherical dimple
was 40 mm, and printed diameter on the surface was D=26.4 mm. The depth of dimple,
from the surface to the dimple bottom tip, was 0.2D Isaev et al. (2016); Kim et al. (2008);
Rao et al. (2015). The dimple-to-dimple spacing was adjusted at S=1.125D, 1.25D, 1.5D
and 2D. The Reynolds number of air flow inside the wind tunnel, based on the hydraulic
diameter of the wind tunnel, was fixed at Rey=20,000 Mahmood et al. (2000) and Rao et al.
(2015).

Figure 1 The model of investigation.

Figure 2 The details of dimple.

2.2 Wind tunnel

In this work, a wind tunnel investigation has been carried out to validate the present

4

For Proof Read only



oNOYTULT D WN =

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Songklanakarin Journal of Science and Technology SJST-2017-0413.R3 Oo

CFD results due to experimental limitation, and also the experimental measurement just
have been done only for smooth wall. The temperature of heat transfer surface of smooth
wall was measured using TLC technique. The details of measurement and wind tunnel
were given in previous works of Wae-hayee et al. (2014) and Wae-hayee et al. (2015).
Figure 3 shows computational model imitating the geometrical details that have
been used in the experimental setup Wae-hayee et al. (2014) and Wae-hayee et al. (2015).
The wind tunnel has a rectangular cross-section consisting of three parts: the upstream of
test section (1700 mm), test section (280 mm) and the downstream of test section (490

mm). The length of the upstream section has been designed to provide sufficient distance

for the flow to achieve fully developed flow. The height of model was set at 26.4 mm (1D).

The width of wind tunnel was varied depending on a dimple-to-dimple spacing.
Figure 3 The wind tunnel with spherical dimple.

The details of generated grid used in this study are shown in Figure 4. Cutting
planes along the centre-line of the dimple were shown to expose the internal grid system.
The majority of the meshes were even hexahedral geometries while uneven hexahedral
geometries were used to accommodate the non-uniform surfaces at dimples area and its
surrounding regions. Intensive mesh generation was applied at the near wall region to
enable accurate prediction in the viscous sub layer. For the purpose of mesh dependency
test, different y+ distributions have been considered as shown in Figure 5. The analysis of
y+ distributions position was considered the spacing between dimple and dimple (-5 < X/D
< 5) (Z/D=1) of S=2D case. Based on the y+ distributions, the 7,294,941 elements have
been chosen to apply in the computational domain.

Figure 4 Generated grids.
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Figure 5 y plus distributions on the surface at dimple interval (-5 < X/D <5)

(Z/D=1) of S=2D case.

2.3 Assumptions and boundary conditions

In numerical model, the upper and the lower wall were set to have no slip condition.
All walls, except bottom wall of test section, were insulated to full-filled the adiabatic
condition. A steady state simulation which was used in Kore, Yadav, and Sane (2015); Rao,
Li, and Feng (2015); Xia, Tang, Shi, and Tao (2014); Xie, Qu, and Zhang (2015),
incompressible flow with constant thermal properties and no gravitational effect were
considered in this numerical study. The inlet was set to have uniform velocity entered at
Reynolds number, Rey=20,000 with the temperature of air was at 25 °C. The pressure
outlet was set at the 1 atm. Both of the lateral walls were set as symmetry. The heat

transfer surface embedded with dimples was set at constant heat flux, (¢ =150 W/m?).

2.4 Numerical calculation method

A 3-D numerical model based on finite volume method was adopted to solve
governing equations with boundary conditions. The details of equation can be found in
Versteeg and Malalasekera (2007). The fluid flow and heat transfer were solved using a
Shear Stress Transport (SST) k-o turbulence model due to accurate prediction with
moderate computation cost Versteeg et al. (2007). The suitability of the turbulence model
has also been reported in another various studies Rao et al. (2015); Wae-hayee et al. (2015);
Xie et al. (2015).

The solution method was based on Semi Implicit Method for Pressure-Linked
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Equations (SIMPLE) algorithm with second order upwind for all spatial discretization. In
terms of convergence criteria, the root mean square (RMS) residuals of continuity and
energy equation were set to be minimum at 10 and that of momentum equation was set to

be minimum at 10~ Rao et al. (2015) and Wae-hayee et al. (2015).

2.5 Nusselt number calculation

The heat transfer coefficient, h, could be calculated from:

h:# (1)

where, ¢ was heat flux, Ty, was wall temperature and T, was air temperature.

The Nusselt number, Nu, was calculated from:

Nu="PH. 2)

where Dy was the hydraulic diameter of the tunnel and k was a thermal conductivity of the

air.

3. Results and Discussion

3.1 Verification of simulation

For the purpose of the verification, the well-known Dittus-Boelter correlation,

Nu, =0.23Re%8 pr94 where Re and Pr were Reynolds number and Prandtl number, were

used for comparing internal heat transfer in the smooth channel that can be found in Rao,
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Li, and Feng (2015). The average Nusselt numbers versus Reynold numbers for smooth
wind tunnel were compared between the correlation, the experimental results, and the CFD
method from this work are shown in Figure 6. The current data agrees well with the
correlation and the experimental results that overall heat transfer increase according to
increasing of Reynolds number. The discrepancies of comparison were found in the same
range with the work of Rao et al. (2015).
Figure 6 Average Nusselt numbers versus Reynold numbers of internal heat
transfer correlation comparing with the experimental and the CFD results in this

work.

The velocity profiles of air flow in wind tunnel height before entering to the test
section at Z/D=0 are shown in Figure 7. The velocity profiles over the smooth surfaces
were analyzed for both experiment and simulation. In the wind tunnel experiment, a Pitot
tube was fixed at Z/D=0 and X/D=2.84 and the air velocities were identical to those of
numerical analysis. The experimental results were also compared to verify the CFD results
by using the setup of the previous work of Wae-hayee et al. (2014) and Wae-hayee et al.
(2015). Good agreement in terms of the velocity profiles between the CFD and the
experiment can be observed. The highest velocity exists at the centre of the wind tunnel.
The blunt profiles of the velocity correspond to the characteristics of internal turbulent
flow.

Figure 7 The velocity profiles of flow before entering to the test section (Z/D=0 and

1,560 mm from the inlet).

3.2 Flow characteristics

8
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Streamlines of flow over dimple surface are shown in Figure 8. The figure clearly
indicates the occurrence of circulation flow in the dimples cavity. The figure also shows
that the circulation flow was occurring at the upstream portion of the dimple cavity. This
can be further confirmed in Figure 9 which shows the streamline inside the dimple cavity.
The static circulation flow acts as thermal insulator resulting in low heat transfer on
upstream portion in dimple surface that will be further discussed in the writing.

Figure 8 Streamline above the surface of dimples.

Figure 9 Streamline at the centre plan of middle dimple (S/D=1.125).

In Figure 8, the characteristics of upstream streamline (before passing dimple) were
straight lines whereas those of downstream streamlines (immediately after passing dimple,
X/D = 0.5) were separated from its centre-line and tended to lateral side. This was from the
effect of the longitudinal vortex pair occurrence after flow passing dimple which has also
been reported in the literatures of Ligrani et al. (2003); Mahmood et al. (2000); Mahmood
and Ligrani (2002). Here, it can be noted that for the case of S=1.125D as shown in Figure
8 (a), the flow tendency to the lateral sides of this vortex pair seems to be slighter than
those other cases due to confinement from near boring vortex pair in condition of short
dimple-to-dimple spacing.

Streamline passing the centre of middle dimple (Z/D=0) for the case of S=1.125D
is shown in Figure 9. The figure shows the flow inside the dimple. It can be observed that,
the stationary circulation flow occurred in upstream portion of dimple while attachment
flow occurred in downstream portion of dimple. The attachment flow results in increasing
heat transfer that would be further discussed in the next section.

Velocity vectors on Y-Z plan are shown in Figure 10. At X/D=0.5 (immediately

downstream of dimple) for every S/D cases (Figure 10 (a), (e), (i) and (m)), the vectors
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rose upward from bottom dimple surface to upper surface of wind tunnel in dimple area.
Then, at X/D=1.0, these frames show the different characteristics of velocity vectors for
every S/D due to striking by main flow: (1) S=1.125D (Figure 10(b)), a longitudinal vortex
pair can be detected clearly; (2) S=1.25D (Figure 10(f)), a longitudinal vortex pair was
depressed by main flow and it cannot be detected clearly; (3) S=1.5D (Figure 10(j)),
velocity vectors attached laterally on the smooth downstream surface; (4) S=2D (Figure
10(n)), the attachment velocity vectors turned upward from the bottom surface. All this can
be seen from the white bold arrow sketching in the figures.

Figure 10 Velocity vectors on Y-Z plan (Dash straight line is the centre of dimples).

From the case of S=1.125D, the longitudinal vortex pair was confined by near
boring ones due to short dimple-to-dimple spacing whereas for the case of S>1.25D, a
longitudinal vortex pair was separated by attachment flow due to larger dimple-to-dimple
spacing. The comparison of the sketch of the flow structure along downstream of dimple
between short and large dimple-to-dimple spacing is shown in Figure 11. The sketch of
flow structure for the case of dimple array was presented by Mahmood et al. (2000). The
longitudinal vortex pair along downstream of their case was similar with this study case as
shown in Figure 11(a), just only for the case of short dimple-to-dimple spacing. When
dimple-to-dimple spacing was larger, the vortex-to-vortex spacing was also larger by
replacing the attachment flow at the middle between them as shown in Fig. 11(b).

Figure 11 The sketch of flow structure along downstream of dimple.

3.3 Heat transfer

The contours of Nusselt number on the surface are shown in Figure 12. In the

surface of dimples, it is found that Nusselt number distributions were high on the
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downstream portion of dimple surface, especially near the rear rim of the dimples because
of the attachment flow as shown previously in Figure 9. In other hand, Nusselt numbers
were low on the upstream portion of dimple surface due to stationary circulation flow.
Both attachment and circulation flows result in increasing or decreasing of Nusselt number
in dimple surface that was also previously discussed in literature of Rao et al. (2015) and
Xie et al. (2015). For the case of S>1.25D (Figure 12 (b)-(d)), the distributions of Nusselt
number on smooth surface along downstream of every dimple were high in single region
whereas for the case of S=1.125D (Figure 12 (a)), those were high in double regions. The
occurrence of the double peak regions was from the effect of the longitudinal vortex pair
that was confined resulting on stronger circulating above the heat transfer surface,
consequently, more removing heat on the surface.

Figure 12 Nusselt number distributions on the surface (Reg=20,000).

Nusselt number distributions in spanwise direction (Z/D) are shown in Figure 13.
Generally, for every S/D case, the peaks of Nusselt number were high at just downstream
of dimples and became lower along downstream direction. At X/D=0.5, the peaks of
Nusselt number for S>1.25D were extremely high, but the peak areas were very small. It is
contrast with the case of S=1.125D that the peaks seem to be blunt and the peak areas were
larger than those cases. This was the initiation of the shape peak to be single peak region
(for S>1.25D) that was from the effect of the attachment flow and blunt peak to be double
peak regions (for S=1.125D) that was from the effect of closing vortex pair spacing. In
addition, for S>1.25D the secondary peak can be detected, especially for the case of S=2D
(Figure 13(d)). This can be attributed from the effect of longitudinal vortex pair that was
separated by attachment flow. Here S>1.25D, the effect of attachment flow was more

dominate than that of longitudinal vortex pair resulting on appearing of the single peak
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being more obvious than the secondary peak.
Figure 13 Nusselt number distributions in spanwise direction, Z/D (Dash straight

line is the centre of dimple).

4. Conclusions

In this article, a dimple-to-dimple spacing, 1.125D<S<2D, on flow structure and
heat transfer in an internal flow was investigated. The results show that at S=1.125D,
the longitudinal vortex pair along downstream of dimples was confined by near boring
vortex pair resulting in minimizing of the longitudinal vortex pair spacing. At this
region, the area of high Nusselt number became into two peaks according to vortex pair.
For S>1.25D, the longitudinal vortex pair was separated by replacing of attachment
flow between them resulting on the area of high Nusselt number becoming only in
single peak. In addition, at this S>1.25D, the longitudinal vortex pair still affected on
Nusselt number by detecting the secondary peaks, especially at the largest dimple-to-

dimple spacing, S=2D.
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Nomenclature

Du : Hydraulic diameter (m)
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h : Convective heat transfer coefficient (W/m?.K)
T, : Wall temperature (°C)

Tair : Inlet air temperature (°C)

q : Heat flux (W/mz)
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Abstract

In this present study, flow and heat transfer characteristics on a surface having spherical and conical
protrusions in a rectangular wind tunnel were investigated experimentally and numerically. Single row of 5
protrusions was performed on the internal surface of wind tunnel distributing in the spanwise direction of the
flow. Every protrusion has a projected diameter of D=26.4 mm, and the height of protrusion was H/D=0.2.
The Reynolds number was considered with the hydraulic diameter of a rectangular wind tunnel at Re4=20,000.
A protrusion-to-protrusion spacing was varied at S/D=1.125, 1.25, 1.5 and 2. Temperature distributions on the
surface was measured using Thermochromic Liquid Crystal sheet (TLCs) to evaluate heat transfer coefficient,
and Numerical simulation technique was also used to simulate flow structure using ANSYS, Fluent. The results
showed that the heat transfer for spherical protrusion was higher than that for conical protrusion. Heat transfer
became higher when the protrusion-to-protrusion spacing was narrower.

Keywords: Dimple; Protrusion; CFD; Heat Transfer; Turbulator

1. Introduction
Enhancing the heat transfer in certain engineering application is one of the technique to save thermal energy

consumption. Therefore, the variety of artificial turbulators have been studied to increase heat transfer
1
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efficiency in industrial applications such as gas turbine engine passages, turbine blades, cooling system of heat
exchanger, micro channel cooling system and radiator etc. Installing on a surface with rib tabulators, pin fins,
dimple or protrusion, swirl chambers and surface roughness are very popular applications approaching heat
transfer enhancement. The activation of these turbulator devices creates secondary flows and enhance
turbulence intensity. In general, using such tabulator devices can improve the thermal efficiency with minimal
pressure drop [1]. An effective method using dimple or protrusion turbulator can enhance heat transfer rates
without significant pressure drop and flow resistance. Recently, many researches have investigated the

effective method using dimple or protrusion turbulator [2 - 10].

The heat transfer and flow characteristics that were affected by the cavities of dimples have been studied by
several researchers such as Mahmood et al. [2], Heo et al. [5], Ligrani et al. [6], Shen et al. [7] and Li et al. [8].
According to Mahmood et al. [2], they investigated the flow and heat transfer in a channel with dimples and
protrusions surface. They found that vortex pairs and vortical fluid appeared near dimple diagonal and these
vortex structures strengthened local Nusselt numbers near downstream rims of each dimple. Moreover, they
proved that the channels with dimples and protrusions were quite beneficial in the turbulent regime and

pressure drop penalty compared to other heat transfer augmentation surfaces.

Vorayos et al. [10] have investigated heat transfer behavior of flat plate having spherical dimples with different
arrangements and compared with smooth surface. Their results showed that the average Nusselt number of the
dimple surface was 26% and 25% higher than that of the smooth surface for staggered and inline arrangements,

respectively. They described that their further studies will be discussed the flow structures above the dimple.

Research on the flow and heat transfer of hemispherical and teardrop dimples using CFD technique, which is
one of the most effective and convenient methods to visualize flow and heat transfer characteristics of dimpled
and protruded surface, was carried out by Rao et al. [11]. They confirmed that the results of CFD simulation

and experiment of overall heat transfer measurement were almost acceptable. Also, the research on flow and
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heat transfer in rectangular channel with different eccentricities of teardrop dimple/protrusion have been done
by Xie et al. [3] using CFD with a realizable k- ® turbulence model. They compared their results with
hemispherical dimple/protrusion and proved that the fluid flowed easily over the teardrop surface. The flow
impingement of teardrop dimple/protrusion was stronger than that of hemispherical ones at rear section of
dimple/protrusion. They also reported that the teardrop dimple/protrusion had a good performance for lower

Reynolds number.

Recently, Alam and Kim [9] have worked together to examine the thermal performance of solar air heater
(SAH) duct that was roughened with an array of conical protrusions and compared with case of spherical
protrusions by using CFD. They reported that the heat transfer of conical protrusions was larger than the one
of spherical protrusions and the pressure drop of conical protrusions was also lower than that of spherical
protrusions. This resulted on higher thermal performance of conical cases. However, the benchmarking
conditions for the height of spherical protrusion that was 0.5 time of printed protrusion diameter have not

reported to use this condition in previous investigations.

Using some different models of protrusions in aforementioned works were concentrated and focused on an
array of protrusions. In order to fundamentally understand the effect of protrusion on flow structure and heat
transfer characteristics without considering of neighboring protrusions (lateral, upstream and downstream
protrusions), single protrusion on a surface was focused such as the work of Xie et al. [3] and Acharya and
Zhou [12]. In this work, the flow interactions between protrusions in lateral sides under fully developed flow
was concerned. The aims of this present work were to investigate the effects of protrusion-to-protrusion
spacing on flow structure and heat transfer characteristics experimentally and numerically. The geometries of
protrusions were spherical and conical configurations based on the same height and printed diameter of the

protrusions.

2. Experiment setup and data reduction

2.1 Experiment setup
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The configurations of wind tunnel which was used in this work are shown in Fig. 1 and 2. The wind tunnel
was rectangular cross-section with 300 mm in width and 26.4 mm (1D) in height. There are three sections of
wind tunnel. These were the upstream of the test section which had enough distance (1,700 mm) to get fully
developed flow. The inlet air temperature was heated at constant temperature of 25.7°C by 2-KW heater, which
was controlled with a temperature and power controllers. The second one was the test section, which was
formed in a distance of 280 mm. The last section was a downstream test section, which was connected with 3-

HP blower for sucking the air from the wind tunnel.

The bottom surface of the test section was drilled with rectangular hollow on the center and covered with a
stainless-steel foil having 0.03 mm in the thickness. This stainless-steel foil was stretched between copper bus
bars. The foil was supplied with the required electrical power through these copper bus bars using DC power
source which can be adjusted to get a variant currents and voltages. The TLC sheet was coated on the external
surface of the stainless-steel foil. A digital camera was used to capture the color patterns of TLC sheet. The
images of color patterns were converted from Red, Green, and Blue (RGB) system to a Hue, Saturation, and
Intensity (HIS) system. A temperature correlation was plotted from measuring temperature versus the Hue (H)

component. The details of temperature calibration for TLC sheet was described in previous works of Wae-

hayee et al. [13, 14].

The 5 protrusions which were made of plastic were attached on the internal surface of the foil as shown in Fig.
2. The air with fully developed flow passed through the surface. The test plate was 280 mm in length and 300
mm in width. The printed diameter (D) and the height (H) of the spherical and conical protrusions were D=26.4
mm and H/D=0.2 [15, 16]. The details of two geometrical configurations of protrusions for simulation and
experiment are shown in Fig. 3. The protrusion-to-protrusion spacing (S) was varied at S/D=1.125, 1.25, 1.5

and 2. The Reynolds number of air flow based on hydraulic diameter of wind tunnel was Re=20,000.

2.2 Data reduction
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The dissipated electrical energy in the stainless-steel foil can be calculated from the following equation:

Qinput =1?-R (1)

where | was the electrical current and R was the electrical resistance of stainless-steel foil.

The convection heat loss from TLC sheet to the environment was evaluated by the following equation:

Qloss,convection = hc (-ITW _Ts) ' (2)

where, h_.was the natural heat transfer coefficient from the outer heat transfer surface to the surrounding

obtained from an empirical equation, Twand T, were the average of wall temperature and the temperature

of surrounding.

The radiation heat loss of rear side of TLC sheet was calculated from
Qloss,radiation =0¢&7 ¢ (fW4 _Ts4) ' (3)

In this equation, o was the Stefan-Boltzmann constant, &; . was the emissivity coefficient of TLC sheet

(0.9).

The temperature of entering air into the test section was controlled at 25.7°C . The coefficient of local heat

transfer by forced convection was defined by:

h= Qinput - Qlosses,convection - Qlosses,radiation (4)
AT, -T,)

The local Nusselt number was defined as follow:

hD,
k

Nu = (5)

Here, DH was the tunnel hydraulic diameter, andk was the thermal conductivity of the air.
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In order to measure pressure drop for calculating friction factor in the experiment, it is difficult to measure
because of small portrubution of single protrusion row in the flow. The friction factor of test section of wind
tunnel which was only detected in numerical simulations was defined by:

. AP ©)
[(L/D,)/2pu%)]

where AP was the pressure drop across test section of wind tunnel, u was the mean velocity of air flow, and

L was the length of the test section, which was 280 mm.

The heat transfer and the friction factor for fully developed turbulent flow of smooth surface of wind tunnel
was calculated to evaluate thermal performance of the protruded channel. The well-known Dittus-Boelter

correlation of Nusselt number for smooth surface of wind tunnel was:

Nu, =0.023Re®® Pr®*. @)

Here, Re and Pr were Reynolds number and Prandtl number respectively.

The friction factor of smooth surface of wind tunnel was evaluated by Blasius correlation which was defined

as follows:

f, =0.316 Re *® (8)

The thermal performance of the protruded channels was evaluated by;

_ (Nu/Nu,)

(NTITATEN ®)

2.3 Numerical Simulation

The simulations of flow and heat transfer for the protruded wind tunnel were created by using ANSYS Fluent
[3, 7 and 13]. In numerical simulation, analyzing on flow and heat transfer characteristics of spherical and
conical protruded surface in wind tunnel were considered with three-dimensional domain and steady state. The

computational domain and boundary conditions are shown in Fig.4. The internal fluid flow was assumed as
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incompressible flow with constant thermal properties. All walls were insulated and assumed as an adiabatic
condition except for the bottom wall of the test section which was treated as heat transfer surface. The tunnel’s
top and bottom walls were specified as no-slip boundary condition. For reducing computational efforts, the
lateral sides of the wind tunnel were given as symmetry condition remaining with three middle protrusions.
Therefore, the width of tunnel was varied with the different protrusion-to-protrusion spacing (S). The ratio of
protrusion-to-protrusion spacing to printed diameter (S/D) was 1.125, 1.25, 1.5 and 2. The heat flux of the
channel was set at 150 W/m? which was the same rage using in the experiment. The velocity inlet boundary
condition was applied at the tunnel inlet, and the uniform velocity value for Re=20,000 based on hydraulic
diameter of wind tunnel was introduced at the inlet. The air was entered with uniform temperature of 25.7°C,

and the pressure outlet boundary condition was given at the outlet of tunnel.

The details of generated grid for computational model are illustrated in Fig. 5. In this Figure, the details of
internal grid system were described the spanwise cutting plane along the center of protrusion and different
view of protruded surface. For all simulation cases, even hexahedral meshes were applied for simulation model
of wind tunnel, but uneven hexahedral meshes were applied for the non-uniform surface of protruded area as
well as border of protruded regions. The grid system which was used in this study was examined by providing
the y* value being lower than unity [7, 20]. The grid numbers were saturated with various grid scale system
for simulation which was considered within the range of 1.8 to 7.7 million elements, and 7.2 million elements

were selected to use in computation domain.

Shear Stress Transport (SST) k -@ turbulence model was used because this model was good for detecting
flow structures and reducing computation cost [17, 18 and 19]. Moreover, a second order upwind spatial
discretization method was applied for momentum equation and turbulent capacity. In the terms of convergence
criteria, the root mean square (RMS) residual of continuity and energy equations were set to be minimum at

10® and that of momentum equation was set to be minimum at 10° [11, 13 and 14].
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3. Results and Discussions

3.1 Flow Characteristics

Two dimensional streamlines at the center plane of spherical and conical middle protrusions are shown in Fig.
6. The velocity of streamlines which was lower than 2 m/s can be indicated the area of circulation and vortex
flows. At the front edge of spherical protrusion, small circulation flow was occurred which performed as a
blockage of flow while the fluid flowed parallelly over the conical protrusion surface with no small circulation
flow. In the downstream of protrusion, the size of circulation flow for conical protrusion was larger than that
of the spherical protrusion. It can be noted that larger circulation flow for conical protrusion was only occurred
at the center plane of the protrusion. In addition, the flow crossed over at the haft height of conical protrusion
as shown in the Fig. 6(b) while for the case of spherical protrusion, there is no flow crossing at the same
position. The sketches of the lateral separation flow of spherical protrusion and the cross-over flow (partial
separation flow) of conical protrusion in the front view are shown in the Fig. 7. These different flow structures
were affected directly on large circulation flows in the downstream of protrusions that would be discussed in

next section.

The streamlines over spherical and conical protruded surface are shown in Fig. 8. It can be seen generally that
the flow in upstream of protrusion was separated, and symmetric large scale vortexes or vortex pair were
developed in the downstream of protrusions. In the case of spherical protrusions, the upstream flow was
separated laterally when the flow passed through the protrusions. It was rather contrast to the case of conical
protrusions that the upstream flow was partially separated, and some part of the flow crossed over the
protrusion as can be seen the streamline being on the lateral side of the protrusion. The lateral separation flow
in the case of spherical protrusion influenced on larger vortex pair while the cross-over separation flow in the
case of conical protrusion influenced on smaller vortex pair. This can be notified that the sizes of vortex pair
for the case of spherical protrusions (Fig. 8(a), (c), (e) and (g)) were larger than those of the conical ones (Fig.

8(b), (d), (f) and (h)) for all protrusion-to-protrusion spacings.
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Above section have mentioned that the area of low velocity (>2 m/s) of streamlines could be indicated the
areas of circulation and vortex flows. Here, the areas of circulation flow for the case of spherical protrusions
at S/D=1.125 (Fig. 8(a)) seemed to be larger than the other cases. This is due to the confinement effect for
narrow protrusion-to-protrusion spacing influencing on stronger circulation flow. However, for the case of
conical protrusions at S/D=1.125 (Fig. 8(b)), the areas of circulation and vortex flows seemed to be smaller
than those of the spherical. This was also confirmed that the different separation flow characteristics affected
on the size of vortex pair along downstream of the protrusions and related to the heat characteristics. When
protrusion-to-protrusion spacing became larger, the areas of low velocity (>2 m/s) became smaller. That can
be explained that the effects of confinement of lateral vortex pair in the case of short protrusion-to-protrusion

spacing (S/D=1.125) were greater than those of larger protrusion-to-protrusion spacing (S/D>1.25).

Turbulent Kinetic Energy (TKE) contours above 1 mm on the test section surface from the simulation results
are shown in Fig. 9. Due to no slip wall condition, the TKE must be taken above the surface. The results show
that the areas of high TKE coincided to the area of occurring circulation flow as shown in the Fig. 8. When
the case of spherical and conical protrusions was compared, it was found that the areas of high TKE for conical
protrusions were smaller than those of spherical protrusions throughout protrusion-to-protrusions spacing.
These results were occurred due to the small vertex pair in downstream of conical protrusions (Fig. 8(b), (d),
() and (h)) comparing to the case of spherical protrusions (Fig. 8(a), (c), (¢) and (g)). When the protrusion-to-
protrusions spacing became larger, the areas of high TKE of both spherical and conical protrusions became
smaller. This was showed clearly that when the protrusion-to-protrusions spacing became narrower, the
interactions of vortex pair with each other became stronger resulting in high TKE. In addition, the small areas
of high TKE in the upstream of spherical protrusions (Fig. 9(a), (c), (e) and (g)) were detected resulting from
the effect of small circulation flow that have been shown in Fig. 6(a). Here, the high TKE could be affected

on increasing of Nusselt number that would be discussed.

3.2 Heat transfer
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The contours of Nusselt number distributions on the surface of middle three protrusions from the experiment
are shown in Fig. 10. The Nusselt number on the spherical and conical surface were not considered due to
limitation of measurement technique using in this work. It can be seen generally that the distributions of
Nusselt number were high in the downstream of protrusions where the areas of vortex pair were appeared (Fig.
8) and the areas of high TKE were occurred (Fig. 9). The area of high Nusselt number in the downstream of
protrusion became larger when protrusion-to-protrusion spacing was narrower. It was indicated that the
interaction between vortex pair and adjacent one was stronger resulting in high TKE (Fig. 9) and high Nusselt
number (Fig. 10). The Nusselt number for the case of spherical protrusions were larger than those of conical
protrusions. This would be discussed in the next section. In addition, it was found that the high area of Nusselt
number at just upstream of spherical protrusion that coincided to the small area of high TKE in the same
location (Fig. 9) resulting from small circulation flow as described in Fig. 6. The high areas of Nusselt number,

TKE and small circulation flow at just upstream of conical protrusion were not occurred.

The spanwise Nusselt number distributions in Z/D direction from the experiment are shown in Fig. 11. The
Nusselt number was high at X/D=1 and became low at X/D>2 for all cases. For the comparison of the Nusselt
number distributions at X/D=1 between spherical and conical protrusions, it was found that the Nusselt number
for the case of spherical protrusions was quite higher than that of conical protrusions throughout protrusion-
to-protrusion spacing comparing the Nusselt number distributions at X/D=2 and 3 between spherical and
conical protrusions. The highest Nusselt number that was found at X/D=1 for all spherical protrusions was
resulted from larger vortex pair (compared between spherical and conical protrusions in Fig. 8) and higher

TKE (compared between spherical and conical protrusions in Fig. 9), especially in area around X/D~1.

The Nusselt number distributions along streamline direction (X/D) at the center of protrusion (Z/D=0) from
the experiment are shown in Fig. 12. The Nusselt number in the range of -0.5< X/D <0.5 was not considered,
because it was the area of the spherical and conical protrusions. In addition, Turbulent Kinetic Energy (TKE)

distributions from the simulation results that was taken from those Fig. 9 at the center of protrusion (Z/D=0)

10
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are shown in Fig. 13. Nusselt number distributions at just upstream of spherical protrusion (-0.75<X/D<0.5)
increased (Fig. 12(a)) corresponding to the increasing of TKE at the same location (Fig. 13(a)) resulting from
small circulation as discussed earlier. This high Nusselt number and the high TKE in the case of conical
protrusions at the same area was not found (Fig. 12(b) and Fig. 13(b)) due to no small circulation flow incident.
For the downstream direction (X/D>0.5), Nusselt number distribution increased when the protrusion-to-
protrusion spacing was narrow. This is due to the effect of interactions between vortex pair and adjacent one.
When the protrusion-to-protrusion spacing became narrow, the vortex pair interactions was stronger resulting
in increasing of TKE as shown in Fig. 13. Moreover, the vortex pair interactions of spherical protrusion were
stronger than those of conical protrusions resulting in higher TKE and high Nusselt number, especially in the

case of the narrowest spacing (S/D=1.125).

Spanwise average Nusselt number distributions along X/D direction from the experiment are shown in Fig. 14.
It can be noted that the Nusselt number in the areas of protrusion was not considered. These average spanwise
values were accumulated the high and low Nusselt number; therefore, these values were lower than those the
local values (Fig. 12). The trends of these average spanwise values were similar to those the local values (Fig.
12). The decreasing of average spanwise values according to increasing of the protrusion-to-protrusion spacing
were clearly seen due to summation areas of low Nusselt number being lager than those of high Nusselt

number.

The heat transfer enhancement factors (Nu/Nuo) with different protrusion-to-protrusion spacing at
Ren=20,000 are shown in Fig. 15. The results from the experiment were evaluated over the smooth heat
transfer surface without considering the area of protrusions due to limitation of the measurement technique
that was early discussed while the results from the simulation were evaluated entire heat transfer surface
including protrusion surfaces. All values were higher than one that was indicated that heat transfer on the
surface of protrusion cases were higher than those the case of smooth surface. In general, the trends of the heat

transfer enhancement factor declined when the protrusion-to-protrusion spacing becomes larger. The trend
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slops of heat transfer enhancement factor for the experiment seemed to be greater than those for the simulation.
This discrepancy was the limitation of heat transfer prediction in the CFD. The heat transfer enhancement
factor of S/D=1.125 for both spherical and conical protrusions was the highest. It can be clearly found that the
heat transfer enhancement of spherical protrusion case was higher than conical case for both simulation and
experimental results. At S/D=1.125, the heat transfer enhancement factors for spherical protrusions were

higher than conical protrusions for 16.1% of the experiment results and 10.28% of the simulation results.

The friction factors of spherical and conical protrusions from simulation results are shown in Fig. 16. It can be
noted that it was difficult to measure a small pressure drop across the test section of the experiment due to only
single row of protrusion blocking perpendicularly to the flow. The small pressure drop for the case of
simulation, however, can be detected. In general, the value of friction factors decreased gradually when the
protrusion-to-protrusion spacing was increased because higher pressure drop across the flow was found in the
narrow spacing case. Comparing the f/fo between spherical and conical protrusions, it was found that the values
of f/fo for spherical protrusion cases was higher than those for conical ones. This was from the effects of

blocking area of spherical protrusion being larger than that of the conical one as shown in Fig. 17.

The thermal performances for spherical and conical protruded surface are shown in Fig. 18. The thermal
performances were calculated from Eqg. (9) including the term of friction factor that can’t be measured in the
experiment as mentioned above. Therefore, these values can be evaluated from simulation results. The results
showed that the thermal performances increased gradually when the protrusion-to-protrusion spacing was
enlarged for both spherical and conical protrusions. Even though the heat transfer for the case of narrow
protrusion-to-protrusion spacing was higher than that of larger spacing, this narrow spacing case produced
larger vortex pair that blocked the flow resulting on high friction factor. In addition, it was found obviously
that the thermal performance of spherical protrusions was higher than those of conical protrusion throughout

the protrusion-to-protrusion spacing because the discrepancy of the relative high heat transfer for the case of
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spherical protrusions respecting to the conical cases was greater than that of relative higher friction factor of

spherical protrusions respecting to the conical cases.

The new finding in this work was contrast to the results in the work of Alam and Kim [9] who have compared
the Nusselt number and friction factor between spherical and conical protrusion arrays in a rectangular channel
using CFD. They reported that the Nusselt number of spherical protrusions was higher than that of conical one
while the friction factor of spherical protrusions was lower than that of conical one. The reason of different
results was from that the ratio of the protrusion height to printed diameter in this work was 0.2 [15,16] while
this ratio in those work [9] was 0.5. The height of protrusion is effective factor that influence on a heat transfer

enhancement and a friction factor.

4 Conclusions
In the present study, the effect of protrusion geometries: conical and spherical configurations, and the
protrusion-to-protrusion spacing were investigated experimentally and numerically. The results can be

concluded as followed:

1. The lateral separation flow in the case spherical protrusions influenced on larger vortex pair resulting in
higher TKE in these areas while the cross-over separation flow in the case of conical protrusion influenced on
smaller vortex pair resulting in low TKE in the same locations. Consequently, the Nusselt number at the

downstream of spherical protrusions was higher than that of conical protrusions.

2. When protrusion-to-protrusion spacing became narrower, the interactions between the vortex pair and
each other became stronger resulting in higher TKE and Nusselt number. When protrusion-to-protrusion

spacing became larger, the TKE and Nusselt number became lower.
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3. The thermal performances of the spherical protrusion were larger than that of the conical protrusion

throughout protrusion-to-protrusion spacing.

6 Acknowledgements

The research grant was supported by the Research and Development Office (RDO), Prince of Songkla
University (PSU), grant No. ENG590725S and the scholarship award of Thailand Education Hub (THE-AC)
from the graduate school of PSU.

7 References

[1] P.M. Ligrani, M.M. Oliverira, Comparison of heat transfer augmentation techniques, AIAA Journal
41 (3) (2003) 337-362.

[2] G.I. Mahmood, M.L. Hill, D.L. Nelson, P.M. Ligrani, H.K. Moon, B. Glezer, Local heat transfer and flow
structure on and above a dimpled surface in a channel, Journal of Turbomachinery 123 (1) (2000) 115-123.

[3] Y.Xie, H.Qu, D. Zhang, Numerical investigation of flow and heat transfer in rectangular channel with teardrop
dimple/protrusion, International Journal of Heat and Mass Transfer 84 (2015) 486-496.

[4] M.A. Elyyan, D.K. Tafti, Large eddy simulation investigation of flow and heat transfer in a channel with
dimples and protrusions, Journal of Turbomachinery 130 (4) (2008) 041016-1-9.

[5] S.C. Heo, Y.H. Seo, T.W. Ku, B.S. Kang, Formability evaluation of dimple forming process based on
numerical and experimental approach, Journal of Mechanical Science and Technology 25 (2) (2011) 429-439.

[6] P.M. Ligrani, J.L. Harrison, G.I. Mahmmod, M. L. Hill, Flow structure due to dimple depressions on a channel
surface, Physics of Fluids 13 (11) (2001) 3442-3451.

[7] Z. Shen, Y. Xie, D. Zhang, Experimental and numerical study on heat transfer in trailing edge cooling passages
with dimples/protrusions under the effect of side wall slot ejection, International Journal of Heat and Mass
Transfer 92 (2016) 1218-1235.

[8] P.Li, D. Zhang, Y. Xie, Heat transfer analysis of Al,Os- water nanofluids in microchannel with dimple and
protrusion, International Journal of Heat and Mass Transfer 73 (2014) 456-467.

[9] T. Alam, H.M. Kim, Heat transfer enhancement in solar air heater duct with conical protrusion roughness ribs,
Applied Thermal Engineering 126 (2017) 458-469.

[10] N. Vorayos, N. Katkhaw, T. Kiatsiriroat, A. Nuntaphan, Heat transfer behavior of flat plate having spherical
dimpled surfaces, Case Studies in Thermal Engineering 8 (2016) 370-377.

[11] Y. Rao, B. Li, Y. Feng, Heat transfer of turbulent flow over surfaces with spherical dimples and teardrop
dimples, Experimental Thermal and Fluid Science 61 (2015) 201-209.

[12] S. Acharya, F. Zhou, Experimental and Computational study of heat/mass transfer and flow structure for four
dimple shapes in a square internal passage, Journal of Turbomachinery 134 (6) (2012) 061028-1-13.

14



© 0O N O O A W DN P

W W W W W W NN DN DN DN DD DNDDNDDDNDDDNPEPEPE P PP PP PP PR
O A W NP O O© 0N O O B WON P O O 0N O O B W DN - O

[13] M. Wae-hayee, P. Tekasakul, S. Eiamsa-ard, C. Nuntadusit, Effect of cross-flow velocity on flow and heat
transfer characteristics of impinging jet with low jet-to-plate distance, Journal of Mechanical Science and
Technology 28 (7) (2014) 2909-2917.

[14] M. Wae-hayee, P. Tekasakul, S. Eiamsa-ard, C. Nuntadusit, Flow and heat transfer characteristics of in-line
impinging jets with cross-flow at short jet-to-plate distance, Experimental Heat Transfer 28 (6) (2015) 511-
530.

[15] S.S. Kore, R.J. Yadav, N.K. Sane, Investigations of effect of dimple depth on heat transfer and fluid flow
within rectangular channel, Procedia Engineering 127 (2015) 1110-1117.

[16] S.Y. Won, Q. Zhang, P. M. Ligrani, Comparisons of flow structure above dimpled surfaces with different
dimple depths in a channel, Physics of Fluids 17 (4) (2005) 045105-1-9.

[17] H.K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics, Second Edition, Pearson
Prentice Hall, 2007, pp. 72-80.

[18] N. Zuckerman, N. Lior, Jet Impingement heat transfer: physics, correlations, and numerical modeling,
Advance in Heat Transfer 39 (2006) 565-630.

[19] A.Gerasimov, Modeling Turbulent Flows with FLUENT, Europe, ANSY'S, Inc.2006.

[20] S.M. Salim, S.C. Cheah, Wall y* strategy for dealing with wall-bounded turbulent flows, Proceeding of the
International Multi Conference of Engineers and Computer Scientists, IMECS 2009, Hong Kong, 2009.

15



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Figure captions

Fig. 1. Schematic diagram of experimental set-up

Fig. 2. Geometry of wind tunnel and position of protrusion

Fig. 3. The dimensions of the spherical and conical protrusions, (a) Spherical protrusion (b) Conical
protrusion

Fig. 4. The schematic diagram of wind tunnel for simulation

Fig. 5. Spherical and conical protrusions grid system for simulation domain

Fig. 6. Streamline at the center plane of (a) spherical middle protrusion and (b) conical middle protrusion for
S/D=1.125 (Simulation results, Rey=20,000)

Fig. 7. The sketch of the flow characteristics in the front of spherical and conical protrusions (front view)
Fig. 8. Streamline above the protruded test section surface (Simulation results, Rey=20,000)

Fig. 9. Turbulent Kinetic Energy (TKE) contours above 1 mm on the test section surface (Simulation results,
Ren=20,000)

Fig. 10. Contour of Nusselt number distribution on the surface (Experimental results, Re4=20,000) Fig. 11.
Spanwise Nusselt number distribution in Z/D direction at X/D=1, X/D=2 and X/D=3 (The dash lines
indicated the center of protrusions, Experimental results, Re,=20,000)

Fig. 12. Local Nusselt number distributions in X/D direction at the center of protrusion (Z/D=0)
(Experimental results, Rex=20,000),

(a) Spherical protrusion (b) Conical protrusion

Fig. 13. Turbulent Kinetic Energy (TKE) distribution along X/D direction at the center of middle protrusion
the protruded test section surface (Simulation results, Re,=20,000),

(a) Spherical protrusion (b) Conical protrusion

Fig. 14. Spanwise average Local Nusselt number distributions along X/D direction in the rage of -
2.4<7Z/D<2.4 for S=2D, -2<Z/D<2 for S=1.5D, -1.7<Z/D<1.7 for S=1.25D, -1.6<Z/D<1.6 for S=1.125D
(Experimental results, Rex=20,000)

(a) Spherical protrusion (b) Conical protrusion

16



Fig. 15. The comparison of heat transfer enhancement factor for both simulation and experiment results
(Rex=20,000, Experimental and simulation results)

Fig. 16. Friction factor of spherical and conical protruded surface (Simulation results, Res=20,000)
Fig. 17. Comparison of blocking area between spherical and conical protrusions

Fig. 18. Thermal performance versus the protrusion-to-protrusion spacing (Simulation results, Rex=20,000)
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Experimental and Numerical Study on the Effects of Teardrop
Dimple/ Protrusion Spacing on Flow Structure and Heat Transfer
Characteristics

Ye Min Oo*?, Makatar Wae-hayee *?'"and Chayut Nuntadusit *?

Abstract: In this study, the flow characteristics and heat transfer are analyzed with
rectangular wind tunnel which is installed teardrop dimples and protrusions on the tunnel’s
surface. The flow characteristics, spacing effect on the heat transfer enhancement,
Turbulence Kinetic Energy (TKE) and thermal performance are the main objectives of this
study under the constant Reynolds number 20,000. The projected diameter of dimple and
protrusion is fixed with D=26.4 mm and the depth or height of dimples and protrusions is
5.28 mm (H=0.2D). The spacings of protrusion-to-protrusion and dimple-to-dimple are
varied with different spacing cases i.e. S=1.125, 1.25, 1.5 and 2 D. The computational fluid
dynamics (CFD) is applied for simulation results. In the experimental results, the
temperature of protruded surface covering with Thermochromic Liquid Crystal sheet
(TLCs) was measured and converted into heat transfer coefficient. The results show that
the heat transfer enhancement for teardrop dimple cases are higher than that for protrusion
of simulation and experimental results. The thermal performance values for teardrop
dimple cases decrease gradually but the values for teardrop protrusion cases increase
gradually when the spacing is getting larger.

Keywords: CFD, heat transfer, dimples and protrusions, flow structure and TKE.

1 Introduction

Heat transfer enhancement techniques are very attracted in various applications of
engineering such as internal cooling for turbine airfoil, electric cooling devices, heat
exchanger and gas turbine blade to solve and save the thermal energy consumption. One
of popular heat transfer enhancement techniques is passive heat transfer enhancement
techniques such as ribs, pin fins, dimples, protrusion and other vortex generators. Among
them, the technique using with dimples and protrusions is the most attractive method
because it can increase the flow turbulence intensity, which causes heat transfer
enhancement. The main function of this technique is to enhance heat transfer convection
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by reducing or destroying the thermal boundary layer [Ligrani and Oliverira (2003)]. Many
researches have been carried out the analysis of dimples and protrusions geometries
applications.

The heat transfer enhancement comparison of hemispherical and teardrop dimpled
surface with staggered array using transient liquid crystal imaging system was
experimentally analyzed by Chyu et al. [Chyu, Yu and Ding (1997)]. The Reynolds
numbers based on the hydraulic diameter were arranged between 10,000 and 52,000. They
found that the heat transfer rate for hemispherical and teardrop dimpled cases was increased
about 17% and 22% comparing with smooth surface. For the issue of pressure drop,
teardrop dimple case was the highest-pressure loss and, both cases were lower pressure
penalty than other techniques such as rib turbulators and pin fins.

Relation between flow structure and local heat transfer characteristics over the
dimpled surface was studied by Mahmood et al. [Mahmood, Hill, Nelson et al. (2000)].
Low Nusselt number ratio was found at the upstream half of dimples. The high Nusselt
number was occurred at the downstream half of dimples. The highest values were found at
just downstream of rims of dimples and smooth surface just downstream of dimples
because the vortex pair and vortical pair were ejected at those regions.

Ligrani et al. [Ligrani, Harrison, Mahmmod et al. (2001)] studied the effect of
channel height to dimple printed diameter (the ratio of channel height to dimple printed
diameter ratio H/D were 0.25, 0.5 and 1). The Reynolds number varied from 600 to 11,000
and the ratio of depth to printed diameter of dimple was 0.2. The results of H/D=1 was
showed that the primary and secondary vortices pairs became strong and lengthened.
Moreover, the mixing intensity of smoke patterns and the vortices with streamwise
development became stretched.

Recently, Xie et al. [Xie, Qu and Zhang (2015)] considered numerically flow and heat
transfer characteristics of teardrop dimple and protrusion with positive and negative
eccentricity (PE and NE) and compared with hemispherical dimple and protrusion by using
CFD technique which is very popular to study flow and heat transfer properties. They used
realizable k-w turbulent model and arranged Reynolds number from 7,000 to 9,000. Their
results showed the thermal performance of teardrop dimple was low at e/Dy=0.1. But, the
thermal performance of teardrop dimple/protrusion was the highest at e/Dn=0.4. They
concluded that the thermal performance of teardrop dimple/protrusion was good at lower
Reynolds number.

Acharya et al. [Acharya and Zhou (2012)] studied experimentally and numerically on
heat/mass transfer and flow structure for four dimple shapes which were (1) square, (2)
triangular, (3) circular, and (4) teardrop in square internal passage at Reynolds number of
21,000. They used naphthalene sublimation method. Their results suggested that the
teardrop dimple was the highest heat transfer for both experimental and computational
results compared to other shapes.

Furthermore, Rao et al. [Rao, Feng and Li (2015)] presented the effect of different
dimple shapes which were spherical, teardrop, elliptical, and inclined elliptical on the heat
transfer and flow structures. All dimples have same depth and the Reynolds numbers were
set the range between 8500 and 60,000. Their study showed that the heat transfer for
teardrop dimple was the highest and the spherical dimple was the second highest model.
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The lowest heat transfer was found in elliptical model. Different shapes of dimple can cause
different heat transfer convection and different vortex flow structures.

A study was described numerically the analyzing of heat transfer enhancement in
solar air heater duct which was installed with conical protrusion array by Alam and Kim
[Alam and Kim (2017)]. In their study, four relative protrusion height and four relative rib
pitch under the four Reynolds number of 4,000 - 16,000. The thermal efficiency was
increased when Reynolds number increased in both different protrusion height and pitch.
Moreover, they compared their conical protruded surface with spherical protruded surface.
The result showed that the Nusselt number of conical protruded surface was higher than
spherical one.

In according with above researches, the study of different model of dimple and
protrusions can effect on heat transfer and flow characteristics. Some researcher showed
the heat transfer enhancement for teardrop protrusion/dimple are higher than spherical
dimple/protrusion. Therefore, the teardrop dimple /protrusion with constant eccentricities
was researched experimentally and numerically in this study. The aims of this study were
to report that the effect of different spacing and geometries of dimple-to-dimple and
protrusion-to protrusion of teardrop model can affect the heat transfer and flow
characteristics.

2 Experimental apparatus

Experiments have been performed to analyze heat transfer characteristics over the
protruded teardrop surface of wind tunnel. The schematic of wind tunnel set up is shown
in Fig. 1. The running fluid inside the rectangular wind tunnel was air supplied by a 3-HP
blower which was controlled with adaptable frequency related to Reynolds number. The
air was passed through the 2-KW heater for heating up the inlet temperature Tine=25.7°C
which was adjusted by power controller. The flow straighteners were assembled at the inlet
and, the mesh plate was used after the flow straighteners to prevent the unnecessary
particles which disturb the air flow. The rectangular cross section wind tunnel which was
conFig.d with 300 mm in width, 26.4 mm in height and 2,450 mm in length was connected
after  the mesh plate section. The wind tunnel was composed of three sections, i.e. the
test section, upstream and downstream test section. The downstream test section having
490 mm in length was connected with blower. The upstream test section having 1700 mm
in length was connected with mesh plate, flow straightener and heater was 1700 mm in
length. The test section which was installed teardrop protrusion inline arrangement was
280 mm in length. The bottom surface of the test section was drilled with rectangular
hollow and covered with stainless-steel foil having 0.03mm in thickness. The TLC sheet
was attached on the stainless-steel foil on the external side. This stainless-steel foil was
stretched between copper bus bars. The foil was supplied with the required electrical power
through these copper bus bars using DC power source which can be adjusted to a different
current and voltage. The TLC sheet was attached on the stainless-steel foil. A digital
camera was used to capture the color patterns of TLC sheet on the surface by converting
images of color pattern of TLC sheet, which was arranged at accurate scale size from red,
green, and blue (RGB) system to a hue, saturation, and intensity (HSI) system. The
correlated temperature equation which was examined by the experiment result of TLC
sheet temperature was used in MATLAB. The details of temperature calibration for TLC
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sheet was described in previous works of Wae-hayee et al. [Wae-hayee, Tekasakul,
Eiamsa-ard et al. (2014); Wae-hayee, Tekasakul, Eiamsa-ard et al. (2015)].
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Figure 1: Schematic of the experimental set-up for the protruded channel

2.1 Model of study

The experiments have done on the heat transfer with five protrusions of teardrop with
negative and positive eccentricity which were installed over the test section of wind tunnel
as shown in Fig. 2. Due to the limitation of experimental set up, the protrusion cases are
only studied in experiment. The sketches of teardrop protrusions and dimples with different
PE and NE are shown in Fig. 3 and 4. The Figure shows clearly the position of teardrop
protrusions over the test section which was designed to get enough fully developed flow
and the coordinating system. The X, Y and Z coordinates which are located at the center
of middle protrusion/dimple show flow direction, direction of wind tunnel height and
perpendicular direction to the flow. The printed diameter of concave of teardrop was
D=26.4 mm and the height of teardrop protrusion or the depth of teardrop dimple was
H=5.28 mm. The spacing of protrusion-to-protrusion and dimple-to-dimple was varied
with four cases i.e. S/D= 1.125, 1.25, 1.5 and 2. In this study, the Reynolds humber was
considered base on hydraulic diameter of wind tunnel Rey=20,000 [Won, Zhang and
Ligrani (2005); Kore, Yadav and Sane (2015); Rao, Li and Feng (2015)].

Airinlet

A row of teardrop protrusions

S/zls\s%gis#/
NN A N A

f f
ey
\ 1 [

Figure 2: Diagram for position of teardrop protrusion in wind channel
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4

Figure 3: Geometrical parameter of teardrop dimple and protrusion

H=0.2D
Y

c) Teardrop Dimple (NE
(a) Teardrop protrusion (NE) © P ple (NE)

(b) Teardrop protrusion (PE) (d) Teardrop Dimple (PE)

Figure 4: Teardrop protrusion and dimple with different structures

2.2 Heat transfer measurement

The coefficient of local heat transfer by force convection of heated test section surface was
calculated from:

_ qinput _qioss,convection _qioss,radiation
A(Tw _Ta) (1)

Where, T, is wall temperature and T, is temperature of entering air into wind tunnel.

The heat flux generation on the test section surface can be calculated from:

g = IR
input —

A 2)
Where, is | the current of supplied electrical current, R is the electrical resistance of
stainless-steel foil and A is the area of heat transfer surface.
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The convection and radiation heat loss from TLC sheet to environment were evaluated
from:

qioss,convection = hC (-l_-w _TS)

(3)
. =4 4

qloss,radiation =0¢q¢c (TW _Ts ) (4)

Where, h, is the natural heat transfer coefficient from horizontal surface to surrounding

obtaining from empirical equation [], Twis average wall temperature and T, is surrounding
temperature. o is the Stefan-Boltzman constant and &;, is the emissivity coefficient of
TLC sheet (&1, =0.9).

The Nusselt number ( Nu) is defined as:
_hb,

k (5)
Here, D, is the tunnel hydraulic diameter and K is the thermal conductivity of the air.

Nu

The friction faction ( f ) is obtained from;

f=—F1)1_F:2.% (6)
—pu
5P

where P and P,are pressure of inlet point 1 and pressure of outlet point 2. Moreover, U
and o are the mean velocity of inlet air and density of air.

To calculate thermal performance, Dittus-Boelter correlation of Nusselt number for smooth
surface (Nu,) of wind tunnel was used for fully developed turbulent flow.

Nu, = 0.023Re"® Pr®* (7)

where Re and Pr are Reynolds number and Prandtl number of inlet air temperature.

The Blasius correlation equation is used for the friction factor of smooth surface ( f;) of
wind tunnel:

_ -0.25
f,=0.316 Re ©
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The thermal performance (77), which is the main objective of this study is evaluated as
follow;
~ (Nu/Nu,)

(f/1f)" ©)

3 Numerical simulation

The three dimensional and steady state numerical simulation have done the heat transfer
and flow characteristics for teardrop dimpled/protruded surface of test section. The
descriptions of boundary conditions for simulation are shown in Fig. 5. The boundary
condition and dimensions of numerical and experimental model are identical. The internal
fluid flow was assumed as incompressible flow with constant thermal properties. All walls
were insulated and assumed as an adiabatic condition except for the bottom wall of the test
section which was treated as heat transfer surface. The tunnel’s top and bottom walls were
specified as no-slip boundary condition. For reducing computational efforts, the lateral
sides of the wind tunnel were given as symmetry condition remaining with three middle
protrusions. Therefore, the width of tunnel was varied with the different protrusion-to-
protrusion/dimple-to-dimple spacing (S). The ratio of protrusion-to-protrusion/dimple-to-
dimple spacing to printed diameter (S/D) was 1.125, 1.25, 1.5 and 2. The heat flux of the
test section was set at 150 W/m? which was the same rage using in the experiment. The
inlet of wind tunnel was considered as velocity inlet. The uniform velocity of inlet air was
6.44 m/s which was calculated according to the Reynolds number. The air was entered with
uniform temperature of 25.7°C which is chosen according to experimental condition, and
the pressure outlet boundary condition was used at the outlet of tunnel.

Teardrop protrusions/dimples
with single row

Pressure outlet
)

Symmetry
\

inlet

Figure 5: The schematic of boundary conditions for wind tunnel simulation
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The computations for the flow and heat transfer in the dimpled/protruded channel
were accomplished using ANSY'S Fluent 15 software. The standard k- ¢ SST turbulence
model was used in numerical simulation. According to the Shen et al. [Shen, Xie and Zhang
(2016)] and Wright et al. [Wright and Gohardani (2008)], they compared their
experimental result of Nusselt number with SST k- @, k- @, RNG k- @ and realizable
k- @ models. They described that the data which was using SST k-w model matched well
with experimental data and this model is very suitable for dimple/protrusion structure.
Therefore, SST k - @ turbulence model was used because this model was good for
detecting flow structures and reducing computation cost [Versteeg and Malalasekera
(2007); Zuckerman and Lior (2006); Gerasimov (2006)]. Moreover, a second order upwind
spatial discretization method was applied for momentum equation and turbulent capacity
to decrease the computational error. In the terms of convergence criteria, the root mean
square (RMS) residual of continuity and energy equations were set to be minimum at 108
and that of momentum equation was set to be minimum at 10 [Rao, Li and Feng (2015);
Wae-hayee, Tekasakul, Eiamsa-ard et al. (2014); Wae-hayee, Tekasakul, Eiamsa-ard et al.
(2015)].

The details of generated grid for computational model are illustrated in Fig. 6. In
this Fig., the details of internal grid system were described the spanwise cutting plane along
the center of protrusion/dimple and different view of protruded surface. For all simulation
cases, even hexahedral meshes were applied for simulation model of wind tunnel, but
uneven hexahedral meshes were applied for the non-uniform surface of protruded area as
well as border of protruded regions. The grid system which was used in this study was
examined by providing the y* value being lower than one [Shen, Xie and Zhang (2016),
Salim and Cheah (2009)]. The grid numbers were saturated with various grid scale system
for simulation which was considered within the range of 1.8 to 7.7 million elements, and
7.2 million elements were selected to use in computation domain.
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Spanwise cross section at the
center of teardrop dimples

Streamwise cross section at the
center of middle teardrop dimple

Spanwise cross section at the
center of teardrop protrusions

Streamwise cross section at the
center of middle teardrop protrusion

Figure 6: The generated mesh for teardrop dimple/protrusion computation

4 Results and discussion
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4.1 Flow characteristics

027 (a) Teardrop dimple (PE) = — E E—ﬁ

—

, —)
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0.5 0.75 )
Velocity
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Figure 7: Streamline at the center of teardrop dimples/protrusions for S=1.125D
(Simulation results, Rex=20,000)

The streamline flow conditions at the center of middle teardrop
dimples/protrusions for S=1.125D case are shown in Fig. 7. The flow starts separation
when the flow enters to the dimple cavity. Inside the dimple, the recirculation flow which
can reduce heat transfer. Some upstream flow moves toward to the downstream above these
circulation regions, which can cause significant reattachment flow. The fluid flows
smoothly into the teardrop dimple (PE) and the vortex structure was happened at the
downstream half of dimple cavity. Compare with these two dimpled cases, the
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reattachment flow region or length for teardrop dimple (NE) was larger or longer than that
for teardrop dimple (PE). Inside the dimple cavity, the unsymmetrical vortex flow was
occurred in teardrop dimple (PE) case.

For teardrop protrusion (PE), the fluid flows smoothly over the protrusion and
some flows move along with the edge of both sides of protrusion to the downstream of
protrusion. Therefore, the symmetrical vortex pair was occurred at the downstream region
of protrusion. The reattachment flow was found over these symmetrical vortices. It can be
clearly seen in Fig. 7(c). For teardrop protrusion (NE), the separation flow was found near
the front edge of protrusion. Some of fluid flows along with the edge of protrusion to the
trailing edge of downstream half of protrusion where the low-pressure region was occurred.
Therefore, the separation flow was occurred at the trailing edge of protrusion and the
reattachment flow was happened over these vortex pair at the same location. Comparing
with those two Figures, the symmetrical vortex condition for teardrop protrusion (PE) is
stronger than that for teardrop protrusion (NE). Moreover, the region or length of
reattachment flow for teardrop protrusion (PE) is larger than that for teardrop protrusion
(NE).
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Teardrop Dimple (PE)
B 2) SID=1.125

ardiop Dimple (NE) Teardwop Protusion (PE) Teardrop Protmsion (NE)

5 onmw

Figure 8: Streamline above the teardrop dimpled/protruded test section surface
(Simulation results, Rey =20,000)

The streamlines flow over the above 1 mm of teardrop dimpled/protruded
surface are shown in Fig. 8. It can be seen generally the flow with low velocity was
found inside dimple cavity where circulation flow was found and the flow with high
velocity was happened at downstream of dimple cavity where the reattachment flow
was found. Inside the teardrop dimple (NE), symmetrical vortex pair was happened
upstream half of dimple cavity and the reattachment flow was found at the
downstream half of dimple cavity.

For protrusion cases, the symmetric vortex pairs happen near the edge of
downstream rim of teardrop protrusion (PE). For teardrop protrusion (NE), the
small separation flow was occurred at the front edge of protrusion and the vortex
pair was occurred at the trailing edge of downstream half of protrusion. For both of
those two cases, the area of separation and vortex pairs for S=1.125D case are larger
than that for other cases because the effect of narrow spacing between protrusion-
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to-protrusion can cause stronger separation flow and because of the effect of the
longitudinal vortex flow along with the flow between the protrusion-to-protrusion
spacing.

Teardrop Dinple (PE) Teardrop Dimple (NE) Teardrop Protusion (PE) Teardrop Protrusion (NE)
D

c)SD=15

o D o | e ] e o [

Figure 9: Turbulence Kinetic Energy (TKE) contours above 1mm over the
dimpled/protruded test section surface (Simulation results, Ren =20,000)

The simulation results of Turbulent Kinetic Energy (TKE) contours above 1mm
over the dimpled/protruded surface are shown in Fig. 9. The region of high TKE was
occurred at the same location where the circulation or separation flow was occurred. The
high TKE region of teardrop dimple (NE) is larger than that of teardrop dimple (PE)
because the circulation flow inside the cavity of teardrop dimple (NE) is stronger than that
of teardrop (PE). For teardrop dimple (PE), the flow enters easily inside the cavity and the
symmetric vortex forms in both sides. Therefore, the symmetric contour of TKE was found
in teardrop dimple (PE). Comparing all spacing case, the TKE region for S=1.125D is
larger than that for other cases. That is meant that the turbulence intensity for S=1.125D
case inside the dimpled cavity is stronger than that for others



? Copyright © 2019 Tech Science Press CMC, vol.?, no.?, pp.??, 2019

In the teardrop protrusion cases, the high value of TKE was found behind the teardrop
protrusion in both cases because the flow separation was occurred at this region. The high
TKE area for teardrop protrusion (PE) is larger than teardrop protrusion (NE) because the
flow was blocked in front of teardrop protrusion (NE) and the small separation flow was
occurred at the trailing edge of teardrop protrusion (NE). The detail of flow conditions was
explained in Figure 7. According to comparison of all spacing cases, the region of high
TKE for S=1.125D case was significantly larger than that for other cases because small
spacing case causes the strong interaction of vortex pair between the spacing of protrusion-
to-protrusion.

4.2 Heat transfer

The Fig. 10 shows contour of Nusselt number distribution on the teardrop
dimpled/protruded test section surface at Rey =20,000. The low Nusselt number region was
occurred at the upstream half of dimpled cavity where circulation flow was found. The
high Nusselt number area of teardrop dimple was found at just downstream of dimple. For
teardrop dimple (PE), the reattachment flow region is lower than (NE) cases and the
unsymmetrical vortex pair was occurred while symmetrical vortex pair was found in
teardrop dimple (PE) case. Therefore, the area of high Nusselt number for teardrop dimple
(NE) is higher than that for teardrop dimple (PE). Moreover, the two-peak region of Nusselt
number distribution was found in teardrop dimple (NE) case while one peak region of
Nusselt number distribution was found in teardrop dimple (PE). The high Nusselt number
region becomes smaller when the spacing gets larger.

The high Nusselt number region was found at the upstream half of teardrop protrusion
where the impingement flow was happened. For teardrop protrusion (PE), the fluid flows
smoothly over the protrusion and the strong separation flow was occurred at the
downstream half of protrusion. This effect can enhance heat transfer. However, the fluid
was blocked at the upstream of teardrop protrusion (NE) and the vortex intensity at the
trailing edge of protrusion was low because some fluid flows both side of protrusion rim.
Therefore, the Nusselt number region behind the protrusions for teardrop protrusion (PE)
is higher than that for teardrop protrusion (NE).
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Tesitop Dinple

Figure 10: Contour of Nusselt number distribution on the teardrop dimpled/protruded
test section surface (Simulation results, Rey =20,000)

The Fig. 11 shows the experimental results for contour of Nusselt number
distribution over the middle three protrusion of test section. This study was not considered
for the area of teardrop protrusion surface. All experimental results were considered under
the same range (50< Nu <100). In general, the high Nusselt number regions was occurred
at the downstream of teardrop protrusion where the reattachment flow was found. The low
Nusselt number region was happened just near the downstream rim of teardrop protrusion
where the separation flow was occurred. And then, the high Nusselt number area became
smaller when the spacing became narrower because of the interaction vortex pair between
the spacing of protrusion-to-protrusion. Therefore, the narrowest case can cause the high
TKE, high Nusselt number value and strong turbulence intensity. According to the
comparison between teardrop protrusion (PE) and (NE), the Nusselt number region for
teardrop protrusion (PE) is higher than that for teardrop protrusion (NE) case in every
single-spacing case because the turbulence intensity of teardrop protrusion (PE) is stronger
than that of NE case. These results are agree well with the simulation results of TKE for
teardrop protrusion, which was discussed in flow characteristic section.
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Figure 11: Contour of Nusselt number distribution on the teardrop protruded test section
surface (Experimental results, Rey =20,000)
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Figure 12: Average Nusselt number trend along with the X/D direction of protruded test
section surfaces (Experimental results, Ren =20,000)

The Fig. 12 shows the average Nusselt number along with the streamline direction
of protruded test section surfaces. For teardrop protrusion (PE), the fluid flows smoothly
over the protrusion at the upstream of protrusion. Therefore, the Nusselt number values at
the upstream of protrusion is normal. However, the flow was block at the upstream in the
case of teardrop protrusion (NE). This condition cause small separation flow. Therefore,
the Nusselt number value drop immediately at the upstream of protrusion where separation
flow was occurred. The trend of average Nusselt number values are significantly high
behind the teardrop protrusion where reattachment flow was found in both cases. It can be
seen clearly that the values of teardrop protrusion (PE) is higher than that of teardrop
protrusion (NE). The results of TKE and flow characteristics from simulation are quite
match with experimental results.

(a) Teardrop protrusion (PE)

(b) Teardrop protrusion :(NE)

Musselt number
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-1 0 1 2 3 4 5 2 -1 0 1 2 3 4
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Figure 13: Local Nusselt number trend along with the X/D direction at the center of
middle protrusion Z/D=0 (Experimental results, Rey =20,000)
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The experimental results of local Nusselt number trend along with the X/D
direction at the center of middle protrusion Z/D=0 are shown in Fig. 13. The protrusion
area is not considered for Nusselt number. The trend condition is quite agreed well with
TKE results from simulation at the center of middle protrusion. The highest Nusselt
number values are found at around X/D=1 where the highest TKE values occur. The detail
of Nusselt number value related with flow condition is discussed above paragraph. The
highest Nusselt number cases are found at S/D=1.125 in both cases.
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Figure 14: Turbulence Kinetic Energy (TKE) distribution along X/D direction at the
center of middle protrusion above 1mm from the protruded test section surface

The Fig. 14 shows the Turbulence Kinetic Energy (TKE) distribution of simulation
results at the center of middle protrusions (Z/D=0). For teardrop protrusion (PE), the flow
passed through smoothly over the protrusion. Therefore, TKE value was low at in front of
protrusion (-1.2< X/D<-0.75). However, the small separation flow was found at the front
edge of teardrop protrusion (NE). Therefore, the value of TKE of teardrop protrusion (NE)
was a little higher than that of PE case at the position of (-1.2< X/D<-0.75). In general, the
TKE value is high just behind the protrusion where the separation flow was occurred. The
value of TKE for teardrop protrusion (PE) is higher than that of NE case in every single-
spacing cases behind the protrusion. Among four spacing cases, the S=1.125D case was
significantly higher than other cases.



Manuscript Format Template for Publishing in Tech Science Press 19

1.8 - 1.8
(a) Teardrop dimple (PE) () Teardrop diraple (ME)
1.6 - 164
1.4 4 1.4 4
/561.2 1.2
¥
=
S 1.0
bl
=
.84 B A
6 s
4 - 49
2 T 2
2 dl a 1 2 3 4 6 2 1 1 2 3 4 6

5 E E 0
XD XD

Figure 15: Turbulence Kinetic Energy (TKE) distribution along X/D direction at the
center of middle dimple above 1mm from the dimpled test section surface

The distribution of Turbulence Kinetic Energy (TKE) along X/D direction at the
center of middle dimple above 1 mm from surface is shown in Fig. 15. The trend of TKE
for teardrop dimple (NE) is significantly higher than that for teardrop dimple (PE) because
of the different condition of recirculation flow inside the dimple cavity, which was
discussed in flow characteristics session. The results of TKE and flow condition are quite
agreed well. The values of TKE trend was quite same in all spacing cases but the values
are different at the position of occurring of recirculation flow (-0.3< X/D <0.75).
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Figure 16: Friction factor of simulation result for teardrop dimple/protrusion (Ren
=20,000)
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The simulation results of friction factor for teardrop dimple/protrusion are shown
in Fig. 16. In experiment, the pressure drop values of protruded test section surface is
difficult to measure because this study was analyzed single row of protrusions. According
to the simulation results, the teardrop protruded surfaces are higher friction factor than
dimpled surfaces because protrusions structure block the upstream flow. It can be noted
that the friction factor value gradually decreases when the spacing increase. The narrowest
spacing case was the highest friction factor because the pressure drop value is high in
narrow spacing case. The friction factor of teardrop protrusion (PE) is higher than that of
teardrop protrusion (NE) because of the different flow conditions which was discussed
above session. Moreover, the friction factor of dimple (PE) is higher than that of (NE) case.
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Figure 17: Heat transfer enhancement of simulation result for teardrop dimple/protrusion
(Ren =20,000)

The Fig. 17 describes the heat transfer enhancement of simulation and experiment
results of teardrop protruded/dimpled surface at Rey =20,000. In general, the heat transfer
enhancement for teardrop dimpled surface was higher than that of protrusion cases because
of different flow condition i.e. votices generation, impingement flow, separation,
recirculation and reattachement flow. The value of heat transfer enhamcement in teastrdrop
protrusion (PE) cases for both simulation and experiment are higher than that of NE cases.
The teardrop protrusion (PE) of experiment for S=1.125D case is 1.028% higher than that
of simulation result. However, teardrop drop protrusion (NE) of simulation for S=1.125D
case is 3.381% higher than that of experimental result. The values of heat transfer
enhancement get low when the spacing becomes larger. The highest heat transfer
enhancement case is teardrop dimple (NE) case.
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Figure 18: Thermal performance of simulation results for teardrop dimple/protrusion
(Ren =20,000)

The thermal performance results of teardrop dimples/protrusions tested session
surface for simulation are shown in Fig. 18. The value of thermal performance for
experimental results were not described because the friction factor cannot calculate in the
experiment. The thermal performance for teardrop dimple case is higher than that for
protrusion case. According to the comparison of protrusion cases, the thermal performance
of teardrop protrusion (PE) is higher than that of teardrop protrusion (NE) due to high heat
transfer enhancement in PE case. However, the thermal performance of teardrop dimple
(NE) is higher than that of teardrop dimple (PE) case because of high heat transfer
enhancement and low friction factor values in NE case. The thermal performance values
for teardrop dimple are gradually decrease but the values for teardrop protrusion are
gradually increase. For teardrop dimple case, the value of thermal performance for
S=1.125D case is the highest among four spacing cases because of highest heat transfer
enhancement value and lowest friction factor value. The friction factor value in teardrop
dimple case is very close comparing with four spacing cases. But, the thermal performance
of teardrop protrusion case for S=2D is the highest even though the value of heat transfer
enhancement value is lowest. That is because friction factor value for S=2D case is quite
lower than that for S=1.125D case.
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5 Conclusions

The flow characteristics and heat transfer of different structures of teardrop
dimples/protrusions in rectangular wind tunnel with depth or height of H=0.2D are
investigated. The conclusions of this study are as follows;

1. The flow separation and recirculation inside the teardrop dimple (NE) is stronger
than that of teardrop dimple (PE). For the teardrop protrusions, the symmetric
vortex pairs are occurred strongly behind the teardrop protrusion (PE) while this
flow is found at the trailing edge of teardrop protrusion (NE). Small separation
flow is found at the upstream of teardrop protrusion (NE).

2. Among four spacing cases, the turbulent intensity for S=1.125D is stronger than
that for other cases because the effect of narrow spacing between protrusion-to-
protrusion can cause stronger separation flow and due to the effect of the
longitudinal vortex flow along with the flow between the protrusion-to-protrusion
spacing.

3. The heat transfer enhancement for teardrop dimple cases are higher than that for
protrusion of simulation and experimental results. The values of positive
eccentricities for teardrop protrusions are higher than that of negative eccentricities
for teardrop protrusions. However, the values of negative eccentricities for
teardrop dimples are higher than that of positive eccentricities for teardrop
dimples.

4. The highest values of average Nusselt number are occurred around the position of
X/D=1 where the reattachment flow was found. Moreover, the position of the
highest values of average Nusselt number is identity with the position of occurring
of highest TKE values.

5. The thermal performance values for teardrop dimple cases decrease gradually but
the values for teardrop protrusion cases increase gradually when the spacing
become larger. That is because of the friction factor gap which is causing by the
spacing between each other’s.
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The Effect of Protrusion-to-protrusion Spacing on Heat Transfer Characteristics

on the Internal Surface of Wind Tunnel
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fumstnaneluglusdan sosyudunuunssnanifvunaduriugudnats 40 mm wasvuaduruguinans
dufiuoenaniiufin (5esvsu) D=27.0 mm ANugBELTiBURENAINNUAY H=0.22D TaBUSuTEEYINg
JENINTBEYY S=1.1250, 1.250, 1.5D wag 20 dwsuisdluaniuuesvesnisinavesomanieluglusdaula
mmum‘lmmmmﬂu Re,=20,000 ImaﬂmmﬂLaumm@iuaﬂmﬂlamaaﬂﬁummﬂmama‘l,uaimma:u Tunsianis
mammmsauuuwumléﬂ,muwu Thermochromic liquid crystal mammwmvmawwum PNNANITANY
wudfisvey S=1.125D Winsenewenufeuuuiuiogean
FAman: seoyu Maiumssemauiou dulssavsnsmanuiou

Abstract

This article, the study of heat transfer on the surface mounted protrusions with inline
arrangement was presented. Experimental setup was wind tunnel with rectangular cross section. 4
protrusions were installed perpendicularly to air flow inside the tunnel. The protrusions were sphere
with a diameter of 40 mm, and the printed diameter of protrusions on the surface was D=27.0 mm.
The height of protrusions was H=0.22D. A protrusion-to-protrusion spacing were adjusted at $=1.125D,
1.25D, 1.5D and 2D. The Reynolds number of air flow inside the wind tunnel, based on hydraulic
diameter of air flow inside the wind tunnel, was fixed at Re=20,000. The heat transfer on the surface
was evaluated by measuring temperature distributions using a thermochromic liquid crystal sheet. The
results show that the heat transfer rate for the case of 5=1.125D was the highest.
Keywords: Protrusion, Heat transfer enhancement, Heat transfer coefficient
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Abstract

This article, the simulation study of flow and heat transfer on the dimple surface
was presented. A 3-D model was wind tunnel with rectangular cross section. 3
dimples were formed on the internal surface of wind tunnel, and the centerline of
dimples with inline arrangement was perpendicular to air flow. The dimples were
sphere with a diameter of 40 mm, and the printed diameter of dimples on the surface
was D=26.4 mm. The depth of dimple was H/D=0.2. A dimple-to-dimple spacing were
adjusted at S/D=1.125, 1.25, 1.5 and 2. The Reynolds numbers of internal flow,
based on the hydraulic diameter of the wind tunnel, was 20,000. The fluid flow and
heat transfer were solved using a Shear Stress Transport (SST) k- ® turbulence
model. The results show that the average Nusselt number is higher when S/D is
smaller, and average values for the case of S/D=1.125 is the highest.

Keywords (3-5 words): dimple, Heat transfer enhancement, Heat transfer coefficient,

CFD.

1. Introduction

The convective heat transfer between fluid and solid surface
are used in very common in different engineering applications
such as automotive and aerospace industries, heating and
refrigerating, solar  collectors, electronic devices, laser
technology. In recent decades, lots of efforts have been made to
improve thermal performance of the compact heat exchangers
accompanying a reduction in their size, weight and cost. The
heat transfer can be boosted using active and/or passive
techniques. A variety of passive techniques such as flow
additives, swirl flow devices, surface tension devices, rough
surfaces, treated surfaces, pin fins, ribbed turbulators and
surfaces with dimple and/or protrusions are used for enhancing
heat transfer in different applications. Dimples or protrusions are
regarded as one of the most effective structures heat transfer
enhancement in the industrial applications, such as the cooling
of gas turbine blade, combustion chamber and microelectronic
component. The application of protrusion has been attracted the
attention of many researchers due to its advantages for friction

factors and enhancement for heat transfer [1-3].

Xie et al. [2] used numerical investigation to study flow and

heat transfer in rectangular channel with array of
dimples/protrusions. The effects of dimple/protrusion geometries,
spherical and teardrop, on flow and heat transfer rate were
studied. The results show that the teardrop dimple/protrusion
shows good thermal performance for lower Reynolds number.
They explained that the flow covers the teardrop surface easily
and impinges onto the rear section with more energy in the
teardrop dimple/protrusion with positive eccentricity compared
with hemispherical dimple/protrusion.

Xie et al. [3] studied flow characteristics and heat transfer
performances in rectangular tubes with protrusions using
numerical investigation. Protrusion channels coupled with
different Critical Micelle Concentration (CMC) concentration
solutions are studied, and the results are compared with that of
smooth channels with water flow. The results showed that
protrusion structure can effectively enhance the heat transfer of
CMC solution with low pressure penalty in specific cases (CMC

solution shows the worst thermal performance). For a specific

protrusion structure and a fixed flow velocity, there exists an



optimal solution concentration showing the best thermal
performance.

Heat transfer characteristics and flow structures over
periodically dimple protrusion patterned walls in a turbulent
channel flow were systematically investigated by Chen et al. [4]
using Detached Eddy Simulation (DES) method. The results
showed that the larger depth/height induces higher friction factor
and heat transfer. The highest Nusselt number is found to be
located at the upstream portion of protrusion and downstream
portion of dimple. In addition, Nusselt number exhibits
symmetrical features for the small depth/height configuration and
asymmetric  characteristics for the large depth/height
configuration.

According to the previous works as above reviewed, the
effects of spacing between dimples/protrusions were not
reported. Therefore, this parameter should be concerned to
understand more how the characteristics of flow and heat
transfer with varying the spacing. The aim of this research is
to study numerically the effect of dimple-to-dimple spacing on

flow and heat transfer characteristics on the internal surface

of wind tunnel.

2. Method

The ANSYS ver. 13 (Fluent) was used to simulate the flow
characteristics. A 3-D numerical model based on finite volume
method was adopted to solve governing equations with boundary
conditions. The details of investigations were given as follow:

2.1 Model of protrusion

The model of 3 dimples formed on the inner surface of the
rectangular wind tunnel was shown in Fig. 1. The air with fully
developed flow passes the test section. The origin of Cartesian
coordinate system was located at the center of dimple. The X-
axis is the direction to flow inside the wind tunnel, Y-axis is the
direction of wind tunnel height and Z-axis is perpendicular to the
flow.

The details of dimple are shown in Fig. 2. The spherical
dimple with diameter of 40 mm and printed diameter on the
surface was D=26.4 mm. The depth of dimple, from the surface
to the dimple tip, was 0.2D. The dimple-to-dimple spacing was
adjusted at S=1.125D, 1.25D, 1.5D and 2D. The Reynolds
number of air flow inside the wind tunnel, based on the hydraulic

diameter of the wind tunnel, was fixed at Re=20,000.

Wind tunnel ‘

.
B Y
—

Flow;f } Spherical dimple
— X

(a) Side view

(b) Top view

Fig. 1 The model of investigation

40 mm
Flow
D=26.4 mm

Fig. 2 The details of dimple

2.2 Wind tunnel

Fig. 3 shows the schematic of wind tunnel using for the
simulation model. The cross-section of wind tunnel was
rectangular. There are three parts of the wind tunnel: the
upstream of test section (1700 mm), test section (280 mm) and
the downstream of test section (490 mm). The length of the
upstream section has a sufficient distance to achieve fully
developed flow in the test section. The height of wind tunnel was
26.4 mm (1D) and the width was varied depending on a dimple-
to-dimple spacing.

The details of generated grid are shown in Fig. 4. Cutting
plane along centerline of dimple is shown to expose the internal
grid system. The majority of elements were even rectangular.
Uneven square elements were composed of dimple area and its
surrounding regions. The elements were concentrated near the
wall. Grid dependency in space between upper and lower wall is

very important, especially, the thickness of the first layer above



the wall to resolve the flow field within the viscous sublayer. To heat transfer surface is lesser that 1.

consider grid dependence in this work, y+ distributions on the

6D=158.4mm(S=2D) Pressure outlet

Test section

Velocity Inlet

Fig. 3 The wind tunnel with spherical dimple

Pressure outlet

Wind tunnel

Top view of dimple

Velocity inlet
Fig. 4 Generated grids



At the air inlet, the uniform velocity was entered by getting
Reynolds number at Re=20,000. The pressure outlet was set at
the air outlet at 1 atm. The lateral walls were given to be
symmetry. The temperature of air was 25°C. At the heat transfer
surface, the internal surface mounted protrusion in test section
was set as constant heat flux (150 W/m2).

2.3 Nusselt number calculation
The heat transfer coefficient, /4, could be calculated from:
0
A(Twall -T air)

where, Q is heat flux, 4 is heat transfer area, T,,; is wall
temperature and T, is air temperature.

The Nusselt number, Nu, was calculated from:
hD,,
k

where Dj; was the hydraulic diameter of the tunnel and & was a

Nu =

thermal conductivity of the air.
2.4 Numerical Calculation Method

The fluid flow and heat transfer were solved using a Shear
Stress Transport (SST) k- turbulence model. Throughout the
study, the fluid is considered to be incompressible with constant
thermal properties. The solution method was based on Semi-
Implicit Method for Pressure-Linked Equations (SIMPLE)
algorithm with second order upwind for all spatial discretization.
To consider solutions to be convergent, the root mean square
(RMS) residual of continuity and energy equation were lesser
than 10'8 and that of momentum equation was lesser than 10'5
6, 71.

3. Results and discussions
3.1 Verification of simulation
The well-known Dittus-Boelter correlation [5],
Nu, =0.23Re"® pr®* where Re and Pr are Reynolds number and
Prandtl number, were used to be basically correlation for
comparing internal heat transfer in the smooth channel. The
average Nusselt numbers versus Reynold numbers for smooth
wind tunnel compared between the correlation and the CFD
method from this work is shown in Fig.5. The current data
agrees well with the correlation that overall heat transfer
increase according to increasing of Reynolds number. The

discrepancies of comparison were found in the same range with

the work of Rao et al. [5].

—&— Correlation
== CFD

100 E

Average Nu,

80 f
60 F
40 F

20 f

O E L L L L
0 10000 20000 30000 40000 50000

Re
Fig. 5 Average Nusselt numbers versus Reynold numbers of

internal heat transfer correlation [5] and the CFD method in this

work

The velocity profiles of cross-flow in wind tunnel height
before entering to test section at Z/D=0 are shown in Fig. 6. The
experimental results are also compared to verify the CFD
results. The experiment setup is the same with the previous
work [7], belonging the authors. The velocity profiles can be
agreed with both CFD and experiment and can be seen that the
highest velocity exist at the center of the wind tunnel. The blunt
profiles correspond to the characteristics of internal turbulent

flow.
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Fig. 6 The velocity profiles of cross-flow before entering to test

section (Z/D=0).

3.2 Flow characteristics

Streamlines of flow over dimple surface are shown in Fig. 7.
It can be observed that circulation flow occurs in dimple surfaces
and the majority of the area of circulation flow is being in the
upstream portion of dimples. This static circulation flow (see in
Fig. 8) acts as thermal insulator resulting in low heat transfer on
the surface [8].

In Fig. 7, the characteristics of upstream streamline (Before
passing dimple) are straight whereas those of downstream

streamlines (immediately after passing dimple, X/D=0.5) tend to



lateral side. This is the occurring of longitudinal vortex pair after
flow passing dimple. It is difficult to illustrate in the result, but it
was commonly reported in the literatures [2, 4 and 8]. Generally,
a longitudinal vortex pair results in increasing heat transfer [8].
For the case of S/D=1.125 as shown in Fig.7 (a), the interaction
between longitudinal circulation flows of neighboring dimples

seem to be stronger than the other cases.

0 1.8 3.6 5.5 7.3

-1

2

-1 1 2 3 4 5 6 7
Fig. 7 Streamline above the surface of dimples

—_— —_—
> S~ _ >
SsS—— >

— —— =2 == ————
> > >

Attachment flow

Fig. 8 Streamline at the center plan of middle dimple

(S/D=1.125, Re=20,000)

Streamline passing the center of middle dimple (Z/D=0) for
the case of 1.125D is shown in Fig.8. Due to the all cases being
the same characteristics, the results just show only one case.
Flow inside the dimple, it can see that the static circulation flow
occurs in upstream portion of dimple while attachment flow
occurs in downstream portion of dimple. The attachment flow

result in increasing heat transfer that would be discussed.

a) S/D=1.125

——
¢) S/D=1.5

-1 n 1 2 3 4 5 6 7
Fig. 9 Nusselt number distributions on the surface

3.3 Heat transfer and turbulence kinetic energy

The contours of Nusselt number on the surface are shown in
Fig. 9, and the contours of turbulence kinetic energy (TKE)
above 1 mm from the surface are shown in the Fig. 10. Noted,
due to no slip wall, the turbulence kinetic energy distributions
were taken above 1 mm from the surface. In the surface of
dimples, it is found that Nusselt number distributions are high on

the downstream portion of dimple surface, especially near the



rear rim of the dimples because of the attachment flow. In other
hand, Nusselt numbers are low on the upstream portion of
dimple surface due to circulation flow [6]. Both attachment and
circulation flows result in increasing or decreasing of Nusselt
number that was previously discussed.

Fig. 10, it can be seen that the contours of high turbulence
kinetic energy (TKE>0.6) took place on dimple surface and flat
surface at the downstream of dimples, especially near the rear
rim of the dimples. The peak area of high turbulence kinetic
energy (TKE>1.2) coincides with the area of high Nusselt
number (Nu>103 as shown in Fig. 9) and area of attachment

flow (see Fig. 8).

a) S/D=1.125

Fig. 10 Turbulence Kinetic Energy (TKE) distributions above 1

mm from the surface
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Nusselt number and turbulence kinetic energy (TKE)
distributions in spanwise direction (Z/D) at X/D=1, 2 and 3 are
shown in the Fig. 11, 12 and 13, respectively. Nusselt nhumber
and turbulence kinetic energy at X/D=1 (Fig.11) are high and
then become lower when X/D>=2 (Fig.12 and 13). From Fig.11-
13, the peak of Nusselt number in one dimple area for all cases
can be seen in single region. However, this is exception for the
case of S/D=1.125D (Fig.11(a), Fig.12(a) and Fig.13(a)) that the
peak of Nusselt number in one dimple area can be found in
double regions. This can be attributed the effect of the smallest
S/D that the interaction of longitudinal vortex pair between

neighboring dimples.

110
100 F
9

(a) S/D=1.125 | 3.5

T 1
I I
I I
I I
! ! —n 25
80 F 1 1 - oo TKE
=
< 70 /\/\/\E/\/\:/'\ 1.5 g
60 F _ J, E :_ - 0.5
S0 F 1 1 1
40 1 1 " 0.5
110 T T T
| '
100 ! ! E (b) S/D=125 33
‘gg ! ! ! —_—nu |25
o I 1 ! === TKE a
“ 70 /:\/J.\/-.‘\ [
60 ! i 1
....................... 0.5
50 a T 1
40 L ! 1 0.5
110 T T T
100 E : : : ()SD=15% 35
I I I
9 f ' ! ! —MW s
- 80 F 1 1 1 == = TKE
“of /\/\/;\ " g
| ' '
ol T Cemcmmmeee Cmmcmeeme demeen 05
50 - 1 1 1
1 1 1
40 L 4 4 -0.5
110 T T T
100 i i P @SP2E3s
90 F i i |
| I Voo | 25
2P : : g
Z E
70 __/]\ PN /:\__ 15 &=
3 | '
L S e SRS 0.5
50 F : | H
40 A i L -0.5
-3 -2 -1 0 1 2 3

N
5]

Fig. 13 Nusselt number and turbulence kinetic energy
distributions in Z/D direction at X/D=3 (Dash straight line is the
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The average of Nusselt number on the smooth and the
dimple surfaces is shown in Fig. 14. The average values for
every dimple surface are higher than that of the smooth surface.
The trend of average values is lower when S/D is larger. The
average Nusselt number for the case of S/D=1.125 is the

highest.
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Fig. 14 Average Nusselt number (Re=20,000)

4. Conclusions

In this article, 3 dimples that are formed on the surface of
wind tunnel were studied by using 3-D simulation. A dimple-to-
dimple spacing were adjusted at S/D=1.125, 1.25, 1.5 and 2.
The main results can be concluded as followed:

1. The area of high Nusselt number (Nu>103) is found in the
zone of attachment flow. It coincides with the occurring of high
turbulence kinetic energy (TKE>1.2).

2. The peak of Nusselt number on the flat surface at the
downstream of one dimple for the case of S/D=1.125D is found
in two regions. The other cases have only one peak of Nusselt
number.

3. The trend of average Nusselt number is higher when S/D
is smaller, and average values for the case of S/D=1.125 is the

highest.
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Abstract

In this study, the investigation of heat transfer over the teardrop protrusions surface with inline
arrangement was reported. Single row of 5 protrusions with the inline arrangement was formed on the
internal surface of rectangular wind tunnel in experimental setup. The air flow was perpendicular to the
center of every protrusion. The depth of protrusion from the surface of with tunnel was H/D=0.2, and the
projected diameter of spherical protrusion was D=26.4 mm. Teardrop protrusion-to-protrusion spacing
was varied S=1.125D, 1.25D, 1.5D and 2D. The Reynolds number of internal air flow of the wind tunnel
based on hydraulic diameter was 20,000 (Rex=20,000). The thermochromic liquid crystal sheet was used
to detect the distributions of temperature and for measuring the heat transfer on the surface. It was found
that the heat transfer rate for the case of S=1.125D was the highest. The highest Nusselt number value
was existed at just behind the downstream of protrusion and the value became lower along the

downstream of protrusions.

Keywords: Protrusion, Heat transfer enhancement, Heat transfer coefficient

1. Introduction

To enhance heat transfer performance is one
of the ways to save energy. Particularly for the
process of heat exchanger is mostly depended on
heat transfer convection. If the system can be
designed to have a high coefficient of heat
transfer convection, it can reduce power
consumption. One of the way to get high heat
transfer coefficient is to reduce or destroy the
thickness of boundary layer which occurs
between fluid and the surface of heat flux area
because the fluid flow is low within boundary the
layer and perform as insulating layer. To reduce
the thickness of boundary layer which can be
achieved by increasing flow velocity. So, this
method requires more power supply. The next
way to destroy the of boundary layer can be
achieved by installing tabulator devices such as
ribs or pins on the heat transfer surface. This
method does not need to increase the rate of fluid
flow because the boundary layer is destroyed
when the fluid flows pass through the installed
tabulator device.

Dimples or protrusions are regarded
asone of the most effective structures heat
transfer enchancement in the industrial
applications, such as the cooling of gas turbine
blade, combustion chamber and microelectronic
component. The applications of dimples or
protrusions have been attracted the attention of
many researchers due to its advantages for

friction factors and enchancement for heat
tranfer [1-3].

The flow and heat transfer characteristics of
teardrop dimple and protrusion with different was
investigated and compared with hemispherical
dimple/protrusion by Xie et al. [1]. They showed
the thermal performance for teardrop dimple and
protrusion is higher than hemispherical dimple
and protrusion for lower Reynold number and
thermal performance increase gradually as the
centre moves downwards for the teardrop
dimple/protrusion.

Rao et al. [4] investigated an experiment and a
numerical study on the heat transfer of turbulent
flow in channel with staggered arrangement of
spherical and teardrop dimples 11 rows. They
found that heat transfer performance of teardrop
dimple has distinctively higher than spherical
dimple. Although many researchers have studied
about heat transfer and flow characteristics with
many dimple and protrusion row on the surface, it
is still difficult to describe the phenomenon of
flow and heat transfer characteristics. Therefore,
the heat transfer characteristics with single
protrusion row over the surface was researched in
this work.

The aim of this work was to investigate
experimentally the effect of spacing between
protrusion-to-protrusion  on  heat transfer
characteristics with single protrusion row with
various protrusion-to-protrusion spacing.



AMM - XXX

2. Methodology

2.1 Model of protrusion
Figure 1 shows the model of 5 protrusions which
was made by plastic was installed on the internal
surface of rectangular wind tunnel. The air with
fully developed flow passes through the tear drop
protrusions. The origin of Cartesian coordinate
system was existed at the center of middle dimple
such as X-axis is the along the flow direction of
wind tunnel, Y-axis is the rectangular wind tunnel
height direction and Z-axis is normal direction to
the flow.

The details of protrusion are shown in Figure
5. The spherical protrusion with the radius of r
=0.725D and the projected diameter on the
surface was D=26.4mm. The depth of protrusion
from the surface was 0.2D. The spacing between
protrusion-to-protrusion was varied with S/D=
1.125, 1.25, 1.5 and 2. The Reynolds number of
mainstream air inside the wind tunnel based on
the hydraulic diameter of wind tunnel is fixed at
Ren=20,000 at the middle of wind tunnel by using
Pitot tube to measure velocity was shown in
Figure 6.

Wind tunnel

Y

Teardro
Flow op
protrusion
X

>
> ‘

(a) Side view

, ,A@k&,,
I )

Constant heat flux

| Evaluated area of
,,,,, <> heat transfer

(b) Top view
Fig. 1 The model of investigation
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Fig. 2 The detail of protrusion

2.2. Wind tunnel

Figure 3 show the detail of wind tunnel in the
experiment. The rectangular wind tunnel has
three parts: the upstream of test section (1700
mm) that was sufficient distance to get fully
developed flow, test section (280mm) where
was formed conical dimples and downstream
of test section where the air was leave out
from the wind tunnel. The wind tunnel height
was 26.4 mm (1D).

2.2. Measurement of heat transfer

The test section for heat transfer
measurement is shown in Figure 4. The heat
transfer surface was made of a stainless- steel foil
with thickness of 0.03mm. The foil was attached
with Thermochromics liquid crystals (TLC) sheet
on side of the wall. The stainless-steel foil was
stretched between a couple of copper bus bars.
The heat transfer surface was heated by DC
power source that can supply current through the
copper bus bars. A digital camera was used to
capture color on the TLC sheet. Images of color
pattern on the TLC sheet were converted from a
red, green, and blue (RGB) system to a hue,
saturation, and intensity (HSI) system. To
simulate cross-flow, air was introduced through
the inlet chamber, flow straightener, two layer of
mesh plates, test section and chamber outlet by
using blower.
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Fig. 3 Experimental 3D model of wind tunnel with single teardrop row
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Fig. 4 Schematic diagram of experimental set-up

Electrical energy dissipated in the stainless-steel
foil can be calculated from:

Qinput =1 2. R
where, I is the supplied electrical current and R is
the electrical resistance of stainless-steel foil.

The air temperature was controlled at 27.6.C
and flow on the surface of stainless-steel sheet.
The local heat transfer coefficient (h) can be
calculated from this equation:

_ Qinput _Qlosses
A(rLC _Ta)

Where,Qinput is the rate of heat generation in the

stainless pIate,QIosses is the rate of heat loss for

convection and radiation, A is the area of heat
transfer surface, Tic is the temperature of the

color that appears on the TLC plate and T, is air

temperature.
The local Nusselt number can be calculated from

hD,

ko

where, Dy, is hydraulic diameter and K is thermal
conductivity of air.

Nu

3. Results and discussions

The contours and the values of Nusselt
number on the surface of only three protrusions
are described in Figure 5. The solid part area of
teardrop is not considered about Nusselt number.
The distribution of high Nusselt number can be
seen at the downstream of protrusions due to the
flow separate and circulation flow appear
downstream the protrusion and attachment flow

E-NETT 31"
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appear immediately along the downstream of
protrusion [1, 5] and this effect enhance heat
transfer augmentation. Increasing or decreasing
Nusselt number on the dimple and protrusion
surface can be occurred because of both
attachment and circulation flow effects that was
studied in literature [1, 4]. And then, the results
were found that the Nusselt number increases
when the spacing between protrusion-to-
protrusion decrease because the flow tendency to
the lateral side of longitudinal vortex pair
between protrusion-to-protrusion spacing and
turbulent flow increases between spacing.

The distribution of Nusselt number value
along the protrusion center Z/D=0 for all S/D
cases was shown in Figure 6. For the area of the
range (-0.75<X/D<0.5) was not taken into account
because it is a protruded teardrop It was found
that the maximum peak trend occurs at
S/D=1.125 and this trend was higher than the
other S/D cases.

Figure 7, 8 and 9 shows the span wise Nusselt
number distributions at the downstream portion
of protrusion (X/D=1, 2 and 3) for all S/D cases.
Three peak regions of maximum Nusselt number
cases were occurred behind the protruded
teardrop. When the distance of downstream
behind the protrusion became larger, the value of
Nusselt number was smaller. It can be seen
clearly that Nusselt number distribution trends for
S/D=1.125 case have 70 < Nu < 90 at X/D=1, 65
< Nu < 80 at X/D=2 and 62 < Nu < 72 at X/D=3.

The average stream wise Nusselt number
distribution of respective each spacing case was
illustrated in Figure 10. Moreover, Figure 11
shows the average Nusselt number over
protrusion surface of evaluated heat transfer area.
The result can be shown that the trend of average
value become lower when S/D become larger.
The highest average Nusselt number case is
S/D=1.125D.

Fig. 5 Contour of Nusselt number on teardrop
protrusion surface
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4. Conclusions
In this work, the investigation of heat
transfer  characteristics over the teardrop
protrusion surface of evaluated heat transfer area
in wind tunnel was studied. The spacing was

st



AMM - XXX

varied by different spacing at S/D=1.125, 1.25,
1.5 and 2. The summery of this work are as
follow:

1. The value of average Nusselt number
increase when the spacing between
protrusion-to-protrusion decreased. The
highest Nusselt number average value can
be found in S/D=1.125 case.

2. The heat transfer was low at just behind
the protrusion at 0.5< X/D < 0.7 due to
circulation flow appear at this region.
After this region, the heat transfer was
high because of reattachment flow.

3. The high Nusselt number can be observed
at downstream of protrusion (X/D=1)
because of reattachment flow after that the
values became lower along the
downstream of smooth surface
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Abstract. In the present study, heat transfer and flow characteristics simulations over the
surface of conical dimple were investigated. Single dimple row with inline arrangement was
formed on the internal surface of the 3-D rectangular wind tunnel model. The air flow was
perpendicular to the centre line of every dimple and the printed diameter of dimples on the
surface was D=26.4mm. The depth of dimple on the surface of wind tunnel was H/D=2. The
space between dimple-to-dimple was varied for S/D=1.125, 1.25,1.5, and 2. The Reynold
number based on the hydraulic diameter of internal air flow was 20,000 depending on the wind
tunnel hydraulic diameter. The numerical computation was applied with a Shear Stress
Transport (SST) k- ® turbulence model. The average Nusselt number for the S/D=1.125 case is
the highest. When the spacing becomes increase, the value of average Nusselt number tends to
decrease.

1. Introduction

Dimple is one of the most effective structures for heat transfer enhancement in the industrial
applications, such as the cooling of gas turbine blade and high pressure disk, the cooling of
microelectronic components, and automotive, heating and refrigerating. Although these approaches
are the effective method to improve the heat transfer performance; however, the increasing of fluid
stream pressure drop should be concerned. The dimple surface is one of the effective methods to
improve the heat transfer rates without significant pressure drop [1, 2]. Normally, the dimpled surface
generates the vortex flow within its hole and the argumentation of heat transfer is obtained.

In past decades, lots of efforts have been made to improve efficiency and performance of thermal
equipment accompanying a reduction in their size, weight and cost. The heat transfer can be enhanced
by using either active and/or passive techniques. There are multifarious passive techniques such as
swirl flow devices [3], surface tension devices, rough surfaces [3, 4], pin fins [3], ribbed tabulators [3]
and surfaces with dimple [5, 6]. These are used for enhancing heat transfer in different utilizations.
Dimple is regarded as one of the most effective heat transfer enhancement because of its profits for
low pressure losses comparing with other devices and enhancing for heat transfer [7].

A wind tunnel investigation on an array of hemispherical dimple in staggered arrangement has been
conducted by Manmood et al. [8]. In this work, they informed the formation of large vortexes pair on
the dimple surface. Won et al. [9], Ligrani et al. [10], Won and Ligrani [11] and Shin Et al. [12] have
reported about flow structure of dimple.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1
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Previous studies, a CFD technique has been carried out popularly to investigate flow and heat
transfer of dimple array in channel flow because of more accurate prediction of results by adopting of
excellent turbulence model. Rao et al. [5] studied the flow and heat transfer of hemispherical and tear
drop dimples by using CFD technique. The dimensions of hemispherical dimples were similar to the
case of Mahmood et al. [8]. The results have been reported the heat transfer characteristics on the
dimple surface in detail and proved CFD and experimental results for measuring overall heat transfer.
Moreover, flow and heat transfer of dimple array in channel flow was investigated by Kim and Shin
[13], Yoon et al. [14], Elyyan et al. [15] Xie et al. [7] using CFD technique. To reduce calculation load
for computational modelling, the evaluated area of heat transfer was applied on some parts of dimple
array.

The flow and heat transfer characteristics of teardrop dimple and protrusion was investigated and
compared with hemispherical dimple and protrusion by Xie et al. [7]. They showed the thermal
performance for teardrop dimple and protrusion is higher than hemispherical dimple and protrusion for
lower Reynolds number and thermal performance increase gradually as the centre moves downwards
for the teardrop dimple/protrusion.

Therefore, many researchers have been studied about different shapes shuch as spherical,
teardrop and square shape [16] but conical shape have not been studied yet. Conical shape has
many advantag for forming or creating easier than spherical or tear-drop shape. In this work, heat
transfer effects and flow characteristics on a surface of conical dimple were investigated. Single
row of conical dimples were designed over the internal surface of wind tunnel. The wind tunnel
was arranged to get enough fully developed flow. Computational Fluid Dynamic (CFD) was used to
visualize flow characteristics of dimples and compare with some experimental results.

2. Method

2.1. Model of dimple

The model of conical dimple row was formed over the inner bottom surface of the rectangular wind
tunnel as shown in figure 1. The air with fully developed flow passed through the test section. The
origin of Cartesian coordinate system was existed at the centre of middle dimple. X-axis is the along
the flow direction of wind tunnel, Y-axis is the rectangular wind tunnel height direction and Z-axis is
normal direction to the flow.

Figure 2 shows the details of conical dimple with projected diameter was D=26.4 mm. The depth
of dimple, from the surface to the dimple bottom tip, was 0.2D [5,13 and 17]. The spacing of dimple-
to-dimple was adjusted at S=1.125D, 1.25D, 1.5D and 2D. The Reynolds number of air inside the
wind tunnel is Rep=20,000 that was based on the hydraulic diameter of wind tunnel [5,8].

wind tunnel ‘W

Spherical dimple

i ) B

vy

Flow

(a) Side View

(b) Top view
Figure 1. The model of investigation
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Flow

Figure 2. The details of dimple

2.2. Wind tunnel

The experimental setting for wind tunnel was utilized to prove and compare with CFD results. By
using TLC technique, the heat transfer and temperature on the surface of smooth wall test section was
measured. The wind tunnel measurement details were explained in previous works of M. Wae-Hayee
et al. [18, 19]. The schematic diagram of wind tunnel simulation model was shown in figure 3. The
wind tunnel geometries and dimensions for simulation were identical with the experimental design.
The rectangular wind tunnel has three parts: the upstream of test section (1700 mm) that was sufficient
distance to get fully developed flow, test section (280mm) where was formed conical dimples and
downstream of test section where the air vent from the wind tunnel. The wind tunnel height was 26.4
mm (1D). The width of wind tunnel was varied with the spacing of dimple-to-dimple to reduce
moderate computational loads of simulations.

\elocity Inlet

Figure 3. The wind tunnel with conical dimple

The generated grid details used in this work were illustrated in figure 4. Cutting plane along
centreline of dimple was shown to expose the internal grid system. The majority of mesh elements
were even rectangular. Uneven square elements were composed of dimple area and their surrounding
regions. The elements were concentrated near the wall. Grid dependency in space between upper and
lower wall is very important, especially, the thickness of the first layer above the wall to resolve the
flow field within the viscous sublayer. To consider grid dependence in this work, y+ distributions on
the heat transfer surface were lesser that 1. The selected element was 7,294,941 elements.
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Figure 4. Generated grids

2.3. Assumptions and boundary conditions

In numerical model, the upper and the lower wall were set to have no slip condition. All walls, except
bottom wall of test section, were insulated for performing as adiabatic condition. The fluid was
considered as an incompressible flow with constant thermal properties and there is no gravitational
effect in this simulation. At the air inlet, the uniform velocity was entered by getting Reynolds number
at Res=20,000. The pressure outlet was set at 1 atm. Both of lateral walls were set as symmetry with
the temperature of air was at 25°C. At the heat transfer surface formed with dimples was set at
constant heat flux (150 W/m?).

2.4. Numerical calculation method

The numerical 3-D model which based on the finite volume method was adopted to solve governing
equations with boundary conditions. The details of equation can be found in [20]. The fluid flow and
heat transfer were solved using a Shear Stress Transport (SST) k-o turbulence model due to accurate
prediction with moderate computation cost [20]. This turbulence model had been used in relative
studies [5, 7 and 18].

The solution method was based on Semi-Implicit Method for Pressure-Linked Equations
(SIMPLE) algorithm with second order upwind for all spatial discretization. To consider solutions to
be convergent, the root mean square (RMS) residual of continuity and energy equation were lesser
than 10® and that of momentum equation was lesser than 107 [5, 18].

2.5. Nusselt number calculation
The heat transfer coefficient, h, could be calculated from:

he 9 (1)
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Where, ¢ was heat flux, 7,..; was wall temperature and 7.;- was air temperature.
The Nusselt number, Nu, was calculated from:

Nu = th @)

where Dy was the hydraulic diameter of the tunnel and & was a thermal conductivity of the air.

3. Result and discussions

3.1. Verification of simulation
The well-known Dittus-Boelter correlation, Nu, =0.23Re® Pr’* where Re and Pr are Reynolds number

and Prandtl number, were used for comparing internal heat transfer in the smooth channel. The
average Nusselt numbers versus Reynold numbers for smooth wind tunnel was compared between the
correlation, the experimental results, and the CFD method from this work is shown in figure 5. The
current data agrees well with the correlation and the experimental results and overall heat transfer
increase according to increasing of Reynolds number. The discrepancies of comparison were found in
the same range with the work of Rao et al. [5].

140

120 A A °
100 A [ ]
> 80 °
o A
o
3 60 -
A
40 + ° Correlation
A CFD
4 Experiment
20 ° xperimen
0 T T T T T
0 10000 20000 30000 40000 50000 60000

Re

Figure 5. Average Nusselt numbers versus Reynold numbers of
internal heat transfer correlation and the CFD method in this
work

3.2. Flow characteristics
Streamlines flow over dimple surface were shown in figure 7. The occurrence of circulation flow in
the dimple cavity was described obviously at the upstream part of the dimple cavity. The streamline
inside the dimple cavity was shown in figure 6. This figure could also be proved that the circulation
flows were happened at upstream half of the dimple cavity. The static circulation flow acted as
thermal insulator resulting in low heat transfer on upstream portion of dimple surface.

For the case of 1.125D, the streamline which pass through the centre of middle dimple cavity
(Z/D=0) where the flow condition inside the dimple was shown in figure 6. The stationary circulation
flow appeared in upstream portion of dimple and attachment flow appeared in downstream portion of
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dimple. This effect enhances heat transfer augmentation which had been described in literature
reviews.

> > > > > > > >

Mixing region
Attachment flow

Figure 6. Streamline at the centre of plan of middle dimple (S/D=1.125D,
Re=20,000).

In figure 7, the characteristics of upstream streamline (before passing dimple) were straight
whereas those of downstream streamline (immediately after passing dimple, X/D~0.5) were separated
from its centre- line and tend to lateral side. This is from the effect of the longitudinal vortex pair
occurrence after flow passing dimple which had also been reported in the literatures [5,7 and 23].
Here, it can be noted that for the case of S/D=1.125D as shown in figure 7 (a), the flow tendency to
lateral sides of this vortex pair seems to be slighter than those other cases due to confinement from
near neighbouring vortex pair in condition of short dimple-to-dimple spacing.

The conditions of the contour of Nusselt number on the surface of test section were illustrated in
figure 8. High distribution of Nusselt number can be seen at the downstream portion of dimple cavity
due to the attachment flow especially near the rear rim of dimples that was previously described in
figure 6. But low Nusselt number distribution can be found at the upstream portion of dimple cavity
because of stationary circulation flow. Increasing or decreasing Nusselt number on the dimple surface
can be caused because of both attachment and circulation flow effects that was also studied in
literature [5,7]. For all case, the Nusselt number distribution on the surface of smooth wall along
downstream of every dimple have one peak for X/D=0.5 case and other X/D cases have two peak
regions that was caused by the longitudinal vortex pair effect resulting in stronger circulating over the
heat transfer surface of test section of wind tunnel. Simultaneously, these double peak regions area can
be found along the downstream of smooth surface and this effect can remove more heat.
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Figure 7. Streamline above the surface of Figure 8. Nusselt number distributions on
dimples. the surface (Rer=20,000).

Span wise direction of Nusselt number distributions was shown in figure 9. Commonly for all S/D
cases, high Nusselt number can be observed at just downstream of dimple cavity and became lower
and lower along the direction of downstream. For every S/D cases, the single peak regions at every
X/D=0.5 were extremely high and area of these peak regions were large because of the effect of
attachment flow and double peak regions that was caused by the effect of neighbouring vortex pair
between spacing
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Figure 9. Nusselt number distributions in span wise direction (Dash
straight line is the centre of dimple)

The average Nusselt number comparison for smooth and dimple surface was shown in figure 10.
Every dimple surface’s average value was higher than smooth surface. The trend of average Nusselt
number became lower and lower when the spacing became larger and larger but the values were the
same for S/D=1.25 and 1.5 cases.
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4. Conclusions

In this work, investigation of flow structure and heat transfer over the test section of wind tunnel for
conical case that was adjusted by different spacings (1.125<S/D<2). The conclusions of this work are
described as follow.

1. High Nusselt number regions were observed at the attachment flow region. At this place, the
Nusselt number value are over 140.

2. Along the downstream of dimple, the pattern of Nusselt number was found into two peak
regions (X/D>0.5) for all S/D case.

3. The flow for S/D=1.125 case, the circulation flow was seemed to be stronger than other cases.
This effect can enhance heat transfer.

4. For the Nusselt number average, the dimple surfaces were higher than smooth surface.
Moreover, the trend of average Nusselt number was lower when the spacing was increased.
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Abstract. An experimental analysing was presented for heat transfer on the surface of teardrop
protrusions with inline arrangement. The air flow was passed through perpendicularly over the
single row of 5 protrusions in the rectangular wind tunnel. The protrusion height from the bottom
of wind tunnel was H/D=0.2 and the spacing of teardrop protrusion-to-protrusion was adjusted
by different four spacing cases such as S/D=1.125, 1.25, 1.5 and 2. The spacing can affect heat
transfer enhancement and flow characteristics. Therefore, the spacing which was analysed in this
study was considered four cases because of experimental limitations. The temperature
distributions of surface with protrusions was detected by using the thermochromic liquid crystal
sheet (TLC) at Re4=20,000. Image processing was used to evaluate distribution of Nusselt
number. The result shows that the highest average Nusselt number was found in S/D=1.125D
case.

1. Introduction

Using passive heat transfer enhancement techniques such as ribs, pin fins, vortex generators, dimpled
surface and surface with arrays of protrusions can enhance heat transfer in internal flow passages and
can increase secondary flow and turbulence level for mixing enhancement. These kinds of flow can
remove heat away from surfaces. Therefore, this passive heat transfer enhancement techniques were
used in many industrial applications such as cooling of turbine airfoil, combustion chamber, electronics
cooling devices and heat exchangers. Dimples and protrusions are an attractive method for internal
cooling due to significant enhancement of turbulence level, enhancement in heat transfer convection
with minimal pressure drop penalties and form multiple vortex pair that enhance Nusselt number
distributions.

Acharya et al. [1] investigated experimentally and numerically on heat transfer and flow structure
for four types of dimple shape (square, triangular, circular, and teardrop) in square internal passage.
They showed that the teardrop dimple was the highest heat/mass transfer among four dimples by
comparing with both experimental and numerical results. And then, the triangular dimple was the lowest
heat transfer enhancement. For flow pattern, the circular and teardrop geometries have single vortex roll
that was formed in wake region, but square dimple was not noticeable vortex roll.

The flow and heat transfer characteristics of teardrop dimple and protrusion with different was
investigated and compared with hemispherical dimple/protrusion by Xie et al. [1]. They showed the
thermal performance for teardrop dimple and protrusion is higher than hemispherical dimple and



protrusion for lower Reynold number and thermal performance increase gradually as the centre moves
downwards for the teardrop dimple/protrusion.

Rao et al. [4] investigated an experiment and a numerical study on the heat transfer of turbulent flow
in channel with staggered arrangement of spherical and teardrop dimples 11 rows. They found that heat
transfer performance of teardrop dimple has distinctively higher than spherical dimple. Although many
researchers have studied about heat transfer and flow characteristics with many dimple and protrusion
row on the surface, it is still difficult to describe the phenomenon of flow and heat transfer
characteristics. Therefore, the heat transfer characteristics with single protrusion row over the surface
was researched in this work.

Many literatures have been analysed about the different arrangement of dimpled and protruded
surface. The aim of this work was to investigate experimentally the effect of spacing between protrusion-
to-protrusion on heat transfer characteristics with single row of 5 protrusions. The spacing can affect the
different value of heat transfer enhancement. The different four spacings in this work was considered
according to experimental dimensions. Methodology

1.1. Model of protrusion

Figure 1 shows the model of 5 protrusions which was made by plastic was installed on the internal
surface of rectangular wind tunnel. The air with fully developed flow passes through the tear drop
protrusions. The origin of Cartesian coordinate system was existed at the centre of middle dimple such
as X-axis is the along the flow direction of wind tunnel, Y-axis is the rectangular wind tunnel height
direction and Z-axis is normal direction to the flow.

The details of protrusion are shown in Figure 2. The spherical with the radius of r =0.725D and the
projected diameter on the surface was D=26.4mm. The height of protrusion from the surface was 0.2D.
The spacing between protrusion-to-protrusion was varied with S/D= 1.125, 1.25, 1.5 and 2. The
Reynolds number of mainstream air inside the wind tunnel based on the hydraulic diameter of wind
tunnel was fixed at Rex=20,000 at the middle of wind tunnel by using Pitot tube to measure velocity.
The position of Pitot tube is shown in Figure 4.

Wind tunnel

Y
T
Flow eardrgp Flow
/ protrusion

~ » X
! ‘

Evaluated area of
heat transfer

(a) Side view (b) Top View

Figure 1. The model of investigation for teardrop test section.



Figure 2. The detail of protrusion.

1.2. Wind tunnel

Figure 3 shows the details of wind tunnel in the experiment. The rectangular wind tunnel was designed
with three parts: the upstream of test section (1700 mm) that was sufficient distance to get fully
developed flow, test section (280mm) where was formed teardrop protrusions and downstream of test
section where the air was leaved out from the wind tunnel. The wind tunnel height was 26.4 mm (1D).

Fully developed flow Wind tunnel

Qutlet

A row of teardrop protrusion

Figure 3. Experimental 3D model of wind tunnel with single teardrop protrusions row.

1.3. Measurement of heat transfer

The test section for heat transfer measurement is shown in Figure 4. The heat transfer surface was made
of a stainless- steel foil with thickness of 0.03mm. The foil was attached with Thermochromics liquid
crystals sheet (TLCs) on side of the wall. The stainless-steel foil was stretched between a couple of
copper bus bars. The heat transfer surface was heated by DC power source that can supply current
through the copper bus bars. A digital camera was used to capture color on the TLC sheet. Images of
color pattern on the TLC sheet were converted from a red, green, and blue (RGB) system to a hue,
saturation, and intensity ( HSI) system. The air was introduced through the inlet chamber, flow
straightener, two layer of mesh plates, test section and chamber outlet by using blower.
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Figure 4. Schematic diagram of experimental set-up.

Electrical energy dissipated in the stainless-steel foil can be calculated from:
Qinput =1 2. R (1)

where, | is the supplied electrical current and R is the electrical resistance of stainless-steel foil.
The air temperature was controlled at 27.6:C and flow on the surface of stainless-steel sheet. The
local heat transfer coefficient (h) can be calculated from this equation:

_ anput Qlosses
A(TLC _Ta) (2)

where, Q,..is the rate of heat generation in the stainless plate, Q, ... is the rate of heat loss for

input
convection and radiation, A is the area of heat transfer surface, T.c is the temperature of the colour that
appears on the TLC plate and T, is air temperature.

The local Nusselt number can be calculated from
Nu = 1P ©)
k
where, D,, is hydraulic diameter and K is thermal conductivity of air.

3. Results and discussion

The contours and the values of Nusselt number on the surface of only three protrusions are described in
Figure 5. The solid part area of teardrop was not considered about Nusselt number. At the front edge of
teardrop protrusion, low Nusselt number value was found because flow impingement became strong and
this effect caused the small circulation flow region. In addition, the flow separation mainly occurred
over the downstream half of teardrop protrusion surface, and the turbulent wake reattached immediately
downstream of the protrusion. Low-pressure region formed in the rear section of protrusion and, the
flow coming from two side was entered this region. Therefore, the distribution of high Nusselt number
could be seen at the downstream of protrusions due to the flow separation and attachment flow
immediately appeared along the downstream of protrusion [1, 5] and, this effect can enhance heat
transfer augmentation. Increasing or decreasing Nusselt number on the dimple and protrusion surface
can be occurred because of both attachment and circulation flow effects that was studied in literature [1,
4]. Furthermore, the results were found that the Nusselt number increased when the protrusion-to-



protrusion spacing decreased because of the flow tendency to the lateral side of longitudinal vortex pair
between protrusion-to-protrusion spacing and turbulent flow.

-1 0 1 XD 2 3 4

Figure 5. Contour of Nusselt number on teardrop protrusion surface.

The distribution of Nusselt number value along the protrusion centre Z/D=0 for all S/D cases was
shown in Figure 6. The area of the range (-0.5<X/D<0.75) was not considered because it is a protruded
teardrop It was found that the maximum peak trend occurred at S/D=1.125 and this trend was higher
than the other S/D cases.
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Figure 6. Nusselt number distributions in stream wise direction (X/D) (Z/D=0, Rex=20,000)

Figure 7, 8 and 9 show the span wise Nusselt number distributions at the downstream portion of
protrusion (X/D=1, 2 and 3) for all S/D cases. Three peak regions of maximum Nusselt number cases
were occurred behind the protruded teardrop smooth surface. When the distance of downstream behind
the protrusion became large, the value of Nusselt number became small because the reattachment flow
was occurred at the position just behind the teardrop protrusion. It can be clearly seen that S/D=1.125
case was the highest Nusselt number distribution trend for every X/D cases among different spacing
cases. In Figure 7, the value of Nusselt number values for S=1.125D case was 75<Nu<100. However,
the value of Nusselt number values for S=2D case was 60<Nu<95. In addition, the smallest spacing case
(5=1.125D) can develop more turbulent wake and longitudinal flow compared to other cases.
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Figure 7. Nusselt number distributions in span wise direction (Z/D)) (X/D=1, Rex=20,000).
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Figure 8. Nusselt number distributions in stream wise direction (Z/D) (X/D=2, Rex=20,000).
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Figure 9. Nusselt number distributions in stream wise direction (Z/D) (X/D=3, Rex=20,000).

The average stream wise Nusselt number distribution of respective spacing case is illustrated in
Figure 10. The trend of Nusselt number distribution for S=1.125D case was the highest Nusselt number.
The position of 0.5<X/D<2 was the highest Nusselt number region because the reattachment flow was
happened in this area. Moreover, Figure 11 shows the average Nusselt number over protrusion surface
of evaluated heat transfer area. The value of average Nusselt number was 71.287 for S=1.125D case
while the other cases were 70.467, 68.617 and 66.837. The result can be shown that the trend of average
value become low when S/D become large. The highest average Nusselt number case was the narrowest
spacing case (S/D=1.125D).
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Figure 11. Average Nusselt number of teardrop protruded test section surface (Rex=20,000).

4. Conclusions

In this work, the investigation of heat transfer characteristics over the teardrop protrusion surface of
evaluated heat transfer area in wind tunnel was studied. The spacing was varied with different spacing
at S/D=1.125, 1.25, 1.5 and 2. The summery of this work are as follow:

1. The value of average Nusselt number was increase when protrusion-to-protrusion spacing was
decrease. The highest Nusselt number average value can be found in S/D=1.125 case.

2. The heat transfer was low at just front of the protrusion due to circulation flow appeared in this
region. The region for the downstream of protrusion, the heat transfer was high because of
reattachment flow.

3. The high Nusselt number can be observed at the position for the downstream of protrusion
(X/D=1) because of reattachment flow after that Nusselt number values became low along the
downstream of smooth surface.
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List of changes

Review 1. It was unclear why the author limited the range of S/D to between 1.125 to 2.
The spacing can affect heat transfer enhancement and flow characteristics. Therefore, the spacing
which was analyzed in my work was considered four cases because of experimental limitations.

Review 2. Please add the number in equation. 2. More explain the Fig. 7-9 and Fig.10-11.
| have added number of equation. | explained more about Fig.7-9 and Fig. 10-11.
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