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ชืÉอวทิยานิพนธ์ การทาํนายดชันีความแหง้แลง้ในจงัหวดันครราชสีมาโดยใช้ Deep Belief Network

กบั Restricted Boltzmann Machines

ผูเ้ขียน นางสาวสุรีลกัษณ์ มะ

สาขาวชิา คณิตศาสตร์ประยกุต์

ปีการศึกษา 2560

บทคดัยอ่

ในการศึกษาครัÊ งนีÊ เราจะตรวจสอบความสามารถของ deep learning ในการทาํนายโดยใชข้อ้มูล

ชุดเวลา ซึÉงเป็นขอ้มูลนํÊาฝนจากจงัหวดันครราชสีมา ภาคตะวนัออกเฉียงเหนือของประเทศไทยขอ้มูล

นํÊาฝนจะถูกแปลงเป็นดชันีของ standardized precipitation index (SPI) ในหลายๆ ช่วงเวลา ขอ้มูล SPI

ในแต่ละช่วงเวลาจะถูกเรียนรู้โดย deep belief network ซึÉงเป็นโครงสร้างทีÉประกอบจากหลายๆ re-

stricted Boltzmannmachines ประกอบดว้ยกนั ตวัแปรแต่ละตวัในวธีิการนีÊจะถูกเรียนรู้ผา่นกระบวนการ

Ś ขัÊนตอน กระบวนการแรกคือ unsupervised path ซึÉงเรียนรู้โดยใชอ้ลักอริทึม minimized contrastive

divergent กระบวนการทีÉสองคือ supervised path ซึÉงเรียนรู้โดยใชอ้ลักอริทึม backpropagation จาก

การเปรียบเทียบความแม่นยาํของค่าดชันี SPI ของแต่ละช่วงเวลา พบวา่ SPI ทีÉช่วงเวลา řŚ เดือน มีค่า

ความแม่นยาํสูงกวา่ช่วงเวลา ś, Ş และ š เดือน
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ABSTRACT

In this study, we examine the ability of deep learning in making predic-

tion from time series data. First, the precipitation data from Nakhon Ratchasima

province in northeastern region of Thailand is converted into various types of

standardized precipitation index (SPI). Next, for each SPI, a deep belief net-

work, consisting of restricted Boltzmann machines, learns its parameters from

data through unsupervised path using minimized contrastive divergent algorithm

follow by supervised path using backpropagation algorithm. Last, the prediction

accuracies from all types of the standardized precipitation index are evaluated

and compared. The result shows that the long term SPI of 12 months makes more

accurate prediction than the short term SPI of 3, 6, and 9 months.
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Chapter1

INTRODUCTION

1.1 Overview

The attention of the international community and other organizations have

been drawn to the problem of environmental degradation and its effect on water

sources. A major cause of such degradation is drought and its devastating ef-

fects have attracted the attention of various government and Non-Governmental

Organizations (NGOs). Unfortunately, drought is also known to be the least un-

derstood natural disaster (Chen et al., 2012). Droughts continue to occur and

cause serious problems to human survival and food production in most parts of

the world. For instance, in 2009 and 2010, severe droughts raked through South-

west China, causing a lot of economic damage and resulting in significant number

of deaths and has consistently been ranked as the first in all natural disasters the

populous Asian country (Chen et al., 2012).

For the past half a decade, severe droughts have caused so much damage to

agricultural activities in most provinces in Thailand. These droughts were mainly

caused by the drop in annual rainfall below a 30-year average (SCB EIC, 2016).

Looking at the devastating effects of droughts in Thailand, it is important to
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model and predict drought condition in order to know when and where droughts

are likely to occur. Drought prediction has become an important research that

focuses on planning and managing water resources. Such predicting methods are

based on past rainfall data.

Generally, data on rainfall are considered as time series data. Time series

refer to the measurement of a phenomenon over a specific period. Time Series

data is the set of observations that are obtained from such measurements. An-

alyzing time series data involves different processes which includes modeling a

particular phenomenon, describing the behavior of the data, and evaluating fac-

tors that may be associated with the behavior (Hrasko et al., 2015). Time series

forecasting can be described as the process of making future predictions based on

time series data. For over half a century, a lot of studies have been conducted on

time series forecasting. These studies have resulted in the development of models

that are similar to Autoregressive Moving Average (ARMA), Autoregressive In-

tegrated Moving Average (ARIMA) (Box et al., 1976). For the most part of the

20th Century, times series forecasting was mainly modeled as linear problems by

means of regression method, however, since the late 1990s, machine learning has

gained popularity in nonlinear estimations. These methods which include artificial

neural network have been proven to have much predictive power and applicable

to various real-life problems (Hrasko et al., 2015).

Artificial neural network has extensive adaptability and the ability to learn

non-linear problems (Shen et al., 2013). There are two interesting features in

artificial neural network. Firstly, artificial neural network has general nonlinear
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function which can approximate any continuous function with desired accuracy

(George, 1989). Therefore, artificial neural network is capable for solving several

complex problems. Secondly, artificial neural network is a nonparametric data-

driven model and it does not need the restrictive assumption on the process of the

data generation. As indicated by Crone and Nikolopoulos (2007), there are more

than 5000 publications on artificial neural network as a tool for forecasting. The

predictor for these applications can be listed as multi-layer perceptron (MLP),

recurrent neural networks (RNN), radial basis function networks (RBFN), and

several other varieties.

Even though several applications of artificial neural network are successful

in forecasting .There are still lacking when artificial neural network apply to real

problems. The first problem is how to decide the structure of artificial neural net-

work. The second problem is how to decide the initial weight values in artificial

neural network. The third problem is how to find suitable learning rate during

the learning. For these problems, different researchers have provided solutions as

follows.

Hecht (1992) proved the first problem that multilayer-layer perceptron with

one hidden layer and enough neurons in hidden layers can realize approximation of

nonlinear function. For the second problem, the suitable initial weight values may

accelerate the learning convergence. Therefore, Hinton et al. (2006) proposed a

deep belief network (DBN) which the learning consists of two paths. The first path

is unsupervised path in which the learning of the model does not need feedback

(no label). The weight values obtained from in this path will be used to initialize
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the weight values in the second path, which is the supervised path. For the third

problem, high learning rate might destabilize the learning convergence. Too small

learning rate might be very time consuming to converge. Solving of these three

problems in artificial neural network by difference researchers, we decided to use

deep belief network to predict drought.

Deep belief networks (DBNs) are probabilistic generative models that are

made from restricted Boltzmann machines (RBMs) stacking together. This deep

belief network has shown success in its application to many real time problems

(Hinton et al., 2006). Since there is no mature method to determine network

structure of deep belief network, therefore, experimental method will be used in

this research. Only one best network structure with the smallest root mean square

error will be used to predict drought in this research.

1.2 Objectives

The objectives in this research are

1. To study the scientific measurement of drought condition by exploring

how drought indices (indicators of drought) are calculated from data.

2. To implement a deep belief network with restricted Boltzmann machine

using the precipitation time series data from Nakhon Ratchasima province, Thai-

land.

3. To apply the implemented deep belief network with restricted Boltzmann

machine to make predictions about the drought condition in Nakhon Ratchasima

province, Thailand.
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Chapter2

LITERATURE REVIEW

The importance of forecasting drought has resulted in lots of studies in

different settings to explain this natural phenomenon.

In 1997, Lohani and Loganathan conducted a study with the main objective

to predict early warning signs of droughts and to propose drought management

decisions. They used nonhomogeneous Markov chains with the Palmer Drought

Severity Index (PDSI) to describe and characterize drought behavior. With ap-

plications to data from the climatic division of Virginia, they were able to propose

an early-warning system that gives first hand update on possible droughts and

their severity. The system that they proposed was a form of a decision tree and

was effective in drought management (Lohani et al., 1997).

Han et al. (2010) used remote sensing data to forecast drought in Guanzhong,

China. The study used ARIMA models with Vegetation Temperature Condition

Index (VTCI) series to predict future possibilities of drought. The results from

the study indicated that the ARIMA model had better forecasting accuracy with

regards to the remote sensing data. There are many models in ARIMA. In this

study, they concluded that ARIMA(1,0,0) or AR(1) process developed for VTCI
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can be used to forecast drought in Guanzhong Plains. However, they failed to

apply ARIMA models to VTCI series using real time series data set (Han et al.,

2010).

In 2012, Chen et al. proposed a deep belief network and back propaga-

tion (BP) for short-term drought index prediction. They used data from four

hydrologic stations in China to calculate different time scales of standardized pre-

cipitation index (SPI) and predicted drought by using time series data of monthly

rainfall from January 1958 to 2006. The stations were Begbu, Fuyang, Xuchang,

and Zhumadian in Huaihe River Basin in the eastern part of China. Their results

showed that the deep belief network has a higher accuracy in drought prediction

based on SPI than back propagation and the error result showed that deep belief

network model was suitable to predict drought in the Huaige River Basin (Chen

et al., 2012).
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Chapter3

METHODOLOGY

This chapter represents the methodology that would be used in this re-

search. The aim in this research is to predict drought by using a deep belief

network with restricted Boltzmann machines. The data used to predict drought

is monthly rainfall data, which is a kind of time series data. Therefore, Section

3.1 will be explained time series data. To predict drought, we have to transform

rainfall data into drought index. There are several methods to transform, where

some important methods are explained in Section 3.2. The main factor that causes

drought is the lack of rain, hence, this study will focus on standardized precip-

itation index (SPI), the detail of this method will be explained in Section 3.3.

Since we want to formulate the energy function of restricted Boltzmann machine

and continuous restricted Boltzmann machine using the energy function of Hop-

field network, the detail about Hopfield network will be explained in Section 3.4.

Section 3.5 is explained the detail about restricted Boltzmann machine including

of minimizing contrastive divergence algorithm for restricted Boltzmann machine.

Section 3.6 is explained the detail about continuous restricted Boltzmann machine

including of minimizing contrastive divergence algorithm for continuous restricted
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Boltzmann machine, which this method will be used in this research. Section 3.7

is explained the detail of feedforward neuron network with back-propagation al-

gorithm. Deep belief network is stacked of restricted Boltzmann machine, which

the detail is explained in Section 3.8. Learning a deep belief network consists of

two paths, unsupervised path and supervised path, which the detail is explained

in Section 3.9.

3.1 Time series data

Time series analysis has become increasingly important in various fields of

research, such as business, economics, engineering, and medicine. The analysis of

time series data involves the study in the following aspects (Kumar, 2008):

i Past behavior:

Time series analysis can be used to study the past behavior of businesses. It

reveals the trends in sales and helps in business investments.

ii Forecasting:

Forecasting is defined as the process for predicting future outcomes based on

past events. By using time series, the history of these events can help to decide

what happens in the future.

iii Evaluating achievements:

Time series is a tool that can help to evaluate achievements. If there is a good

performance in a business, a time series analysis can show an upward trend in

profits. A downward trend will prompt management of the business to make
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new policies.

Time series analysis is an attempt to model phenomenon and to describe the

behavior of many real problem domains such as financial markets, signal process-

ing, weather forecasting and others. The problems in these domains are generally

complex and cannot be easily solved. They require advanced techniques.

As explained by Yaffee et al. (2000), rainfall data can be considered a time

series data. Time series data is a set of observations that is recorded over a specific

time. Time series data may be measured continuously or discretely. Daily closing

stock price is an example of time series data that is measured continuously. Most

data used in social sciences are measured at regular intervals. These kinds of times

series data are discrete (Yaffee et al., 2000). Time series data occur in variety of

fields such as in business, economics, and engineering. Economists always observe

daily closing stock prices, weekly interest rates, monthly price, and yearly earn-

ings. In engineering, sound, electric signals, and rainfall are always observed.

Box et al. (1976) explained that time series data contains one or more of

the following properties: trends, seasonality, regular, and irregular patterns (Box

aet al., 1976).

Trend

A trend exists when the data have a long-term increase or decrease (Box

et al., 1976). Graph in Figure 3.1 shows the data of Quarterly Gross Domestic

Product (Australia’s National Statistical Agency) which x-axis represents year and

y-axis represents million cent. There is an obvious upward trend over time in this

graph.
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Figure 3.1: The Quarterly Gross Domestic Product which x-axis represents year
and y-axis represents million cent

Source: Hyndman et al. (2018)

Seasonal patterns

A seasonal pattern exists when the data are influenced by seasonal fac-

tors such as the quarter of the year, month, or day and these seasons are always

fixed (Box et al., 1976). For instance, the monthly retails sales in New South

Wales (NSW) Retail Department Stores (Australia’s national statistical agency)

is shown in Figure 3.2. In this figure, x-axis represents year and y-axis represents

million cent. Seasonality in this graph has consistent direction and approximately

the same magnitude every year. The graph depicts a strongly seasonal series and

there is a large seasonal increase over time as the trend in the figure.

Cyclic patterns

A time series data is said to depict cyclic patterns when it exhibits a rises

and falls that are not fixed to a particular period (Box et al., 1976). An exam-

ple of data that shows cyclic behavior is the monthly housing sales (Australia’s

national statistical agency) shown in Figure 3.3. The x-axis represents year and

y-axis represents million cent. This graph has consistent and approximately the
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Figure 3.2: The Monthly Retail Sales in New South Wales Retail Department
Stores which x-axis represents year and y-axis represents million cent

Source: Hyndman et al. (2018)

same magnitude with not fixed particular period.

Figure 3.3: The Monthly Value of Building Approvals, Australian Capital Terri-
tory (ACT) which x-axis represents year and y-axis represents million cent

Source: Hyndman et al. (2018)

Irregular patterns

An irregular pattern is defined as the remains of a trend, seasonal patterns,

and cyclic patterns (Box et al., 1976). The plot of monthly value for building ap-

provals, Australian Capital l Territory (ACT) in Figure 3.4 shows high irregular

patterns. The x-axis represents year and y-axis represents million cent
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Figure 3.4: The Monthly Value of Building Approvals, Australian Capital Terri-
tory (ACT) which x-axis represents year and y-axis represents million cent

Source: Hyndman et al. (2018)

3.2 Drought index

After verifying the properties of the rainfall data, drought indices would be

calculated from assimilating drought indicators into a single numerical value. A

drought index gives an in-depth information for drought analysis and this is more

usable in comparison with actual data from indicators (Hayes, 2006). The main

factor that causes drought in Thailand is inadequate rain, hence, this study will

focus on rainfall. There are many methods to transform raw data into drought

index, some of these methods will be explained as follows:

3.2.1 Effective Drought Index

Effective drought index (EDI) was discovered by Byun and Wilhite in 1999,

which uses daily precipitation data to compute. The goodness of EDI is required

for a single input, it is daily precipitation data. Therefore, EDI is possible to

compute for any location (Byun et al., 1999). The weakness is recording of daily

precipitation data may not be possible. Therefore, it will have a problem to
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compute EDI (Byun et al., 1999).

The index value of EDI ranges from less than -2 to greater than 2, (-2,

2). The index of less than or equal to -2 stands for extremely dry. The index of

greater than or equal to 2 stands for extremely wet (Byun et al., 1999). Byun

and Wilhite have been defined criteria to evaluate drought index which is shown

in Table 3.1.
Table 3.1: Degree of violence of effective drought index (EDI)

EDI value Degree of violence
2+ Extremely wet conditions

0.99 to -0.99 Near normal conditions
-1 to -1.49 Moderate drought

-1.5 to -1.99 Severe drought
-2.00 and less Extremely dry conditions

3.2.2 Generalized Monsoon Index

Generalized monsoon index (GMI) was developed by Achutuni et al. in

1982. It is agro-meteorological index. GMI was calculated by using monthly

rainfall during the monsoon season (Achutuni et al., 1982). This method is used

by the meteorological department of Thailand to evaluate the effect of rainfall on

agriculture. The goodness of this method is to see the effect on growing plant

due to lack of moisture. The weakness is GMI index considers the rainfall data

during the monsoon season. Therefore, it is not possible to evaluate other effect

on agriculture.

Table 3.2 shows the degree of violence of generalized monsoon index which

the possible values can be 0 to 100. The index of too small value means that

drought impact and possible crop failure. The index of too high value means that
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possible excessive moisture. GMIpct in this table is generalized monsoon index in

percentile rank.

Table 3.2: Degree of violence of generalized monsoon index in percentile rank
(GMIpct)

GMIpct value Degree of violence
100 to 91 Possible excessive moisture
90 to 61 Possible above normal crop
60 to 41 Normal crop
40 to 31 Moderate drought impact on crop
30 to 21 Drought impact on crop
20 to 0 Severe drought impact and possible crop failure

3.2.3 Moisture Available Index

In 1975, George determined moisture index on moisture available index

(MAI) that was useful for plants. This index can be calculated from the ratio

obtained from dependable rainfall and evapotranspiration of the probability of

monthly rainfall at 75%. The goodness of this index is consideration of moisture

which influences crop production. Therefore, this index is useful for the place that

lack of moisture. There are many factors of crop production. So the weakness of

this index is consideration only moisture. To evaluate the moisture Hargreaves

has determined the index of degree of violence which is shown in Table 3.3. If

the index value is close to 0, then this means that plants lacks water however if

the index value is greater than 1.33, then the plants get too much water (George,

1975).
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Table 3.3: Degree of violence of moisture available index (MAI)

MAI value Degree of violence
1.34+ Plants get too much water

1.33 to 1.01 Plants get enough water
0.68 to 1.00 Plants lack little water
0.34 to 0.67 Plants lack moderate water
0.00 to 0.33 Plants lack severe water

3.2.4 Standardized Precipitation Index

The standardized precipitation index (SPI) was developed by Mckee et al.

(1993) of the Colorado Climate Center. It is a tool developed to monitor drought

and it is based on the probability of precipitation at any given time, using his-

torical rainfall (Mckee et al., 1993). The goodness of SPI required only one input

monthly rainfall, it is not too difficult to compute. Furthermore, SPI can be com-

puted for difference time-scale, it provides for short and long term of drought.

The weakness, there are many factors cause drought. But SPI can account for

only the lack of rain.

Table 3.4 defines the violence of drought by Mckee et al. The index value

ranges from less than -2 to greater than 2, (-2, 2). The index value of less than or

equal to -2 means that extremely dry. The index value of greater than or equal

to 2 means that extremely wet.

The standardized precipitation index has been used by many drought plan-

ners such as research centers, universities and meteorological and hydrological

centers across the globe to monitor drought and early warning signals (Svoboda

and Wood, 2012). In Nakhon Ratchasima province, the main factor that caused

drought is lack of rain, hence, this study will focus on standardized precipitation
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index. This method will be explained in Section 3.3.

Table 3.4: Degree of violence of standardized precipitation index (SPI)

SPI value Degree of violence
2.0+ Extremely wet

1.5 to 1.99 Very wet
1.0 to 1.49 Moderately wet

-0.99 to 0.99 Near normal
-1.0 to -1.49 Moderately dry
-1.5 to -1.99 Severely dry
-2 and less Extremely dry

3.3 Standardized Precipitation Index

The standardized precipitation index (SPI) was developed by Mckee et al.

(1993) of the Colorado Climate Center. It is a tool developed to monitor drought

and based on the probability of precipitation at any given time, using historical

rainfall (Mckee et al., 1993).

The gamma probability distribution has proven very effective in providing

a good fit for precipitation distribution (Thom, 1958), thus, it is used to estimate

the standardized precipitation index. The gamma distribution is based on the

gamma function given by

Γ(γ) =

∫ ∞

0

xγ−1e−xdx,

where

γ is a shape parameter which γ > 0,
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General gamma distribution

Suppose that a random variable x has gamma distribution with the shape

parameter γ and scale parameter β, x has probability density function f which is

given

f(x) =
1

βγΓ(γ)
xγ−1e

−x
β ,

where β is scale parameter and β > 0.

Computation of SPI involves fitting a gamma probability density function.

Therefore, parameters β and γ must be estimated. Maximum likelihood is a tool

for estimating the parameters given observations. This method can be applied to

a great variety of statistical problems by finding the parameter values that max-

imize the likelihood of observations. Therefore, maximum likelihood method will

be used to optimally estimate β and γ.

Maximum likelihood is a method of estimating parameters given observa-

tions. This method attempts to find the parameters that maximize the likelihood

function. The likelihood function is a function of parameters given observations,

which the likelihood function is equivalent to the probability of observations given

parameters. Firstly, the likelihood function is constructed by

L(γ, β|x) = p(x|γ, β).
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Suppose that we have n independent observations, they are x1, x2, x3, ..., xn.

Thus the likelihood function is given by

L(γ, β|x) =
n∏

i=1

f(xi|γ, β)

=

(
1

βγΓ(γ)
xγ−1
1 e

−x1
β

)(
1

βγΓ(γ)
xγ−1
2 e

−x2
β

)
· · ·
(

1

βγΓ(γ)
xγ−1
n e

−xn
β

)
=

(
1

βγΓ(γ)

)n

(x1x2 · · ·xn)γ−1e−
(x1+x2+...+xn)

β .

Computing the likelihood function might be difficult. Since logarithm is

monotonic function (Qi, 2007) which can be achieved its maximum value at the

same point as the function itself, therefore, the log-likelihood function ln (L(γ, β|x))

will be used.

ln (L(γ, β|x)) = ln

((
1

βγΓ(γ)

)n

(x1x2 · · ·xn)γ−1e−
(x1+x2+...+xn)

β

)
= −nln (βγΓ(γ)) + (γ − 1)ln(x1x2 · · ·xn)−

1

β
(x1 + x2 + ...+ xn)

= −n (γlnβ + lnΓ(γ)) + (γ − 1)ln(x1x2 · · ·xn)−
1

β
(x1 + x2 + ...+ xn).

To find the maximum of a function, the derivative where the slope of tan-

gent line is zero is required. Assume that the first derivative of the log-likelihood

function is zero at β = β̂ and γ = γ̂, thus we get,

∂

∂β

(
lnL(γ̂, β̂|x)

)
=

−nγ̂
β̂

+
1

β̂2

n∑
i=1

xi = 0, (3.1)

∂

∂γ

(
lnL(γ̂, β̂|x)

)
= −nlnβ̂ − n

∂

∂γ
lnΓ(γ̂) +

n∑
i=1

lnxi = 0. (3.2)
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From Equation (3.1),

−nγ̂
β̂

+
1

β̂2

n∑
i=1

xi = 0

1

β̂2

n∑
i=1

xi =
nγ̂

β̂
.

Hence, we can compute β̂ as Equation (3.3)

β̂ =
x̄

γ̂
, (3.3)

where

x̄ =

n∑
i=1

xi

n
.

Multiplying Equation (3.2) by 1
n
, we obtain,

−lnβ̂ − ∂

∂γ̂
lnΓ(γ̂) +

1

n

n∑
i=1

lnxi = 0. (3.4)

The first order derivative of the logarithm of the gamma function
(

∂
∂γ̂
lnΓ(γ̂)

)
is referred to digamma function ψ(γ̂). In a simplified form, Equation (3.4) becomes

−lnβ̂ − ψ(γ̂) +
1

n

n∑
i=1

lnxi = 0. (3.5)
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To get lnβ̂ as in Equation (3.5), we will take natural logarithm in Equation

(3.3)

lnβ̂ = ln
x̄

γ̂

= lnx̄− lnγ̂.

Substituting lnβ̂ into Equation (3.5), we obtain,

− (lnx̄− lnγ̂)− ψ(γ̂) +
1

n

n∑
i=1

lnxi = 0

lnγ̂ − ψ(γ̂) = lnx̄− 1

n

n∑
i=1

lnxi.

(3.6)

The digamma function ψ(γ) in Equation (3.6) can be calculated by Equa-

tion (3.7) (Thom, 1958)

ψ(γ) = ln(γ)− 1

2γ
− 1

12γ2
+

1

120γ4
− 1

252γ6
+

1

240γ8
− 5

660γ8
+ ... (3.7)

or we can write in full asymptotic series as

ψ(γ) = ln(γ)− 1

2γ
+

m∑
n=1

B2n

2n
γ−2n +Rm,

where

Bk are the Bernoulli numbers which is called a sequence of rational numbers

denoted as B0 = 1, B1 = ±1
2
, B2 = −1

6
, B3 = 0, B4 = − 1

30
, etc. For all odd values

of n other than 1, Bn = 0,

Rm is the remainder after m terms.
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For γ > 1 we can write |Rm| as (Thom, 1958)

|Rm| < − Bm+3

(2m+ 2)γ2m+2
.

In approximating the digamma function, Thom (1958) decided to use m =

1, |Rm| < 0.0083, and cancel the remainder function in approximating the digamma

function. The approximation of digamma function becomes

ψ(γ) ≈ lnγ − 1

2γ
− 1

12γ2
. (3.8)

Substituting digamma function as Equation (3.8) into Equation (3.6), we

obtain,

lnγ̂ −
[
lnγ̂ − 1

2γ̂
− 1

12γ̂2

]
= lnx̄− 1

n

n∑
i=1

lnxi

1

2γ̂
+

1

12γ̂2
= lnx̄− 1

n

n∑
i=1

lnxi.

(3.9)

Multiply Equation (3.9) by 12γ̂2, we get

12

(
lnx̄− 1

n

n∑
i=1

lnxi

)
γ̂2 − 6γ̂ − 1 = 0. (3.10)

Simplifying Equation (3.10) by defining A = lnx̄− 1
n

n∑
i=1

lnxi, then we have

12Aγ̂2 − 6γ̂ − 1 = 0. (3.11)
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Solving quadratic Equation (3.11), we find two values for γ̂, one is less than

0 and another is greater than 0. At the beginning, our condition for parameter

gamma is γ > 0. So only when γ > 0 we can get the approximation of gamma as

Equation (3.12)

γ̂ =
1 +

√
1 + 4A

3

4A
, (3.12)

where

A = ln(x̄)− 1
n

n∑
i=1

lnxi,

n is number of precipitation observations,

xi are the sample of rainfall data,

x̄ is the mean of precipitation series.

The second derivative test maximum value for gamma distribution

There are two unknown parameters to compute the gamma distribution.

They are shape parameter γ and scale parameter β. To test the gamma distribu-

tion achieve the maximum value at γ = γ̂ and β = β̂, the second derivative will

be consider.

Let γ = γ̂ and β = β̂ be critical points of gamma distribution

D =
[
fββ(γ̂, β̂)

] [
fγγ(γ̂, β̂)

]
−
[
fβγ(γ̂, β̂)

]2
,
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where

fββ(γ̂, β̂) =
nγ̂

β̂2
−

2
n∑

i=1

β̂3
,

fγγ(γ̂, β̂) =
−n
Γ(γ̂)

,

fβγ(γ̂, β̂) =
−n
β̂

,

n is the number of rainfall data.

If D > 0 and fββ(γ̂, β̂) < 0, then f(γ̂, β̂) has relative maximum at γ = γ̂

and β = β̂.

If D > 0 and fββ(γ̂, β̂) > 0, then f(γ̂, β̂) has relative minimum at γ = γ̂

and β = β̂.

Once the parameters γ and β have been estimated by using Equations

(3.12) and (3.3), respectively. They are used to solve the cumulative probability

density function of gamma distribution.

Cumulative probability density function of gamma distribution

The Cumulative Density Function (CDF) of gamma distribution is de-

scribed by ∫ x

0

f(x)dx =
1

β̂ γ̂Γ(γ̂)

∫ x

0

xγ̂−1e
−x

β̂ dx. (3.13)
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Letting t = x

β̂
and

∫ x

0
f(x)dx = F (x), then Equation (3.13) becomes

F (x) =
1

β̂ γ̂Γ(γ̂)

∫ x

0

(tβ̂)γ̂−1e−tβ̂dt

=
1

β̂ γ̂Γ(γ̂)

∫ x

0

tγ̂−1β̂ γ̂−1e−tβ̂dt

=
β̂ γ̂

β̂ γ̂Γ(γ̂)

∫ x

0

tγ̂−1e−tdt

=
1

Γ(γ̂)

∫ x

0

tγ̂−1e−tdt.

(3.14)

As Equation (3.14),
∫ x

0
tγ̂−1e−tdt is incomplete gamma function τ(γ, t)

which can be computed as τ(γ, t) = (γ − 1)!e−t
γ−1∑
k=0

tk

k!
. The gamma distribution

is defined for x > 0, however, the actual precipitation can be 0. Thorn (1996)

proposed the new cumulative probability of precipitation which accounts for zero.

This function is given by

H(x) = u+ (1− u)F (x),

where

m is number of zero in the precipitation,

n is total number of precipitation series,

u = m
n

is probability of zero precipitation.

The cumulative probability of precipitation H(x) is then transformed to a

standard normal random variable z which has a mean of zero and variance of one.

The random variable z is known as the SPI. An approximate value for SPI has
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been given by Abramowitz and Stegun (1965).

SPI =


−k, 0 < H(x) ≤ 0.5

+k, 0.5 < H(x) < 1,

where the values of k is introduced by Abramowitz and Stegun in 1965. The

equation can be computed as

k = p− c0 + c1p+ c2p
2

1 + d1p+ d2p2 + d3p3
,

constants c and d and variable p can be calculated as follows:

p =


√
ln
(

1
H2(x)

)
, 0 < H(x) ≤ 0.5√

ln
(

1
(1−H(x))2

)
, 0.5 < H(x) < 1,

c0 = 2.515517, c1 = 0.802853, c2 = 0.010328,

d1 = 1.432788, d2 = 0.189269, d3 = 0.001308.

McKee et al. (1993) have defined drought intensities resulting from SPI

value and also defined criteria for a drought event shown in Table 3.4.
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3.4 Hopfield Networks

Hopfield network was introduced by Hopfield (1984). This network is bidi-

rectional and fully connected with no-self connection (Hopfield, 1984). The struc-

ture is shown in Figure 3.5.

Figure 3.5: Hopfield network with p neurons and fully connected with no-self
connection

Hopfield network in Figure 3.5 consists of p neurons, they areN1, N2, N3, ..., Np.

This network is fully connected with symmetric weights tij which connected from

neuron Ni to neuron Nj, 1 6 i 6 p and 1 6 j 6 p. Furthermore, there is no-self

connections (tii = 0). Each neuron in Hopfield network consists of two values,

input value xj and output value uj (see Figure 3.6).

Figure 3.6: Single neuron Nj in Hopfield network with input value xj and output
value uj

The input value xj is calculated from sum of internal inputs which comes

from other neurons and external input bj, called bias value. The relationship be-

tween input value xj and output value uj is determined by a non-linear activation
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function g(xj) of Nj. This activation function is a function used artificial neural

network that introduce non-linear relationships between inputs and outputs of the

artificial neural network. The input value xj and output value uj can be calculated

from Equations (3.15) and (3.16), respectively,

xj =

p∑
i=1,i ̸=j

tijui + bj, (3.15)

uj = g(xj),

g(xj) =
1

1 + e−xj
(3.16)

where

xj is the input value of Nj,

tij is the weight value from Ni to Nj,

bj is the bias value of Nj,

uj is the output value of Nj,

ui is the output value of Ni,

g(xj) is the activation function of Nj.

There are two types of Hopfield networks. The first is binary Hopfield

network which uses for binary data. The second is continuous Hopfield network

which uses for continuous data. Any Hopfield network has one scalar value which

associates with the state of the network, namely energy. The energy function of
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binary Hopfield network is

E(u) = −1

2

p∑
i=1
i ̸=j

p∑
j=1

uitijuj −
p∑

j=1

bjuj, (3.17)

where

ui is the output value of Ni,

bj is the bias value of Nj.

The energy function of continuous Hopfield network is

E(u) = −1

2

p∑
i=1
i ̸=j

p∑
j=1

uitijuj −
p∑

j=1

bjuj +

p∑
j=1

1

Rj

∫ uj

0

g−1(u)du, (3.18)

where

Rj is the transmembrane resistance of Nj, Rj > 0,

g−1(u) is the inverse of activation function of Nj.

3.5 Restricted Boltzmann machines

Restricted Boltzmann machine (RBM) was introduced by Smolensky and

Paul (1986). The network is made up of two layers. The first layer is visible layer

which consists of visible neurons. The second layer is hidden layer which consists

of hidden neurons. The structure of restricted Boltzmann machine is a complete

bipartite graph in which all visible neurons are connected to all hidden neurons.

Figure 3.7 represents architecture of a restricted Boltzmann machine, the

network consists of two layers. The first layer is visible layer which consists of m
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Figure 3.7: Restricted Boltzmann machine with visible neuron Vm and hidden
neuron Hn

neurons, they are V1, V2, V3, ..., Vm, each neuron has external input, namely bias

value which is denoted by ai, 1 6 i 6 m. The second layer is hidden layer which

consists of n neurons, they are H1, H2, H3, ..., Hn, each neuron has external input,

namely bias value bj, 1 6 j 6 n.

3.5.1 Single neuron of restricted Boltzmann machine

The structure of restricted Boltzmann machine consists of two layers, vis-

ible and hidden layers. A neuron in visible layer is called visible neuron and a

neuron in hidden layer is called hidden neuron. Each visible neuron and hidden

neuron associates with two values, which are input and output values.

Figure 3.8: Single visible neuron Vj with input value cj and output value vj and
single hidden neuron Hj with input value dj and output value hj
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Figure 3.8 shows the input and output values of a visible neuron, Vj and

the input and output values of a hidden neuron, Hj. Two values associated with

visible neuron Vj are input value cj and output value vj. Two values associated

with hidden neuron Hj, they are input value dj and output value hj.

The input value cj for visible neuron Vj can be calculated as

cj =
n∑

i=1

hiwij + aj, (3.19)

where

hi is the output value of Hi,

wij is the weight value from Hi to Vj,

aj is the bias value of Vj.

Use the input value cj as Equation (3.19) to calculate the output value vj

of visible neuron Vj as

vj =
1

1 + e−cj
.

The input value dj for the hidden neuron Hj can be calculated as

dj =
m∑
i=1

viwij + bj, (3.20)

where

vi is the output value of Vi,

wij is the weight value from Vi to Hj,

bj is the bias value of Hj.
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Use the input value dj as Equation (3.20) to calculate the output value hj

for hidden neuron Hj as

hj =
1

1 + e−dj
.

Restricted Boltzmann machine is an energy-based model. Therefore, the

energy function of restricted Boltzmann machine will be explained in Section 3.5.2.

3.5.2 Energy function of restricted Boltzmann machine

Restricted Boltzmann machine is an energy-based model with associated

scalar value, namely energy. Since the restricted Boltzmann machine involves

with the variables of v and h, it is appropriate to use join configuration of those

variables. Let v ∈ Rm and h ∈ Rn where v = (v1, v2, v3, ..., vm) and h =

(h1, h2, h3, ..., hn). Therefore, the energy function of restricted Boltzmann ma-

chine can be computed as

E(v, h) = −
m∑
i=1

n∑
j=1

viwijhj −
m∑
i=1

aivi −
n∑

j=1

bjhj, (3.21)

where

vi is the output value of Vi,

wij is the weight values from Vi to Hj,

hj is the output value of Hj,

ai is the bias value of Vi,

bj is the bias value of Hj.
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The details of mathematical derivation of the energy function of restricted

Boltzmann machine may be seen in appendix A.

3.5.3 Minimizing contrastive divergence for RBM

Restricted Boltzmann machine can be trained using the minimizing con-

trastive divergence (MCD) algorithm (Hinton, 2002). To train restricted Boltz-

mann machine, there are three unknown parameters, weight wij, bias ai, and

bias bj. Therefore, the training rule for any parameter θ of restricted Boltzmann

machine by using the minimizing contrastive divergence is

∆θ =

⟨
− ∂

∂θ
E(v, h)

⟩
0

−
⟨
− ∂

∂θ
E(v, h)

⟩
∞
,

where

⟨.⟩0 is the expectation value over the training data with visible state clamped,

⟨.⟩∞ is the expectation value over the training data in free-running equilib-

rium.

The intuitive motivation to use minimizing contrastive divergence is using

one-step Gibbs sampling to estimate the expectation value of − ∂
∂θi
E(v, h) over the

training data in free-running equilibrium (
⟨
− ∂

∂θi
E(v, h)

⟩
∞

). Thus, the training

rule for any parameter θ becomes

∆θ̂ =

⟨
− ∂

∂θ
E(v, h)

⟩
0

−
⟨
− ∂

∂θ
E(v, h)

⟩
1

,
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where

⟨.⟩1 is the expectation value over the training data after one-step Gibbs

sampling.

As mentioned before, there are three unknown parameters which will be

updated while training restricted Boltzmann machine. They are weight wij, bias

ai, and bias bj. The training rule of weight parameter wij is

∆ŵij =

⟨
− ∂

∂wij

E(v, h)

⟩
0

−
⟨
− ∂

∂wij

E(v, h)

⟩
1

. (3.22)

To get the training rule for weight parameter, we have to find the negative

derivative of energy function with respect to wij. We obtain

− ∂

∂wij

E(v, h) =
∂

∂wij

m∑
k=1

n∑
l=1

vkwklhl +
∂

∂wij

m∑
k=1

akvk +
∂

∂wij

n∑
l=1

blhl.

The derivative of ∂
∂wij

m∑
k=1

n∑
l=1

vkwklhl is zero for all terms in the summation

except k = i and l = j, hence,

− ∂

∂wij

E(v, h) =
∂

∂wij

viwijhj

= vihj.

(3.23)

Let

v
(0)
i be the output value of Vi at the initial state,

v
(1)
i be the output value of Vi at the one-step Gibb sampling state,

h
(0)
j be the output value of Hj at the initial state,
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h
(1)
j be the output value of Hj at the one-step Gibb sampling state.

Substituting Equation (3.23) in Equation (3.22), we obtain the training

rule of weight parameter wij as

∆ŵij =
⟨
v
(0)
i h

(0)
j

⟩
−
⟨
v
(1)
i h

(1)
j

⟩
.

For the bias ai, the training rule is

∆âi =

⟨
− ∂

∂ai
E(v, h)

⟩
0

−
⟨
− ∂

∂ai
E(v, h)

⟩
1

. (3.24)

From Equation (3.24), the negative derivative of energy function with re-

spect to the parameter ai is

− ∂

∂ai
E(v, h) =

∂

∂ai

m∑
k=1

n∑
l=1

vkwklhl +
∂

∂ai

m∑
k=1

akvk +
∂

∂ai

n∑
l=1

blhl

The derivative of ∂
∂ai

m∑
k=1

akvk is zero for all terms in the summation except

k = i, hence,

− ∂

∂ai
E(v, h) =

∂

∂ai
aivi

= vi.

(3.25)

Substituting Equation (3.25) in Equation (3.24), we obtain the training

rule for bias parameter ai as

∆âi =
⟨
v
(0)
i

⟩
−
⟨
v
(1)
i

⟩
.
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The training rule for bias bj is

∆b̂j =

⟨
− ∂

∂bj
E(v, h)

⟩
0

−
⟨
− ∂

∂bj
E(v, h)

⟩
1

. (3.26)

The negative derivative of energy function with respect to the parameter

bj is

− ∂

∂bj
E(v, h) =

∂

∂bj

m∑
k=1

n∑
l=1

vkwklhl +
∂

∂bj

m∑
k=1

akvk +
∂

∂bj

n∑
l=1

blhl.

The derivative of ∂
∂bj

n∑
l=1

blhl is zero for all terms in the summation except

l = j, hence,

− ∂

∂bj
E(v, h) =

∂

∂bj
bjhj

= hj.

(3.27)

Substituting Equation (3.27) in Equation (3.26), we obtain the training

rule for bias parameter bj as

∆b̂j =
⟨
h
(0)
i

⟩
−
⟨
h
(1)
i

⟩
.

In practice, when using the MCD algorithm to train these three parame-

ters, weight wij, bias ai, and bias bj are incrementally updated to achieve the final

value. The training of each parameter will be updated by assigning a learning rate

to each of training rule. The learning rate is a real number between 0 to 1, this

value can be defined by users.



36

The training rule of each parameter combining with the learning rate estab-

lish the update rule for each parameter in the minimizing contrastive divergence

algorithm as follows:

∆ŵij = ηw

⟨
v
(0)
i h

(0)
j

⟩
−
⟨
v
(1)
i h

(1)
j

⟩
,

∆âi = ηa

⟨
v
(0)
i

⟩
−
⟨
v
(1)
i

⟩
,

∆b̂j = ηb

⟨
h
(0)
j

⟩
−
⟨
h
(1)
j

⟩
.

where

ηw is the learning rate for all weight parameters,

ηa is the learning rate for all bias value in Vi,

ηb is the learning rate for all bias value in Hj.

To compute the expectation value of each parameter in restricted Boltz-

mann machine, we can compute by using Gibbs sampling (see appendix C).

3.6 Continuous restricted Boltzmann machines

A continuous restricted Boltzmann machine (CRBM) was introduced by

Chen and Murray (2003). It is a form of restricted Boltzmann machine with no

bias value, which can model continuous data. The structure of continuous re-

stricted Boltzmann machine is shown in Figure 3.9.

Figure 3.9 is the architecture of continuous restricted Boltzmann machine

which consists of two layers. The first layer is visible layer consists of m neu-

rons, they are V1, V2, V3, ..., Vm. The second layer is hidden layer. They are
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Figure 3.9: Continuous restricted Boltzmann machine with visible neuron Vj and
hidden neuron Hj

H1, H2, H3, ..., Hn, it is n neurons.

3.6.1 Single neuron of continuous restricted Boltzmann machine

The structure of continuous restricted Boltzmann machine consists of two

layers, they are visible layer and hidden layer. A neuron in visible layer is called

visible neuron and a neuron in hidden layer is called hidden neuron. Each visible

neuron and hidden neuron associates with two values which are input value and

output value.

Figure 3.10: Single visible neuron Vj with input value rj and output value vj and
single hidden neuron Hj with input value sj and output value hj

Figure 3.10 shows the input and output values of a visible neuron, Vj and

the input and output values of hidden neuron, Hj. The visible neuron Vj associates

with two values, input value rj and output value vj. The hidden neuron Hj

associates with two values, they are input value sj and output value hj.

To model continuous data, Chen et al. (2003) modified a binary unit into
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continuous stochastic unit by adding zero-mean Gaussian with unit variance into

the input of sigmoid unit. Therefore, the input value rj of visible neuron Vj can

be computed as

rj =
n∑

i=1

wijhi + σNj(0, 1), (3.28)

where

wij is the weight value from Hi to Vj,

hi is the output value of Hi,

σ is the constant,

Nj(0, 1) is the Gaussian random variable with mean zero and unit variance

associated with Vj.

The constant σ can be set by users which the number is real number.

Commonly, this number is located between 0− 1.

The input value rj as Equation (3.28) will be used to compute the output

value vj of visible neuron Vj as

vj = φ(rj),

with

φ(rj) = θL + (θH − θL)
1

1 + e−κjrj
, (3.29)

where

vj is the output value of Vj,

rj is the input value of Vj,
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φ(rj) is the activation function of Vj,

θH , θL are constant upper and lower asymptotes,

κj is noise-control parameter of Vj, κj > 0.

There are two values for hidden neuron Hj, which are input value sj and

output value hj. The input value sj can be computed as

sj =
m∑
i=1

wijvi + σNj(0, 1), (3.30)

where

wij is the weight value from Vi to Hj,

vi is the output value of Vi,

σ is the constant,

Nj(0, 1) is the Gaussian random variable with mean zero and unit variance

associated with Hj.

Use Equation (3.30) to compute the output value hj of hidden neuron Hj.

Follow Equation (3.31)

hj = ψ(sj),

with

ψ(sj) = θL + (θH − θL)
1

1 + e−λjsj
, (3.31)

where

hj is the output value of Hj,

sj is the input value of Hj,
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ψ(sj) is the activation function of Hj,

θH , θL are constant upper and lower asymptotes,

λj is noise-control parameter of Hj, λj > 0.

3.6.2 Energy function of continuous restricted Boltzmann machine

The energy function of continuous restricted Boltzmann machine can be

computed as Equation (3.32)

E(v, h) = −
m∑
i=1

n∑
j=1

viwijhj +
m∑
i=1

1

κi

∫ vi

0

φ−1(vi)dv

+
n∑

j=1

1

λj

∫ hj

0

ψ−1(hj)dh,

(3.32)

where

vi is the output value of Vi,

wij is the weight value from Vi to Hj,

hj is the output value of Hj,

κi is the value of noise control parameter of Vi, κi > 0,

φ−1(v) is the inverse of the activation function of Vi,

λj is the value of noise control parameter of Hj, λj > 0,

ψ−1(h) is the inverse of the activation function of Hj.

The mathematical derivation to get the energy function of continuous re-

stricted Boltzmann machine is shown in appendix B.
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3.6.3 Minimizing contrastive divergence for CRBM

To train continuous restricted Boltzmann machine, there are three un-

known parameters, weight parameter wij, noise control parameter κi of visible

neuron Vi, and noise control parameter λj of hidden neuron Hj.

A continuous restricted Boltzmann machine is actual a form of symmetrical

restricted diffusion network. Therefore, the training rule of each parameter in dif-

fusion network is appropriated to train continuous restricted Boltzmann machine.

The training rule for any parameter θ in diffusion network is shown in Equation

(3.33)

∆θ = ⟨Sθ⟩0 − ⟨Sθ⟩∞ , (3.33)

where

⟨.⟩0 is the expectation value over the training data with visible state clamped,

⟨.⟩∞ is the expectation value over the training data in free-running equilib-

rium,

Sθ is system covariances.

The intuitive motivation to use minimizing contrastive divergence is using

one step Gibbs sampling to estimate the expectation value of Sθ over the train-

ing data in free-running equilibrium, ⟨Sθ⟩∞. Therefore, the training rule for any

parameter θ of diffusion network using one step Gibbs sampling is

∆θ̂ = ⟨Sθ⟩0 − ⟨Sθ⟩1 ,
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where ⟨Sθ⟩1 represents the expectation value of Sθ over the training data after

one-step Gibb sampling.

For a diffusion network, the system covariances Sθ is negative derivative

of the energy function with respect to θ. Therefore, the training rule for any

parameter θ of continuous restricted Boltzmann machine becomes

∆θ̂ =

⟨
− ∂

∂θ
E(v, h)

⟩
0

−
⟨
− ∂

∂θ
E(v, h)

⟩
1

. (3.34)

As mentioned before, training continuous restricted Boltzmann machine

involves estimating three unknown parameters, they are wij, κi, and λj. From

Equation (3.34), we can derive the training rule for weight parameter wij as

∆ŵij =

⟨
− ∂

∂wij

E(v, h)

⟩
0

−
⟨
− ∂

∂wij

E(v, h)

⟩
1

. (3.35)

To get the training rule of weight parameter, we have to differentiate the

negative of energy function with respect to wij,

− ∂

∂wij

E(v, h) =
∂

∂wij

m∑
k=1

n∑
l=1

vkwklhl

− ∂

∂wij

m∑
k=1

1

κk

∫ vk

0

φ−1(vk)dv

− ∂

∂wij

n∑
l=1

1

λl

∫ hl

0

ψ−1(hl)dh.
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The derivatives ∂
∂wij

m∑
k=1

n∑
l=1

vkwklhl are zero for all terms in the summation

except k = i and l = j, hence

− ∂

∂wij

E(v, h) =
∂

∂wij

viwijhj = vihj. (3.36)

Substituting Equation (3.36) in Equation (3.35). Then, we obtain the

training rule for weight parameter wij as

∆ŵij = ⟨vihj⟩0 − ⟨vihj⟩1 .

Let

v
(0)
i be the output value of Vi at the initial state,

v
(1)
i be the output value of Vi at the one-step Gibb sampling state,

h
(0)
j be the output value of Hj at the initial state,

h
(1)
j be the output value of Hj at the one-step Gibb sampling state.

Use new notations as defined above, the training rule for weight parameter

wij becomes

∆ŵij =
⟨
v
(0)
i h

(0)
j

⟩
−
⟨
v
(1)
i h

(1)
j

⟩
.

Using the same process of the training rule for wight parameter to get the

training rule of κi for visible neuron Vi.

∆κ̂i =

⟨
− ∂

∂κi
E(v, h)

⟩
0

−
⟨
− ∂

∂κi
E(v, h)

⟩
1

. (3.37)
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The negative derivative of energy function with respect to κi is

− ∂

∂κi
E(v, h) =

∂

∂κi

m∑
k=1

n∑
l=1

vkwklhl

− ∂

∂κi

m∑
k=1

1

κk

∫ vk

0

φ−1(vk)dv

− ∂

∂κi

n∑
l=1

1

λl

∫ hl

0

ψ−1(hl)dh.

The derivative ∂
∂κi

m∑
k=1

1
κk

∫ vk
0
φ−1(vk)dv is zero for all terms in the summa-

tion except when k = i. Therefore, the derivative becomes

− ∂

∂κi
E(v, h) =

(
−
∫ vi

0

φ−1(vi)dv

)(
∂

∂κi

1

κi

)
=

1

κ2i

∫ vi

0

φ−1(vi)dv.

(3.38)

Substituting Equation (3.38) in Equation (3.37), we obtain the training

rule of noise control parameter κi as

∆κ̂i =

⟨
1

κ2i

∫ vi

0

φ−1(vi)dv

⟩
0

−
⟨

1

κ2i

∫ vi

0

φ−1(vi)dv

⟩
1

. (3.39)

By the property of expectation value, if X is random variable and c is con-

stant, we have expectation value E(cX) = cE(X). When consider the expectation

value over the training data as Equation (3.39), vi is a random variable and 1
κi

2 is
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a constant. Therefore, we obtain

∆κ̂i =
1

κ2i

⟨∫ vi

0

φ−1(vi)dv

⟩
0

− 1

κ2i

⟨∫ vi

0

φ−1(vi)dv

⟩
1

=
1

κ2i

[⟨∫ vi

0

φ−1(vi)dv

⟩
0

−
⟨∫ vi

0

φ−1(vi)dv

⟩
1

]
=

1

κ2i

[⟨∫ v
(0)
i

0

φ−1(vi)dv

⟩
−

⟨∫ v
(1)
i

0

φ−1(vi)dv

⟩] (3.40)

Using the property of expectation value, if X and Y are random variables,

we have expectation value E(X + Y ) = E(X) + E(Y ). As Equation (3.40), we

obtain

∆κ̂i =
1

κ2i

[⟨∫ v
(0)
i

0

φ−1(vi)dv −
∫ v

(1)
i

0

φ−1(vi)dv

⟩]

=
1

κ2i

[⟨∫ v
(0)
i

v
(1)
i

φ−1(vi)dv

⟩]
.

(3.41)

The integral term in Equation (3.41) has been approximated by Chen et

al. (2003) as shown in Equation (3.42)

∫ v
(0)
i

v
(1)
i

φ−1(vi)dv ≈ (v
(0)
i + v

(1)
i )(v

(0)
i − v

(1)
i ). (3.42)

Substituting Equation (3.42) in Equation (3.41), we obtain the training

rule for noise control parameter κi as

∆κ̂i =
1

κ2i

(⟨(
v
(0)
i

)2⟩
−
⟨(

v
(1)
i

)2⟩)
.
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Similarly for the noise control parameter λj of hidden neuron Hj, we obtain

the training rule as

∆λ̂j =
1

λ2j

(⟨(
h
(0)
j

)2⟩
−
⟨(

h
(1)
j

)2⟩)
.

The MCD algorithm uses the training rules in combination with learning

rates to incrementally update the parameter values to achieve the final values.

Therefore, we obtain the update rule for weight wij, noise control parameter κi

for visible neuron Vi, and noise control parameter λj for hidden neuron Hj, which

are shown in Equations (3.43), (3.44), and (3.45), respectively,

∆ŵij = ηw

(⟨
v
(0)
i h

(0)
j

⟩
−
⟨
v
(1)
i h

(1)
j

⟩)
, (3.43)

∆κ̂i =
ηκ
κ2i

(⟨
v
(0)
i

2
⟩
−
⟨
v
(1)
i

2
⟩)

, (3.44)

∆λ̂j =
ηλ
λ2j

(⟨
h
(0)
j

2
⟩
−
⟨
h
(1)
j

2
⟩)

, (3.45)

where

ηw is the learning rate for all weight parameters,

ηκ is the learning rate for all noise control parameters of visible neurons Vj,

ηλ is the learning rate for all noise control parameters of hidden neurons

Hj.



47

3.6.4 The MCD algorithm for continuous restricted Boltzmann ma-

chine

The algorithm uses to update the parameters of continuous restricted Boltz-

mann machine using the minimizing contrastive divergence is shown in Algorithm

1.

The Algorithm 1 is illustrated the process to compute the update rule of

wij, κi, and λj in continuous restricted Boltzmann machine. This algorithm works

under the process of one-step Gibbs sampling. The input data of the first one-

step Gibbs sampling are x1, x2, x3, ..., xm, where m is the number of input nodes.

Using the algorithm 1 to learn this data set, the parameters of wij, κi, and λj

will be update. Next, the input data of the second one-step Gibbs sampling are

x2, x3, ..., xm+1. Using the Algorithm 1 to learn this data set, those parameters

will be updated again. This process will repeat until the algorithm learns all data.
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Algorithm 1 MCD algorithm for continuous restricted Boltzmann machine
1: procedure MCD(x1, x2, x3, ..., xm) ◃ m is the number of input nodes
2: for i=1 to m do
3: v

(0)
i = xi

4: end for
5: for i=1 to m do
6: for j=1 to n do
7: randomize wij ◃ Initialize wij with random values
8: end for
9: end for

10: for t=0 to K do ◃ One-step Gibbs sampling
11: for j=1 to n do ◃ Positive phase
12: s

(t)
j =

∑m
i=1wijvi + σNj(0, 1)

13: h
(t)
j = θL + (θH − θL)

1

1+e−λjsj

14: end for
15: if t ̸= K then
16: for j=1 to n do ◃ Negative phase
17: r

(t+1)
j =

∑n
i=1wijhi + σNj(0, 1)

18: v
(t+1)
j = θL + (θH − θL)

1

1+e−κjrj

19: end for
20: end if
21: end for
22: for i=1 to m do
23: for j=1 to n do
24: wposij = v

(0)
i h

(0)
j

25: wnegij = v
(K)
i h

(K)
j

26: ∆ŵij = ηw

(
wposij − wnegij

)
27: wijnew

= wijold −∆ŵij ◃ Update wij

28: end for
29: end for
30: for i=1 to m do
31: kappaposi = (v

(o)
i )

2

32: kappanegi = (v
(K)
i )

2

33: ∆κ̂i =
ηκ
κ2
i

(
kappaposi − kappanegi

)
34: κinew = κiold −∆κ̂i ◃ Update κi
35: end for
36: for j=1 to n do
37: lambdaposj = (h

(o)
j )

2

38: lambdanegj = (h
(K)
j )

2

39: ∆λ̂j =
ηλ
λ2
j

(
lambdaposj − lambdanegj

)
40: λjnew = λjold −∆λ̂j ◃ Update λj
41: end for
42: end procedure
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3.7 Feedforward neural network

Feedforward neuron network (FFNN) is an artificial neural network (ANN)

in which the structure consists of three of types layers, they are input layer, hidden

layer, and output layer.

Figure 3.11: Feedforward neuron network with L layers

Figure 3.11 shows the structure of feedforward neuron network for regres-

sion problem. The first layer is input layer, denoted l = 1, which consists of input

nodes. The last layer is output layer, denoted l = L, which consists of one output

neuron. The hidden layers are all layers between input and output layers, denoted

2 6 l 6 L− 1. There may be many hidden layers and each hidden layer consists

of hidden neurons. The number of hidden neurons in each hidden layer can be

different number. There is an weight value attached to any edge in this graph,

namely wl
ij and wL

i . When wl
ij denoted the weight value of the edge from neuron

i at layer l − 1 to neuron j at layer l (2 6 l 6 L− 1) and wL
i denoted the weight

value of the edge from neuron i at layer L − 1 to output neuron. Also, let M l

denotes the number of input nodes/neurons in layer l, 1 6 l 6 L.
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Figure 3.12: Single hidden neuron H l
j and single output neuron OL in FFNN

Figure 3.12 shows the input and output values of hidden neuron j at layer

l, H l
j, and the input and output values of output neuron at layer L, OL.

The hidden neuron H l
j associates with two values, input value ylj and output

value olj in which

ylj is the input value of hidden neuron j at layer l,

olj is the output value of hidden neuron j at layer l.

The output neuron OL associates with two values, input value yL and

output value oL in which

yL is the input value of output neuron at layer L,

oL is the output value of output neuron at layer L.

3.7.1 Back-propagation neural network algorithm

Back-propagation neural network algorithm is a common method to train

neuron networks. In this research, this algorithm will be used to train feedfor-

ward neuron networks. Back-propagation neuron network algorithm looks for the

weights values which minimize error using gradient descent method. It involves

minimizing the error as shown in Equation (3.46)
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EL(t, o) =
1

2
(t− oL)2, (3.46)

where

EL is the error function in layer L,

t is the target value,

oL is the output value of output neuron in layer L.

To learn the weight values by using the gradient descent method, the deriva-

tive of error function will be considered. Therefore, the training rule of weight

parameter (wl
ij) from neuron i at layer l − 1 to neuron j at layer l, ∆wl

ij, is

∆wl
ij = −∂E

L

∂wl
ij

, (3.47)

In order to get the appropriated weight values using back-propagation neu-

ron network algorithm, two steps are required. The first step is forward propaga-

tion and the second step is backward propagation.

Step 1: forward propagation

Feedforward neuron network consists of three of type layers, input layer,

hidden layer, and output layer. Forward propagation is the processes of getting

the value of each input node in input layer (l = 1) from data. Furthermore, this

process is also computing the input and output values of each hidden neuron in

hidden layer 2 6 l 6 L− 1 in order and output neuron in output layer at layer L.

The process to obtain these values is described as follows:
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The value of input node in input layer at layer l = 1

At the beginning we will work on the input node in input layer at layer

l = 1. The input value of each input node in input layer can be taken directly

from the data and the output value of the input node is simply the input value.

Let xi denote the input or output values of input node i at layer l = 1.

After getting the output value of each input node in input layer l = 1, we

will compute the input and output values for each hidden neuron in hidden layer

l = 2 to l = L− 1 in order.

Computing the input and output values of hidden neuron H l
j when

2 6 l 6 L− 1

At the beginning of this process, we will compute the input value y2j and

output value o2j of hidden neuron H2
j . The equations to compute are shown as

follows.

y2j =
M1∑
i=1

wij
2xl−1

i + b2j , (3.48)

o2j =
1

1 + e(−y2j )
. (3.49)

where

y2j is the input value of hidden neuron H2
j ,

w2
ij is the weight value from input node i in input layer to hidden neuron

H2
j ,

xi is the output value of input node i in input layer,
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M1 is the number of input node in input layer,

b2j is the bias value of H2
j ,

o2j is the output value of H2
j .

Next, we will compute the input value ylj and output value olj for each

hidden neuron H l
j in layer l = 3. Then, we will move to compute input value ylj

and output value olj for each hidden neuron H l
j in layer l = 4. We will compute

the input value ylj and output value olj for each hidden neurons H l
j until layer

l = L− 1. The equations to compute these values are shown as follows:

ylj =
M l−1∑
i=1

wij
lol−1

i + blj, (3.50)

olj =
1

1 + e(−ylj)
(3.51)

where

ylj is the input value of hidden neuron H l
j (1 6 j 6M l, 3 6 l 6 L− 1),

wl
ij is the weight value from hidden neuron H l−1

i to hidden neuron H l
j

(1 6 i 6M l−1, 1 6 j 6M l, 3 6 l 6 L− 1),

ol−1
i is the output value of hidden neuron H l−1

i (1 6 i 6 M l−1, 3 6 l 6

L− 1) ,

M l−1 is the number of hidden neuron in layer l − 1 (3 6 l 6 L− 1),

blj is the bias value of hidden neuron H l
j (1 6 j 6M l, 3 6 l 6 L− 1),

olj is the output value of hidden neuron H l
j (1 6 j 6M l, 3 6 l 6 L− 1).
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After computing the input and output values of all hidden neurons in each

hidden layer, we will compute the input and output values of the output neuron

in the next step.

Computing the input and output values of the output neuron OL

at layer L

The last process of Step 1 is computing the input value yL and output value

oL of output neuron OL at layer L which can be computed as

yL =
ML−1∑
i=1

wL
i o

L−1
i + bL, (3.52)

oL = yL (3.53)

where

yL is the input value of the output neuron at layer L,

wL
i is the weight value from hidden neuron HL−1

i to output neuron O (1 6

i 6ML−1),

oL−1
i is the output value of hidden neuron HL−1

i (1 6 i 6ML−1),

ML−1 is the number of hidden neuron in layer L− 1,

bL is the bias value of the output neuron in layer L,

oL is the output value of the output neuron at layer L.

Step 2: backward propagation

Backward propagation is the process of adjusting the weight values by

minimizing the error function. There are two cases for updating the weight values.
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The first case is updating the weight values for output neuron OL (wL
i , 1 6 i 6

ML−1) and the second case is updating the weight values for hidden neuron H l
j

(wl
ij, 2 6 l 6 L− 1, 1 6 i 6M l−1, 1 6 j 6M l).

Figure 3.13: Updating the weight values for output neuron at layer L

Case 1: Updating the weight values for output neuron at layer L

To update the weight value from hidden neuron i at layer L− 1 to output

neuron at layer L, wL
i (1 6 i 6 ML−1), as shown in Figure 3.13, we have to

find the training rule as Equation (3.47). In this equation, we have to find the

derivative of the error function with respect to wL
i , (∂E

L

∂wL
i
). In the network, the

weight value wL
i can influence the output of the network only through the input

value yL of output neuron O. Therefore, the derivative of the error function with

respect to weight parameter using the chain rule can be written as

∂EL

∂wL
i

=

[
∂EL

∂yL

][
∂yL

∂wL
i

]
=

[
∂EL

∂yL

][
∂

∂wL
i

(ML−1∑
k=1

wL
k o

L−1
k + bL

)]
.
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The derivatives ∂
∂wi

(
ML−1∑
k=1

wL
k o

L−1
k + bL

)
is zero for all terms in the sum-

mation except for when k = i, hence,

∂EL

∂wL
i

=

[
∂EL

∂yL

][
∂

∂wL
i

(
wL

i o
L−1
i + bL

)]
=
∂EL

∂yL
oL−1
i .

(3.54)

From Equation (3.54), the remaining is to compute the derivative of the

error with respect to yL, (∂E
L

∂yL
). In this case, yL in network can influence the

output of the network only through the output value oL. Using the chain rule, we

can write as

∂EL

∂yL
=

[
∂EL

∂oL

][
∂oL

∂yL

]
=

[
∂

∂oL
1

2
(t− oL)2

][
∂

∂yL
yL
]

= −(t− oL).

(3.55)

Substituting Equation (3.55) into Equation (3.54), we obtain

∂EL

∂wL
i

= −(t− oL)oL−1
i . (3.56)

Substituting Equation (3.56) in Equation (3.47), we obtain the training

rule of weight parameter wL
i as

∆wL
i = (t− oL)oL−1

i .
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To get the update rule of the weight parameter wL
i , the training rule of wL

i

will be combined with the learning rate. Therefore, we obtain the update rule of

weight parameter wL
i as

∆wL
i = ηw

[
(t− oL)oL−1

i

]
,

where

ηw is the learning rate of weight parameter,

t is the target value,

oL is the output value of output neuron,

oL−1
i is the output value of hidden neuron i at layer L− 1 (1 6 i ≤ML−1).

Case 2: Updating the weight values for hidden neuron

To get the training rule for the weight parameters of hidden neurons, we

have to find the derivative of the error function with respect to wl
ij, ( ∂El

∂wl
ij
). There

are two cases for updating the weight values of hidden neurons: case 2a is updating

the weight values of hidden neurons in layer 3 6 l 6 L−1 and case 2b is updating

the weight values of hidden neurons in layer l = 2.

Case 2a: Updating the weight values of hidden neurons in layer

3 6 l 6 L− 1

In the network, the weight value wl
ij can influence the output of the network

only through the input value ylj (see Figure 3.14). Therefore, the derivative of the

error function with respect to weight parameter using the chain rule can be written
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Figure 3.14: Updating the weight values for hidden neuron at layer 3 6 l ≤ L− 1

as

∂EL

∂wl
ij

=

[
∂EL

∂ylj

][
∂ylj
∂wl

ij

]

=

[
∂EL

∂ylj

][
∂

∂wl
ij

(M l−1∑
k=1

wl
kjo

l−1
k + blj

)]
.

The derivatives ∂

∂wl
ij

(
m∑
k=1

wl
kjo

l−1
k + blj

)
is zero for all terms in the summa-

tion except for when k = i, hence,

∂EL

∂wl
ij

=

[
∂EL

∂ylj

][
∂

∂wl
ij

(
wl

ijo
l−1
i + blj

)]
=
∂EL

∂ylj
ol−1
i .

(3.57)

From Equation (3.57), the remaining is to compute the derivative of the

error with respect to ylj, (∂E
L

∂ylj
). The input value ylj can influence the output of the

network through the input value yl+1
p , (1 6 p 6 M l+1) of hidden neuron in layer
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l + 1. Therefore, we can write in term of the chain rule as

∂EL

∂ylj
=

M l+1∑
p=1

[
∂EL

∂yl+1
p

][
∂yl+1

p

∂ylj

]
.

The input value ylj can influence the output of the network only through

the output value olj. Using the chain rule, we can write

∂EL

∂ylj
=

M l+1∑
p=1

[
∂EL

∂yl+1
p

][
∂yl+1

p

∂olj

∂olj
∂ylj

]

=
M l+1∑
p=1

[
∂EL

∂yl+1
p

][
∂

∂olj

( M l∑
q=1

wl+1
qp o

l
q + bl+1

p

)
∂

∂ylj

(
1

1 + e(−ylj)

)]
.

We denote ∂EL

∂yl+1
p

= −δl+1
p which can be computed by

δl+1
p = ol+1

p (1− ol+1
p )

M l+2∑
r=1

wl+2
pr δ

l+2
r , (1 6 r 6M l+2).

The derivative of ∂

∂olj

(
M l∑
q=1

wl+1
qp o

l
q + bl+1

p

)
is zero for all terms in the sum-

mation except when q = j, hence,

∂EL

∂ylj
=

M l+1∑
p=1

[
− δl+1

p

][
∂

∂olj

(
wl+1

jp o
l
j + bl+1

p

)][
∂

∂ylj

(
1

1 + e(−ylj)

)]

=
M l+1∑
p=1

[
− δl+1

p

][
wl+1

jp

][(
1

1 + e(−ylj)

)(
1− 1

1 + e(−ylj)

)]

=
M l+1∑
p=1

[
− δl+1

p

][
wl+1

jp

][
olj(1− olj)

]

=

[
olj(1− olj)

]M l+1∑
p=1

[
− δl+1

p

][
wl+1

jp

]
.

(3.58)
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Substituting Equation (3.58) in Equation (3.57), we obtain

∂EL

∂wl
ij

=

[
olj(1− olj)

]
ol−1
i

M l+1∑
p=1

[
− δl+1

p

][
wl+1

jp

]
. (3.59)

Substituting Equation (3.59) in Equation (3.47)

∆wl
ij =

[
olj(1− olj)

]
ol−1
i

M l+1∑
p=1

[
wl+1

jp

][
δl+1
p

]
. (3.60)

The training rule of weight parameter wl
ij of hidden neuron H l

j will be

combined with the learning rate to obtain the update rule as

∆wl
ij = ηw

[
olj(1− olj)

]
ol−1
i

M l+1∑
p=1

[
wl+1

jp

][
δl+1
p

]
, (3.61)

where

ηw is the learning rate of weight parameter,

olj is the output value of hidden neuron j at layer l (1 6 j 6 M l, 3 6 l 6

L− 1),

xl−1
i is the value of input node i at layer l−1 (1 6 i 6M l−1, 3 6 l 6 L−1),

wl+1
jp is the weight value from hidden neuron j at layer l to hidden neuron

p at layer l + 1 l (1 6 j 6M l, 1 6 p 6M l+1, 3 6 l 6 L− 1),

δl+1
p = ol+1

p (1− ol+1
p )

N l+2∑
r=1

wl+2
pr δ

l+2
r .

Equation (3.61) will first be used to update the weight values at layer

l = L− 1. Next, we will move to update the weight values for layer l = L− 2, l =

L− 3, ..., and l = 3 in order.
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After update the weight values of hidden neuron at layer l = 3, we will

move to update the weight values of hidden neurons at layer l = 2 in the next

step.

Figure 3.15: Updating the weight values for hidden neuron at layer l = 2

Case 2b: Updating the weight values of hidden neuron in layer l = 2

To get the update rule of weight parameter in layer l = 2, we can derive

the formula similar to Case 2a. Therefore, we obtain the update rule as

∆w2
ij = ηw

[
o2j(1− o2j)

]
xi

M3∑
p=1

[
w3

jp

][
δ3p

]
, (3.62)

where

ηw is the learning rate of weight parameter,

o2j is the output value of hidden neuron j at layer l (1 6 j 6M l),

xi is the value of input node i at layer 1 (1 6 i 6M1),

w3
jp is the weight value from hidden neuron j at layer 2 to hidden neuron

p at layer 3 (1 6 j 6M2, 1 6 p 6M3),

δl+1
p = ol+1

p (1− ol+1
p )

M l+2∑
r=1

wl+2
pr δ

l+2
r .
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Equation (3.62) will be used to update the weight values in layer l = 2.

From the Step 1 as forward propagation to the Step 2 as backward propagation,

we can update all weight values of a feedforward neural network. Next, we will

repeat the same process using additional input data until we obtain acceptable

error or until we reach some predefined number of updating.

3.8 Deep belief networks

Deep belief network (DBN) is stacked of restricted Boltzmann machines,

the structure is shown as Figure 3.16. As we know that restricted Boltzmann

machine consists of two layers, when two restricted Boltzmann machines stack

together, it means that the hidden layer of the first restricted Boltzmann machine

becomes visible layer of the second restricted Boltzmann machine. In this manner,

deep belief network can be formed by stacking of many restricted Boltzmann

machines.

3.9 Learning deep belief networks

The target of learning a deep belief network is to find the appropriate

weight values between each layer (see Figure 3.16). To learn the weight values of a

deep belief network encompass two paths, unsupervised path and supervised path.

In unsupervised path, we will learn each restricted Boltzmann machine in order to

use the minimizing contrastive divergence algorithm to obtain the weight values

for all connections in the network. The final weight values from unsupervised path

will be used to initialize wight values in supervised path. To train the deep belief
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Figure 3.16: Deep belief network with n restricted Boltzmann machines stack
together

network in supervised path, we will use the back-propagation neuron network

algorithm to obtain the weight values which minimize the error function.
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Chapter4

RESULT AND DISCUSSION

The main objective in this research is to use a deep belief network with re-

stricted Boltzmann machines to predict drought. Since there is no mature method

to determine architecture of a deep belief network, the experimental method will

be used. Only one network structure which obtains the smallest error will be used

to predict drought. Several factors cause drought, they are land, water temper-

ature, air circulation, and soil moisture. The main factor that causes drought in

Nakhon Ratchasima province is the lack of rain. Therefore, the rainfall data will

be considered which the detail is explained in Section 4.1. These rainfall data will

be transformed into SPI, the process to transform is shown in Section 4.2. There

are three criteria to evaluate the models, these criteria are explained in Section

4.3. The process to predict drought using a deep belief network is illustrated in

Section 4.4. The results from Section 4.4 will be shown in Section 4.5.

4.1 Data

Nakhon Ratchasima, a northeastern province of Thailand, has a total area

of 12.80 million hectares, out of which 8.70 million hectares (representing 67.97%)
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are agricultural land. The main occupation of the inhabitants in the province is

farming and the majority of those farms produce rice, corn, and cassava. Due

to nature of their work, availability of water is of much importance. They are

dependent more on natural rainfall for their crop to survive.

Forecasting the availability or non-availability of rainfall is very important

to ensure rice production in the province. One of the main problems faced by

the many farmers in Nakhon Ratchasima province is seasonal (or perhaps annual)

shortage of rain, causing severe drought, and affecting rice production. As a re-

sult, this research focuses on predicting drought by using rainfall data in Nakhon

Ratchasima province.

Table 4.1: Rainfall data (millimeters)

Year 1957 1958 1959 1960 1961 1962 1963 ... 2015
Jan. 0 0 0 0 0 0 0 ... 16.3
Feb. 10.5 24.1 0 4.9 0 0 0 ... 0
Mar. 0.9 17.6 28.8 69.6 8.3 77.5 15.2 ... 0
Apr. 65.4 47.6 63.4 37.6 64.0 35.5 145.8 ... 50.8
May. 68.1 87.1 92.0 62.1 220.3 128.0 80.7 ... 85.5
June. 58.9 83.1 83.8 100.9 68.1 84.9 99.2 ... 56.2
July. 214.9 128.2 170.2 65.9 62.6 131.4 89.3 ... 156.0
Aug. 50.0 157.5 97.1 81.2 40.4 150.0 129.4 ... 208.4
Sep. 222.8 377.6 515.9 240.2 155.5 367.6 281.5 ... 237.1
Oct. 194.4 164.2 188.7 4 142.0 199.9 162 ... 86.3
Nov. 5.8 0.8 2.6 0 0 59.2 70.8 ... 3
Dec. 0 0 0 0 0 0 0 ... 0.3

Data for this research is rainfall data, measured by Hydrology and water

management center, lower northeastern region, Muang district, Nakhon Ratchasima

province. The example of rainfall data is shown in Table 4.1. The data consist

of 708 monthly rainfall observations from January 1957 to December 2015, each
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observation is the mean value of daily rainfall measured in millimeters. It is the

secondary data obtained from the website of the Bureau of Water Management

and Hydrology (Centre for Hydrology Irrigation northeastern Lower, 2016). These

rainfall data are recorded by non-recording rain gauge which use cylinder in unit

of millimeters to measure.

The minimum and maximum of rainfall data are 0 and 515.9 millimeters,

respectively. The mean value is using to measure the center of the data which

calculate from sum of observations divided by the number of observations, the

mean value of rainfall data is 85.98 millimeters. The standard deviation is 86.75

millimeters, which explains the dispersion of rainfall data.

Figure 4.1: Rainfall data from 1959-2015 (millimeters)

Figure 4.1 shows the graph of rainfall data. The x-axis represents year

and y-axis represents rainfall data in unit millimeters. These rainfall data contain

seasonal pattern.

Figure 4.2 shows the histogram of rainfall data. The x-axis represents

rainfall data and y-axis represents the density or probability. The rainfall data

have been split into bins, each bin represents a 10 millimeters. The probability in
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Figure 4.2: Histogram of rainfall data, each bin represents 10 millimeters

y-axis can be computed as frequency of each bin (10 millimeters) divided with all

number of bins.

4.2 Computing standardized precipitation index

Standardized precipitation index (SPI) is a drought index. There are many

difference time-scales which SPI can be calculated from 1 month to 72 months,

denoted SPI1, SPI2, SPI3, ..., SPI72, respectively. For example, SPI3 is computing

drought in period of three months which compares with the long term of rainfall

data in the same months on recorded. SPI6 is computing drought in period of six

months which compares with the long term of rainfall data in the same months

on recorded. It is the same as other time-scale of SPI which computing drought

in period of its months compares with the long term of rainfall data in the same

months on recored. Statistically, the best result of standardized precipitation

index ranges from 1-24 months (Guttman, 1999).

To transform rainfall data into SPI, we will focus on SPI3, SPI6, SPI9, and

SPI12. The purpose of transforming rainfall data into SPI index is to transform the
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distribution of rainfall data into normal distribution with mean zero and standard

deviation of one. The process to transform rainfall data into SPI3 will be shown

in Table 4.2 and explained as follows.

(1) Calculating the average of monthly rainfall data from January to

Table 4.2: The rainfall data from January-March, 1957-2015

Year Month Rainfall (millimeters) SPI3

1957
Jan. 0
Feb. 10.5
Mar. 0.9
x1957 3.8 -1

1958
Jan. 0
Feb. 24.1
Mar. 17.6
x1958 13.9 -0.9

1959
Jan. 0
Feb. 0
Mar. 28.8
x1959 9.6 -0.47

1960
Jan. 0
Feb. 4.9
Mar. 69.6
x1960 24.83 0.61

... ... ... ...

2015
Jan. 16.3
Feb. 0
Mar. 0
x2015 5.43 -0.98

March of each year. Let xt denote the average rainfall data from January to

March in year t. For example, the average of rainfall from January to March in

1957 is 3.8 (as seen in Table 4.2). The formula to calculate the average is

xt =
3∑

i=1

xi
3
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where

xi is the value of observation in time-scale.

(2) Calculating x̄ which is the average of x1957, x1958, x1959, ..., x2015. In this

data, x̄ = 18.9.

(3) Estimating the shape parameter (γ̂), γ̂ = 1.1143 which can be computed

as

γ̂ =
1 +

√
1 + 4A

3

4A
,

where

A = lnx̄− 1
59

2015∑
i=1957

lnxi,

(4) Estimating the scale parameter (β̂), β̂ = 16.9740 which can be com-

puted as

β̂ =
x̄

γ̂
.

(5) Testing the γ = γ̂ and β = β̂ achieve the maximum value

D =
[
fββ(γ̂, β̂)

] [
fγγ(γ̂, β̂)

]
−
[
fβγ(γ̂, β̂)

]2
= (−0.2282)(−62.3870)− (−3.4759)2

= 2.1548

which D > 0 and fββ(1.1143, 16.9740) < 0, f(1.1143, 16.9740) is maximum.

(6) Using γ̂ = 1.1143 and β̂ = 16.9740 to calculate the cumulative proba-
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bility density function (H(x)), H(x) = 0.4491 which can be computed as

H(x) = u+ (1− u)F (x),

where

u is probability of zero precipitation,

F (x) = 1
Γ(γ̂)

∫ x

0
tγ̂−1e−tdt,

t = x

β̂
,

Γ(γ̂) if the gamma function.

(7) Transforming the cumulative probability density function H(x) to be

the standard normal random variable Z, known as SPI value. For example, SPI3

for January to March is -1.00 (as seen in Table 4.2). The equation to compute

SPI is

SPI(xi) =


−k, 0 < H(xi) ≤ 0.5

+k, 0.5 < H(xi) < 1,

where

k = p− c0 + c1p+ c2p
2

1 + d1p+ d2p2 + d3p3
,
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constants c and d and variable p can be calculated as follows:

p =


√
ln
(

1
H2(x)

)
, 0 < H(xi) ≤ 0.5√

ln
(

1
(1−H(x))2

)
, 0.5 < H(xi) < 1,

c0 = 2.515517, c1 = 0.802853, c2 = 0.010328,

d1 = 1.432788, d2 = 0.189269, d3 = 0.001308.

From the process (1) to the process (7), we can get the first value of SPI3

which is -1.00. This value means that in 1957, January-March moderately dry

when the value compares with January-March of every year on recorded.

To get the second value of SPI3, we will use the data from February-April

of 1957-2015. Calculating from the process (1) to the process (7), we can get the

second value of SPI3 which is -0.44. This value means that February-April in

1957 near normal when the value compares with February-April of every years on

recorded. These processes will be repeated until we use all rainfall data.

4.3 Evaluation matrices

To evaluate the performance of our models, three criteria will be considered.

They are root mean square error (RMSE), mean absolute error (MAE), and R-

squared. RMSE and MAE are the functions to calculate the error of the model.

R-squared is the statistical measure of how close the observations are to the fitted

regression line. The value of R-squared range for 0 to 1. If R-squared is 1, all

observations fall perfectly on the regression line and if R-squared is 0, the estimated
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regression line is perfectly horizontal. The equation to compute these criteria are

shown as follows

RMSE =

√√√√ n∑
i=1

(ti − oi)2

n
, (4.1)

MAE =

n∑
i=1

|ti − oi|

n
, (4.2)

R-squared = 1−

n∑
i=1

(ti − oi)
2∑n

i=1(ti − t̄)2
, (4.3)

where

ti is the target value of SPI(xi),

oi is the output value from model,

n is the total number of SPI data,

t̄ is the mean value of SPI.

4.4 Experimental Methodology

The process to predict drought is described in flowchart displayed in Fig-

ure 4.3. The beginning of the process is obtaining the data. This data will be

transformed into standardized precipitation index (SPI) in step 1, then we obtain

SPI data. The detail about SPI data obtaining in step 1 is explained in Section

4.4.4. Step 2 is to separate data into three groups (1) Structure Training Set which

contains x1, x2, x3, ..., xm, they are 80% of the data (2) Weight Training Set which

contains x1, x2, x3, ..., xp−1 where m + 1 6 p 6 n and (3) Test Data which is xp.

The detail about how to generate those data sets is explained in Section 4.4.2.
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Step 3 is to determine suitable network architecture for our problem. In this step,

we will use data from Structure Training Set to train and evaluate various network

architectures and select the one with the least error. Let DBN(A) be the network

structure with the least error. The detail on how to train, evaluate, and select

such structure is described in Section 4.4.3. Step 4, we will take DBN(A) from

step 3 which contains no information about the weights of the network and train

this network using data from Weight Training Set. This training includes both

unsupervised and supervised learning. The result of step 4 is DBN(B) which is a

deep belief network that will be used in step 5 to predict Test Data xp and obtain

an accuracy.

4.4.1 Result of transformation of SPI

To predict drought, rainfall data has to be transformed into standardized

precipitation index. In this research, we only focus on SPI3, SPI6, SPI9, and

SPI12. The rainfall data will be transformed into SPI with difference time-scale

using spi_sl_6 software from world meteorological organization (WMO).

When the rainfall data is transformed into standardized precipitation index

of different time-scale, the number of observations is reduced by s − 1 when s is

time-scale. For example of SPI3, the number of observation will be reduced by 2.

Therefore, the number of observation reduced from 708 to 706 observations.

Table 4.3 shows the total observation after transforming the rainfall data

into drought index of difference time-scale. The remaining of observations for SPI3,
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Data

(1) Computing SPI

Structure Training Set
 

Weight Training Set
 

Test data
 

(3) Determining
network structure

DBN(A)

(4) Learning weights 
of DBN(A)

DBN(B)

(5) Predicting SPI

Error

(2) Generating
training data sets and

test set

SPI

Figure 4.3: The research framework to predict SPI

Table 4.3: The total observations after transformed into standardized precipitation
index

SPI Total observation 80% of the data 20% of the data
SPI3 706 564 142
SPI6 703 562 141
SPI9 700 560 140
SPI12 697 557 140

SPI6, SPI9, and SPI12 are 706, 703, 700, and 697 observations, respectively. The

number of 80% and 20% of the data will be used in walk forward validation which

will be explained in Section 4.4.2.
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4.4.2 Generating training data sets and test set

The target of predicting time series data is to make accurate prediction in

the future. There are many difference ways to evaluate the model. In this research,

we will split data into two sets, training set and test set. There are many methods

to split data used for training and testing such as train-test splits and k-fold cross

validation, but these methods are not suitable for time series data because they

disregard the temporal components which commonly exists in this type of data.

In this research, we employ walk forward validation to evaluate the performance

of our model. Traditionally, this method will split data into two groups, they are

training set and test set, the period to split depends on users. Let x1, x2, x3, ..., xn

be time series data consist of n observations. Suppose that we are using m records

for training and the remaining n−m records for testing. For example of SPI3, the

training data are x1, x2, x3, ..., x564 and the test data are x565, x566, x567, ..., x706.

In the first step, the data in training set will be used to train and find the best

network to predict the value of x565. Next, x1, x2, x3, ..., x564, x565 will be used to

train and find the best network to predict the value of x566. It will perform in this

manner until we are able to predict the value of all data in the test set.

Table 4.4: Training sets and test set

Structure training set Weight training Test data
x1, x2, x3, ..., xm x1, x2, x3, ..., xp−1 xp

where xp,m+ 1 6 p 6 n
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However, determining a network structure in this research is very time

consuming. Therefore, we will use a modified version of walk forward validation.

Beginning, we will split data into three groups, (1) Structure Training Set, (2)

Weight Training, and (3) Test data, which is shown in Table 4.4. To use modified

version of walk forward validation, in the first step, we used the data 80%, the

data is x1, x2, x3, ..., xm to train and find the best network structure. Then we will

keep this network structure fixed and use x1, x2, x3, ..., xp−1, where m+1 6 p 6 n

to learn a new set of weight values for our deep belief network and use this network

to predict the value of xp.

4.4.3 Determining network structure

There is no mature method to determine architecture of deep belief net-

works. Therefore, to create architecture of a deep belief network, we have to decide

how many restricted Boltzmann machines will be stacked together. Furthermore,

we have to decide how many neurons in visible layer and how many neurons in

hidden layer for the first restricted Boltzmann machine. When we stack second

restricted Boltzmann machine, it means that the hidden layer of the first restricted

Boltzmann machine will be visible layer for the second restricted Boltzmann ma-

chine. In this manner, we can create the structure of a deep belief network by

stacking of n restricted Boltzmann machine together.

In this research, the architecture of a deep belief network consists of two re-

stricted Boltzmann machines stacked together shown in Figure 4.4. This research

used experimental method by trying all combinations of network structures con-
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Figure 4.4: Stacking of 2 restricted Boltzmann machines

sisting of 2 to 10 neurons in visible layer and 5, 10, 15, 20, and 25 neurons in

hidden layer. There are the total of 45 network structures in which the best one

with minimum error will be chosen. The chosen network structure will be used to

learn the weight values in unsupervised path and supervised path. These 45 net-

work structures will be chosen one network structure which obtains the smallest

error. This structure will be fixed and we will add the second restricted Boltzmann

machine in which the hidden layer of the first restricted Boltzmann machine be-

comes visible layer of the second restricted Boltzmann machine. There are 5, 10,

15, 20, and 25 neurons in hidden layer for second restricted Boltzmann machine.

To learn the weight values, the weight values of the first restricted Boltzmann

machine will be fixed. Then we will learn the weight values for second restricted

Boltzmann machine using unsupervised path and supervised path. These 5 net-

work structures will be chosen only one best structure which contains the smallest

error.

To predict drought, the best network structure without the weight val-

ues will be used to learn the weight values using deep belief network. Learning
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deep belief network consists of two paths, unsupervised path and supervised path.

In unsupervised path, we will learn the weight values using continuous restricted

Boltzmann machine with MCD algorithm. In supervised path, we will consider the

best network structure as the feedforward neuron network structure (see Section

3.7). In this path, we use back-propagation algorithm to learn the weight values.

The best network structure through learning the weight values by unsupervised

path and supervised path will be used to predict drought.

4.5 Experimental results

There are two experimental results. The first is the best network structure

explained in Section 4.5.1. This section shows the experimental result of SPI3,

SPI6, SPI9, and SPI12. The different time-scale of SPI will be chosen one best

network structure which contains the smallest error. The second is prediction, the

detail is shown in Section 4.5.2.

4.5.1 The best network structure

There are four different time-scales of standardized precipitation index.

They are SPI3, SPI6, SPI9, and SPI12 which means that we have four data sets

of difference time-scales. Therefore, we have to find the best network structure for

each of those data sets. The experimentation result of each difference time-scale

is shown as follows.
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The experimental result of SPI3

Table 4.5 shows the results of input layer with first hidden layer of SPI3.

When we compared the RMSE of two input nodes to ten input nodes, the results

showed that the smallest average error is 0.7074 which occurs at 3 nodes. Next,

focus was placed on the smallest error. The result shows that the first hidden layer

with 25 neurons had the smallest RMSE, which RMSE is 0.6984. Hence, the best

network structure with first hidden layer is 3-25-1 (3 input nodes - 25 neurons for

first hidden layer - 1 output neuron). This structure will be fixed for adding the

second hidden layer in the next step.

In experimentation to add a second hidden layer, the number of nodes in

input layer and the number of neurons in hidden layer were taken from the previ-

ous process. It is 3 nodes in input layer and 25 neurons in the first hidden layer.

This structure was added to the second hidden layer with experimentation of 5,

10, 15, 20, and 25 neurons. The effect is displayed in Table 4.6. The best structure

occurred at 15 neurons in the second hidden layer, the smallest RMSE is 0.6925.

Therefore, the best network structure of SPI3 in this experimentation is 3-25-15-1

(3 input nodes - 25 neurons in the first hidden layer - 15 neurons in the second

hidden layer - 1 output neuron).

The experimental result of SPI6

The experimentation results of SPI6 by adding the first hidden layer are

shown in the Table 4.7. We found that the smallest RMSE occurs at 8 nodes in

input layer and 20 neurons in the first hidden layer. Therefore, the best structure
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with adding the first hidden layer is 8-20-1 (8 input nodes - 20 neurons for the

first hidden layer - 1 output neuron) which the value of RMSE is 0.4374. This

structure will be fixed for adding second hidden layer.

The results for adding the second hidden layer are shown in the Table 4.8.

The smallest RMSE is 0.4256 which occurs at 25 neurons in the second hidden

layer. Therefore, the best network structure of SPI6 is 8-20-25-1 (8 input nodes -

20 neurons for the first hidden layer - 25 neurons for the second hidden layer - 1

output neuron).

The experimental result of SPI9

Table 4.9 illustrated the results of experimentation by adding the first hid-

den layer for SPI9. The result shows that the smallest RMSE is 0.4175 which

occurs at 10 nodes in input layer and 15 neurons for the first hidden layer. This

structure will be fixed for adding the second hidden layer.

The experimentation results by adding the second hidden layer are shown

in the Table 4.10. In comparison the RMSE, we found that 20 neurons for the

second hidden layer has smallest RMSE. Therefore, the best network structure

of SPI6 is 10-15-20-1 (10 input nodes - 15 neurons for the first hidden layer - 20

neurons for the second hidden layer - 1 output neuron).

The experimental result of SPI12

The experimentation results of the first hidden layer of SPI12 are shown

in the Table 4.11. The smallest RMSE is 0.3399 which occurs at 4 nodes in input
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layer and 15 neurons in the first hidden layer.

Table 4.12 shows the results for adding the second hidden layer. The small-

est RMSE in comparison of surrounding neurons is 0.3388 which occurs at 10 neu-

rons in the second hidden layer. Therefore, the best network structure of SPI12

by adding the second hidden layer is 4-15-10-1 (4 input nodes - 15 neurons for the

first hidden layer - 10 neurons for the second hidden layer - 1 output neuron).

Summary of the best network structure of each SPI are shown in Table

4.13.
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Table 4.5: Effects of input layer with first hidden layer of SPI3

Input Hidden RMSE MAE Input Hidden RMSE MAE
2 5 0.7317 0.5970 7 5 0.7421 0.6136
2 10 0.7351 0.5987 7 10 0.7168 0.5895
2 15 0.7232 0.5864 7 15 0.7391 0.6091
2 20 0.7168 0.5788 7 20 0.7071 0.5795
2 25 0.7261 0.5897 7 25 0.7327 0.6019

Avg 0.7265 0.5901 Avg 0.7275 0.5987
3 5 0.7344 0.6037 8 5 0.7051 0.5799
3 10 0.6997 0.5662 8 10 0.7571 0.6224
3 15 0.7039 0.5715 8 15 0.7275 0.6016
3 20 0.7006 0.5693 8 20 0.6966 0.5728
3 25 0.6984 0.5649 8 25 0.7009 0.5741

Avg 0.7074 0.5751 Avg 0.7174 0.5901
4 5 0.7053 0.5736 9 5 0.7571 0.6270
4 10 0.7179 0.5857 9 10 0.7078 0.5838
4 15 0.7320 0.5991 9 15 0.7282 0.6017
4 20 0.7162 0.5851 9 20 0.7247 0.5962
4 25 0.7132 0.5808 9 25 0.6997 0.5769

Avg 0.7169 0.5848 Avg 0.7235 0.5971
5 5 0.7350 0.6024 10 5 0.7412 0.6081
5 10 0.7013 0.5678 10 10 0.7049 0.5784
5 15 0.7254 0.5934 10 15 0.7218 0.5979
5 20 0.6916 0.5599 10 20 0.7379 0.6088
5 25 0.7055 0.5713 10 25 0.7102 0.5842

Avg 0.7117 0.5789 Avg 0.7232 0.5954
6 5 0.7565 0.6247
6 10 0.7370 0.6068
6 15 0.7147 0.5861
6 20 0.7142 0.5829
6 25 0.7050 0.5737

Avg 0.7254 0.5948

Table 4.6: Effects of second hidden layer of SPI3

Input Hidden1 hidden2 RMSE MAE

3 25

5 0.9537 0.7621
10 0.7459 0.6117
15 0.6925 0.5604
20 0.7162 0.5850
25 0.7172 0.5867

Avg 0.7651 0.6211
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Table 4.7: Effects of input layer with first hidden layer of SPI6

Input Hidden RMSE MAE Input Hidden RMSE MAE
2 5 0.5187 0.4083 7 5 0.4622 0.3459
2 10 0.4883 0.3807 7 10 0.4466 0.3333
2 15 0.4863 0.3791 7 15 0.4355 0.3207
2 20 0.4616 0.3545 7 20 0.4474 0.3343
2 25 0.4891 0.3819 7 25 0.4357 0.3219

Avg 0.4888 0.3809 Avg 0.4454 0.3312
3 5 0.4974 0.3896 8 5 0.4487 0.3373
3 10 0.4828 0.3756 8 10 0.4379 0.3211
3 15 0.4851 0.3757 8 15 0.4434 0.3305
3 20 0.4654 0.3585 8 20 0.4374 0.3218
3 25 0.4796 0.3703 8 25 0.4394 0.3260

Avg 0.4820 0.3739 Avg 0.4413 0.3273
4 5 0.4616 0.3572 9 5 0.4660 0.3513
4 10 0.4668 0.3607 9 10 0.4730 0.3598
4 15 0.4586 0.3541 9 15 0.4522 0.3353
4 20 0.4606 0.3550 9 20 0.4511 0.3363
4 25 0.4633 0.3600 9 25 0.4399 0.3217

Avg 0.4621 0.3574 Avg 0.4564 0.3408
5 5 0.4449 0.3390 10 5 0.4404 0.3261
5 10 0.4661 0.3585 10 10 0.4451 0.3271
5 15 0.4526 0.3473 10 15 0.4513 0.3351
5 20 0.4444 0.3388 10 20 0.4282 0.3108
5 25 0.4524 0.3470 10 25 0.4439 0.3281

Avg 0.4520 0.3461 Avg 0.4417 0.3254
6 5 0.4618 0.3437
6 10 0.4426 0.3242
6 15 0.4486 0.3296
6 20 0.4436 0.3261
6 25 0.4483 0.3280

Avg 0.4489 0.3303

Table 4.8: Effects of second hidden layer of SPI6

Input Hidden1 hidden2 RMSE MAE

8 20

5 0.9321 0.7374
10 0.4836 0.3704
15 0.4853 0.3725
20 0.4397 0.3315
25 0.4256 0.3142
Avg 0.5532 0.4252
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Table 4.9: Effects of input layer with first hidden layer of SPI9

Input Hidden RMSE MAE Input Hidden RMSE MAE
2 5 0.4469 0.3362 7 5 0.4342 0.3324
2 10 0.4284 0.3171 7 10 0.4659 0.3614
2 15 0.4446 0.3337 7 15 0.4569 0.3497
2 20 0.4502 0.3384 7 20 0.4558 0.3494
2 25 0.4370 0.3256 7 25 0.4450 0.3400

Avg 0.4414 0.3302 Avg 0.4515 0.3465
3 5 0.4299 0.3234 8 5 0.4629 0.3538
3 10 0.4459 0.3377 8 10 0.4348 0.3276
3 15 0.4317 0.3212 8 15 0.4350 0.3274
3 20 0.4369 0.3285 8 20 0.4444 0.3357
3 25 0.4604 0.3514 8 25 0.4480 0.3390

Avg 0.4409 0.3324 Avg 0.4450 0.3367
4 5 0.4336 0.3245 9 5 0.4441 0.3383
4 10 0.4390 0.3279 9 10 0.4397 0.3323
4 15 0.4219 0.3083 9 15 0.4332 0.3286
4 20 0.4389 0.3276 9 20 0.4600 0.3532
4 25 0.4421 0.3308 9 25 0.4403 0.3339

Avg 0.4351 0.3238 Avg 0.4434 0.3372
5 5 0.4319 0.3228 10 5 0.4330 0.3301
5 10 0.4346 0.3217 10 10 0.4337 0.3282
5 15 0.4491 0.3361 10 15 0.4175 0.3154
5 20 0.4418 0.3274 10 20 0.4427 0.3380
5 25 0.4426 0.3287 10 25 0.4283 0.3221

Avg 0.4400 0.3273 Avg 0.4310 0.3267
6 5 0.4400 0.3412
6 10 0.4375 0.3335
6 15 0.4405 0.3321
6 20 0.4271 0.3220
6 25 0.4323 0.3269

Avg 0.4354 0.3311

Table 4.10: Effects of second hidden layer of SPI9

Input Hidden1 hidden2 RMSE MAE

10 15

5 0.5162 0.4057
10 0.4483 0.3440
15 0.4395 0.3370
20 0.4174 0.3143
25 0.4439 0.3370

Avg 0.4530 0.3476
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Table 4.11: Effects of input layer with first hidden layer of SPI12

Input Hidden RMSE MAE Input Hidden RMSE MAE
2 5 0.3623 0.2630 7 5 0.3774 0.2801
2 10 0.3643 0.2546 7 10 0.3837 0.2849
2 15 0.3497 0.2499 7 15 0.3755 0.2773
2 20 0.3698 0.2716 7 20 0.3770 0.2782
2 25 0.3539 0.2559 7 25 0.3868 0.2883

Avg 0.3600 0.2590 Avg 0.3800 0.2817
3 5 0.4023 0.3061 8 5 0.3750 0.2744
3 10 0.3687 0.2703 8 10 0.3747 0.2735
3 15 0.3515 0.2541 8 15 0.3907 0.2879
3 20 0.3588 0.2625 8 20 0.3737 0.2746
3 25 0.3739 0.2772 8 25 0.3871 0.2835

Avg 0.3710 0.2740 Avg 0.3802 0.2787
4 5 0.3579 0.2624 9 5 0.4068 0.3037
4 10 0.3802 0.2834 9 10 0.3944 0.2896
4 15 0.3399 0.2463 9 15 0.3761 0.2763
4 20 0.3410 0.2470 9 20 0.3774 0.2785
4 25 0.3531 0.2600 9 25 0.3712 0.2707

Avg 0.3544 0.2598 Avg 0.3851 0.2837
5 5 0.3434 0.2504 10 5 0.3897 0.2894
5 10 0.3582 0.2683 10 10 0.3858 0.2874
5 15 0.3574 0.2629 10 15 0.3914 0.2881
5 20 0.3668 0.2781 10 20 0.3694 0.2716
5 25 0.3629 0.2694 10 25 0.3994 0.2951

Avg 0.3577 0.2658 Avg 0.3871 0.2863
6 5 0.3666 0.2720
6 10 0.3623 0.2676
6 15 0.3831 0.2891
6 20 0.3799 0.2853
6 25 0.3823 0.2880

Avg 0.3748 0.2804

Table 4.12: Effects of second hidden layer of SPI12

Input Hidden1 hidden2 RMSE MAE

4 15

5 0.3716 0.3731
10 0.3388 0.2398
15 0.3569 0.2606
25 0.3679 0.2681

Avg 0.3603 0.28170



86

Table 4.13: The best network structure of each SPI

SPI Best structure RMSE MAE
SPI3 3-25-15-1 0.6925 0.5604
SPI6 6-20-25-1 0.4256 0.3142
SPI9 10-15-20-1 0.4174 0.3143
SPI12 4-15-10-1 0.3388 0.2398

4.5.2 Prediction

Figure 4.5 shows the graphs between the target values and predict values

of different time-scale. There are four graphs which are SPI3, SPI6, SPI9, and

SPI12. For all the graphs, x-axis represents year and y-axis represents SPI. Solid

lines represent the target values and dashed lines represents the predict values.

Figure 4.5: Comparison between target values and predict values of SPI which
x-axis represents year and y-axis represents SPI value
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Figure 4.6: Scatter plot of SPI3, SPI6, SPI9, and SPI12

The criteria use to evaluate the error between target values and predict

values is RMSE, the value of RMSE of SPI3, SPI6, SPI9, and SPI12 are 0.5236,

0.2225, 0.1812, and 0.1291, respectively. From the values of RMSE, we found that

the long term SPI of 12 months has smallest error.

Table 4.14: The accuracy of each SPI

SPI Correct Incorrect Accuracy
SPI3 101 41 71.13 %
SPI6 111 30 78.72%
SPI9 108 32 77.14%
SPI12 113 27 80.71%

Furthermore, scatter plots will be considered to evaluate the model which

is shown in Figure 4.6. There are four scatter plots which x-axis represents the

predict values and y-axis represents the target values. For SPI3, SPI6, SPI9, and
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SPI12, the R-square are 0.42, 0.73, 0.78, and 0.83, respectively.

Table 4.14 shows the accuracy of each SPI. The results show that, the long

term SPI of 12 months makes more accurate prediction than the short term SPI

of 3, 6, and 9 months.

4.6 Conclusions

To study the scientific measurement of drought condition, in this research,

we used standardized precipitation index (SPI) as a drought indicator to trans-

form rainfall data from Nakhon Ratchasima province into drought index. The

are several time-scales of standardized precipitation index. In this research, we

focused on SPI3, SPI6, SPI9,and SPI12.

The different time-scale of standardized precipitation index was used to

learn by a deep belief network with restricted Boltzmann machines. Since there

is no mature method to determine architecture of a deep belief network, experi-

mental method was used to find the suitable architecture to predict drought.

The suitable architecture of a deep belief network of each SPI which con-

tained the smallest root mean square error will be used to predict drought. The

result of predicting showed that the long term SPI of 12 months makes more ac-

curate prediction than the short term SPI of 3, 6, and 9 months.

In view of the farmers in Nakhon Ratchasima province, the main occupa-

tion of the inhabitants is farming. The main majority of those farms produce rice.

In the process of planting rice, rice needs a lot of water to survive between July

to September. Therefore, the farmers should know the information that between
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these months the water will be enough. To monitor drought in these three months,

the short term SPI of 3 months is a good time-scales to predict drought. The best

network structure of SPI3 is 3-25-15-1, it means that we need to know the values

of monthly rainfall data from February to June in the same year of predicting

drought. Then we can predict drought in July to September. Furthermore, SPI6,

SPI9, SPI12 might be good to predict drought for the farmers who plant cassava,

fruit orchard, and other tree which plants do not need a lot of water in specific

month.

4.7 Future work

Since there is no mature method to determine architecture of a deep belief

network, the best structure in this research was obtained from the experimen-

tation. If there is a method to decide the suitable architecture of a deep belief

network, the result of predicting drought might increase the accuracy.
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Appendix A

Restricted Boltzmann machine is an energy-based model which associates

with the scalar value of the network, namely energy. Therefore, the energy func-

tion of restricted Boltzmann machine will be constructed. Configuration of a

restricted Boltzmann machine is similar to a Hopfield network, except for that

there is no connection between neurons in visible layer and hidden layer. Thus,

the energy function of binary Hopfield network will be considered. To formulate

the energy function of restricted Boltzmann machine using the energy of binary

Hopfield network, we must modify the structure of Hopfield network to obtain the

structure of restricted Boltzmann machine.

Suppose that we modify the structure of a Hopfield network (see Figure 3.5)

to obtain the structure of restricted Boltzmann machine (see Figure 3.7) by exclu-

sively dividing neurons in the network into two groups. The first group is visible

layer which consists of m neurons, they are N1, N2, N3, ..., Nm. The second group

is hidden layer which consists of n neurons, they are Nm+1, Nm+2, Nm+3, ..., Np,

when n = p−m. To get the energy function of restricted Boltzmann machine, the
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energy function of binary Hopfield network as Equation (3.17) will be considered.

E(u) = −1

2

p∑
i=1
i ̸=j

p∑
j=1

uitijuj −
p∑

j=1

bjuj

= −1

2
(u1t12u2 + u1t13u3 + u1t14u4 + ...+ u1t1mum + ...+ u1t1pup)

− 1

2
(u2t21u1 + u2t23u3 + u2t24u4 + ...+ u2t2mum + ...+ u2t2pup)

− ...− 1

2
(umtm1u1 + umtm2u2 + umtm3u3 + ...+ umtmpup)

− ...− 1

2
(uptp1u1 + uptp2u2 + uptp3u3 + ...+ uptpmum + ...+ uptpp−1up−1)

− (b1u1 + b2u2 + b3u3 + ...+ bmum + ...+ bpup)

The weight tij is symmetric weight with tii = 0 and tij = tji. Therefore,

we obtain

E(u) = −1

2
(2u1t12u2 + 2u1t13u3 + 2u1t14u4 + ...+ 2u1t1mum + ...+ 2u1t1pup)

− 1

2
(2u2t23u3 + 2u2t24u4 + ...+ 2u2t2mum + ...+ 2u2t2pup)

− ...− 1

2
(2umtmm+1um+1 + ...+ 2umtmpup)

− ...− 1

2
(2up−1tp−1pup)

− (b1u1 + b2u2 + b3u3 + ...+ bmum + ...+ bpup)

= − (u1t12u2 + u1t13u3 + u1t14u4 + ...+ u1t1mum + ...+ u1t1pup)

− (u2t23u3 + u2t24u4 + ...+ u2t2mum + ...+ u2t2pup)

− ...−
(
umtm(m+1)um+1 + ...+ umtmpup

)
− ...−

(
up−1t(p−1)pup

)
− (b1u1 + b2u2 + b3u3 + ...+ bmum + ...+ bpup) .
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Since restricted Boltzmann machine is not connected in the same layer

(see Figure 3.7). Therefore, all connection between two visible neurons and all

connection between two hidden neurons will be removed. In another word, the

weight value tij = 0 when 1 6 i 6 m and 1 6 j 6 m or m + 1 6 i 6 p and

m+ 1 6 j 6 p. Then, we get

E(u) = − (u1t1m+1um+1 + u1t1m+2um+2 + u1t1m+3um+3 + ...+ u1t1pup)

− (u2t2m+1um+1 + u2t2m+2um+2 + u2t2m+3um+3 + ...+ u2t2pup)

− ...−
(
umtm(m+1)um+1 + ...+ umtmpup

)
− (b1u1 + b2u2 + b3u3 + ...+ bmum + ...+ bpup) .

To simplify this energy function (E(u)), we will define vi = ui, ai = bi,

hj = um+j, bj = bm+j, and wij = ti,m+j. Furthermore, restricted Boltzmann

machine consists of two layers. It is appropriate to use the energy of joint configu-

rations of visible and hidden variables. Therefore, the energy function of restricted

Boltzmann machine is

E(v, h) = − (v1w11h1 + v1w12h2 + v1w13h3 + ...+ v1w1nhn)

− (v2w21h1 + v2w22h2 + v2w23h3 + ...+ v2w2nhn)

− ...− (vmwm1h1 + ...+ vmwmnhn)

− (a1v1 + a2v2 + a3v3 + ...+ amvm)

− (b1h1 + b2h2 + b3h3 + ...+ bnhn) .
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We can write the simplified energy function of restricted Boltzmann ma-

chine in a scalar form as

E(v, h) = −
m∑
i=1

n∑
j=1

viwijhj −
m∑
i=1

aivi −
n∑

j=1

bjhj. (4.4)
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Appendix B

To derive the energy function of continuous restricted Boltzmann machine,

we will consider the energy function of continuous Hopfield network as in Equation

(3.18). Since we will derive the energy function of continuous restricted Boltzmann

machine using the energy function of continuous Hopfield network, the structure

of Hopfield network must be modified to obtain the structure of continuous re-

stricted Boltzmann machine.

Figure 4.7: Hopfield network (separate neurons into two groups)

As the neuron in Hopfield network consists of p neurons, they areN1, N2, N3, ..., Np.

These neurons will be divided into two groups. The first group consists of m neu-

rons, they are N1, N2, N3, ..., Nm. The second group consists of n neurons, they

are Nm+1, Nm+2, Nm+3, ..., Np, where n = p −m. Furthermore, we will define the

bias value is zero, bi = 0. Then we obtain the structure which is shown in Figure
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4.7.

There is no connection in the same layer of continuous restricted Boltz-

Figure 4.8: Hopfield network (remove some connection between two visible neurons
and two hidden neurons)

mann machine. Therefore, all connections between two visible neurons and the

connections between two hidden neurons will be removed. These connections are

highlighted with red color in Figure 4.8

We will define the first group of neuron as Vi = Ni, 6 i 6 m. The second

Figure 4.9: Continuous restricted Boltzmann machine (modified from Hopfield
network)

group of neuron as Hj = Nm+j, 6 j 6 n. Inside of weight values, we will defined

as wij = ti,m+j. Furthermore, we will consider the transmembrane resistance Rj of

neuron Nj as a bias value κi of visible neuron Vi and bias value λj of hidden neuron
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Hj. Then we obtain the structure of continuous restricted Boltzmann machine as

Figure 4.9. Therefore, the energy function of continuous restricted Boltzmann

machine can be computed as Equation (4.5)

E(v, h) = −
m∑
i=1

n∑
j=1

viwijhj +
m∑
i=1

1

κi

∫ vi

0

φ−1(v)dv

+
n∑

j=1

1

λj

∫ hj

0

ψ−1(h)dh,

(4.5)

where

vi is the output value of Vi,

wij is the weight value from Vi to Hj,

hj is the output value of Hj,

κi is the value of noise control parameter of Vi,

φ−1(v) is the inverse of the activation function of Vi,

λj is the value of noise control parameter of Hj,

ψ−1(h) is the inverse of the activation function of Hj.
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Appendix C

Gibbs sampling

Gibbs sampling is illustrated in Figure 4.10 which consists of k steps, each

step consists of two phases. The first phase is positive phase and the second phase

is negative phase, shown as Figure 4.11.

Figure 4.10: Gibbs sampling with k steps

Figure 4.11: Each step of Gibbs sampling consists of two phase, positive phase
and negative phase
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Positive phase

Positive phase is initialized using the output value vj in visible layer to

calculate the input value sj and output value hj of the neuron in hidden layer at

time t

sj =
m∑
i=1

wijvi + σNj(0, 1),

with

hj = θL + (θH − θL)
1

1 + e−λjsj
.

Negative phase

Negative phase is used to calculate the input value rj and the output value

vj of the neural in visible layer at time t + 1. This is possible since the value of

neural in hidden layer at time t is known as

rj =
n∑

i=1

wijhi + σNj(0, 1)

with

vj = θL + (θH − θL)
1

1 + e−κjrj
. (4.6)

After calculating the value of visible neuron Vj and hidden neuron Hj

at step 0,
⟨
v
(0)
i h

(0)
j

⟩
denoted by wposij and

⟨
(h

(0)
j )

2
⟩

denoted by aposj will be
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calculated using Equations (4.7) and (4.8), respectively

wposij = v
(0)
i h

(0)
j , (4.7)

aposij = (h
(o)
j )

2
. (4.8)

This process will be repeated by alternating positive and negative phases

until step k. At step k,
⟨
v
(k)
i h

(k)
j

⟩
denoted by wnegij and

⟨
(h

(k)
j )

2
⟩

denoted

by anegj. These two values can be computed by Equations (4.9) and (4.10),

respectively

wnegij = v
(k)
i h

(k)
j , (4.9)

anegij = (h
(k)
j )

2
. (4.10)

From the previous process, wposij, wnegij, aposj, and anegj were calcu-

lated. By these calculations, weights and noise control parameter will be updated.

These values of two parameters will keep updating using the next set of data points

until finish all data. The optimal weight values in this path will be initial weight

values in supervised path.
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