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ABSTRACT 

The first 28 days of life- the neonatal period is the most vulnerable time for a child’s 

survival. Neonatal mortality has seen a downward trend in recent years. Understanding the 

risk factors associated with neonatal mortality at the neonatal unit is important because it 

allows inferences about the quality of care. The main objective of this study was to 

determine the neonatal mortality rate and to provide information on the risk factors that 

affects the survival of neonates at the neonatal unit of a tertiary health facility and to present 

a mathematical model for explaining such factors. Secondary data were obtained from the 

neonatal unit of a hospital over a seventeen-month period, from January 2013 through to 

May 2014. The data was classified into two, based on the place of delivery of these 

neonates. Logistic regression models were fitted to the two datasets to assess the 

association between neonatal death and its risk factors. Another logistic regression model 

was fitted to the combined dataset in order to investigate the general risk factors of neonatal 

death at the neonatal unit. The probability density functions and likelihood functions 

associated with the logistics regression models were verified for regularity. Fisher’s 

scoring optimization algorithm was used to estimate the parameters of the logistic 
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regression models and Newton Raphson’s method with Marquardt damping algorithm was 

used to estimate adjusted proportions of the variables. Each logistic regression model was 

further assessed for asymptotic normality using the normal quantile-quantile plots. Using 

Receiver Operating Characteristics plots, the predictive power of the models were also 

estimated. 

Asymptotic analysis of the likelihood function for the logistic regression model, showed 

that, the function satisfied all the regularity conditions for the existence and uniqueness of 

maximum likelihood estimates. The estimates were also found to be asymptotically 

normal and consistent for interpreting the neonatal mortality for the different datasets. 

Birth weight, 5 minute Apgar score and discharge diagnosis were found to be the 

main risk factors associated with neonatal death among babies who were delivered at 

different health facilities and referred to the unit. These three variables together with 

gestational age were significantly associated with mortality of babies who were not referred 

from different facilities. The place of delivered of the neonates also had significant effect 

on their survival chances at the neonatal unit. The overall mortality rate at the neonatal unit 

is very high. There is the need for urgent attention and interventions to help reduced the 

risk associated with these neonates. 
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Chapter 1 

Introduction 

1.1 Background 

Neonatal mortality is the death occurring among children who are less than 4 weeks 

old (Lander, 2006). The first four weeks of life (neonatal period) is the most crucial period 

when infants are highly prone to illness and death. Latest reports indicate that over 5.9 

million under-five deaths were recorded in 2015 with daily average of 16,000 deaths 

(UNICEF, 2015). Globally, almost 3 million babies die in the neonatal period each year 

(Shiffman, 2015). This accounts for almost 44% of under-five deaths (Kinney et al., 2015). 

Majority of these neonatal deaths occur in developing countries. In fact, neonatal 

mortality accounts for almost half of all infant deaths in these countries (Klingenberg et 

al., 2003). Preventive measures and interventions have helped to reduce the global neonatal 

mortality rate from 36 in 1990 to 19 per 1,000 live births in 2015 (You et al., 2015). 

Globally, neonatal mortality has been decreasing at a slower rate from 1990 as compared 

to under-five mortality (Lawn et al., 2014). The decline in neonatal death especially in 

Ghana from 32 per 1,000 live births in 2008 to 29 per 1,000 live births in 2014 has partly 

been attributed to improved facilities at the neonatal units and improved neonatal care 

(Enweronu-Laryea et al., 2008; GDHS, 2009; GDHS, 2014). 

However, neonatal mortality still remains a major challenge for Ghana and other 

lower-middle income countries particularly in Sub-Saharan Africa and southern Asia; 
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countries in these two regions have made the least progress towards reducing neonatal 

mortality (Dickson et al., 2014). Less than 100 countries were able to achieved Millennium 

Development Goal-4 (MDG 4) of reducing under-five mortality by two-thirds (UNICEF, 

2015). Through the newly formulated Sustainable Development Goals (SDG), United 

Nations (UN) member nations have committed themselves to reducing under-five mortality 

and neonatal mortality to 25 and 15 deaths per 1,000 live births respectively by the year 

2030 (Taylor et al., 2015). Meeting this new target is much dependent on understanding 

and reducing the risk of death among newborns at the various neonatal units. Infant and 

neonatal mortality rates are significant measures of health quality, societal welfare and 

socio-economic status of a country (Arafa and Alshehri, 2003; Hsu et al., 2014; Kazembe 

and Kandala, 2015). Therefore, attention must be given to the infant who is less than 28 

days (neonate). 

The survival of a child beyond five years depends much on his survival during the 

neonatal period. Examining the risk factors of neonatal mortality at the various neonatal 

units is necessary as it allows inferences about the quality of care. It could provide insights 

into how neonates could be managed to improve the outcomes of admissions at the neonatal 

unit. Although a lot of studies have been conducted on the subject of neonatal mortality at 

the neonatal intensive care unit (NICU), almost all these studies estimate neonatal mortality 

rate based on number of live births. However, the neonatal unit is not and has never been 

a place of delivery and, therefore, estimating mortality rate at the unit based on live births 

gives room for incorrect reporting and interpretation of the real problem. Separate studies 

have identified place of birth, birth weight, mode of delivery, delayed breastfeeding 
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initiation and age of baby at the time of admission as significant predictors of neonatal 

death (Ajaari et al., 2012; Bacak et al., 2005; Edmond, 2006; Hsu et al., 2014). 

The consistent evolution statistical and mathematical models for interpreting the 

causes and risk factors diseases and death means that statisticians and mathematicians need 

to develop new and improved methods for neonatal mortality. Data on admission outcomes 

at the neonatal unit are considered dichotomous, and therefore, any models that seek to 

explain the risk of death much be accurate, sensitive and specific. A lot of models have 

been developed to understand the risk of mortality in the neonatal unit. Logistic regression 

analysis has become the most efficient tool in analysis data with dichotomous (binary) 

outcomes. A lot of literature has been written on the development of the model and it’s 

uses. Just like any generalized linear model, the logistic regression model has some very 

important underlying assumptions that ensures that the estimates from the model are 

accurate. However, most researchers who have used the logistic regression model pay less 

attention to the regularity conditions of the functions involved in estimating the parameters 

and asymptotic properties of the estimates from the model. A standard procedure has been 

developed for estimating parameters of various regression models. This procedure is the 

Maximum Likelihood estimation method and it has become the best approach to finding 

the parameters of the logistic regression model (van der Vaart, 1998). This thesis uses the 

logistic regression model to find the factors associated with neonatal mortality and applies 

the method of maximum likelihood estimations to find and interpret the parameter 

estimates from the model. 
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The aim of this dissertation is to investigate the major causes and risk factors of 

neonatal mortality and estimate the neonatal mortality rate based on the number of babies 

admitted to the Mother and Baby Unit (MBU), Komfo Anokye Teaching Hospital 

(KATH), Kumasi, Ghana. This dissertation also provides analytical inferences of the 

logistic regression model. Theoretical proves of the regularity conditions of the likelihood 

function for the logistic regression model are also presented in this dissertation. 

1.2 Objectives 

The main objectives of the study are: 

i. To present the method of estimating the parameters of logistic regression. 

ii. To examine the neonatal mortality rate at the neonatal unit of a teaching hospital 

in Ghana. 

iii. To identify the factors associated with neonatal mortality in a teaching hospital in 

Ghana. 

1.3 Literature Review 

Different researchers have taken time to examine neonatal mortality, the predictors, 

the determinants and their risk factors using health survey data. Neonatal mortality is the 

death occurring among children who are less than 4 weeks old (Lander, 2006). It could also 

be defined as death within the first 27 days of birth (Goodman et al., 2002). 
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1.3.1 Neonatal mortality trends 

The close of 2015 brought down the curtains on MDGs, and policy makers accessed 

the impacts and progress made by MDG-4 on child health and made formulations for the 

post 2015 agenda (UNICEF, 2015). Neonatal mortality has seen a slower rate of reduction 

than both maternal and under-five mortality. Highly burden countries, especially in Africa 

have seen the least progress in reducing neonatal deaths. These deaths happen at a fast rate 

and a quick response from health workers and health care providers to reduce it. The major 

causes of the 2.9 annual neonatal deaths have been infections, problems of preterm birth 

and intrapartum conditions (Lawn et al., 2014). 

Providing effective care for women who deliver in health care facilities and their 

newborns could save over 1.3 million neonates annually by the year 2020. Government 

and health policy makers should extend the coverage and quality of antenatal and postnatal 

interventions as this can avert 71% of all neonatal deaths before 2025 (Bhutta et al., 2014). 

The decline rate of neonatal mortality in Africa has been the slowest compared with other 

regions of the world. Africa accounts for over 30% of global neonatal mortality. At the 

current pace of reduction in neonatal mortality, it will take over hundred years for a newly 

born African baby to have the same odds of survival with a baby delivered in Europe or 

North America (Lawn et al., 2014). 

1.3.2 Neonatal factors 

Neonatal and perinatal care has been regionalized effectively in Canada with at 

least 17 neonatal intensive care units across the country. In 2002, Sankaran et al., (2002) 
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used a 22 months’ retrospective data (January 1996 to October 1997) from all the 17 

neonatal intensive care units to determine the differences in neonatal mortality rates. In the 

process, they used information on 19,265 infants admitted to these units. They employed 

univariate and bivariate analysis to determine the characteristics of the study sample and 

to measure the level of correlation between these characteristics and neonatal death. Their 

study revealed that the overall mortality rate among the 17 units was 4 per 1,000 live births 

and the most prevalent neonatal conditions associated with neonatal death were gestational 

age less than 24 weeks, out-born status, and congenital anomalies. Their analysis showed 

that Apgar score less than 7 is also significantly associated with neonatal death. They also 

found that 40% of deaths occurred within the first 48 hours of admission. Therefore, they 

recommended that a lot of attention should be given to preterm babies to increase their 

chances of survival (Sankaran et al., 2002).Adetola et al, conducted a study in 2011 to 

determine the neonatal mortality rate, causes of death and the associated risk factors among 

hospital live births in Ibadan, Nigeria. Their findings revealed that, out of 1,058 live births, 

preterm, low birth weight, severe perinatal asphyxia and infections are some of the leading 

neonatal causes and risk factors of death. They concluded that there is a need for programs 

to improve the skills of neonatal resuscitation and care for LBW infants (Adetola et al., 

2011). 

In 2014, Kayode et al, decided to identify individual and community determinants 

of neonatal mortality. They revealed that individual neonatal characteristics such as place 

of delivery, 5th minute Apgar score, birth weight and gestation have much effect on 

neonatal death (Kayode et al., 2014). Neonatal mortality accounts for more than half of all 
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under-five deaths in developing countries mostly in sub-Saharan Africa. In a three-month 

study aimed at describing the mortality and morbidity patterns in a Tanzanian special care 

baby unit, almost 250 neonatal admissions were audited. The study site was Kilimanjaro 

Christian Medical Centre. The study revealed that low birth weight, prematurity and 

infections account for over 60% of neonatal admissions to the unit (Klingenberg et al., 

2003). 

1.3.3 Maternal factors 

Mothers with birth complications have significantly high risk of neonatal mortality 

in Pakistan. It is very important to implement interventions that focus on antenatal care, 

and managing birth-associated problems in order to reduce neonatal mortality. Effective 

referral systems can also help in reducing neonatal death. Nisar and Dibley (2014) used 

data from the Pakistan Demographic and Health Survey 2006-07 to find the determinants 

of neonatal mortality in Pakistan. They concluded that maternal factors increase the risk of 

neonatal mortality (Nisar and Dibley, 2014). 

With combined data from the Ghana Demographic and Health Survey (GDHS) 

2003 and 2008, hierarchical modeling was used to examine 6900 women. Kayode et al., 

(2014), concluded that using antenatal, delivery and effective postnatal health services 

reduced the risk of neonatal death (Kayode et al., 2014). 

1.3.4 Methods 

Czepiel (2002) investigated the reasons why logistic regression models are mostly 

used to model categorical variables with dichotomous responses. He found that the 
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response values of categorical data are not measured on a ratio scale and their errors too 

are not normally distributed. He also noted that the theory of generalized linear models has 

identified vital properties that are common to a class of probability distributions which 

includes the binomial model. He also presented a mathematical process to estimate the 

parameters of the binomial model which included finding maximum likelihood estimates 

of the log-likelihood function for logistic regression and applying iterative methods. 

(Czepiel, 2002). 

Mai et al (2014) presented optimization algorithms for maximum likelihood 

estimations. They formulated the log-likelihood function of any generalized linear model 

as a system of unconstrained optimization problem and presented methods for solving such 

problems. Their research presented linear search algorithms, gradient algorithms and 

Hessian approximation algorithms for solving maximum likelihood problem (Mai et al, 

2014) 

In a study to estimate the risk factors of gestational diabetic mellitus, Okeh and 

Oyeka (2013) presented a matrix approach to solving the unconstrained log-likelihood 

function to estimate the parameters of logistic regression. They used Newton’s method and 

a Quasi-Newton method to solve the log-likelihood function. Their study concluded that 

the Quasi-Newton approach assures convergence of the iterative process (Okeh and Oyeka, 

2013). 
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1.4 Scope of the study 

The analysis will focus on 5,195 babies admitted to the Mother and Baby Unit 

(MBU) of Komfo Anokye Teaching Hospital (KATH). The determinants of the study are 

birth weight, delivery mode, gestational age, place of delivery and admission age. 

Retrospective primary data collected from the unit from January 2013 to May 2014 will be 

used in this study. The strength of association between the determinants and neonatal 

mortality was accessed with logistic regression. After this, maximum likelihood method 

was used to approximate the coefficients of each determinant in the model while using 

Fisher’s scoring iteration to approximate the coefficients for all the data set. Newton-

Raphson’s iteration with Marquardt damping algorithm was used to find adjusted 

proportions for each variable. 

1.5 Outline of Chapters 

This dissertation is presented in the following structure: Chapter 1 contains the 

background and motivation of this study. It explains the problem of neonatal mortality in 

the neonatal unit, objectives of the study and presents literature that is relevant to the topic. 

Chapter 2 provides detailed methods formulating and explaining the predictive logistic 

regression model. In addition, it provides detailed methods of estimating the parameters of 

the logistic regression model and an overview of the asymptotic properties of the parameter 

estimates from the model. Chapter 3 contains information of the asymptotic properties of 

the logistic regression model. The results after applying the model to real life data is also 
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presented in this chapter. Chapter 4 contains discussions of the results, impact on public 

health administration and conclusions and recommendations of the study.  
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Chapter 2 

Methodology and Basic Knowledge 

2.1 Population and Sample 

 This is a hospital based retrospective study of 5,195 neonates admitted to the 

neonatal unit of a teaching hospital. Data were collected from the neonatal unit of Komfo 

Anokye Teaching Hospital (KATH), Kumasi Ghana. The KATH is a tertiary health facility 

located in a Kumasi, the capital of the Ashanti region. Kumasi is also the second most 

populous city in Ghana. KATH serves as the main referral destination for other hospitals 

in the region as well as the northern sector of Ghana. It has an equipped neonatal unit, also 

called the Mother and Baby Unit (MBU). The neonatal unit has three wards. There is a 

High Dependency Unit (HDU) that admits sick babies referred from the delivery wards. 

There is also a Preterm/Low birth weight (LBW)/Kangaroo Mother Care (KMC) unit that 

admits preterm/LBW babies from the HDU who have been stabilized and there is a septic 

unit that admits out-born sick newborns and infants up to the age of two months. Different 

categories of babies are admitted to the facility. These include preterm babies, low birth 

weight babies, babies with neonatal jaundice and risk of sepsis, babies with congenital 

anomalies. 

2.1.1 Approach to data collection and sample 

 All neonates admitted to the unit during the period from January 2013 through to 

May 2014 were included in the study. They were followed until discharged or death. The 

following information were retrieved from the in-patient files: birth weight, sex, mode of 
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delivery, place of delivery, gestational age, age at admission, Apgar scores and outcome of 

admission. Neonatal mortality is defined as death that occurred within the first 28 days of 

life. This study targets only babies who 28 days or less, hence all babies who are more than 

28 days are excluded from the study. The data was then divided into two, based on place 

of delivered. Place of delivery is categorized into two: either delivered at the KATH or is 

referred from a different health facility. A model is fitted to both datasets and the results 

compared. The overall management of data is presented as a flow diagram in Figure 2.1. 

 

Figure 2.1 Flow diagram of data management 

Total Admissions 
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Less than 28 days 

n=5,195 

 

More than 28 days 
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During the period, there were 5,363 babies admitted to the unit. The overall 

management of data is presented as a flow diagram in Figure 2.1. The birth weight is 

categorized into four groups namely; very low birth weight (VLBW), low birth weight 

(LBW), and normal weight. VLBW is defined as weights less than 1.5 kg; LBW for those 

between 1.5-2.4 kg, normal birth weight for those above 2.4 kg. The mode of delivery is 

divided into three categories. The first group is spontaneous vaginal delivery (SVD) which 

includes all neonates delivered by spontaneous delivery. The next category is vacuum. This 

is made up of all babies delivered by vacuum extraction. Babies delivered through 

caesarean section (C/S) are also categorized as a single group. Apgar score at 5 minutes is 

categorized in three groups; 0-3, 4-7 and above 7. Babies’ gestational age is classified as 

preterm (< 36 weeks), term (> 36weeks) or not stated. The discharge diagnosis is also 

classified into eight groups. The most prevalent conditions were prematurity, respiratory 

distress, infections, congenital anomalies, neonatal jaundice and birth asphyxia. The age as 

of the time of admission was divided into four groups; 1 day, 2-7 days, 8-14 days and 15-

28 days. 

2.1.2 Path diagram for the variables 

Independent variables     Outcome variable 

 

 

 

Birth weight 
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Mode of delivery 

Apgar score 

Gestational age 

Admission age 

Discharge diagnosis 

Outcome of admission 

Survived/Died 

Figure 2.2 Path diagram 
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2.2 Ethical approval 

This study was approved by the Research and Development Unit of KATH and the 

Committee on Human Research, Publications and Ethics, Kwame Nkrumah University of 

Science and Technology, School of Medical Sciences and KATH, Kumasi. The research 

protocol was reviewed and accepted on 10th November, 2015 with reference number 

CHRPE/AP/365/15. 

2.3 Data Analysis 

2.3.1 Generalized linear models 

Every analytic procedure that uses regression models is preceded by a comparison 

of each variable with the outcome of interest. This is also univariate analysis. The 

univariate analysis helps to select the factors that will be used in the multivariate analysis 

(Abreu et al., 2009). The chi-square test is one of the univariate analysis methods used to 

select factors since it considers the ordinal natural of the response variable. Normally, a 

conservative level of significance is used (generally between 10% and 25%) for entering 

the factors (variables) in the model (Hosmer et al., 2004). The best way to explain neonatal 

mortality is by using a linear relationship between the determinants and outcome. However, 

the understanding such a linear model is not very easy when considering different data 

frames and risk factors. More often, there are interactions between these risk factors and 

this hinders the authenticity of the results. Hence, the logistic regression model which is 

part of the family of generalized linear models is widely used to analyze data relating to 

epidemiological studies. 
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The equations used to analyze epidemiological data are forms of generalized linear 

models. A generalized linear model consists of three components: 

1. A random component: this specifies the conditional distribution of a response 

variable, iY  subject to some explanatory variables. 

2. A linear predictor which is a function of the variables. The linear predictor is 

usually of the form: 

0 1 1 2 2 ... ,j jy x x x          

where 
jx  are explanatory variables. 

3. A smooth link function g . The link function is also invertible. This function 

transforms the expectation of the response variable ( )i iE Y   to the linear 

predictors: 

0 1 1 2 2( ) ... .i i j jg y x x x           

The link function is invertible and hence its inverse exists and can be written as: 

1 1

0 1 1 2 2( ) ( ... ).i i j jg y g x x x            
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Table 2.1 Some link functions and their inverses. 

Link ( )i iy g   Inverse: 1( )i ig y   

Identity 
i  iy  

Log ln( )i  exp( )iy  

Inverse 1

i
  1

iy   

Inverse-square 2

i
  1/2( )iy   

Square-root 
i  

2

iy  

Logit 
ln

1

i

i





 
 
 

 
1

1 exp( )iy
 

Log-log ln[ ln( )]i   exp[ exp( )]iy  

Complementary log-log ln[ ln(1 )]i   1 exp[ exp( )]iy   

Probit 1( )i   ( )iy  

Source: Fox, (2008) 

2.3.2 The logistic regression model 

Logistic regression is used to model dichotomous or binary outcome with takes 

values 0 and 1(Bewick et al., 2005). It studies the relation between a dependent variable 

(dichotomous) and a group of independent variables. The responses of linear models are 

not measured on a ratio scale and their errors are not normally distributed (Czepiel, 2002). 

Hence, linear models are inappropriate for the modeling of categorical variables. The 

logistic regression is derived from the binomial probability distribution and it is part of the 

family of generalized linear models (GLMs). It uses logit transform (natural logarithm of 

odds) to show that a particular event will occur. 
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2.3.2.1 Model formulation 

Suppose that the observations under study can be categorized according to the 

variables of interest and then aggregated into b  groups in such a way that all observations 

in a group have identical values for all the variables of interest. Let in  be the number of 

observations (babies) in group i  such that 
1

b

i

i

n N


  (sample size) and let iy  be the number 

of observations who have the attribute of interest (died) in group i . Thus iy  is the number 

of babies who died in group i . The iy  is a realization of a random variable iY  that takes 

the values 0,1,2,..., in . The in  observations in each category are independent and have the 

same observed probability 𝑝𝑖 of death. Hence, the probability distribution function of iY  is 

binomial and given by 

 
 Pr{ } 1 ,

i ii
n yi y

i i i i

i

n
Y y p p

y

 
   

 
 (2.1) 

for 0 i iy n  . Here  1
i ii

n yy

i ip p


  is the probability of obtaining iy  successes and i in y  

failures in some specific order. 

Let y  be a column vector containing elements iy  representing the observed counts 

of the number of successes for each group. The logistic regression model which is 

formulated from the probability distribution function has a linear component which 

contains a design matrix and a vector whose parameters will be approximated. The logistic 

regression model establishes a relation between the logit transformation, the log-odds of 

the probability of success and the linear component. 
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Thus it moves from probability ip  to odds ratio OR; i.e. 
1

i
i

i

p
OR

p



. The log odds 

of success is given by 

 

0

ln
1

K
i

ij j

ji

p
x

p




 
 

 
  for 1,2,...,i b  (2.2) 

where K  is the number of independent variables of interest. 

Let   be a column vector of parameters 
j . Each of the K  independent variables 

has one parameter that corresponds to it and 0  for the intercept. The parameters 

0 1 2, , ,..., K     are to be determined. Equation (2.2) is best applied when considering 

continuous dependent variables. However, for categorical variables, dummy variables are 

created based on the number of categories in each variable. A dummy variable is any 

variable that takes on a finite number of values so that different categories of a variable can 

be identified (Kleinbaum, 1998). For an independent variable with A  categories, then 

exactly 1A  dummy variables must be defined to index these categories. Thus, if there is 

one independent variable with 4 categories, then 3 dummy variables will be included in the 

regression model. This is because; one category is removed from the regression model to 

serve as a reference group. 

Let X  be a design matrix with element 
ijx . The first column elements of each row 

in the design matrix 0 1ix  . And X  has dimensions b  rows and m  columns, where 

m A K   is the number of dummy variables and the column vector   of parameters 

has the dimensions m . 
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Let p  be a column vector of length b  with elements ln
1

i

i

p

p

 
 
 

. Therefore, the 

logistic regression model is presented as 

 

0

ln
1

m
i

ij j

ji

p
x

p




 
 

 


 for 1,2,...,i b  
(2.3) 

or in matrix form as 

p X  

where 

1

ln
1

i

i b

p

p


  
   

   
p ,  

          
( 1)ij b m

x
 

   X  and  

          
( 1) 1

.j m


 
     

2.3.2.2 Method of estimating parameters 

The main aim of the logistic regression model is to estimate the 1m  unknown 

parameters of  . The method usually involved in the parameter estimations is the 

maximum likelihood estimations which involves finding the parameters for which the 

likelihood of the observed data in highest. This method is derived from the probability 

distribution function of the dependent variable. 

Each iy  represents the number of binomial counts in the thi  group (category). 

Hence the joint probability density function f  of iY  is 
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 
 

1

!
( | ) 1 ,

!

i ii

b
n yyi

i i i

i i i i

n
f p p p

y n y





 


  (2.4) 

where ( | )if p   describes  .i iP Y y  There are 
i

i

n

y

 
 
 

 different ways of arranging iy  

successes from in  trials for each group. Equation (2.4) is the joint probability density 

function expressing the values of y  as a function of known fixed values of  . The 

likelihood function differs from the probability density function only in the conditioning 

of the left hand side (White, 2007). Thus the likelihood function L  expresses the values of 

  in terms of known fixed values of y . Hence we have 

 

1

!
( ) : ( ) (1 ) .

( )!
i i i

b
y n yi

i i i i

i i i i

n
L p f p p p

y n y





    


   (2.5) 

 We are looking for maximum likelihood estimates for   in equation (2.5). When 

the first derivative of a function is equated to 0, we get the critical points (maxima or 

minima). For a function of one variable, if the second derivative at the critical point is 

negative, then the critical point is maximum (Co, 2013). This is extended to the likelihood 

function. In order to find the maximum likelihood estimates, the first and second 

derivatives must be derived with respect to every element in  . The factorial terms are 

independent of ip
 and hence are regarded as constants. Equation (2.5) can be written as 

 

1

( | ) (1 ) .
1

i

i

y
b

ni
i i

i i

p
L p p

p

 
  

 
  (2.6) 
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From equation (2.3), we set 

 

exp ,
1

m
i

ij j

j oi

p
x

p




 
  

  
  (2.7) 

and solving for ip  we get 

 

0

0

exp

,

1 exp

m

ij j

j

i m

ij j

j

x

p

x









 
 
 
 

  
 





 (2.8) 

where exp is the exponential function. 

Substituting equations (2.7) and (2.8), equation (2.6) becomes 

 

 
0

01

0

exp

| exp 1 .

1 exp

i

i

n
m

y ij jb m
j

i ij j m
ji

ij j

j

x

L p x

x













  
  

                    
  






  (2.9) 

Equation (2.9) is made up of two products. It is evaluated to give: 

 

 
0 01

| exp 1 exp .

in
b m m

i i ij j ij j

j ji

L p y x x 



 

     
        

     
   (2.10) 

By the monotonicity of the logarithm function (Qi and Chen, 2007), the functional 

value of the likelihood function ( | )iL p  at   will be the same as the functional value of 

the log-likelihood function ( )il p  at  . This allows us to apply natural logarithm to 

equation (2.10). Then we obtain 
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1 0 0

( ) : ln ( ) ln 1 exp .
b m m

i i i ij j i ij j

i j j

l p L p y x n x 
  

     
            

     
     (2.11) 

Equation (2.11) is called the log likelihood function. We find   by maximizing 

( ).il p  

Definition 2.1: 

A maximum likelihood estimator (MLE) ̂  of   is a solution to the maximization 

problem in equation (2.11) which can be written as 

  ˆ arg max il p


    (2.12) 

Assumptions (Gourieroux and Monfort, 1981) 

To be able to find MLE of the log likelihood function, the following assumptions 

are made on the function. 

i. The function ( )il p  is continuous on  . 

ii. The parameter space,   is compact. 

iii. ( )Int  , where Ω is the compact parameter space and ( )Int   is the interior of 

Ω. 

The first two assumptions ensure the existence of ̂ . 

We find MLEs by considering the first and second partial derivatives of ( )il p  

with respect to  . The first derivative of the ( )il p  in equation (2.11) is given by 
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

 

 

0,1,..., .j m  

It is important to note that for each j , 

 

0

.
m

ij j ij

jj

x x
 

 
 

  
  (2.13) 

Then we have, 

 

1 0

0

( )
exp .

1 exp

b m
i i

i ij ij j ijm
i jj

ij j

j

l p n
y x x x

x





 



 
 

    
            

  

 



 

 

Substituting 
0

0

exp

,

1 exp

m

ij j

j

i m

ij j

j

x

p

x









 
 
 
 

  
 





then we obtain 

 
 

1

( ) b
i

i ij i i ij

ij

l p
y x n p x

 

 
 





 

 

 
 

1

.
b

i i i ij

i

y n p x


   (2.14) 
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However, the expected value of each iy , written as ˆ
iy  is given by ˆ ( )i i i iy y n p  

Therefore, equation (2.14) becomes  

 
 

1

( )
ˆ .

b
i

i i ij

ij

l p
y y x

 

 
 





 (2.15) 

Now let, 1 2
ˆ ˆ ˆ ˆ( , ,..., )by y yy  be a column vector with the same dimension as 

1 2( , ,..., )by y yy . Equation (2.15) can be written in matrix form as 

 

0,1,...,

( )
ˆ( ).Ti

j j m

l p




  
  

  

X y y


 (2.16) 

The vector 

0,1,...,

( )i

j j m

l p



  
 

  


 is also referred to as the Fisher Score vector and it is 

represented by ( )iS p . When equated to  , ( )iS p  becomes a system of nonlinear 

multivariate equations. The MLE ̂  satisfies the system of nonlinear equations 

 

0,1,...,

ˆ( )ˆ( ) : i
i

j j m

l p
S p




  
   

  


   (2.17) 

where   is a null vector. A solution to equation (2.17) will give the estimates of ( )il p  

To make sure that these estimates are maximum values, we verify that the matrix of second 

partial derivatives (Hessian matrix) of ( )il p  is negative definite (Golub, 1996). 

The matrix is formed by finding the second partial derivative of each of the 

equations in equation (2.14) with respect to each element denoted by k . The derivative 

of each element in ( )iS p  is given by 
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2

1

( ) b
i

i ij i ij i

ik j k

l p
y x n x p

   

    
  

    



 

         
1 1

b b

i ij i ij i

i ik k

y x n x p
  

    
    
    

   

         
1

.
b

i ij i

ik

n x p
 

  
   

  
  

Since 
0

0

exp

,

1 exp

m

ij j

j

i m

ij j

j

x

p

x









 
 
 
 

  
 





 then we obtain 

 

2
0

1

0

exp
( )

,

1 exp

m

ij jb
ji

i ij m
ik j k

ij j

j

x
l p

n x

x



  








   
   

             
      

   







 (2.18) 

where 0,1,...,j m  and 0,1,...,k m . 

Using exponential differentiation and quotient rule readily gives the solution to 

equation (2.14) presented as: 

  
2

1

( )
( ) : (1 ) ,

b
i

i ij i i ik

ik j

l p
l n x p p x

  

 
    





  (2.19) 

where 0,1,...,j m  and 0,1,...,k m . 

Now let W  be a b b  diagonal matrix with elements (1 )i i i iw n p p  . Thus W  

has the form 
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1 1 1

2 2 2

(1 ) 0 0

0 (1 ) 0

0 0 (1 )b b b

n p p

n p p

n p p

 
 


 
 
 

 

W  

From equation (2.19) the Hessian matrix ip     can be written as 

 2 ( )
: Ti

i

k j

l p
p

 

  
      

  

H X WX


  (2.20) 

Theorem 2.2 (Co, 2013) 

Let ( )il p  be a multivariable function that is twice differentiable on  . The vector 

̂  yields local maximum values for ( )il p  if  

    
ˆ

( )
( ) : i

i

j

l p
S p



 
  





   and 0,T

ip  U U <   

for an arbitrary column matrix U 0 , where   is a null vector. 

Definition 2.3: (Co, 2013) 

The Hessian matrix ip     is said to be negative definite if for any arbitrary 

positive column matrix U , 

T

ip  U U <   . 
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Next we make sure that the solution to equation (2.14) yields maximum values for 

il p   by showing that ip     is negative definite. By applying Theorem 2.2, we can 

show that ip     is negative definite. 

To apply Theorem 2.2, it is important to show that the ip     in equation (2.20) 

is negative semi-definite. 

For an arbitrary column matrix 
( 1) 1j m

u
 

   U , 

    
2

1 0

( )
b m

T T T

i ij j i

i j

p x u w
 

     U U U X WXU =   

iw  is always positive, therefore, T

ip  U U <   . Hence ip     is negative 

definite. Therefore, we have verified that the parameters   of ( )il p are maximum 

likelihood parameters. 

2.3.2.3 The Fisher Scoring iterative method 

Setting each of the Score functions to 0, 

      
1

0,
b

i ij i i ij

i

y x n p x


   

gives a system of 1m  nonlinear equations with 1m  unknowns. 

The solution is a vector with 
j  elements. We have verified that the matrix of 

second partial derivatives is negative definite which means that the functional value of 

( )il p  at   is maximum, thus, we can conclude that this vector contains parameter 

estimates for which each observed data has the highest chances of occurrence. 
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However, solving a system of nonlinear equations is not easy. This system can be 

considered as an unconstrained optimization problem. Most literature suggest the use of 

the Newton Raphson’s algorithm to solving such systems of nonlinear equations (More 

and Cosnard, 1979; Givens and Hoeting, 2005).  

 Let  0
  be the vector of initial approximations for each 

j , then the Newton 

Raphson’s method for multivariate systems is given by 

 
   

1
( 1) ( ) ( ) ( )' ,t t t tl


   

 
      (2.21) 

where max0,1,...,t t  is the number of iterations and maxt  is the maximum number of 

iterations 

However, when considering likelihood functions, the Fisher Scoring algorithm has 

specially been designed to maximize such functions (van den Bos, 2007). The Fisher 

scoring algorithm is similar to the Newton’s method. In the Fisher scoring algorithm, the 

additive inverse of the Hessian matrix is approximated by a Fisher information matrix. The 

Fisher information matrix is represented by  

  ( ) ) .i ip p         (2.22) 

Using the Fisher information matrix to approximate the Hessian matrix, the Fisher 

scoring iterative method is given by 

    ( 1) ( ) 1 ( ) ( )' ,t t t tl        (2.23) 

where max0,1,...,t t . 
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From equations (2.16) and (2.20), the Fisher scoring method is given in matrix 

form by 

 1
( 1) ( ) ˆ( ),t t T T


     X WX X y y   (2.24) 

where max0,1,...,t t . 

The Fisher scoring algorithm is preferred over the Newton Raphson algorithm 

because of two main advantages. 

Firstly, under some regularity conditions (stated in section 2.4) 

2 ln ( | ) ln ( | ) ln ( | )
.i i i

j k j k

f p f p f p
E E

   

       
                   

  
 

Hence the Fisher scoring algorithm requires only the first derivatives of the log-

likelihood function in equation (11). 

Secondly, the probability density function ( )if p    is regular and the information 

matrix  ) )i ip p          is always positive definite, therefore, the Fisher 

information matrix is always invertible and prevents any chances of non-convergence 

unlike the Newton Raphson method (Garthwaite et al., 2002; Nielsen, 2003). This iterative 

procedure in equation (2.24) is linearly convergent which means that  

( 1)

( )

ˆ

lim ,
ˆ

t

tt











 

 
 

for some 0 1  . One extra advantage of the fisher scoring method is that there is an 

inbuilt package in the R program that computers MLEs and their standard errors. 
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2.3.2.4 Sum Contrasts 

In order to obtain the parameters of the categories that were assumed as reference 

groups, the reference groups were changed and the iterations will be repeated. The process 

involves creating a contrast matrix to change the reference group. Tongkumchum and 

McNeil (2009) have presented a method to create contrast matrices. This method also 

allows a comparison between dummy variables and the overall mean percentage. 

2.3.2.5Contrast matrices 

Tongkumchum and McNeil (2009), have proposed a method for constructing 

contrast matrices. However, for this thesis, a new version is used. This method is just a 

modification of what they presented and gives the same results. For a variable K  with A  

categories used as explanatory variables, let the sample size in category a  be an  and the 

corresponding mean be ay  The overall mean percentage (mortality rate) is given by 

 

1

A

a a

a

Total deaths
y r y

Total observations 

 



 (2.25) 

where a
a

n
r

N
  is the proportion of observations in category a . The contrast matrix C  has 

a structure given as 

 

*

I
C

r

 
  
 

 
(2.26) 
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I  is an identity matrix with dimension 1A  and *r  is a row matrix with length 

1A  and entries 1 2 1, ,..., A

A A A

r r r

r r r

  
. One column is deleted to obtain the desired contrast 

matrix which will correspond to the 1A  dummy variables specified in the regression 

model. 

2.3.3 Adjusted probabilities 

The value of each 
j  obtained from equation (2.24) was then substituted into 

equation (2.3) to obtain the logistic regression predictive model. The value of 
j  for 0j   

is known as the intercept and the value of 
j  for 0j   is known as the slope coefficient 

of the variable 
jx . 

The slope coefficients are interpreted as the effect of a unit of change in the variable 

jx  on the predictive model when all the other variables in the model are held constant. 

Based on the value of 
j  a linear relationship between neonatal mortality and its risk 

factors will be established. 

Once the parameters of the vector   were estimated, each 
j  was substituted into 

equation (2.8) to estimate a new ip , represented as ˆ
ip . This ˆ

ip  is known as fitted 

probability. The fitted probabilities ˆ
ip  usually differ from the observed probabilities ip  

and therefore, they were adjusted using a constant   to make them approximately equal to 

the observed probabilities. The adjusted probabilities were then converted into proportions 

(percentages). This helped in making meaningful conclusions. 
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The Marquardt damping factor has been described as the most efficient way for 

adjusting proportions (Lourakis et al., 2005). The Marquardt damping factor was used to 

find adjusted proportions that corresponds to each ip . The factor was used together with 

the Newton Raphson’s iterative procedure. The adjusted proportions for a logistic 

regression has been presented by McNeil (2016), and it is given by  

 100
0,

1 exp( )
ˆ

100
0,

1 exp( )

j

j

i

j

j

k
p

k





 


   

 
 
   

              

            

 (2.27) 

 log 100 / 1k y   . It remains to estimate  . Each ˆ
ip  must satisfy. 

 

1 1

ˆ .
b b

i i i i

i i

n p n p
 

   (2.28) 

The constant   was estimated using the Newton Raphson method with damping 

constant. The method of estimating   is presented by McNeil (2016) as 

 

1

( )
,

( )

i
t t

i

l p

l p
 


 

 




 (2.29) 

(0,1]  is the damping factor and max0,1,...t t  is the number of iterations. The Newton’s 

iterative method with damping factor in equation (2.29) computes the constant   which 



33 

 

was used to adjust the fitted probabilities. An expected number of observations in each 

group was also be estimated. The model will be evaluated by plotting these adjusted 

probabilities against the observed probabilities. 

2.4 Asymptotic Properties of the MLEs 

To be sure that the MLEs are optimum solution to the likelihood function, it is 

important that their asymptotic properties be verified. The principles of maximum 

likelihood were first established in 1920 by R.A Fisher. He also established properties for 

maximizing the likelihood function ( )il p  (Myung, 2003; Aldrich, 1997). 

Proposition 2.3. (Greene 2005). 

Let the random variables iY  be independent and identically distributed with density 

function ( )if p    that satisfies all the regularity conditions. Then there exists a solution ̂  

to the systems of nonlinear equations ( )iS p    and the solution has the following 

properties: 

(a) ̂  is consistent for estimating  ; 

(b) ˆ( )in     is asymptotically normal; 

(c) ̂  is asymptotically efficient. 

Next, we proceed to find the maximum likelihood estimates of equation (2.11). 

Before proceeding, we state and prove the regularity theorem of likelihood functions. 
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Theorem 2.4 (Albert and Anderson, 1984). 

Let ( )if p    be the probability density function of the binomial probability 

distribution. The MLEs of ( )if p    exists and satisfies the asymptotic properties in 

proposition 2.3 if and only if ( )if p    is regular. The conditions for regularity are:  

C1 The probability distributions of the observations are distinct. Thus, if 1 2,   then 

( ) ( ),i if p f p     for any two parameter vectors 1 and 2.   

C2 The distributions have common support. 

C3 Each random variable iY  with probability density function is independent and 

identically distributed. 

C4 The first and second derivatives of ln ( | )if p   satisfy 

   
 ln ( )

0
i

j

f p
E



  
 

  


 and 

 2 ln ( )
)

i

i

k j

f p
p E

 

  
     

   


  . 

C5 Since the Fisher information matrix | )ipI   is a ( 1) ( 1)m m    covariance matrix 

and it is positive definite. We assume that each element in | )ipI   is finite and that the 

matrix is positive definite for all   and 1m  statistics then 

0 1

ln ( | ), ln ( | ),..., ln ( | ),i i i

j

f p f p f p
  

  

  
    for 0,1,...j m  

are independent with probability 1 

C6 The probability density function is three times differentiable and the third derivative 

is bounded by an integrable function ( )M X . Thus 
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3 ln ( | )
( ),i

l k j

f p
M X

  




  


 

where  ( ) .E M X    

Proposition 2.5 Properties of the Fisher Score Vector (Edwards 1984) 

Let ( )if p    be a regular probability density function. Then, 

1.  ( ) ( ) ( )i i i iS p S p f p dp    = 0    ,where 0  is a null vector 

2.    ( ) ( ) ( ) )i i i iVar S p S p S p p            , where iS ( )p   is the transpose of 

iS( ).p  

Theorem 2.6: (Interchange of Integration and Differentiation) 

Let ln ( | )if p   be a differentiable function with respect to  . If there exists a 

function ( )M X    such that 
ln ( | )

( )i

j

f p
M X









, then  

ln ( | ) ln ( | ) .i i i i

j j

f p dp f p dp
 

 


     
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Chapter 3 

Results 

In this chapter, we prove that the likelihood function for the logistic regression is 

regular, and can be used to obtained parameter estimates ̂  in theorem 2.4. The properties 

of the Fisher Score Vector are also discussed and the parameter estimates from the logistic 

regression model are presented for three different data. 

3.1 Regularity of the likelihood function of the logistic regression model 

C1: The probability distributions of the observations are distinct. Thus, if 1 2,   then 

2,p p 
 for any two parameter vectors 1 and 2.   Let  0 11 1 , 1 ,..., 1m    and

 0 12 2 , 2 ,..., 2m   . We are going to show that if 2  , then 
2.p p 

 

We define the logistic regression model for all dummy variables 
jx  as  

 

0 1 1ln ... ,
1

j j

p
x x

p
  

 
      





 (3.1) 

for 0,1, 2,...,j m . And we define 

 
exp

1 exp

m

j j

j o

m

j j

j o

x

p

x









 
 
 
 

  
 






 (3.2) 

Let  0 11 1 , 1 ,..., 1m    and  0 12 2 , 2 ,..., 2m    be parameter vectors. 

Then for two different groups and for all dummy variables we have 
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1

exp 1

.

1 exp 1

m

j j

j o

m

j j
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x
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x
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
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

 
 
 
 

  
 






 (3.3) 

And 

 

2

exp 2

.

1 exp 2

m

j j

j o

m

j j

j o

x

p

x









 
 
 
 

  
 






 (3.4) 

Then if 2    then equations (3.3) and (3.4) are equal. This means that the 

probability density function is well defined. Next we show that if 2   then 
2.p p 

 

Assume that 
1 2p p 

 then 

exp 1 exp 2

.

1 exp 1 1 exp 2

m m

j j j j

j o j o

m m

j j j j

j o j o

x x

x x

 

 

 

 

   
   
   
   

    
   

 

 

 

 

0 0 0 0

exp 1 1 exp 2 exp 2 1 exp 1 .
m m m m

j j j j j j j j

j j j j

x x x x   
   

          
            

             
     (3.5) 

The left hand side of equation (3.5) is given by 

 

0 0 0

exp 1 exp 1 exp 2 .
m m m

j j j j j j

j j j

x x x  
  

        
         
           

    
 

And the right hand side is given by 



38 

 

 

0 0 0

exp 2 exp 1 exp 2 .
m m m

j j j j j j

j j j

x x x  
  

        
         
           

    
 

Both sides have a common term, hence equating the left hand side to the right 

hand side then we have 

 

0 0

exp 1 exp 2 .
m m

j j j j

j j

x x 
 

   
   

   
   

 

Taking natural logarithm of both side, 

 

0 0

1 2,
m m

j j

j j

x x 
 

   
 

and then, 

 
 

0

1 2 0.
m

j j j

j

x 


   
 

Since 2  , then  

 
0

1 2 0.
m

j j

j

 


   

Therefore,  

0

0.
m

j

j

x


  

However, since jx  are independent, we get a contradiction. Thus 
2.p p 

 

Therefore, this shows that the distributions are unique, if 2  , then the observations 

are distinct. 
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C2: The distributions have common support. The logistic regression model for each of 

the b  groups, is given by 

exp

,

1 exp

m

j j

j o

i m

j j

j o

x

p

x









 
 
 
 

  
 





bi ,...,2,1 . 

The variables are 1 2, ,..., mx x x  and the vector of parameters   takes the values

j   . Each group follows the same model. Hence, the distributions have common 

support. 

C3 Each random variable iY  with probability density function ( | )if p   is independent 

and identically distributed. This is straight forward from the observations. Each group has 

an independent probability with density function ( | )if p  . 

C4 The first and second derivatives of ( | )if p   satisfy 

    ln ( | ) 0if p   and 
2 ln ( | )

) .i
i

k j

f p
p



 

 
     

   

   

The proof for condition C4 is exactly as in proposition 2.5 in section 3.2. 

C5 Since the Fisher information matrix ( | )ipI   is a ( 1) ( 1)m m    covariance matrix 

and it is positive definite. We assume that each element in ( | )ipI   is finite and that the 

matrix is positive definite for all   and 1m  statistics then 

0 1

ln ( | ), ln ( | ),..., ln ( | ),i i i

j

f p f p f p
  

  

  
    for 0,1,...j m  

are independent with probability 1 
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To prove this condition, we take the first derivative of the logarithm of the 

probability density function for each group. This is given as 

 

0

0

exp
ln ( | )

, 

1 exp

m

j j j

j

j m
j

j j

j

nx x
f p

yx  j = 0,1,...,m,

x










 
 

   
  

  
 






 

 

where y  is the number of observations of interest in the group and n  is the total sample 

size of the group. 

We write the vectors in 
ln ( | )

j

f p








 in a way so that they are linearly dependent. 

Then we have: 

 

0 0

0 0
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j j j j jm m
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 
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   
   
    
   

    
   

 
 
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This implies that  
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Factorising common terms gives 
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And 
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y  and n  are natural numbers, and the exponential function is irrational, therefore, 

it means that 
0

0

exp

0

1 exp

m

j j

j

m

j j

j

x

y n

x









 
 
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 

  
 
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. Thus, 

 

0

=
m

j j j

j

x x 


  
 

Since the joint distribution for all 
jx  is continuous, the probability P  of each 

jx  is 

 

0

1
( )

0

m

j j j

jj

x x
P x

otherwise







 










 

 

This implies that the statistics are independent. 

C6 The probability density function is three times differentiable and the third derivative 

is bounded by an integrable function ( )M X . Thus 

 3 ln ( | )
( ),i

l k j

f p
M X

  




  


 

 

where  ( ) .M X    

Notice that the probability density function ( | )if p   is equal to the likelihood 

function ( | )iL p , therefore, ln ( | ) ( | )i if p l p  . 
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We find the first, second and third derivatives of the log-likelihood function. Since 

the first derivative is the score vector which is written as 
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The second partial derivative from equation (19) is 

 
 

2

1

( )
( ) (1 ) .

b
i

i i ij i i ik

ik j

l p
l p n x p p x

  


    

 


 
   

 

Therefore, the third derivative with respect to l  is 
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(1 ) 1 (1 )
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i ij ik i i il i i ik
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n x x p p x p p x

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Since  (1 ) 1 (1 ) 1,i i i i ikp p p p x     we obtain 
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i ij ik il

il k j

f p
n x x x

   


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
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1

b

i ij ik il

i

n x x x


  
 

 ( ),M X   

and  ( ) .E M X    

We have verified that the probability density function is regular and, therefore, the 

MLE ̂  for   exists and satisfies proposition 2.3. Next we proceed to find the parameters 

of the model using equation (2.23) 

3.2 Properties of the Fisher Score Vector 

Recall that the Score vector 

( | )
( ) i

i

j

l p
S p




  


0,


  

where 0  is a null vector. For each 0,1, 2,...,j m  

 

1 1 0,1,2,...,0,1,2,...,

ln ( | )
( | ) ( | ) .

b b
i

i i

i ij j mj m

f p
S p S p

  

   
        
 


   

 

The Hessian matrix is given by 



44 

 

 2 2 2

2

0 0 1 0

2 2 2

2

1 0 1 1

2 2 2

0 1 ( 1) ( 1)

( | ) ( | ) ( | )

( | ) ( | ) ( | )

.

( | ) ( | ) ( | )

i i i

j

i i i

j

i

i i i

k k k j m m

l p l p p

l p l p p

p

l p l p l p

    

    

     
  

   
 

     
   
 
     

   
 
 
 
   
 
      

)

  

  



  

 

 

The Fisher Information matrix ( )ip   as defined in equation (2.22) is the negative 

of the expectation of the Hessian matrix. Therefore, ( )ip   is given by 
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Then for all b  groups, 
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Properties of the Fisher Score Vector 

1.  ( ) ( ) ( )i i i iE S p S p f p dp    = 0,   where 0  is a null vector. 

By definition, the probability density function for each group ( )if p    integrates 

to 1. Therefore, 

 
( | ) 1.i if p dp    

 

The Fisher Score function for each ( | )if p   is given by ( )iS p , 

 
 ( ) ( ) ( | ) .i i i iE S p S p f p dp      

 

But ( | ) ln ( | )i i

j

S p f p






  , therefore, 

 
 

ln ( | )
( ) ( | )i

i i i

j

f p
E S p f p dp




 




   
 

 1
ln ( | ) ( | ) .

( | )
i i i

i j

f p f p dp
f p 




  


 
 

Applying the theorem 2.6 and by C6, we have 
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2 Next we show that    ( ) ( ) ( ) )i i i iVar S p S p S p p          , where ( )iS p   is 

the transpose of ( ).iS p  

The Score vector ( )iS p  is given by 
( | )

( ) i
i

j

l p
S p




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


 . The probability density 

function ( | )if p   is the same as ( | )iL p , hence, ln ( | ) ( | )i if p l p  . 

Now since 
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This results in a square matrix given as 
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     

 

 

 

(3.6) 

for 0,1, 2,...,j m  and 0,1, 2,...,k m . 
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The expected value of the matrix is equal to the expected value of each element in 

the matrix. The expected value of each element is given by 

 ( | ) ( | ) ln ( | ) ln ( | )
( | ) ,i i i i

i i

j k j k

l p l p f p f p
E f p dp

   
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   
  
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f p f p
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 

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Factorizing common terms gives 

 ( | ) ( | ) ( | ) ( | )1
.

( | )

i i i i
i

j k i j k

l p l p f p f p
E dp

f p   

       
              
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We let 
( | )

k

i

k

f p
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








 and 

( | )
j

i

j

f p
F










. Then we can write equation (3.6) as, 
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
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Now, we show that the expectation of the Hessian matrix ip )  is the same as 

the matrix above. Recall that  
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 and  

Expectation of a matrix is equal to the expectation of each element in the matrix. 

Hence,  
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Each element in  iE p  )   is evaluated as 
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Applying the product rule of differentiation to the right hand side gives 
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Now by Theorem 2.6, we can interchange differential and integral. Hence we have 
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Therefore, 
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It follows that  

    ( ) .i iVar S p E p    )    

Hence, we have verified that 

    ( ) ).i i iVar S p E p p               

3.3 Asymptotic normality of MLE 

The probability density function used in this thesis is regular, hence, from 

proposition 2.3, the MLEs obtained from the logistic regression models are asymptotically 

normal. Asymptotic normality means that, under regularity conditions, the MLE for each 

random variable approaches normal distribution and the convergence rate is in . 

Definition 3.1 

Let ( )if p    be a probability density function and let ( ) ln ( )i il p f p     be the 

corresponding log-likelihood function. There exists a true but unknown vector 

0 1( , ,..., )m    which is a maximizer of the likelihood function (Gourieroux and 

Monfort, 1981). This is written as  

 argmax ( )il p  


   

Theorem 3.2 (Pawitan, 2001). 

Let ( )if p    be a probability density function. If ( )if p    is regular and if ̂  is 

the MLE to ( ),il p  then 
1ˆ( .i

i

n
p


 

  
   

 

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Thus, the distribution assumes normality as in  . 

Proof: 

At the MLE ̂ , the first derivative of the log-likelihood function gives a null 

vector. Thus, 

 

ˆ

( )ˆ( ) :  i

j

l p
l





  


0.

 

 
  

(3.8) 

We can write the Taylor series expansion around the true parameter vector  . This 

gives 

 2ˆ( )ˆ ˆ: ( ) ( ) ( ) ( ) ( ) ...
2

l l l l        
 

       (3.9) 

By the Mean Value Theorem (MVT), we can truncate the Taylor series expansion 

in equation (3.9) at the second term. Then we have 

 ˆ( ) ( ) ( ).l l        (3.10) 

Rearranging and multiplying both sides of equation (3) by in  we obtain 

 ( )ˆ( .
( )

i

i

n l
n

l







  


 (3.11) 

However, ( ) ),l H(   by the law of large numbers (Pawitan, 2001). Hence 

equation (3.11) can be written as 
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  H(


  


 (3.12) 

where   is a point between   and ̂ . 

The numerator on the right hand side of equation (3.11) is given as, 
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where 
1

1
( )

n

i

ii

l p
n 

    is the first derivative of the normalized log-likelihood function 

(Green, 2005). Recall that the expectation of the Fisher Score vector is a Null vector 0 . 

Hence we can write 
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Applying the Central Limit Theorem (Green 2005), equation (3.13) converges to 

normal distribution. Thus 
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Combining equation (3.12) and equation (3.15), then we can write equation (3.11) 

as 
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From preposition 2.5, ( ( )) ( ).i iVar l p p  I     Hence we have 

 1ˆ( .i

i

n
p


 

  
   

 


 

Therefore, the distribution converges to normal distribution and in  is the 

convergence rate. 

3.4 Preliminary Analysis and Results 

 A total of 5,195 babies were admitted to the neonatal unit from January 

2013 to May 2014. Out of the 5,195 babies admitted to the unit, 3,022 (58.2%) were 

delivered at the KATH while 2,173 (41.8%) were delivered and referred from outside the 

KATH. More than half of the babies were males (55%). VLBW constituted 16.3% of the 

study sample while 60.5% of the babies were of normal weight. Majority of the babies 

(77.7%) had 5 minutes Apgar score within 8-10. By gestation, more than half (66.1%) had 

their gestational age missing and 13.7% were preterm. Prematurity was responsible for 

24.7% of neonatal admissions followed by infections which accounted for 23.6%. 

Distribution of neonatal characteristics according to place of delivery is presented in table 

3.1. 

Preliminary analysis of the study sample revealed the proportions of neonatal 

mortality in each variable. The analysis showed that 20.5% of females and 20.0% of males 

died during the period. The proportion of death among males that were referred was much 

higher (27.4%) than males that were delivered at KATH (14.7%). There were very high 

proportions of death among babies with 5 minute Apgar score of less than 4 (67.3%). 
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Referred babies with 5 minute Apgar less than 4 recorded 61.1% of mortality while that 

for non-referred babies was 70.7%. There was an overall 32.7% of death among babies 

with 5 minute Apgar score 4-7; babies referred had 42% of neonatal death and babies not 

referred had 28% of neonatal death. 
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Table 3.1 Distributions of the variables 

Variables Survived (%) Died (%) p-value 

Gender   0.7186 

Female 1860 (79.5) 480 (20.5)  

Male 2282 (80) 573 (20)  

Birth Weight   < 0.01 

VLBW 431 (50.9) 416 (49.1)  

LBW 1029 (85.3) 178 (14.7)  

Normal 2682 (85.4) 459 (14.6)  

5 Minute Apgar score   < 0.01 

0-3 66 (32.7) 136 (67.3)  

4-7 644 (67.3) 313 (32.7)  

8-10 3432 (85) 604 (15)  

Gestational age   < 0.01 

Term 963 (91.7) 87 (8.3)  

Preterm 487 (68.5) 224 (31.5)  

Not Stated 2692 (78.4) 742 (21.6)  

Delivery Mode   < 0.01 

SVD 2358 (76.2) 736 (23.8)  

C/S 1736 (84.8) 311 (15.2)  

Vacuum 48 (88.9) 6 (11.1)  

Place of Delivery   < 0.01 

KATH 2573 (85.1) 449 (14.9)  

Referred 1569 (72.2) 604 (27.8)  

Admission age   < 0.01 

1 day 3210 (78.3) 888 (21.7)  

2-7 days 728 (85.1) 127 (14.9)  

8-14 days 102 (86.4) 16 (13.6)  

15-28 days 102 (82.3) 22 (17.7)  

Diagnosis   < 0.01 

Prematurity 888 (69.1) 397 (30.9)  

Respiratory Distress 208 (72.2) 80 (27.8)  

Infections 1120 (91.7) 102 (8.3)  

Congenital anomalies 377 (81.1) 88 (18.9)  

Neonatal Jaundice 799 (91.8) 71 (8.2)  

Birth asphyxia 638 (67.5) 307 (32.5)  

Others 112 ((93.3) 8 (6.7)  
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The proportion of death in VLBW was 49.1%. By gestation, preterm birth had the 

highest proportion of neonatal death (31.5%) while 21.6% of babies with missing gestation 

also died. According to the discharge diagnosis, birth asphyxia was responsible for more 

neonatal deaths. 32.5% of asphyxiated babies couldn’t survive followed by prematurity, 

with a proportion of 30.9%. 

Every analytic procedure that uses regression models is preceded by a comparison 

of each variable with the outcome of interest. The analysis is accompanied by a significance 

level. This is also univariate analysis. The univariate analysis helps to select the factors that 

will be used in the logistic regression analysis. Pearson’s chi-square test was used to test 

for the association of each variable with the outcome (neonatal mortality) at 95% 

significance level. Thus, for a variable to be significantly associated with neonatal 

mortality, the p-value must be less than 0.01. 

From the univariate analysis only sex showed no significant association with 

neonatal mortality among both referred babies and those delivered at KATH. Thus, it was 

excluded from the multivariate analysis. Other variables such as birth weight, 5 minute 

Apgar score, gestational age, delivery mode, admission age and main diagnosis were all 

significantly associated with neonatal mortality. Table 3.2 shows the proportion of neonatal 

deaths in each category and the p-values among babies delivered at KATH 

The results from univariate analysis on babies delivered at KATH suggest that 5 

minute Apgar score, birth weight, gestational age, delivery mode, admission age and 

discharge diagnosis are significant predictors of death. 
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Table 3.2 Proportions of mortality in each category with p-values (KATH). 

Variables Survived (%) Died (%) p-value 

Gender   0.7768 

Female 1170 (84.9) 208 (15.1)  

Male 1403 (85.3) 241 (14.7)  

5 Minute Apgar   < 0.01 

0-3 38 (29.2) 92 (70.8)  

4-7 466 (71.7) 184 (28.3)  

8-10 2069 (92.3) 173 (7.70)  

Birth Weight   < 0.01 

VLBW 221 (49.7) 224 (50.3)  

LBW 682 (91.2) 66 (8.80)  

Normal 1670 (91.3) 159 (8.70)  

Gestational age   < 0.01 

Term 853 (93.3) 61 (6.7)  

Preterm 348 (70.3) 147 (29.7)  

Not Stated 1372 (85.1) 241 (14.9)  

Delivery Mode   < 0.01 

SVD 1180 (81.9) 261 (18.1)  

C/S 1353 (88) 185 (12)  

Vacuum 40 (93) 3 (7.0)  

Admission age   < 0.01 

1 day 2345 (84.2) 441 (15.8)  

2-7 days 199 (97.1) 6 (2.90)  

8-14 days 14 (93.3) 1 (6.7)  

15-28 days 15 (93.7) 15 (6.30)  

Discharge Diagnosis   < 0.01 

Prematurity 556 (71.4) 223 (28.6)  

Respiratory Distress 169 (84.5) 31 (15.5)  

Infections 697 (96.3) 27 (3.70)  

Congenital anomalies 209 (90.1) 23 (9.90)  

Neonatal Jaundice 449 (97.0) 14 (3.00)  

Birth asphyxia 408 (76.1) 128 (23.9)  

Others 3 (3.40) 85 (96.6)  
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The univariate analysis conducted on referred babies revealed that both sex and 

delivery mode are not significantly associated with neonatal death. These variables have 

p-values more than 0.01. They were, thus, excluded from the multivariate analysis. Table 

3.3 presents the univariate results and proportions of neonatal mortality among babies 

referred to the neonatal unit. 

3.5 Results from the logistic regression model 

The logistic regression model was fitted based on the results from the univariate 

analysis. Variables that failed to meet significance from the univariate analysis were 

excluded from the logistic regression model. Thus the model was defined as in equation 

(2.3). The value of j  for 0j  is known as the intercept and the value of j for 0j   is 

known as the slope coefficient of variable jx . The slope coefficients are interpreted as the 

effect of a unit of change in the variable jx  on the predicted logits when all the other 

variables in the model are held constant. j  were used to calculate the ˆ
ip . If 0j   for 

any dummy variable, it is means the association between that variable and the outcome is 

positive; if 0j   it implies that there is no association between the variable and the 

outcome. When 0j   it implies that there is a negative association between the variable 

and outcome. 
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Table 3.3 Proportions of mortality in each category with p-values (Referred). 

Variables Survived (%) Died (%) p-value 

Gender   0.692 

Female 690 (71.7) 272 (28.3)  

Male 879 (72.6) 332 (27.4)  

5 Minute Apgar   <0.01 

0-3 28 (37.5) 44 (62.5)  

4-7 178 (58.0) 129 (42.0)  

8-10 1363 (76.0) 431 (24.0)  

Birth weight   < 0.01 

VLBW 210 (52.2) 192 (47.8)  

LBW 347 (75.6) 112 (24.4)  

Normal 1012 (77.1) 300 (22.9)  

Gestational age   < 0.01 

Term 110 (80.9) 26 (19.1)  

Preterm 139 (64.4) 77 (35.4)  

Not Stated 1320 (72.5) 501 (27.5)  

Delivery mode   0.22 

SVD 1178 (71.3) 475 (28.7)  

C/S 383 (75.2) 126 (24.8)  

Vacuum 8 (80.0) 3 (20.0)  

Admission age   < 0.01 

1 day 865 (65.9) 447 (34.1)  

2-7 days 529 (81.4) 121 (18.6)  

8-14 days 88 (85.4) 15 (14.6)  

15-28 days 87 (80.6) 21 (19.4)  

Discharge Diagnosis   < 0.01 

Prematurity 332 (65.6) 174 (34.4)  

Respiratory Distress 39 (44.3) 49 (56.7)  

Infections 423 (84.9) 75 (15.1)  

Congenital anomalies 168 (72.1) 65 (27.9)  

Neonatal Jaundice 350 (86.0) 57 (14.0)  

Birth asphyxia 230 (56.2) 179 (43.8)  

Others 27 (84.4) 5 (15.6)  
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3.5.1 Results from KATH deliveries 

From the univariate analysis that was conducted to the babies delivered at KATH, 

only gender was not significantly associated with neonatal mortality. Thus, all the 

remaining 6 main variables were included in the logistic regression model. From the 

categorization, there were 23 dummy variables were obtained. The variables were arranged 

in the same order as shown in table 3.2. Using equation (2.24) and setting 
(0)  as the initial 

guess, the vector   of parameters is presented in Table 3.4 

Based on the results from the logistic regression, birth weight, 5 minute Apgar 

score, gestational age, and discharge diagnosis had p-value <0.01, while admission age and 

delivery mode had p-values > 0.01. 

Table 3.4 Parameter estimates from the logistic regression model (KATH) 

Variable Sample size Coefficient Standard 

Error 

p-value 

Intercept  -2.4686 0.0887 < 0.01 

5 Minute Apgar    <0.01 

0-3 130 2.6367 0.2278 < 0.01 

4-7 650 0.7041 0.1113 < 0.01 

8-10 2242 -0.3570 0.0368 < 0.01 

Birth Weight    <0.01 

VLBW 445 1.9847 0.1755 <0.01 

LBW 748 -0.2692 0.1301 <0.01 

Normal 1829 -0.3728 0.0754 <0.01 

Gestational age    <0.01 

Term 914 -0.4464 0.1212 <0.005 

Preterm 495 0.3339 0.1433 <0.005 

Not Stated 1614 0.1505 0.0622 0.262 

     



61 

 

Table 3.4 (Continued) 

Variable Sample size Coefficient Standard 

Error 

p-value 

Intercept  -2.4686 0.0887 < 0.01 

Delivery mode    0.689 

SVD 1441 -0.0299 0.0689 0.595 

C/S 1538 0.0406 0.0652 <0.005 

Vacuum 43 -0.4490 0.6751 0.478 

Admission age    0.994 

1 day 2786 0.0039 0.0313 0.562 

2-7 days 205 -0.0790 0.4125 0.874 

8-14 days 15 0.1465 1.1092 0.906 

15-28 days 16 0.1965 1.0523 0.855 

Discharge Diagnosis    <0.01 

Prematurity 779 0.0415 0.1526 0.713 

Respiratory Distress 200 1.0286 0.2193 0.055 

Infections 724 -0.4811 0.1743 0.649 

Congenital anomalies 232 0.6690 0.2398 0.186 

Neonatal Jaundice 463 -1.0822 0.2597 0.184 

Birth asphyxia 536 0.8847 0.1501 0.082 

Others 88 -0.2048 0.5943 <0.01 

 

This indicates that the association of admission age and delivery mode with 

neonatal mortality is very weak. A reduced logistic regression model is fitted using only 

the variables that are significant from the first model. Thus, 5 minute Apgar score, birth 

weight, gestation and discharge diagnosis are used in the reduced model. The results from 

the reduced model are presented in the table 3.5 below. 
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Table 3.5 Parameter estimates from the reduced model (KATH) 

Variable Sample size Coefficient Standard 

Error 

p-value 

Intercept  -2.4656 0.0887 < 0.01 

5 Minute Apgar    <0.01 

0-3 130 2.6120 0.2247 < 0.01 

4-7 650 0.6870 0.1070 < 0.01 

8-10 2242 -0.3511 0.0351 < 0.01 

Birth Weight    <0.01 

VLBW 445 1.9947 0.1747 <0.01 

LBW 748 -0.2623 0.1299 0.043 

Normal 1829 -0.3781 0.0751 <0.01 

Gestational age    <0.01 

Term 914 -0.4411 0.1207 <0.01 

Preterm 495 0.3345 0.1431 0.019 

Not Stated 1614 0.1473 0.0618 0.017 

Discharge Diagnosis    <0.01 

Prematurity 779 0.0436 0.1525 0.775 

Respiratory Distress 200 1.0353 0.2190 <0.01 

Infections 724 -0.4810 0.1741 <0.01 

Congenital anomalies 232 0.6656 0.2389 <0.01 

Neonatal Jaundice 463 -1.0943 0.2574 <0.01 

Birth asphyxia 536 0.8874 0.1489 <0.01 

Others 88 -0.1847 0.5930 0.755 

 

Figure 3.1a displays the Q-Q plot of the residuals. The plot indicates that the logistic 

regression model has provided an acceptable fit for the outcome variable (neonatal 

mortality) and predictor variables (5 minute Apgar score, birth weight, gestation and 

discharge diagnosis) among babies delivered at KATH. The residuals lie along a straight 

line, which means that parameters are normally distributed. Figure 3.1b shows the plot of 

the expected and observed values. The values almost match each other in a vertical pattern. 
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Figure 3.1a Normal quantile-quantile plot of residuals 

 

Figure 3.1b Expected and observed values 



64 

 

Fitted probabilities for each category were calculated from  . Observed and fitted 

probabilities of variables that were significant from the logistic regression model are 

presented in Fig 3.2 with the overall mortality rate of the babies delivered at KATH. 

 

Figure 3.2 Confidence interval plot from the logistic regression model from the logistic 

regression model for babies delivered at KATH 

The horizontal red line is the mean mortality rate.  

A Receiver Operating Characteristic (ROC) curve (Figure 3.3) with corresponding 

ROC bar plot (Figure 3.4) of this model shows that the predictive power of the model (area 

under the curve) is 72.53%. This predictive power indicates that the logistic regression 

model for babies delivered at KATH and referred to the neonatal unit correctly predicts 

72.53% of neonatal deaths. This prediction is based on all four variables, 5 minute Apgar 

score (apGrp), birth weight (wtGrp), discharge diagnosis (Diag) and gestational age (Ges).  
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Figure 3.3 ROC curves for logistic regression model from KATH deliveries 

 

Figure 3.4 ROC bars for logistic regression model from KATH deliveries 
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The independent variables, 5 minute Apgar score (apGrp), birth weight (wtGrp), 

discharge diagnosis (Diag), and gestation (Ges) individually accounted for 45.00%, 

41.30%, 46.96% and 29.76% of mortality respectively. When the variables are combined 

in pairs, 5 minute Apgar score and birth weight explains 65.69% of mortality and discharge 

diagnosis and gestation accounts for 66.05% mortality. A model with three variables, 5 

minute Apgar score, birth weight and gestation explains 67.80% while a different model 

with (Figure 3.4). The ROC curve also shows that all the variables predict a significant 

level of neonatal mortality. 

3.5.2 Results from Referred babies 

After univariate analysis, the results revealed that gender and delivery mode were 

not significantly associated with neonatal death among babies referred to the neonatal unit. 

Therefore, birth weight, 5 minute Apgar score, gestational age, admission age and 

discharge diagnosis were included in the logistic regression model. The model was 

formulated with 20 dummy variables. The solution vector   of parameters is obtained as 

presented in table 3.6 
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Table 3.6 Parameter estimates from the logistic regression model (Referred) 

Variable Sample Size Coefficient Standard 

Error 

p-value 

Intercept  -1.8309 0.5261 <0.01 

5 Minute Apgar    0.01 

0-3 72 0.7757 0.2515 0.02 

4-7 307 0.2444 0.1238 <0.01 

8-10 1794 -0.0730 0.0239 < 0.01 

Birth Weight    <0.01 

VLBW 402 1.3281 0.1502 <0.01 

LBW 459 -0.0623 0.1049 0.55   

Normal 1312 -0.3851 0.0589 <0.01 

Gestational age    0.09 

Term 136 -0.4310 0.2252 0.04 

Preterm 216 -0.0770 0.1595 0.62 

Not Stated 1821 0.0413 0.0237 0.07 

Admission age    0.38 

1 day 1312 0.0531 0.0516 0.30 

2-7 days 650 -0.0437 0.0955 0.492 

8-14 days 103 -0.4489 0.2824 0.096 

15-28 days 108 0.0453 0.2505 0.977 

Discharge Diagnosis    <0.01 

Prematurity 506 -0.4852 0.1406 0.662 

Respiratory Distress 88 1.5113 0.2228 <0.01 

Infections 498 -0.3648 0.1156 0.832 

Congenital anomalies 233 0.4041 0.1481 0.195 

Neonatal Jaundice 407 -0.4462 0.1371 0.713 

Birth asphyxia 409 0.9532 0.1205 0.016 

Others 32 -0.2577 0.4864 <0.01 

After fitting the logistic regression model, gestational age and admission was found 

to be weakly associated with neonatal death. Their p-values were greater than 0.01. The 

significant variables were used to fit the final reduced model and subsequently used to 

create the plot. Parameter estimates from the reduced model are presented in table 3.7 
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Table 3.7 Parameter estimates from the reduced model (Referred) 

Variable Sample Size Coefficient Standard Error p-value 

Intercept  -1.0992 0.0545 <0.01 

5 Minute Apgar    <0.01 

0-3 72 0.7912 0.2506 <0.01 

4-7 307 0.2463 0.1214 0.04 

8-10 1794 -0.0740 0.0234 < 0.01 

Birth Weight    <0.01 

VLBW 402 1.3518 0.1469 <0.01 

LBW 459 -0.0712 0.1040 0.49  

Normal 1312 -0.3893 0.0573 <0.01 

Discharge Diagnosis    <0.01 

Prematurity 506 -0.4774 0.1387 <0.01 

Respiratory Distress 88 1.4966 0.2196 <0.01 

Infections 498 -0.3879 0.1130 <0.01 

Congenital anomalies 233 0.3966 0.1471 <0.01 

Neonatal Jaundice 407 -0.4565 0.1310 <0.01 

Birth asphyxia 409 0.9865 0.1152 <0.01 

Others 32 -0.2206 0.4854 0.65 

From the reduced logistic regression analysis, all the variables remained 

significantly associated with neonatal mortality. Babies with VLBW, babies with 

Respiratory distress and babies with 5 minute Apgar score had very high risk of neonatal 

death and corresponding high mortality rates. Figure 3.5 shows the plot of observed and 

fitted probabilities of the significant variables. 
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Figure 3.5 Observed and fitted probabilities from the reduced logistic regression model 

for babies referred to the neonatal unit 

The Q-Q plot and the plot of expected vs. observed are presented in Figure 3.6a and 

3.6b. All the residuals lie on the slope which means that they are normally distributed. 

 

Figure 3.6a Normal quantile-quantile plot of residuals 
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Figure 3.6b Expected and observed values 

A similar ROC curve was generated for the model (Figure 3.7). 

 

Figure 3.7 ROC curves for logistic regression model from referred deliveries 
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The three variables used 5 minute Apgar score, birth weight and discharge 

diagnosis could explain a very low variation in the mortality of babies referred to the unit. 

The area under the curve is 43.7. Each variable used in the model, Apgar score, birth weight 

and diagnosis explains 15.96%, 19.38% and 35.06% respectively. Combining two 

variables, birth weight and diagnosis, could account for 42.10% of mortality (Figure 3.8) 

 

Figure 3.8 ROC bars for logistic regression model from referred babies. 

3.5.3 Results from combined data 

Univariate and multivariate analyses were repeated for the combined data. The 

univariate analysis showed that sex had no association with neonatal death. Place of 

delivery was included in logistic regression model; hence, the model was fitted with 7 

variables which are categorized into 18 dummy variables. The solution vector of 

parameters obtained from the model is presented in Table 3.8. The multivariate analysis 

further revealed that admission age and delivery mode were not significantly associated 
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with the outcome. Babies having VLBW had 7 times higher risk of death and the 

percentage of mortality was also above the mean. Babies referred to the neonatal unit had 

a higher percentage of mortality. Babies with birth asphyxia, congenital anomalies, 

infections and respiratory distress had higher neonatal mortality than the overall mean. 

To construct the reduced model, admission age and delivery mode were not 

included. The reduced model was fitted with 5 independent variables. The results revealed 

that all the five variables are significantly associated with neonatal death (Table 3.9) 

The Q-Q plot presented in Figure 3.9 shows that the parameters are normally 

distributed. All the independent variables and dummy variables remained significantly 

associated with neonatal death. They were, thus, used to generate the confidence interval 

plot of proportions presented in Figure 3.10. 
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Table 3.8 Parameter estimates from the logistic regression model (Overall) 

Variable Sample Size Coefficient Standard Error p-value 

Intercept  -2.77054 0.39643 <0.01 

5 Minute Apgar    <0.01 

0-3 202 1.8982 0.1693 <0.01 

4-7 957 0.5057 0.0798 <0.01 

8-10 4036 -0.2149 0.0214 < 0.01 

Birth Weight    <0.01 
VLBW 847 1.6085 0.1123 <0.01 

LBW 1207 -0.1646 0.0793 0.04 

Normal 3141 -0.3705 0.0452 <0.01 

Gestational age    <0.01 
Term 1050 -0.5545 0.1072 <0.01 

Preterm 711 0.2492 0.1030 0.02 

Not Stated 3434 0.1180 0.0332 <0.01 

Delivery mode    0.44 

SVD 3094 0.0189 0.0356 0.76 

C/S 2047 -0.0160 0.0537 0.60 

Vacuum 54 -0.4769 0.4928 0.33 

Admission age    0.55 

1 day 4098 -0.0189 0.0254 0.46 

2-7 days 855 0.0957 0.1079 0.38 

8-14 days 118 -0.2837 0.2851 0.32 

15-28 days 124 0.2354 0.2511 0.35 

Place of Delivery    <0.01 
KATH 3022 -0.3660 0.0381 <0.01 

Referred 2173 0.5090 0.0530 <0.01 

Discharge Diagnosis    <0.01 
Prematurity 1285 -0.2410 0.1006 0.02 

Respiratory Distress 288 1.1286 0.1460 <0.01 

Infections 1222 -0.4296 0.0945 <0.01 

Congenital anomalies 465 0.4858 0.1264 <0.01 

Neonatal Jaundice 870 -0.6086 0.1199 <0.01 

Birth asphyxia 945 0.8934 0.0925 <0.01 

Others 120 -0.2591 0.3699 0.48 
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Table 3.9 Parameter estimates from the reduced model. 

Variable Sample 

size 

Coefficient Standard 

Error 

p-value 

Intercept  -2.7403 0.39354 <0.01 

5 Minute Apgar    <0.01 

0-3 202 1.8992 0.1683 <0.01 

4-7 957 0.5034 0.0784 <0.01 

8-10 4036 -0.2144 0.0209 < 0.01 

Birth Weight    <0.01 
VLBW 847 1.6005 0.1112 <0.01 

LBW 1207 -0.1650 0.0792 0.03 

Normal 3141 -0.3682 0.0452 <0.01 

Gestational age    <0.01 
Term 1050 -0.5601 0.1066 <0.01 

Preterm 711 0.2472 0.1027 0.02 

Not Stated 3434 0.1200 0.0330 <0.01 

Discharge Diagnosis    <0.01 
Prematurity 1285 -0.2505 0.1000 <0.01 

Respiratory Distress 288 1.1191 0.1451 <0.01 

Infections 1222 -0.4199 0.0935 <0.01 

Congenital anomalies 465 0.4843 0.1260 <0.01 

Neonatal Jaundice 870 -0.5842 0.1161 <0.01 

Birth asphyxia 945 0.8746 0.0896 <0.01 

Others 120 -0.2570 0.3694 0.49 

Place of Delivery    <0.01 
KATH 3022 -0.3780 0.0355 <0.01 

Referred 2173 0.5256 0.0494 <0.01 
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Figure 3.9a Normal quantile-quantile plot of residuals 

 

Figure 3.9b Expected and observed values 
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Figure 3.10 Observed and fitted probabilities from the logistic regression model 

 

From the logistic regression analysis of the combined data, birth weight, 5 minute 

Apgar score, gestation, place of delivery and discharge diagnosis were significantly 

associated with neonatal death. Although gestational age was significant, its significance 

was only with respect to babies delivered at KATH. The analysis also showed no 

association of neonatal mortality with admission age and delivery mode. From the 

analyses, babies with 5 minute Apgar score less than 4 had very high percentage of 

mortality above the mean. 

The ROC curve for the logistic regression model (Figure 3.11) showed that the 

model is able to predict 62.09% of mortality accurately. The five variables are able to 
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explain a large percentage of mortality. The independent variables explain different 

variations in the mortality. 

 

Figure 3.11 ROC curves for logistic regression model from total admissions 

For instance, 5 minutes Apgar score alone explains 27.03%, birth weight explains 

29.1%, gestation and discharge diagnosis explain 20.53% and 36.22% respectively, while 

place of delivery is responsible for 19.48% of the variations in mortality. Two variables, 
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Apgar score and birth weight are able to predict 44.23% of the neonatal mortality rate, birth 

weight and place of delivery predict 56.09% (Figure 3.12). 

 

Figure 3.12 ROC bars for logistic regression model from total admissions 
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Chapter 4 

Discussions and Conclusion 

4.1 Summary of Results and Discussion 

This study has shown that the likelihood function of the logistic regression model 

is regular. The likelihood function for all the models used in this thesis satisfied all the 

conditions for the existence and uniqueness of Maximum Likelihood Estimates (MLEs). 

The logistic regression models have high predictive abilities. The model for babies 

referred to the neonatal unit has a predict power of 43.7%. This implies that the three 

variables are not enough to predict the mortality of most of the babies referred to the unit. 

The remaining 56.3% are largely due to other variables which may not have been 

considered in the model. Other demographic and maternal factors are likely to account for 

the remaining percentage. 

The predictive ability of the logistic regression model for babies delivered at KATH 

is 72.53%. Thus, the variables investigated under this model are able to explain the causes 

of a large percentage of neonatal death among babies delivered at KATH. The smaller 

fraction-27.47% that is not explained by the model could be due to other variables that 

were not explored in the data. However, with such a high predictive ability, the logistic 

regression model could be said to be very accurate in explaining the neonatal mortality 

among these babies. 

 



80 

 

Findings from this analysis reveal that neonatal mortality in the neonatal unit is 

depended on the birth weight, five minute Apgar score, place of delivery, gestational age 

and discharge diagnosis. The proportions of death among babies referred to the neonatal 

unit are higher than that of babies delivered at KATH. Population and hospital based 

studies conducted in Pakistan and Ghana have also found that these factors are significant 

determinants of neonatal mortality (Jehan et al., 2009; Welbeck et al., 2003). There have 

been studies to show higher mortality rates in males than females (Jehan et al., 2009; Seoud 

et al., 2005), however, this study found otherwise. There was no significant difference 

between the fitted probabilities of males and females. However, the reasons for such 

contrast result could not be explained from the result. The neonatal mortality rate for babies 

delivered at KATH was 15 per 1000 live admissions while that of babies referred from 

other health facilities was 27.6 per 1000 live admissions. The overall mortality rate at the 

neonatal unit was 20.27 per 1000 live admissions. This result is lower than 32.1 and 38.7 

per 1000 live births that was recorded for the KATH in 2008 and 2012 respectively (Siakwa 

et al., 2014). The reduction could be attributed to improvements in resuscitation skills, 

equipment and technology at the neonatal unit and the increases in medical staff 

(Enweronu-Laryea et al., 2008; Siakwa et al., 2014). However, mortality rate among babies 

referred to the facility still remains very high. This is because most babies referred to 

KATH are usually very sick and require specialist care that is not provided by primary 

health facilities. 

Although gestational age was a significant risk factor, it was only significant among 

babies delivered at KATH. Preterm birth was associated with a higher risk of death and 
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higher mortality rate (36.5 per 1000 live admissions) more than the overall mortality rate. 

This is comparable with results presented by Lawn et al., (2014) and Hsu et al., (2015). 

Preterm babies require special care from skilled workers to improve their chances of 

survival. Such special care involves providing warmth and feeding support (Lawn et al., 

2013). The major conditions associated with neonatal death were infections, respiratory 

distress, prematurity, neonatal jaundice, sepsis, infections birth asphyxia and other neonatal 

conditions. Recent population based studies have also corroborated these findings 

(Edmond et al., 2008; GDHS, 2014; Welbeck et al., 2003). Among these neonatal 

conditions, birth asphyxia recorded the highest death rate. The mortality rate was 32.5 per 

1000 live admissions. Clean birth practices have shown to significantly reduce neonatal 

mortality. Basic well know hygienic practices such as hand washing and maintaining a 

clean environment are poorly observed (Lawn et al., 2013). 

In this present study birth weight was a major risk factor of neonatal death. The 

results revealed that VLBW had higher risk of neonatal mortality than babies with normal 

weight. Neonates with low birth weight and normal birth weight had mortality rates of 14.9 

and 17.9 per 1000 live admissions respectively lower than overall mortality rate. Other 

studies in Sub-Saharan Africa (Adetola et al., 2011; Ajaari et al., 2012) and Asia (Arafa et 

al., 2003) have made similar findings to the effect that birth weight is a significant risk 

factor of neonatal mortality. However, the odds of death for low birth weight infants is 

lower than what was reported in a five-year study conducted at the facility in 2012 (Siakwa 

et al., 2014). This shows that the Neonatal Unit of the KATH has made great strides in 

saving low birth weight infants. 
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4.2 Conclusion 

The neonatal mortality rate at the neonatal Unit of the KATH is still high. This 

study found that babies referred from home or other health facilities, babies having very 

low birth weight, 5 minute Apgar score of less than 4, preterm birth and having congenital 

anomalies were more likely to have a higher neonatal mortality rate. There is, therefore, 

the need for continuous attention and strengthening of newborn interventions to help 

reduce the risk reduce the risk of mortality among neonates delivered at KATH  

4.3 Study limitations 

This was a hospital based study and not a representation of the entire population in 

the city. Data for this study is retrospective and thus, there were cases of missing 

information although not significant. The parameter estimates from the logistic regression 

model were only verified for normality. Therefore, a further study is needed to explore the 

large sample behavior of the estimates. 

Another limitation to this study is with regards to the logistic regression model for 

babies referred to the neonatal unit from different health facilities. The three variables 

investigated for the data are able to explain only 43.7% of the variations in mortality. 5 

minute Apgar score explains an insignificant amount of the variations. Hence, it is 

suggested that high level of information is collected from the babies referred to the unit in 

order to explore other variables that may explain the remaining 57% of the variations. 
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Abstract 

Background: The first 28 days of life- the neonatal period is the most vulnerable time for 

a child’s survival. Globally, neonatal mortality has seen a downward trend in recent years. 

Understanding the risk factors associated with neonatal mortality at the neonatal unit is 

important because it allows inferences about the quality of care. 

Objective: To determine the neonatal mortality rate of infants referred to the Neonatal 

Unit of the Komfo Anokye Teaching Hospital, Kumasi, Ghana. 

Methods: Data were obtained from the treatment files of neonates admitted at the Neonatal 

Unit during the period from January 2013 through to May 2014. In all, a total of 2173 

neonates were used for this study. The babies were grouped by weight, delivery mode and 

admission age. Neonatal mortality was defined as death that occurred within the first 28 

days of life. Logistic regression models were fitted to the data to assess the association 

between neonatal and these predictors while adjusting for confounders.  

Results: The mortality rate among VLBW is almost 40% higher than normal birth weight. 

Vaginally delivered babies had a 2.5% higher rate than those delivered through caesarean 

section and the infants that were admitted within the first 24 hours of birth had a mortality 

rate 13% higher than those admitted after 24 hours. The neonatal mortality rate amongst 

infants referred to the facility was 27.7 per 1000 live births. 

Keywords: Neonatal mortality, Kumasi. 
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Background 

The first four weeks of life are the most crucial period when infants are highly prone to 

illness and death (1). Each year, almost 3 million babies die within the neonatal period (2). 

Latest reports indicate that over 5.9 million under-five deaths were recorded in 2015 with 

daily average of 16 000 deaths (3). Globally, newborn deaths accounts for almost 44% of 

under-five deaths with annual estimates of almost 2.8 million (4). Majority of these 

neonatal deaths occur in developing countries. In fact, neonatal mortality accounts for 

almost half of all infant deaths in these countries (5). Preventive measures and interventions 

have helped to reduce neonatal mortality from 36 per 1000 live births in 1990 to 19 per 

1000 live births in 2015 (6). Globally, neonatal mortality has been decreasing at a slower 

rate from 1990 as compared to under-five mortality (7). The decline in neonatal death 

especially in Ghana from 32 per 1000 live births to 29 per 1000 live births has partly been 

attributed to improved facilities at the neonatal units and improved neonatal care (8). 

However, neonatal mortality still remains a major challenge for Ghana and other lower 

middle income countries particularly in Sub-Saharan Africa and southern Asia; Countries 

in these two regions have made the least progress towards reducing neonatal mortality (9). 

The year 2015 is fast running to a close and less than 100 countries have been able to 

achieved Millennium Development Goal-4 of reducing under-five mortality by two-thirds 

(3). Through the newly formulated Sustainable Development Goals, UN member nations 

have committed themselves to reducing under-five mortality and neonatal mortality to 25 

per 100 live birth and 15 per 1000 live births respectively (10). Infant and neonatal 

mortality rates are significant measures of health quality, societal welfare and socio-

economic status of a country (11-13). A detailed study into the predictors of neonatal 

mortality at the various neonatal units is necessary as it allows inferences about the quality 

of care. Predictors of neonatal mortality give insights into how neonates could be managed 

to improve the outcomes of admissions at the neonatal unit. Separate studies have identified 

place of birth, birth weight, mode of delivery, delayed breastfeeding initiation and age of 

baby at the time of admission as significant predictors of neonatal death (12, 14-16). This 

study aimed to investigate the prevalence of neonatal mortality amongst infants delivered 
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and admitted to the Mother and Baby Unit, Komfo Anokye Teaching Hospital, Kumasi, 

Ghana. 

Methods 

This was a hospital based study which used retrospective primary data from the neonatal 

unit to identify the major predictors of neonatal death at the hospital. This study was 

conducted at the neonatal unit-Mother and Baby Unit (MBU) of the Komfo Anokye 

Teaching Hospital from January 2013 to May 2014. The Komfo Anokye Teaching Hospital 

(KATH) is a tertiary health facility located in a Kumasi, the capital of the Ashanti region 

and the most second most populous city in Ghana. KATH serves as the main referral 

facility for the Northern Sector of the country. The Neonatal unit has three wards. There is 

a High Dependency Unit that admits sick babies referred from the delivery wards. There is 

also a Preterm/Low birth weight (LBW)/Kangaroo Mother Care unit that admits 

preterm/LBW babies from the High Dependency unit who have been stabilized and there 

is a Septic unit that admits out-born sick newborns and infants up to the age of two months. 

There are incubators and phototherapy machines in the unit. Different categories of babies 

are admitted to the facility. These include preterm babies, low birth weight babies, babies 

with neonatal jaundice and sepsis, babies with congenital anomalies. 

All neonates admitted to the unit during the period from January 2013 through to May 2014 

were included in the study. They were followed until discharged or death. The following 

information was retrieved from the in-patient files: birth weight, sex, mode of delivery, 

place of delivery, age on admission, Apgar scores, time between birth and admission and 

outcome of admission. In all, a total of 2173 neonates were used for this study. The babies 

were grouped by weight, delivery mode, and admission age. Neonatal mortality was 

defined as death that occurred within the first 28 days of life. The outcome of this study 

was neonatal mortality. 

Birth weights, mode of delivery and babies’ age at the time of admission were employed 

as exposure variables in this study. The birth weight was categorized into three groups 

namely; very low birth weight (VLBW), low birth weight (LBW) and normal weight. 

VLBW was defined as weights less than 1.5kg; LBW for those between 1.5kg-2.4kg, 
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normal birth weight for those above 2.5kg. The mode of delivery was divided into two 

categories. The first group was vaginal delivery which included all neonates delivered by 

spontaneous delivery and assisted delivery (vacuum extraction). Babies delivered through 

caesarean section were also categorized as one. The age as of the time of admission was 

divided into two groups; either the baby was less than 24 hours old or more than 24 hours. 

Statistical analysis 

Descriptive statistics was used to calculate the neonatal mortality rate at the Neonatal Unit 

and measures of associations between the exposure variables. Univariate analysis was done 

to examine the variables associated with neonatal death. These variables which were 

significant in the univariate analysis were consequently included in the multiple logistic 

regression models. Multiple logistic regression models were used to determine the strength 

of association between these predictors and the outcome while adjusting for confounders. 

Ethical approval 

Ethical consent was obtained from Research and Development Unit of KATH and the 

Committee on Human Research, Publications and Ethics, Kwame Nkrumah University of 

Science and Technology, School of Medical Sciences and Komfo Anokye Teaching 

Hospital, Kumasi. 

Results: 

Factors such as birth weight, delivery mode, admission age of the baby were all found to 

be significantly associated with neonatal death.  

Neonates who had VLBW (OR = 47.8; 95% CI = (29.24-77.99)) had more than forty times 

higher risk of death compared to neonates who had normal birth weight. VLBW babies 

also had seven times higher risk of death (OR= 7.3; 95% CI = (5.35-10.06)). Babies who 

were delivered through Vaginally (OR = 1.62; 95% CI = (1.28, 2.05)) had a slightly higher 

risk of death in comparison to babies delivered through Caesarean section.  

The risk of death among neonates admitted within the first 24 hours of birth was almost 

three times higher (OR = 2.94; CI = (1.43, 6.06)). The neonatal mortality rate amongst 
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infants referred to the facility was 27.7 per 1000 live births and this is indicated by the 

horizontal read line (Fig. 1) 

 

Fig. 1: Mortality rate of each variable used in the logistic regression model 

Discussion 

This was a hospital based study and not a representation of the entire population in the city. 

Our study revealed that the survival of a neonate in the Neonatal Unit depends on the birth 

weight, delivery mode and the admission age. These findings are consistent with similar 

studies that have been conducted on neonatal mortality (17, 18). Although different 

researches have documented evidence to show higher odds of death in males than females 

(19, 20), our multivariate analysis revealed otherwise. We found no significant difference 

in the risks of death and mortality rates between males and females just like studies that 
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were conducted in Ibadan (1), Tanzania (5), Saudi Arabia (11) and Cairo (21). The overall 

mortality rate at the unit is 14.9 per 1000 live births. This indicates a drastic reduction from 

the figures that were reported for the same facility between 2008 and 2012 (21). However, 

the neonatal mortality rate reported by the Ghana Demographic Health Survey for the 

Ashanti region and other studies conducted in other parts of Ghana is higher than our 

finding for the study period (22-24). The difference could be attributed to the fact that these 

studies were population based studies and considered larger sample sizes. 

The logistic regression model fitted the data quite well and revealed that ELBW had the 

highest risk of neonatal mortality at the unit and babies in this category of weight are the 

most vulnerable. VLBW babies had over forty fold risk of death compared with normal 

birth weight babies and a mortality rate of 57.8 per 1000 live births (Fig 1) which is far 

above the mean mortality rate. The risk of death of LBW babies was almost the same as 

normal birth weight babies and there was little difference in their mortality rates. Neonates 

with low birth weight and normal birth weight had mortality rates of 11.8 and 11.2 per 

1000 live births respectively lower than overall mortality rate; while big babies had a 

mortality rate of 7.8 per 1000 lives. Other studies in Sub-Saharan Africa (1, 14) and Asia 

(11, 26) have made similar findings to the effect that birth weight is a significant risk factor 

of neonatal mortality. However, the odds of death for low birth weight infants is lower than 

what was reported in a five-year study conducted at the facility in 2012 (22). This shows 

that the Neonatal Unit of the KATH has made great strides in saving low birth weight 

infants.   

Kangaroo Mother Care (KMC) has so far proven to be very effective in improving 

survival chances among preterm, very low and low birth weight infants. Continuous 

implementation of the KMC program will enhance the survival chances of such babies 

(27, 28)  

Improving the facilities in the neonatal unit as well as improving resuscitation skills also 

has a positive effect in saving normal weight but asphyxiated and jaundiced babies (1, 8, 

29-31). 
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In the present study, we found an association between mode of delivery and neonatal death. 

The risk of neonatal death was higher among babies delivered by Vaginal with (OR= 1.6; 

CI = (1.28, 2.05)) compared to babies delivered through caesarean section and they have 

higher mortality rate as well. Other studies have documented similar findings to prove that 

there is high risk of death among very low birth weight and preterm infants delivered 

spontaneously and that it was much safer to deliver preterm babies by caesarean delivery 

especially in breech presentation (32-37). However, opinions are still varied on the 

significance of mode of delivery as a risk factor of neonatal death as another study found 

no significance association between the two (38). The risk of neonatal death may not 

necessarily be caused by the mode of birth but physician’s reluctance to intervene for the 

fetus with the perception that the infant is too young or small to survive ( (35, 36, 39). 

A high proportion of the babies were admitted within the first 24 hours of birth and their 

mortality rate was above the mean percentage of death (Fig. 1). The associated risk is 

almost three folds compared to those who were admitted after 24 hours. This indicates how 

fragile these babies are within the first day. Some of these admissions are caused by 

neonatal infections. Lack of sufficient antenatal care is highly correlated with these 

neonatal infections (40, 41) 

Conclusion 

The neonatal mortality rate at the neonatal Unit of the KATH is still high. This study found 

that babies with extremely low birth weight, very low birth weight, babies delivered by 

spontaneous vaginal delivery and babies less 24 hours are at the highest risk of death. There 

is the need for urgent attention and interventions to help reduced the risk associated with 

these neonates. Such interventions include improving the facilities at the neonatal unit and 

improving the resuscitation skills of health workers. 
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