Distributed Storage APIs using HBASE and HDFS for Encrypted

Personal Health Records

Metha Wangthammang

A Thesis Submitted in Partial Fulfillment of the Requirements for the
Degree of Master of Computer Engineering
Prince of Songkla University
2017
Copyright of Prince of Songkla University

Thesis Title Distributed Storage APIs using HBASE and HDFS for Encrypted
Personal Health Records
Author Mr. Metha Wangthammang

Major Program Computer Engineering

Major Advisor Examining Committee:

.. Chairperson

(Asst. Prof. Dr. Sangsuree Vasupongayya) (Assoc. Prof. Dr. Sinchai Kamolphiwong)

.. Committee

(Asst. Prof. Dr. Sangsuree Vasupongayya)

.. Committee

(Prof. Dr. Verapol Chandeying)

The Graduate School, Prince of Songkla University, has approved this thesis as
Partial fulfillment of the requirements for the Master of Engineering Degree in

Computer Engineering

(Assoc. Prof. Dr. Teerapol Srichana)

Dean of Graduate School

This is to certify that the work here submitted is the result of the candidate’s own

investigations. Due acknowledgement has been made of any assistance received.

.. Signature
(Asst. Prof. Dr. Sangsuree Vasupongayya)

Major Advisor

.. Signature
(Mr. Metha Wangthammang)
Candidate

| hereby certify that this work has not been accepted in substance for any degree,

and is not being currently submitted in candidature for any degree.

... Signature
(Mr. Metha Wangthammang)
Candidate

Thesis Title Distributed Storage APIs using HBASE and HDFS for Encrypted

Personal Health Records

Author Mr. Metha Wangthammang
Major Program Computer Engineering
Academic Year 2016

ABSTRACT

This work proposed a distributed storage (DSePHR) system for storing
encrypted personal health record data (PHR) by identifying properties of the
encrypted PHR data and using the properties to create an index for the encrypted
PHR data. The encrypted PHR data contain health related information of an
individual. Both HDFS and HBase are used as a fundamental storage framework. The
DSePHR provides a set of APIs for storing and retrieving the encrypted PHR data. The
DSePHR eliminates a high memory consumption issue on the cloud storage caused
by storing a lot of small files. The experimental results showed that the DSePHR still
preserve the scalable feature while consuming less memory. Furthermore, DSePHR
can deliver similar upload / download time performance when the mixture of file

size and the ratio of read and write activities change.

Vi

| & £

yoInendwus diwseuszanulusunsudsvenaniiudeyanuunszane 1y laviud uag

Y

LBvAeNled dmTudeyagun ndINUAAATIgNIINTYiE

;:J'L%ﬂu PIYLUTT WIIETIULY
#1°9179%1 IAINTTUADUNILADS
Un1sAnen 2559

UNANEYD

v

-1 o 13 v
UIALTUU (DSePHR) FRALUVRATWRAIUITSUUNTITNUTBUALUUNTESANY

dmiudeyaguamaiuyanagagnidnsiia (Encrypted PHR data) 1agn15seuamanyuyves
Toyagegniirsianasldnudnvaedinaitlunsadisividmsuteyaguainiignidn sia

Toyaguninadruyanaignidnsiadseneulusmedeyanifestesiuguamdiuynna eviua

1%
(% T~

(HBase) waztavfievlioa (HDFS) gnldluanAdeddmiudunsevnunsiivdeyanugiu

o

[y

(Storage framework) 9114398

[

Udnwnssuynvesdiusieuszaulusunsudssyns (APls) sy
v & = v a v v v & X d g v av Avw
Jotivuazfstayaguamiliiisiangninnulilunumiiudeyawuunszaty uidedls
Usulgausziiunisldvuieaiudnees (High memory consumption) Suiladn1ainnng
o @ ¢ & o & de v o ¢ v &
Faiulvidunadniuiuuinasuuiuiinuleyanuunszaty Naansnmeaeansliiui
r-:l' Y o é’ o o va L% t:ll ¥ ! o t:l'v
sruubanaududinssneinuaudinisveiediebilaluvasildniiganuinndey
& a Yo X v a a = [N) ¢
wenanil sruuilanaunTuaiusalilsednsnmnaiilnatreslunisonlranuaz i
11an (upload /download) Wednsuaniuveswuinlie wagdnsdIuUeInaNTINNNTEU

warnsieulaasuld

vii

ACKNOWLEGDEMENT

| would like to express my deepest gratitude toward my advisor,
Assistant Professor Dr. Sangsuree Vasupongayya, for the helpful suggestions. | have
studied a lot regarding the research methodology. | am very proud to be her advisee.

| would like to express my warmest gratitude toward Associate
Professor Dr. Sinchai Kamolphiwong and Professor Dr. Verapol Chandeying for their
useful comments.

| would like to thank my senior and friends in Center for Network
Research (CNR) and Graduate student room for their supports and assistances.

| would like to thank Thanathip Limna and Khachain Wangthammang
for thesis suggestion on the implementations and experimental settings.

| would like to thank the scholarship from the National Research
University Project of Thailand's Office of the Higher Education Commission for the

financial support, Funding no. MED540548S.

Metha Wangthammang

viii

TABLE OF CONTENTS

Page

ABSTRACT <.ttt Y
UTIARED ..o vi
ACKNOWLEGDEMENT ..ottt vii
TABLE OF CONTENTS -ttt viii
LIST OF TABLES .ttt Xi
LIST OF FIGURES ...ttt Xiv
CHAPTER 1 INTRODUCTIONcuiiiiitieieitieieisie ettt 1
11 MOTIVATION L.t 1

1.2 ODJECTIVES .ttt bbb 4

1.3 SCOPES ..ottt 4
1.4 CONEIIDULTIONS 1.t 5
CHAPTER 2 LITERATURE REVIEW ..ottt 6
2.1 Personal Health RECOIAS. ..o 6
2.2 PHR Storage RequUIremMENTS ... 10
2.3 PHR @Nd Big DALa . .eiieiieieieieiees e 12
231 ClOUA STOTAGE ... 14

2.3.2 Cloud Storage for Health Care......cooeeeiirice e 15

2.3.3 Other PHR SYStEMS ..ottt 16

2.4 Hadoop Distributed File System (HDFS)cccoivirieeceeee e 17
2.5 APACNE HBASE ..o 20
2.6 Cluster Monitor (GANGLA).......coieimrieieieieieiee e 23
2.0 CrYPEIDB e 24
CHAPTER 3 METHODOLOGY ..ottt 25
3.1 PHR SyStEM OVEIVIEW ..o.eouiiiiieieiseieeee ettt 25

3.2 DSEPHR AP .ot 28

3.2.1 Encrypted Communication and Authentication..........cccoevveennniicenes 28
3.2.2 Retrieving and STOrNg Data.......ccccvviiuiinieieiiceieeee e 29
3.2.3 DaAta ACCUIACY wutteiiieiiieieeeeee ettt ettt s s s sensenens 29
3.2.4 Fast Search the Encrypted PHR Data......cccceeieriieiinsseeeeee 29
3.2.5 Editing the Uploaded Data ..o 30
3.3 DSEPHR DESIGN ..ottt 30
3.3.1 DSEPHR ArChItECUIE ... 30
3.3.2 Metadata DESIGN ... 34
3.0 STOrAGE DESIGN ettt bt enens 36
30,1 HDFS STOTAGE ottt bttt b e 36
3.0.2 HBASE STOTAGE .. ittt 37
3.4.3 HBase OptimiZation ... 38
3.5 Synthetic PHR WOrKLoads.......ccvoviiiieiiieiiicieceeeeeee e 40
3.6 EXPerimental DESIGN ..ot a4
3.6.1 Memory CONSUMPTION ISSUE....couieirieiiieieirieineeteteieese ettt a5
3.6.2 DSEPHR PerfOrmMancCe......ccooooiiiiiicceiee e a6
CHAPTER 4 RESULTS AND DISCUSSIONS ...ttt 55
0.1 DSEPHR APl DESCHPTION ..cuiieeeieieeee et 55
4.2 Memory CoNSUMPTION ISSUEuiuiiieiieieeeeeeee e 57
4.3 DSEPHR PerfOrManCe......cciiuiiriiieieieeieie st 58
4.3.1 DSePHR Workload Baselingccciiiiiiiiiiicieieieieeeesseeee e 58
4.3.2 Effect of the Limited StOrage Space........cccovievniecnnieceeceeeeeene 62
4.3.3 Effect of the Write-read Request Ratiocccovievviiciviniiccce, 89
4.3.4 Effect of File Type MIXEUIEc.coiviiiiiecieeieieee e 112
CHAPTER 5 CONCLUSION ...ttt 126
5.1 CONCLUSION ottt 126
5.2 Limitation and SUZGESTIONc.ouiiiiiiiie e 128

REFERENCES ...ttt 130

APPENDIX

Xi

LIST OF TABLES

Table Page
Table 3.1 MetaTable SChEMA ... 34
Table 3.2 MetaTable DeSCrPLioN ..o 35
Table 3.3 ENCTable SCheMI@ ... 37
Table 3.4 HBase Configuration DeSCripTioNcccviieirieieirccir e 39
Table 3.5 WOrkload Fil@S ... 43
Table 3.6 Setup Detail in Memory Issue EXperiment ..o a6
Table 3.7 Experiment setup detail of workload baseline experiment............cccceeeeeee a9
Table 3.8 Effect of limited storage experimental setup details ... 50
Table 3.9 Effect of the write-read ratio and the mixture of file type ..o 53
Table 4.1 DSEPHR APl DESCHPTION.c..iuiiiiieieicieseeie e 55
Table 4.2 Memory comparison between DSePHR and traditional HDFS..........ccccceu.... 57
Table 4.3 Upload time baseline (DSePHR policy and HDFS only)cccceeiieeiriiirieinnns 61
Table 4.4 Download time baseline (DSePHR policy and HDFS only).......cccccoevieerinnnes 61
Table 4.5 Upload and download time baseline from client perspective view............. 62
Table 4.6 Time to fill up all three extra storage NOAEScccoveeuvviiicrnivieeiceae 63
Table 4.7 Amount of data to all six DSePHR web servicesccoevnicnnniccnnns 64
Table 4.8 Amount of data to all six DSePHR web servicesccoevniennnicennns 65

Table 4.9 The amount of data sending to each storage node on 100:0-write:read with

original PHR mixture before the extra storage addition ..o 65

Table 4.10 The amount of data sending to each storage node on 100:0-write:read

with original PHR mixture after the extra storage additioncccccoevvvivvnirnniie 65
Table 4.11 Performance effect on each situation when system resource is high 88
Table 4.12 Overall upload time of 100:0-write:read workload..........ccccooviviririiiiiennnes 91
Table 4.13 Upload time of each file type of 100:0-write:read workloadcccccueeeee. 93
Table 4.14 Overall upload time of 75:25-write:read workload.........cccooveiviiininiiiinnes 94
Table 4.15 Overall download time of 75:25-write:read workloadcccoveveiviviiinnnnnes 95
Table 4.16 Upload time of each file type of 75:25-write:read workloadccccueenves 95

Table 4.17 Download time of each file type of 75:25-write:read workload................... 99

Xii

Table 4.18 Overall upload time of 50:50-write:read workload..........ccceeviieerniiccnenns 99
Table 4.19 Overall download time of 50:50-write:read workloadccccccevviicinnes 100
Table 4.20 Upload time of each file type of 50:50-write:read workload 101
Table 4.21 Download time of each file type of 50:50-write:read workload................ 104

Table 4.22 The ratio of the average download time of the 75:25-write:read to that of

the 50:50-write:read WOrKlOadoooiiiiiiic e 106
Table 4.23 Overall upload time of each situation and baseline..........cccccoeevviinines 109
Table 4.24 Upload time of each file type of each situation and baseline................... 109
Table 4.25 Overall download time of each situation and baseline ..o 110
Table 4.26 Download time of each file type of each situation and baseline.............. 110
Table 4.27 Upload time and baseline ratio of each situationccccoceevvviiiiinne. 111
Table 4.28 Download and baseline ratio of each situation.........cccooeeevicinnicnnnes 112
Table 4.29 The number of files in each type of the two mixtures ..o 113

Table 4.30 Overall upload time of 100:0-write:read uniform file type mixture
WOTKLOA .ttt bbbttt 115
Table 4.31 Upload time of each file type of 100:0-write:read uniform file type mixture
WOTKLOBA -+ttt 115
Table 4.32 Overall upload time of 75:25-write:read uniform file type mixture

WOTKLOG ... 116
Table 4.33 Upload time of each file type of 75:25-write:read uniform file type mixture

WOTKLOBA -ttt 117
Table 4.34 Overall download time of 75:25-write:read uniform file type mixture
WOTKLOBA -+ttt 119
Table 4.35 Download time of each file type of 75:25-write:read uniform file type
MIXEUrE WOTKLOG 119
Table 4.36 Overall upload time of 50:50-write:read uniform file type mixture
WOTKLOBA -+ttt 121
Table 4.37 Upload time of each file type of 50:50-write:read uniform file type mixture
WOTKLOBA -+ttt 121

Table 4.38 Overall download time of 50:50-write:read uniform file type mixture

WWOTKLOB . et ettt ettt et e et e e e e eeaeeeeeeeee e et eeeeeeeeeeeeeeaeen 123

Xiii

Table 4.39 Download time of each file type of 50:50-write:read uniform file type

INUXTUTE WOTKLOB ..ottt e e et e et e et e et e e e e e e e e e enas 125

Xiv

LIST OF FIGURES

Figure Page
Figure 2.1 HDFS ArChITECTUIE ... 18
Figure 2.2 HBase SCREMIA ... 21
Figure 2.3 HBase ArChItECTUIEoiiiiicic e 22
Figure 3.1 PHR System OVEIVIEW ..ot 26
Figure 3.2 Dataflow on a write operation or PHR upload process.........cccoeeevinicininenee 27
Figure 3.3 Dataflow on read Operation ... 28
Figure 3.4 DSEPHR ArChITECIUIE . ..voveieiie e 31
Figure 3.5 DSePHR working flOWChartcccoiiviioeiiceeeeeee e 33
Figure 3.6 ROWKEY DESIGNeuiiiiiiieieieii et 36
Figure 3.7 PHR workload size distributionccoeeiiriieiiccee e a4
Figure 3.8 Overview experiment setup for workload baseline experiment a8

Figure 3.9 Effect of limited storage space and effect of the write-read request ratio

EXPENMENTAL SETUD 1.ttt 50
Figure 4.1 Upload time of small files in 100:0-write:read workloadcccccovvviiicnnnes 68
Figure 4.2 Upload time of large files in 100:0-write:read workloadcccoveviiiincnnnes 69

Figure 4.3 Upload time of an X-ray image file which is a small file in 100:0-write:read

WVOTKLOB .ottt e e et e e et e e e e e e e e e e et e e e e e e e eee e e seeeeee e 69

Figure 4.4 Upload time of an audio file which is a small file in 100:0-write:read

WOTKLOBA -ttt 70
Figure 4.5 Upload time of a video file (a larger file) in 100:0-write:read workload....... 71

Figure 4.6 Upload time of a large video file (a larger file) in 100:0-write:read workload

.. 71
Figure 4.7 Upload time of small files in 75:25-write:read workload...........ccccovviicninee 73
Figure 4.8 Upload time of large files in 75:25-write:read workloadccccovvviiiicnnes 73
Figure 4.9 Download time of small files in 75:25-write:read workload.........ccccccoeveueence. 75
Figure 4.10 Download time of large files in 75:25-write:read workload........cccccvvveeennce. 75
Figure 4.11 Download time of small files in 75:25-write:read workload........c.ccoceueaee. 77

Figure 4.13 Download time of an X-ray image file which is a small file in 75:25-
WHtEread WOIKLOGA ...ttt 79

Figure 4.14 Download time of an audio file which is a small file in 75:25-write:read

WOTKLOBA -ttt 79
Figure 4.15 Download time of an audio file which is a small file in 75:25-write:read
WOTKLOQO ...ttt ettt b st b st b s s et sn s sesis 80

Figure 4.16 Download time of a video file which is a large file in 75:25-write:read

WWOTKLOB .ottt e e e e e e e e et e e e e e e e e e e e e e e eee e e e e sereene 81

Figure 4.17 Download time of a large video file which is a large file in 75:25-write:read

WOTKLOGA. ... 81
Figure 4.18 Upload time of small files in 50:50-write:read workload..........ccooovviiicnnes 83
Figure 4.19 Upload time of large files in 50:50-write:read workload.........ccccvviiecininee 83
Figure 4.20 Download time of small files in 50:50-write:read workload..........cccoceueence. 85
Figure 4.21 Download time of large files in 50:50-write:read workload........cccccvvveeenncee 85

Figure 4.22 Download time of an X-ray image file which is a small file in 50:50-
WIEErEAd WOIKLOGA ...t 86
Figure 4.23 Download time of an audio file which is a small file in 50:50-write:read

WOTKLOB .o eae e e e e e e eeeeseaeene 86

Figure 4.24 Download time of a small video file which is a small file in 50:50-
writeread WOTKLOGAc.c.cuiiiiiiiii et 87
Figure 4.25 Download time of a large video file which is a small file in 50:50-

WITEETEAT WOTKLOGM ..ottt e e et e e e e ee e e et e eaeeeaeeeee e 87

CHAPTER 1

INTRODUCTION

1.1 Motivation

Preventive care such as exercise, enough relaxation, health check can
lead people to gain healthy life. Healthcare professional or doctor can use personal
health related data to provide a suggestion to the data owner in order to decrease
the risk of disease that can be occurred in the future [1], [2]. Therefore, storing
personal health data is essential for the preventive care. The health data of person
are typically stored at a hospital and controlled by the hospital [3]. The health data
owner cannot access his/her data directly because of the hospital security and
policy. Most hospitals use a private storage system because the risk of patient’s data
leaking from an external attacker can be reduced. In a situation of changing a
hospital, the health data do not automatically transfer to the new hospital.
Requesting the health data to be transferred to a new hospital can be complicated
because the private storage system usually does not support exported operation.
Therefore, a concept that the health data owner can store his/her health data is
promoted. The concept is called personal health records (PHRs).

The PHRs concept allows the PHR owner to fully control his/ her
health data. The owner can create, edit, and share his /her health data. The owner
can store his/her PHR data to a PHR provider of his/her choice. The PHR data can be
grouped into 11 types such as problem list, allergy data, home-monitored data,
medication [3]. The PHR data also have a few properties that are different from that

of regular data type. For example, the PHR data has only one actual owner and

belongs to the owner only; the PHR data consist of various data sizes and types; the
PHR data can cover all data of the PHR owner life time [4]. The PHR data can be
everything that is related to health information and the amount of the PHR data is
increasing every day. Therefore, the volume of the PHR data will be large. Thus, the
PHR storage requires a big storage to store all PHR data from many PHR users.
Moreover, the security of the health data will be critical because the health data are
now outside the hospital and no longer protected by the hospital.

The PHR data are high volume, high variety and high velocity. The PHR
contain the life-time data of a person (high volume). The PHR data can be document
file, audio file, video file and image file (high variety). The PHR data can slowly occur
such as medication data or quickly occur such as monitor device data (high velocity).
So the PHR data can be considered as big data [5]. Storing the PHR data into a cloud
storage is an appropriate solution to deal with the PHR big data characteristic. The
cloud storage can scale its capacity when the PHR system requires more capacity.
The PHR data that are on the cloud storage, require a security to be protected from
an unauthorized access. Thus, the PHR data must be encrypted. Related works [6]-
[10] introduced the methodology to encrypt the PHR data and stored the data into a
general cloud storage. However, these works do not address a method to store the
PHR data on a general cloud storage. Typically, the general cloud storages are not
designed for storing and retrieving the encrypted PHR data because they do not
provide any particular features to access the encrypted PHR data in their storage.

Since the storage system cannot read the content of encrypted PHR
data in order to classify or create an index of the data for convenient retrieving, the

encrypted PHR data need a particular access pattern such as sorted by time, owner

that the access pattern is different from general binary files. The general binary files
such as image file, audio file or document file in other system have access pattern
by using its properties or content. For example, the access pattern of the image file
can be using its resolution, type of images to determine specify image. The access
pattern of video file can be using its length, resolution to determine specify video.
While encrypted PHR data do not provide any properties, the access pattern can be
using only time and owner of the data. General cloud storages such as Dropbox and
Google drive, storage on software as a service (SaaS), are directory based storage.
Amazon S3 and CACSS [11], storages on platform as a service (PaaS), are buckets
style storage. Although both storage types can store encrypted PHR data, it is difficult
to access the encrypted PHR data with the PHR user requirement. The PHR users
mostly access their data with sorted by the owner and time patterns because the
encrypted PHR data belongs to only one owner and relates to the life of the owner.
Moreover, the encrypted PHR data lacks of information related to its data because
the data must be protected in an encrypted form. These general cloud storages do
not support creating metadata to indicate the encrypted PHR data for retrieving by
owner and time. Metadata is important to create an index of the encrypted PHR
data. Therefore, the encrypted PHR data storage should pre-process the data to
identify its properties and bring its properties to create an index by following PHR
user access pattern for convenient retrieving.

This thesis focused on designing and developing application
programming interface (API) in order to design the schema and create the index
mechanism for convenient retrieving of the encrypted PHR data on a distributed

storage, called DSePHR which stands for “ Distributed Storage APIs using HBASE and

HDFS for Encrypted Personal Health Records”. General cloud storage [11] can suffer
the high consumption memory problem due to storing a lot of small files. Hence,
our proposed distributed storage eliminates such problem. The proposed distributed
storage supports both small size file and large size because most of PHR data is a
document file (small file) and some PHR data can be video (large file). Moreover, the
encrypted PHR data should be sorted by the encrypted PHR data properties: owner
and time. The user can conveniently access his/her data by specifying the owner and
time. The storage supports storing massive encrypted PHR data. The design of the
proposed DSePHR is presented in chapter 3 while the performance of proposed
DSePHR is demonstrated in the experimental section. The evaluation and discussion

of the experiment are also presented in chapter 4.

1.2 Objectives
1. Design a schema and a structure for indexing and storing the
encrypted PHR data.
2. Develop the API for storing and retrieving the encrypted PHR data.

3. Evaluate the developed APIs on synthetic PHR workloads.

1.3 Scopes
1. This work uses python 2.7.10, Flask framework, Flask-RESTful,
Hadoop 2.7.1, HBase 1.0 to develop the DSePHR API.
2. Storing and retrieving encrypted PHR data are provided by DSePHR
AP
3. A number of incoming simultaneous requests is limited by CPU,

memory and LAN interface of DSePHR web service.

4. Synthetic workloads with mixture of read and write requests are

used for evaluating the DSePHR.

1.4 Contributions

1. An API set for storing encrypted PHR data to a cloud storage.

2. A set of HBASE configuration tuning for performance.

3. A performance result of the prototype DSePHR developed as a
test platform including memory consumption, storing and
retrieving time of various file type distribution and mixture of read
and write requests.

4. A synthetic PHR workload

CHAPTER 2

LITERATURE REVIEW

Background and related works are presented in this chapter including
personal health records, PHR storage requirements, big data, Hadoop Distributed File

System (HDFS), Apache HBase, Ganglia which is a cluster monitor tool and CryptDB.

2.1 Personal Health Records

Personal Health Record (PHR) is a system that allows a person to
store, manage, and share his/her health related information. PHRs are different from
Electronic Health Record (EHR) [3]. The EHR is the health data owned by the
healthcare institutes and the data are collected or created by the physician or
healthcare institute staffs. Thus, the access to EHR data is controlled by the
healthcare institute according to the institute’s policy and the legal regulation of that
country. The PHRs, on the other hand, is the data that is owned and controlled by its
owner. The PHR owner has a full control on who can access his/her data, how the
data can be accessed, and when the access can occur.

The Markle foundation defines PHRs as “an Internet-based set of tools
that allows people to access and coordinate their lifelong health information and
make appropriate parts of it available to those who need it” [4]. According to the
definition, the PHR system can contain many kind of health related information such
as weight, height, blood type, blood pressure, symptoms, medication usage,
information from doctor, allergy data and demographic data.

Currently, there is no standard for PHR data. However, the PHR data

can be grouped in to 11 types [3], including problem list, procedures, major illnesses,

provider list, allergy data, home-monitored data, family history, social history and
lifestyle, immunizations, medications, laboratory tests. The detail of each PHR data

type will be explain.

® The problem list is a document that contains an important health problem of
the patient or individual such as current disease, injuries from an accident.
The problem list can be in a form of the document file type such as word-
processing file, pdf, CCD file and CCR file. The source of the problem list can

be patient or the PHR owner, EHR or doctor.

® The procedure is a description of a step or an action to achieve a treatment.
The procedure can exist in both a document file format and a media file
format such as a guide line of medication (word processing file, pdf file) and a
step of operation or surgery (video file). The source of the procedure can be

the PHR owner, EHR or a medicare claim

® The major illness is the information that describes the illness or surgery of a
patient such as congenital disease or current disease. The Major illness can
exist in a form of a document file format such as CCD file, CCR file, word-
processing file and pdf file. The source of the major illnesses can be the PHR
owner, EHR or a medicare claims

® The provider list is a list of health care providers or institutions that the PHR
owner gets his/her treatment. The provider list is a document file in a form of
CCD file, CCR file, word-processing file or pdf file. The source of the provider
list includes the PHR owner and the EHR.

® The allergy data is the document that describes the allergy symptom of

patient such as food allergy, skin allergy and respiratory allergy. The allergy

data can be in a form of a document file such as CCD file, CCR file, word-
processing file or pdf file. The source of the allergy data includes the PHR
owner and the EHR.

The home-monitored data is the data from any home health care device
such as sensor data from heart rate instrument or stethoscope. The home-
monitored data can be in a form of text files such as txt file, csv file and
spreadsheet file. The source of the home-monitored data includes the PHR
owner and the equipment.

The family history is the document that describes the history of the disease
or symptom of member in the PHR owner family in the past. The doctor can
use the family history to diagnose a current disease of the patient. The family
history can be in a form of document file type such as CCD file, CCR file,
word-processing and pdf file. The source of the family history data includes

the PHR owner and EHR.

The social history and lifestyle is the document that describes the personal
life, occupation, favorite activity of the PHR owner. The doctor can use the
information to improve the treatment. The social history and lifestyle can be
in a form of document file such as CCD file, CCR file, word-processing or pdf
file. The source of the social history and lifestyle data includes the PHR
owner and EHR.

The immunizations are a history list of immunizations that the PHR owner had
received in the past such as polio, rubella and tetanus. The can be in a form

of a document file such as a CCD file, CCR file, spreadsheet file or word-

processing file. The source of the immunization data includes the PHR owner,

EHR and the immunization registry (if any)

® The medications are the document that contains a list of medication that the
patient is currently using, including the amount and schedule to take each
medicine. The medication can be in a form of a document file such CCD file,
CCR file, pdf file and word-processing file. The source of medication data

include the PHR owner, EHR and medicare claim.

® The laboratory tests are the result or discussion of laboratory processes such
as medical check-up. The laboratory data can be in a form of text, table,
image and exist as both document file format (word-processing file, CCD file,
CCR file) and media file format (image file).

Besides the 11 PHR data types, the users can store other information
such as nutrition, exercise and sleeping habits in their PHRs. Moreover, the PHR
owner can allow the physician to add some health related information to his/ her
PHRs. Therefore, the PHRs can be viewed as a lifelong health related information
storage of all its members. At this point, the PHR system must support various data
type and a large amount of data.

Existing PHR systems including My health record [12], Google Fit [13],
Microsoft HealthVault [14]. My health record is a national digital health record system
of Australia. My Health Record allows the related people such as an authorized
person or provider to view, upload, download the clinical information of a person. In
2015-2016, there are 90 million document files with various file types were uploaded
to My Health Record system [15]. Google Fit is a fitness activity tracking system

installed on a mobile phone to track the daily life or the fitness activity such as

10

walking, running and cycling of its owner. The activity tracking data from the mobile
phone is then sent to Google server to be stored. The stored data can be later
visualized as an overall activity. There is a lot of data that needs to be stored.
Microsoft HealthVault is a web-based PHR system that allows the user to directly
input his/her health data or upload various health document such as CCD file, CCR
file, image file, word-processing file and pdf file. Microsoft HealthVault also supports
a connectivity with the smart health device such as weight scales, blood pressure
monitors and heart rate monitors. Thus, there is a various data type and a lot of data
to be stored in the system. It can be seem from various existing PHR system that the
PHR system must be able to store and manage such large volume of data. Thus, the

storage requirements of such system are interesting.

2.2 PHR Storage Requirements

An important component for a PHR system is the PHR storage. Since
the entire life-time health related information of a person can be stored on the PHR
system. The PHR storage must support everyday life health data, high availability,
scalability and security.

The PHR data storage must provide a high write throughput
performance to support everyday life health data. The data from each member can
be of various varieties daily. The nature of the data input process in the PHRs is that
each user will record his/ her personal health related information from various
sources. The data will be viewed less often and the data will usually be analyzed
during the viewing process. Therefore, a high volume of data from various sources is

expected so that the storage must be able to receive all data into the storage. Thus,

11

the PHR data storage must be evaluated when the mixture of requests contains a
large number of write requests than that of the read requests.

The high availability and fast response of the storage system are also
expected from the PHR system. The PHR data contains the information that will be
helpful to the physicians or caregivers in order to save or to treat the PHR owner
during life-threatening situations such as the emergency staffs during a car accident.
The victim of the accident might require an immediate healthcare at the crime
scene. The basic health information such as blood type and a history of allergic
reactions must be available to these people. Also, the request for further information
of the victim from the system must be provided immediately. Thus, the time it takes
to store the data and retrieve the data must be evaluated.

The PHR storage must be able to scale up in order to cope with the
amount of data from its members. Furthermore, a good management of the system
must be able to satisfy several levels of requirement needs. Some sets of data may
not be accessed real-time or some data may be outdated. With the usage patterns
of some information such as the old health checkup records or the old x-ray images
in the PHRs, such information may be moved or switched to slow-response storages
in order to save spaces. Thus, the during-operation adding of more physical storages
and a good management of data storage are a challenge for designing the PHR data
storage. Thus, the PHR storage must be evaluate when the storage node is added in
order to show the response time during such operation.

The last requirement for the PHR data storage is the security and
privacy issues. The PHRs may contain some sensitive information, thus the PHR data

must be protected and controlled. Typically, the access control of any data is

12

achieved by applying an access policy to either the data and/or the user, while the
confidentiality of data is achieved by applying an encryption technique to the data.
With big data property and the nature of the system usages, the data may be resided
on a cloud-based storage and available to the users. Thus, the security aspect of the
system must be considered as the fifth requirement. To accomplice such goals, the

PHR system must support some forms of data privacy and security implementations.

2.3 PHR and Big Data

Big data is defined in [16] as

“ data that exceeds the processing capacity of
conventional database systems. The data is too
big, moves too fast, or does not fit the structures
of your database architectures. To gain value from

this data, you must choose an alternative way to

Three components to classify big data are variety, velocity and
volume. For the variety component, the data can be of various formats such as
unstructured or structured data. With structured data, it is easy to stored and
analyzed because the data are tagged and organized. The unstructured data,
however, is difficult to stored, analyzed and virtualized. The velocity component
refers to the data that can be submitted to the system in various forms such as
stream, real-time or batch. The volume can scale from terabytes to zettabytes.
Potential applications of big data are identified in five domains including healthcare,

public sector, retail, manufacturing and telecommunications. PHRs can be classified

13

in the healthcare domain. In order to classify PHRs as a big data application, three
components (i.e., variety, velocity and volume) are analyzed and discussed.

For the variety component of the PHRs, everything concerning health
related information of an individual can be collected and stored. Each user utilizes
the system differently. The data can be from various sources such as the PHR owner,
the physician of the PHR owner, or the caregiver of the PHR owner. For example, the
PHR owner might want to store his daily exercise; a physician might want to store x-
ray images, laboratory results and medical treatments; the caregiver might want to
store the data recorded from the wearable sensors. Thus, the variety of data types
must be handled by the PHR system. Some data are structured data such as medical
treatments and laboratory results, while some data are un-structured or semi-
structured such as the signal recorded from wearable sensors and daily exercise
information.

For the velocity component of the PHRs, the data from various
sources create various data transfer rates. According to the example given earlier,
real-time streaming data can be collected from the PHR owner’s wearable sensors.
The physician, on the other hand, may upload a batch of medical health checkup
results into the PHR database on behalf of the PHR owner. Furthermore, some
information in the PHR system may be accessed in real-time fashion such as the
personal caregiver may want to monitor the PHR owner’s vital sign signal which is
stored on the PHR system.

To handle lifelong health related information of its members, the
amount of data to be stored in the PHR system is gigantic. To illustrate the point,

assuming a big city with one million people use the PHR system and each member

14

generates approximately 300 KB of data daily. Thus, there are 300 GB of data stored
in the system daily and 109 TB of data yearly. This calculation is based on one entry
of a single record per day of each user. However, the data of each user can be
generated from various sources and several times per day. Thus, the stored data of
each user can scale up very fast similar to the personal data on the Facebook

account of each user.

2.3.1 Cloud Storage

The PHR data requires a scalable storage to store its data because the
volume of the data always increases. Traditional storage may face a problem that
cannot scale up to support high volume of data. A cloud storage comes to be a
solution for a big data storage because the cloud storage is a scalable storage. The
cloud storage can be software as a service (SaaS) such as Dropbox, Google Drive,
iCloud or platform as a service (PaaS) such as Hadoop (HDFS), OpenStack (Swift).
However, the Saa$S is not appropriate to use as fundamental framework because the
mechanism of the storage cannot be easily adjustable in order to support any
specific requirement of the data. For instance, the encrypted PHR data require a
special metadata for searching, identifying and accessing the data. Therefore, Paas$ is
more appropriate than SaaS because it is adjustable. OpenStack is a cloud computing
framework containing swift as an object storage. However, OpenStack does not
include the database. Hadoop is a big data computing framework containing HDFS as
a distributed storage. HBase is a non-relational database with column family
database type. HBase can use HDFS for storing the actual data files. HBase also
inherits features of HDFS such as distributed storage, replication and fault-tolerance.

Hadoop and HBase are selected as a fundamental framework in this thesis.

15

2.3.2 Cloud Storage for Health Care

Because the volume of health care data is huge, many works apply
the cloud storage or big data framework due to its scalable feature. The related
works of a cloud storage for health care data is explained next.

MedCloud [17] is a health care system which designs to follow Health
Insurance Portability and Accountability Act (HIPAA) policy. The objective of
MedCloud is to exchange health related information between providers. Cloud
computing and storage are adopted in the work for sharing health related
information. Using cloud solution, the user can store their EMR or PHR data on the
system. Hadoop and HBase are selected for basic framework of MedCloud.

The improvement of CACSS [11] has developed to be a generic cloud
storage for demonstration purposes in order to show any organization or institution
who wants to establish a private cloud storage. Hadoop and HBase are used as a
fundamental framework for the development. The actual data are stored on HDFS
while the metadata are stored on HBase. The main advantage is to store
unstructured data on a cloud storage. However, the design for a metadata retrieval
especially by the owner of the data had not been addressed. Retrieving the data by
its owner may take long time because the system must search the whole database
to filter the data and display the result.

CHISTAR [18] has developed to handle scalability issue facing by
traditional EHR in hospital in United States. Traditional EHR system (VistA) is designed
in term of client- server connection. There is a scalable limitation in traditional EHR

system. Thus, CHISTAR transforms the traditional EHR system to cloud computing to

16

solve scalability issue. HDFS is adopted as a part of the storage and MapReduce is
applied for data processing before the data is sent to HBase.

Wiki health [19] is a cloud storage system which is designed to store
health care sensor data. Wiki health was developed on top of [11] and used Hadoop
and HBase as its fundamental framework. Health sensor data such as
Electroencephalography or Electrocardiography can be stored on the Wiki health
directly. Health sensor data are stored on HBase. Wiki health allows the user to
attach unstructured data to the sensor data. However, to retrieve any unstructured

data file is complicated because the user does not have a direct access to the data.

2.3.3 Other PHR Systems

Patient-centric and fine-grained data access control to the personal
health records system with multiple PHR owner on a cloud storage environment was
provided in [6]. The multi-authority attribute based encryption (MA-ABE) was adopted
in the work to provide security and multiple owner feature. The work mainly focuses
on how the data is encrypted while preserving fine-grained access control on the
data. The explanations on how to store the encrypted data in a storage are not
mentioned.

Cipher-policy attribute based encryption (CP-ABE) was adopts in [7] to
traditional existing PHR system named Indio X, and moved to cloud computing. The
objective of the work was to preserve the privacy sharing model and fine-grained
access control on cloud computing. However, the design and approach to store the
encrypted PHR data to a cloud storage are not mention.

The work in [8] was extended from [6] and also adopted MA-ABE. The

scalability of storage and communication cost are calculated and explained in this

17

work. However, the approach to store the encrypted PHR data in the cloud storage is
not mentioned.

The work in [9] designs the EHR system on cloud computing. The main
aim of the work is that the users can select some parts of their PHR data to share to
physician while the PHR data is still encrypted. The three features including
searchability, physician revocation and local decryption are provided in the work.
Although the designed EHR system work on the cloud computing environment. The
design and explanation on how to store the encrypted PHR data in cloud storage is
not mentioned.

The work in [10] extends the original secure PHR system to handle an
emergency situation when dealing with untrustworthy players. The work also applies
cipher text policy attribute based encryption and access control on the PHR data. An
emergency stuff can access the patient PHR data from cloud storage. However, the

cloud storage is used for storing the encrypted PHR data without any modification.

2.4 Hadoop Distributed File System (HDFS)

Hadoop distribution file system (HDFS) [20] is a storage part of Hadoop
[21] which is developed by apache to support big data for storing and processing.
Hadoop is designed for parallel processing, high availability, fault tolerance and
scalability. Hadoop has 2 main parts including distributed storage (HDFS) and parallel
processing (MapReduce). In this work, the distributed storage is considered and
parallel processing part is ignored because this work mainly focuses on how to store
and retrieve the encrypted data on a cloud storage. Thus, HDFS is applied as the

fundamental storage framework.

18

HDFS is the part of a distributed file system of Hadoop. There are two
HDFS node types: Namenode and Datanode. Namenode maintains metadata of all
files in HDFS such as a location of blocks, a number of replication. The metadata is
stored in the memory of Namenode for fast retrieval. Another Namenode is
Secondary Namenode which is a backup node of Namenode. Datanode is
responsible for storing the actual data in HDFS. With HDFS, a client can directly
contact to the Datanode which stores the actual data. For a write request, the client
sends a request to ask the Namenode in order to get a list of available nodes. After
that, the client can upload the data directly to any available Datanode. When the
data uploading is complete, the Datanode will send its’ data to another Datanode
until the number of data replication is reached. For a read request, the client sends a
request to inquire Namenode for the requested file information. The Namenode will
reply with a list of Datanode containing the requested data. After that, the client will

download the data from the Datanode directly. The HDFS architecture is shown in

Figure 2.1.
Replication
etadet)]]
| Backup e__ ..a.a-h - Block ops - _
Secondary Namenode Datanode Datanode Datanode
Namenode

Read / Write

Datanode
Client

Figure 2.1 HDFS Architecture

19

When the data arrives at the HDFS, the data will be split into blocks.
Each block is stored in the Datanode (default block size is 128 MB). The Metadata of
all blocks are stored in the Namenode. The number of default replication blocks is
three and these blocks are sent to be stored on a different Datanode. Three
replication blocks are the key of the high availability and the fault tolerance. If some
Datanode fail, HDFS can use the replicated data from other Datanode. Moreover,
more capacity can be added to HDFS without the need to shutdown the system.

The major issue of HDFS is the memory consumption of the small file
size. Basically, the HDFS can store any file size. Although the default HDFS block size
is 128 MB and the data that is smaller than the block size will use 1 block, the actual
size of each block depends on the actual size of the data. Storing a lot of small size
files can cause a high memory consumption issue. For a fast access, HDFS stores the
metadata of the whole data set in the memory using the Namenode. A volume of
memory consumption directly depends on a number of files in the HDFS. A file in
HDFS takes approximately 1354 bytes of the Namenode memory. The Metadata of a
single file takes 250 bytes and three replicated blocks take 368*3 bytes. Storing a lot
of small files consumes the Namenode memory more than storing large files.
Although both situations use the same storage capacity. To store a lot of small file,
HDFS requires an approach to handle the memory consumption issue.

The discussion in [22] provided a method to store image files in HBase
by an engineer from ImageShack [23]. The HBase cluster is applied to store image
files for 2 years without the memory issue. The image file is considered as BLOB

(large binary object) and stored in HBase. However, the HBase tuning configuration is

20

necessary. The advantage of the approach is that HBase will pack these small files to
a large file and send the packed file to HDFS automatically.

Medoop [24] is a health care platform which supports health
information exchange (HIE) in China becauseof the health data growing. Medoop
selects Hadoop and HBase as its developing framework. Medoop solves storing small
size file issue by merging the small file to large file and creating index metadata file
for the large file. Both large files and index metadata files are stored into HDFS.
HBase is used to store the user information.

The optimize approach for storing small file [25] analyzes and finds
the cutoff point between small file and large file when both files are stored to HDFS.
A result of cutoff point file is 4.35MB. Moreover, the work also introduces the
methodology to handle a small file by merging many small files to a single large file
and creating an index file. Both large file and an index file are stored into HDFS. The
work solves only a lot of small files storing problem and acts a like general cloud
storage. The work does not provide any mechanism for easy retrieving the encrypted

PHR data.

2.5 Apache HBase

Apache HBase is a non-relational database which designs to support a
large data set. HBase can use HDFS as a storage and inherit the advantage of HDFS
such as replication, scalability and fault tolerance. HBase is a column oriented
database type but it is different from a traditional database like MySQL. There is no
relation between the column in each table. HBase cannot use a join operation to
query the summarized data. HBase schema component includes table, column-

family, column-qualifier, row-key and cell. Figure 2.2 shows the HBase schema. Both

21

{3

“person” and “information” are column family (CF). The “person” CF includes
“name”, “sname” and “age” column qualify (CQ). Accessing the data stored in
HBase can perform by specifying some components. Table is a group of row-key and
contain column-families. Column-family is a group of column-qualifiers. Cell is a
place that can store the actual data. Call can store multi-version of the data. All row-

keys in HBase are always sorted by lexicography.

Column Family Column Qualifier
- CQ: name CQ:sname CQ: age CQ: phone CQ:city
0001 John Edward 26 +66123456 Bangkok
0002 Ken Joel 23 +66123457 Songkhla
0003 Alice Rob 24 +66123458 Phuket
0004 Ben Pitt 30 +66123459 Chaingmai
Sorted by lexicography Cell

Figure 2.2 HBase schema

HBase is able to use HDFS or a local file system for storing its
database files. To achieve a fully distributed mode, HBase must use HDFS as its file
system. HBase has three types of services including master, region server and
zookeeper. Master is responsible for administrator operations such as creating a table
and deleting a table. Region server is responsible for storing the data which arrives to
HBase. Zookeeper stores global metadata of every table in HBase. Figure 2.3 shows
HBase architecture. One RegionServer can handle more than one Region. A number
of Regions depends on RegionServer memory. Each Region can contain more than
one store. Each store has one MemStore. When the data arrives to HBase, the data
will be saved to Memstore first. After the size of Memstore reaches the maximum

threshold, HBase will flush the data in Memstore to Hfile. When HBase has many

22

Hfiles, HBase will merge them together into StoreFile. The StoreFile is the actual data

file of HBase. HBase can store the StoreFile in HDFS through DFS client to HDFS

Datanode.
Region
. Store Store
Client ————*
Memstore Memstore
Hfile Hfile X
Region
Zookeeper <> HMaster —— | | Server

\ RegionServer ‘

l

HDFS

Figure 2.3 HBase Architecture

In this thesis, HBase is used for storing both metadata and small
encrypted PHR data. In case of small encrypted PHR data, HBase store the data as a
binary large object (BLOB). BLOB is considered to be a large file size for storing into
the database because the database is designed for storing text which is smaller than
BLOB. So, HBase configuration tuning can provide a better performance in
comparison with the default configuration.

Hconfig [26] analyzes HBase when facing a massive data loading.
Hconfig can improve HBase performance in handling a massive data loading by tuning
the HBase configuration. Hconfig also suggests the good configuration for practical
situations. A result shows that a good configuration can improves HBase throughput
around 2-3 times. This thesis follows the suggested configurations in the work.

A driven policy configuration [27] is a continuous work from Hconfig

[26]. The work provides a practical configuration for various situation such as write

23

only, mostly write and mostly read. The result shows that the g¢ood configuration can
improve HBase performance in handling massive data. The suggested configurations

in the work are adopted in this thesis to gain more throughput.

2.6 Cluster Monitor (Ganglia)

To measure the proposed system performance, monitoring tool is
necessary. Ganglia monitor [28] is a monitoring tool for a distributed system such as
Hadoop or HBase. Both Hadoop and HBase support a direct exporting of their status
to Ganglia. Ganglia can also monitor the status of the node in the cluster although
there are no Hadoop and HBase are installed. Ganglia has 3 types of services
including ganglia-monitor, gmetad and ganglia-web. Ganglia-monitor is responsible for
monitoring a machine status such as cpu usage and network throughput. Ganglia-
monitor will send the machine status to the gmetad continuously. Gmetad is a
service collecting the metadata from the ganglia-monitor and saving the data to a
round robin database (RRD). The RRD is a time series database that is suitable for
storing the time series data such as network throughput, CPU load, HDD capacity.
Ganglia-web is a PHP web application which visualizes the monitored data in RRD in a
graph format. Ganglia-web also supports a exporting of the monitored data to a CSV
or JSON file format. Therefore, Ganglia is used for collecting the status of Hadoop,
HBase and nodes in all experiments, conducted in this thesis. The CSV exported
monitored data is used to analyze the performance of DSePHR, which is given in

chapter 4.

24

2.7 CryptDB

CryptDB [29] is a system that provides security for the data in a
traditional relational database system such as MySQL and PostgreSQL. CryptDB
claims that the system can keep the confidentiality of the data in the database even
when the database and the application server are fully controlled by an attacker.
Both data in the database and user’s query are encrypted by CryptDB proxy server
that situates between application server and database server. The user’s password is
used to generate a key that uses to encrypt the data at the proxy server. If the
attacker does not know the user’s password, the attacker cannot decrypt the data in
the database. Therefore, CryptDB focuses on the method to encrypt the data in the
traditional relational database and it also has limitation when handling big data due
to the nature of relational database. CryptDB does not provide the storage to store
the actual data. The PHR storage should also support storing a large amount of data
due to its size. The proposed system in this thesis provides the storage that can be
scale to store a large amount of PHR data. With the proposed system design in this
thesis, although the attacker can fully access the DSePHR storage, the attacker
cannot read the data because the data is already encrypted from the source before
being uploaded to the storage. The proposed system in this thesis is only designed

for storing encrypted PHR data, and does not store any key for decrypting the data.

25

CHAPTER 3

METHODOLOGY

In this chapter, the features of the proposed system namely,
Distributed Storage for Encrypted Personal Health Record (DSePHR) data APl are
explained. The DSePHR has been written in python under flask micro-framework.
Both Hadoop and HBase are used as the underlying framework. The DSePHR interface
applies REST style architecture. The overview, design and implementation of the
DSePHR are described and the experimental design of DSePHR is in the last of the

chapter.

3.1 PHR System Overview

The PHR system must allow an authorized user to upload and
download the authorized PHR to and from the system. An authorized user can either
uses the PHR system directly or access the PHR system via other application. The
DSePHR must allow its users to store the encrypted PHR data on a distributed
storage. The PHR data must be encrypted from the source. Thus, the PHR system
overview is shown in Figure 3.1. The DSePHR is shown in the red square box,
including a set of APIs and a distributed storage. The DSePHR API is an interface of
the DSePHR. The PHR can be stored to the DSePHR via the uses of the DSePHR API.

The distributed storage of the DSePHR is used for storing the encrypted PHR data.

26

e
g =¥ E ™ ﬂm

PHR Encrypted
user
PHR data PHR Encrypted
Provider PHR data
7 — 1141) —
! ;*: , m r
E d Encrypted PHR data o
PHR user nerypte distributed storage APT ~ Distributed storage
PHR data
Em,rypted Proposed Method (DSePHR)
J PHR data
PHR user

Figure 3.1 PHR System Overview

The dataflow on a write operation is shown in Figure 3.2, the PHR user
must pass an authentication process first. If the authentication is successful, the
DSePHR will return a token key. The token key is a string containing information to
identify the user. When the user requests to upload the data, the user need to
attach the token key with the encrypted PHR data to the DSePHR. The DSePHR will
verify the token key and deny if the token key is not valid. If the token key is valid,
the DSePHR will classify the data, create the metadata of the data and send both
metadata and the data to be stored on the distributed storage.

The DSePHR prototype currently returns the data id of the uploaded
PHR data as the metadata. This design aims for a fast experimental setting. However,
the returning metadata can be kept as a part of the PHR user information on the

system only for a later access.

27

P l'mfr:llflf'.{-"l:ser DSePHR DE::::]'];;NI
I. login
PR get(token key)
upload(token_key. enPHR)
<_____________________if_f_lﬁgi_}_' ______________________ :I verify_permission
:I classify_data
:I create_metadata
save(enPHR. metadata) .
o get(metadata)

Figure 3.2 Dataflow on a write operation or PHR upload process

The dataflow on a read operation is shown in Figure 3.3. Similarity, the

user must pass the authentication process first. To download the PHR, the user must

provide the token key and the data id as the download request. The DSePHR verifies

the token key. If the token key is valid, the DSePHR will send a request to the

distributed storage and download the data from the distributed storage and send the

data back to the PHR user.

For experimental purpose, the current DSePHR prototype requires the

data id inside the request. In the real usage, a process for the user to select a

request PHR must be done in order to retrieve the correct data ID of the request.

This step can be done using the DSePHR APIs provided.

28

Pl'miﬁfser DSePHR DE::::]'];;HI
I. login
PR get(token key)
download(token kev. some metadata)
<_____________________if_f_lﬁgi_}_' ______________________ :I verify_permission
send{metadata) ,
SO . .13 SO ———

Figure 3.3 Dataflow on read operation

3.2 DSePHR API

DSePHR API is developed for users, PHR systems and applications that
require to store encrypted PHR data to a distributed storage. DSePHR provides ability
to store the data, to index the data and to create metadata of the encrypted PHR
data automatically. The users of the DSePHR do not require to know how the data is
stored in the distributed storage. The users use the API to upload their health data to
the distributed storage and the DSePHR will return a data id and information of its
data to the user. The data id is used to indicate and retrieve the data when the user
requires. For more system feature details, will be described in next section.
3.2.1 Encrypted Communication and Authentication

The communication between a user and DSePHR is secured and only
authorized user can access the data. DSePHR enables https with TLS 1.2 to perform

the communication. Token based authentication is adopted in DSePHR. The DSePHR

29

forces all incoming requests to be done according to https mechanisms and token
based authentication. Therefore, the encrypted PHR data and its metadata will not
be revealed or accessed by any unauthorized user, assuming all mechanisms are not

compromise.

3.2.2 Retrieving and Storing Data

Users can store and retrieve their data from the distributed storage
using DSePHR. DSePHR does not limit the exact size of files to be stored on the
distributed storage. The distributed storage is optimized for storing both small size
files and large size files without any memory issue, that is a concern in other
distributed storage as discussed in Section 2.3. When the user uploads the data using
the DSePHR, the APl will return the data id to the user. The data id is used to
indicate the required data in the DSePHR and to download the data from the
DSePHR.
3.2.3 Data Accuracy

The user can ensure the data accuracy which are downloaded from
the distributed storage using DSePHR. If the data in the distributed storage is
incorrect, the distributed storage has a mechanism to recovery the data. When the
user downloads the data from the distributed storage, DSePHR provides a data
accuracy verification to check the downloaded data by means of a hash value. Since
there is at least 3 replicates on the system, the DSePHR can retrieve and recover the

data from another replicate.
3.2.4 Fast Search the Encrypted PHR Data
Search any encrypted PHR data is difficult because the data is lack of

any related information. However, the proposed system, DSePHR, provides some

30

related metadata of the encrypted PHR data for searching. Section 3.3.2 provides the

details of all metadata stored by the DSePHR.

3.2.5 Editing the Uploaded Data

In order to update or edit any existing PHR data in the DSePHR, there
are two cases. The first case is to update the data. The second case is to update
only some description of the existing data. For updating the data, the user must
replace the existing data by specify the data id. For updating the metadata, the data

will not be touched. Only the metadata will be updated.

3.3 DSePHR Design

The architecture of the DSePHR will be described in this section
including architecture and metadata design while the storage design is presented in
Section 3.4.
3.3.1 DSePHR Architecture

The DSePHR architecture is shown in Figure 3.4, consisting of two main
parts including my proposed APl and Hadoop as a framework for our distributed
storage. My proposed API contains four components, including access interface (Acl),
authentication (AUTH), encrypted data manager (EDM) and metadata manager (MM).
Hadoop contains two components, including Hadoop distributed file system (HDFS)
and HBase. For the connection path, the user of the DSePHR will connect to the
system via Acl. The encrypted PHR data will be sent over the HTTPS (HTTP with TLS)
to the Acl and the AUTH will verify the request permission. The Acl classifies the
request. If the request is to upload the data, the Acl make a call to MM for
generating a metadata and writing the metadata to HBase. EDM is also called by the

Acl for storing the data on HDFS. For a download request, the MM is used for

31

searching the data corresponding to the requested metadata. The EDM pulls the

data from Hadoop and sends the data to the requester.

I My Proposed API I
2 HTTP via TLS (
(o])
| | > 2 Loy
e}
@
. A4 E ted
Authentication (Token based) . neryp
— 5 PHR data
—
5
108 ONs :) 3

Encrypted Data ~ Metadata Manager
Manager

- Hadoop —

Hbase

Hadoop Distributed File System

Figure 3.4 DSePHR Architecture

The flowchart of the DSePHR operations is shown in Figure 3.5. First,
DSePHR receives an incoming request from a client. DSePHR will classify a type of
the incoming request. For an incoming upload request, DSePHR will (1) receive the
data from the incoming request and write the data to its DSePHR disk, (2) generate
the metadata of the data, (3) add the data to the uploading queue to wait for storing
to the distribution storage and (4) send the metadata back to the client. When the
uploading queue is not empty, the uploading queue checks the data size. The data
will be stored on HDFS if the data is large and stored on HBase otherwise. However,
the metadata of the data will be stored on HBase. After storing the data, DSePHR will
delete the data from its disk and check the data in the uploading queue again. For

an incoming download request, DSePHR will retrieve the metadata of the incoming

32

download request from HBase first to indicate the location of the request data. If the
requested data is on HDFS, DSePHR will retrieve the data from HDFS. If the requested
data is on HBase, DSePHR will retrieve the data from HBase. After retrieving the data,
DSePHR will store the requested data to its disk first, then send the data back to the

client.

Upload

Start

Request comes
from client

Is upload
or

download
request ?

Receive the data
and store the data in
web service

!

Generate metadata
of the data

!

Add the data to
uploading queue

Uploading queue
)

33

Download

Send the metadata
back to the client

Check
size of

Large Small

the data

}

Retrieve metadata
of requested data
from HBase

In HDFS eck the locatiois, 25

of the data from
metadata

Retrieve the data
from HBase

Retrieve the data
from HDFS

Save the data to

metadata to HBase

Save both the data
and its metadata to
HBase

HDFS and its

5 |

T

Delete the data in
web service

Are there
datain
uploading
queue ?

[o]

Save the data from
HDFS/HBase in
web service

l

Send the data back
to the client

Figure 3.5 DSePHR working flowchart

Another design challenge is that the encrypted PHR data is hard to

preprocess or categorize. The DSePHR does not understand the encrypted PHR data

because the information concerning the data is hidden. There are three properties of

34

the encrypted data that are explicit: owner of the data, size, incoming time of the
data. The DSePHR uses those explicit properties to design the database schema and
the distributed storage for conveniently accessing the data by its members.

The design of the distributed storage for storing encrypted PHR data
contains 2 parts including metadata design and storage design. The part of metadata
design describes how to adopt the encrypted PHR data properties to index the data
for convenient accesses. The part of storage describes how to store small and large

files by avoiding a high memory consumption issue of distribution storage (HDFS).

3.3.2 Metadata Design

In this part, the necessary metadata for the encrypted PHR data are
identified. HBase is used for storing the whole metadata of the DSePHR. The list of
metadata includes user id, system id, timestamp, data id, name of the data,
checksum value, size of the data, HDFSpath and description. The user id, system id,
timestamp and data id are gathered and it is used as a rowkey. The remaining
metadata are used as the column qualifier that persists in the column family named
properties. The metadata schema is shown in Table 3.1 and the details of each

metadata are described in Table 3.2.

Table 3.1 MetaTable Schema

Rowkey properties

<Userld-Sysld- name | checksum | size HDFSpath description

Timestamp-Datald>

35

Table 3.2 MetaTable Description

ColumnFamily:ColumnQuialifier Description

Userld (Rowkey) The user id of the data uploader

Sysld (Rowkey) The system id used by the data uploader
Timestamp (Rowkey) Timestamp when the data arrive at the DSePHR
Datald (Rowkey) Data id is a random gernerated by uuidd
properties:name The name of the data file

properties:checksum Checksum (SHA-3) value of the data
properties:size Size of the data file

properties:HDFSpath Location of the data file in HDFS (only large file)
properties:description Description of the data file

The rowkey design is the important part of the distributed storage,
because the data in HBase can be accessed by using the rowkey only. The rowkey
must be designed in corresponding to the PHR access pattern. The owner of the PHR
data can access the encrypted PHR data in the distributed storage by specifying time
range of the data. The rowkey is composed of user id, system id, timestamp and data
id respectively. The design of the rowkey is shown in Figure 3.6. The rowkey in HBase
is in lexicographical order. Thus, the data in HBase are sorted by first the user id and
then the system id. The data of the same user and the same system id are resided
close to each other and sorted by time. The advantage of this design is when the
user requires to access his/her data, the user can access it from one place. Accessing
the data using a range of time is convenient because the data are already sorted by

time.

36

Data of the user «

sorted by time |_______ . Rowkey
| U45589451 1436069077+ f2035542050c2e29f98b
System = S1 .U45589+Sl 1436155417 b17b9566851f0e682c24

|U45589451-1436235412 a1 7bd5e6b51{0e692f22

. U45589483 1036414675-143920ab78135b35ac53s
| U45590153-1436187817-670d28cac1b992a554dcs
Same user id, | Ud5595151-1436281417-94d22a8bf1999cdb014c0

different system id | UA5595155-136306617-F78528ce042e5d6415cea

Data sorted
by user id

Figure 3.6 Rowkey Design

3.4 Storage Design

In the part of the storage design, the storage is divided to 2 parts
including HDFS and HBase. Large files are stored on HDFS and small files are stored
on HBase. The reason to store the small files on HBase is to eliminate the high
memory consumption of Namenode as discussed earlier in Section 2.4. By the storing
small files on HBase, the HBase optimization is required to achieve the performance.
3.4.1 HDFS Storage

The HDFS storage will store only large file. That is, the data that is
larger than the cut-point between small and large file is directly saved to HDFS. The
cut-point in this work is 10MB (10MB is the default maximum HBase cell). The value
can be configured. This metadata is stored in HBase using the same schema as the

metadata design shown in Table 3.1.

37

3.4.2 HBase Storage

Storing a lot of small files in HDFS can cause the high memory
consumption problem. For instance, 10 million of 1 KB files take memory around
4GB while 128 MB of 800 files take memory around 320 KB, Although both situations
take an equal capacity of the disk space. Storing small files in HBase is an appropriate
solution because HBase has a compaction operation to merge many small files to a
large file to be stored on HDFS automatically. The schema to store small files using
HBase is shown in Table 3.3. A binary large object (BLOB) technique is adopted in
HBase. The DSePHR stores a binary file in column qualifier named “ data” and
column family named “EncryptedData”. The rowkey used is as same as that of the
metadata design.

Another advantage of storing small files in HBase is saving time to
implement the file merging operation and a CRUD operation, which stands for create,
read, update and delete operations. Merging files is needed for gathering small files
to a large file. The less number of files can reduce the Namenode memory. Storing
small files on HDFS without HBase, merging method and CRUD operations are
needed because accessing the small file in merging file cannot be performed without
CRUD operations. By using HBase method, HBase merges small files automatically

and also provides CRUD operation to access the data.

Table 3.3 EncTable Schema

Rowkey EncryptedData

<Userld-Sysld- Data

Timestamp-Datald>

38

3.4.3 HBase Optimization

HBase does not mainly design for BLOB storage but HBase is able to
store the data in binary form. HBase can store both text data and binary data. Binary
data such as the encrypted PHR data is large when it is compared with text data.
Storing the data as BLOB can be considered a high data loading operation. Therefore,
the HBase optimization is necessary. There are 2 parts of optimization including
HBase configuration tuning and presplit table.

The HBase configuration tuning is an easy operation to support high
write throughput. Most configurations are in hbase-dir/conf/hbase-site.xml and some
configurations are in hbase/conf/hbase-env.sh. The explanation of each configuration

is shown in Table 3.4.

39

Table 3.4 HBase Configuration Description

Configuration Name Description Default | Adjust
Heapsize* Memory size of the JVM that can be | 1 GB 55GB
used by HBase.

hbase.regionserver.global. | Size of the whole memstores (write | 0.4 0.6

memstore.size cache) (40%)

hfile.block.cache size Size of the block cache (read cache) | 0.4 0.2
(40%)

hbase hregionmemstore. | Size of the memstore 128 256

flush.size MB MB

memstore.block. Block the data when size of the 2 a4

multiplier whole memstore exceed

(memstore.block. multiplier x

hbase.hregion.memstore.

flush.size)

compactionThreshold Number of hfiles to perform 3 15
compaction operation

blockingStoreFiles Block the data when the number of | 10 25
hfiles exceed the threshold.

XX:CMSInitiating- Amount of the data in the heapsize | 92 % 70 %

OccupancyFraction* that encourage the garbage

collector to work.

* configurations are in hbase-env.sh

Pre-split table is an important technique to spread the incoming data
to every node. Basically, HBase starts with a single region as a table. When the size of
the data in the table increases and reaches the threshold, HBase will split the region
to two regions. At the start, the whole incoming requests to HBase will go to a single
machine which can cause a bottle neck problem. A presplit table can provide a
solution to such problem. The pre-split mechanism divides regions to distribute the
data among machines from the start. The presplit table can perform using HBase

13

shell command when the table is created. For instance, create 'MetaTable’,

40

'properties’, {SPLITS => ['ul'ud’, 'u7'l} ; create 'EncTable’, 'EncryptedData’, {SPLITS =>
[ul'ud’, 'u7'}”. A text “'ul','ud’, 'u7” is a split point. The recommended number of

split point is a number of region server minus one.

3.5 Synthetic PHR Workloads

Since there is no standard for PHR workloads, this thesis also proposes
a set of synthetic PHR workload based on real data files downloaded and collected
from various sources. According to 11 types of PHR originally given in [3] and
discussed again in Section 2.1, most PHR data are in the form of a document file
such as continuity of care document (CCD) file, continuity of care record (CCR) file,
and a document file type. In addition, the PHR data can exist in a form of a media
file such as an image file (e.g., MRI, X-ray or ECG image file), an audio file (e.g., a
doctor visit conversation) and a video file (e.g., an operation video or a healthcare
instruction video). As a result, various document and media file sizes and types are
downloaded as a PHR workload collection.

In this thesis, there are a total of 12 files including document files and
media files, collected as a set of synthetic PHR workload as a representative of the

PHR data types discussed above. Each data is explained below:

® A MRI image file: a 20KB jpeg file collected from imaging.cancer.gov as a
representative of the patient information as an overview, while the large image
file size will also be stored in the PHR system for details information. This file

also represents other small size image files to be stored on the PHR system.

® A CCD file: a 27KB xml file collected from www.ehrdoctors.com as a

representative of the several PHR data type discussed in Section 2.1 such as

41

problem list, procedure, major illness, provider list, family history, medications,
immunizations, and laboratory test. This file represents a small size CCD file.

A patient information file: a 30KB xlsx file created as a representative of several
PHR data type. This file represents a small size document file.

A heartbeat sound file: a 154KB ogg file collected from commons.wikimedia.org
as a representative of a media file type such as the home-monitored data, the
laboratory data and the family history data.

An ECG picture file: a 393KB jpg file collected from en.ecgpedia.org as a
representative of a media file type such as the home-monitored data, the
laboratory data and the family history data.

A patient information file: a 431KB docx file created as a representative of several
PHR data type. This file represents a medium size document file.

A CCD file: a 617KB xml file collected from www.myhealth.va.gov as a
representative of a CCD file of different size and type.

A CCD file: a 679KB pdf file collected from www.myhealth.va.gov as a
representative of a CCD file of different size and type.

A X-ray file: a 4MB png file collected from commons.wikimedia.org as a
representative of a large image file.

An audio file: a 8.65MB mp3 file created as a representative of a voice
conversation file.

A video file: a 27MB mpd file of a standard-definition video collected form

youtube.com as a representative of a small video file.

a2

® A video file: a 232MB mp4 file of a high-definition video collected form
youtube.com as a representative of a large video file.

Table 3.5 shows a summary of all twelve file including the size, the
type for the source of each file. Since the PHR in this thesis is assumed to be
encrypted from the source, all files are encrypted using the encryption presented in
[10]. The first column shows the size of the original file (before the encryption
process). The second column shows the size of the encrypted file. The third column
shows the overhead produced by the encryption process on each file. The fourth
column shows the type of files. The last column shows the description of the file

including the detail of the file and the source of the file.

Table 3.5 Workload Files

43

Original Encrypted Increased File Description
filesize filesize size from type
original size
20 KB 30 KB 10 KB JPG MRI image
Source:
imaging.cancer.gov
27 KB 31 KB 4 KB XML CCD example
Source:
www.ehrdoctors.com
30 KB 41 KB 11 KB XLSX Patient information
154 KB 160 KB 6 KB OGG Heartbeat 66bpm sound
Source:
commons.wikimedia.org
393 KB 400 KB 7 KB JPG ECG picture graph
Source: en.ecgpedia.org
431 KB 440 KB 9 KB DOCX | Patient information
617 KB 620 KB 3 KB XML Large CCD example
Source:
www.myhealth.va.gov
679 KB 690 KB 11 KB PDF CCD PDF example
Source:
www.myhealth.va.gov
4.00 MB 4.01 MB 11 KB PNG Chest X-ray PA image
(4.7MP)
Source:
commons.wikimedia.org
8.65 MB 8.65 MB 7 KB MP3 Conversation sound 9
minute
27 MB 27 MB 9 KB MP4 SD Video of operation 9
minute
Source: youtube.com
232 MB 232 MB 11 KB MP4 HD Video of operation
17 minute
Source: youtube.com

44

Al files can be classified into 4 types by its size including very small
size (less than 100 KB), small size (100KB -1MB), moderate size (1MB — 10MB) and
large size (more than 10MB). Base on the collection above, the size distribution of

the synthetic PHR workload is shown in the Figure 3.7

— 9%

SRR

27%

2
BRI R
11111

46%
B <100KB [100KB-1IMB %1MB-10MB => 10 MB

Figure 3.7 PHR workload size distribution

The discussion above only gives the details of the PHR data of the
proposed synthetic workloads. To conduct an experiment in this thesis, the user
must perform a download or a download of a file in the PHR workload. Therefore,
the mixture of read and write requests on each file in the PHR workload is another
parameter to be considered. According to the discussion in Section 2.2, the PHR
requests contain a large number of write requests than that of the read requests.
Therefore, the ratio of write to read requests in the experiment includes 100:0, 75:25

and 50:50.

3.6 Experimental Design
DSePHR is developed for storing and retrieving encrypted PHR data by
designing an index from the data attributes and solving the memory issue of the

distributed storage when storing a lot of small size files. The experiments are

a5

designed to (1) evaluate the memory consumption of the DSePHR and (2) to
evaluate the DSePHR performance on various situations. The detail of experiments

will be described in the next section.

3.6.1 Memory Consumption Issue

Although, HDFS has no limitation on the file size for storing but storing
a lot of small size files can cause a memory consumption on the Namenode as
discussed in Section 2.4. The DSePHR is mainly designed for storing the PHR data
which contains both small files and large files. The result of DSePHR approach will
show the DSePHR can solve the hish memory consumption of HDFS when it stores a
lot of small files. In this experiment, the memory consumption of the Namenode
between traditional HDFS and DSePHR will be compared. A number of 25,000 to
100,000 files will be fed to both traditional HDFS and DSePHR.

The experiment is conducted on 13 machines. The detail of the

experimental setup is shown in Table 3.6.

a6

Table 3.6 Setup Detail in Memory Issue Experiment

Machine Name Service Specification
Namenode (1 machine) Namenode of HDFS OS: Ubuntu 14.04.3 LTS
HQuorumpeer (Zookeeper) | CPU: Core-i5 3740s
Datanode (9 machines) DataNode 2.9Ghz
HRegionServer (Region HDD: 320 GB (7200
Server) RPM, 64MB cached)
Master2 (1 machine) Hmaster RAM:DDR3 8 GB
HQuorumpeer
SecondaryNameNode All machines are
WebService The DSePHR Service API physical machine and
Measurement Machine DSePHR client connected via a local
area network 100 Mbps
on Cisco Catalyst 2960-
48TT-L Switch.
Total: 13 machines

The PHR workload shown in Table 3.5 is used in this experiment. The
PHR workload is uploaded to the traditional HDFS and the DSePHR at the same time.
When the number of files reach 25,000, 50,000, 75,000 and 100,000, the memory
usage at the Namenode of the traditional HDFS and the DSePHR is calculated based

on the number of files in the system.

3.6.2 DSePHR Performance

In this experiment, DSePHR will be evaluated during operations. The
experiments are divided into four parts including baseline experiment, effect of
limited storage space, effect of write-read request ratio and effect of the file type
mixture. The objective of baseline experiment is to measure the performance of

DSePHR to perform an upload and a download operation on an empty system. That

ar

is, the DSePHR will only service the request command alone. This way, the
performance of this part can be used as a reference point for other situations. The
remaining three experiments are conducted to evaluate the effect of other factors

on the DSePHR performance. The details of each experiment are given next.

3.6.2.1 Baseline Experiment

Under the baseline experiment, each PHR file of the synthetic
workload described in Section 3.5 is uploaded to and download from the DSePHR.
The process is done when the DSePHR is empty. Thus, the DSePHR will only service
the request. As a result, the performance observed here can be used for comparison
with the result of the remaining experiments.

There are 3 storage nodes, 1 web service and 1 client to conduct the
experiment. Every machine is connected by LAN 100 Mbps fast Ethernet. The
number of storage nodes is 3 because HDFS makes 3 replicas of its data. The client
uploads to or downloads from the single web service, then a web service will store
to or retrieve from storage nodes. The overview of the baseline experiment is shown
in Figure 3.8 and more detail of each machine is shown in Table 3.7.

The workload used in this experiment is the PHR workload presented
in Section 3.5. For the file size less than 1 MB, the file will be repeatedly uploaded
or downloaded for 10 times. For the 3xray.png which is a 4.01 MB, the file will be
repeatedly uploaded or downloaded twice. Other files will be uploaded or
downloaded only 1 time. The repeating number is considered by the multiplication
of repeating number and file size that is not over 10 MB due to transmission rate of
LAN 100 Mbps fast Ethernet. For the repeated files, the average value will be used

for the result of each file instead of the single value.

48

The experiment will be repeated for 3 times and the average value is
calculated. The storage nodes will be formatted, then each file will be uploaded to
the storage. If the repeating number is 10, the file will be continually uploaded to
the storage 10 times. For the download measurement, each file will be uploaded to
the storage first for repeating number times, then each file will be randomly selected

to download for repeating number times.

4

Client

DSePHR
Web Service Distributed Storage
(HDFS + HBase)
Storage Node 3 machines

DSePHR Framework

Figure 3.8 Overview experiment setup for workload baseline experiment

Table 3.7 Experiment setup detail of workload baseline experiment

Machine Name

Service

Specification

Namenode (1 machine)

Namenode of HDFS

Storage Nodes

(3 machines)

DataNode

HRegionServer (Region

Server)
Zookeeper Node HQuorumpeer
(1 machine)
SecondaryNameNode SecondaryNameNode
(1 machine)
Master2 (1 machine) Hmaster

DSePHR web services

The DSePHR Service API

DNS server

Bind9

Client

The client to write or read
the data to DSePHR

OS: Ubuntu 14.04.3 LTS
CPU: Core-i5 3740s
2.9Ghz

HDD: 60 GB (7200 RPM,
64MB cached)

RAM: DDR3 8 GB

All machines are
physical machine and
connected via Lan 100
Mbps with Cisco
Catalyst 2960-48TT-L
Switch.

Total: 10 machines

3.6.2.2 Effect of the Limited Storage Space

49

In this experiment, the DSePHR performance are measured when the

storage space is running out. This experiment is conducted on a small size cluster (3

storage nodes).

The experiment setup is shown in Figure 3.9. According to Figure 3.9, a

number of clients, a number of DSePHR web services and a number of storage nodes

are presented by N, X and Y respectively. Clients will upload the data to or

download the data from DSePHR web services. The DSePHR web services will store

the data to or retrieve the data from the distributed storage. The detail of each

machine is shown in Table 3.8

Client 1

Client 2

Client N

DSePHR
‘Web Service 1

DSePHR
Web Service 2

DSePHR
Web Service X

Distributed Storage
(HDFS + HBase)
Storage Node Y machines

DSePHR Framework

50

Figure 3.9 Effect of limited storage space and effect of the write-read request ratio

experimental setup

Table 3.8 Effect of limited storage experimental setup details

Machine Name

Service

Specification

Namenode (1 machine)

Namenode of HDFS

HQuorumpeer (Zookeeper)

Storage Nodes

(3 machines)

DataNode
HRegionServer (Region

Server)

Master2 (1 machine)

Hmaster
HQuorumpeer

SecondaryNameNode

DSePHR web services

(6 machines)

The DSePHR Service API

DNS server (1 machine)

Bind9

Clients (8 machines)

The client to write or read
the data to DSePHR

OS: Ubuntu 14.04.3 LTS
CPU: Core-i5 3740s
2.9Ghz

HDD: 60 GB GB (7200
RPM, 64MB cached)
RAM:DDR3 8 GB

All machines are
physical machine and
connected via Lan 100
Mbps with Cisco
Catalyst 2960-48TT-L
Switch.

Total: 20 machines

51

The synthetic PHR workload described in Section 3.5 is used as the
workload in this experiment. The mixture of the file type is as described in Section
3.5 while the ratio of write-read request is 100:0, 75:25 and 50:50. The workload in
this study consist of 6,000 files for each client. Therefore, there are 48,000 files total
from 8 clients.

The workload will be fed to the DSePHR until the system is almost
running out of resources. After that, the capacity will be added to the system
afterward. The workload is fed continually to the DSePHR until the system runs out
of resource. The measurements during this experiment include the amount of data
on each client and each storage node. The measurement points are the system
resource usage at 75%, 80%, 85%, 90% and 95%. The response time of the DSePHR

in using the additional storage nodes is also measured.

3.6.2.3 Effect of the Write-read Request Ratio

In this experiment, DSePHR will be tested on a larger scale with a
warm-up and cool-down period in order to simulate the backeround work and the
measured work. Since the PHR data source can be wearable devices, mobile phones
and users from PHR system [30], [31], there is a lot of data that can be exported
from sensors of such device. Resulting in a higher number of write-request than that
of read-request. Three situations are mimicked such situations by using a ratio of
write to read request of the workload as 100:0, 75:25 and 50:50.

The large cluster is used to measure the DSePHR performance when
the DSePHR handles both upload and download requests from clients. The large
cluster has a number of storage nodes more than the small cluster. A high number

of storage nodes means that the DSePHR can support high amount of throughput

52

because there are many nodes to support a lot of incoming requests. The incoming
requests can be distributed to all storage nodes. The detail of machines used in the
experiment shows in Table 3.9.

The overall picture of the experimental setup is shown in Figure 3.9 as
same as the effect of limited storage space experiment. There are three main parties
including client, DSePHR web service and distributed storage. Assuming the clients
are real users who want to store or retrieve the data from DSePHR. The clients are
used for accessing the DSePHR web service including write-operations and read-
operations. All clients will know a list of DSePHR web service by getting it from the
DNS Server. The client can directly send the request to each DSePHR with the DNS
round robin mechanism. Each DSePHR web service processes the incoming requests
and saves the data to the distributed storage. The distributed storage contains many

machines for supporting the data from DSePHR web service.

53

Table 3.9 Effect of the write-read ratio and the mixture of file type

Machine Name Service Specification
Namenode (1 machine) | Namenode of HDFS OS: Ubuntu 14.04.3 LTS
HQuorumpeer CPU: Core-i5 3740s
(Zookeeper) 2.9Ghz
Storage Nodes Datanode HDD: 460 GB (7200 RPM,
(15 machines) HRegionServer (Region 64MB cached)
Server) RAM:DDR3 8 GB
HQuorumpeer
(Zookeeper)* All machines are

*only machine#1, #5, #9 connected via Lan 100

Master2 (1 machine) Hmaster Mbps.
HQuorumpeer
SecondaryNameNode Total: 32 machines
DSePHR Web service The DSePHR Service API

(6 machines)

DNS Server (1 machine) BIND9

Clients The client to write or read
(8 machines) the data to DSePHR

The workload described in Section 3.5 is used in this experiment. Each
client has 6,000 files and there are 8 clients. Resulting in 48,000 files. However, the
first 500 files of each client will be used as the warm-up files. That is, the
performance of these files is not included in the result. Each file in the set of 6,000
files will be set as either read or write according to the write-read ratio. For example,
the 100:0 ratio will result in 6,000 write requests. That is, all files are write requests.
For the 75:25 ratio, there are 4500 write requests and 1,500 read requests. Since the
first 500 files are the warm-up files and the last 500 files are the cool-down files. The

measurement files are the 5,000 files in the middle. A throughput of each client is

54

measured in megabyte per second. The throughput of each storage node will also

be measured. The throughput results will show on both write and read operation.

3.6.2.4 Effect of File Type Mixture

The synthetic PHR workload described in Section 3.5 consists of 73%
small files (i.e., the file size is less than 1 MB) and only 9% of files have the size
larger than 10 MB. Thus, 91% of the files will be stored on HBase while only 9% of
the files will be stored on HDFS due to the DSePHR design. In the future, however,
the data source may be able to generate more large files. Thus, this experiment
changes the mixtures of the PHR file type to increase the number of large files in
order to evaluate the DSePHR performance.

All experiment settings are exactly the same as that of section 3.6.2.3
with the exception of the workload. The workload in this experiment contains 75%
of small files and 25% of large files. While, the write-read ratio of the workloads is

100:0, 75:25 and 50:50.

55

CHAPTER 4

RESULTS AND DISCUSSIONS

This chapter presents the details of the DSePHR APIs and the
experimental results including DSePHR Namenode memory usage, the workload
baseline performance, the effect of limited storage space, the effect of varying write-
read request ratio of the workload, and the effects of file type mixture of the

workload.

4.1 DSePHR API Description

The DSePHR API is developed using REST style architecture on HTTP.
The use of DSePHR API is described in Table 4.1. Column “method” shows a HTTP
method, “URI” stand for Uniform Resource Identifier to the API operation, Parameter
and description explain the detail of the URI. Every request requires to attach a
token key for authentication by determining HTTP request as

“header={‘Authentication-Token’:token_key}”. The token key can be found from the

login URI.

Table 4.1 DSePHR API Description
Method URI Parameter and description
POST /login Description : sign in to the system and get a

token key to be attached with the request.
Send data by JSON style

Parameter : email, password

email : registered email

password : used password

example {“email”:“systeml@example.com”,

“password”: “system1”}

Table 4.1 DSePHR API Description (cont.)

56

Method

URI

Parameter and description

GET

/logout

Description : sign out from the system

POST

/upload

Description : use to store the data to a
distributed storage. If uploading success, the
system will return the metadata using JSSON
Send data by FORMDATA style

Parameter : sysid, userid, file, timestamp,
description

sysid : registered system id such as “s1”
userid : registered user id such as “u1252”
file : the health data to store

timestamp : time of the data. If does not specify,
time is current uploaded data time.

description : description of the data

GET

/download/<rowkey>

Description : use to retrive the data from the
distributed storage.

Parameter : rowkey

*The rowkey get from /upload when the upload

operation is successful

POST

/search

Description : use to search the data in the
distributed storage.

Send data by FORMDATA

Parameter : sysid, userid, filename, starttime,
endtime, description

sysid: specify system id of the data to search
userid: specify user id of the data to search
starttime: specify start of time of the data
endtime: specify end of time of the data

* Both starttime and endtime can specify

together.

GET

/infor/<rowkey>

Description : Show information concerning the
data.

Parameter : rowkey

57

4.2 Memory Consumption Issue

This experiment is conducted to observe the DSePHR memory
behavior when the DSePHR handles a lot of data. A number of files in the system is
100,000 files with 1,200 GB of disk capacity. Encrypted PHR data with a lot of small
files especially the document file type can cause a high memory consumption on
the Namenode of the HDFS system. The proposed DSePHR, however, can reduce the
memory consumption problem.

This experiment is performed to measure the memory consumption
of the Namenode when stores a lot of files. Table 4.2 shows the memory
consumption of the proposed DSePHR and the HDFS system when the number of

input files is at 25,000, 50,000, 75,000 and 100,000 files.

Table 4.2 Memory comparison between DSePHR and traditional HDFS

A number of files in Systems
the system
DSePHR (MB) Original HDFS (MB)

0 56.00 56.00

25,000 57.60 72.20

50,000 59.10 83.40

75,000 60.58 104.59

100,000 61.16 120.79

The memory consumption is calculated using the formula given in
[25]. At O file point, HDFS takes an initial memory of 56 MB. According to the results
shown in Table 4.2, 100,000 files in the system, the proposed DSePHR consumes the
amount of memory similar to the initial amount while the HDFS consumes almost
twice the initial amount. The key solution of the proposed DSePHR is to store a lot

of small files using the HBase compaction mechanism. Thus, HDFS can avoid the

58

memory consumption issue because a lot of small files are packed in order to
reduce the number of files. Without this approach, the original HDFS suffers a high
memory consumption problem and lead to a state of unavailable if a large number
of small files is sent to be stored, which is an important point because the encrypted
PHR data is mostly a small file type such as document.

In conclusion, the experimental results show that the DSePHR can
store and retrieve the data without a Namenode memory issue observed under the

original HDFS system.

4.3 DSePHR Performance

To observe the DSePHR system performance, four experiments are
conducted. The first experiment is to measure the real performance of DSePHR
(baseline), the second experiment is the effect of limited storage space performance,
the third experiment is the effect of write-read ratio and fourth experiment is the
effect of file type mixture. The results of the baseline experiment, effect of limited
storage space, effect of write-read ratio and effect of file type mixture are presented
in Section 4.3.1, 4.3.2, 4.3.3 and 4.3.4 respectively.
4.3.1 DSePHR Workload Baseline

According to the DSePHR policy, small files will be stored in HBase
and large files will be stored in HDFS. However, the small file can be stored in HDFS
directly. To measure the performance between DSePHR policy and the storing in
HDFS only, DSePHR system under DSePHR policy and storing in HDFS only are
conducted. Both baseline performances use DSePHR system with different
configuration. For the DSePHR policy, the small file is stored in HBase and large file is

stored in HDFS. For the HDFS only, every file is stored in HDFS. Table 4.3 and Table

59

4.4 show the upload and download time baseline using both DSePHR policy and
HDFS only. Every value in both upload and download baseline table is an average
value of 3 repeating experiments. For the upload time table, the column “CL-WS” is
the amount of time in seconds that it takes for the client to upload the data to the
web service. The column “WS-SN” is the amount of time in seconds that it takes for
the web service stores the data to the storage nodes. Due to the DSePHR policy,
11videosmall.mp4 and 12videobig.mpd are stored in HDFS. Other files are stored in
HBase. The “Gen Meta” column is the amount of time to generate a metadata. The
“Repeat” column means that the file is continually upload for a number of repeat
times in order to calculate the average values in CL-WS and WS-SN. The number to
repeat depends on the multiplication result of the number of repeat and the file
size. The multiplication result must not be over 10MB due to the transmission rate.
The small file must be repeated because the small file can be easily affected by the
network latency or OS service. For the download time baseline table, the “SN-WS”
column is the amount of time that the storage nodes send the requested data to a
web service in responding to the client request. The “WS-CL” column is amount of
time that web service send the requested data to client. The “Repeat” column is
times to repeatedly download similar to upload time baseline table.

According to the results shown in Table 4.3, the time values in CL-WS
column are always less than that of the WS-SN column for both DSePHR policy and
HDFS only. That can be explained by the fact that storing the data in a storage node
requires more operations than storing the data in the web service. For example, in
case of storing in HBase, the web service must retrieve a list of available region

servers from the Zookeeper, then the web service will send the data to a specified

60

region server. In case of storing in HDFS, the web service must retrieve a list of
available Datanodes from the Namenode first, then the web service will send the
data to a specified Datanode. The column WS-SN in HDFS only is clearly larger than
that of the DSePHR policy for all small files (less than 10 MB). To store the data in a
storage node, the system under the DSePHR policy spends time at least 0.7 seconds
while the system under the HDFS only spends time at least 2.4 seconds. It can be
concluded that storing data in HDFS takes more time than storing data in HBase for
small files. Because HBase stores the data in the memory first while the HDFS stores
the data in disk immediately, the DSePHR policy can reduce the time for storing the
data. This supports the idea that storing the small files in HBase and storing the large
files in HDFS can improve the performance of the upload time. The metadata
generating time is increased with the file size because the metadata generating
process must create the hash value of the file (SHA-3). To generate the hash value,
the hash function must read the whole file and the time to create the hash value
increases with the file size.

According to Table 4.4, the time values of SN-WS and WS-CL column
in DSePHR policy are slightly different while that in HDFS only are clearly different for
the file size less than 1 MB. The SN-WS of DSePHR policy is less than that of HDFS
only for the file size less than 1 MB because the data will be retrieved from the
memory of the storage node for the DSePHR case while, the data will be retrieved
from disk of storage node. The retrieving time from the memory is smaller than the
retrieving time from the disk. However, the retrieving time of the DSePHR policy is

larger than that of the HDFS only when the file size is larger than 4 MB.

Table 4.3 Upload time baseline (DSePHR policy and HDFS only)

61

Filename Size Repeat DSePHR policy HDFS Only

CL- WS-SN | Gen CL- WS-SN | Gen

WS(s) (s) Meta | WS(s) (s) Meta

(s) (s)
2mri.jpg 30KB 10 0.016 | 0.788 | 0.001 0.018 | 2.426 | 0.001
dced.xml 31KB 10 0.016 | 0.786 | 0.001 0.018 | 2.432 | 0.001
Bexcel.xlsx 41KB 10 0.017 | 0.800 | 0.001 0.020 | 2477 | 0.001
9sound.ogg 160KB 10 0.027 | 0.823 | 0.002 | 0.030 | 2413 | 0.002
lece.jpg 400KB 10 0.049 | 0.947 | 0.003 | 0.053 | 2517 | 0.004
Tword.docx 440KB 10 0.063 | 0.979 | 0.003 | 0.056 | 2.482 | 0.004
5ccd.xml 620KB 10 0.070 | 0.893 | 0.004 | 0.073 | 2.623 | 0.005
6ccd.pdf 690KB 10 0.078 1.011 | 0.004 | 0.081 2.559 | 0.005
3xray.png 4.01MB 2 0.386 1.610 | 0.028 | 0.394 | 3.026 | 0.033
10sound.mp3 8.65MB 1 0.808 | 2.619 | 0.065 0.846 | 3.370 | 0.068
11lvideosmall.mpd | 27MB 1 2.481 5267 | 0.172 | 2594 | 5322 | 0.166
12videobig.mp4 232MB 1] 21.006 | 24.482 | 1.066 | 21.897 | 24.838 | 1.065

Table 4.4 Download time baseline (DSePHR policy and HDFS only)

Filename Size Repeat DSePHR policy HDFS Only

SN-WS(s) | WS-CL(s) | SN-WS(s) | WS-CL(s)
2mri.jpg 30KB 10 0.007 0.005 0.030 0.005
dced.xml 31KB 10 0.007 0.004 0.018 0.005
8excel.xlsx 41KB 10 0.006 0.006 0.018 0.006
9sound.ogg 160KB 10 0.017 0.016 0.030 0.017
lecg.jpg 400KB 10 0.038 0.038 0.051 0.053
Tword.docx 440KB 10 0.042 0.042 0.053 0.042
5ccd.xml 620KB 10 0.058 0.058 0.069 0.059
6ccd.pdf 690KB 10 0.064 0.065 0.074 0.065
3xray.png 4.01MB 2 0.375 0.375 0.376 0.376
10sound.mp3 8.65MB 1 0.837 0.805 0.791 0.806
11videosmall.mp4 27MB 1 2.580 2.506 2.440 2.507
12videobig.mp4 232MB 1 20.949 21.248 20.816 21.257

Table 4.5 shows the upload and download time baseline from the

client perspective. The time is measured from the point when the request is sent by

the client until the client gets the response from the DSePHR web service on the

62

request. For the small files, the upload time is less than 1 second while the
download time is less than 2 seconds. There is a linear relationship shown from the
file size larger than 4MB. For example, the size of 10sound.mp3 is 2.16 times that of
3xray.png. The upload time of 10sound.mp3 is also 2.11 times that of 3xray.png. The
download time of 10sound.mp3 is 2.16 times that of 3xray.png. The download time
is almost twice the upload time because the web service must retrieve the data
from storage node first, then the web service sends the data to the client and no
metadata generating process. For the largest files, 12videobig.mp4, the upload time is
less than half a minute and the download time is not over 1 minute. Both the
upload and download time also show the linear relationship similar to that of the

file size larger than 4 MB of the small files.

Table 4.5 Upload and download time baseline from client perspective view

Filename Size Upload time (s) Download time (s) | Repeat
2mri.jpg 30KB 0.017 0.031 10
dced.xml 31KB 0.018 0.026 10
8excel.xlsx 41KB 0.019 0.025 10
9sound.ogg 160KB 0.029 0.047 10
lecg.jpg 400KB 0.054 0.091 10
Tword.docx 440KB 0.067 0.099 10
5ccd.xml 620KB 0.076 0.131 10
6ccd.pdf 690KB 0.084 0.144 10
3xray.png 4.01MB 0.416 0.766 2
10sound.mp3 8.65MB 0.876 1.658 1
11videosmall.mp4 27MB 2.661 5.102 1
12videobig.mp4 232MB 22.100 42.214 1

4.3.2 Effect of the Limited Storage Space
The objective of this experiment is to observe the DSePHR behavior

when the DSePHR storage is almost filling up. Two issues are studied in this

63

experiment including the limited resource performance and the DSePHR performance

during limited resource.

4.3.2.1 Limited Resource Performance

This experiment aims to investigate the behavior of DSePHR when the
capacity of the storage is limited, because extra capacity can be added to the system
without shutting down the system. This feature provides the availability feature for
the DSePHR system. Although this feature is already achieved by HDFS. To ensure
the continuous operation of the system, the amount of time each extra storage is
filled up and the amount of data to the DSePHR web service, the amount of data
sent to each storage nodes are measured. The workload in this experiments consist
of three scenarios, including 100:0, 75:25, and 50:50 write-read request ratio
workloads of the file type mixture as described in Figure 3.7.

The initial capacity of the system is 60 GB of 3 storage nodes. There
are eight clients feeding into the system until the system capacity is at 95% . Then,
three storage nodes will be added to the system.

The experimental results show that the time for all three extra
storage nodes are filled up with the data after the storage nodes are added are
shown in Table 4.6. According to the results shown in Table 4.6, the system uses 1 to

3 minutes to fill up all three extra nodes.

Table 4.6 Time to fill up all three extra storage nodes

Workload Time to fill up
(minutes)
100:0-write:read 2
75:25-write:read 1
50:50-write:read 3

64

Another advantage of adding extra storage nodes is that the system
can handle more data. Initially, there are only 3 storage nodes to support the data.
After adding 3 extra storage nodes, the data can be distributed among six storage
nodes. Table 4.7 and Table 4.8 show the amount of data sent to each DSePHR web
service before and after the extra storage nodes are added respectively. The amount
of data is measured over an hour of the experiments with 30 minutes prior to the
addition of the storage node and 30 minutes after that. Column “WebService” refers
to a name of the web service, “MAX” refers to maximum, “AVG” refers to average,
“MIN” refers to minimum, “STD” refers to standard division, “VAR” refers to variance,
“95th” and “99th” refer to 95 and 99 percentiles respectively. The average amount
of data to each web services increases after the extra storage addition, except on the
LAB DS6. However, the data transmission rate of all 6 web services are increased

after the extra storage addition.

Table 4.7 Amount of data to all six DSePHR web services

on 100:0-write:read on original PHR mixture before the extra storage addition

WebService Amount of data (MB/s)
MAX AVG MIN STD VAR 95th 99th
LAB Ds1 2.421 1.032 0.049 0.741 0.548 2.219 2.393
LAB _DS2 3.308 1.408 0.380 0.966 0.934 3.081 3.251
LAB DS3 2717 1.689 0.432 0.667 0.445 2.538 2.670
LAB DS54 4.063 2.057 0.426 1.039 1.080 3.887 4.041
LAB_DS5 3.343 1.884 0.580 0.694 0.482 2.881 3.220
LAB_DS6 6.540 2.969 0.545 1.361 1.852 5.561 6.371

65

Table 4.8 Amount of data to all six DSePHR web services

on 100:0-write:read on real PHR usage after the extra storage addition

WebService Amount of data (MB/s)
MAX AVG MIN STD VAR 95th 99th
LAB DS1 3.686 1.533 0.398 0.758 0.575 2.504 3.339
LAB DS2 6.006 2.719 0.155 1.441 2.076 5.046 5.934
LAB DS3 5.466 2.108 0.431 1.157 1.339 4.350 5.244
LAB DS4 4.462 2.252 0.221 1.079 1.164 3.976 4.389
LAB DS5 6.085 2.004 0.362 1.174 1.378 3.582 5.465
LAB DS6 5.100 1.957 0.473 1.112 1.236 4.322 5.008

Table 4.9 The amount of data sending to each storage node on 100:0-write:read with

original PHR mixture before the extra storage addition

Storage Amount of data (MB/s)

Nodes MAX AVG MIN STD VAR 95th 99th
LAB_RS1 11.551 10.943 10.061 0.402 0.162 11.455 11.529
LAB RS2 11.669 11.371 10.802 0.235 0.055 11.649 11.665
LAB_RS3 11.663 10.866 8.934 0.746 0.556 11.661 11.663
LAB_RS4 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LAB_RS5 0.000 0.000 0.000 0.000 0.000 0.000 0.000
LAB_RS6 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 4.10 The amount of data sending to each storage node on 100:0-write:read

with original PHR mixture after the extra storage addition

Storage Amount of data (MB/s)

Nodes MAX AVG MIN STD VAR 95th 99th
LAB_RS1 11.210 5.038 0.694 2.573 6.622 10.025 10.995
LAB RS2 11.418 4.999 1.805 2.584 6.678 10.617 11.306
LAB RS3 11.639 5914 2.886 2.792 7.797 11.322 11.612
LAB RS4 11.689 9.966 0.000 2.739 7.500 11.682 11.687
LAB RS5 11.699 9.447 0.093 2.444 5.972 11.575 11.696
LAB RS6 11.705 9.381 0.000 2.835 8.035 11.670 11.698

66

Table 4.9 and Table 4.10 show the amount of data sending to each
storage node each second. The measurement is captured at the input of each
storage node over the same one hour period. The data is measured every second
and the statistical calculation is done over the period of one hour.

According to the results in Table 4.9, the amount of data sending to
each storage node (LAB_RS1, LAB RS2, LAB_RS3) is almost at the full capacity before
the extra storage nodes are added, while the extra storage nodes (LAB RS4, LAB RS5,
LAB_RS6) have no incoming data. Table 4.10 shows that the extra storage nodes
(LAB_RS4, LAB RS5, LAB RS6) receive the incoming data with the higher average
value meaning that shows most new incoming data are sent the new storage nodes.

It can be concluded that the DSePHR can handle the storage capacity
addition. Next, the performance of the system in terms of the retrieving time will be
investigate to demonstrate the performance during the limited storage.
4.3.2.2 DSePHR Performance during Limited Resources

In this section, the performance of the data upload to and download

from the DSePHR is investigated. The time to upload and download the data to the
DSePHR at 75%, 80%, 85%, 90% and 95% system resource usage is analyzed. The

overall performance of all files in the experiments are also presented for comparison

purposes. The data at each system usage situation is collected from all active files
during the two-minute period over the time when the system resource usage reaches
the defined level. For example, at 1:04 time is when the system resource reaches
75%, the active files during the two-minute period from 1:03-1:05 will be used as the

performance during the 75% system resource usage situation. In some cases,

67

however, there is no file of the measured type during the two-minute period such as
the read-operation requests of the 75:25-write:read operation workload. Thus, the
two-minute period is changed to be the ten-minute period in order to cover a longer
period.

Figure 4.1 and Figure 4.2 show the time to upload the data to the
DSePHR system, where Figure 4.1 shows the upload time performance of the small
files stored on the HBase part of the DSePHR while Figure 4.2 shows the upload time

performance of the large files stored on the HDFS part of the DSePHR. The graphs
show the maximum (Max), the average (Mean) and the minimum (Min) upload time
of each situation including the overall performance (AVG) of the whole experiment,
and the performance when the system resource usage is at 75%, 80%, 85%, 90%,
and 95%. Once, the system resource usage reaches 95%, three extra storage nodes
are added to the system. The workload in this experiment is the 100:0-write:read.

According to the results shown in Figure 4.1, the upload time to the HBase part of
the DSePHR does not show any significant difference among each other even when

the system resource usage is high. Similar trend is observed from Figure 4.2 which
shows the upload time to the HDFS part of the DSePHR.

To investigate further, Figure 4.3 and Figure 4.4 show the upload time

of two small files in the 100:0-write:read workload. Figure 4.3 shows the upload time
of 3xray.png which is an x-ray image file of 4.01MB. Figure 4.4 shows the upload time

of 10sound.mp3 which is an audio file of 8.65MB. The results of each individual file

68

types show similar trend as that of the small files shown in Figure 4.1. Other
remaining file types in the small file category is also showing the same trend. The

complete results of other 8 file types of small files are presented in the APPENDIX

section.

8 HBase files
7L . o
6 -
H H []
w 4t .. * []
£
E 3
2L
1L
]]
4 ; ; ; ; ‘ ;
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 75% 80% 85% 90% 95%
Max 6.959 4.159 4,316 4,112 5.320 4.650
Mean 0.389 0.419 0.427 0.330 0.437 0.373
Min 0.014 0.014 0.014 0.016 0.017 0.015

Figure 4.1 Upload time of small files in 100:0-write:read workload

HDFS files
140 ! ! ! ! !
A . : : :
1205 . |
5 ’ 5
100L. . d
IEI
goL....... . |
0
Q (510]) SE— 4
£
|_
40 - .
.
§
200 I3 4
oL o . e e .o |
_20 1 1 1 1 L 1
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 75% 80% 85% 90% 95%
Max 129.562 127.578 77.961 112.296 91.059 84.232
Mean 28.082 33.290 34.849 37.544 20.421 25.378
Min 2.620 2.635 2.633 2.636 2.635 2.621

Figure 4.2 Upload time of large files in 100:0-write:read workload

3xray.pn

4.5 ! ! ! b 9 !
A0 L. i _

[] H

[]
35L. 4
30bL. i J

; ; *

W25 9 1

P :

E L]

E 20t . |
15k - 4
1.0k L . 4
05k - e o P Rty RIS SEITETP ST
0.0 ; ; ; ; ‘ ;

0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 75% 80% 85% 90% 95%
Max 3.846 2.180 2.636 2.878 2.328 3.682
Mean 0.977 0.816 1.079 1.095 0.891 0.965
Min 0.403 0.403 0.409 0.411 0.403 0.405

69

Figure 4.3 Upload time of an X-ray image file which is a small file in 100:0-write:read

workload

70

10sound.mp3
8 ' ' ! T !
7L *
6L
5L.
= : []
— L]
v 4L L 4 - []
£
'_
3
2L oo
§ §
0 1 1 1 1 L 1
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 75% 80% 85% 90% 95%
Max 6.959 4.159 4.316 4112 5.320 4.650
Mean 1.900 2.214 1.713 1.603 2.022 1.738
Min 0.852 0.865 0.861 0.861 0.863 0.862

Figure 4.4 Upload time of an audio file which is a small file in 100:0-write:read

workload
Figure 4.5 and Figure 4.6 show the upload time of all two-large files in

the 100:0-writeread workload. Figure 4.5 shows the wupload time of
11Videosmall.mp4 which is a video file of 27MB while Figure 4.6 shows the upload
time of 12Videobig.mp4 which is also a video file of 232MB. According to the results

shown in Figure 4.5, the upload time performance at each state of the system

resource usage shows no significant difference. However, the average upload time at
90% and 95% system resource usage situations seem to be slightly larger than that of
the overall performance. However, the similar average upload time at 75% system
resource usage situation is observed. According to the results shown in Figure 4.6, the

upload time performance at each state of the system resource usage show no

71

significant difference. However, the minimum upload time at 90% and 95% system

resource usage situations seem to be slightly larger than other situations.

25 1lvideosmall.mp4
_15p A
wn H H H
- L]
<]
£
ool

.
5L]
[] 5 [] []
0 | | | | L |
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 75% 80% 85% 90% 95%

Max 20.469 11.229 13.347 17.128 14.101 12.071

Mean 5.679 5.223 6.061 5.359 6.051 6.055

Min 2.620 2.635 2.633 2.636 2.635 2.621

Figure 4.5 Upload time of a video file (a larger file) in 100:0-write:read workload

140 ! ! 12V!|de0b|g.r!np4 !
. |:| :
—~ 80} * |
w
£
= 60 a
k... R 1
0L @88 e]
0 1 1 1 1 L 1
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 5% 80% 85% 90% 95%
Max 129.562 | 127.578 77.961 112.296 91.059 84.232
Mean 47.318 47.323 47.029 53.636 43.282 43.021
Min 22.141 22.429 22.394 22.243 24.101 23.261

Figure 4.6 Upload time of a large video file (a larger file) in 100:0-write:read workload

72

It can be concluded that the system resource usage does not have
any significant effect on the write operations of both large files and small files on the

proposed DSePHR when the workload consists of only write operations. Next, the
analysis on the 75:25-write:read operation workload is presented.

Figure 4.7 and Figure 4.8 show the time to upload the data to the
DSePHR system, where Figure 4.7 shows the upload time performance of the small
files stored on the HBase part of the DSePHR while Figure 4.8 shows the upload time

performance of the large files stored on the HDFS part of the DSePHR. Figure 4.9 and

Figure 4.10 show the time to download the data from the DSePHR system, where
Figure 4.9 shows the download time performance of the small files stored on the
HBase part of the DSePHR while Figure 4.10 shows the download time performance

of the large files stored on the HDFS part of the DSePHR. The workloads in this
experiment is the 75:25-write:read with original PHR file types mixture, meaning 75%
of the requests in the workload are write operations while 25% of the requests in the
workload are read operations. Due to the less number of read operation in the
workload, the Figure 4.9 and Figure 4.10 use a ten-minute period to collect the data
at each system usage situation.

The upload time results shown in Figure 4.7 and Figure 4.8 show
similar trend as those in Figure 4.1 and Figure 4.2. In comparison, however, the
average and the maximum upload time of both small and large files in 75:25-
write:read workload are better than those of small and large files in 100:0-write:read

workload. The detail performance of each file types is shown in APPENDIX section.

HBase files
> ! ! ! ' !
. : :
4 L g |
0 :
ey []
[T 1
£
|_
1k]
§
0k .- .- LS i
—_— 1 1 1 1 L 1
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 5% 80% 85% 90% 95%
Max 4.335 2.072 2.635 2.468 1.499 2.169
Mean 0.224 0.233 0.177 0.309 0.192 0.222
Min 0.015 0.017 0.017 0.016 0.016 0.018

Figure 4.7 Upload time of small files in 75:25-write:read workload

HDFS files
70 ! ! ! ! !
| 9 : | |
5oL . d
n 0L S o 1
n
Q 30~ 4
£
=
20 - g
10k 4
ol Vl;l l: l;l |
~10 i i i i ‘ i
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 5% 80% 85% 90% 95%
Max 61.222 38.771 23.010 37.816 22918 24.161
Mean 14.676 21.738 11.543 18.348 11.179 13.042
Min 2.621 2.637 2.641 2.630 2.637 2.637

Figure 4.8 Upload time of large files in 75:25-write:read workload

73

The download time of small files shown in Figure 4.9 are larger than

the upload time of small files shown in Figure 4.7. This situation occurs because the

74
files will be downloaded from the distributed storage to the DSePHR web service
before sending to the client. Thus, the download time in this experiment includes all

the queue time at the DSePHR web service, and the download time from the

distributed storage to the DSePHR web service. Since, the data must be completely

downloaded to the DSePHR web service before it can be sent to the client, the

download time is longer than that of the upload time for the same file type.

According to the download time of small files shown in Figure 4.9, the

average download time increases with the increasing of the system resource usage.
Similar trend also shows in Figure 4.10. This trend does not significantly show up in
any previous result. The maximum download time of small files (Figure 4.9) occurs at
the 95% system resource usage situation which is also does not show up in any
previous result discussed. However, the maximum download time of the large files

(Figure 4.10) does not occur at the 95% system resource usage situation.

75

HBase files
200 ! ! T T T
L] L]
150+ . 4
1004 |
n
(]
£
F sof |
]
0+ » . g
_50 1 1 1 1 L 1
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 75% 80% 85% 90% 95%
Max 162.443 90.273 90.273 97.109 [162.443 162.443
Mean 17.901 17.577 20.423 22.577 23.880 23.501
Min 0.024 0.027 0.025 0.024 0.025 0.033

Ficure 4.9 Download time of small files in 75:25-write:read workload

HDFS files
350 ! ! ! ! !
300F
250]
w ; ; ; ‘ ;
W 150 e
E ' H B . B
= : :
100+ - - - - - - - -] - }
5O Fooeemenee e]
0k L]
-50 I I I I ! I
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 5% 80% 85% 90% 95%
Max 304.664 124.311 | 124311 | 108.954 | 111.142 | 111.142
Mean 41.963 29.962 32.167 35.019 39.325 55.053
Min 6.305 7.213 7.213 7.858 7.858 7.038

Ficure 4.10 Download time of large files in 75:25-write:read workload

Unexpectedly, the maximum download time performance of the large

file occurs on the small video file (Figure 4.9) with the file size of only 27MB in

76

comparison with that of the large video file (Figure 4.10) with the file size of 232MB.
The maximum download time occurs during the very early in the experiment. The

situation occurs because the request of the file occurs right after the file upload

request. Thus, the file is not completely uploaded to the system. As a result, the
download request must be waiting until the file is completely upload to the system.
This situation can be consider as a rare case. To reduce the effects of the rare cases,

Figure 4.11 and Figure 4.12 show the download information by replacing the

maximum value with the 95th-percentile value of Figure 4.9 and Figure 4.10,
respectively. According to the results shown in Figure 4.11, the 95th-percentile
download time increases with the increasing of the system resource usage. This result
is clearly shown when comparing the 95th-percentile values. The same trend is not

clearly shown in Figure 4.12.

7

HBase files
140 ! ! T T T
. . . . “
® : : :
_ ¢
n
Q (510]) SE— 4
£
'_
40 - .
0+ } o) [o g
_20 1 1 1 1 L 1
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 75% 80% 85% 90% 95%
95th 88.339 75.680 82.679 82.635 96.644 127.016
Mean 17.901 17.577 20.423 22.577 23.880 23.501
Min 0.024 0.027 0.025 0.024 0.025 0.033

Figure 4.11 Download time of small files in 75:25-write:read workload

HDFS files
120 ' ! ! ! !
L] : : : !
: : : *
100 + ‘:—, - 1
L] "'
goL....... |
)
U (510]) SE— 1 4
£]
'_
A0 Lo 4
.
0L |
[L] L] L4 []
0 i i i i i i
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 75% 80% 85% 90% 95%
95th 114.434 97.802 93.128 90.647 109.350 109.024
Mean 41.963 29.962 32.167 35.019 39.325 55.053
Min 6.305 7.213 7.213 7.858 7.858 7.038

Ficure 4.12 Download time of large files in 75:25-write:read workload
To investigate into the detail performance of each file types, Figure

4.13 and Figure 4.14 show the download time performance of an x-ray image file and

78

an audio file of small files in 75:25-write:read workload, respectively. To reduce the
effect of the rare cases, the maximum values will be replaced by the 95th-percentile
values. According to the download time performance shown in Figure 4.13, the
average and the 95th-percentile download time values do not clearly increase with
the increasing of the system resource usages. However, the average and the 95th-
percentile download time values at 90% and 95% system resource usage situations
are clearly larger than other situations. According to the download time performance
shown in Figure 4.14, the average and the 95th-percentile download time does not
clearly increasing. However, the average and the 95th-percentile download time
values at the 95% system resource usage situation are the highest among all.
Furthermore, the maximum upload time of the audio file occurs at the 95% system
resource usage as shown in Figure 4.15. This result also confirms that the download

time performance of small files is affected by the system resource usage in the

75:25-write:read workload.

Time (s)

Figure 4.13 Download time of an X-ray image file which is a small file in 75:25-

Time (s)

3xray.pn
100 T T T y-P 9 T
: : : : 0
80 B ® o : 1
[: :
]
60 L.]
[
A0 L. 4
.
20 - 1 g
.
0_ o T R - N | 4
_20 1 1 1 1 L 1
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 5% 80% 85% 90% 95%
95th 74.833 78.719 66.732 53.228 84.664 92.102
Mean 14.789 17.838 15.867 15.246 24.373 23.862
Min 0.902 0.937 0.937 1.161 1.009 1.007

write:read workload

10sound.mp3
120 ! ! ! 'p !
' ' ®
100F------- 4
80| .]
¢
60L....... |
40 - .
.
0L |
oL . . |
_20 1 1 1 1 L 1
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 75% 80% 85% 90% 95%
95th 76.217 32.968 59.720 43.071 43.071 106.925
Mean 14931 13.765 15.817 14.045 14.005 29.579
Min 1.975 2.663 2.995 2.234 1.975 1.975

79

Figure 4.14 Download time of an audio file which is a small file in 75:25-write:read

workload

80

10sound.mp3
140 T T T .p T
: : : : [
L]
120L oo}
100 k-
E H
Q (510]) SE—
£
'_
40 - |
§
201 1. s
.
ok .9 L4 OO DR
_20 1 1 1 1 L 1
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 5% 80% 85% 90% 95%
Max 126.667 33.387 82.615 54.172 54.172 131.669
Mean 14.931 13.765 15.817 14.045 14.005 29.579
Min 1.975 2.663 2.995 2.234 1.975 1.975

Figure 4.15 Download time of an audio file which is a small file in 75:25-write:read

workload
Figure 4.16 and Figure 4.17 show the download time performance of a
small video file and a large video file of large files in 75:25-write:read workload,

respectively. According to the download time performance shown in Figure 4.16, the
average and the 95th-percentile download time values do not clearly increase with
the increasing of the system resource usage. However, the average and the 95th-
percentile download time values at the 95% system resource usage are the highest
values among all cases. According to the results shown in Figure 4.17, there is no

significant trend to show the effect of the system resource usage on the download

time performance of the large video files.

1lvideosmall.mp4
70 ! ! ! ! !
H []

50 |- o]
) 40 - [S 4
w i
£ :
= 30k a

: : : !]

N N N . '.'
0 1 1 1 1 L 1
0 AVG 75% 80% 85% 90% 95%

% Resouce Usage
AVG 75% 80% 85% 90% 95%

95th 27.904 13.730 13.143 13.819 13.485 58.203
Mean 20.231 11.135 10.312 10.878 10.175 22.446
Min ©.305 7.213 7.213 7.858 7.858 7.038

Figure 4.16 Download time of a video file which is a large file in 75:25-write:read

workload
130 . . 12V||de0b|g.rlnp4 .
'Y 5 5 5 5
* N N
110} ’ |
0
100 k- 4
w90k | 1
]
£
= [0 L 4
70L...... 1
60 L. .. Y 1
40 i i i i I i
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 75% 80% 85% 90% 95%
95th | 124.844 | 120.524 | 116.515| 103.462 | 110.490 | 110.165
Mean 84.283 86.441 81.342 77.266 80.134 87.659
Min 47.324 48.570 62.004 61.059 47.324 47.324

81

Figure 4.17 Download time of a large video file which is a large file in 75:25-write:read

workload

82

In conclusion, the system resource usage has an effect on the
download time performance of both small files and large files, specially the effects

at the 90% and 95% system resource usage are clearly visible in many cases for the
75:25-write:read workload. However, the effect does not clearly show in the upload
time performance of both file types.

Next, the performance of the DSePHR when the workload contains

50% write operations and 50% read operations. Figure 4.18 and Figure 4.19 show the
upload time performance of small files and large files to the DSePHR, respectively.

Figure 4.20 and Figure 4.21 show the download time performance of small files and

large files from the DSePHR, respectively. The workload used in these figures is the

50:50-write:read workload, meaning half of the requests are write operations and the

other half of the requests are read operations.

The upload time results shown in Figure 4.18 and Figure 4.19 show
similar trend as the upload time performance of the 100:0-write:read workload and

the 75:25-writerread workload. In comparison, however, the average and the

maximum upload time of both small and large file types in 50:50-write:read
workload are smaller than their counterpart in 75:25-write:read workload and 100:0-

write:read workload. The detail performance of each file types is shown in APPENDIX

section.

83

35 . ! H!Base ﬂlels

15L....

Time (s)

1.0+

05k

-0.5

1 1 1 1 L 1
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 75% 80% 85% 90% 95%
Max 3.225 1.460 1.343 2.379 1.843 1.794
Mean 0.218 0.237 0.240 0.210 0.146 0.213
Min 0.016 0.018 0.017 0.018 0.016 0.018

Figure 4.18 Upload time of small files in 50:50-write:read workload

HDFS files

B0

Time (s)

1 1 1 L 1
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 75% 80% 85% 90% 95%
Max 77.729 23.900 24.682 24.391 25111 24.451
Mean 14.849 6.467 13.599 10.109 8.958 8.849
Min 2.617 2.640 2.659 2.887 2.640 2.634

Figure 4.19 Upload time of large files in 50:50-write:read workload
According to the download time of small file types shown in Figure

4.20 are smaller than that shown in Figure 4.11. In contrast, the download time of

84

large file types shown in Figure 4.21 are larger than that shown in Figure 4.12. The
effect of the system resource usages on the read operation is now not clearly visible.

To further investigate the results of each file types, Figure 4.22 and Figure 4.23 show

the download time performance of an x-ray image file and an audio file, respectively.

While, Figure 4.24 and Figure 4.25 show the download time performance of a small

video file and a large video file, respectively.

According to the results shown in Figure 4.22, the download time

performance of the x-ray image file does not clearly show the increasing trend with
the increasing system resource usages. However, the average and 95th-percentile
download time values at the 95% system resource usage situation are the highest
among all cases. According to the results shown in Figure 4.23, the download time

performance of the audio file does not clearly show the increasing trend with the

increasing system resource usages. In addition, the performance values at the 95%

system resource usage are not clearly larger than other values.

HBase files
12 ! ! ! i !
: ‘:' "' []
8+] |
z of 1
L]
£
= 4 g
]
2L, ! | |
0+ R ® ® R .
_2 1 1 1 1 L 1
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 75% 80% 85% 90% 95%
95th 8.077 10.673 10.864 4772 8.796 11.120
Mean 1.736 2.176 1.788 0.963 1.942 2.644
Min 0.023 0.046 0.027 0.025 0.030 0.025

Figure 4.20 Download time of small files in 50:50-write:read workload

400 ! ! I?|DFS flle!5 !
250 L. _.‘5.... J
T 200 J
(]
]
100L. . J
50 + .
[] ‘.|

-50 I I I I ! I
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 75% 80% 85% 90% 95%

95th | 242.241 | 311.538 | 339.678 | 171.385 | 246.527 | 177.231
Mean 89.408 | 149.868 | 120.157 82.564 | 104.585 98.592
Min 5.623 15.531 12.040 5.818 7.666 8.491

Figure 4.21 Download time of large files in 50:50-write:read workload

3xray.pn
10 ! ! ! b 9 !
: : : : .
w ® :
e * []
£
=gl L |
]
2L 4
® ‘.' L] L] ‘:.
0 1 1 1 1 L 1
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 75% 80% 85% 90% 95%
95th 6.317 5.637 5.095 5.274 5.750 9.268
Mean 3.368 3.073 2.949 2.955 3.291 4.002
Min 0.763 0.991 0.918 0.855 0.763 1.079

Figure 4.22 Download time of an X-ray image file which is a small file in 50:50-

write:read workload

10sound.mp3
16 ! ! ! 'p !
Wb . |
: : : : 9
[] : : :
12k - b . J
[] :
w0k * |
o
@ 8+ . 4
£)
= P
6L !]
4. 4
)]
2 e ..‘:'.. ..|:| i
0 1 1 1 1 L 1
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 75% 80% 85% 90% 95%
95th 12.731 11.584 12.247 10.539 11.857 13.582
Mean 6.504 6.532 7.208 5.770 6.399 6.343
Min 1.700 1.976 2.317 2.046 1.727 2.404

86

Figure 4.23 Download time of an audio file which is a small file in 50:50-write:read

workload

1lvideosmall.mp4
140 ! ! ! e !
120L i e |
: : *
100L i N d
]
goL....... _.':.... 1
)
v B0F----- 4
£
'_
40 + ' - - e }
]]
ol e . ARSI, |
_20 1 1 1 1 L 1
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 5% 80% 85% 90% 95%
95th 77.892 91.336 121.608 57.764 30.499 114.403
Mean 28.321 36.692 39.502 19.861 19.188 37.449
Min 5.623 6.146 6.606 5.818 7.666 5.623

Figure 4.24 Download time of a small video file which is a small file in 50:50-

write:read workload

400 ! ! 12V!|de0b|g.r!np4 !
350 b i
: [] L} : :
' : :
250 Fooeee & 4
= []
w 200k 1
£
= 1
150 L. 1. | |
.
100 k- 4
[] L] L]
0 ; ; ; ; ‘ ;
0 AVG 75% 80% 85% 90% 95%
% Resouce Usage
AVG 75% 80% 85% 90% 95%
95th | 276.155 | 337.557 | 338.350 | 230.605 | 220.288 | 244.326
Mean| 151.061 | 163.962 | 165.219 | 143.787 | 129.925 | 134.113
Min 46.212 67.104 67.104 68.207 46.212 55.722

Figure 4.25 Download time of a large video file which is a small file in 50:50-

write:read workload

87

88

According to the results shown in Figure 4.24 and Figure 4.25, the
download time performance of the small and large video files does not clearly show
the increasing trend with the increasing system resource usages. In addition, the

performance values at the 95% system resource usage are not clearly larger than
other values.

In conclusion, the performances of the DSePHR during the system

resource usages at 75%, 80%, 85%, 90% and 95% are analyzed. According to Table

4.11, the results show that the upload time performance values are not clearly

affected by the system resource usage level. However, the download time

performance values can be affected by the system resource usage level, especially

when the read-requests are smaller than the write-requests as shown in the results
of 75:25-write:read workload. However, the effects are clearly visible at 95% system
resource usages. Thus, the DSePHR is suggested to monitor the system resource
usage at 90% in order to start adding more resources to the system. This way, the

effects on the read-requests can be minimized.

Table 4.11 Performance effect on each situation when system resource is high

Situation/ 100:0- 75:25-write:read 50:50-write:read
File types write:read
Upload Upload Download Upload Download
HBase files Not effect Not effect Effect Not effect Not effect
HDFS files Not effect Not effect Effect Not effect Not effect

In the next section, the DSePHR will be further investigated the

system resource is smaller than the clients and the workload are larger. Moreover,

89

the system will be pre-load with the data before any measurement will be taken.

Also, the data will continue to arrive to the system even when the measured data

requests are completely sent to the system. This method will make sure that the

system performance will be measured when the system is not empty and there are

requests that are not parts of the measurement data. This way, the real-world
situation will be mimicked in the experiment.

4.3.3 Effect of the Write-read Request Ratio

In the realistic environment, the ratio between write and read
requests can be changed. In the first state of the system, there are a lot of write
requests, then a number of read requests can also increase. To evaluate the DSePHR
system in a realistic environment, a cluster with 15 storage nodes are constructed in

this experiment. The environment consists of 8 clients that will upload the data to
and download the data from the DSePHR system. To enforce the limited resources in

the real world environment, only 6 DSePHR web services are activated in this

experiment. Thus, the number of DSePHR web services will be less than that of the
number of clients. To measure the performance of the DSePHR, three workloads are

created in this experiment including a 100:0-writexread, a 75:25-writerread and a

50:50-write:read workloads. The number of files in each workload is 6,000. The first
500 files and the last 500 files are used as the warm-up and the cool-down of the
DSePHR system. Therefore, the total number of measurable files is 5,000 submitted
from each client. Since there are 8 clients, the total number of measurable files in

each situation is 40,000 files. The mixture of the file types is that presented in

90

Section 3.5 and the uniform mixture of file types. The upload and download time
performances of the DSePHR system is analyzed and discussed.

In order to mimic the real environment, the DSePHR system will be
warmed up with the data so that the DSePHR system will have some activities and

the data inside the system before the measured workload is sent to the system.

Similarly, the system will be continuously receiving the data to the system after the

measured workload are completely submitted to the system. This way, the

performance during the measured workload can be a representative of that in the

real world situation. In this experiment, all clients will upload their data to the

DSePHR web services first, then the DSePHR web services will create the metadata

and later upload the data to the distributed storage. At this point, there is a 2-step
operation, including the client-to-DSePHR and the DSePHR-to-storage operations. The
client-to-DSePHR operation is considered an operation from the client to the DSePHR
system while the DSePHR-to-storage operation is considered an inside operation of
the DSePHR system.

4.3.3.1 Performance on the 100:0-write:read Workload
Table 4.12 shows the overall upload time performance of both small

files and large files of 100:0-write:read workload. According to the results shown in

Table 4.12, the upload time of small files are smaller than that of the large files in

all measured values. The data presented in Table 4.12 include the maximum (Max),

the 95th-percentile (95th-), the 99th-percentile (99th-), the average (Mean), and the

91

minimum (Min) upload time of each file type. This is expected because the HBase
files are consisting of small files while the HDFS files are consisting of large files (i.e.,

larger than 10MB). Thus, the upload time of the HBase files are smaller as the results.

Table 4.12 Overall upload time of 100:0-write:read workload

Upload time (s)
File types
Max 99th- 95th- Mean Min
HBase files 1.257 3.298 1.852 0.373 0.013
HDFS files 147917 110.310 82.868 26.202 2.625

To analyze the details information, Table 4.13 shows the upload time

performance of each file in the workload sorted by the file size. As expected, the
maximum upload time of HBase files is from the 10sound.mp3 which is the largest

file in the HBase files while the maximum upload time of HDFS files is from the

12videobig.mp4 which is also the largest file in the HDFS files.

In HBase file group, there are three small files including an MRI image

file of 30KB, a CCD xml file of 31KB and a spreadsheet data file of 41KB. The upload
time of these small files takes approximately 0.5 seconds on average. There are 5

medium files in the HBase file group including a heartbeat sound file of 160KB, an
ECG graph image file of 400KB, a patient document file of 440KB, a patient

spreadsheet file of 620KB, and a CCD document file of 690KB. The upload time of
the heartbeat sound file of 160KB is less than 0.1 second on average, while the
upload time of the 400KB and 440KB files is approximately 0.14-0.15 seconds on

average. The upload time of the 620KB and 690KB is approximately 0.2 seconds on

92

average. The increment of the upload time of these files is expected because of the
amount of data in each file. More data to be uploaded will result in the longer
upload time. However, the increasing is not linear.

The average performance of the two large files in the HBase file group,
on the other hand, shows the linear performance relationship between the file size

and the average upload time. That is, the average upload time of the x-ray image file
of 4.01MB takes 0.951 seconds while the upload time of the recorded sound
conversation file of 8.65MB takes 1.849 seconds. Since the conversation file is
approximately twice the size of the x-ray image file, the average upload time of the
conversation file (1.849s) is also approximately twice the upload time of the x-ray
image file (0.9515s). Similar trend also shows in the HDFS file group. That is, the size of
the large video file (232MB) is approximately 8.5 times of the size of the small video
file (27MB). And, the average upload time of the large video file (46.65s) is also
approximately 8.2 times of the average upload time of the small video file (5.687s).
The maximum upload time of the smallest file (i.e., the MRI image file
of 30KB) is 3.069 seconds which is larger than the maximum upload time of all files
that are smaller than 620KB. This is an unexpected event. However, a detail analysis

found that the maximum upload time performance occurs due to the backlog at the
DSePHR web service because there are several video files are queuing to be

processed. Thus, the small MRI image files must wait in the queue. Further

investigation shows that a few MRI image files are delayed because of the memory

93

clearing process inside the DSePHR system. This inside operation occurs only on the
HBase file group because the recently used data will be resided in the memory.
However, the memory will be clear once the space is needed. Unfortunately, a few
MRI image files are uploaded to the DSePHR during the memory clearing process. As
a result, the upload time of this set of files takes longer than others. The evident is
showing up on the 99"-percentile upload time performance of 0.793 seconds which

is also larger than that of all files that are smaller than 620KB.

Table 4.13 Upload time of each file type of 100:0-write:read workload

File Upload time (s)
Filename Size
types Max 99th- 95th- Mean Min
2mri.jpg 30KB 3.069 0.793 0.086 0.058 0.013
4ced.xml 31KB 1.750 0.630 0.084 0.054 0.015
8excel.xlsx 41KB 2411 0.745 0.082 0.056 0.013
9sound.ogg 160KB 2.384 0.732 0.156 0.085 0.023
HBase lecg.jpg 400KB 2.639 0.777 0.298 0.146 0.047
files Tword.docx 440KB 2.547 0.751 0.306 0.151 0.050
5ccd.xml 620KB 4.181 1.263 0.484 0.236 0.071
6ccd.pdf 690KB 3.100 1.169 0.472 0.223 0.073
3xray.png 4.01MB 4.421 2.818 2.101 0.951 0.398
10sound.mp3 8.65MB 7.257 5.035 3.885 1.849 0.843
HDFS 11videosmall.mp4 27TMB 19.819 15.965 | 12.609 5.687 2.625
files 12videobig.mp4 232MB 147917 | 116.734 | 93.745 | 46.650 | 22.114

94

4.3.3.2 Performance on the 75:25-write:read Workload
Table 4.14 shows the overall upload time performance of both small
files and large files of 75:25-write:read workload while Table 4.15 shows the overall

download time performance of the same workload.

For the upload time performance, a similar tread as that of the overall
upload time performance of the 100:0-write:read workload shown in Table 4.12 is

observed. That is, the upload time performance of small files (HBase files) are also
smaller than that of the large files (HDFS files) in all measured values for the 75:25-
write:read workload shown in Table 4.14. Moreover, the overall upload time

performance of the 75:25-writerread workload are also smaller than that of the
100:0-write:read workload in all measured values, except the minimum upload time

of the HBase files which is 0.001 second faster than that observed under the 100:0-
write:read workload. This can be explained by the fact that the write-operations of
the 75:25-write:read workload is only 75% of that under the 100:0-write:read
workload because 25% of the operations are the read operations. Thus, the write-

operation workload is reduced from 531.56GB to 396.35GB.

Table 4.14 Overall upload time of 75:25-write:read workload

Upload time (s)

File types
Max 99th- 95th- Mean Min

HBase files 6.457 2811 1.548 0.326 0.014

HDFS files 112.936 87.301 67.177 21.890 2.612

Table 4.15 Overall download time of 75:25-write:read workload

Download time (s)
File types
Max 99th- 95th- Mean Min
HBase files 15.468 7.972 4.443 0.933 0.019
HDFS files 288.480 | 200.608 | 154.752 57.260 4971

Table 4.16 Upload time of each file type of 75:25-write:read workload

File Upload time (s)
Filename Size
types Max 99th- 95th- Mean Min
2mri.jpg 30KB 3.066 0.367 0.075 0.047 0.014
dced.xml 31KB 1.559 0.456 0.082 0.049 0.014
8excel.xlsx 41KB 1.673 0.684 0.078 0.049 0.014
9sound.ogg 160KB 1.304 0.539 0.146 0.072 0.023
HBase lecg.jpg 400KB 1.643 0.639 0.265 0.125 0.046
files Tword.docx 440KB 2.627 0.453 0.281 0.130 0.051
5ccd.xml 620KB 2.279 0.825 0.420 0.205 0.074
6ccd.pdf 690KB 2.433 0.884 0.424 0.199 0.074
3xray.png 4.01MB 4.286 2.390 1.790 0.817 0.401
10sound.mp3 8.65MB 6.457 4.326 3.295 1.566 0.834
HDFS 11videosmall.mp4d 27TMB 17.524 | 12.190 | 10.076 4.688 2.612
files 12videobig.mp4 232MB 112936 | 93.881 | 76.993 | 38.691 | 22.086

shows the upload time performance of each file in the workload sorted by the file

95

To further analyze the detail upload time performance, Table 4.16

size. Like the upload time performance of the 100:0-write:read workload, the

maximum upload time of HBase files is from the 10sound.mp3 which is the largest

file in the HBase files while the maximum upload time of HDFS files is from the

12videobig.mp4 which is the largest file in the HDFS files.

96

According to the results shown in Table 4.16, the upload time
performance trend observed from the 75:25-write:read workload is similar to the

trend observed from the 100:0-write:read workload. That is, the performance of all
files smaller than 4.01MB is less than 0.3 seconds and the increasing of the average
upload time does not shows any linear relationship with the file size. However, the

linear relationship between the average upload time and the file size shows on two

large files in the HBase file group and the two files in the HDFS file group. That is, the
average upload time of the 8.65MB file is 1.566 seconds which is approximately twice
the average upload time of the 4.01MB file which is 0.817 seconds, while the average
upload time of the 232MB file is 38.691 seconds which is still 8.2 times that of the
average upload time of the 27MB file which is 4.688 seconds.

For the comparison details, the average upload time of the three

small files (i.e., the MRI image file of 30KB, the CCD file of 31KB and the spreadsheet
file of 41KB) is approximately slightly less than 0.5 seconds which is observed under
the 100:0-write:read workload. The average upload time of the heartbeat sound file
of 160KB is 0.072 second which is 0.01 second less than that observed under the
100:0-write:read workload. The average upload time of the 400KB and 440KB files is
approximately 0.12-0.13 seconds which is also 0.02 seconds less than that observed
under the 100:0-write:read workload. The average upload time of the 620KB and
690KB is still approximately 0.2 seconds. The average upload time of the x-ray image

file of 4.01 MB is 0.817 seconds which is 0.1 second less than that observed under

971

the 100:0-write:read workload. And, the average upload time of the audio file of 8.65
MB is 1.566 seconds which is approximately 0.3 seconds less than that observed
under to 100:0-write:read workload. The average upload time of the 27 MB file is
4.688 seconds which is 1 second less than that observed under the 100:0-write:read
workload. The average upload time of the 232MB file is 38.691 seconds which is 8
seconds less than that observed under the 100:0-write:read workload.

Also, the maximum upload time performance of the MRI file at 3.066
seconds is occurring at the DSePHR memory clearly process time. As a result, the file
experiences the worst upload time among all files with a size smaller than 620KB.

For the download time performance, the download time of the small

files (HBase files) is also smaller than that of the large files (HDFS files) for the 75:25-
write:read workload. However, the download time of each file type is larger than the
upload time of the same type for all measured values. For the overall HBase file
performance, the average download time is 0.933 seconds which is approximately
2.8 times of the average upload time which is 0.326 seconds. For the overall HDFS
file performance, the average download time is 57.26 seconds which s
approximately 2.6 times of the average upload time which is 21.89 seconds. This

result can be explained by the fact that the data must be completely downloaded
from the DSePHR storage to the DSePHR web services in order to be sent to the

client. Thus, the download time will include the time that the read request is made

at the client until the time that the data is completely sent to the client via the

98

DSePHR web service. Thus, the data transmission is occurring twice including the

transmission time from the DSePHR storage node to the DSePHR web service and the

transmission time from the DSePHR web service to the client. Therefore, the average
download time is expected to be approximately twice the average upload time.

To further analyze the download time performance of the 75:25-
write:read workload, Table 4.17 shows the download time performance of each file

in the workload sorted by the file size. The average download time performance of

the 75:25-write:read workload shows the similar trend as that of the average upload

time. That is, the average download time of the three small files in the HBase file
group is similar. The linear relationship between the file size and the average
download time is not clearly shown in the files that are smaller than 4.01 MB. On the

other hand, the linear relationship between the file size and the average download

time of the two large files of the HBase file group is observed. That is, the average
download time of the 8.65 MB file is 4.584 seconds which is approximately twice the
average download time of the 4.01 MB file which is 2.328 seconds. Moreover, the
average download time of the 232 MB video file is 97.871 seconds which is
approximately 7.5 times of the average download time of the 27 MB video file which

is 13.069 seconds.

99

Table 4.17 Download time of each file type of 75:25-write:read workload

File Download time (s)
Filename Size
types Max 99th- 95th- Mean Min
2mri.jpg 30KB 5.428 2319 0.490 0.154 0.019
dced.xml 31KB 7.142 2.355 0.391 0.153 0.021
8excel.xlsx 41KB 7.907 1.686 0.494 0.156 0.023
9sound.ogg 160KB 9.217 3.076 0.678 0.259 0.046
lecg.jpg 400KB 6.790 1.801 0.745 0.363 0.089
HBase
files Tword.docx 440KB 7.484 2771 0.951 0.433 0.095
5ccd.xml 620KB 8.644 2.254 1.036 0.504 0.129
6ccd.pdf 690KB 15.468 2.362 1.195 0.554 0.140
3xray.png 4.01MB 8.886 6.196 4.696 2.328 0.760
10sound.mp3 8.65MB | 14.285 10.484 8.973 4.584 1.620
HDFS 11videosmall.mp4 27MB 47.212 32.743 25.158 | 13.069 4.971
files 12videobig.mp4 232MB 288.48 | 212.486 | 174.317 | 97.871 | 42.738

4.3.3.3 Performance on the 50:50-write:read Workload

Table 4.18 shows the overall upload time performance of both small

files and large files of 50:50-write:read workload while Table 4.19 shows the overall

download time performance of the same workload.

Table 4.18 Overall upload time of 50:50-write:read workload

Upload time (s)
File types
Max 99th- 95th- Mean Min
HBase files 5.813 2.602 1.349 0.299 0.014
HDFS files 115.492 78.808 59.064 20.505 2617

100

Table 4.19 Overall download time of 50:50-write:read workload

Download time (s)
File types
Max 99th- 95th- Mean Min
HBase files 15.070 7.649 4.102 0.834 0.016
HDFS files 240.318 166.344 125.848 46.542 4.953

Similar tread as that of the overall upload time performance of the
100:0-write:read and 75:25-write:read workload shown in Table 4.12 and Table 4.14,

the upload time performance of small files (HBase files) are also smaller than that of
the large files (HDFS files) in all measured values for the 50:50-write:read workload
shown in Table 4.18. Moreover, the average upload time performance of the 50:50-

write:read workload are also smaller than that of the 75:25-write:read and that of the

100:0-write:read workload. This can be explained by the fact that the write-

operations of the 50:50-writeread workload is only a half of the number of

operations under the 100:0-write:read workload because 50% of the operations are
the read operations. Thus, the write-operation workload is reduced from 531.56GB
(100:0-write:read workload) to 273.47GB (50:50-write:read workload).

To further analyze the upload time performance of the 50:50-
write:read workload, Table 4.20 shows the upload time performance of each file in

the workload sorted by the file size. Similar with the upload time performance of the
two previous workload, the maximum upload time of HBase files (i.e., 5.813 seconds)
is form the 10sound.mp3 which is the largest file in the HBase files while the

maximum upload time of HDFS files (e, 115.492 seconds) is from the

101

12videobig.mpd which is the largest file in the HDFS files. The upload time

performance trend observed from the 50:50-write:read workload is similar to the

trend observed from the two previous workloads. That is, the linear relationship

between the size of the files and the average upload time does not show for all files

smaller than 4.01 MB. However, the relationship is clearly visible for the two large
files in the HBase file group and the two files in the HDFS file group. The average
upload time of the 8.65MB file is 1.455 seconds which is approximately twice the
average upload time of the 4.01MB file which is 0.748 seconds. The average upload
time of the 232MB file is 36.082 seconds which is approximately 8.3 times of the

average upload time of the 27MB file which is 4.317 seconds.

Table 4.20 Upload time of each file type of 50:50-write:read workload

File . ' Upload time (s)

types Filename e Max 99th- 95th- Mean Min
2mri.jpg 30KB 1273 | 0284 | 0075| 0042| 0015
deed xml 31KB 1.185| 0.285| 0.078| 0042| 0016
8excel.xlsx 41KB 1743 | 0292 | 0076 | 0042| 0014
9sound.ogg 160KB 1132 | 0267 | 0.132| 0061 | 0.023
HBase lecg.jpg 400KB 2117 | 0488 | 0266| 0.117 | 0.048
files 7word.docx 440KB 1.170 | 0542 | 0280 | 0.122| 0.051
5ced.xml 620KB 1634 | 0536 | 0392| 0.182]| 0.081
6ccd.pdf 690KB 1292 | 0641 | 038 | 0177 | 0.077
3xray.png 4.01MB 2716 | 2175| 1.632| 0748 | 0.406
10sound.mp3 8.65MB 5813 | 4203 | 3110| 1.455| 0.854
Lops | 1ivideosmallmpd | 27M8 15258 | 11.610 | 9.202 | 4317 | 2617
files 12videobigmpd | 232MB | 115492 | 85093 | 68376 | 36.082 | 22.064

102

Similar with the overall upload time performance results shown in
Table 4.18, the average upload time performance of all files in the 50:50-write:read
workload shown in Table 4.20 is also smaller than that of its counterpart in the two

previous workloads. That is, the average upload time performance of all files smaller
than 4.01MB is less than 0.2 seconds which is 0.1 second smaller than that observed
from the two previous workloads. The average upload time performance of the two
large files in the HBase file group is also approximately 0.1 second smaller than that
observed from its counterpart in the two previous workloads. The average upload
time performance of the 11videosmall.mp4 and the 12videobig.mp4 is approximately
0.2 seconds and 2 seconds smaller than that observed from its counterpart in the
two previous workloads.

Similarly, the download time of the small files (HBase files) is also
smaller than that of the large files (HDFS files) for the 50:50-write:read workload, and

the download time of each file type under the 50:50-write:read workload is larger

than that of its counterpart in all measured values. Unexpectedly, the average

download time performance of the 50:50-write:read workload is smaller than that of
the 75:25-writerread workload in all cases even though the number of read

operations under the 50:50-write:read workload (267.85GB) is twice the number of
read operations under the 75:25-write:read workload (134.00GB).

This unexpected results can be explained by the fact that the DSePHR
storage nodes must perform the memory flushing process in order to move the

HBase files out of the memory and store the data on the HDFS storages. Thus, the

103

DSePHR will spend some times to perform this activity. This activity can affect the
download time performance. During the DSePHR memory flushing activity, the
DSePHR storage nodes will pause for approximately 0.3 seconds. The number of
memory flushing activities is increasing with the number of write-operations in the
workload because the number of write-operations can be referred to the amount of
data in the system. In this experiment, there are 15 storage nodes and the DSePHR

memory activity happens approximately 10, 5, and 3 times every minute at one of
the storage node for the 100:0-writerread, 75:25-write:read, and 50:50-write:read

workloads, respectively. Therefore, the number of DSePHR memory activities of the
75:25-write:read workload is larger than that of the 50:50-write:read workload.

Moreover, every 15 DSePHR memory flushing activities will create 1
HDFS file packing process of the 15 data blocks resulting from the 15 DSePHR

memory flushing activities. This way, the 15 data blocks of 256MB or 3.84GB of data
will be packed into a HDFS file. Thus, there are 40, 20, and 12 HDFS file packing

process activities in 1 hour for 100:0-write:read, 75:25-write:read and 50:50-write:read

workloads, respectively. Both DSePHR memory flushing activity and DSePHR HDFS file

packing activity can result in the slightly high download time performance of the

75:25-writerread workload in comparison with that of the 50:50-write:read workload.

The ratio of DSePHR memory flushing and HDFS packing activities of the 75:25-

write:read workload to that of the 50:50-write:read workload is 5 to 3.

104

Table 4.21 Download time of each file type of 50:50-write:read workload

File Download time (s)
Filename Size
types Max 99th- 95th- Mean Min
2mri.jpg 30KB 5.960 1.269 0.294 0.102 0.016
dced.xml 31KB 5771 1.624 0.203 0.110 0.020
8excel.xlsx 41KB 4.615 1.120 0.292 0.099 0.021
9sound.ogg 160KB 7.785 1.239 0.294 0.174 0.042
HBase lecg.jpg 400KB 6.298 1.452 0.552 0.291 0.088
files Tword.docx 440KB 5.942 1.513 0.627 0.321 0.095
5ccd.xml 620KB 9.898 1.601 0.820 0.420 0.128
6ccd.pdf 690KB 6.600 1.887 0.938 0.459 0.139
3xray.png 4.01MB 10.384 5.634 4.281 2.086 0.758
10sound.mp3 8.65MB 15.070 10.730 8.633 4.227 1.620
HDFS 11videosmall.mp4d 27TMB 49.537 30.840 23.840 | 12.038 4.953
files 12videobig.mp4 232MB 240.318 | 199.861 | 143.312 | 80.638 | 42.462

Table 4.22 shows the ratio of the average download time observed

from the 75:25-writeiread workload to that of the 50:50-write:read workload.

According to the ratio values in Table 4.22, the average download time observed

from the 75:25-write:read workload is 1.08 to 1.58 times of the average download
time observed from the 50:50-write:read workload. Furthermore, the effect on the
small file size is larger than that of the large file size in HBase file group. That is, the
ratio of the four small file sizes (i.e., the MRI image file, the CCD metadata file, the
spreadsheet file, and the heartbeat sound file) is 1.51, 1.39, 1.58, and 1.49. The ratio
of the four medium file sizes (i.e., 400KB to 680KB) is 1.25, 1.35, 1.20, and 1.21. The

ratio of the two large file sizes (i.e., 4.01MB and 8.65MB) is 1.12 and 1.08. For the

105

HDFS file group, the ratio is 1.09 and 1.21, which is larger than that of the two large
HBase files but it is smaller than that of other HBase files. The effect on the small

size files is larger than that of the large size files because the average download time

of the small size files (i.e., smaller than 400KB) is less than 0.3 seconds for both
75:25-writerread and 50:50-writerread workloads. The DSePHR memory flushing
activity takes approximately 280 milliseconds or 0.28 seconds. Therefore, if the

DSePHR memory flushing activity occurs during the download processing of the small

size files (i.e., smaller than 400KB), the download time of the files will be greatly

affected.

Because every 15 DSePHR memory flushing activities can create a
DSePHR HDFS file packing activity, the download time of the large files (i.e., the HDFS
file group) is also affected by the DSePHR memory flushing activities. However, the

effect is not as high as that of the small size files because the DSePHR HDFS file

packing activity can be done in parallel with other activities. Meaning, the DSePHR

HDFS file packing activity will not stop any other DSePHR HDFS file storing or

retrieving processes.

106

Table 4.22 The ratio of the average download time of the 75:25-write:read to that of
the 50:50-write:read workload

Average download time (s)
File types Filenames Size Ratio
75:25- 50:50-
write:read write:read
2mri.jpg 30KB 0.154 0.102 1.51
4ced.xml 31KB 0.153 0.110 1.39
8excel.xlsx 41KB 0.156 0.099 1.58
9sound.ogg 160KB 0.259 0.174 1.49
lecg.jpg 400KB 0.363 0.291 1.25
HBase files
Tword.docx 440KB 0.433 0.321 1.35
5ccd.xml 620KB 0.504 0.420 1.20
6ccd.pdf 690KB 0.554 0.459 1.21
3xray.png 4.01MB 2.328 2.086 1.12
10sound.mp3 8.65MB 4.584 4.227 1.08
11videosmall.mp4 27MB 13.069 12.038 1.09
HDFS files
12videobig.mp4d 232MB 97.871 80.638 1.21

In conclusion, the upload and download time performance of the

DSePHR system are studied in this section. Both the upload and download time

performance of the HBase files is smaller than that of the HDFS files because the

HBase files are smaller in size than that of the HDFS files. The linear relationship

between the size of the files and the average performance does not clearly show for

all files smaller than 4.01MB. However, the relationship is clearly visible for the two
large files in the HBase file group and the two files in the HDFS file group. That is, the

larger the file size the larger the upload/download time. The linear relationship is

107

clearly visible for all three workloads (i.e., 100:0-write:read, 75:25-write:read, and
50:50-write:read).

The download time performance is larger than that of the upload
time performance because the data must be completely downloaded from the

DSePHR storage to the DSePHR web services in order to be sent to the client. Thus,

the download time will include the time that the read request is made at the client
until the time that the data is completely sent to the client via the DSePHR web

service. Thus, the data transmission is occurring twice including the transmission time

from the DSePHR storage node to the DSePHR web service and the transmission time

from the DSePHR web service to the client. Therefore, the average download time is
expected to be approximately twice the average upload time.

The DSePHR storage nodes must perform the memory flushing
process in order to move the HBase files out of the memory and store the data on

the HDFS storages. Thus, the DSePHR will spend some times to perform this activity.
This activity can affect the download time performance. During the DSePHR memory
flushing activity, the DSePHR storage nodes will pause for approximately 0.3 seconds.
The number of memory flushing activities is increasing with the number of write-
operations in the workload because the number of write-operations can be referred
to the amount of data in the system. Thus, the amount of DSePHR memory flushing

activity occurs in the 75:25-write:read workload is larger than that of the 50:50-

write:read workload. The effect of the DSePHR memory flushing activity is clearly

108

shown in the average download time of the 75:25-write:read workload which is larger

than that of the 50:50-write:read workload in all cases.

Moreover, the DSePHR memory flushing activity can create a DSePHR

HDFS file packing activity which will affect the download time of the large files (i.e.,
the HDFS file group). However, the DSePHR HDFS file packing activity can be done in
parallel with other DSePHR HDFS file storing or retrieving activities. Thus, the effect

on the HDFS file group download time performance is not as large as the effect on

the download time performance of the small size files in the HBase file group.

4.3.3.4 Baseline performance comparison

The DSePHR performance in the realistic environment shown in
Section 4.3.3.1 - 4.3.3.3, is comparing with the DSePHR baseline performance. Table
4.23 shows the comparison of the overall upload time of each situation and the
baseline. The “Base(mean)” column is an average value of every files in HBase or
HDFS files type. For the HBase files, the average upload times of 100:0, 75:25 and
50:50-writerread are 2.25, 1.96 and 1.80 times of the baseline, respectively. For the
HDFS files, the average upload times of 100:0, 75:25 and 50:50-write:read are 2.12,
1.77 and 1.66 times of the baseline, respectively. Table 4.24 shows the upload time
comparison of each file type with the baseline. The “Base” column is the baseline
performance of the file. Most baseline performance is slightly larger than the
minimum value of each file for each situation, except 5ccd.xml in 50:50-write:read

and 12videobig.mp4 in 100:0-write:read.

109

Table 4.23 Overall upload time of each situation and baseline

Upload time (s)

File types 100:0-writerread | 75:25-writeiread | 50:50-write:read | Base(mean)

Mean Min Mean Min Mean Min

HBase files 0.373 0.013 0.326 | 0.014 0.299 | 0.014 0.166

HDFS files 26.202 2,625 | 21.890 | 2.612 | 20505 | 2.617 12.381

Table 4.24 Upload time of each file type of each situation and baseline

Upload time (s)

File) .) 75:25- 50:50-
Filename Size 100:0-write:read] .
types writexread writerread Base
Mean Min Mean Min Mean Min
2mri.jpg 30KB 0.058 0.013 0.047 0.014 0.042 0.015 0.017
deed.xml 31KB 0.054 0.015 0.049 0.014 0.042 0.016 0.018
8excel.xlsx | 41KB 0.056 0.013 0.049 0.014 0.042 0.014 0.019
9sound.ogg | 160KB 0.085 0.023 0.072 0.023 0.061 0.023 0.029
lecg.jpg 400KB 0.146 0.047 0.125 0.046 0.117 0.048 0.054
HBase | 7word
. 440KB 0.151 0.050 0.130 0.051 0.122 0.051 0.067
files .docx
5ced.xml 620KB 0.236 0.071 0.205 0.074 0.182 0.081 0.076
6ccd.pdf 690KB 0.223 0.073 0.199 0.074 0.177 0.077 0.084
3xray.png 4.01MB 0.951 0.398 0.817 0.401 0.748 0.406 0.416
10sound
8.65MB 1.849 0.843 1.566 0.834 1.455 0.854 0.876
.mp3
11videosm

27MB 5.687 2.625 4.688 2612 4.317 2.617 2.661
HDFS | allLmp4d

files 12videobig.
mp4

232MB 46.650 | 22.114 | 38.691 | 22.086 | 36.082 | 22.064 | 22.100

Table 4.25 shows the comparison of overall download time of each
situation and the baseline. The “Base(mean)” column represents the average value.
For the HBase files, the average download times of 75:25 and 50:50-write:read are
3.09, 2.76 times of the baseline, respectively. For the HDFS files, the average

download times of 75:25 and 50:50-write:read are 2.42 and 1.97 times of the

110

baseline, respectively. Table 4.26 shows the download time comparison of each file

type and the baseline. The “Base” column is the baseline performance. Most

baseline performance is slightly larger than the minimum value of each file for most

situations, except 11videosmall.mp4 in both 75:25 and 50:50-write:read situations.

Table 4.25 Overall download time of each situation and baseline

Download time (s)
File types 75:25-write:read 50:50-write:read
Base(mean)
Mean Min Mean Min
HBase files 0.933 0.019 0.834 0.016 0.302
HDFS files 57.260 4.971 46.542 4.953 23.658

Table 4.26 Download time of each file type of each situation and baseline

. Download time (s)
t;)is Filename Size 75:25-write:read 50:50-write:read Base
Mean Min Mean Min
2mri.jpg 30KB 0.154 0.019 0.102 0.016 0.031
4ced.xml 31KB 0.153 0.021 0.110 0.020 0.026
8excel.xlsx 41KB 0.156 0.023 0.099 0.021 0.025
9sound.ogg 160KB 0.259 0.046 0.174 0.042 0.047
HBase lecg.jpg 400KB 0.363 0.089 0.291 0.088 0.091
files Tword.docx 440KB 0.433 0.095 0.321 0.095 0.099
5ccd.xml 620KB 0.504 0.129 0.420 0.128 0.131
6ccd.pdf 690KB 0.554 0.140 0.459 0.139 0.144
3xray.png 4.01MB 2.328 0.760 2.086 0.758 0.766
10sound.mp3 8.65MB 4.584 1.620 4.227 1.620 1.658
HDFS 11lvideosmall.mpd | 27MB 13.069 4971 | 12.038 4.953 5.102
files 12videobig.mp4 232MB 97.871 | 42738 | 80.638 | 42.462 | 42.214

Table 4.25 and Table 4.26 show the ratio upload and download time

between the average value of each file and the baseline under 100:0, 75:25 and

50:50-write:read. The trend of ratio decreases when the file size increases for all

situations because the small file uses less time to upload and download and it is

111

easily affects by large files or network latency. The ratio in 50:50-write:read situation
is less than other situations for both the upload and download time. It can be
explained that the 50:50-writerread has less write operation than other situations.
The more write operations can affect the DSePHR performance because of a small

number of clean memory and flushing activities.

Table 4.27 Upload time and baseline ratio of each situation

Upload time (Ratio)
File Filename Size 100:0- 75:25- 50:50-
types)))
write:read write:read write:read
2mrijpg 30KB 3.412 2.765 2471
4ced.xml 31KB 3.000 2.7122 2.333
8excel.xlsx 41KB 2.947 2.579 2.211
9sound.ogg 160KB 2.931 2.483 2.103
HBase lecg.jpg 400KB 2.704 2.315 2.167
files Tword.docx 440KB 2.254 1.940 1.821
5ccd.xml 620KB 3.105 2.697 2.395
6ccd.pdf 690KB 2.655 2.369 2.107
3xray.png 4.01MB 2.286 1.964 1.798
10sound.mp3 8.65MB 2.111 1.788 1.661
HDFS 11videosmall.mpd | 27MB 2.137 1.762 1.622
files 12videobig.mp4d 232MB 2.111 1.751 1.633

112

Table 4.28 Download and baseline ratio of each situation

Upload time (Ratio)
File types Filename Size

75:25-writerread | 50:50-write:read
2mrijpg 30KB 4.968 3.290
4ced.xml 31KB 5.885 4.231
8excel.xlsx 41KB 6.240 3.960
9sound.ogg 160KB 5511 3.702
) lecg.jpg 400KB 3.989 3.198

HBase files
Tword.docx 440KB 4.374 3.242
5ccd.xml 620KB 3.847 3.206
6ccd.pdf 690KB 3.847 3.188
3xray.png 4.01MB 3.039 2.723
10sound.mp3 8.65MB 2.765 2.549
11videosmall.mpd | 27MB 2.562 2.359

HDFS files

12videobig.mp4d 232MB 2.318 1.910

4.3.4 Effect of File Type Mixture
Previous results show the DSePHR performance on the original PHR
file type mixture as described in Section 3.5 of 3 situations including 100:0-write:read,

75:25-writerread and 50:50-writeiread. In this section, the PHR file type mixture is

changed such that the amount of large files increase from 9% to 25% in all three

workloads (i.e., 100:0-write:read, 75:25-write:read, 50:50-write:read). Table 4.29 shows

the main differences between the original PHR data file type mixture and the uniform

PHR data file type mixture. According to the data shown in Table 4.29, the number
of small size files (i.e., smaller than 1MB) will be reduced from 73% to 50% while the
number of large size files (i.e., larger than 1MB) will be increased from 27% to 50%.

As a result, the amount of work on the HDFS file group will be increased from the

workloads used in the previous three sections (i.e., Section 4.2.1-4.2.3). The number

113
of DSePHR memory flushing activities must be increased from that of the workloads
used in the previous three sections (i.e., Section 4.2.1-4.2.3). Moreover, the amount
of data in the workload increases from 531.561GB to 1,363.356GB because the
number of files in the workload is set to 40,000 files. Thus, the amount of data of the
uniform file type mixture will be larger than that of the original PHR type mixture.

Therefore, the total time to conduct the experiment on the 100:0-write:read uniform

file type mixture workload (i.e., 9.8 hours) is longer than that of the 100:0-write:read

original file type mixture workload (i.e., 3.8 hours).

Table 4.29 The number of files in each type of the two mixtures

File size Original | Uniform Effects
Larger than 100KB 27% 25% Reduce
100KB to 1MB 46% 25% Reduce
1MB to 10MB 18% 25% Increase
Larger than 10MB 9% 25% Increase

Table 4.30 shows the overall upload time performance of both small

files (i.e., HBase files) and large files (i.e., HDFS files) of the 100:0-write:read uniform
file type mixture workload. As expected, the maximum upload time of the HBase file
group is from the 10sound.mp3 which is the largest file in the group while the
maximum upload time of the HDFS file group is from the 12videobig.mpd which is
the largest file in the group. The upload time performance of the 100:0-write:read

workload of the uniform file type mixture shown in Table 4.30 is larger than the
upload time performance of the 100:0-write:read workload of the original file type

mixture shown in Table 4.12 in all cases. This can be caused by the fact that the

114

amount of 100:0-write:read workload of the uniform file type mixture workload data

is 2.56 times the amount of 100:0-write:read workload of the original PHR file type
mixture workload data. To analyze the detail performance of each file type, Table

4.31 shows the upload time performance of each file in the 100:0-write:read uniform

file type mixture workload sorted by the file size.

According to the performance of each file type shown in Table 4.31,
the trend of the average upload time performance of each file type is similar to that
observed from the 100:0-write:read workload with original PHR file type mixture

shown in Table 4.13. That is, the linear relationship between the file size and the
upload time is starting to show on the files of size 4.01MB or larger. The upload time
of all files of size smaller or equal to 4.01MB is less than 1 second. The average

upload time performance of each file type shown in Table 4.31 is either similar to or
slightly larger than that of the 100:0-write:read workload with original file type

mixture shown in Table 4.13, except the MRl image file. However, the average upload

time performance improvement of the original file type mixture over the uniform file

type mixture is less than 1 second. That is, the average upload time performance

improvement of the original file type mixture over the uniform file type mixture is

smaller than 0.07, and 0.8 seconds for the files smaller than 232MB and the 232MB

files, respectively.

115

Table 4.30 Overall upload time of 100:0-write:read uniform file type mixture

workload
Upload time (s)
File types
Max 99th- 95th- Mean Min
HBase files 10.321 4.171 2.502 0.566 0.013
HDFS files 148.622 | 117.638 84.242 26.542 2.598

Table 4.31 Upload time of each file type of 100:0-write:read uniform file type mixture

workload
File Upload time (s)
Filename Size

types Max 99th- 95th- Mean Min
2mri.jpg 30KB 4.164 0.693 0.103 0.057 0.013
4ced.xml 31KB 2.966 0.801 0.086 0.059 0.015
8excel.xlsx 41KB 3.702 0.653 0.092 0.058 0.014
9sound.ogg 160KB 2.295 0.768 0.158 0.087 0.023
HBase lece.jpg 400KB 1.539 0.923 0.306 0.152 0.046
files Tword.docx 440KB 2.681 0.870 0.308 0.155 0.050
5ccd.xml 620KB 4.975 1.428 0.515 0.251 0.072
6ccd.pdf 690KB 2.121 1.267 0.521 0.240 0.075
3xray.png 4.01MB 6.985 3.133 2.208 0.985 0.400
10sound.mp3 8.65MB 10.321 5.490 4.282 1.913 0.843
HDFS 11videosmall.mp4 27MB 20.470 16.305 12.740 5.743 2.598
files 12videobig.mp4d 232MB 148.622 | 127.220 | 101.740 | 47.420 | 22.080

In conclusion, the increasing amount of data in the workload does not
significantly affect the upload time performance of the files in the DSePHR system for

the 100:0-write:read workload situation.

Next, Table 4.32 shows the overall upload time performance of both

small files (i.e., HBase files) and large files (i.e., HDFS files) of the 75:25-write:read

uniform file type mixture workload. As expected, the maximum upload time of the

116

HBase file group is from the 10sound.mp3 which is the largest file in the group while
the maximum upload time of the HDFS file group is from the 12videobig.mp4 which
is the largest file in the group. The upload time performance of the small files is
smaller than that of the upload time performance of the large files. The upload time

performance of the 75:25-write:read workload of the uniform file type mixture shown
in Table 4.32 is larger than the upload time performance of the 75:25-write:read
workload of the original PHR file type mixture shown in Table 4.14 in all cases,

except the 95th-percentile and the average values of the HDFS files. The increasing in

the upload time can be caused by the increasing amount of data between the two

workloads. That is, the amount of write operations of the 75:25-write:read workload
of the uniform file type mixture workload data is 2.6 times the amount of write

operations of the 75:25-write:read workload of the original PHR file type mixture

workload data. However, the average upload time performance of the HDFS files is
not increasing. To analyze the detail performance of each file type, Table 4.33 shows

the upload time performance of each file in the 75:25-writerread uniform file type

mixture workload sorted by the file size.

Table 4.32 Overall upload time of 75:25-write:read uniform file type mixture

workload

Upload time (s)

File types
Max 99th- 95th- Mean Min

HBase files 8.207 3.213 2.062 0.470 0.014

HDFS files 125.737 87.477 63.834 21.847 2,613

117

Table 4.33 Upload time of each file type of 75:25-write:read uniform file type mixture

workload
File Upload time (s)
Filename Size
types Max 99th- 95th- Mean Min
2mri.jpg 30KB 1.781 0.361 0.080 0.047 0.014
4ced.xml 31KB 2.676 0.478 0.083 0.051 0.014
8excel.xlsx 41KB 1.717 0.491 0.086 0.050 0.014
9sound.ogg 160KB 1.151 0.474 0.138 0.071 0.023
HBase lecg,jpg 400KB 2361 | 0809 | 0272| 0.132| 0047
files Tword.docx 440KB 2.091 0.519 0.282 0.133 0.051
Sced.xml 620KB 3.463 0.908 0.408 0.208 0.073
6ccd.pdf 690KB 1.998 1.150 0.431 0.207 0.073
3xray.png 4.01MB 4.820 2.405 1.709 0.825 0.393
10sound.mp3 8.65MB 8.207 4.172 3.302 1.602 0.853
HDFS 11videosmall.mpd | 27MB 19.415 | 12963 | 10.041 | 4771 | 2613
files 12videobig.mp4 232MB 125737 | 95.856 | 75.111 | 38.994 | 22.075

As expected, the performance trend of the upload time performance

shown in Table 4.33 is similar to that of other three previously shown workloads.

That is, the performance of all files smaller than 4.01MB is less than 0.3 seconds and

the increasing of the average upload time does not show any linear relationship with

the file size. However, the linear relationship between the average upload time and

the file size shows on two large files in the HBase file group and the two files in the

HDFS file group. The average upload time performance of each file type shown in

Table 4.33 is either similar to or slightly larger than that of the 75:25-write:read

workload with original PHR file type mixture shown in Table 4.16, except the

heartbeat sound file. However, the average upload time performance improvement

of the original PHR file type mixture over the uniform file type mixture is less than 1

118

second. That is, the average upload time performance improvement of the original
PHR file type mixture over the uniform file type mixture is smaller than 0.09, and 0.4
seconds for the files smaller than 232MB and the 232MB files, respectively.

Table 4.34 shows the overall download time performance of both

small files (i.e., HBase files) and large files (i.e., HDFS files) of the 75:25-write:read
uniform file type mixture workload. As expected, the maximum download time of
the HBase file group is from the 10sound.mp3 which is the largest file in the group

while the maximum download time of the HDFS file group is from the

12videobig.mpd which is the largest file in the g¢roup. The download time

performance of the small files is smaller than that of the download time

performance of the large files. Unlike the upload time performance, the download

time performance of the 75:25-write:read workload of the uniform file type mixture
shown in Table 4.34 is not clearly larger than the download time performance of the
75:25-write:read workload of the original PHR file type mixture shown in Table 4.15,

except the 99th-percentile, 95th-percentile and the average values of the HBase
files. This is unexpected because the amount of read operation data in the 75:25-
write:read workload of the uniform file type mixture is approximately 2.5 times that
of the 75:25-write:read workload of the original PHR file type mixture. To analyze the

detail performance of each file type, Table 4.35 shows the download time
performance of each file in the 75:25-write:read uniform file type mixture workload

sorted by the file size.

119

Table 4.34 Overall download time of 75:25-write:read uniform file type mixture

workload
Download time (s)
File types
Max 99th- 95th- Mean Min
HBase files 15.405 8.924 6.004 1.405 0.019
HDFS files 258.550 197.882 150.516 56.037 4.966

Table 4.35 Download time of each file type of 75:25-write:read uniform file type

mixture workload

File Download time (s)
Filename Size
types Max 99th- 95th- Mean Min
2mri.jpg 30KB 2.861 1.339 0.400 0.133 0.019
4ced.xml 31KB 6.934 2.681 0.423 0.169 0.022
8excel.xlsx 41KB 3.016 1.024 0.325 0.125 0.024
9sound.ogg 160KB 4.873 2.162 0.748 0.263 0.046
HBase lecg,jpg 400KB 3.057 1.560 0.756 | 0374 | 0.090
files Tword.docx 440KB 5.576 2.137 0.779 | 0395 | 0.097
5ccd.xml 620KB 6.445 1.796 0.952 0.496 0.130
6ccd.pdf 690KB 3.396 2.047 1.069 0.543 0.140
3xray.png 4.01MB 9.291 6.025 4.668 2.415 0.761
10sound.mp3 8.65MB | 15.405 12.052 9.123 4.816 1.620
HDFS 11videosmall.mp4 27MB 55.009 31.207 25.844 | 13.265 4.966
files 12videobig.mp4 232MB 25855 | 204.544 | 174.617 | 97.622 | 42.712

As expected, the performance trend of the download time
performance shown in Table 4.35 is similar to that of other three previously shown

workloads. That is, the download time performance of all files smaller than 4.01MB is
less than 0.6 seconds and the increasing of the average download time does not
show any linear relationship with the file size. However, the linear relationship

between the average download time and the file size shows on two large files in the

120

HBase file group and the two files in the HDFS file group. The average download time

performance of each file type shown in Table 4.35 is slightly smaller or larger than
that of the 75:25-writerread workload with original PHR file type mixture shown in

Table 4.17. However, the performance difference is less than 1 second. That is, the
performance difference is less than 0.09 second for all files smaller than 8.65MB and
is less than 0.3 seconds for all files larger than 8.65MB.

In conclusion, the increasing amount of data in the workload does not
significantly affect the upload and download time performance of the files in the

DSePHR system for the 75:25-write:read workload situation.

Table 4.36 shows the overall upload time performance of both small

files (i.e., HBase files) and large files (i.e., HDFS files) of the 50:50-write:read uniform
file type mixture workload. As expected, the maximum upload time of the HBase file
group is from the 10sound.mp3 which is the largest file in the group while the
maximum upload time of the HDFS file group is from the 12videobig.mp4 which is
the largest file in the group. The upload time performance of the small files is
smaller than that of the upload time performance of the large files. The upload time

performance of the 50:50-write:read workload of the uniform file type mixture shown
in Table 4.36 is larger than the upload time performance of the 50:50-write:read
workload of the original PHR file type mixture shown in Table 4.18 in all cases,
except the maximum value of the HBase file and the minimum value of the HDFS

files. The increasing in the upload time performance can be caused by the increasing

amount of data between the two workloads. That is, the amount of write operations

121
of the 50:50-write:read workload of the uniform file type mixture workload data is
2.51 times the amount of write operations of the 50:50-write:read workload of the
original PHR file type mixture workload data. To analyze the detail performance of
each file type, Table 4.37 shows the upload time performance of each file in the

50:50-write:read uniform file type mixture workload sorted by the file size.

Table 4.36 Overall upload time of 50:50-write:read uniform file type mixture

workload
Upload time (s)
File types
Max 99th- 95th- Mean Min
HBase files 5.375 2.981 1.902 0.436 0.014
HDFS files 116.072 82.459 59.992 20.533 2.579

Table 4.37 Upload time of each file type of 50:50-write:read uniform file type mixture

workload
File Upload time (s)
Filename Size
types Max 99th- 95th- Mean Min
2mri.jpg 30KB 1.585 0.278 0.073 0.040 0.015
4ced.xml 31KB 1.368 0.284 0.081 0.043 0.014
8excel.xlsx 41KB 1.192 0.286 0.080 0.044 0.014
9sound.ogg 160KB 2.189 0.295 0.139 0.066 0.024
HBase lecgjpg 400KB 1226 | 0481 | 0251 | 0.116| 0047
files Tword.docx 440KB 1967 | 0410 | 0.278| 0.124 | 0.051
5ccd.xml 620KB 3.546 0.854 0.399 0.199 0.076
6ced.pdf 690KB 1.581 0.716 0.410 0.185 0.075
3xray.png 4.01MB 4.806 2.192 1.598 0.769 0.404
10sound.mp3 8.65MB 5.375 4.086 3.079 1.491 0.853
HDFS 11videosmall.mp4d 27MB 16.510 | 11.760 9.059 4.346 2.579
files 12videobig.mp4 232MB 116.072 | 87.760 | 71.927 | 36.535 | 22.062

122

As expected, the performance trend of the upload time performance

shown in Table 4.37 is similar to that of other three previously shown workloads.
That is, the performance of all files smaller than 4.01MB is less than 0.2 seconds and

the increasing of the average upload time does not show any linear relationship with

the file size. However, the linear relationship between the average upload time and

the file size shows on two large files in the HBase file group and the two files in the

HDFS file group. The average upload time performance of each file type shown in

Table 4.37 is either similar to or slightly larger than that of the 50:50-write:read
workload with original PHR file type mixture shown in Table 4.20, except the MRI

image file and the ECG image file. However, the average upload time performance

improvement of the original PHR file type mixture over the uniform file type mixture

is less than 1 second. That is, the average upload time performance improvement of

the original PHR file type mixture over the uniform file type mixture is smaller than

0.04, and 0.5 seconds for the files smaller than 232MB and the 232MB files,
respectively.

Table 4.38 shows the overall download time performance of both

small files (i.e., HBase files) and large files (i.e., HDFS files) of the 50:50-write:read
uniform file type mixture workload. As expected, the maximum download time of
the HBase file group is from the 10sound.mp3 which is the largest file in the group

while the maximum download time of the HDFS file group is from the

12videobig.mpd4 which is the largest file in the group. The download time

performance of the small files is smaller than that of the download time

123

performance of the large files. The download time performance of the 50:50-

write:read workload of the uniform file type mixture shown in Table 4.38 is larger
than the download time performance of the 50:50-write:read workload of the original

PHR file type mixture shown in Table 4.19, except the 99th-percentile, 95th-
percentile and the average values of the HDFS files. This is expected because the

amount of read operation data in the 50:50-write:read workload of the uniform file

type mixture is approximately 2.54 times that of the 50:50-write:read workload of the
original PHR file type mixture.

Similar to the download performance trend of the original PHR file
type mixture workloads, the download time performance of the 50:50-write:read
workload of uniform file type mixture shown in Table 4.38 is smaller than the
download time performance of the 75:25-writerread workload of the uniform file
type mixture shown in Table 4.35. This can be explained by the number of the
DSePHR memory flushing activity because the number of DSePHR memory flushing
activity of the 75:25-write:read workload of the uniform file type mixture is larger
than that of the 50:50-write:read workload. That is, the number of DSePHR memory
flushing activity occurs 4.23, 2.66 and 1.83 times in a minute for the 100:0-write:read,

75:25-write:read and 50:50-write:read workload of the uniform file type mixture.

Table 4.38 Overall download time of 50:50-write:read uniform file type mixture

workload

Download time (s)

File types
Max 99th- 95th- Mean Min

HBase files 17.834 8.318 5.421 1.213 0.020

HDFS files 247980 | 161.820 | 124.312 45.958 4.955

124

To analyze the detail performance of each file type, Table 4.39 shows
the download time performance of each file in the 50:50-write:read uniform file type

mixture workload sorted by the file size. As expected, the performance trend of the

download time performance shown in Table 4.39 is similar to that of other three

previously shown workloads. That is, the download time performance of all files
smaller than 4.01MB is less than 0.5 seconds and the increasing of the average
download time does not show any linear relationship with the file size. However, the

linear relationship between the average download time and the file size shows on

two large files in the HBase file group and the two files in the HDFS file group. The

average download time performance of each file type shown in Table 4.39 is slightly
smaller or larger than that of the 50:50-write:read workload with original PHR file

type mixture shown in Table 4.21. However, the performance difference is less than
1 second. That is, the performance difference is less than 0.06 second for all files

smaller than 27MB and is less than 0.2 seconds for all files larger than 27MB.

125

Table 4.39 Download time of each file type of 50:50-write:read uniform file type

mixture workload

File Download time (s)
Filename Size
types Max 99th- 95th- Mean Min
2mri.jpg 30KB 5.866 0.838 0.301 0.096 0.020
Aced.xml 31KB 6.403 0.643 0.271 0.094 0.021
8excel.xlsx 41KB 5.497 1.087 0.277 0.106 0.020
9sound.ogg 160KB 6.108 1.060 0.331 0.172 0.045
HBase lecg.jpg 400KB 1.739 1.009 0.547 0.294 0.089
files Tword.docx 440KB 4711 0.902 0.609 0.323 0.095
5ccd.xml 620KB 5.741 1.511 0.855 0.434 0.128
6ccd.pdf 690KB 7.007 1.697 0.867 0.455 0.140
3xray.png 4.01MB 7.313 5.195 4.198 2.141 0.759
10sound.mp3 8.65MB 17.834 10.030 8.482 4.283 1.621
HDFS 11lvideosmall.mp4 27MB 35.124 29.056 23314 | 11.900 4.955
files 12videobig.mp4 232MB | 247.980 | 179.380 | 140.860 | 80.521 | 42.073

In conclusion, the increasing amount of data in the workload does not
significantly affect the upload and download time performance of the files in the

DSePHR system for the 50:50-write:read workload situation.

126

CHAPTER 5

CONCLUSION

In this chapter, the conclusions of this thesis including problem
statement, motivation, requirements of encrypted PHR data storage, the design of
encrypted PHR storage, approach to evaluate the storage and the experimental
results are shown in section 5.1. The limitation and suggestion of this work are

explained in section 5.2.

5.1 Conclusion

Personal health records (PHRs) are the data that belongs to your life.
PHRs can be sensitive data such as disgraceful disease or dangerous medication. The
secure cloud PHR systems have emerged recently, providing on encrypted method
to PHR data and promising to store the encrypted data in cloud storage. However, a
mechanism to store massive encrypted PHR data to a cloud storage is not addressed
clearly. The secure cloud PHR systems assume that the encrypted PHR data can
store in a general cloud storage without any issue. Although the encrypted PHR data
can be stored in the general cloud storage, it is difficult to access the data. The
encrypted PHR data lacks of its related information, making it difficult to pre-process
the data for convenient retrieval. The general storages do not provide any index of
the data by users and time because the storages provide a bucket-style storage for
storing the whole data at same place.

This work provides a distributed storage for storing encrypted PHR
data and an API for retrieving the encrypted PHR data. The storage has designed

according to the encrypted PHR storage requirements including (1) the storage can

127

support a high volume of the data; (2) the data can be accessed and retrieved
immediately; (3) the user can access the data easily. To achieve the encrypted PHR
storage requirements, the storage should provide scalability, robustness, failure
recovery, fast responding and suitable interface to participate with user.

The distributed storage for encrypted personal health data (DSePHR)
has been proposed in this thesis. DSePHR contains 2 parts including the API for
distributed storage and distribute storage. DSePHR uses both HDFS (Hadoop
distributed file system) and HBase (Non-relational database) as a fundamental
storage framework. HDFS provides a replication mechanism for the load balancing
feature and failure recovery feature. HDFS can also add more storage capacity
without shutting down the system. HBase is a non-relational database that can
persist on HDFS and support a replication feature from HDFS.

The interface of APl has been implemented by REST interface which is
a cross platform interface (de-facto standard). It can be used on various platform.
DSePHR creates the index of the encrypted PHR data using its properties: the owner
of the data, the incoming time of the data and the size of the data. The index of the
encrypted PHR data is stored in HBase. With the DSePHR’s designed index, all files of
the same user are located close to each other and sorted by the incoming time. The
users can retrieve the whole data or a specified data of the user. The encrypted PHR
data is divided into large size files and small size files. The large size files are stored
directly on HDFS. The small files are stored on HBase acting BLOB (large binary
object) to prevent the high consumption memory problem. The tuning configuration
and pre-split table approach of HBase are adopted to improve the throughput of

HBase for storing small files.

128

The experiment parts including the DSePHR APIs, memory
consumption issue and DSePHR performance on effect of the limited storage, effect
of the write-read ratio and effect of file type mixture. The DSePHR APIs provide the
interface for client or PHR system to store to or retrieve from the DSePHR framework.
The memory issue experimental results show that the DSePHR can solve the high
consumption memory problem of Namenode by storing small files in HBase. The
performance of DSePHR under limited storage space shows that the extra storage
can be added to the DSePHR system without shutting down the system. The extra
storages take around 1-3 minutes to respond to the new incoming data. Although the
system resource usage is very high (i.e.,, 90%), the performance of both upload and
download time shows a slight effects from such situation. However, the extra storage
is recommended to be added to the DSePHR system when the resource usage of the
system reaches 90%. In the DSePHR performance under realistic environment, both
upload and download performance depends on a number of upload requests. That
is, the high number of upload requests can affect both upload and download time
performance. The results show that the performance on 50:50-write:read situation is
the best performance. The download time is larger than the upload time because
the data need to be completely downloaded from the distributed storage first, then
sent to the client. Although the large file size is larger in the uniform file type
mixture, the DSePHR still can handle the situation with a slightly performance

difference.

5.2 Limitation and Suggestion
The limitation of DSePHR API is the size of the upload files. Although

the DSePHR caches the incoming data on its disk, but the request of the data persists

129

in the memory first before it is saved to disk. The large file can fill the DSePHR
memory fast. The file size should be limited considering the memory of the DSePHR
web service, or the memory of the DSePHR must be increased to handle larger files.
Another limitation is the throughput of the DSePHR to the distributed storage and to
the client. With a single LAN interface, it can affect the throughput because there is
an overhead between sending and receiving the data simultaneously. The suggestion
is to use 2 LAN interfaces, one for the client to DSePHR, another one for the DSePHR
to the distributed storage. This way, the throughput of the system can be increased.
The limitation of HDFS is that the Namenode can be a single point of
failure because the Namenode stores the metadata of all file in HDFS. The client
cannot retrieve the data if the Namenode is down. However, there are some
solutions to solve this limitation. First solution is to use a high quality machine to
work as the Namenode server. Second solution is to use a secondary Namenode that
is provided by HDFS. The secondary Namenode is a backup node of the Namenode.
Third solution is to use a high availability Namenode (AvatarNode), by setting more
than a single Namenode as a backup of the primary Namenode. If the primary

Namenode goes down, another Namenode can catch up the work immediately.

130

REFERENCES

N. R. Cook, J. A. Cutler, E. Obarzanek, J. E. Buring, K. M. Rexrode, S. K.
Kumanyika, L. J. Appel, and P. K Whelton, “ Long term effects of dietary
sodium reduction on cardiovascular disease outcomes: observational follow-
up of the trials of hypertension prevention (TOHP),” BMJ, vol. 334, no. 7599,
pp. 885-885, Apr. 2007.

W. E. M. LANDS, “ Dietary Fat and Health: The Evidence and the Politics of
Prevention: Careful Use of Dietary Fats Can Improve Life and Prevent Disease,”
Ann. N. Y. Acad. Sci., vol. 1055, no. 1, pp. 179-192, Dec. 2005.

P. C. Tang, J. S. Ash, D. W. Bates, J. M. Overhage, and D. Z. Sands, “Personal
Health Records: Definitions, Benefits, and Strategies for Overcoming Barriers to
Adoption,” J. Am. Med. Informatics Assoc., vol. 13, no. 2, pp. 121-126, Mar.
2006.

Markle foundation, “Connecting for Health-The personal health working group
final report,” 2003.

M. M. Hansen, T. Miron-Shatz, A. Y. S. Lau, and C. Paton, “Big Data in Science
and Healthcare: A Review of Recent Literature and Perspectives. Contribution
of the IMIA Social Media Working Group.,” Yearb. Med. Inform., vol. 9, pp. 21-
6, 2014.

M. Li, S. Yu, K. Ren, and W. Lou, “Securing Personal Health Records in Cloud
Computing: Patient-Centric and Fine-Grained Data Access Control in Multi-
owner Settings,” Springer Berlin Heidelberg, 2010, pp. 89-106.

C. Wang, X. Liu, and W. Li, “Implementing a Personal Health Record Cloud
Platform Using Ciphertext-Policy Attribute-Based Encryption,” in 2012 Fourth
International Conference on Intelligent Networking and Collaborative Systemes,
2012, pp. 8-14.

M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and Secure Sharing of
Personal Health Records in Cloud Computing Using Attribute-Based
Encryption,” IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 1, pp. 131-143, Jan.
2013.

F. Xhafa, J. Li, G. Zhao, J. Li, X. Chen, and D. S. Wong, “Designing cloud-based
electronic health record system with attribute-based encryption,” Multimed.
Tools Appl., vol. 74, no. 10, pp. 3441-3458, May 2015.

P. Thummavet and S. Vasupongayya, “ Privacy-preserving emergency access
control for personal health records,” MAEJO Int. J. Sci. Technol., vol. 9, no. 1,

131

pp. 108-120, 2015.

Y. Li, L. Guo, and Y. Guo, “An Efficient and Performance-Aware Big Data Storage
System,” Springer International Publishing, 2013, pp. 102-116.

“My Health Record.” [Online]. Available: https://myhealthrecord.gov.au.
“Goosgle Fit.” [Online]. Available: https://www.google.com/fit/.

“ Microsoft HealthVault. ” [Online] . Available:
https://international.healthvault.com/.
“ My Health Record report 2015-2016. ” [Online] . Available:

https://myhealthrecord.gov.au/internet/mhr/publishing.nsf/Content/0F2F30876
A95ETDACA257F8A0008E337/ SFile/ MyHealthRecordSystemOperatorAnnualRep
ort-2015-16.PDF.

E. Dumbill, “ Making Sense of Big Data,”
http.//dx.doi.org/10.1089/big.2012.1503, 2013.

D. Sobhy, Y. El-Sonbaty, and M. A. Elnasr, “ MedCloud: Healthcare cloud
computing system,” in The 7th International Conference for Internet
Technology and Secured Transactions, 2012, pp. 161-166.

A. Bahga and V. K. Madisetti, “ A Cloud-based Approach for Interoperable
Electronic Health Records (EHRs),” IEEE J. Biomed. Heal. Informatics, vol. 17,
no. 5, pp. 894-906, Sep. 2013.

Y. Li, L. Guo, C. Wu, C.-H. Lee, and Y. Guo, “Building a cloud-based platform for
personal health sensor data management,” in [EEE-EMBS International
Conference on Biomediical and Health Informatics (BHI), 2014, pp. 223-226.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Distributed File
System,” in 2010 IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST), 2010, pp. 1-10.

“Hadoop.” [Online]. Available: http://hadoop.apache.org/.

“ Storing images in Hbase.” [Online] . Available: http: / / apache-
hbase. 679495. n3. nabble. com/ Storing-images-in-Hbase-td4036184. html.
[Accessed: 30-Dec-2016].

“imageshack.” [Online]. Available: https://imageshack.us/.

W. Wang Lijun, H. Huang Yongfeng, C. Chen Ji, Z. Zhou Ke, and L. Li Chunhua,
“Medoop: A medical information platform based on Hadoop,” in 2013 IEEE
15th International Conference on e-Health Networking, Applications and
Services (Healthcom 2013), 2013, pp. 1-6.

B. Dong, Q. Zheng, F. Tian, K.-M. Chao, R. Ma, and R. Anane, “ An optimized

approach for storing and accessing small files on cloud storage,” J. Netw.

[30]

132

Comput. Appl., vol. 35, no. 6, pp. 1847-1862, 2012.

X. Bao, L. Liu, N. Xiao, F. Liu, Q. Zhang, and T. Zhu, “ HConfig: Resource
adaptive fast bulk loading in HBase,” Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom) , 2014 International
Conference on. IEEE, pp. 215-224, 2014.

X. Bao, L. Liu, N. Xiao, Y. Zhou, and Q. Zhang, “ Policy-Driven Configuration
Management for NoSQL,” in 2015 IEEE 8th International Conference on Cloud
Computing, 2015, pp. 245-252.

“Ganglia Monitoring system.” [Online]. Available: http://ganglia.info/.

R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB,” in
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles - SOSP ’11, 2011, p. 85.

N. Hongu, B. T. Pope, P. Bilgic, B. J. Orr, A. Suzuki, A. S. Kim, N. C. Merchant, and
D. J. Roe, “ Usability of a smartphone food picture app for assisting 24-hour
dietary recall: a pilot study,” Nutr. Res. Pract., vol. 9, no. 2, p. 207, Apr. 2015.
T. Suzuki, H. Tanaka, S. Minami, H. Yamada, and T. Miyata, “Wearable wireless
vital monitoring technology for smart health care,” in 2013 7th International
Symposium on Medical Information and Communication Technology (ISMICT),
2013, pp. 1-4.

133

APPENDIX

Table A.1 — A5 present results each experiment of ideal situation. Unit
is used in each table is second. Each of columns includes file: file name, num: a
number of files, max: maximum time, ave: average time, min: minimum time, std:
standard division, var: variance, 95 95 percentiles, 99t 99 percentiles.

Table A.1 Upload time of 100:0-write:read situation with original PHR file type

mixture
FILE NUM MAX AVG MIN STD VAR 95th 99th
10sound.mp3 848 6.959 1.900 0.852 1.182 1.397 4.336 5.859
11videosmall.mp4 413 20.469 5.679 2.620 3.523 12.412 13.012 16.981
12videobig.mp4 481 | 129.562 47.318 22.141 25.663 | 658.590 | 101.537 | 117.282
lecg.jpg 879 1.278 0.140 0.047 0.130 0.017 0.289 0.741
2mri.jpg 815 2.478 0.055 0.014 0.140 0.020 0.081 0.683
3xray.png 850 3.846 0.977 0.403 0.654 0.428 2.311 3.217
deed.xml 852 1.695 0.055 0.015 0.126 0.016 0.093 0.568
5ced.xml 859 1.976 0.235 0.073 0.203 0.041 0.483 1.213
6ccd.pdf 855 2.370 0.236 0.075 0.227 0.052 0.533 1.261
Tword.docx 885 1.589 0.150 0.050 0.164 0.027 0.307 0.952
8excel.xlsx 830 1.807 0.049 0.014 0.118 0.014 0.078 0.712
9sound.ogg 821 1.120 0.083 0.023 0.120 0.014 0.161 0.757

134

Table A.2 Upload time of 75:25-write:read situation with original PHR file type

mixture
FILE NUM MAX AVG MIN STD VAR 95th 99th
10sound.mp3 243 4.335 1.106 0.859 0.519 0.269 2.157 2.795
11videosmall.mpd 138 8.244 3.441 2621 1.396 1.949 6.809 7.900
12videobig.mp4 123 | 61.222 | 27.281 22.110 7.770 | 60.376 | 45.624 | 56.287
lecg.jpg 265 0.892 0.077 0.046 0.069 0.005 0.180 0.297
2mri.jpg 245 0.282 0.024 0.015 0.020 0.000 0.052 0.080
3xray.png 274 3.247 0.591 0.403 0.365 0.133 1.333 1.766
4ced.xml 252 1.023 0.033 0.015 0.076 0.006 0.055 0.207
5ccd.xml 259 1.191 0.133 0.073 0.106 0.011 0.259 0.654
6ccd.pdf 247 0.692 0.120 0.074 0.087 0.008 0.307 0.493
Tword.docx 256 0.815 0.091 0.051 0.077 0.006 0.212 0.392
8excel.xlsx 277 0.328 0.025 0.015 0.026 0.001 0.054 0.078
9sound.ogg 225 0.283 0.042 0.024 0.036 0.001 0.108 0.218
Table A.3 Download time of 75:25-write:read situation with original PHR file type
mixture
FILE NUM MAX AVG MIN STD VAR 95th 99th
10sound.mp3 53 | 126.667 | 14.931 1.975 | 26.986 | 728.223 | 76.217 | 115.325
11videosmall.mp4d 37 | 304.664 | 20.231 6.305 | 48.203 | 2323.494 | 27.904 | 217.385
12videobig.mp4d 19 | 129.643 | 84.283 | 47.324 | 24.457 | 598.158 | 124.844 | 128.683
lecg.jpg 76 | 162.443 | 15.035 0.091 | 30.332 | 920.033 | 75.686 | 130.542
2mrijpg 83 | 106.676 | 11.249 0.024 | 23.857 | 569.143 | 69.022 | 91.728
3xray.png 751 93932 | 14.789 0.902 | 25.884 | 670.001 74.833 | 91.224
4ced.xml 63 | 143.368 | 20.901 0.025 | 37.904 | 1436.717 | 96.954 | 137.578
5ccd.xml 75| 149.265 | 21.883 0.138 | 37.699 | 1421.251 | 103.802 | 143.603
6ccd.pdf 72| 90.470 | 17.037 0.214 | 26.698 | 712.809 | 74.828 | 88.381
Tword.docx 66 | 157.400 | 25.594 0.113 | 42.255 | 1785.503 | 113.716 | 156.400
8excel.xlsx 61 | 135957 | 20.573 0.027 | 33.966 | 1153.687 | 92.431 | 116.093
9sound.ogg 62 | 156.969 | 18.943 0.052 | 36.652 | 1343.381 | 113.246 | 150.202

135

Table A.4 Upload time of 50:50-write:read situation with original PHR file type

mixture
FILE NUM MAX AVG MIN STD VAR 95th 99th
10sound.mp3 249 3.225 1.128 0.859 0.435 0.189 2.080 2.809
11videosmall.mp4d 123 14.369 3.373 2.617 1.395 1.945 5.845 7.189
12videobig.mp4 107 77.729 28.041 22.084 10.923 | 119.303 46.066 73.328
lecg.jpg 254 0.813 0.079 0.050 0.063 0.004 0.172 0.251
2mri.jpg 259 0.269 0.025 0.016 0.020 0.000 0.059 0.081
3xray.png 251 1.976 0.561 0.407 0.259 0.067 1.132 1.476
deed.xml 280 1.029 0.032 0.017 0.064 0.004 0.070 0.090
5ced.xml 265 0.474 0.133 0.081 0.064 0.004 0.277 0.366
6ccd.pdf 272 1.236 0.128 0.074 0.112 0.013 0.303 0.462
Tword.docx 253 1.464 0.094 0.051 0.121 0.015 0.213 0.683
8excel.xlsx 244 0.261 0.026 0.016 0.020 0.000 0.059 0.091
9sound.ogg 280 0.372 0.041 0.023 0.036 0.001 0.101 0.164

Table A.5 Download time of 50:50-write:read situation with original PHR file type

mixture
FILE NUM MAX AVG MIN STD VAR 95th 99th
10sound.mp3 269 | 23.475 6.504 1.700 3.759 14.127 12.731 18.395
11videosmall.mp4d 109 | 231.603 | 28.321 5.623 | 35507 | 1260.749 | 77.892 | 216.668
12videobig.mp4 108 | 376.940 | 151.061 | 46.212 | 70.167 | 4923.377 | 276.155 | 347.929
lecg.jpg 256 8.398 0.700 0.094 1.276 1.628 2.750 7.393
2mri.jpg 273 | 28.140 0.467 0.023 2.071 4.291 2.542 6.002
3xray.png 260 | 23.133 3.368 0.763 2.316 5.365 6.317 10.627
deed.xml 267 | 48.438 0.738 0.025 4.034 16.273 3.001 13.148
5ced.xml 248 | 25.164 1.097 0.147 2.418 5.846 3.937 9.525
6ccd.pdf 256 | 39.950 1.168 0.145 3.238 10.483 3.021 15.375
Tword.docx 272 | 90.728 1.363 0.105 6.052 36.633 4.640 15.570
8excel.xlsx 249 | 41.866 0.794 0.024 3.830 14.672 3.175 19.989
9sound.ogg 233 | 88.946 0.928 0.052 6.300 39.688 1.591 18.452

136

Table B.1 - Table B.10 present results each experiment of real-world

situation. Unit is used in each table is second. Each of columns includes file: file

name, num: a number of files, max:

maximum time, avg:

average time, min:

minimum time, std: standard division, var: variance, 95™: 95 percentiles, 99™. 99

percentiles.

Table B.1 Upload time of 100:0-write:read situation with original PHR file type

mixture
FILE NUM MAX AVG MIN STD VAR 95th 99th
10sound.mp3 3459 7.257 1.849 0.843 1.045 1.092 3.885 5.035
11videosmall.mpd 1839 19.819 5.687 2.625 3.333 | 11.109 | 12.609 15.965
12videobig.mp4 1845 | 147.917 | 46.650 | 22.114 | 23.929 | 572.619 | 93.745 | 116.734
lecg.jpg 3662 2.639 0.146 0.047 0.143 0.020 0.298 0.777
2mrijpg 3631 3.069 0.058 0.013 0.150 0.022 0.086 0.793
3xray.png 3660 4.421 0.951 0.398 0.591 0.349 2.101 2.818
4eed.xml 3621 1.750 0.054 0.015 0.106 0.011 0.084 0.630
5ced.xml 3672 4.181 0.236 0.071 0.224 0.050 0.484 1.263
6ccd.pdf 3655 3.100 0.223 0.073 0.204 0.042 0.472 1.169
Tword.docx 3696 2.547 0.151 0.050 0.148 0.022 0.306 0.751
Bexcel.xlsx 3628 2.411 0.056 0.013 0.128 0.016 0.082 0.745
9sound.ogg 3632 2.384 0.085 0.023 0.129 0.017 0.156 0.732

137

Table B.2 Upload time of 75:25-write:read situation with original PHR file type

mixture
FILE NUM MAX AVG MIN STD VAR 95th 99th
10sound.mp3 2716 6.457 1.566 0.834 0.879 0.772 3.295 4.326
11videosmall.mpd 1342 17.524 4.688 2.612 2.511 6.305 10.076 12.190
12videobig.mp4 1374 | 112,936 | 38.691 | 22.086 | 17.937 | 321.744 | 76.993 | 93.881
lecg.jpg 2636 1.643 0.125 0.046 0.122 0.015 0.265 0.639
2mri.jpg 2830 3.066 0.047 0.014 0.112 0.013 0.075 0.367
3xray.png 2724 4.286 0.817 0.401 0.505 0.255 1.790 2.390
4eed.xml 2671 1.559 0.049 0.014 0.092 0.008 0.082 0.456
5ced.xml 2739 2.279 0.205 0.074 0.171 0.029 0.420 0.825
6ccd.pdf 2791 2.433 0.199 0.074 0.172 0.030 0.424 0.884
Tword.docx 2805 2.627 0.130 0.051 0.118 0.014 0.281 0.453
8excel.xlsx 2668 1.673 0.049 0.014 0.103 0.011 0.078 0.684
9sound.ogg 2689 1.304 0.072 0.023 0.096 0.009 0.146 0.539

Table B.3 Download time of 75:25-write:read situation with original PHR file type

mixture
FILE NUM MAX AVG MIN STD VAR 95th 99th
10sound.mp3 874 | 14.285 4.584 1.620 2.246 5.046 8.973 10.484
11videosmall.mpd 431 47.212 | 13.069 4.971 6.516 42.455 | 25.158 | 32.743
12videobig.mp4 469 | 288.480 | 97.871 | 42.738 | 39.159 | 1533.402 | 174.317 | 212.486
lecg.jpg 920 6.790 0.363 0.089 0.404 0.163 0.745 1.801
2mrijpg 925 5.428 0.154 0.019 0.432 0.187 0.490 2.319
3xray.png 915 8.886 2.328 0.760 1.266 1.604 4.696 6.196
4eed.xml 911 7.142 0.153 0.021 0.467 0.218 0.391 2.355
5ced.xml 921 8.644 0.504 0.129 0.562 0.316 1.036 2.254
6ccd.pdf 941 15.468 0.554 0.140 0.701 0.492 1.195 2.362
Tword.docx 882 7.484 0.433 0.095 0.577 0.333 0.951 2.771
Bexcel.xlsx 878 7.907 0.156 0.023 0.425 0.181 0.494 1.686
9sound.ogg 948 9.217 0.259 0.046 0.598 0.358 0.678 3.076

Table B.4 Upload time of 50:50-write:read situation with original PHR file type

138

mixture
FILE NUM MAX AVG MIN STD VAR 95th 99th
10sound.mp3 1837 5.813 1.455 0.854 0.810 0.655 3.110 4.203
11videosmall.mpd 917 15.258 4.317 2.617 2.245 5.038 9.202 11.610
12videobig.mp4 953 | 115.492 36.082 22.064 15.356 | 235.807 68.376 85.093
lecg.jpg 1753 2.117 0.117 0.048 0.108 0.012 0.266 0.488
2mri.jpg 1798 1.273 0.042 0.015 0.080 0.006 0.075 0.284
3xray.png 1780 2.716 0.748 0.406 0.447 0.200 1.632 2.175
4eed.xml 1824 1.185 0.042 0.016 0.072 0.005 0.078 0.285
5ced.xml 1801 1.634 0.182 0.081 0.118 0.014 0.392 0.536
6ccd.pdf 1795 1.292 0.177 0.077 0.134 0.018 0.388 0.641
Tword.docx 1874 1.170 0.122 0.051 0.108 0.012 0.280 0.542
8excel.xlsx 1808 1.743 0.042 0.014 0.090 0.008 0.076 0.292
9sound.ogg 1852 1.132 0.061 0.023 0.066 0.004 0.132 0.267

Table B.5 Download time of 50:50-write:read situation with original PHR file type

mixture
FILE NUM MAX AVG MIN STD VAR 95th 99th
10sound.mp3 1832 15.070 4.227 1.620 2.337 5.462 8.633 10.730
11videosmall.mpd 917 | 49.537 12.038 4.953 6.381 40.723 | 23.840 30.840
12videobig.mp4 928 | 240.318 | 80.638 | 42.462 | 32.456 | 1053.381 | 143.312 | 199.861
lecg.jpg 1817 6.298 0.291 0.088 0.312 0.098 0.552 1.452
2mrijpg 1790 5.960 0.102 0.016 0.315 0.099 0.294 1.269
3xray.png 1832 10.384 2.086 0.758 1.183 1.400 4.281 5.634
4eed.xml 1767 5771 0.110 0.020 0.333 0.111 0.203 1.624
5ced.xml 1831 9.898 0.420 0.128 0.437 0.191 0.820 1.601
6ccd.pdf 1810 6.600 0.459 0.139 0.368 0.135 0.938 1.887
Tword.docx 1812 5.942 0.321 0.095 0.343 0.118 0.627 1.513
Bexcel.xlsx 1820 4.615 0.099 0.021 0.257 0.066 0.292 1.120
9sound.ogg 1852 7.785 0.174 0.042 0.368 0.135 0.294 1.239

139

Table B.6 Upload time of 100:0-write:read situation with uniform file type mixture

FILE NUM MAX AVG MIN STD VAR 95th 99th
10sound.mp3 5067 | 10.321 1.913 0.843 1.175 1.381 4.282 5.490
11videosmall.mp4 5006 | 20.470 5.743 2.598 3.440 | 11.835| 12740 | 16.305
12videobig.mp4 4988 | 148.622 | 47.417 | 22.084 | 25.566 | 653.639 | 101.738 | 127.220
lecg.jpg 1985 1.539 0.152 0.046 0.146 0.021 0.306 0.923
2mrijpg 3356 4.164 0.057 0.013 0.130 0.017 0.103 0.693
3xray.png 5024 6.985 0.985 0.400 0.657 0.432 2.208 3.133
4ced.xml 3219 2.966 0.059 0.015 0.139 0.019 0.086 0.801
5ccd.xml 1993 4.975 0.251 0.072 0.281 0.079 0.515 1.428
6ccd.pdf 1974 2.121 0.240 0.075 0.224 0.050 0.521 1.267
Tword.docx 2001 2.681 0.155 0.050 0.153 0.023 0.308 0.870
8excel.xlsx 3346 3.702 0.058 0.014 0.134 0.018 0.092 0.653
9sound.ogg 2041 2.295 0.087 0.023 0.141 0.020 0.158 0.768

Table B.7 Upload time of 75:25-write:read situation with uniform file type mixture

FILE NUM MAX AVG MIN STD VAR 95th 99th
10sound.mp3 3781 8.207 1.602 0.853 0.876 0.767 3.302 4.172
11videosmall.mp4d 3799 | 19.415 4771 2613 2.625 6.891 | 10.041 | 12.963
12videobig.mp4d 3783 | 125.737 | 38.994 | 22075 | 17.708 | 313.588 | 75.111 | 95.856
lecg.jpg 1452 2.361 0.132 0.047 0.142 0.020 0.272 0.809
2mrijpg 2539 1.781 0.047 0.014 0.086 0.007 0.080 0.361
3xray.png 3700 4.820 0.825 0.393 0.492 0.242 1.709 2.405
Aced.xml 2514 2676 0.051 0.014 0.116 0.013 0.083 0.478
5ccd.xml 1581 3.463 0.208 0.073 0.177 0.031 0.408 0.908
6ccd.pdf 1549 1.998 0.207 0.073 0.186 0.035 0.431 1.150
Tword.docx 1504 2.091 0.133 0.051 0.115 0.013 0.282 0.519
8excel.xlsx 2528 1717 0.050 0.014 0.094 0.009 0.086 0.491
9sound.ogg 1457 1.151 0.071 0.023 0.085 0.007 0.138 0.474

140

Table B.8 Download time of 75:25-write:read situation with uniform file type

mixture
FILE NUM MAX AVG MIN STD VAR 95th 99th
10sound.mp3 1251 15.405 4.816 1.620 2.359 5.566 9.123 12.052
11videosmall.mpd 1191 55.009 | 13.265 4.966 6.533 42.681 25844 | 31.207
12videobig.mp4 1225 | 258.550 | 97.622 | 42.712 | 37.035 | 1371.579 | 174.617 | 204.544
lecg.jpg 531 3.057 0.374 0.090 0.279 0.078 0.756 1.560
2mri.jpg 779 2.861 0.133 0.019 0.244 0.060 0.400 1.339
3xray.png 1229 9.291 2.415 0.761 1.243 1.546 4.668 6.025
4eed.xml 802 6.934 0.169 0.022 0.476 0.227 0.423 2.681
5ced.xml 547 6.445 0.496 0.130 0.398 0.158 0.952 1.796
6ccd.pdf 487 3.396 0.543 0.140 0.371 0.138 1.069 2.047
Tword.docx 510 5.576 0.395 0.097 0.381 0.145 0.779 2.137
8excel.xlsx 770 3.016 0.125 0.024 0.223 0.050 0.325 1.024
9sound.ogg 491 4.873 0.263 0.046 0.423 0.179 0.748 2.162

Table B.9 Upload time of 50:50-write:read situation with uniform file type mixture

FILE NUM MAX AVG MIN STD VAR 95th 99th
10sound.mp3 2483 5375 1.491 0.853 0.815 0.664 3.079 4.086
11videosmall.mp4d 2491 | 16.510 4.346 2579 2.287 5.229 9.059 | 11.760
12videobig.mp4d 2520 | 116.072 | 36.535 | 22.062 | 16.342 | 267.063 | 71.927 | 87.760
lecg.jpg 985 1.226 0.116 0.047 0.098 0.010 0.251 0.481
2mri.jpg 1688 1.585 0.040 0.015 0.076 0.006 0.073 0.278
3xray.png 2531 4.806 0.769 0.404 0.454 0.206 1.598 2.192
Aced.xml 1627 1.368 0.043 0.014 0.071 0.005 0.081 0.284
5ccd.xml 1013 3.546 0.199 0.076 0.184 0.034 0.399 0.854
6ccd.pdf 1007 1.581 0.185 0.075 0.153 0.023 0.410 0.716
Tword.docx 1024 1.967 0.124 0.051 0.121 0.015 0.278 0.410
8excel.xlsx 1670 1.192 0.044 0.014 0.076 0.006 0.080 0.286
9sound.ogg 1006 2.189 0.066 0.024 0.094 0.009 0.139 0.295

141

Table B.10 Download time of 50:50-write:read situation with uniform file type

mixture
FILE NUM MAX AVG MIN STD VAR 95th 99th
10sound.mp3 2511 17.834 4.283 1.621 2.244 5.035 8.482 10.030
11videosmall.mpd 2531 35.124 | 11.900 4.955 5.963 35559 | 23.314 | 29.056
12videobig.mp4 2494 | 247980 | 80.521 | 42.073 | 31.017 | 962.060 | 140.860 | 179.380
lecg.jpg 1050 1.739 0.294 0.089 0.185 0.034 0.547 1.009
2mri.jpg 1641 5.866 0.096 0.020 0.230 0.053 0.301 0.838
3xray.png 2433 7.313 2.141 0.759 1.115 1.243 4.198 5.195
4eed.xml 1736 6.403 0.094 0.021 0.228 0.052 0.271 0.643
5ced.xml 970 5.741 0.434 0.128 0.369 0.136 0.855 1.511
6ccd.pdf 973 7.007 0.455 0.140 0.384 0.147 0.867 1.697
Tword.docx 926 4.711 0.323 0.095 0.256 0.065 0.609 0.902
8excel.xlsx 1672 5.497 0.106 0.020 0.250 0.063 0.277 1.087
9sound.ogg 1018 6.108 0.172 0.045 0.276 0.076 0.331 1.060

142

‘3:‘ {@E®$ K|§T|

The 2016-8" Internatlonal Conference on
Knowledge and Smart Technology (KST)

e
|

“- February 3 - 6, 2016 -
. @Kantary Hills Hotel
e Chiangmai, Thailand

Organized

Chta'nI Iu' i} b
QIEEEEEE oo M QIEEE) - C [[ISISTRAYAIAT

Distributed Storage Design for
Encrypted Personal Health Record Data

Metha Wangthammang', Sangsuree Vasupongayya®
Department of Computer Engineering, Faculty of Engineering, Prince of Sengkla University
Hat Yai. Songkhla 90112, Thailand
5510120085 @email psu.ac th', vsangsur@coe psu.ac th’

Abstract—D3ePHR. is proposed in this work in order to
manage the encrypted PHR data on a cloud storage. HBase and
Hadoop are utilized in this work. The objective is to provide an
APT for any PHR. system to upload/download the encrvpted PHR
data from a cloud storage. The DSePHR resolves the Namenode
memory issues of HDFS when storing a lot of small files by
classifying the encrypted PHR data into small and large files, The
small files will be handled by HBase schema that is proposed in
this work The memory consumption and the processing time of
the proposed DSePHR are evaluated using real data sets collected
from various healtheare communities.

Keywords—Hadoop; HBase; PHR; Design; Schema; Storage

I INTRODUCTION

Today healthcare technology can improve quality of lives.
Daily life activity information can be a source for predicting a
disease or preventing one. Personal health record (FHE) [1]1s a
concept that emerges recently. The PHR owner can store any
health related information into the PHR. storage and the PHR
system mmst ensure that the PHR. owner has a full control over
his’her data [1]. In confrast, the electronic medical record
(EME) stores the patient related information and the EME
belongs to the healthcare facilities while the PHE stores any
health related information and the PHR belongs to the PHR
owner [2]. This way, the user can store and retrieve hisher
health information directly from the PHR storage while the
user cannot access any EME data directly. Although the patient
data can be requested but the ownership of the EMR 1s the
healthcare facility still. With the PHR . an individual
can store any of his’her health related mformation of histher
entire life and the information may include some forms of
EMRs. The wolume of the PHR data can grow very fast
because the PHE. data can be any health related information
and the data of each individual will be added every day.
According to [1]. the PHE. data contains variety of health
related information such as allergy data, family lustory, and
some laboratory test results. Thus, the PHR data requires a big
storage for storing the massive PHR data and the data in the
storage nmst be correct and accessible. In other words, PHE. is
another application that requires a big data management [3].

Since the PHE belongs to the PHR owner, the access
control on the FHE omst enswe the protection of data
Moreover, the PHE. may contain some sensitive data. Thus, a
security mechanism to prevent any data leakage nmst be
implemented on the PHR. data. Several PHE. systems provide

978-1-4673-8139-0/16/$31.00 €2016 [EEE

encryption methods for secuning the PHR data and the
encrypted data is later stored on a cloud storage [4][5][6][71[E]
This way, the users of these systems can ensure that their PHR.
data 15 safe because the data 1s encrypted and only the owner of
the data or the user who has the permission can decrypt it.
However, these PHR. systems store the encrypted PHE. data
directly to the clond storage. There is an issue of the memory
management becanse most PHE. document is small. Thus, the
small file size can consumes a large memory of the cloud
storage system [15] which can lead to a system availability
izsne. Therefore, a mechanism to handle a various size of the

d PHE. data on a cloud storage that alse preserves the
access control on such encrypted PHE. data 15 needed.

Another challenge of this work is the encrypted PHE. data
which is not accessible by the storage system The storage
system does not have any information on the data. Any
Preprocessing of categorizing mechanism on the encrypted data
for performances is difficult. Unlike other raw data, the storage
system can perform any preprocessing or categorizing based on
the content of the data. Typical clood storages use bucket-
object which is the de facte industry standard for holding
objects [12]. Such technique can store the encrypted PHE. data.
However, such techmque is not appropriate for retrieving the
data by time and owner attributes becanse it takes a long time.
The encrypted PHR. data has some specific characters. That is.
the PHE has an explicit owner, size and amival time of the
data. The access pattern of the PHR. data typically involve these
three attributes. For example. a request to retrieve the data of
Mr. Jobhn which is collected last month. Therefore, this work
will use these three attributes of the encrypted PHE. to improve
the performance of the distributed storage.

In this paper. we propose a design of a distributed storage
for encrypted PHR data. The design focuses on handling
various file size of the encrypted PHR. data, accessing patterns
of the encrypted PHE. metadata and retrieving patterns of the
encrypted PHE. data. Both Hadoop [17] and HBase are used in
our design For comparisen purposes. Hadoop Distributed File
System (HDFS) which 1s a storage of Hadoop is used as a
general big data framework fo store the encrypted PHE. data.
The evaluation parameters include the memory consumption
and the retrieving time of the proposed system.

II. R=LATED WORK

Cwrent PHR cloud storages [10][11][12][13][14] are
reviewed in this section. These storage are designed for vanious

184

143

requirements of the PHR. system mainly an ability to store and
retrieve massive PHE. data effectively.

MedCloud [10] is a health care computing system which is
design to follow the HIPAA privacy and some security rules.
MedClond main geal is exchanging the health care data
between health care providers. The solution is mowing the
health care data to a cloud computing platform as a common
place for sharing the data. This way. the MedCloud user can
store his’her EMR or PHR data on the system From the
technical standpoint, MedCloud uses HBase for storing and
retrieving the healthcare data.

Medoop [11] is a medical platform which is developed for
supporting a centralized health information exchange (HIE) in
China becanse the size of such data can grow massively.
Medoop vses Hadoop and HBase as its underlining framework.
Medoop merges all files to a large one and creates an indexing
file contaiming the information of all merged files. Medoop
stores both the indexing file and the merged file on HDFS. Any
frequently used data. however, will be stored separately on
HBase.

The improvement of CACSS [12] is a generic cloud storage
system. The orgamization or eduvcational institution which
needs to use a private cloud storage for processing or storing
their massive data can implement such a system The system
use both Hadoop and HBase for storing the data. The system
stores the data in HDFS and stores the information of the data
(metadata) such as file name. file owner, and time on HBase.
The system is able to store vnstructured files. However, the
storage does not design for fast retrieving according to the FHR
owner or the PHE. amrival time attributes. Querying the specific
PHR. data of a particular owner will take a long time because
the system mmst scan all the metadata stored on HBase in order
to filter the requested PHE. data.

CHISTAR. system [13] is developed as a replacement of the
traditional EHR. system uvsed by many hospitals in the United
States. The traditional EHR. system (VistA) which 1s a client-
server architecture has a scalable limitation and a data
interoperability issue. The CHISTAR transforms the traditional
EHR system to a cloud based system and enables the data
interoperability. HDFS (Hadoop storage) is selected for storing
the EHE. data. MapReduce 15 selected for loading the data to
HBase because HBase can solve the scalable issue efficiently.
Thus, CHISTAR is suitable with the explicit EHR. data type
because MapReduce will classify the data for convenient
retrieval before store the data on HBase.

Wiki-health system [14] 1s a cloud storage for PHR sensor
data. Wiki-health 15 developed on top of a generic cloud
storage system named CACSS which wses Hadoop as the
underlining framework. Data such as electroencephalography
(EEG) or electrocardiography (ECG) can be stored directly on
the Wiki-health system The semsor data 1s stored on HBase
because of its fast realtime data accessing performance.
Although. the Wiki-health system allows an unstructured file
(an encrypted PHE data) to be attached and stored om the
system. The issue raises during the data query because the
database schema of the system is designed specifically for
handling the sensor data.

185

Many cloud storage were developed on top of Hadoop and
HBase because both are the main popular open source big data
frameworks. Hadoop provides reliability, parallel processing
capability, high wmnte throughput, and scalable storage
capability. Typically. an application that requires a huge
storage and is a batch processing will use Hadoop. Feal time
applications will use HBase. HDFS is the storage. More details
of Hadoop and HBase are given in section ITT

OI. Hapoor aND HBASE

Hadoop is a big data framework which provides high
access throuwghput, scalable and reliable storage, and a fawlt
tolerance feature [9]. Hadoop consists of HDFS and YARN (in
Hadoop wversion 1 called MapReduce). HDFS is the storage
while YARN is a processing tool. HBase is a non-relational
database which provides a low latency data access feature and
HBase runs on top of HDFS.

HDFS is a part of Hadoop storage. HDFS consists of two
node types: Namenode and Datanode. HDFS Namenode stores
all metadata such as a location of blocks in HDFS and a
mumber of replication. HDFS Datanode contains the actual
blocks of data. When the data arrives, it will be spited to blocks
and the blocks of data will be stored on Datanode while the
information related to these blocks are stored in the Namenode.
The Namenode is in the memory which can reduce the
metadata access time. However, this design is a limitation of
HDFS because the amount of Namenode memory indicates
how many files can be stored on the HDFS. Thus, small files
will take up the Namenode memory space [15]. If the
Namenode memory is full, HDFS may be unavailable. By
default. each block of data has 3 replications located on
different Datanode. The replication block is the key to provide
the fault tolerance feature. If the node containing the requested
data is not available, there are other nodes that can serve the
recuested data. If a corrupt block is found, the corrupt block
will be replaced by another good bleck This mechanism
ensures the correctness of the data stored on HDFS. Moreover
additional nodes can be assigned to HDFS without the need to
shutdown the whole system. In other words, HDFS can be
conveniently scaled up or down.

HBase is a column-oriented style non-relational database
management system on top of HDFS. HBase schema includes
rowkey, column-fanuly, colunmn qualifier and cell The user
must specify the rowkey in order to access the data in a row.
HBase rowkey is always in a lexicography order [16]. HBase
has three node types. including master (Hmaster). region server
(HRegionServer). and Zookeeper (HQuornmpeer). Master is
responsible for administrative operations such as creating a
table, deleting a table and assigning a region server. The actual
row data is stored on the region server. Zookeeper stores
hbase:meta table which is the location of each region When
the data in a table grows, HBase will split the table info two
regions. The mformation of region such as the start of region
and the end of the region will be stored in the Zookeeper node.
HBase is designed for supporting a large table such as millions
of rows becanse HBase can antomatic split rows to regions.

144

IV. ProroseD METHOD

A distributed storage for stoning encrypted PHE. data
(DSePHR) is proposed in this work Firstly, the overview of
the PHE. system shown in Figl is described. The PHR data 1s
created by the PHE user. The PHR user can be a patient or an
individual who wants to store his/her health related data on the
PHR system. The PHR user selects the PHR system such as
MA-PHR. [8] system to encrypt his/her data and the
data will be uploaded to the PHE. storage. Typically, the PHR
systems store the data on a local storage or a generic clond
storage.

DSePHF. proposed in this worke can be used as the PHR
storage. According to Figl, the proposed method is inside the
red sgquare. DSePHR consists of two parts: the distributed
storage and the APT. DSePHE. API is available for storing and
retrieving the encrypted PHF. data. Next, the detail of DSePHR
1S given.

= E .
N e Pl drs

al
¥

acrrpmed
Fildoa

PRIR e

Farypend
FiffL dwa

PRIR e

Figl. Owverview of PHE. system using D5ePHE.

A Analysis of Encrypted PHR data

The PHE. data is encrypted and uploaded to the storage.
The content of the data is hidden from the storage management
system. Thus, any preprocessing of data for a refrieving
performance 13 difficult. Nevertheless. the encrypted PHE. data
has some explicit attributes such as the owner of the data, the
data amrival time and the size of the data. These three attributes
are frequently used by the PHR user in order to retrieve hisher
PHR data. These thwee aftributes are whlized in the proposed
design in order to store the encrypted PHE. data for convenient
storing and retrieving.

B. Design of the encrypted PHR data storage

The DSePHE. AFI (Fig 2.) consists of the encrypted data
manager (EDM). the metadata manager (MM), the
authentication module, the access interface and the
optimization module. The access interface is a part of the front
end for commmmnicating with the PHR system The
authentication module verifies a request from the PHE. system.
The encrypted data manager is responsible for managing the
incoming encrypted FHE. data and storing the data to the
storage. The metadata manager 15 responsible for handling the
metadata of the encrypted PHR. data. The optimization module
is responsible for handling the confisuration and connection to
both HBase and Hadoop for performance.

My Pripesed AP1

i HTTP s 551

-

Antheraation | Teken bscd)

SARPIN 503

EncnpicdDats Meisdsia Memgar
Masager

Hadoog
Hibsae

Hadoo Distributed File Systcnu

Fig 2. Overview of the proposed system

Under the DSePHE. the encrypted PHE data will be
uploaded to the DSePHR. through the access mnterface. The
authenfication service will first venify the permission. Then, the
MM will generate a set of essential metadata for the arrmval
encrypted PHE. data and store the metadata to HBase. The
actual encrypted PHE. data will be stored either on HDFS or
HBase based on the EDM decision An encrypted PHE. data
retrieval request will be processed by the access interface
module as well. First, the request permission will be verified by
the authentication service. Next, the MM will get the metadata
of the requested encrypted PHR data in order to find the
location that the requested data is stored. Then, the EDM will
retrieve the data from its location and send the data back to the
access interface which will process the response to the request
issuer.

1) Access interface
Access inferface is an interface compmnicating with the
PHE. system The interface uses RESTfol architecture style to
provide the resource for the PHE system The commection
between the PHR system and DSePHR. is secure by means of
TLS/SSL.

2) Authenfication
Authentication module provides all authentication related
actions for all DSePHE. requests. The module ensures that only
the request with a valid permission can access the resource
becanse the permission of all requests is verified by the
authenfication module. Token based authentication is applied
in this work to provide the authentication mechanism

3) Encrypted Data Manager

EDM is responsible for storing the encrypted PHR. data to
either HDFS or HBase. After the access interface sends the
encrypted PHR data to the EDM. the EDM will classify the
received data into two categories: small files and large files. To
reduce the Namenode memory issues when storing a lot of
small files, the small file will be stored on HBase while the
large ﬁles are sent directly to HDFS. According to the
discussion in [15] any file that is smaller than 4.35 MB will be
considered a small file. In this work, the file smaller than
10ME (based on the maximum HBase cell capacity) will be
considered a small file. The HBase schema to store the
encrypted PHE data includes a colomm family named
Enmpted[)ata and a colomn qualifier named data. The rowkey

186

145

consists of system id. user id, tumestamp and data id. The
reason behind the design of this rowkey i3 described in the
metadata manager section. Table I shows the schema of HBase
for storing a small file.

TAEBLEL ENCEYPTED PHE. DATA STORAGE SCHEMA
Rowkey EncryptedData
=sysid-userid- Data
timestamp-dataid-
TABLEIL METADATA SCHEMA IN HBASE
Fowkey Properties
“rysid-nserid- name | checksum | size HDFSpath descript
timestamp- ion
datsid=

TABLE Il DEMONSTRATION OF ROWEEY

Data sorted

-—
by time
. | mewkey
- Sl-L'i}."SD_rl:U 0G50 "'J'~_L"U555-I.2L'I§D\:2&391§8b
System =51 — 914361534170 1 ThRSEEES | e6Elc14

SI-U4SEER14364 146781142024 bT8 | 35b35ncS3s
| S3-U45550-1436 1878 17-670d28cac | bi92adS4des
Z5-U45205-1436381417-04d20a8bf 1 09dcdbildco
| B5045505-1 43630661 7- 178528004 2e5064 L 5o

-

User = L4 5590 _,‘

User = L45595 —

4) Metadata Manager

MM is a module for handling the encrypted PHR metadata
data. MM generates the metadata and retrieves the metadata for
the EDM. MM uses HBase as the storage. The schema for
storing the metadata contains a colvmm family named
properties and other column qualifiers such as name. size
checksum HDFSpath, and description. Name is the encrypted
PHR. data filename. Size is the encrypted PHE. data file size.
Checksum is the hash value of the data for the data integmty
verification process. In this work, SHAS [18] is used as the
checksum walue. HDFSpath is presented only if the EDM
decides to store the encrypted PHR data to HDFS. The
HDFSpath contains no value if the data is stored on HBase.
Description is a description of the encrypted PHR. data. Table II
shows the schema. A rowkey consists of the system 1d, the user
1d, the timestamp. and the data id. The design of the rowlkey is
very important in the non-relation database because a non-
relational database cannot use a join operation like a relational
database. The database uses rowkey as the primary key to
access the data. Since the rowkey in HBase is always i a
lexicographical order [12]. the data from the same user will be
located close to each other and the data are sorted by the
timestamp. With this design, HBase can quickly map various
data of the same uwser. Moreover, the data can be accessed
conveniently according to the time attribute since the data is
already stored by the tumestamp. Table III shows an example of
the rowkey information.

J) Optimization
Since the system uses HBase for storing the encrypted PHR
data in case of small files. The default configuration of HBase
can lead to the system uvnavailable becauwse of the memory
issues and the excessive garbage collection issues [21]. To

prevent these problems, the HBase configuration mmst be
changed and the java virtual machine nmst be configured.

To configure HBase, the memstore flush size is changed
from 128MB to 32MB based on the finding in [21]. The HBase
memstore flush size is a parameter that indicate when HBase
will flush the data in the memory to the disk The effect of this
parameter tuning will make HBase flushing the memory more
often. The HBase bloom filter parameter is enabled in order to
decrease the time to access a row in HBase.

To configure the JVM, the TVM heap size is expanded from
1GB to 4GB. The JVM heap size is the size of the memory
allocation from the OS5 for moning any java application A
large heap size can support velocity data from the client A
garbage collection is an automatic tool for the JVM memory
management. The memory of the TVM can be classified into
two generations: young and old. A new object that 15 created
will belong in the young generation. Later, the data will be
moved to the old generation The memory of the young
generation will be cleaned however it is difficult to clean the
old generation memory space. The velocity nature of the data
will result in a moving of objects from young generation to old
generation space. To avoid the JVM out of memory issue. the
MaxTemwingThreshold is set to the maxinmm value (Le., 15)
in order to avoid an object in the memory to move to an old
generation [22].

V. EXPERIMENT
In this section, a memory consumption of the Namenode is
evaluated. The time to access the metadata of a file, the time to

access the requested encrypted PHR. data, and the time to
retrieve the requested encrypted PHR data are measured.

File size distribution

W< 100KB MW100KB-1MB B IMB-10MB =10 MB

Fig 3. File size distmibudon

The dataset for all experiments in this work is created from
health information commmnities mcluding continuity of care
document (CCD), electrocardiography graph (ECG). document
files (pdf. docx, xlsx). x-ray image, and operating video files.
The file size of these data are between 20KB to 332MB. The
detail of the data set is given in Table IV. All data are firstly
encrypted using the MA-PHR system [8]. Fig3 shows the
distribution of the file size in this dataset. Twelve machines are
used. The hardware and software specification of all machines
is RAM 8 GB, HDD 320GB, Ubuatu 14.04.3 LTS, Hadoop

187

146

version 2.7.1 and HBase 1.01. Table V shows the details of
these machines. To sinmlate the real environment. the dataset is
upleaded to DSePHR for 30 hours. The file are randomly

uploaded to a random user dunng the experiment. The
performance is measured after 25000, 50000, 75000 and
100000 files are successfully uploaded to the system.
TABLE IV. EXAMPLE OF DATA SET
Filesize Filesize Increased| File Deescription
(Original) | (Emcrypted)| Size Type
393.20 40000 EB TI0EB JPG | ECG picture zraph
EB Source: en ecgpedia.org
2030 3045EB 10.15 PG MFRIimage
KB EB Source:
imaging. cancer. gov
419MB 420MB 11.55 PNG | Chest X-ray PA image
(4.7ME)
Source:
commons wikimedis.org
27.00 3B06EB 11.06 XML | CCD example
EE EB Source:
www ehrdectors_com
§17.30 §2000EB | 3.60KEB | XML | Large CCD example
KB Source:
www.myhealth va_gov
679.40 §90.9 (EB 11.50 PDF CCD PDF example
EB EB Source:
www.myhealth va_gov
4480 43000 EB 12.00 DOC | Patent information
EB EB X
30.52 4223 KB 11.71 XLs Patient information
EB EB X
1548 16090EE | 610KB OGE | Heartbeat 66bpm sound
EB Source:
commons wikimedis.org
375 MB 875 MB 7.5TEB MP3 | Conversation sound 9
minmte
27.10 170 MB 223 EB MP4 | SD Video of operation §
MB minue
Source: youmbs com
23101 I32.0MB 11.30 MP4 | HD Video of operation
MB EB 17 mimue
Source: youmbe com
TABLE V. SETUP DETAIL AND ENVIRONMENT
Name Service Name Specification
Master NameNode 05: Ubuntu 14.04.3
RS1-R59 DataNode LIs
HEerionServer (region server) | CPU: Core-i5 3740
HOuorumpeer (Zookeeper)* 1.0Ghe
*Only RS1RS3 HDD: 320 GB
Master? Hmaster RAM:8GB
Huommpeer
SecondaryMamelode
WebService DSePHR WebSarvice

The DSePHR. is available duning the whole 30 hours of
experiments and there is no dead Datanode or region server.
We observe memory co tion of Namenode when the
DSePHE. has 25000, 50.000, 75.000, 100,000 files in the
system. Memory consomption is calculated according to the
fornmla given in [15]. When 100.000 files are in the system,
the system takes 1200GB of storage with 3 replications. Figd

shows the memory consumption of Namenode At the
beginning, Hadoop takes an initial memory space around 56
MB which 15 represented by 0 file on the x-axis. At 100,000
files, DSePHE. takes slightly larger memory space from the
initial state while the HDFS takes approximately twice the size
of the imitial memory.

Memory Consumption of Namenode
140

Memaory (MB)
>

0 25000 0000 TE000 1 00000
Nummber of filss in the systen
=8=D5%«PHR «-4+ HDF%

Fiz 4. Memory consumption of Namenode

Time to acess metadata

25000 S0000 1000

Humber of files
=&=] iten --&+ All itemns of the user

Fig 5. Time to access metadata

To measure the uploading and downloading performance of
the DSePHE. a request 15 sent to the DSePHR in order to
measure the processing time of accessing the metadata and
accessing the requested encrypted PHE data. Each case is
repeated 10 times the average processing time is then recorded.
The result shows that the DSePHE. can provide an access to the
requested data immediately because the DSePHE. already has
the index for such PHR access patterns.

Fig5 shows the tune to access the encrypted PHR metadata.
There are two cases shown in Fig5. First, the average access
tume to the metadata when the user request only one file of a
user. Second. the average access time to the metadata of a user
(all files of that wser). According to the results, the time to
access the metadata of all files of a particular user takes
approximately double the time to access the metadata of a
single file of a particular user. At 50000 files in the system. the
tume to access the metadata drops because the metadata persists
in the memory (HBase memstore). The system can read the
metadata directly from the memory. Figh shows the average
time to download various files of different sizes from the

188

147

DSePHE. The time to retrieve the file at different states of the
DSePHR system is similar. The size of the file will increase the
file retrieving time accordingly.

Retrieval time

50
40
=30
u
820
10
25000 50000 75000 100000

Number of files in the system

=a=155KB --+-8MB 2TMB 232 MB

Fig 6. Fetrieval ime

VI. CONCLUSION

DSePHR is proposed in this work to handle the encrypted
PHE. data on a clond storage. HBase and Hadoop are nsed in
the proposed DSePHE. Large files will be stored on HDFS
while small files are stored on HBase to solve the Namenode
memory issues in HDFS. Several configuration of TVM, HBase
and Hadoop are made in order to achieve the goal of the
DSePHE. The encrypted PHE. metadata is stored on HBase. A
new HBase schema is designed and implemented in this work
in order to support the PHR accessing patterns. Specifically.
the PHR. data is typically accessed according to the PHR. owner
and the PHR. arrival time attnibutes. The experimental results
show that HBase schema developed in this work can correctly
classify the encrypted PHR data and sends the data to an
appropriated storage. The DSePHR. does not encounter the
Namenode memory issues in HDFS during the whole
experiment period. The average retrieving and accessing time
of varions files shows that DSePHR. takes similar time to
response to each request even when the mumber of files in the
system is increased. Future work includes a further investigate
the effect of each configuration. the effect of the HBase scheme
developed on the DSePHE. performance and the performance
when mmitiple nsers accessing and retrieving sinmltaneously.

ACENOWLEDGMENT
This work was supperted by the Higher Education
Research Promotion and National Research University Project
of Thailand, Office of the Higher Eduocation Commission
(vnder the fonding no. MED35403485 at Prince of Sengkla
University).

REFEREMCES

Tang, P.C., Ash, I5. Bates, DW., Owverhage, M., and Sands, D.Z.-
“Personal health records: definitions, benefits, and swawemies for
overcoming barriers to adopden’, Joumal of the American Medical
Informatics Association, 2006, 13, 2), pp. 121-126

11

189

[3]

[4

[51

[8

[0

nn

[17]

[13]

[14]

[15]

(18]

nm
ne
ne
]
]

2]

Hiyrinen, K, Saranto, K., and Mykinen P.: ‘Definition, structure,
content, use and impacts of electronic health records: a review of the
research literature’, International journal of medical mformatics, 2008,
77, (5, pp. 291-304

Margaret, M., Miron-Shaz, T., Lan, A., and Paton, C.. ‘Big Daia in
Science and Healthcare: A Review of PRecent Literamurs and
Perspectives’, 2014

Li M., Yu 5. Fen K, and Lou, W.: “Securing personal health records
in cloud computing: Patient-ceniric snd fine-grained data access control
I ings': ‘Security and Privacy in Commmmication
Metworks’ (Springer, 2010), pp. 88-104

Wang, C., Lin, X, and i W.: ‘Implementing 3 Personal Health Facord
Cloud Platform Using Ciphertext-Policy Armibute-Based Encryption™
‘Book Implementing a Personal Health Record Cloud Platform Using
Ciphertext-Policy Attribure-Basad Encryption’ (2012), pp. 8-14

Li M., Yu, 5, Zheng, Y., Fen, K and Lou, W.: ‘Scalable and secure
sharing of personal health records in cloud computing using arribate-
‘based encryption’, Parallel and Distributed Systems, IEEE Transactions
on, 2013, 24, (1}, pp. 131-143

Xhafa, F., Li, J., Zhae, G., Li, ., Chen, X., and Wong, D.5.: “Designing
cloud-based electronic health record system with aomibute-based
encryption’, Mulimedia Tools and Applications, 2015, 74, (10). pp.
3441-3458

Thummavet, P., and Vampongayya, 5. ‘Privacy-preserving emergency
access control for personal health records’, MAETO INTERNATIONAL
TOURNAL OF SCIENCE AND TECHMOLOGY, 2015, @, (1), pp. 108-
120

Shvachke, K. Eunang H., Radia, 5. apnd Chansler, B “The hadoop
dismbuted file system’: ‘Book The hadoop distibuted file system’
(IEEE, 2010), pp- 1-10

Sobby, D.; El-Sonbaty, Y.; Abou Elmasr, M., "MedCloud: Healthcara
cloud computing system” Internet Technology And Secured
Transactions, 2012 International Conference for , vol., no., pp.161.166,
10-12 Dec. 2012

Wang Lijun; Husng Yongfeng: Chen Ji; Zhou Ee; Li Chunbma,
"Medoop: A medical information platform based on Hadoop,” e-Health
Merworking, Applications & Services (Healthcom), 2013 IEEE 15t
Internatonzl Conference on , vol., no., pp.1,4, 212 Oct. 2013

Li Y., Guo, L, and Guo, Y.: ‘An Efficient and Performance-Aware Biz
Dam 5Storage System’: ‘Clond Computing snd Services Science”
(Springer, 2013), pp. 102-116

Bahga A Madizer, V.E., "A Clond-bazed Approach for Interoperabls
Electronic Health Records (EHEs)," Biomedical and Health Informatics,
IEEE Journal of . vol.17, no 5, pp.804,0046, Sept. 2013

Yang Li: Li Gue; Chao Wu; Chun-Hsiang Les; Yike Guo, "Building a
cloud-based pladform for personal health sensor dats memapement”
Biomedical and Health Informatics (BHI), 2014 IEEE-EMEBS
Internatonal Conference on , vol, no., pp.223,226, 1-4 Tune= 2014

Dong, B., Zheng, Q., Tizan, F., Chao, K-M., Ma, F., and Anane, B “An
optimized approach for storing and sccessing small files on cloud
storage’, Joumnal of Merwork and Compurer Applications, 2012, 335, (d),
pp. 1847-1862

L. George, HBase The Definitive Guide. Oreilly Media Incorporation,
Angust 2011,

“Apache Hadoop”, hotps://hadoop spache org

Bertoni, M P.G., Dasmen, J., and Van Assche, G “Eeccak (zha-3)7,
“Book Eeccak (sha-3)°, 2013

“Apache Thrift”, htip//thrift apache org

“HappyBaze™, hitps./happybase readthedocs org/en latest

“Sroring images im Hbasa™, hrp: /apache-
hbase §79485 n3 nabble com/Stonin z-ima ges-in-Hbase-1d40361 54 hrml
“Farbage Collector nming for services with large heaps™, hip./swizh-
movement blogspot com 201210/ garbage-collector-mumning-for-

services hml

148

VITAE
Name Mr. Metha Wangthammang
Student ID 5510120085
Educational Attainment
Degree Name of Institution Year of Graduation
B.Eng Prince of Songkla University 2011

(Computer Engineering)

Scholarship Awards during Enrolment
The National Research University, Funding no. MED540548S

List of Publication and Proceeding

Wangthammang, Metha., & Vasupongayya, Sangsuree. (2016). Distributed storage
design for encrypted personal health record data. In 2016 8th International
Conference on Knowledge and Smart Technology (KST) (pp. 184-189).

IEEE. http://doi.org/10.1109/KST.2016.7440505

149

